
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Computer Science

Kristjan Kelt

Immutable data types in concurrent
programming on basis of Clojure language

Bachelor thesis (6 EAP)

Supervisor: Oleg Batrashev

Author: Kristjan Kelt

Supervisor: Oleg Batrashev

Approved for defence

Professor: …………………………………

“…..“ May 2013

“…..“ May 2013

“…..“ May 2013

TARTU 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/16270249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Table of Contents
1 Introduction...4
2 Overview of the multi threading problems...6

2.1 Shared memory..6
2.2 Coordination between threads...6
2.3 Coordination induced performance problems...7

3 Current state of Java concurrent programming...9
3.1 Java platform...9
3.2 How concurrency is added into Java...9
3.3 Mutual exclusion in Java...10
3.4 Enforcing mutual exclusion...11
3.5 Concurrency improvements in Java version 5 ...12
3.6 Summary of concurrent programming in Java..13

4 Concurrency in Clojure...14
4.1 Clojure introduction..14
4.2 Concurrent programming in Clojure...14
4.3 Immutable data types...15

4.3.1 Immutability..15
4.3.2 Immutable data types in Java ..16

4.3.2.1 Drawbacks..17
4.3.3 Clojure collection data types ..17
4.3.4 Persistent linked list...18
4.3.5 Persistent vector...18

4.3.5.1 Binary trie or a digital search tree ...19
4.3.5.2 2k tries..23
4.3.5.3 Performance improvements...24

4.3.6 Persistent vector performance measurement...24
4.3.6.1 Performance tests ..25
4.3.6.2 Test results ...25

4.3.7 Suggestions for persistent vector additional performance improvements.............................30
4.3.7.1 Broaden immutability definition..30
4.3.7.2 Change control using AtomicBoolean...31
4.3.7.3 Identify different threads ...31
4.3.7.4 Test results..33
4.3.7.5 Immutable list building with mutable companion...34
4.3.7.6 Test results..35

4.4 Sharing data between threads..37
4.4.1 Actor model...37
4.4.2 Agents..38
4.4.3 Software transactional memory...38

4.4.3.1 Compare and swap...39
4.4.3.2 STM comparison with CAS...39
4.4.3.3 STM comparison with locks..41

4.5 Summary of Clojure concurrent programming...43
5 Summary...44

3

1 Introduction
While we may perceive the world as sequential because there appears to be a certain order of events
that is fixed in time, the world around us is parallel by nature and everything happens simultaneously.
The computers have long time imitated this naive world view but in a few recent years the processors
that support running multiple calculations in parallel have become more and more prevailing.
Processors with multiple cores are now even found in the mobile phones that decade ago used simple
microprocessors.

Very often we are concerned more about processes interference with each other, while sharing common
resources, than about their parallel nature. This what concurrency is about, indeed there is a lot of
concurrency in the real world. Roads can only fit a fixed number of cars on the single lane and
similarly a cashier in the super market can attend only one person at time and the queue is needed to
organize the access to this resource. Beside being parallel, the world is highly concurrent. The similar
limitations do apply to the computer systems.

The limits set by the processor architecture are explored in Section 2 "Overview of the multi threading
problems". It appears that cascade of the problems is inherited from the shared memory model where
the main memory is shared between different computing cores and the only method to the programmer
to exchange information between different running threads is to write and read known memory
addresses.

Running programs concurrently is not a new paradigm and have been widely in use among the general
public since emerging of the modern operation systems with the graphical user interfaces. The
concurrency in the single core system can provide apparent responsiveness – both the part of the
program doing long running background calculations and the part of the program showing user
interface can make a progress. Therefore it can not be surprising that the new high level programming
language Java that appeared in 1995 incorporated a set of concurrency features. With modern multi
core processors the programming systems with concurrency support can take advantage of the added
parallelism relatively naturally. Legacy of the Java in concurrent programming is evaluated in Section 3
"Current state of Java concurrent programming".

Over the time it became more on more clear that the method of solving concurrency problems in Java is
relatively error prone. While the programs appeared to be working to the programmers during the test
phase, the programs could dramatically become completely halt after running several years in the
production.

This understanding has lead to search of new paradigms for programming concurrent problems and to
the reevaluation of the older paradigms that have not become widely popular. One of such one man
quests has lead to the emergence of the new programming language Clojure. Clojure combines an old
Lisp programming language with the new thinking about solving concurrent problems on top of the
Java ecosystem.

While Clojure Lisp like syntax features are not explored in this work, Section 4 "Concurrency in
Clojure" evaluates the concepts introduced by this language. The main focus of this work lies on the
immutability of the data structures. The internal structure and the performance of one of the Clojures
most novel data types Persistent Vector is explored in the sections Section 4.3.5, Section 4.3.6 and
Section 4.3.7. In addition small set of performance improvements are suggested and discussed.

4

Overview of the data sharing methods in Clojure is given in Section 4.4.2 “Agents” and Section 4.4.3
“Software transactional memory”.

5

2 Overview of the multi threading problems

2.1 Shared memory
The root of the concurrent programming difficulty is shared memory hardware architecture and the
need for communication between different threads. This means that when two separate threads need to
share some information, it can be only done by one thread writing to the known memory address and
another thread reading from that address (for example by periodically checking given address).

The problem arises when composition of processor instructions must have certain logical integrity and
order. In single processor and single processor core systems it is possible that the processor time is
given to another thread in between two dependent instructions, in multi-core or multiprocessor system
it is in addition possible that two processing units want to read or write the depending memory
addresses simultaneously. The program is not sequential anymore and multiple reads and writes appear
in seemingly random order.

It is even more complicated when we take into account that the modern processor do have multiple
level caches before the main memory and due processor memory model1 different processor cores may
now see the changes in more relaxed order or may not see at all [1].

Higher level programming languages can make the situation even more complicated for the
programmer because to gain more performance the compiler can change the execution order of the
statements [2] and the statements appearing to write into memory2 actually keep the values in processor
registers or write into memory only after the end of the calculation ([3] Section 17.3, [4])

2.2 Coordination between threads
Therefore it becomes apparent that there should be some form of coordination between different
threads when there is risk that reads or writes of different threads may overlap.

Process to accomplish this is called mutual exclusion what will ensure that no two threads are in the
critical section, that is, in the code block that accesses shared memory (or any shared resource in
general). General method to enforce mutual exclusion that may involve changing multiple memory
locations is to use locks that are requested before entering critical section and released after leaving it
but modern processors support special instructions that guarantee secure writing of values that fit into
one processor architecture specific word (32 bit or 64 bit accordingly) within one instruction. ([5], [6])

Locks are very general solution and are not related to any specific memory address. One lock can be
used to guard different locations or two locks can guard overlapping sections. It is programmer or
higher level software architecture responsibility to guarantee that the locks are used properly – that
critical section is correctly determined, that locks are taken before entering and that locks are released
correctly.

It may be possible that actual shared memory is accessed without acquiring a lock or by acquiring a

1 Processor memory model defines what writes to the shared memory addresses may be seen by the reads executed by the
other threads. [1]

2 When the source code of the higher level programming language is inspected.

6

wrong lock. It may be that locks are not released properly (for example after software exception). [7]

There is also specific problem that is related to the lock taking order – deadlocking. It is possible that
two critical sections depend on each other and take locks in opposite order ending in situation where
both of them can not proceed because they are waiting after each other (see Figure 1). [7]

Figure 1: Deadlock

It is possible to reduce the risk of deadlock by carefully arranging the lock taking order but this method
is again prone to human error.

2.3 Coordination induced performance problems
Acquiring but also releasing a lock always involves additional overhead especially because to
guarantee the memory consistency in tiered memory architecture the processor must be forced to flush
cache buffers to guarantee that all the changes are written into memory. In addition the compiler should
arrange the code consequently that the values expected to be in memory are not cached in processor
registers. When this is not done, one of the threads may never see the changes made by other.

When thread tries to request a lock that is already held by another thread then it will be forced to wait.
This situation is called lock contention [6] and longer the critical section is the more likely it will cause
it. [8] This problem is especially harmful for systems with multiple processors or multiple processor
cores because it creates a point where program can not proceed in parallel due all the cores waiting
after single section of the code.

Another problem is that depending on the lock implementation, it may result in context switch3 for
waiting threads further degrading the performance. [10]

It is important to note that when two threads are only reading memory then they can do this

3 A process to store the state of the current running thread and replace it with another one. [9]

7

Lock 1 Lock 2
Request
 lock 1

Request
 lock 2

Request
 lock 1

Request
 lock 2

Thread 1 Thread 2

simultaneously without error4. This allows to use read/write locks where only thread to write into
memory will have to wait till all previously taken locks are released and where it is the only lock that
will block others to proceed before releasing it. [11] When most of the accesses are read only then
using read/write locks can provide noticeable performance gains. [7]

4 It must be still ensured that the writes are synchronized properly before the reading.

8

3 Current state of Java concurrent programming

3.1 Java platform
Java is one of the popular general-purpose object oriented languages whose history dates back into
early 1990s when it was developed in Sun Microsystems and it was introduced to public in 1995. ([12],
[13], [14])

Java was designed as platform rather than language with main objective to allow programs once
compiled to run on every device that has support for Java. [15] Therefore code written for Java
platform is not directly compiled into platform specific machine code but into intermediate so called
byte code that is then executed by Java Virtual Machine by interpreting the code or by using just in
time (JIT) compilation techniques. [16]

Java Virtual Machine does not limit its support only to the Java language and there are now at least few
vigorous relatively new languages that support other programming paradigms on top of the Java
platform. For example Groovy adds scripting capability with dynamic data types, Processing adds
visualization and animation domain specific language and Scala and Clojure add support for the
functional programming paradigm. [17]

Java platform provides wide range of standard class libraries that provide beside core features like
string manipulation, collection classes, a platform independent access to platform specific resources
such as file access, network access but also multithreading. ([3], [18])

Java libraries are accessible to other programming languages on Java platform and other programing
languages can make their own libraries and features available over the Java platform. [16]

Java is a garbage collected language meaning that the memory management (allocation and releasing)
is provided by the Java runtime. In addition Java does not allow unbounded memory access – bounds
of the arrays are verified and while the objects are created inside the heap memory, there is no direct
access to the object pointers. [3]

3.2 How concurrency is added into Java
While being high level object oriented language, concurrency support in Java relies on very low level
concurrency constructs that are added directly into language.

Java supports general concept of shared memory model where different threads can access the same
memory addresses concurrently. Thread are added into Java as Thread object. There are two ways to
create a new thread.

1. Create a class that extends Thread class. This subclass should override the run method5. An
instance of the subclass can then be allocated and started.

2. Create a new Thread instance with parameter to class that implements the Runnable interface
run method.

5 Programmer can in addition theoretically override the start method and call the start method of the Thread class but this
is not correct programming practice. [7]

9

New threads are started by calling start method. This will create a new subroutine that is executed
independently in the new thread. Thread objects do not provide a direct mechanism for differnet
threads to communicate or exchange data. For example it would be possible for existing thread to
create a new Thread instance, start a new thread and then call custom methods on this instance but
those methods would be still executed within the calling thread.

Data sharing must be done by using objects that are known by both of the communicating threads. For
example the new thread instance could contain a object variable that could be used for communication.

Due its multi platform nature, Java can not rely directly on the memory model provided by the
underlaying hardware architecture. Therefore it defines its own memory model that can provide the
same guarantees on every platform where Java is supported. [3] Java does not provide declarative
definitions of related atomic variables and critical sections must be marked imperatively by the
programmer. Except for few special cases the Javas support for mutual exclusion is managed using
locks either internally by the runtime or explicitly by the programmer. ([18], [7])

Java language model of the concurrency means that concurrent programming in Java is open to the
most of the problems inherited from the low level hardware architecture. [19]

3.3 Mutual exclusion in Java
The initial way to specify the critical sections in the Java code was by using the special synchronized
keyword in the method signature or in the header of the anonymous code block for more granular
control. When a thread enters a code block that is marked as synchronized, Java runtime request a lock
before executing the code inside the block and releases it after leaving the block by either naturally or
due runtime error. In addition Java runtime guarantees that all the relevant processor registers and
caches are written into memory. Locks are identified by its target object what must be specified for the
anonymous code block or is automatically method owner object6 for the methods.

Java uses reentrant type of locks for synchronized blocks meaning that the locks taken by the same
thread do not cause thread to block on the lock when called recursively.

While being relatively straightforward to apply and eliminating risk of some programming errors, the
synchronization mechanism provides very limited control over it. Because locks are induced
automatically around the synchronized block, it is not possible to leave the scope of the lock open. For
example it does not give programmer option to take the lock in one method of the object and release it
in the another. This kind of synchronization can be done only outside of the control of the objects. This
means that atomic7 operations that contain more that one method call on the object must be
synchronized separately by the calling code. [7]

For two threads the already taken lock will always require a wait regardless of the nature of the code –
synchronized keyword does not have a separate lock type for read only access. This is notably
noticeable on the multi processor (-core) systems where two threads could potentially read and process
data in parallel. In addition it is not possible to check beforehand if the lock is already taken, it is not
possible to set timeout for wait if thread gets blocked by lock.

These problems were addressed to certain extent in Java version 5 by introduction of the Lock interface

6 Every object in Java contains an internal monitor that is used when synchronization is applied on the object.
7 Two operations are atomic when their side effects are not visible separately.

10

that allows to control locks programatically. Unfortunately the synchronization and Lock interface can
not interface with each other. This effectively creates two separate incompatible methods to apply
mutual exclusion in Java. [7]

3.4 Enforcing mutual exclusion
One of the object oriented programming design principles is to use encapsulation to prohibit
uncontrolled manipulation of the objects state. Object state can only modified via method calls that can
ensure that object remains in the consistent state after every method call. ([20] Section 1.6, [21]
Chapter 4)

Enforcing this integrity is natural in sequential programming because every method call can assume
that the object was left in the consistent state after prior method calls. Ad hoc incorporation of the low
level multi threading operations into object oriented language like is done in Java breaks this
assumption because now different thread accessing the object can see the object state in the middle of
the method call. It can be argued that object oriented programming and concurrent programming
interfere with each other. [22]

In this paradigm the programmers first task is to identify if the class is supposed to be shared between
different threads. A class can be designed not to follow any thread safety principles. For example many
standard classes in Java like collection classes8, dates, are not thread-safe and it is their user
responsibility to guarantee that those classes are used properly.

Java does not provide a simple method to avoid using not-thread safe objects unsafely by multiple
threads. For example it is possible (not prohibited by compiler or runtime) to execute the code on the
Figure 2 by multiple threads. While this code may work, it is not guaranteed to work and it is possible
that thread executing the run method does not see the change to the stopCrawling variable9.

public class LinkCrawler implements Runnable {

private boolean stopCrawling = false;

public void stopCrawling() {
 stopCrawling = true;

}

public void run() {
while (!stopCrawling) {

crawlMoreLinks();
}

}
}

Figure 2: Not thread-safe link crawler can be called by different threads.

8 Except concurrent collections in different package and the indigenous synchronized Vector class.
9 This code can be fixed by marking the stopCrawling variable with the volotile keyword.

11

Applying the locks inherits the problems from the shared memory model. Figure 3 shows how
deadlocks can occur in Java code. On their own both methods in the class apply locks correctly but
when one thread is calling the addNumber method and another thread is calling the removeNumber
method then there is a risk that both threads will deadlock by unfortunate timing. This code can be
fixed by using the same lock taking order in both methods.

public class BigNumbers {

private final List<BigInteger> numbers =
new ArrayList<BigInteger>();

private BigInteger summary;

public void addNumber(BigInteger newNumber) {

synchronized (numbers) {
synchronized (summary) {

numbers.add(newNumber);
summary = summary.add(newNumber);

 }
}

}

public void removeNumber(BigInteger existingNumber) {

synchronized (summary) {
synchronized (numbers) {

numbers.remove(existingNumber);
summary = summary.subtract(existingNumber);

 }
}

}
}

Figure 3: Example of deadlock in Java.

Another set of problems can be identified as check and act misuse. [23] For example it could be first
checked if a synchronized collection contains a element and then when it does not, element will be
added into collection. While both method calls are thread safe separately, they will not form a atomic
operation without additional synchronization.

This indicates a wider problem related to the programming with locks – locks do not compose. It is
hard to combine two separately atomic method calls into a new atomic operation.

3.5 Concurrency improvements in Java version 5
Java version 5 introduced beside many new welcomed language features a more strict Java memory

12

model. More importantly complete set of new application programming interfaces was introduced to
solve some more common concurrency programming problems. [7]

The main focus was on providing better thread management by introducing easier and more convenient
methods to execute threads and to help better signaling between threads. For example a
ExecutorService interface along with the new Callable and Future interfaces and existing Runnable
interface provides more practical method for task or calculation execution instead of direct use of the
Thread class, classes CountDownLatch and CyclicBarrier simplify the signaling between the threads.
Direct use of Thread class and Object wait/notify methods is since Java version 5 highly discouraged.
[7]

While new Lock interface was introduced in addition to existing locking mechanism with the
synchronized keyword, it did not provide principal changes into Javas mutual exclusion. It provided
better control and performance improvements especially by providing ReadWriteLock interface.

One very important addition was introduction of the atomic wrapper classes that added support for
lock-free thread-safe programming with single variables. Wrappers are provided for primitives like
boolean, int, long and arrays and object references. In essence, these classes extend the notion of
volatile variable but provide also an atomic conditional update operations ([24], [18], [7])

Java 5 also introduced improved collection framework with fast but not thread safe collection classes
that could be made thread-safe with synchronized wrapper classes and set of thread safe concurrent
collections that were designed mostly for the performance. Unfortunately collection classes are still
open for check and act concurrency bugs. [23]

3.6 Summary of concurrent programming in Java
Probably one of the most critical problem in Java for concurrent programming is that the mutual
exclusion is solely programmer responsibility because language does not prohibit incorrect usage.
While this makes it possible to fine tune the performance, it also opens possibility for very wide range
of the programming errors.

While Java provides its own universal memory model over platform specific memory models, it only
specifies what is guaranteed to work. This leaves open possibility that programs would defectively
work in the development environment but fail inside the production environment or when moved from
one production environment to another that is using different hardware platform or different JVM
implementation. [25] For example not thread safe changes to the variable may be seen by the other
threads but this is not guaranteed to work unless variable is marked as volatile or both reads and writes
are properly synchronized.

Improved concurrency API does offers much more flexible control over applying mutual exclusion but
does not bring improvement into difficulty of combining multiple atomic operations.

13

4 Concurrency in Clojure

4.1 Clojure introduction
Clojure is a functional Lisp inspired general purpose compiled programming language created by Rich
Hickey. ([26], [27]) Clojure is created on top of the Java platform10 and its core functionality is
implemented in Java and then incorporated into language using Clojures powerful macro system.
Clojure language possesses dynamic typing but allows to include type hints what are considered by the
compiler during compile time to optimize the code execution. Clojures main focus is on providing
strong platform for the concurrent programming.

Current work covers only Clojures JVM version aspects, especially its Java implementation side.

4.2 Concurrent programming in Clojure
Clojure provides very strict scope for variables or more precisely references because Clojure variables
do not support primitive data types. Being functional language, most of the time it is natural to use
stack confinement provided by the local bindings. [7] Local binding can be viewed as analog to the
variables defined within a method. Their scope begins from their definition and ends after leaving the
code block they were defined.

In addition to the local bindings vars define the thread local global binding. Every var accessed first
time by every thread will initialize its own copy of the var that can be modified within the thread.
Changes to vars are thread local and are not synchronized between other threads. In Java similar
functionality can be archived with the ThreadLocal reference type. [7]

Clojure enforces that sharing data between thread is deliberate. There are two different forms of data
sharing in Clojure. Data can be shared either synchronously or asynchronously.

1. Asynchronous changes are done using agents and

2. synchronous changes are done either by atoms or using references (refs shortly) managed by the
software transactional memory. Software transactional memory allows to coordinate updating
multiple references atomically. Update to atoms and refs can be retried when not successful due
memory contention (see Section 4.4.3 for further details).

Figure 4 shows comparison between different Clojure reference types.

10 Clojure is supports now in addition Common Language Runtime and JavaScript engines.

14

4.3 Immutable data types

4.3.1 Immutability

It is common to think that object oriented programming provides a good model of the real world. It
feels natural that properly designed objects in the program represent objects in the real life, they are
defined by their internal state only changeable through methods that characterize them and protect the
invariant of the guarded state and allow it change over time. Objects state is mutable because this
represents how they behave in the real world.

Lets take for example a black box and lets try to model it using these principles. We create a class Box
that represents the box and we add a internal property that represents the color. We add a method to
change the color and one to query the color, we add a constructor to create new boxes with specific
color.

But there is a problem. When we decide to paint the box blue, we would eventually end up with a
completely new box. But there are references. There might be pictures of the still black box. There are
memories. The then black box does not suddenly turn into blue. In this regard our model is actually
very different from the real world.

We could remodel our box the way that the method to change the box color does actually not change
the internal property of the object but creates and returns a new object that has new value for the color
and the object state never changes after creation.

Now when we obtain the newly repainted box back to the original reference the existence of the box
with the old color would disappear. Unless there were other references (see Figure 5 for illustrative
usage).

15

Figure 4: Clojure reference types.

Local binding Var Agent Atom Ref

Stack confined X
Thread confined X

Shared X X X
Asynchronous X
Synchronous X X X X
Coordinated X

X XRetriable

Box blackBox = new Box(“Black”);

List<Box> historyRecords = new ArrayList<Box>(Arrays.asList(blackBox));

Box blueBox = box.paint(“blue”); // blackBox is still “black”

Figure 5: Illustrative usage of the immutable Box class.

In theory we can classify data types according to this difference as mutable and immutable. Data types
are mutable when it is possible to change their inner state after creation and data types are immutable
when this is not possible. [21]

4.3.2 Immutable data types in Java

The garbage collecting makes operation with the immutable types very easy and guarantee of
invariability makes it possible to regard instances of even complex immutable class as values similarly
to primitive types.

There are many other benefits designing classes as immutable. Immutable classes can be easier to
design, implement, and use than mutable classes with the same purpose. They can be less prone to error
and are more secure and are easier to understand and argue about because their state is always defined
after creation. [21]

Following guidelines should be followed in Java when designing a immutable class.

1. Immutable class should not provide any methods that can change its state.

2. It should not allow subclassing (because deriving class can break this immutability contract).

3. All fields should be marked as private and final and it should be ensured that class does have
exclusive access to its mutable components (reference to mutable components should not leak
out of the class).

4. Immutable class must be properly constructed by not letting reference to this escape during
construction.

Due value like behavior it is safe to pass a reference to immutable object to a method or return it from
the method without worrying about the uncontrolled state changes. One example of this usage is using
immutable objects as map keys.

In addition it gives immutable classes a very strong advantage in concurrent programming – because
their state can not be changed, they are inherently thread-safe and can be freely shared between threads
without worrying that two different threads will fail to change their internal state properly.

Distinction between mutable and immutable data types is not something new inside the Java
community. In fact most core Java classes like primitive type wrappers, String class, BigInteger etc. are
designed (or at least intended11) to be immutable.

11 BigInteger can be extended and is not therefore correctly immutable. [21]

16

4.3.2.1 Drawbacks

Immutable data types are not completely free from drawbacks. Every distinct state requires a separate
instance for it. While creating a lot of objects is not a concern anymore like it was with the earlier Java
versions [7], it still will not perform like simple method call and it will add additional stress to the
garbage collection. Especially creation of bigger objects inside multi step operation where eventually
only last result is needed can perform considerably worse than the same operation with similar mutable
object. There are few methods for overcoming or reducing these problems.

Immutability makes sharing inner state among derivative objects easy and this is one way of reducing
need for copying. For example Java String method substring creates new object that reuses the
underlaying buffer and has only new values for start index and length [specify] or BigInteger negate
method creates new object that has the opposite sign value but shares the bit array. In fact the
BigInteger class could go even further and split the bit array into multiple junks and create only copies
of junks when change is needed in the particular junk and share the rest among different instances.

Another method is to guess what multistep operations may be useful for the class under design. This
will allow to apply multiple operations internally without creating new objects each time. Finally a
mutable companion class can be designed that allows to perform multiple operations over mutable
dataset and then convert itself into immutable instance that can be freely shared. Java String and
StringBuilder are two of such companion classes for example.

Despite well understood and established framework for immutable data type creation, the support for
them in Java is still limited. Especially the collection framework consist only mutable variants of the
collection classes and a number classes like Date were unfortunately designed as mutable.

4.3.3 Clojure collection data types

Clojures approach to concurrent programming relies heavily on immutable data types. As a result the
availability of basic immutable collection data types that just do not create full copies after each
modification becomes unavoidable for it success. Such data types are called persistent immutable data
types in Clojure to underline that they always preserve the previous version of themselves after they are
modified. [27]

Clojure applies three earlier mentioned design principles to collections. First it creates set of data
structures that on creation of extended copies do not create full copies but share as much data as
possible, secondly it provides in class solutions for many commonly occurring problems and third it
provides mutable companion classes that are fast to mutate and fast to convert into immutable
counterparts. [27]

The availability of the simple and complex immutable data types creates a foundation for the Clojures
concurrency approach.

In the following two Clojures immutable collection types like persistent linked list and persistent vector
are described in more detail. Clojure offers also an immutable hash map implementation but this data
structure is not covered in details in this work.

17

4.3.4 Persistent linked list

One of the very basic collection data types that can be straightforwardly made immutable is linked list
(represented by IPersistentList interface in Clojure and implemented in PersistentList class). Linked list
is a list where the items are added to the beginning of the list. Only thing necessary for add operation
implementation is to create a new separate instance for every new element. This instance must then
contain data and reference to the previous instance on what top it was added (see Figure 6 lists a, b, c, d
and e can be individually modified and can share internal structures). [27]

Figure 6: Immutable linked list

Immutable linked list provides O(1) time complexity for adding to the beginning of the list, reading
from the beginning of the list and for removing from the beginning of the list. Linked list is not
universally usable data structure because it can not be efficiently traversed by the order items were
added into it. Still it is clearly a good candidate for a stack and is therefore used by Clojure to represent
its code.

This data structure does obviously not provide a good performance for index lookups and as a result
this functionality is not provided directly in Clojure – linked lists must be converted into indexed lists
(named vectors in Clojure) to be accessed by the index.

4.3.5 Persistent vector

One of the most interesting collection data structures in Clojure is Clojures persistent vector
(represented by IPersistentVector interface in Clojure and implementedin PersistentVector class)., a
immutable indexed list implementation. This data structure differentiates Clojure from the previously
existed (functional) languages.

Persistent vector provides add to the end of the list, look up by index and update by index by very
attractive O(~1) time complexity while being immutable. Notation O(~1) means here “near O(1)”
because the time complexity is only approximatively O(1) for practical applications as it is explained
subsequently.

18

0 d3 c2 b1 a0

 e5

4.3.5.1 Binary trie or a digital search tree

To explain Clojures vector, it makes sense start explaining from simpler data structure – a binary trie.

It is possible to implement a indexed list as a binary tree where all the elements in the list are kept as
tree leafs and the element index in binary form supplies a path in the tree from the root to the leaf
node. The index lookup must start from the root node. When the first bit (when reading from left to
right) has value 0 then left branch should be taken and when bit has value 1 then the right branch
should be taken as the next root node. When the next root node is the leaf node then the element is
found. All leaves in this tree must have the same depth (see Figure 7). ([28], [29])

Figure 7: Binary trie

It is easy to see that this data structure allows the lookups by index with O(log2M), where M is current
list size rounded up to nearest power of 2, time complexity what for pratical applications like around
milion to 10 million records will still require relatively low count of operations (for 100000 17, for
1000000 20). The update (replacing the element) by index has the same complexity.

There are following possibilities when adding a new element into tree to next position.

1. When there is free place on the right most right leaf node then the element can be added directly
into tree (see Figure 8).

2. If this is not possible then the next upper root node must be examined for free place. When
there is free position then the new branch can be created and the new element can be added as
left node of the left most path (see Figure 9).

3. When tree is full then the new level must be created by adding a new root node. The old tree
comes as a left branch of the new root node and new element is added as left node of the left
most path from the root node right branch (see Figure 10).

19

1 2 1 21 2 1 21 2 1 20 11 2 5 61 2 1 21 2 1 21 2 1 20 1

0 1

0 1

0 1

0 1

0 1

0 1 2 3 5 6 7

0b100
= 4

The binary trie is on its own a mutable data structure but it is easy to see an efficient method to make it
immutable. When adding a new elements to the end of the list represented by the binary trie, only the
path to the last root element is nessesary to recreate. Everything that remains to the left side from the
path can be reused by the new tree (see figures Figure 11 and Figure 12).

Figure 8: Adding element to the end of the list, option 1

Figure 9: Adding elements to the end of the list, option 2

Figure 10: Adding element to the end of the list, option 3

20

1 2 1 21 2 1 21 2 1 22 31 2 5 61 2 1 21 2 1 21 2 1 20 1 4 5 6 7 1 2 1 21 2 1 21 2 1 22 31 2 5 61 2 1 21 2 1 21 2 1 20 1 4 5 6 7 8

3 41 2 1 23 41 2 1 23 41 2 1 22 30 1 4 5 3 41 2 1 23 41 2 1 23 41 2 1 23 41 2 5 6 73 41 2 1 23 41 2 1 23 41 2 1 22 30 1 4 5 6

31 2 20 1 2 30 1

Figure 11: Adding element to the immutable binary trie

Example in the Figure 11 indicates how the structure can be shared between two different versions.

When an element 15 is added into free place at the end of the list (trie above) then the path beginning
from the root node must be recreated.

Trie below shows how much it is possible to reuse the old structure. White blocks with red arrows
(references) indicate the new path created. The blocks with the not changed color show how much is
possible to reuse the trie from the previous version (above).

21

1 2 1 21 2 1 21 2 1 22 31 2 5 61 2 1 21 2 1 21 2 1 20 1 4 5 6 7 8 9 10 11 1 21 21 25 61 21 21 21213 14

1 2 1 21 2 1 21 2 1 22 31 2 5 61 2 1 21 2 1 21 2 1 20 1 4 5 6 7 8 9 10 11 1 21 21 25 61 21 21 21213 1415

Figure 12: Adding element to the immutable binary trie

In Figure 12 the previous version of the list (represented by binary trie) is reused fully when new
version that has element 16 added to the end is created.

Trie below shows how much it is possible to reuse the old structure. White blocks with red arrows
(references) indicate the new path created. The blocks with the not changed color show how much is
possible to reuse the trie from the previous version (above).

22

1 2 1 21 2 1 21 2 1 22 31 2 5 61 2 1 21 2 1 21 2 1 20 1 4 5 6 7 8 9 10 11 1 21 21 25 61 21 21 21213 1415

1 2 1 21 2 1 21 2 1 22 31 2 5 61 2 1 21 2 1 21 2 1 20 1 4 5 6 7 8 9 10 11 1 21 21 25 61 21 21 21213 1415 16

4.3.5.2 2k tries

While the binary trie can be used as relatively efficient immutable indexed list implementation, it is
only a special case of more generic and more interesting set of data structures – 2k tries where 2k

represents branching factor of the tree (21 = 2 is the binary trie special case) (see Figure 13).

Figure 13: 22 trie with branching factor 4

For example for 22 trie with branching factor 4 with current depth 3, the trie can hold 64 elements and
therefore all the elements in the trie can be represented by 6 bit number. The path for 14th element
(counting from zero, see Figure 13) is decomposed then as follows (00), (11), (10).

It appears that all the valuable qualities of the binary trie also do apply to the 2 k tries. Most importantly
the index lookup works similarly but now the path direction for each subsequent node is expressed by k
bits instead of 1. All the operations also become correspondingly faster because now the complexity of
the mentioned operations is represented by O(log2

kMk), where Mk is list size rounded up to nearest
power of 2k, instead of O(log2M). Complexity for branching factor 32 (k=5) is already around 5 times
better than for binary trie (see figures Figure 14 and Figure 15).

Figure 14: Complexity of index lookup in 100000 element list

23

k Branching factor Complexity

1 2 131072 17
2 4 262144 9
3 8 262144 6
4 16 1048576 5
5 32 1048576 4
6 64 16777216 4
7 128 2097152 3

Nearest power of
branching factor

0 1 2 3 4 5 6 7 8 9 10 11 1617181910

11

00

12 13
14

15

Figure 15: Complexity of index lookup in 1000000 element list

A 2k trie with this branching factor (32, k=5) is the basis for the the Clojures persistent vector and this
allows a very good O(log32Mk) time complexity for random index lookups and updates. ([30], [31])

4.3.5.3 Performance improvements

More interesting is that the relatively big branching factor allows additional performance gains due
ability to defer tree modifications. This can be done by an additional buffer of the size of the branching
factor. This buffer can be used to collect added items before pushing them into trie as a whole
effectively avoiding branching factor times tree modifications. While the whole buffer must be copied
again and again for every new item to maintain the immutability, because buffers are realised as Java
arrays, it can take advantage of the Java low level array copy operations.

The amortized O(1) complexity of the add to the end of the list, removal from the end of the list and
peeking the last element of the list operations is amortized O(1) and because O(log32M5) is very low for
pratical applications then most operations (one listed here and index lookups and updates by index)
allows to make a claim that these are essentially constant time operations. [32] This makes it a
considerably more universal list implementation compared to the linked list and shows that immutable
data structures can reach behind simple and obvious linked lists.

4.3.6 Persistent vector performance measurement

One of the biggest interests of this work was to investigate the actual performance of the Clojures
indexed list implementation because Java collection framework provides a very primitive but very
efficient indexed list that is essentially a wrapper class around a Java array – ArrayList. Of course
ArrayList is mutable. [33]

Querying and updating elements in the ArrayList by index does have an actual O(1) complexity
because it is just one array lookup. Adding elements to the end of the list has complexity of amortized
O(1) because while underlaying array must be enlarged when it becomes full, this is required only once
after many inserts.

While Clojure vector looks good on paper, it would be interesting to see how this much more complex
data structure compares against the baseline set by the ArrayList.

24

k Branching factor Complexity

1 2 1048576 20
2 4 1048576 10
3 8 2097152 7
4 16 1048576 5
5 32 1048576 4
6 64 16777216 4
7 128 2097152 3

Nearest power of
branching factor

4.3.6.1 Performance tests

Four different tests were performend to compare the two data structures:

1. a sequential fill test where time to add new items to the end of the list is measured,

2. a sequential read test where the list is first filled outside of the test and then the time to iterate
over all the list elements in the list is measured,

3. a random read test where the list is first filled outside of the test and then the time to access all
the elements using the index is measured and

4. random update test where the list is first filled outside of the test and then the time to update all
the elements by index is measured.

All test [34] were performed on the Amazon AWS 2 core High-CPU Medium Instance12. [35] Test were
performed on Ubuntu Server 12.04.2 LTS 64-bit using Java OpenSDK 1.7.0_1513.

Every test consists number of operations performed on list over set of predetermined operation counts.
In every test the total number of operations equals with the (final) list size. Before the actual
measurement is made the test is executed number of times configured to correlate with the test size
(number of performed operations). Every measurement was executed independently in freshly started
JVM instance. In total 10 different measurements were performed for each measurement point.

For constant time complexity operations the linear graph is expected.

4.3.6.2 Test results

Following figures illustrate the results of the performed tests. Performed tests show that the
performance difference between the Clojure PersistentList and Java collections ArrayList is measurable
for list filling resulting roughly in 5 times difference (in advantage of the ArrayList) (see Figure 16).
The performance difference of the list iteration is roughly 2 times different in advantage of the
ArrayList (see Figure 17). Additional tests are required to conclude the result of the random update test
(see figures Figure 18, Figure 19 and Figure 20). Not very surprisingly the performance difference of
the random updates is roughly 2 orders of magnitude (!) differenct in advantage of the ArrayList (see
figures Figure 21 and Figure 22).

For sequential fill test in Figure 16 the list is filled for every measurement with n elements and the time
to perform all the additions is measurement for every n. This test shows how much time it will take to
fill the list with n elements.

Both graphs show linear growth tendency. For ArrayList the polynomial trend line did match slightly
more accurately based on current measurements but it is also visible that current trend would more
likely to continue till it reaches the linear trend line. The graph shows how need to increase the
underlaying array size cumulates for different list sizes. There is anomaly of unknown origin for
ArrayList around list sizes 100000 and 200000. Surprisingly this anomaly was consistent over multiple
separate measurements.

12 5 EC2 Compute Units (2 virtual cores with 2.5 EC2 Compute Units each), 1.7 GiB of memory
13 OpenJDK Runtime Environment (IcedTea7 2.3.7) (7u15-2.3.7-0ubuntu1~12.04.1)
 OpenJDK 64-Bit Server VM (build 23.7-b01, mixed mode)

25

Figure 16: Test 1, sequential list fill test results. Clojure library class clojure.lang.PersistentVector is
compared against Java library class java.util.ArrayList.

Figure 17: Test 2, sequential list read test results. Clojure library class clojure.lang.PersistentVector is
compared against Java library class java.util.ArrayList.

26

The measured performance of the clojure.lang.PersistentVector roughly 5 times less than performance
of java.util.ArrayList.

Figure 17 shows results from the sequential read test. For every measurement the list is filled with n
elements and the time to perform sequential passage of the list (using the iterator) is measurement for
every n. This test shows how much time it will take to iterate over all the elements in the list of the size
of n. Both graphs show linear growth tendency. The measured performance of the
clojure.lang.PersistentVector roughly 2 times less than performance of java.util.ArrayList.

Figure 18 shows test results for the random read test. For every measurement the list is filled with n
elements and the time to perform random passage of the list (using the index) is measurement for every
n. This test shows how much time it takes to randomly read over all the elements in the list of the size
of n.

The graph for PersistentVector show linear growth tendency but for ArrayList while the graph looks
linear in the diagram it really is not.

The ArrayList performance measurement graph in the Figure 19 does not follow the logarithmic trend
either. It was hypothesized that because no actual operations are performed with the returned list
elements and after inlining the method calls the JIT may realize this and optimize it away and the
execution time would remain constant after certain test size.

27

Figure 18: Test 3, random list read test results.

28

Figure 19: Test 3, random list read test results, showing only ArrayList.

Figure 20: Test 3, random list read test results, ArrayList additional test.

The test was modified slightly to perform the calculation using the returned elements (total of returned
elements was calculated). The results (shown in the Figure 20) indicate that the hypothesis may be true
but additional measurements of both sets with different test methodology are required before final
conclusions about performance difference can be made.

Figure 21: Test 4, random list update test results. Clojure library class clojure.lang.PersistentVector is
compared against Java library class java.util.ArrayList.

Graphs in Figure 21 show test result from the random update test. For every measurement the list is
filled with n elements and the time to perform random updates of the list (using the index) is
measurement for every n. This test shows how much time it to randomly change all the elements in the
list of the size of n.

In this diagram both graphs show linear growth tendency (the values of the ArrayList is showed
separately on the Figure 22). The measured performance of the clojure.lang.PersistentVector roughly 2
orders of magnitude (!) less than performance of java.util.ArrayList. This big difference can be
explained by PersistentVector need to update the underlaying trie after every update while ArrayList
update is only change in underlaying array.

29

Figure 22: Test 4, random list update test results, showing only ArrayList.

4.3.7 Suggestions for persistent vector additional performance
improvements

4.3.7.1 Broaden immutability definition

It is interesting to note that element added to the end collecting buffer (or tail buffer) would become out
of the bounds of the previous version of the vector. An old version can not see and access the new
elements even when the buffer for added elements is shared. Vice versa the new version can indeed
white into shared buffer because it does not modify previous array elements, it just adds new item
outside the bounds of visibility of the previous version.

When simple array is used for the buffer then this kind of behavior is allowed by the Java memory
model because updates to separate array elements are independent. Of course when the new element is
added by new thread then the old thread still holding the reference to the old version may not see this
change but it is not relevant because it will be out of the bounds for it and can not be accessed. [3]

Conflict occurs when the initial version is used to add another element into it. When this operation
would now share the buffer that is already shared by two previous versions, it would overwrite the
change made by the first addition.

This shows that when such conflicts could be detected and avoided it may create opportunity for better
performance. Because immutable data structures are intended to be safely accessed by different threads

30

without additional synchronization then the thread safety must be handled within the vector itself.

4.3.7.2 Change control using AtomicBoolean

One opportunity to implement such feature is to add an additional boolean type flag that will be
initially false and would be marked true when the new element is added by first time. This first addition
can then share the buffer securely but a new buffer must be created when the flag examination
determines that it is needed.

The flag reading and updating is a classical situation for the check and act bug. It must be ensured that
no two threads could see the false value and try to update it to true at the same time.

One option to realize this is to use the AtomicBoolean class available in Java since version 5 (see
Figure 23). This class allows thread safe updating a boolean variable with the new value and returning
a previous value at the same time. Because this class uses special processor operators for this instead of
locks then it should be theoretically perform better than doing the same operation with the
synchronization. Despite of this it would add an additional overhead that was not presented before. But
it would be still interesting to compare this against potential gain from removing the need to copy the
array over and over again.

public class BitmappedTrie <E> {

private final E[] tailBuffer;
private final Object[] trie;
private final AtomicBoolean stale; // thread-safe mutable boolean

public BitmappedTrie(E newElement, E[] tailBuffer, Object[] trie) {
stale = new AtomicBoolean(false);
tailBuffer = pushTail(trie, tailBuffer);
tailBuffer += element;

}

public BitmappedTrie <E> addElement(E e) {

if (stale.getAndSet(true) {
return new BitmappedTrie(e, trie, tailBuffer.copyOf());

}
else {

return new BitmappedTrie(e, trie, tailBuffer);
}

}
}

Figure 23: Immutable vector optimization 1 pseudo code

4.3.7.3 Identify different threads

There exists another potentially better performing method to guarantee that the flag is handled safely.
Namely the Java runtime provides an identifier of the the current running thread through
Tread.currentThread interface. If this identifier is recorded during the creation of new vector version

31

then it would be possible to verify if the request to add the new element is coming from the same thread
or from different one.

If the thread is different from the creating thread then creation of the new copy of the buffer should be
forced, otherwise the flag can safely examined to determine if the current buffer can be reused because
access to the flag is limited to the one thread only (see Figure 24).

public class BitmappedTrie <E> {

private final E[] tailBuffer;
private final Object[] trie;

// non thread-safe mutable boolean primitive value accessed
// in thread-safe manner
private boolan stale;

private final creatorTread;

public BitmappedTrie(E newElement, E[] tailBuffer, Object[] trie) {
stale = false;
creatorThread = Thread.currentThread();
tailBuffer = pushTail(trie, tailBuffer);
tailBuffer += element;

}

public BitmappedTrie <E> addElement(E e) {

if (creatorTread != Thread.currentThread()) {
return new BitmappedTrie(e, trie, tailBuffer.copyOf());

}
if (stale) {

return new BitmappedTrie(e, trie, tailBuffer.copyOf());
}
else {

 stale = true;
return new BitmappedTrie(e, trie, tailBuffer);

}
}

}

Figure 24: Immutable vector optimization 2 pseudo code

This would provide potential performance gains when the vector is first created fully by one thread and
then shared or when only one or few threads are updating the vector and others are only reading it.

The same optimizations can be applied to the buffer push operation where the buffer is pushed into trie
after it is full. This would allow creation of the whole vector without additional intermediate structures.

Five different versions of data structure comparable to Clojure vector were created to examine this
hypothesis. The base version (BitmappedTrie1) implements the add element (add to the end of the list)

32

and the get element by index functionality similarly Clojure vector implementation. One enchanted
version (BitmappedTrie2) implements the version check using the AtomicBoolean and a second
version (BitmappedTrie4) uses the thread identifier verification. There are two additional versions
(BitmappedTrie3 and BitmappedTrie5 accordingly) based upon these two to how much speedup
additional tree update optimization provides (table comparing different test can be seen on the Figure
25).

4.3.7.4 Test results

Firstly the effects of sharing the tail buffer with the previous versions was tested. Figure 27 shows that
the Clojures persistent vector implementation and test class without optimizations show similar
performance. The buffer sharing optimized version that uses AtomicBoolean instance to track the
changes (BitmappedTrie2, red) shows slight improvement despite added additional overhead. The other
optimization with thread confinement (BitmappedTrie4, green) performs well in this single threaded
test providing roughly 2 times improvement compared to the difference between the PersistentVector
and ArrayList (violet).

AtomicBoolean optimization (BitmappedTrie2, red) test show that this optimization does not bring
considerable performance gain and adds risk of the thread contention in case of multi threaded access.

 do not show measurable performance difference

Results for tests to measure possible performance improvements from additional trie sharing (see
Figure 26) show that the expected performance gain from additional trie sharing did not realize.

 AtomicBoolean optimization (BitmappedTrie2, bues) does not differ from its optimized version
(BitmappedTrie3, red). As well optimization with thread confinement (BitmappedTrie4, yellow) does
not differ from its optimized version (BitmappedTrie5, green).

33

Figure 25: Test versions

BitmappedTrie1 X

BitmappedTrie2 X X X

BitmappedTrie3 X X X X

BitmappedTrie4 X X X

BitmappedTrie5 X X X X

Uses tail buffer
to defer change

in trie

Shares tail
buffer with the

previous version

Uses
AtomicBoolean to
control stale state

Checks for stale
state in one

thread,gives other
threads new buffer

Shares parts
of the trie

Figure 27: Persistent vector optimization, tail buffer sharing.

4.3.7.5 Immutable list building with mutable companion

There is another possibility to improve the performance of the vector creation suggested by the

34

Figure 26: Persistent vector optimization, effects of additional trie sharing.

immutable classes design guidelines. Immutable class can be companioned with the mutable
counterpart that can be turned into immutable one after set of performance critical operations are
completed.

Clojure follows these recommendations by providing a so called transient vector implementation (that
implements ItransientVector interface). This is a version of vector that has similar internal structure as
the persistent immutable version but the changes are mutated internally instead of creation of the
immutable intermediate versions.

Following the same initial principles a different approach was examined. Java collection class
ArrayList organizes the list elements into one uniform array that is enlarged when it reaches its limits.
It is possible to add another layer where elements are not directly inserted into array but are first
collected into buckets and then inserted into array with the bucket when it is full. [36] These principles
were used to build the FastArrayList test class.

One benefit of this is that when the bucket size is the same as the vector branching factor then it is
possible to directly reorganize the buckets into vector representation.

Only care should be then taken to not overwrite the elements in buckets after the list is turned into
separate tree form. When the initial list is limited only to one thread then this can be simply archived by
an additional array where the status of each buckets is recorded. After conversion all the buckets must
be marked as stale and the check should be performed before each element update. When element in
the stale bucket is updated, a full copy of the bucket must be first created before the update.

BitmappedTrie1 test class was extended to support building itself from FastArrayList using method
described here.

An additional sequential fill test was performed where the time to add new elements into mutable list
first and then convert it into immutable version was measured.

4.3.7.6 Test results

Surprisingly the performance of the list building immutable list with the transient helper class can
exceed the performance of the vanilly ArrayList (see figures Figure 28 and Figure 29).

Figure 28 shows the performance comparison between two different transient build strategies
(clojure.lang.TransientVector (yellow), BitmappedTrie1 (darker blue, based on FastArrayList)) and
regular immutable list building (clojure.lang.PersistentVector (brown)) and ArrayList baseline (green).
Thread confined optimization (BitmappedTrie4) and FastArrayList (red) are included for comparison
and scale.

Figure 29 shows the performance comparison between two different transient build strategies
(clojure.lang.TransientVector (yellow), BitmappedTrie1 (darker blue, based on FastArrayList)) and
ArrayList baseline (green). FastArrayList (red) is included for comparison and scale.

Result shows that transient creation of immutable vectors can provide similar performance as ArrayList
and even outperform it at bigger list sizes.

35

36

Figure 28: Persistent vector optimization, creating immutable instances from mutable data.

Figure 29: Persistent vector optimization, creating immutable instances from mutable data, closer
view.

4.4 Sharing data between threads

4.4.1 Actor model

Actor model allows sending asynchronous messages to the subroutines called actors. Actors act on
messages by returning replies to the messages or by sending additional messages to another actors
(including themselves). [37]

Some actors implementations allow messages sent to actors block until the reply is prepared and
returned from the actor. This may be appear similar to the call of the synchronized method but there are
following important differences.

1. The synchronized method will be executed inside the calling thread but the actors runs inside
the separate thread different from every caller14.

2. While access to the synchronized method is queued, once passed to queue the synchronized
method can directly access and change objects internal state. Only actor thread can access
actors state directly. Callers can only access the actors message queue.

3. Call to the synchronized method will block every other thread during full call duration. Calls to
the actors are only synchronized at the message queue allowing other callers to proceed even
when there is only caller waiting for the reply.

4. It is relatively easy to combine two synchronized method calls into one atomic operation by
preliminary synchronization. Synchronization asynchronous actors is more complicated.

Actor model can be explaining with the producer consumer model where there is one consumer and
many producers separated by the message queue. Actor is the consumer and the callers are the
producers.

As there are always at least two threads involved in the actor model then it becomes apparent that the
internal state of the data shared between threads should not be modified after it is sent to the actor or
returned from it.

When using mutable data structures inside the message then there are few possible ways to accomplish
this.

1. One ways is to use thread safe classes that can be mutated securely. While this would be safe
when properly implemented it would defeat the purpose of the actor model due added
complexity and requirement to synchronize the state outside the hand over process.

2. Another way is an agreement inside the development team that the handed over data is not
changed by sending party. While possibly achievable within small project and limited problem
range it would become difficult to maintain when for example the purpose of the actor is to take
in a collection, apply changes onto it and hand it over to another actor.

3. Finally it would be possible to create a copy of data before handling it over but this solution
would not scale well when handed over data becomes large.

This shows that for actor model to work as expected and scale well, an immutable data structures are

14 Except from actor itself when actors send message to itself recursively.

37

needed if not inevitable.

Actors are ofter realized with one method that processes messages sent to the actor within one switch
statement. This approach may feel foreign to programmers coming from the object oriented
programming backgrounds. Java replection API option to create object proxis allows to provide a
mechanism that automates message dispaching. Actors can be designed as regular classes with regular
methods.

When new actor is created from the class by the actor framework then the framework can provide the
actor creator with the proxy class that would turn the calls on the methods into messages. The
framework then create a message dispacher on the actor side that would read the messages from the
queue and turn them into message calls on the actor class. This affords a more familiar object oriented
interface to the actors. [37]

4.4.2 Agents

Clojure offers a more functional concept of the actors called agents. [37] When in the actor model the
code to handle the incoming message is coupled with the actor, Clojure separates the message handling
from the agent and lets the agent only store the data, bind the date to the incoming message handlers
and execute messages inside its own thread similarly to the actors.

Agents are good for asynchronous changes where all the relevant data is held inside one agent but need
an additional coordination to change state atomically across multiple actors.

4.4.3 Software transactional memory

Software transactional memory (STM) provides a method to access multiple memory locations
atomically. Differently from locks that employ a pessimistic approach where every possible memory
location must be guarded beforehand, in STM method the changes are calculated locally without taking
locks in hopes that the state does not change during the calculation. When the calculations are ready
only then the locks are taken for the brief time to verify that the initial state is not changed and to write
changes into memory when it has remained the same. When the state has changed then the process
must be repeated with the updated initial state.

There are few possible methods how to implement STM. [38] STM support can be implemented as a
library that can be used independently from the direct language support, it can be integrated directly
into language with related keywords supported by the compiler or it can be introduced on the virtual
machine level what examines special annotations inside the code.

Clojure support for STM can be classified rather as library implementation. While Clojure macro
system allows to integrate library code naturally into language, it does not provide compile time code
verification to control if transactions are applied properly15. This control is performed during the run
time inside the library code. Because Clojure STM is implemented as a Java class library then it is
directly available to use inside the Java code. [37]

Purpose and function of the software transactional memory is often explained through the analogy with
the transactional databases. While this analogy is true to certain extent then the very principle of

15 Every change to the variable managed by STM must be enclosed inside transaction. When STM managed variable is
accessed outside of the transaction it will result in runtime exception.

38

Clojure software transactional memory can be explained by much more primitive and basic analogy.

4.4.3.1 Compare and swap

Modern processors incorporate an instruction that allows to update one word size (32 bit or 64 bit
depending on processor architecture) value within one processor instruction without compromising its
integrity and at the same time compare its expected (before update) value and reset the update process
when actual value before the update is not the same as the expected value. [7]

This operation is usually referred as compare and swap (CAS) and it would allow concurrent change of
one word size value without taking locks. This includes values that would fit inside one word including
references to the complex objects.

CAS provides an alternative to the lock based synchronization and allows to build optimistic lock free
algorithms. In addition it can offer better performance than locks, especially under low contention. [7]

Java provides support for this operation within java.util.concurrent.atomic package. When underlaying
platform does not support this operation explicitly then it is emulated by using locks to retain the Javas
portability. [7]

While it might sound very limited, quite complex concurrent behavior can be implemented on top of
this method. ([7], [39])

Common pattern to modify the value with CAS is

1. read current value and store it,

2. calculate new value,

3. compare current value with the stored value and try to swap with the new value when it has not
been changed,

4. go to step 1 when unsuccessful.

It is apparent that it might be necessary to repeat the step 2 several times (see Figure 3016). It concludes
from this that step 2 should not contain functionality with side effects that require recovery when the
step 3 is not successful. It is also visible that when step 2 can be contained it would be possible to
create an reusable pattern that automates this kind of updates.

It would be also usable when this kind of behavior could be extended to multiple values and multiple
occurrences could be nested into one uniform update with single success and failure point.

In its essence this is exactly what Clojure STM does (see Figure 3117).

4.4.3.2 STM comparison with CAS

Beside atomic primitives like AtomicBoolean, AtomicInteger, Java provides a class AtomicReference
(see Figure 30). This class implements a holder class for any Java object by keeping the reference to the
object. In many senses it can be viewed as advanced volatile18 variable [7] because the reference is

16 It is also worth to examine the source code of the Java atomic classes.
17 While it is very expressive in Java, analogous code in Clojure is much more terse.
18 Keyword volatile guaranties only the memory visibility but does not guarantee atomicity of multiple operations.

39

marked with volatile keyword but in addition to common get and set functionality it provides methods
to update this reference atomically. The most interesting is the compareAndSet method that accepts two
parameters expect and update and it atomically updates the reference with the new reference sent in
update parameter when the old reference equals19 with expect parameter. [18]

To implement a very simple STM we could write a Ref class that extends the functionality of the
AtomicReference class by caching the initial value and changes locally for every thread and by
providing a method to try to make the final result visible globally using AtomicReference
compareAndSet method.

public class BookManager {

private final AtomicReference<Book> bookRef;

public BookManager(String authors, String title, int edition) {
Book book = new Book(authors, title, edition);
bookRef = new AtomicReference<Book>(book);

}

public Book changeAuthors(String authors) {

for (;;) {
Book previousBook = bookRef.get();

Book newBook = new Book(
authors,
previousBook.getTitle(),
previousBook.getEdition());

if (bookRef.compareAndSwap(previousBook, newBook)) {
return newBook;

}
}

}
}

Figure 30: Pseudo code example of the CAS usage

In addition to that we could write a TransactionManager class that executes and controls the CAS cycle
by providing a method that accepts a simple Java Callable interface instance20. An additional method
can provide a method to register as a transaction participant. The Ref class can then register itself
within the TransactionManager class when the get or set methods are called.

Of course because current processors do not support directly this kind of multiple variable CAS, it
should be implemented using locks. Still, the Clojure STM provides many benefits over using manually
managed locks.

19 References comparison (== operator) is used and not the method equals.
20 This implementation could be provided as inline class directly where the method is called.

40

import static clojure.lang.LockingTransaction.runInTransaction;

public class BookManager {

// Clojure does not support generics but it can be
// added with a wrapper class.
private final Ref<Book> bookRef;

public BookManager(String authors, String title, int edition) {
Book book = new Book(authors, title, edition);
bookRef = new Ref<Book>(book);

}

public Book changeAuthors(String authors) {
return runInTransaction(new Callable<Book>() {

public Book call() {
Book previousBook = bookRef.deref();
Book newBook = new Book(

authors,
previousBook.getTitle(),
previousBook.getEdition());

 bookRef.update(newBook);
return newBook;

}
});

}
}

Figure 31: Pseudo code example of the Clojure STM library usage inside Java

4.4.3.3 STM comparison with locks

One of the greatest advancement of the STM is probably the easy method to combine multiple
independent operations into one uniform transaction. [37] For example with the BookManager class (in
Figure 31) we could implement a swapAutors function simply by calling changeAuthors methods of
two BookManager instances inside the transaction. When STM implementation supports nested
transactions then we could just wrap an additional transaction around method calls. When available
STM does not support nested transactions then we should change the changeAuthors method and
remove the transaction from there (see Figure 32).

41

import static clojure.lang.LockingTransaction.runInTransaction;

[…]

public static void swapAutors(final Ref<Book> a, final Ref <Book> b) {

runInTransaction(new Callable<Void>() {
 public Void call() {

Book pA = a.deref();
Book pB = a.deref();

a.update(new Book(pB.getAuthors(),
pA.getTitle(), pA.getEdition());

b.update(new Book(pA.getAuthors(),
pB.getTitle(), pB.getEdition());

return null;
}

});
}

Figure 32: Pseudo code for the swapAutors function.

Because locks in STM are taken in the same order over multiple transactions then the deadlocks are not
possible (code in the Figure 32 is not able to deadlock). [27] Because locks are taken only for short
period of time then it should also theoretically result the lock contention.

In theory the STM makes it more reliable to manage complex state that requires applying multiple
operations atomically. Only thing programmer should do is to wrap atomic operations inside a
transaction. Of course this does not free the programmer from identifying the parts of the application
that must be executed atomically and it is therefore still possible to produce simple check and act type
bugs and other types of illegal interleaving.

Like it is not a good practice to start parallel threads and update the shared variable with the direct
locks usage (with synchronized block, locks or atomic variables) when there are other options, it is also
not a good practice with the STM. Updating the same memory address from different threads will
cause contention because the threads must proceed sequentially during the update. [37]

While STM eliminates the possibility of the deadlock, it may produce another liveness hazard – a
livelock. Livelock occurs when thread can not make progress due continuously repeating an operation
that fails. [7] When many threads try to update a shared value then some change requiring a longer
calculation may never succeed because there is always a faster transaction that changes the value
before the longer running transaction is able to update it.

Clojure STM tries to so solve such situations by using barging. [27] In barging the slower running older
transaction is allowed to continue causing the newer and faster transactions to retry instead. When
barging still does not allow the older transaction to complete then the transaction causing the problem
is terminated with a runtime error. This would allow the programmer(s) to investigate what could cause
the problem.

42

Another problem is that because the code inside the transaction could be executed several times
repeatedly it should not have side effects outside changing the transactional references. Clojure STM
resolves this by giving a option for an additional callback function what is executed when the
transaction completes. The similar functionality allows to call agents from inside the transaction. Calls
to the agents from the transaction are collected and executed only after transaction completes.

It is important to note that Clojure STM does not manage content of the references but only references
themselves. Therefore letting Clojure STM manage the references to the mutable data structures would
render Clojure STM at least dangerous to use if not unusable.

4.5 Summary of Clojure concurrent programming
Probably the foremost important quality of the Clojure is that it prevents errors caused by subtle
nuances of the Java memory model. It is not possible to unintentionally share a variable. Variables are
either stack or thread confined and special effort must be taken to share them among multiple threads.

Clojure relies heavily on immutable data types to gain its goals. Immutable data types make it possible
to restrain the problems to the reference level. While complex immutable data types do not perform
always the same as mutable analogues, they make the sharing of complex data structures considerably
simpler.

43

5 Summary
Concurrent programming in Java inherits most of its problems from the direct incorporation of the
shared memory model. Because it is possible in Java to access shared memory without properly applied
mutual exclusion, it can produce hard to detect software bugs. Moreover Java method of mutual
exclusion relies mostly on the locks that can introduce additional hard to detect problems. Most
notoriously the program can contain a possible deadlock when lock acquisition is not correctly ordered.
It is difficult to compose separate thread safe atomic operations into a new atomic operation using locks
because an additional complex synchronization is required when combining multiple method calls.
While concurrent programming has become much simpler since Java version 5, its new additions do
not solve all of the conceptual problems.

A new Lisp inspired functional language Clojure that is implemented on top of the Java platform
introduces a more limited ruleset for the data sharing between different threads. Most importantly it is
not possible to unintentionally share the data between the threads in Clojure – all such operations must
expressed explicitly. This approach can arguably reduces the set of possible programming errors.

Clojure offers two methods for the data sharing. It can be accomplished asynchronously with the agents
or synchronously with either software transactional memory (STM) for operations that require updating
multiple values in one atomic operations or with simpler atomic updates when only one values is
shared.

Clojure software transactional memory provides syntactically simple method for combining multiple
separate atomic operations into new atomic operation by simply wrapping given operations into a new
transaction. Clojure STM can reduce programming errors further by using runtime verification to check
that no updates are performed outside of the transaction. Still it does not free the programmer from
correctly identifying set of the operations that should be executed atomically.

Clojure method of the concurrent programming relies heavily on the immutable data structures.
Immutability lets it regard complex data structures as simple values whose state does not change
outside of the control of the reference holder. Therefore it is important for Clojure to provide rich set of
different data structures that follow these principles.

One of such data structures in Clojure is Persistent Vector from Clojure collections library. The internal
working principles of this data type were explored. In summary it is a bit mapped trie with the high
branching factor that allows possibility of the deferred additions into the end of the vector by collecting
the new elements into a tail buffer before pushing them into the trie as a whole. Persistent Vector can
share a bulk of its internal structure with the previous versions making it effective immutable data
structure.

The actual performance of the Persistent Vector was evaluated. The findings show that compared to the
Java collections ArrayList it can provide similarly performing addition and iteration operations. The
update by index performs two orders of magnitude slower than analogue operation on ArrayList. The
performance difference of lookup by index operation was not conclusively determined due probably
JIT induced difficulty to measure ArrayList index lookups reliably. Performed measurements still allow
to speculate that the performance difference of the index lookup operation between Persistent Vector
and ArrayList is similar to the performance difference of the update by index operation.

44

Few additional performance enchantments were evaluated and it was concluded that it would be
possible to improve the addition operation performance around two times when additional thread
confined flag is used to allow further sharing of the tail buffer between different versions.

It can be argued that relatively good addition and iterating performance would allow to use Persistent
Vector to solve a set of useful problems. For example the Persistent Vector can be used to load a list of
the records from the database to be iterated over to build a web page based on that data.

Due hardness of proper performance testing of the parallel operations such tests were not included into
this work. It can be suggested that testing the performance of sharing persistent vector between
multiple threads is needed.

Clojure shows that it is possible to make concurrent programming relatively safer when a set of design
principles are changed. It can be argued that difficulty of concurrent programming in Java does not
improve unless its memory access principles are considerably reevaluated.

45

6 Muutumatud andmetüübid konkurentses
programeerimises Cloure keele näite varal

Bakalaureusetöö

Kristjan Kelt

Resümee

Konkurentne programmeerimine keskendub probleemidele, kus erinevaid ressursse tuleb jagada
mitmete lõimede vahel. Kõige lihtsamal juhul võib selleks olla protsessori arvutusressurss, kuid
tänapäevased mitme tuumaga protsessorid lisavad probleemile lisamõõtme, kus valdavaks probleemiks
saab mälu ühine konkurentne kasutamine.

Selle töö eesmärk on uurida konkurentses programmerimises esinevaid probleeme ja võimalikke
lahendusi Java ja Clojure keelte näite varal pannes rõhku keeles Clojure kasutusele võetud uuendustele.

Töös leitakse, et konkrurentne programmeerimine Javas pärib enamiku oma probleemidest
konkurentsete programmeerimise vahendite suhteliselt madalatasemiselisest lisamisest Java keelde.
Enamik konkurentse programmeerimise probleeme Javas tuleneb ühismälu mudeli kasutuselevõtust.
Kuna Javas on võimalik pöörduda ühismälu poole ilma korrektse vastastiku välistuseta, siis võib see
põhustada raskesti leitavaid tarkvara vigu. Peale selle põhineb Java lahendus vastastikuks välistuseks
enamasti lukkudel, mis võib luua raskesti leitavaid uusi probleeme.

Näiteks võib programm sisaldada tupikut, see on olukorda, kus programmi kaks lõime ootavad
vastastiku võetud lukkude taga. Selle põhjuseks on ebakorrektne lukkude võtmise järjekord
programmis.

Kasutades lukke on keeruline koostada mitmest eraldi seisvast atomaarsest operatsioonist uut
operatsiooni, mis peab tagama mõlema eelneva operatsiooni ühise atomaarsuse. Vaatamata sellele, et
Java versioon 5 muutis konkurentse programmeerimise märgatavalt lihtsamaks, ei lahendanud selle
uued võimalused kõiki kontseptuaalseid probleeme.

Töö põhirõhk on keele Clojure uuendustel. Töös leitakse, et Lispist inspireeritud funktsionaalne Java
platformil põhinev programmerimise keel Clojure pakub rohkem piiratud reeglistikku andmete
jagamiseks mitme lõime vahel. Kõige olulisem on see, et ei ole võimalik jagada andmeid
ettekavatsematult. Kõik andmete jagamised mitme lõime vahel peavad olema väljendatud tahtlikult.
Selline lähenemine võib arvatavalt vähendada võimalik programmeerimise vigade hulka.

Clojure pakub kaks erinevad lahendust andmete jagamiseks. Andmeid võib jagada asünkroonselt
kasutades agente või sünkroonselt kas kasutades tarkvaralisi mälutransaktsioone pöördumiste jaoks,
mis nõuavad mitme väärtuse atomaarset muutmist või lihtsamaid atomaarseid uuendusi kui on vaja
jagada ainult ühte väärtust.

46

Clojure tarkvaralised mälutransaktsioonid pakuvad lihtsa viisi kuidas kombineerida mitut eraldi seisvat
atomaarset operatsiooni uueks tarvikuks. Selleks tuleb lihtsalt need operatsioonid ümbritseda uue
transaktsiooniga. Clojure tarkvaralised mälutransaktsioonid võivad veelgi vähendada tarkvara tootmise
vigu kuna need on võimelised programmi töö käigus kontrollima kas jagatud mälu poole pöördumine
toimub transaktsiooni siseselt või mitte.

Töös jõutakse järeldusele, et eelnevale vaatamate ei vabaste see programeerijat korrektsest vajalike
atomaarsete operatsioonide tuvastamisest programmi koodis.

Clojure lähenemine konkurentsele programmeerimisele põhineb enamjaolt muutumatute21 muutujate
kontseptsioonil. Kuigi muutumatut muutujat võib ekslikult pidada konstandiks, on sellel mitmeid
huvitavaid omadusi. Muutumatud muutujad võimaldavad neid käsitleda keerukaid andmestruktuure
lihtsate väärtustena mille olek ei muutu väljaspool viite haldaja kontrolli. Seega on oluline, et Cloure
pakuks kasutuseks erinevaid andmeüüpe mis järgivaid neid põhimõtteid.

Üks sellistest andmestruktuuridest Clojures on Persistent Vector – Clojure suvapöördusega loend.
Käesolevas töös uuriti selle andmestruktuuri töötamise printsiipi ning jõudlust. Kokkuvõtvalt võib
öelda, et tegemist on bitmapped trie andmetüübiga, millel on kõrge hargnevustegur, mis võimaldab
puhverdada lisamise operatsioone kogudes lisatavad elemendid esmalt nii öelda sabapuhvermällu
ennem nende lisamist terviklikuna puusse. Persistent Vector andmetüübi ülesehitus võimaldab sel
jagada oma sisemist struktuuri oma eelnevate versioonidega, mis teeb sellest tõhusa muutumatu
andmetüübi.

Käesolevas töös uuriti Pesistent Vector andmetüübi tegelikku jõudlust. Leitud tulemused näitavad, et
võrreldes Java ArrayList andmetüübiga võib see pakkuda sarnast jõudlust nii elementide lisamisel
nimekirja lõppu kui ka nimekirja järjestikusel läbimisel. Elemendi positsiooni järgi uuendamise jõudlus
on siiski kaks suurusjärku madalam kui see on andmetüübil ArrayList.

Elemendi positsiooni järgi pärimise jõudlusele ei õnnestunud anda selgepiirilist hinnangut tänu
arvatavasti Java JIT kompilaatori poolt põhjustatud probleemidele ArrayList elemendi positsiooni järgi
pärimise jõudluse hindamisel. Teostatud mõõtmised annavad siiski alust spekuleerida, et Persistent
Vector'i ja ArrayList positsiooni järgi pärimise jõudlus on sarnane positsiooni järgi uuendamise
operatsiooni jõudlusele.

Käesolevas töös pakutakse välja loetletud jõudluse paranduse ettepanekud, mille tulemusi analüüsiti.
Järelduseks võib öelda, et Persistent Vector lisamise jõudlust on võimalik tõsta ligikaudu kaks korda
kui osutub võimalikuks jagada selle lisamise sabapuhvermälu elementide lisamisel ühe lõime piires.

Võib arvata, et piisavalt hea lisamise ja läbimise operatsioonide jõudlus võimaldaks Persistent Vector
andmetüüpi kasutada mitmete praktiliste ülesannete lahendamisel. Näiteks võiks seda kasutada
andmebaasist laetud nimekirjast veebilehe koostamisel vahepuhvermäluna.

Korrektsete paralleeltestide koostamise keerukuse tõttu parallelljõudluse testid ei kajastu antud töös.
Seega võib soovitada nende testide sooritamis edasiseks uurimisvaldkonnaks.

Kokkuvõtvalt jõuti töös järeldusele, et Clojure näitab, et on võimalik muuta konkurentne
programmerimine suhteliselt turvaliseks kui loetletud disaini portsiibid on järgitud. Võib arutleda,et
raskused Java konkurentses programeerimises ei vähene kuniks Java mälu kasutus ei ole kriitiliselt üle
vaadatud.

21 Immutable

47

References
[1] P. McKenney. Memory Barriers: a Hardware View for Software Hackers.
http://www.rdrop.com/users/paulmck/scalability/paper/whymb.2009.04.05a.pdf (Last viewed May 10.
2013).

[2] F. Long, D. Mohindra, R. Seacord, D. Svoboda. Java Concurrency Guidelines.
http://www.cert.org/archive/pdf/10tr015.pdf (Last viewed May 10. 2013).

[3] J. Gosling, B. Joy, G. Steele, G. Bracha, A. Buckley. The Java Language Specification, Java SE 7
Edition. 2011.

[4] Wikipedia. Register allocation. http://en.wikipedia.org/wiki/Register_allocation (Last viewed May
10. 2013).

[5] Wikipedia. Mutual exclusion. http://en.wikipedia.org/wiki/Mutual_exclusion (Last viewed May 10.
2013).

[6] Wikipedia. Lock (computer science). http://en.wikipedia.org/wiki/Lock_%28computer_science%29
(Last viewed May 10. 2013).

[7] B. Göetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes. D. Lea. Java Concurrency In Practice.
Addison-Wesley, USA, 2007.

[8] Intel Corporation. Managing Lock Contention: Large and Small Critical Sections.
http://software.intel.com/en-us/articles/managing-lock-contention-large-and-small-critical-sections
(Last viewed May 10. 2013).

[9] Wikipedia. Context switch. http://en.wikipedia.org/wiki/Context_switch (Last viewed May 10.
2013).

[10] Patrik Nordwall. Scalability of Fork Join Pool .
http://letitcrash.com/post/17607272336/scalability-of-fork-join-pool (Last viewed May 10. 2013).

[11] Wikipedia. Readers–writer lock. http://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock
(Last viewed May 10. 2013).

[12] Oracle. The History of Java Technology.
http://www.oracle.com/technetwork/java/javase/overview/javahistory-index-198355.html (Last viewed
May 10. 2013).

[13] Kieron Murphy. So why did they decide to call it Java?. http://www.javaworld.com/jw-10-
1996/jw-10-javaname.html (Last viewed May 10. 2013).

[14] Wikipedia. Java (programming language). http://en.wikipedia.org/wiki/Java_
%28programming_language%29#History (Last viewed May 10. 2013).

[15] Wikipedia. Write once, run anywhere. http://en.wikipedia.org/wiki/Write_once,_run_anywhere
(Last viewed May 10. 2013).

[16] T. Lindholm, F. Yellin, G. Bracha, A. Buckley. The Java®VirtualMachine Specification Java SE 7
Edition. http://docs.oracle.com/javase/specs/jvms/se7/jvms7.pdf , 2011.

[17] Wikipedia. List of JVM languages. http://en.wikipedia.org/wiki/List_of_JVM_languages (Last
viewed May 10. 2013).

[18] Oracle. Java™ Platform, Standard Edition 7 API Specification.

48

http://docs.oracle.com/javase/7/docs/api/ (Last viewed May 10. 2013).

[19] D. Ghosh. Scala Actors 101 - Threadless and Scalable. http://java.dzone.com/articles/scala-
threadless-concurrent (Last viewed May 10. 2013).

[20] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: elements of reusable object-
oriented software. Addison-Wesley, USA, 2012.

[21] J. Bloch. Effective Java Second Edition. Addison-Wesley. USA, 2008.

[22] M. Papathomas. Concurrency Issues in Object -Oriented Programming Languages. pp. 207-245,
Tsichritzis D., Ed. Universite de Geneve. 1989.

[23] Yu Lin and Danny Dig. CHECK-THEN-ACT Misuse of Java Concurrent Collections. In Proc. 6th
IEEE International Conference on Software Testing, Verification and Validation (ICST 2013),
Luxembourg City, Luxembourg, 18-22 March 2013.

[24] Wikipedia. Java version history. http://en.wikipedia.org/wiki/Java_version_history (Last viewed
May 10. 2013).

[25] J. Manson. What Volatile Means in Java. http://jeremymanson.blogspot.com/2008/11/what-
volatile-means-in-java.html (Last viewed May 10. 2013).

[26] Rich Hickey. Clojure homepage. http://clojure.org/ (Last viewed May 10. 2013).

[27] C. Emeric, B. Carper, C. Grand. Clojure Programming. O’Reilly, USA, April 2012.

[28] P. Morin. Open Data Structures (in Java). http://opendatastructures.org/ods-java.pdf (Last viewed
May 10. 2013).

[29] C. Okasaki, A. Gill. Fast Mergeable Integer Maps. pp. 77-86 of Workshop on ML, USA, 1998.

[30] K. Krukow. Understanding Clojure’s PersistentVector implementation. http://blog.higher-
order.net/2009/02/01/understanding-clojures-persistentvector-implementation/ (Last viewed May 10.
2013).

[31] Rich Hickey. PersistentVector source code.
https://github.com/clojure/clojure/blob/master/src/jvm/clojure/lang/PersistentVector.java (Last viewed
May 10. 2013).

[32] M. Fogus, C. Houser. The Joy of Clojure: Thinking the Clojure Way. Manning Publications, USA,
2011.

[33] M. Naftalin, P. Wadler. Java Generics and Collections. O’Reilly, USA, 2006.

[34] K. Kelt. Immutable data types for concurrent programming on basis of Clojure language tests
source code. https://github.com/kristjankelt/Clojure_Immutable_Tests/ (last modification date May 13.
2013).

[35] Amazon Web Services, Inc.. Amazon EC2 Instance Types. http://aws.amazon.com/ec2/instance-
types/ (Last viewed May 10. 2013).

[36] Javolution. Source of Javalution Fasttable class.
http://grepcode.com/file/repo1.maven.org/maven2/javolution/javolution/5.5.1/javolution/util/FastTable.
java (Last viewed May 10. 2013).

[37] V. Subramaniam. Programming Concurrency on the JVM. Pragmatic Bookshelf, USA, 2011.

[38] M. Mohamedin, B. Ravindran. ByteSTM: Virtual Machine-levelJava Software Transactional

49

Memory. http://www.ssrg.ece.vt.edu/papers/transact2013_submission_8.pdf (Last viewed May 10.
2013).

[39] Dr. Cliff Click. 2007 Java One Conference: A Lock-Free Hash Table.
http://www.azulsystems.com/events/javaone_2007/2007_LockFreeHash.pdf (Last viewed May 10.
2013).

50

Non-exclusive licence to reproduce thesis and make thesis public

I, Kristjan Kelt

(date of birth: December 11, 1977),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public, including for
addition to the DSpace digital archives until expiry of the term of validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu, including via the
DSpace digital archives until expiry of the term of validity of the copyright, Immutable data types
for concurrent programming on basis of Clojure language, supervised by Oleg Batrashev,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property rights or
rights arising from the Personal Data Protection Act.

Tartu, 13.05.2013

	1 Introduction
	2 Overview of the multi threading problems
	2.1 Shared memory
	2.2 Coordination between threads
	2.3 Coordination induced performance problems

	3 Current state of Java concurrent programming
	3.1 Java platform
	3.2 How concurrency is added into Java
	3.3 Mutual exclusion in Java
	3.4 Enforcing mutual exclusion
	3.5 Concurrency improvements in Java version 5
	3.6 Summary of concurrent programming in Java

	4 Concurrency in Clojure
	4.1 Clojure introduction
	4.2 Concurrent programming in Clojure
	4.3 Immutable data types
	4.3.1 Immutability
	4.3.2 Immutable data types in Java
	4.3.2.1 Drawbacks

	4.3.3 Clojure collection data types
	4.3.4 Persistent linked list
	4.3.5 Persistent vector
	4.3.5.1 Binary trie or a digital search tree
	4.3.5.2 2k tries
	4.3.5.3 Performance improvements

	4.3.6 Persistent vector performance measurement
	4.3.6.1 Performance tests
	4.3.6.2 Test results

	4.3.7 Suggestions for persistent vector additional performance improvements
	4.3.7.1 Broaden immutability definition
	4.3.7.2 Change control using AtomicBoolean
	4.3.7.3 Identify different threads
	4.3.7.4 Test results
	4.3.7.5 Immutable list building with mutable companion
	4.3.7.6 Test results

	4.4 Sharing data between threads
	4.4.1 Actor model
	4.4.2 Agents
	4.4.3 Software transactional memory
	4.4.3.1 Compare and swap
	4.4.3.2 STM comparison with CAS
	4.4.3.3 STM comparison with locks

	4.5 Summary of Clojure concurrent programming

	5 Summary
	6 Muutumatud andmetüübid konkurentses programeerimises Cloure keele näite varal
	Bakalaureusetöö
	Kristjan Kelt
	Resümee

