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Abstract 1 

Purpose: While some microorganisms, such as Staphylococcus aureus, are clearly 2 

implicated in causing tissue damage in diabetic foot ulcers (DFUs), our knowledge of 3 

the contribution of the entire microbiome to clinical outcomes is limited. We profiled 4 

the microbiome of a longitudinal sample series of 28 people with diabetes and DFUs 5 

of the heel in an attempt to better characterise the relationship between healing, 6 

infection and the microbiome. 7 

 8 

Methodology: 237 samples were analysed from 28 DFUs, collected at fortnightly 9 

intervals for six months or until healing. Microbiome profiles were generated by 16S 10 

rRNA analysis, supplemented by targeted nanopore sequencing. 11 

 12 

Results/Key findings: DFUs which failed to heal during the study period (20/28, 13 

71.4%) were more likely to be persistently colonised with a heterogeneous community 14 

of microorganisms including anaerobes and Enterobacteriaceae (log-likelihood ratio 15 

9.56, p=0.008). During clinically apparent infection, a reduction in the diversity of 16 

microorganisms in a DFU was often observed due to expansion of one or two taxa, 17 

with recovery in diversity at resolution. Modelling of the predicted species interactions 18 

in a single DFU with high diversity indicated that networks of metabolic interactions 19 

may exist that contribute to the formation of stable communities. 20 

 21 

Conclusion: Longitudinal profiling is an essential tool for improving our understanding 22 

of the microbiology of chronic wounds, as community dynamics associated with 23 



clinical events can only be identified by examining changes over multiple time points. 24 

The development of complex communities, particularly involving Enterobacteriaceae 25 

and strict anaerobes, may be contributing to poor outcomes in DFUs and requires 26 

further investigation.  27 



Introduction 28 

It is generally acknowledged that diabetic foot ulcers (DFUs) present a considerable 29 

clinical and economic burden (1, 2). They have multiple and various overlapping 30 

causes, including peripheral artery disease (PAD) and different modalities of 31 

neuropathy. As intact skin provides a natural barrier, ulceration and exposure of 32 

nutrient-rich tissues to the surface predisposes to colonisation with a wide array of 33 

microbes. Clinically apparent infection with known pathogens, such as 34 

Staphylococcus aureus, is recognised as an important cause of deterioration of pre-35 

existing DFUs and delayed healing (3, 4) and best practice is to sample DFUs with 36 

clinical signs of infection to identify them (5). However, little is known of interactions 37 

which may occur within a diverse community of micro-organisms (and/or with the host) 38 

which could result in delayed healing, subclinical tissue damage or predisposition to 39 

clinical infection. 40 

 41 

Advances in high throughput next generation sequencing (NGS) has enabled the 42 

molecular characterisation of entire microbial communities from any particular site, 43 

termed the microbiome. Profiling of marker genes, such as the 16S ribosomal RNA 44 

gene, or sequencing all the genetic material present in a sample provides an overview 45 

of the microbiome - including microorganisms which may be difficult to culture or be 46 

present in very low numbers (6). These large datasets can be analysed with data-47 

mining techniques to uncover relationships between the presence of various groups 48 

of microorganisms and clinical variables. In a cross-sectional study of soft tissue 49 

samples from 40 people with DFUs, Dowd (7) described a broader spread of taxa than 50 

previously identified by culture based methods, while in a more recent study of 52 51 



surface swabs from non-infected plantar neuropathic DFUs, Gardner and colleagues 52 

(8) reported clustering of identified bacterial taxa into three broad groups, 53 

demonstrating significant associations between bacterial groups and DFU depth, area 54 

and overall quality of glycaemic control. Further insight was provided by a study of 100 55 

subjects with DFUs from whom repeated samples were obtained in a subpopulation 56 

(9). The authors described four different types of bacterial community based on the 57 

dominant population of identified bacteria and also studied the extent to which these 58 

populations changed. They suggested that more frequent change in community types 59 

was a feature of those that healed within 12 weeks of observation. 60 

 61 

A deeper understanding of polymicrobial interactions and impact on host tissues could 62 

inform risk stratification tools for DFUs and facilitate the design of targeted 63 

interventions aimed at altering the colonising microbiota such as phage therapy. In the 64 

setting of infection, this may also enable more selective use of antibiotics where 65 

clinically appropriate to reduce broad spectrum antibiotic exposure. Sequencing costs, 66 

technical limitations and analytical barriers are constraining immediate application of 67 

microbiome profiling to the management of DFUs. However, developments in 68 

sequencing technologies, particularly those with potential point of care applications 69 

such as Oxford nanopore sequencing, promise to minimise these limitations in the 70 

foreseeable future (10). 71 

 72 

The data presented here were collected as a sub-study of a clinical trial investigating 73 

the effectiveness of a simple off-loading device in patients with DFUs affecting the 74 

heel (11). Swab samples were taken at the time of recruitment and at fortnightly 75 



intervals up to a maximum of 24 weeks until DFU healing or withdrawal from the parent 76 

study. Associations were sought between clinical measures and the microbiota, both 77 

at baseline and over the course of the study. Data available from the parent study 78 

provided baseline details of the participants as well as clinical information relating to 79 

DFU status at each study visit. 80 

  81 



Methods 82 

Participants in the parent trial were people with diabetes complicated by DFUs on the 83 

heel and were randomised to management either with standard good care plus 84 

lightweight fiberglass heel casts or with standard good care alone, and were reviewed 85 

in a specialist clinical research service every two weeks. The results of this parent 86 

study have been reported in full elsewhere (11). The present study was approved by 87 

Derby Research Ethics Committee (IRAS ID 137934). Participating centres were 88 

selected from those that were recruiting well to the parent study and which agreed to 89 

undertake the additional sampling. All participating patients provided additional 90 

informed consent. Since no difference in any outcome measure was observed 91 

between the intervention and the usual care arms of the parent study, samples from 92 

patients in both groups were combined for the present analyses.   93 

 94 

Details of sampling and sample handling 95 

Samples were obtained using flock swabs and the Z technique after cleansing and 96 

sharp debridement of the wound surface. Samples were identified only by study centre 97 

and study number. Each swab tip was retained in the collection tube and submerged 98 

in a PBS-based buffer solution (MoBio Powersoil Collection Fluid, CARLSBAD, CA) 99 

to maintain constant pH. For transport, the samples were packed in a protective plastic 100 

casing with a cold pack, boxed and sealed in a prepaid envelope and posted first class 101 

within 24 hours to a central microbiology laboratory at Nottingham University Hospitals 102 

NHS Trust. Samples were subsequently stored at -80 °C until extraction. 103 

 104 



DNA extraction 105 

DNA was extracted from the whole sample using the MoBio Powersoil Kit (since 106 

renamed to DNeasy PowerSoil Kit) as per manufacturer’s guidelines with a pre 107 

extraction homogenisation step (4500 rpm, 45 sec x 3). DNA was stored at -80 °C to 108 

await subsequent analysis. Obtained DNA was quantified using the Quant-iT™ 109 

PicoGreen™ dsDNA Assay Kit (Invitrogen, Waltham, MA) and analysed, in duplicate, 110 

on the ABI7500 (Applied Biosystems, Ca, USA). 111 

 112 

16S rRNA gene amplification, library preparation and sequencing 113 

Amplicons were generated for the V4 region of the 16S ribosomal RNA gene using 114 

the above extracted DNA as a template. Previously validated primers were used to 115 

amplify a 359bp amplicon of the V4 hypervariable region of the prokaryotic 16S 116 

Ribosomal RNA gene 117 

(515F:TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGCCAGCMGCCGCG118 

GTAA, 119 

806R:GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACTACHVGGGTWT120 

CTAAT) (12). 237 out of 256 samples received were successfully amplified.  121 

PCR clean-up was performed using the AMPure XP beads (Beckman Coulter, IN, 122 

USA) before proceeding to index PCR, which attached barcodes to individual samples 123 

and Illumina sequencing adapters using the Nextera XT Index Kit, as per Illumina (CA, 124 

USA) guidelines. Negative controls were included to account for reagent 125 

contamination (13). After index PCR, clean-up was repeated as above and amplicons 126 

were individually quantified using the Agilent Bioanalyser (CA, USA), prior to 127 

normalisation and pooling. The barcoded amplicon pool was run on the Illumina MiSeq 128 



using 2x250bp chemistry. Raw .fastq files were output for subsequent bioinformatics 129 

analysis. The sequencing data are publicly available in the European Nucleotide 130 

Archive (ENA, acc.no. PRJEB28661). 131 

 132 

16S rRNA sequence pre-processing and taxonomic assignment 133 

DNA sequence data was pre-processed with the mare package (14) in R (Foundation 134 

for Statistical Computing, Vienna, Austria) as follows: Paired-end reads were merged 135 

with quality filtering and trimmed to a uniform length (290 bp). After chimera filtering 136 

and clustering with USEARCH (15), reads were assigned to taxonomic labels by 137 

alignment with the RDP database (16) using UTAX and a confidence level of 0.6. Taxa 138 

below this cut off were annotated as unclassified at that taxonomic level and assigned 139 

to the next highest available level. Unique reads occurring at a frequency of less than 140 

1:100,000 were excluded to avoid OTU inflation. Two halophilic genera Halomonas 141 

and Shewanella were identified from negative controls as possible contaminants and 142 

excluded from the analysis. 143 

 144 

Oxford nanopore library preparation and sequencing 145 

Swab DNA extracts were treated with a NEBNext Microbiome DNA Enrichment Kit 146 

(New England Biolabs) to enrich microbial DNA prior to sequencing (17). Library 147 

preparation was performed with a Rapid Low Input by PCR Barcoding Kit (SQK-148 

RLB001, Oxford Nanopore Technologies) and libraries sequenced on the MinION 149 

platform (Oxford Nanopore Technologies). Base calling was performed with Albacore 150 

Sequencing Pipeline Software (version 2.1.2, Oxford Nanopore Technologies) with 151 

raw .fastq files output for subsequent analysis. 152 



 153 

Direct sample sequencing analysis 154 

MinION reads were screened against the human genome reference hg19 (GenBank 155 

assembly GCA_000001405.1) using Minimap2 (18) to remove host DNA 156 

contamination. The resulting non-human sequences were annotated with Centrifuge 157 

1.0.3 (19) using the default database for bacteria and archaea. A minimum hit length 158 

of 50 and hit length covering at least 5 % of the read were used to filter the resulting 159 

annotations. For detection of antimicrobial resistance genes, all of the non-human 160 

reads for the sample were assembled using Canu 1.7 (20). The resulting contiguous 161 

sequences were assigned a taxonomic identification by Centrifuge and then input to 162 

ResFinder 3.0 (21) searching for acquired antimicrobial genes with a 95 % identity 163 

threshold. 164 

 165 

Statistical and network analysis 166 

Alpha diversity (Inverse Simpson Index, variation within any one sample) and beta 167 

diversity (Bray-Curtis Dissimilarity (BCD), variation between samples) were calculated 168 

using the vegan package (22) in R (Foundation for Statistical Computing, Vienna), with 169 

Principal Coordinates Analysis of BCD and PERMANOVA used for analysis of 170 

multivariate microbiota count data. Associations between diversity and clinical 171 

categories were tested for using unpaired t-test or ANOVA after assessing for 172 

normality with the Shapiro-Wilk method. 173 

To enable analysis of changes occurring within individual DFUs over time, samples 174 

were assigned to clusters based on taxonomic profile. Sample clusters were created 175 

with the default k-means clustering function in R using relative abundances of taxa at 176 



family level with 150 maximum iterations and 10 simulated starts. After examining the 177 

relationship between variance explained and cluster number, six clusters were chosen 178 

to best represent the data (Supplementary Fig. 1). 179 

Once samples had been assigned to one of the six clusters, a Markov Model was 180 

constructed by counting all cluster transitions over consecutive visits and the counts 181 

converted to proportional probabilities by the dividing of total transitions from that 182 

cluster. If swab data were unavailable for the subsequent visit, the next available visit 183 

was used as the destination cluster. The final cluster for each subject was then used 184 

to calculate the probability of transition from each cluster to a healed or unhealed state 185 

at study end. Differences in transition probabilities between healed and unhealed 186 

DFUs were calculated using a log likelihood ratio test. 187 

A metabolic complementarity network was created from the MinION data by using the 188 

NetSeed pairwise metabolic complementarity index (MCI) previously calculated by 189 

Levy and Borenstein for 154 species found in the human microbiome (23, 24). Briefly, 190 

NetSeed requires as input a metabolic network for each species, based on a list of 191 

KEGG reactions per genome available from the Integrated Microbial Genomes project 192 

(IMG, http://img.jgi.doe.gov) and generated as described previously (25). The seed 193 

set of the network identified by NetSeed represents exogenously acquired compounds 194 

which appear as reaction substrates but not products. The MCI is a pairwise 195 

comparison of the proportion of the seed set from one species which are products but 196 

not seeds in a partner species network, thereby representing complementary by-197 

products. The most closely related species for which an MCI score was available was 198 

identified for each of the most abundant taxa in the DFU.  These scores were used to 199 

create a network with each species represented by a node, and each pairwise MCI 200 

http://img.jgi.doe.gov/


score with a value greater than 0.5 represented by a directed edge towards the 201 

species from which benefit is predicted to be derived. 202 

  203 



Results 204 

DFU characteristics and microbiota composition 205 

Two hundred and thirty-seven samples were analysed from the index DFU from 28 206 

individuals, of which eight healed during the study period (Supplementary Table 1). 207 

The median (IQR) age of the participants was 70.5 (60-77) years. Twenty (71%) were 208 

male and 24 (86%) had Type 2 diabetes. The median (IQR) DFU area at 209 

randomisation was 161.5 (69-593) mm2.  210 

Characterisation of the microbiota of each sample by 16S rRNA sequencing identified 211 

63 distinct genera from 37 families, of which the 10 most abundant families accounted 212 

for 89.6 % of the overall composition (Supplementary Table 2). The most abundant 213 

taxonomic groups were Corynebacterium (22.7 %), Staphylococcus (15.2 %), 214 

unclassified Enterobacteriaceae (10.6 %), Anaerococcus (6.4 %), Pseudomonas (6.1 215 

%) and Streptococcus (4.6 %). The majority of the variation between the samples 216 

could be explained by subject, indicating that the microbiome of any one DFU tended 217 

to be distinct from any other (PERMANOVA, 63.7 % variance explained, p < 0.001). 218 

There was no correlation between baseline DFU area or NPUAP depth score and 219 

microbial diversity (alpha diversity, Inverse Simpson Index, ISI). 220 

Clustering analysis indicated that samples could be separated into six distinct groups 221 

based on broad compositional differences, with one or two highly abundant taxa 222 

characterising each cluster (Supplementary Fig. 2). Clusters were assigned a letter 223 

based on dominant taxa; cluster 1 (n = 20, Pseudomonaceae 58.1 % – P), cluster 3 224 

(n = 49, Corynebacteriaceae 68.3 % – C), cluster 4 (n = 17, Micrococcaceae 87.2 % 225 

– M) and cluster 6 (n = 34, Staphylococcaceae 74.6 % - S) were relatively 226 

homogenous while cluster 2 (n = 61, Enterobacteriaceae 33.4 % – E) and cluster 5 (n 227 



= 56, Clostridiales Incertae Sedis XI 38.2 % and other anaerobes ~ 20 % - A) exhibited 228 

greater taxonomic diversity. 229 

 230 

Variations in microbial community dynamics between healing and non-healing 231 

DFUs 232 

We sought to investigate whether the microbiota of non-healing DFUs were different 233 

to healing DFUs in both overall composition and changes over time.   234 

Of all the 51 samples taken from the 8 DFUs which healed, the majority of samples 235 

fell into either the C (17/51, 33.3 %) or S (11/51, 21.6 %) clusters while of the 186 236 

samples taken from 28 unhealed DFUs, the E (52/186, 28.0 %) and A (48/186, 25.8 237 

%) clusters were most frequently represented. Mean baseline alpha diversity in 238 

healing DFUs was 2.3 (+/- 0.9) compared to 2.9 (+/- 1.5) for those that did not heal, 239 

but this difference was not statistically significant (p = 0.19).   240 

For each DFU, the transition in the microbiota between clusters over subsequent visits 241 

was used to develop a Markov model (Supplementary Fig. 3 and Supplementary Table 242 

3). The microbiota of individual DFUs tended to remain within the same cluster over 243 

subsequent visits with probabilities ranging from 53 % of samples in the S cluster to 244 

71 % in the M cluster. No transitions were observed between the S and P cluster while 245 

transitions frequently occurred from the A to E cluster (Probability = 20 %) although 246 

less frequently from E to A (8 %). 247 

Specific features of healing and non-healing DFUs were identified from the changes 248 

in the microbiota profiles over time. Non-healing DFUs with profiles of either E or A 249 

were less likely to transition away from these to other clusters than healing DFUs 250 

(probably per visit; non-healing 21 % vs healing 59 %, log likelihood ratio 9.56, p = 251 



0.008). In DFUs which healed, high rates of transition were observed from E towards 252 

several clusters, particularly S (33 %) and C (22 %) so that in the final visit before 253 

healing, 75 % healed DFUs had a microbiota profile of either S (3/8) or C (3/8) with 254 

only 1 each in the E and P clusters and none in either M or A.  255 

Individual profiles from DFUs which were consistent with these overall trends are 256 

illustrated in Fig. 1.  In Fig. 1(a), the DFU was persistently colonised by a high 257 

proportion of Corynebacterium and Staphylococcus with two episodes of infection 258 

treated with co-amoxiclav before finally healing. Fig. 1(b) is an example of one of two 259 

DFUs where 3 consecutive samples fell into the E or A clusters with high proportions 260 

of anaerobes and Enterobacteriaceae observed, accompanied by visible slough, 261 

before emergence of Corynebacterium and Staphylococcus immediately prior to 262 

healing. In the profile displayed in Fig. 1(c), Enterobacteriaceae and anaerobes are 263 

highly abundant during several visits before gradual replacement with Pseudomonas 264 

pre-healing. Fig. 1(d) is an example of a non-healing DFU where various anaerobes 265 

and Enterobacteriaceae are present throughout. 266 

 267 

Changes in the microbiota associated with infection and antibiotic therapy 268 

Forty-six percent (13/28) of subjects had at least one episode of clinical infection, with 269 

a total of 20 discrete episodes of infection identified covering 44 visits.  270 

Infection and antibiotic use often co-occurred such that their relative associations with 271 

sample diversity could not be readily distinguished. Overall, samples from infected 272 

DFUs exhibited lower microbial diversity than those from uninfected DFU (infected 2.2 273 

+/- 0.9 vs uninfected 3.1 +/- 1.5, p = 1x10-6), while diversity also appeared to be lower 274 

for visits where subjects were receiving antibiotic therapy (antibiotics 2.4 +/- 1.2 vs no 275 



antibiotics 3.1 +/- 1.5, p = 0.001). Analysing the contribution of both variables indicated 276 

that infection was likely to be a greater contributor to the fall in diversity (ANOVA, F = 277 

14.0, p < 0.001) than antibiotic exposure (F = 2.1, p = 0.15). 278 

To further investigate the changes in microbial diversity associated with individual 279 

episodes of infection, samples from visits occurring either immediately preceding, 280 

during and following an episode of clinical infection were aligned and the microbial 281 

diversity plotted. This demonstrated a reduction in microbial diversity at the onset of 282 

infection with a corresponding recovery in diversity beginning from the final visit where 283 

infection was noted clinically (Fig. 2). 284 

Across all samples taken from infected DFUs, cluster E (24/44, 54.5 %) and C (11/44, 285 

25.0 %) were the most prevalent overall, and this was the same for the first visit of 286 

each episode of infection (cluster E: 10/20, 50.0 %; cluster C: 4/20, 20.0 %). Despite 287 

the recognised importance of Staphylococcus aureus as a pathogen in this context, 288 

only 1 DFU had a high proportion of Staphylococcus at infection onset, falling into the 289 

S cluster. There were 3 and 2 episodes of infection beginning with profiles in the P 290 

and A clusters, respectively. 291 

Further individual profiles demonstrating temporal changes in the microbiota 292 

associated with episodes of clinical infection are shown in Fig. 3. In the DFU profile 293 

shown in Fig. 3(a), colonisation at baseline with a mixture of Kocuria and other 294 

Micrococcaceae was observed with an initial alpha diversity index of 1.96. At visit 7, 295 

this fell to 1.15 following the emergence and expansion of staphylococci within the 296 

DFU, associated with an episode of clinical infection. After commencement of anti-297 

staphylococcal antibiotic therapy (flucloxacillin), the profile reverted to the taxa which 298 

were originally dominant. 299 



Several episodes of infection occurred in the DFU shown in Fig. 3(b) which had a high 300 

baseline diversity index of 4.79, falling to 1.37 at visit 5 due to an expansion of 301 

Streptococci, with associated clinical infection from visits 3 to 6. Recovery of microbial 302 

diversity to 4.6 at visit 7 with emergence of Enterobacteriaceae and later 303 

Pseudomonas were also observed. 304 

In Fig. 3(c), a DFU colonised with a high proportion of anaerobes over successive 305 

visits from 4 to 6 with high diversity (visit 6: 7.81) underwent a dramatic reduction in 306 

diversity during an episode of clinical infection at visit 10 (2.58) accompanied by an 307 

expansion of Anaerococcus and Peptonophilus.  After a course of co-amoxiclav, the 308 

anaerobes were no longer abundant at visit 11, having been replaced by 309 

Enterobacteriaceae. 310 

The profile shown in Fig. 3(d) shows a DFU colonised by Enterobacteriaceae, 311 

Pseudomonas and Corynebacterium. Onset of infection at visit 8 and empirical 312 

treatment with doxycycline was followed later by expansion of Streptococci from visit 313 

8 to 9. After a second course of ciprofloxacin and metronidazole, diversity was 314 

markedly reduced from 3.8 at visit 9 to 1.1 at visit 11 as Corynebacterium replaced the 315 

other taxa to become the dominant organism in the DFU. 316 

In addition to the cases described above, abrupt changes were also noted in certain 317 

DFUs without any obvious cause such as antibiotic exposure or clinical infection. In 318 

other cases the clinical diagnosis of infection was documented but there were no 319 

obvious associated changes in the microbiota (Supplementary Fig. 4). 320 

 321 

Direct sample sequencing identifies individual species and resistance genes 322 



Short-read sequencing of 16S rRNA amplicons enables high throughput community 323 

profiling but is limited by taxonomic resolution and does not provide any additional 324 

information about the genetic capability of a community. To complement the 16S 325 

profiles, we conducted longer read sequencing using the Oxford Nanopore MinION on 326 

the swab DNA extracts for the profile shown in Fig. 3(b). This profile was chosen as it 327 

was one of the most diverse profiles containing a mixture of taxa including 328 

Streptococci, Enterobacteriaceae, Pseudomonas and several strict anaerobes. 329 

Seven samples were sequenced from alternate visits (1, 3, 5, 7, 9, 11, and 13). Despite 330 

a microbiome enrichment step, only 3 samples yielded > 1000 reads once host DNA 331 

sequences had been discarded (V3 16900, V5 2353, V9 2127).  After performing 332 

sequence annotation with the taxonomic classifier, Centrifuge, (19) and applying strict 333 

cut-offs to the output to optimise the accuracy of taxonomic identification, only a small 334 

proportion of reads were eventually assigned to a bacterial species (V3 1548, V5 426, 335 

V9 172). Taxa identified from V3 compared well to the 16S profile (Fig. 4a). While read 336 

numbers were low for V5 and V9, the species identified were also consistent with the 337 

16S results, including Streptococcus anginosus (V5, V9), Escherichia coli (V5, V9), 338 

Enterococcus faecalis (V5), Staphylococcus aureus (V5), Bacteroides fragilis (V9) and 339 

Porphyromonas asaccharolytica (V9).  340 

Analysing the V3 sample for the presence of antimicrobial resistance genes using the 341 

ResFinder tool (21) identified tet, erm and cfx genes. Assembling the sequences from 342 

this sample and performing taxonomic annotation on the resulting assembly enabled 343 

the matching of tetM, ermA and ermB to Streptococcus anginosus and cxfA and tetQ 344 

to Prevotella intermedia based on the presence of these genes in continuous DNA 345 

sequence with a high quality taxonomic assignment. 346 



Finally, using the more detailed taxonomic profile created from this DFU, we compiled 347 

a network of potential inter-species interactions based on a metabolic complementarity 348 

index (MCI) previously calculated by Levy et al. (23) using the NetSeed algorithm (24) 349 

(Fig. 4b). Higher scores on the MCI indicate a species is predicted to derive metabolic 350 

benefit from the metabolic by-products of the partner species. The strict anaerobes, 351 

particularly Porphyromonas asaccharolytica, are predicted to derive benefit from a 352 

number of other species, particularly E. coli and P. aeruginosa, whereas E. coli is 353 

predicted to confer benefit on all the strict anaerobes, E. faecalis and S. anginosus, 354 

but may not itself derive much metabolic benefit from the presence of these species. 355 

  356 



Discussion 357 

We have characterised the variation in the microbiota of 28 DFUs using a high-358 

resolution longitudinal sampling approach over a 6 month period, or until DFU healing. 359 

Successive longitudinal sampling is particularly valuable in this context as we were 360 

able to observe changes in the DFU microbiota occurring over short time frames and 361 

in conjunction with clinical events such as impending healing, infection or antibiotic 362 

administration. 363 

 364 

The most abundant taxa identified in this study were similar to those found in other 365 

molecular studies of DFUs, although the proportions vary between studies (8, 9, 26). 366 

We observed a dominance of Gram positive organisms including Corynebacteria (22.7 367 

%), Staphylococci (15.2 %) and anaerobic members of the families Clostridiales 368 

Incertae Sedis X (total 13.4 %, including Anaerococcus, Finegoldia and Peptinophilus) 369 

and Micrococcaceae (7.9 %), with a lower abundance of Gram negative organisms; 370 

predominantly the family Enterobacteriaceae (11.5 %) and Pseudomonas (6.1 %). By 371 

comparison, Wolcott et al. (26) identified Staphylococcus aureus (15.0 %) and 372 

Staphylococcus epidermidis (10.7 %) as the most abundant species in 910 DFUs of 373 

all types using 16S amplicon pyrosequencing with high proportions of Pseudomonas 374 

aeruginosa, Corynebacterium spp., Enterococcus spp., Finegoldia magna and 375 

Anaerococcus vaginalis also present. The proportions observed here are likely to 376 

reflect the patient group and DFU type selected for the parent study. 377 

 378 



There are likely to be a large number of factors which are responsible for shaping the 379 

microbiota of an individual DFU. These will include bacteria already present on intact 380 

skin and elsewhere in the body prior to ulceration, as well as the microenvironment 381 

influenced by oxygen tension, glycaemic control, chronicity of the wound and historical 382 

antibiotic exposure (8, 27, 28). This would explain why samples from any one DFU 383 

tended to be similar to each other, but often varied greatly in composition to other 384 

DFUs. By contrast, the gut microbiota are heavily influenced by dietary intake and 385 

tends to be composed of a core group of taxa in individuals who share a similar diet 386 

(29). 387 

 388 

To overcome the challenge of comparing a heterogeneous group of samples from a 389 

limited DFU population, we used a clustering approach similar to that employed in 390 

other molecular studies of DFUs (8, 9). Clustering at family level facilitated the 391 

grouping of organisms with overlapping genomic content and growth requirements 392 

such as the variety of closely related anaerobes within the Clostridiales Incertae Sedis 393 

X. The resulting six clusters were relatively homogeneous, consistent with the most 394 

abundant taxa identified and captured a significant proportion of the overall variation 395 

in the data. Repeat sampling from individual DFUs yielded profiles from the same 396 

cluster on at least 50 % of visits, consistent with the observation that individual DFUs 397 

tended to have unique profiles and retained the same combinations of taxa over time. 398 

 399 

Impaired healing of DFUs is influenced by a variety of factors notably ischaemia and 400 

neuropathy, but also subtle cellular deficits, particularly impaired leucocyte function 401 

and alterations in the normal inflammatory response (4, 30-32). There is a growing 402 



body of evidence that the composition of the chronic wound microbiome may also 403 

have an impact, but the possible mechanisms for this are not well understood. In a 404 

murine wound model comparing wild-type to diabetic mice, Grice et al. (33) observed 405 

delayed healing in diabetic mice with differences in gene expression associated with 406 

the immune response, and increased abundance of Staphylococcus, Aerococcus and 407 

taxa within the Enterobacteriaceae and Porphyromonadaceae. In a compelling study, 408 

Wolcott et al. (34) sampled the microbiota from 43 chronic wounds and observed that 409 

83% of these interfered with healing when transplanted into a murine chronic wound 410 

model. 411 

 412 

In this study, we observed a tendency towards persistent colonisation with a 413 

heterogeneous population of bacteria including Enterobacteriaceae and several 414 

groups of Gram positive and Gram negative anaerobes in DFUs which failed to heal. 415 

DFUs which healed tended to be colonised with high proportions of Gram positive 416 

aerobes, particularly staphylococci and corynebacteria, prior to healing. An obvious 417 

explanation for these findings is that the microbiota are simply determined by the DFU 418 

environment; chronic non-healing wounds promoting the growth of organisms 419 

preferring moist sites while DFUs which have almost healed supporting organisms 420 

commonly found on intact skin. The alternative possibility that must also be considered 421 

however, particularly in light of other studies in this area, is that colonisation with 422 

certain combinations of microbes may itself be a contributor to delayed healing. In a 423 

murine chronic wound model, Dalton et al. (35) found that a polymicrobial mixture of 424 

Gram positive and Gram negative aerobes and anaerobes was associated with 425 

delayed healing compared to wounds colonised with a single organism. Loesche et al. 426 

(9) also studied longitudinal profiles of the microbiota in DFUs and while they did not 427 



identify specific groups of bacteria associated with poor healing, they also observed 428 

that non-healing DFUs tended to have a stable microbiome with less variation over 429 

time than healing DFUs. 430 

 431 

In addition to environmental factors, competition for nutrients and metabolic synergy 432 

between microbes is another key determinant of community composition (36). 433 

Analysing the predicted metabolic overlap between species co-occurring in one DFU 434 

in this study indicated that strict anaerobes are the likely principal beneficiaries of such 435 

metabolic overlap. Anaerobes such as Porphyromonas benefit from poor tissue 436 

oxygenation in diabetes and possibly also increased levels of metabolic substrates 437 

such as alpha-ketoglutarate (37, 38). They may also benefit from micro-anaerobic 438 

climates created by other bacteria lowering redox potential, forming surface layers 439 

including biofilm and exchange of metabolic by-products. Studies of the microbiome 440 

in periodontal disease have already demonstrated the importance of groups of 441 

organisms, including anaerobes, working together to impair the host response, 442 

degrade connective tissue and promote chronic inflammatory states (39). 443 

 444 

Diversity of individual samples tended to be lower during episodes of clinical infection 445 

and on antibiotic therapy. In some instances this appeared to indicate the proliferation 446 

of potentially pathogenic organisms which may have resulted in the clinical symptoms 447 

observed. Alternatively, it could be that inflamed wounds represent a changed local 448 

environment in which certain bacteria are able to flourish while others are not. Certain 449 

bacteria, such as E. coli, are able to use inflammatory mediators, for example nitric 450 

oxide, as metabolic substrates potentially giving them a survival advantage in pro-451 



inflammatory environments (40). Interactions between microbes may result in the 452 

promotion or suppression of certain species with virulence potential. Another possible 453 

mechanism by which community dynamics may influence the onset of infection is 454 

through modulation of virulence potential by inter-species interaction. Ramsey et al. 455 

observed that Corynebacterium striatum was capable of interfering with quorum 456 

sensing in Staphylococcus aureus with the effect of suppressing virulence factor 457 

production (41). While high proportions of staphylococci were only observed in 1 in 20 458 

cases of developing infection, it is possible that proliferation of other species may have 459 

altered virulence factor expression by less abundant pathogens such as 460 

Staphylococcus aureus, resulting in tissue damage, inflammation and clinically 461 

apparent infection. 462 

 463 

16S rRNA amplicon sequencing enables the identification of organisms that are 464 

difficult to isolate with conventional culture, while giving an estimate of the proportion 465 

of bacterial taxa present in the sample. Despite potential high throughput and low cost, 466 

the principal limitation of short-read sequencing is that taxa cannot be reliably 467 

identified to the lowest taxonomic levels, particularly species but also genus in some 468 

cases. As higher level taxonomic groupings, such as the family Enterobacteriaceae, 469 

can contain a wide range of organisms with greatly differing virulence potential, this is 470 

a significant drawback. Nonetheless, this form of molecular survey is capable of 471 

yielding important insights into the bacterial community dynamics of a DFU and how 472 

this relates to clinical events, more so than phenotypic testing. Microbiota profiles were 473 

often similar over multiple visits, both in the most abundant taxa identified and their 474 

relative proportions. This suggests that the approaches used for sampling, extraction, 475 

amplification and sequencing were likely to be relatively consistent between samples. 476 



 477 

To complement the 16S analysis, we also analysed swab DNA extracts directly with 478 

Oxford nanopore sequencing technology, which is the first time to our knowledge that 479 

this has been applied to diabetic wounds. Sequencing the total pool of the DNA in a 480 

sample enabled greater taxonomic resolution and identification of antibiotic resistance 481 

genes. The amount of information which could be determined from a sample appeared 482 

to be directly proportional to the ratio of host to bacterial DNA recovered, as any host 483 

DNA sequenced reduced bacterial read depth. The high proportion of host DNA in 484 

many of the samples limited a comprehensive characterisation of the microbiota. 485 

Technical challenges to be overcome include the optimisation of sample extraction 486 

methods and reduction in the proportion of host DNA, however the capacity for rapid 487 

sequencing is an appealing prospect for diagnostic utility. 488 

 489 

Given the longitudinal study design and need for fortnightly sampling, ulcer base 490 

swabs were chosen over tissue sampling. Aside from drawbacks of the sequencing 491 

technologies used, this is another potential study limitation as surface swabs may not 492 

detect the invasion and proliferation of bacteria in tissue layers during infection. In a 493 

cross sectional study of wound swab versus tissue sampling, Nelson et al. detected a 494 

higher proportion of tissue samples containing at least one recognised pathogen (86.1 495 

%) vs. swabs (70.1 %) with fewer less pathogenic organisms in tissue (42). Host DNA 496 

proportions are likely to be even higher in tissue samples than from swabs, however 497 

longitudinal microbiota characterisation from tissue samples could potentially give 498 

clearer insight into the dynamics of infection if these considerable practical and 499 

technical difficulties can be overcome. 500 



 501 

This study has yielded important information of the microbiology of difficult to heal 502 

DFUs of the heel, including differences in microbial diversity and changes over time in 503 

infected, healing and non-healing DFUs. While heel ulcers are a subtype of DFUs, 504 

they represent a wide range of DFU types from the small and superficial to the deep 505 

and anaerobic. We anticipate that building on this and similar studies by analysing a 506 

greater number and employing a wide range of sequencing strategies, including full 507 

metagenomics and transcriptional analysis, will add to our understanding of the 508 

mechanisms underlying non-healing DFUs with implications for future basic and 509 

translational research studies in this field. 510 

  511 
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Figure 1. Examples of DFU profiles where healing occurred during the study. 675 

(a) Healing DFU profile largely dominated by Corynebacterium and Staphylococcus. 676 

(b) Healing DFU with transition from anaerobes and Enterobacteriaceae to 677 

Corynebacterium and Staphylococcus. (c) Healing DFU with disappearance of 678 

Enterobacteriaceae and anaerobes in the visits preceding healing. (d) Example of a 679 

non-healing DFU persistently colonised by mixed anaerobes and Enterobacteriaceae. 680 

Infection, antibiotic exposure or high microbial diversity is indicated by red on the 681 

colour map, while absence of infection, antibiotic exposure or low microbial diversity 682 

is indicated by green. DFU cluster designations; P = Pseudomonaceae, E = 683 

Enterobacteriaceae, C = Corynebacteriaceae, S = Staphylococcaceae, A = 684 

Anaerobes, M = Micrococcaceae, N = Non-healing at study end, H = Healed. 685 

  686 



 687 
  688 



Figure 2. Changes in diversity associated with onset and resolution of infection. 689 

Alpha diversity (Inverse Simpson Index) plotted for DFU samples taken before, during 690 

and after all documented episodes of infection. (a) Fall in alpha diversity associated 691 

with onset of infection where visit 0 is the first visit where a new infection is observed 692 

clinically, visit -2 and -1 the two preceding visits with no infection and visit 1 and 2 any 693 

subsequent visits with persistent infection. (b) Recovery in alpha diversity associated 694 

with resolution of infection where visit 0 is the final visit where infection is observed 695 

clinically, visit -2 and -1 any preceding visits with infection and visit 1 and 2 any 696 

subsequent visits where infection had resolved. The trend line indicates changing 697 

diversity calculated by local polynomial regression fitting with the shaded area 698 

indicating the 95% confidence intervals. 699 

  700 
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Figure 3. Examples of DFU profiles where clinical infection occurred. 702 

 (a) Expansion of Staphylococcus associated with clinical infection at visit 7 and 703 

subsequent decline following treatment with flucloxacillin at visit 8. (b) Episodes of 704 

clinical infection observed in a profile dominated by Streptococcus with later 705 

emergence of Pseudomonas and Enterobacteriaceae. (c) High diversity seen at visit 706 

6 markedly reduced at visit 10, with other anaerobes replaced by Anaerococci and 707 

Peptonophilus.  An episode of clinical infection was treated with co-amoxiclav with 708 

subsequent expansion of Enterobacteriaceae. (d) Infection associated with 709 

emergence and expansion of Streptococcus followed by treatment with ciprofloxacin 710 

after visit 9 and accompanying elimination of Streptococcus and Enterobacteriaceae. 711 

Infection, antibiotic exposure or high microbial diversity is indicated by red on the 712 

colour map, while absence of infection, antibiotic exposure or low microbial diversity 713 

is indicated by green. DFU cluster designations; P = Pseudomonaceae, E = 714 

Enterobacteriaceae, C = Corynebacteriaceae, S = Staphylococcaceae, A = 715 

Anaerobes, M = Micrococcaceae, N = Non-healing at study end, H = Healed. 716 
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  719 



Figure 4. Direct sample sequencing enables identification of species and 720 

resistance genes 721 

 (a) Detailed analysis of the DFU profile shown in Fig. 3(b), comparing taxonomic 722 

identifications based on Illumina 16S rRNA and Oxford Nanopore MinION direct 723 

sample sequencing taken during an episode of clinical infection at visit 3. 724 

(b) Potential network of inter-species interaction for representative species based on 725 

this DFU profile, created using the Metabolic Complementary Index (23). Edges are 726 

shown for all scores greater than 0.5. Higher scores are reflected by greater edge 727 

thickness with arrows directed towards the partner species from which metabolic 728 

benefit is predicted to derive. 729 
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Supplementary Table 1. Patient demographics and DFU details. 731 

 732 

Baseline patient demographics and DFU details for all 28 study participants. DFUs 733 
which healed or developed clinical infection during the study are indicated by ‘Yes’ or 734 
‘No’ in the Healed and Infection columns respectively. NPUAP = National Pressure 735 
Ulcer Advisory Panel depth grade. ISI = Inverse Simpson Index.  736 

Age Sex DFU 

depth 

(NPUAP) 

DFU size 

(mm²) 

Healed Infection Alpha 

diversity 

(ISI) 

Profile figure 

reference 

37 M II 70 Yes No 3.25 
 

63 M II 261 No No 2.05 
 

62 M III 618 No Yes 3.53 
 

84 M III 30 No Yes 5.25 
 

60 M III 1203 No Yes 5.73 Fig. 3(c) 

58 M III 50 No No 1.60 
 

77 F III 251 No No 5.22 
 

74 M III 103 No No 1.44 
 

45 M III 1713 No Yes 3.21 Supp. Fig. 4(c) 

68 M III 700 Yes No 2.33 Fig. 1(b) 

73 M II 891 No No 3.03 Fig. 1(d) 

71 M II 19 No No 3.15 Supp. Fig. 4(a) 

42 F II 109 Yes No 1.04 Fig. 1(c) 

81 F II 930 No Yes 1.11 Fig. 3(d) 

71 M III 344 No Yes 2.93 
 

61 M III 146 Yes Yes 3.30 Fig. 1(a) 

79 F III 287 No Yes 1.10 Supp. Fig. 4(d) 

81 F III 114 No Yes 1.96 Fig. 3(a) 

56 M II 107 No No 3.28 
 

88 M II 61 No No 3.22 
 

62 M III 25 Yes Yes 2.85 
 

70 M III 37 No Yes 3.03 
 

56 M III 33 No No 1.05 
 

76 F III 177 No No 1.09 Supp. Fig. 4(b) 

73 M IV 990 Yes No 1.74 
 

79 M III 69 Yes Yes 1.10 
 

50 F III 593 No Yes 4.79 Fig. 3(b), Fig. 4 

85 F II 184 Yes No 2.49 
 



Supplementary Table 2. Highly abundant taxa. 737 

 738 

The 10 most abundant taxa at family level are shown according to mean proportional 739 

abundance across all 237 DFU samples. Dominant genera are indicated for each 740 

family.741 

Family Abundance 

(%) 

Dominant genera 

Corynebacteriaceae 22.7 Corynebacterium (22.7 %) 

Staphylococcaceae 15.3 Staphylococcus (15.2 %) 

Clostridiales Incertae 
Sedis X 

13.4 Anaerococcus (6.4 %), Finegoldia (2.4 %), 
Helcococcus (1.8 %) 

Enterobacteriaceae 11.5 Unclassified (10.6 %), Morganella (0.5 %) 

Micrococcaceae 7.9 Kocuria (3.9 %), Unclassified (3.1 %), 
Arthrobacter (0.8 %) 

Pseudomonadaceae 6.1 Pseudomonas (6.1 %) 

Streptococcaceae 4.6 Streptococcus (4.6 %) 

Moraxellaceae 3.2 Acinetobacter (3.0 %) 

Prevotellaceae 2.8 Prevotella (2.8 %) 

Actinomycetaceae 2.1 Arcanobacterium (0.9 %), Actinobaculum (0.8 %) 



Supplementary Table 3. DFU cluster transition probabilities 742 

All DFUs 

From To Count 
 

P E C M A S N H 
 

P 0.65 0.15 0.05 0.00 0.05 0.00 0.05 0.05 20 

E 0.05 0.56 0.11 0.00 0.08 0.08 0.10 0.02 61 

C 0.02 0.06 0.67 0.00 0.06 0.02 0.10 0.06 49 

M 0.00 0.00 0.00 0.71 0.00 0.18 0.12 0.00 17 

A 0.02 0.20 0.04 0.00 0.64 0.04 0.07 0.00 56 

S 0.00 0.09 0.06 0.09 0.09 0.53 0.06 0.09 34 

 

Healed DFUs 

From To Count 

 P E C M A S N H  

P 0.50 0.17 0.00 0.00 0.17 0.00 0.00 0.17 6 

E 0.11 0.11 0.22 0.00 0.11 0.33 0.00 0.11 9 

C 0.00 0.00 0.65 0.00 0.12 0.06 0.00 0.18 17 

M 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 

A 0.13 0.25 0.25 0.00 0.38 0.00 0.00 0.00 8 

S 0.00 0.09 0.09 0.00 0.00 0.55 0.00 0.27 11 
 

Unhealed DFUs 

From To Count  
P E C M A S N H 

 

P 0.71 0.14 0.07 0.00 0.00 0.00 0.07 0.00 14 

E 0.04 0.63 0.10 0.00 0.08 0.04 0.12 0.00 52 

C 0.03 0.09 0.69 0.00 0.03 0.00 0.16 0.00 32 

M 0.00 0.00 0.00 0.71 0.00 0.18 0.12 0.00 17 

A 0.00 0.19 0.00 0.00 0.69 0.04 0.08 0.00 48 

S 0.00 0.09 0.04 0.13 0.13 0.52 0.09 0.00 23  

 743 
Transition probabilities for movement between DFU clusters over subsequent visits 744 
for all DFUs (n = 28) and also separated by DFUs which went on to heal (n = 8) and 745 
those that did not (n = 20). Probability of movement between clusters is shown from 0 746 
(no probability) to 1 (guaranteed probability) with the number of samples falling into 747 
each of the 6 clusters shown in the count column. Self-transitions are italicised. P = 748 
Pseudomonaceae, E = Enterobacteriaceae, C = Corynebacteriaceae, M = 749 
Micrococcaceae, A = Anaerobes, S = Staphylococcaceae, N = non-healing state 750 
(study end), H = healed DFU.  751 



 752 
 753 

Supplementary Figure 1. Cluster variance explained by increasing number of 754 

clusters. Plot of variance explained by increasing the numbers of clusters used, 755 

showing the trade-off between clustering complexity and fit to the data. The change in 756 

trajectory in moving from 5 to 6 clusters compared to 6 to 7 clusters is shown with 757 

dashed lines indicating the diminishing returns associated with using a higher number 758 

of clusters. 759 

  760 



 761 
 762 

Supplementary Figure 2. Clustering of DFU samples by major taxonomic 763 

groups.  764 

DFU samples were clustered at family level by k-means clustering and assigned to 765 

one of 6 clusters, labelled according to most abundant taxa. DFU cluster designations; 766 

P = Pseudomonaceae, E = Enterobacteriaceae, C = Corynebacteriaceae, S = 767 

Staphylococcaceae, A = Anaerobes, M = Micrococcaceae. (a) Mean proportional 768 

abundance of the taxa in each cluster. The E and A clusters contained were the most 769 

heterogeneous, representing a more diverse combination of different taxa. (b) 770 

Principal coordinates analysis showing the distribution of samples at genus level, with 771 

samples coloured by cluster. Samples in the low diversity C, M and S clusters were 772 

well discriminated by the first two principal components while samples from clusters 773 

E, A and P tended to overlap and were more widely spread. DFU clusters accounted 774 

for a significant proportion of the overall variance when analysed with PERMANOVA 775 

(7 % variance explained, p = 0.001). 776 
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 778 
 779 

Supplementary Figure 3. Transition between DFU clusters during the study.  780 

A Markov model demonstrating the transition between DFU clusters between visits 781 

until either healing (H) or non-healing at study end (N) for 237 samples from 28 782 

subjects combining both healing (n=8) and non-healing (n=20) DFUs. The size of the 783 

nodes indicates the number of samples in each state while the edge and arrow weights 784 

represent the probability of transition between states. Transition probabilities within 785 

nodes or to the endpoints (healing or non-healing) are labelled, with self-transition 786 

probabilities separated by group also shown. The full transition data are also shown 787 

in Supplementary Table 3. DFU cluster designations; P = Pseudomonaceae, E = 788 

Enterobacteriaceae, C = Corynebacteriaceae, S = Staphylococcaceae, A = 789 

Anaerobes, M = Micrococcaceae. 790 
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 792 

793 
Supplementary Figure 4. Additional examples of DFU profiles.  794 

Examples of DFU profiles with unexplained abrupt changes in microbial profile, or 795 

static profiles despite clinical infection. (a) Proliferation of Staphylococcus at visits 2 796 

and 9 without clinically apparent infection, (b) Transition from colonisation with 797 

Staphylococcus to Enterobacteriaceae and anaerobes at visit 6, (c) Stable 798 

colonisation with Enterobacteriaceae and Corynebacterium despite clinical infection 799 

and antibiotic exposure, (d) Colonisation with Corynebacterium unchanged by 800 

infection or antibiotic exposure, with a second episode of infection associated with 801 

proliferation of Pseudomonas. Infection, antibiotic exposure or high microbial diversity 802 

is indicated by red on the colour map, while absence of infection, antibiotic exposure 803 

or low microbial diversity is indicated by green. DFU cluster designations; P = 804 

Pseudomonaceae, E = Enterobacteriaceae, C = Corynebacteriaceae, S = 805 

Staphylococcaceae, A = Anaerobes, M = Micrococcaceae, N = Non-healing at study 806 

end, H = Healed. 807 


