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Abstract

Citizen Science, traditionally known as the engagement of amateur participants

in research, is showing great potential for large-scale processing of data. In areas

such as astronomy, biology, or geo-sciences, where emerging technologies gen-

erate huge volumes of data, Citizen Science projects enable image classification

at a rate not possible to accomplish by experts alone. However, this approach

entails the spread of biases and uncertainty in the results, since participants

involved are typically non-experts in the problem and hold variable skills. Con-

sequently, the research community tends not to trust Citizen Science outcomes,

claiming a generalised lack of accuracy and validation.

We introduce a novel multi-stage approach to handle uncertainty within data

labelled by amateurs in Citizen Science projects. Firstly, our method proposes

a set of transformations that leverage the uncertainty in amateur classifications.

Then, a hybridisation strategy provides the best aggregation of the transformed

data for improving the quality and confidence in the results. As a case study,

we consider the Galaxy Zoo, a project pursuing the labelling of galaxy images.

A limited set of expert classifications allow us to validate the experiments, con-

firming that our approach is able to greatly boost accuracy and classify more
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images with respect to the state-of-art.
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1. Introduction

Connectivity is promoting the emergence of a great potential amongst virtual

communities of people that share a common goal. In some cases, this goal may

consist of making a significant contribution towards the solution of a complex

scientific problem. Whereas, in the past, the analysis of these problems used to

be restricted to a group of experts in the subject, today this is difficult when the

processing of large amounts of data is required. In this context, Citizen Science

refers to the development of scientific research assisted by amateur volunteers

from the general public [15]. As a form of crowdsourcing [13], this practice

is re-emerging, engaging the crowd in helping researchers complete high time-

consuming tasks for which no reliable automatic procedures are available yet,

for example, labelling of images [45], detection of patterns in graphic data [49],

or transcription of handwritten texts [22].

Here we deal with classification problems in Citizen Science, which generally

aim at the classification of huge collections of images according to a number

of classes. These classes capture the interest of a specific research field, and

identifying them correctly is the target of the participants. This sort of project

involves, for instance, the recognition of structures in cell images [35], animal

species in images taken in the savannah [2], or types of storms in actual data

taken from meteorological satellites [23]. Amongst others, the nascent discipline

of astroinformatics [3] has greatly benefited from the analysis of astronomical

data in multiple projects, providing data analysis at a scale never reached in

the past [31, 37, 6]. Nevertheless, many challenges are raised when the maximal

profit of this large-scale analysis is desirable, regarding aspects such as the best

use of expert classifications [44] or participants’ engagement in this type of
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voluntary scientific contribution [42].

Citizen Science has also attracted the attention of data scientists. Research

focused on the mining of data using an off-line approach, that is, the study of

results once the project has finished. They have tested the capabilities of Data

Mining (DM) and Machine Learning (ML) techniques, aiming the replication

of amateurs’ performance [5, 18] or the training of ML algorithms for a certain

problem [38, 7]. Moreover, ML implementations are also being used for opti-

mising amateurs’ endeavours through the course of the project, following an

on-line approach. This other framework encompasses the progressive training

of new participants as they acquire experience in the problem, or the interac-

tion between a ML classifier and new labelled data as it is generated by project

participants [49].

Despite this, Citizen Science still arouses scepticism within the research com-

munity [39]. Even though it offers possibilities for research not possible to

accomplish by experts alone, it is not universally accepted as a valid research

method [10]. The reasons lie in the quality of results, which are often questioned

because of several drawbacks involving the prevalence of biases and lack of ac-

curacy and validation [28]. Amateurs participating in Citizen Science projects

exhibit a wide range of skills, and it is not guaranteed they hold any background

in sciences or research. Moreover, there is always some degree of uncertainty in

classification problems, which usually tend to bring additional vagueness in the

definition of the classes (type of birds, shape of galaxies, patterns in a graph,

etc.). Consequently, depending on the problem and participants’ expertise with

the classification task, the confidence through amateur-labelled data varies and

Citizen Science results thus hold an intrinsic uncertainty.

The study of classification problems with uncertain labels has been developed

adopting several approaches [12, 30]. Nonetheless, when the uncertainty comes

from a set of independent judgements on the object being classified, fuzzy logic

provides a very suitable framework for a thorough study of this uncertainty

[27]. Areas such as multi-criteria decision making and multi-expert decision

making address the problem of providing a final decision when a set of indepen-
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dent judgements are available [21, 46]. Several aggregation methods have been

widely studied through the specialised literature, aiming to use a set of experts’

individual preferences in such a way that reflects the properties contained in all

individual contributions [14, 47]. However, this kind of approach has not been

extended when there is available a great number of non-experts opinions with

a widespread uncertainty in their final decisions. Moreover, classification prob-

lems covered by Citizen Science projects tend to produce additional vagueness

related to the definition of the classes to be identified, a disparity either in the

total number of votes received or in the confidence of amateur classifications,

etc.

To the best of our knowledge, the enhancement of Citizen Science results by

using this kind of methods has not been fully addressed yet. In our preliminary

study [25], we started investigating the potential and the issues derived from the

employment of these results with two simple data transformations. In this work,

we propose a novel approach that, based on our previous findings, uses the data

produced in Citizen Science projects that deal with classification problems. We

present a method to aggregate information about the prevalent uncertainty in

this sort of data. We first identify three sources of uncertainty in Citizen Science

data that we address separately by a set of transformations that aim to enrich

the original data. Then, we employ a hybridisation strategy that explores the

most suitable combination of these individual transformations, providing more

confident and accurate classifications. We eventually pursue a refinement of

results, so that, they became more trustworthy and maximise the utility and

outreach of Citizen Science projects.

We consider as a case study the first edition of the Galaxy Zoo (GZ1) project

[32], one of the very first successful implementations of Citizen Science using

the Internet. GZ1 finished classifying nearly one million galaxy images with the

help of more than 200,000 volunteers. However, these results did not consider

at that time a substantial part of the information stored in the original data

about the uncertainty in amateur classifications. Making an integrated use of

the same original GZ1 dataset, our approach is able to provide more accurate
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classifications for a greater number of galaxies, improving the state-of-art of the

problem.

This document is organised as follows. In Section 2, we extend the back-

ground on Citizen Science and the management of the uncertainty with fuzzy

logic. In Section 3, we introduce our approach for the improvement of Citizen

Science data. Section 4 presents the set of experiments that test our method

along with a discussion of results. Finally, in Section 5 we draw some conclusions

and outline possible directions for future work.

2. Background

In this section, we further introduce the main materials covered in this work

for a better comprehension. In Section 2.1, we first explain in more detail differ-

ent aspects around the running of Citizen Science projects and review current

trends in the specialised literature. After this, in Section 2.2 we take a deeper

look at the field of fuzzy logic as a promising resource for the improvement of

Citizen Science results.

2.1. Citizen Science: A brief overview

Citizen Science has been a common practice for many years. This form of

citizen support to science developed by volunteers goes back in time to the

eighteenth century. In those days, a few amateurs started making small but

significant contributions by reporting observations about meteorology and or-

nithology [34]. Nowadays, the great advances in the Internet and Information

Technologies have broadened the ways volunteers can develop these research-

related activities, to the point that Citizen Science is being re-discovered by

the scientific community as a valuable resource [40]. An increasing number of

projects engage day by day significant numbers of individuals through the Inter-

net in collecting and/or analysing data, with the support of many institutions

from research and academia. The Zooniverse1 initiative is one of the main plat-

1http://www.zooniverse.org

5

http://www.zooniverse.org


forms for Citizen Science project development and management [41]. Currently,

Zooniverse hosts more than 80 projects in topics such as space sciences, ecol-

ogy, medicine and humanities, directing the joint effort of more than a million

participants [20]. This has led to the publication of more than 250 scholarly

articles2, validating the utility of Citizen Science for today’s research.

There is a solid body of works devoted to the study of Citizen Science as a

social phenomenon, emphasising different aspects such as motivation of volun-

teers, challenges towards acquiring real research status, or its future prospects

[15, 9, 40, 17, 10]. A shared claim within these works is the latent potential

in the crowd as a valuable resource that should not be neglected by scientific

community. Nonetheless, two main concerns are raised by scientists: a gener-

alised lack of accuracy and a proliferation of biases within the data coming from

Citizen Science projects [28]. To overcome this, it has become crucial the devel-

opment of proper tools for improving data accuracy, control and minimise the

impact of biases, and validate final results. These issues have been addressed

from several approaches [1, 48, 11, 8]. However, this body of works focuses on

Citizen Science projects in the context of ecological sciences, which aim for data

collection from natural environments at a massive scale. They ignore the diffi-

culties covered in this work that arise when the target is the processing of data

by large amounts of people. This is the case, for example, in projects coping

with classification of images.

Citizen Science projects usually involve one particular task around the pro-

cessing of some sort of raw data. Once the project is released, participants

interested in taking part are invited to complete the task, developing genuine

data analysis. For a great number of projects, this has consisted of the classifi-

cation of large collections of images. After some training is provided, amateurs

are asked to classify the images displayed in the project website by choosing

amongst a set of categories. These categories often hold a set of main classes,

which get the major part of the votes and comprise the target of the classifica-

2A complete list of references can be found at http://www.zooniverse.org/publications.
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tion problem. In addition, it is commonly offered a Don’t Know (DK) category,

useful in case no class is clearly distinguishable and that ensures any image

gets a vote every time it is shown. When the project is closed down, all clicks

conveniently recorded in a database are made available to a team of experts in

the problem for their follow-up study. This data normally includes the count

of votes for each of the classes offered to participants, and not a final label for

each of the objects in the original dataset, as it is shown in Table 1. Therefore,

a suitable analysis of this data is key at this point to extract good results from

the project. However, a thorough study of this problem from the data science

perspective remains unexplored.

Image ID Votes Class 1 Class 2 · · · Don’t Know

0152948451 58 0.310 0.414 · · · 0.052

0152863349 14 0.643 0.214 · · · 0.071

0152878152 33 0.000 1.000 · · · 0.000
...

...
...

...
. . .

...

0152721030 19 0.316 0.263 · · · 0.263

Table 1: Typical look of a dataset recorded in the course of a Citizen Science project

that involves image classification. Each row contains the information for each of the

examples: the image ID, total number of votes received by the project participants,

and the proportion of votes corresponding to the set of classes in the problem, including

the Don’t Know (DK) category.

Data science research applied to Citizen Science has mainly been dedicated

to the exploitation of the data after the projects are concluded. This kind of off-

line approaches enable the mining of the resulting data along with additional

information related to amateurs’ performance, available expert knowledge on

the problem, and other statistics about the running of the project. To date,

several works have been focused on emulating amateur classification skills by

using ML algorithms, aiming to facilitate an automated analysis of images in

diverse contexts. This goal has been achieved by taking as input either a set
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Figure 1: Two potential uses of ML within the Citizen Science workflow. On-line

approaches take advantage of the synergy between experts and the training of new

amateurs, learning from the amateur-labelled data. In contrast, off-line approaches

aim to learn from the aggregation of amateur-labelled data, expert analyses and ad-

ditional information available once the project has been concluded.

of features extracted from the image [5, 29], or the whole image within a deep

learning approach (that performs its own feature extraction) [18]. It has been

shown that ML classifiers can achieve similar results to those obtained by a

group of amateurs, when these algorithms are trained using Citizen Science

data [7]. However, these approaches do not address the intrinsic uncertainty,

and tend also to replicate the biases present in the data. In addition to off-line

approaches, on-line settings have recently been developed for optimising the

interaction between humans and machines through the course of the projects

[26, 16]. These approaches involve ML systems that deal with the training of

participants as they acquire expertise in the problem, the management of ex-

pert classifications, and the synergy between amateurs, experts and automated

classifiers [49]. The operation of both kind of approaches is outlined in Figure

1, where we highlight the interrelation amongst both potential roles of ML in

reinforcing Citizen Science outcomes.

In the present work, we opt for an off-line approach that targets the inherent

uncertainty in projects that tackle classification problems. Our aim is to help
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experts increase their accuracy and confidence in amateur-labelled data in order

to improve the outcomes of this kind of projects. To do so, our approach ensures

an aggregation of information concerning this uncertainty that, as a form of

data pre-processing, ensures a better use of this data for either research or the

training of ML algorithms.

2.2. Fuzzy logic for handling uncertainty: A promising resource for improving

Citizen Science data utility

Fuzzy logic tackles, amongst multiple other subjects, the various forms of

uncertainty exhibited in a varied range of problems. As ambiguity and vague-

ness (or fuzziness) we identify, respectively, the lack of specificity when a set of

choices is available, and the difficulty of making sharp or precise judgements in

real-world problems [27]. These two concepts are deeply intertwined in Citizen

Science, since usual activities required to amateurs frequently involve unspeci-

fied tasks such as the crisp classification of vague classes, transcription of am-

biguous information, or identification of patterns. On the one hand, this kind

of tasks bring themselves some level of uncertainty within their definition; on

the other hand, we eventually count with a set of independent opinions. These

opinions have to be aggregated in the most proper way to get the best results

and then maximise the utility of Citizen Science projects.

Multi-criteria and Multi-expert decision making are well-studied categories

of problems concerned with finding the best choice when a set of alternatives

is available [43, 19]. Eventually, an aggregation method is needed to combine

individual criteria into a final decision, which is expected to contemplate all

individual contributions. In data coming from Citizen Science projects we often

encounter this scenario, where there is available a set of opinions. However,

while fuzzy models for decision making normally use information from a re-

duced number of experts on the problem, in the case of Citizen Science data

the uncertainty is more extreme for two reasons: firstly, amateurs (in contradis-

tinction to experts) hold a wide range of backgrounds and varying expertise

on the task, meaning more vagueness in their opinions; second, the number of
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judgements that need aggregation is much larger than in other typical group

decision making problem. For instance, standard medical decision making has

modelled the aggregation of ∼50 experts [21], whereas a typical Citizen Science

project engages up to hundreds of thousands of participants, each one providing

several tens of opinions about a set of objects.

These approaches represent a valuable initial framework for studying better

use of Citizen Science data. A wide range of uncertainties is pervasive either

through the problem definition, amateurs’ set of judgements, and in the process

of aggregating these judgements to reach a final classification. Depending on

the nature of the problem addressed, results provided by amateur participants

can be aggregated using expert knowledge in the subject to take advantage of all

resources available. Pursuing this target, here we propose a way for aggregating

additional information about the uncertainty in the voting process that, despite

its simplicity, is able to improve current results.

3. A method for handling uncertainty in Citizen Science classification

In this section, we present our approach for handling the uncertainty spread

within Citizen Science data. We consider the whole dataset obtained after

the project has finished collecting votes from participants, taking an off-line

approach. Firstly, in Section 3.1 we introduce basic notation and motivate

the adequacy of the method by distinguish three types of uncertainty present

in this sort of data. Then, in Section 3.2 we present a set of mathematical

transformations that aims to leverage each of these uncertainty types. After

this, in Section 3.3 we explain a hybridisation strategy that explores the best

way to concatenate the three transformation stages in order to get the most

convenient aggregation procedure.

3.1. Motivation: Three sources of uncertainty within Citizen Science data

In this section, we introduce the basic problem related to the employment of

Citizen science results as well as some notation about Citizen Science data taken
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in an off-line approach. Then, we provide brief explanations of the different

ways the uncertainty is encountered within the data. This makes easier the

later comprehension of the method.

This work focuses on Citizen Science projects that signify a valuable aid

for some scientific research in solving a certain classification problem. The

classification task, which is the core goal of the project, tends to involve the

identification of a few classes across huge collections of images. However, as

explained above, the task is developed with the help of a myriad of amateur

participants. Hence, the output is not a final label for each of the images

released during the project running but a variable set of independent amateur

votes. Using the data generated by this process, here we propose a better use

of these results adopting an off-line approach and exploring how to leverage

information about the uncertainty in amateur votes that is able to improve the

quality of final classifications.

In order to facilitate the subsequent data analysis, amateur votes are usually

converted into scores, which are numbers in the unit interval calculated dividing

the number of votes in each category by the total number of votes received by

the example. Thus, let V = (v1, v2, ..., vC) be the vote vector for an instance

in the dataset, containing the votes for each of the categories defined in the

problem, with C the number of categories and N =
∑C
i=1 vi the total number

of votes received by that object. We get the score vector X = (x1, x2, ..., xC)

by computing xi = vi
N , for i ∈ {1, 2, ..., C}. The score vector is typically used

to obtain a final classification for the object by simply applying a threshold:

the category which score is greater or equal than the threshold is assigned to

that example. This procedure allows the expert to adjust the confidence in the

classification: the higher is the threshold applied, the larger is the consensus

amongst amateurs who labelled that object, and objects holding a greater con-

sensus are expected to be assigned more accurate classifications. However, the

selection of the threshold is arbitrary, and even more importantly, it does not

take into account the total number of votes, N . On the one hand, all objects

which scores do not reach the threshold are left unlabelled (uncertain), mak-
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ing the process ineffective as we require higher confidence in the classifications.

On the other hand, examples with similar scores may hold a totally divergent

number of votes N . So we are neglecting a hidden disparity in confidence.

The main issue derived from the employment of Citizen Science data is

the prevalent uncertainty when a group of people provides a set of judgements

about the same object. Amateur participants are not expected to agree in their

classifications, and final labels depend on how this disagreement is handled.

Additionally, we often encounter variability in the total number of votes received

by the example, N . Our target here is to refine this amateur-labelled data in

order to obtain better classifications and improve both the number of objects

classified by applying a threshold as well as the quality of these classifications.

We distinguish three different sources of uncertainty within the data:

• We refer to Inherent Uncertainty (IU) as the uncertainty due to the vari-

ation across amateurs’ votes. Given an example displayed in the website,

each participant is asked to classify it by clicking in the most appropri-

ate category according to their opinion at the time. Therefore, the final

outcome is not a classification but a record of votes for each of the cat-

egories, which spread tells us about the IU in that object. In the case

all participants have voted for the same category, this class holds a 1.0

score and then the example presents zero IU. Conversely, if the votes are

equally split across the categories, with scores equal to 1.0
C , the IU reaches

its highest value accounting for the greatest uncertainty.

• We denote as Measured Uncertainty (MU) the uncertainty directly quan-

tified by the DK category. This option is normally offered as a form of

ensuring every example gets a vote every time it is shown to a partici-

pant. This count of votes represents a measure of the uncertainty in the

classification: as one object holds a greater number of DK votes, vDK , it

is expected to entail more ambiguity in its labelling. Hence, an example

with vDK = 0 ideally holds zero MU, getting bigger as vDK takes on larger

values.
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• Lastly, we refer to Level of Confidence (LC) as the uncertainty caused by

the variability in the total number of votes, N , received by each of the ex-

amples in the dataset. This quantity often follows an uneven distribution,

being able to provide an estimation of the confidence in the classifications

with respect to the whole set of examples: given an example, the higher is

N in comparison with the rest of the set of objects (taking a metric, for in-

stance, the mean number of votes, µN ), the greater is our confidence in the

set of scores for that example. Consequently, for scores similarly spread

through the categories of the problem, the LC informs about the more or

less confidence we can expect in regards to each particular example.

The three sources of uncertainty are inevitably intertwined. The MU is part

of the IU, which accounts for the spread of the votes through the whole set of

categories, including the DK votes. The LC, in turn, is codified in the IU as

well, since we can trust a finer variability in the scores given an example as more

votes are available, that is, as N reaches greater values. Here we do not aim to

study these concepts in depth. We only set a concise conceptual framework for

the explanation of the method.

3.2. Three transformations for data refinement

In the following subsections, we explain the basis of the proposed method,

consisting of three independent mathematical transformations to be applied on

the original scores. These transformations are intended to aggregate information

about the uncertainties summarised above and not present per se in the set of

scores obtained from amateur votes. For the sake of clarity, we label each one

with a number tag (not related to any order or importance) and explain their

application over the example data presented in Table 1. The method takes as

input the whole set of vote and score vectors, V and X, respectively, for each

example in the dataset, and provides a modified score vector. Using the new

scores, we can apply a threshold to assign a final class to the example, as it was

explained above.
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3.2.1. Normalisation: Reinforcement of main classes

The first transformation ({1}) consists of the normalisation of a subset of

the scores. In Citizen Science projects dealing with classification problems,

we commonly find that some classes within the options available for voting

covers the major part of the examples. These so-called main classes hold a

greater importance with respect to the rest and represent the target of the

problem, that is, to classify the sample according to these few main classes.

For example, participants may be asked to recognise either shapes of celestial

objects, patterns in a graph, or types of animals in a picture of the savanna,

all of these previously defined as canonical types. In addition, other secondary

classes are offered, corresponding to minority (less common or rare) classes in the

problem or a Don’t Know response for the extreme cases in which the amateur

is not able to decide. These secondary classes may be of interest for other

problems. In this work we are focusing on the improvement in the classification

of the main classes. Once the scores are computed, the minority classes tend

to obtain negligible scores and therefore do not reach the threshold for the

vast majority of the examples. However, these secondary scores contribute to

lower the main classes scores, complicating the classification with a threshold.

Hence, the normalisation of the main scores is intended to remove the “noise”

due to votes received by secondary classes. We also obtain a representation

of the IU restricted to the target classes of the problem and independent of

the total number of votes received by the example, N : all instances with equal

proportion of votes in the main categories are assigned identical scores after the

normalisation.

Let X = (x1, x2, ..., xC) be the whole score vector, we select the main scores,

getting a reduced score vector X̂ = (x1, x2, ..., xM ), with M the number of

main categories (M < C). Once we have X̂, the normalised score vector

Ẑ = (z1, z2, ..., zM ) is obtained performing a usual normalisation as shown in

Equation 1, for i ∈ {1, 2, ...M}.
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ID N C1 C2 Norm. C1 Norm. C2

0152948451 58 0.414 0.310 0.572 0.428

0152863349 14 0.643 0.214 0.750 0.250

0152878152 33 0.000 1.000 0.000 1.000
...

...
...

...
...

...

0152721030 19 0.316 0.263 0.546 0.454

Table 2: Normalised scores for the two main classes C1 and C2 in the example data

presented in Table 1. Each row includes the image identification (ID), total number

of votes (N ), original scores and normalised (Norm.) scores.

zi =
xi∑
xi

(1)

The normalisation of the main scores ensures that
∑M
i=1 zi = 1 for every

example. This develops as well a cleaning of the main scores for a later aggre-

gation of information about the MU and LC by the two other transformations.

Taking as example the data presented in Table 1, the normalised scores for this

data are shown in Table 2, assuming this is a problem with two main classes:

C1 and C2.

3.2.2. DK votes shift: evaluation of Measured Uncertainty

The second transformation ({2}) modifies the main scores using the informa-

tion held in DK votes. It aims to leverage the MU of the example by introducing

a shift that favours one particular class and penalises the rest. In projects deal-

ing with classification, we usually find an asymmetry in the main classes: one

class is harder to identify than the rest. This occurs, for example, when the

overall quality of the images is deficient because multiple factors (images of nat-

ural environments affected by weather conditions, space images that depend on

the distance, etc.), or biases emerge in amateurs’ skills (for instance, due to a

unequal number of examples displayed for each of the classes, so more repeated

classes become easily recognisable). In this case, the Don’t Know category quan-
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tifies to some extent this uncertainty, when the number of DK votes keeps low

with respect to the total amount of votes allocated to the main classes. The

shift targets this “imbalance”: adds confidence to examples with moderate MU.

However, it vanishes for instances with high number of DK votes and prone to

hold high IU and therefore be uncertain.

For the calculation, two quantities are incorporated. One is related to the ex-

ample at hand and another one is taken as a global measure: the number of DK

votes for the example, vDK , along with the average number of DK votes across

the entire dataset, µDK . These are combined for the computation of a quantity

ε, as it is shown in Equation 2. Once the shift ε is calculated for each of the in-

stances, it is added to the score of the selected class. The remaining main scores

are equally subtracted the proportional part of ε, depending on how many main

categories there are. Being x∗ the favoured class in X̂ = (x1, x2, ..., x
∗, ..., xM ),

the shifted score vector Ŵ = (w1, w2, ..., wM ) is computed as it is shown in

Equation 3, for i ∈ {1, 2, ...M}.

ε =
α · µDK
β + vDK

(2)

 wi = xi + εi, for xi = x∗

wi = xi − εi
M−1 , in other case

(3)

Additionally, this transformation uses two parameters that modulate the

modification introduced to the scores, which can be adjusted depending on the

nature of the problem. The parameter α works as a factor that regulates the

influence of the shift over the original scores. The parameter β is added to the

count of DK votes, vDK , for the calculation of the shift. These two parameters

are optimised by testing a set of pair of values and assessing the modified scores

with expert classifications as ground truth. Ultimately, we also restrict the

range of application of the transformation: we discard examples with maximum

IU (all scores equal to 1.0/M) and zero IU (one category holds 1.0 score and

the rest 0.0 score). The optimisation of parameters and range of application is

illustrated within the experiments in Section 4.
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ID N DK vDK ε C1 C2 S. C1 S. C2

0152948451 58 0.052 3 0.038 0.310 0.414 0.348 0.376

0152863349 14 0.071 1 0.075 0.643 0.214 0.718 0.139

0152878152 33 0.000 0 – 0.000 1.000 0.000 1.000
...

...
...

...
...

...
...

...
...

0152721030 19 0.263 5 0.025 0.316 0.263 0.341 0.238

Table 3: Shifted scores for the two main classes C1 and C2 in the example data

presented in Table 1. Each row includes the image identification (ID), total number

of votes (N ), DK score (DK ), DK number of votes (vDK), the value of the shift for

the instance (ε), and original and modified (S.) scores. The DK votes are computed by

multiplying the DK scores by the total number of votes. The values of ε are obtained

from Equation 2 with α = 0.1, β = 1 vote, and µDK = 1.5 vote. The original scores

for C1 and C2 are obtained from Equation 3 with M = 2, and being C1 assumed as

the favoured class of the two-main-classes problem.

Considering again the example data in Table 1, we demonstrate the appli-

cation of this transformation {2} in Table 3. As an example, we use the values

α = 0.1, β = 1, and µDK = 1.5 vote, as adjusted for this particular problem to

compute the values of ε for each of the instances. Again, we assume there are

two main classes, and C1 is the favoured class. Consequently, the shift values ε

are added to C1 scores and subtracted from the C2 scores.

3.2.3. Votes boost: Addition of confidence to highly-voted examples

The third transformation ({3}) modifies the main scores employing the in-

formation present in the LC. In this case, each score is incremented using the

distribution of the number of votes for the class across the entire dataset. Again,

we are only interested in the main classes of the problem. However, unlike trans-

formations {1} and {2}, this boost always increases the scores in accordance with

the total number of votes received by the class.

The scores are modified as follows. In the first place, the number of votes

for each of the main classes, vi, are expressed in standard units as it is shown
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in Equation 4, taking the mean, µi, and standard deviation, σi, over the entire

dataset for the selected class. After this, the score converted in standard units is

weighted by the sigmoid function f(x) = 1
1+e−x . Finally, this result is multiplied

by a parameter γ and added to the original score. We obtain by this way the

transformed score vector R̂ = (r1, r2, ..., rM ) as it is shown in Equation 5, for

i ∈ {1, 2, ...M}.

vi → ṽi =
vi − µi
σi

(4)

ri = xi + γsigmoid(ṽi) (5)

The parameter γ works as a factor that adjusts the influence of the boost

depending on the particularities of the problem. It is optimised using the origi-

nal scores and contrasting modified scores with expert classifications as ground

truth, as it is shown in the experiments in Section 4. Extreme instances with

maximum and zero IU (1.0/M and 1.0 scores, respectively) are not modified.

After the transformation is applied, some scores may result in values out of

the unit interval, in case their number of votes are located in the right tail of the

votes distribution. To avoid this, the transformed score vectors are re-scaled to

the interval [0,1] after the transformation using the Equation 6. The xmin and

xmax values are selected amongst the whole set of modified scores.

x[0,1] =
x− xmax

xmax − xmin
+ 1.0 (6)

The application of this transformation {3} over the example data in Table

1 is illustrated in Table 4. First, we calculate the standard units for the votes

in the two classes, taking as example values µC1 = 20 votes, µC2 = 30 votes,

σC1 = 3 votes, and σC2 = 5 votes. With these values, we take γ = 0.5 as

adjusted for the problem to compute the boost for each example and obtain the

modified scores. Since there are a few instances in the data, we omit here the

re-scale process after the modification. Once more, we assume two main classes

for this example problem.
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ID N C1 C2 v1 v2 ṽ1 ṽ2 B. C1 B. C2

0152948451 58 0.414 0.310 24 18 1.33 - 2.40 0.809 0.352

0152863349 14 0.643 0.214 9 3 - 3.67 - 5.40 0.655 0.216

0152878152 33 0.000 1.000 0 33 - 6.67 0.60 0.000 1.000
...

...
...

...
...

...
...

...
...

...

0152721030 19 0.316 0.263 6 5 - 4.67 - 5.00 0.321 0.266

Table 4: Modified scores obtained from Equation 5 for the two main classes C1 and C2

in the example data presented in Table 1. We consider as example values µC1 = 20

votes, µC2 = 30 votes, σC1 = 3 votes, and σC2 = 5 votes, and the value γ = 0.5. Each

row includes the image identification (ID), total number of votes (N ), original scores

for the two classes (C1 and C2 , respectively) original number of votes (v1 and v2),

number of votes in standard units (ṽ1 and ṽ2) and boosted scores (B. C1 and B.

C2 ). Here we skip the re-scale process due to the reduced number of examples.

3.3. Hybridisation strategy

In this section, we introduce the final procedure leading to the target of

the proposed method: exploring the best aggregation of information about the

uncertainty in amateur classifications contained in the data. To this aim, we

introduce a hybridisation strategy that operates with the three mathematical

transformations explained above.

Each transformation tackles one particular expression of the intrinsic uncer-

tainty present in the amateur-labelled data compiled after the project closure.

As we discuss in Section 3.1, this uncertainty can be split into three distinguish-

able forms that are, generally speaking, independent of each other. Within a

single instance, the DK votes take part in the distribution of votes across the

complete set of classes. However, transformation {1} (Normalisation of the

main scores) amends this issue: it restricts the IU to the main classes of the

problem, neglecting the influence of other secondary classes; it works isolating

the horizontal spread of votes across the main classes within a single example.

Transformation {2} (DK votes shift), in turn, incorporates the MU codified in
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DK votes. Finally, transformation {3} looks at the distribution of votes through

the entire population of examples within a same class and boost examples with

high confidence. This vertical spread is unrelated to the previous two, and

adds valuable information about how trustworthy are the main scores for that

instance. The information within the data regarding the three uncertainties

described here is represented in Figure 2.

Figure 2: Graphical schema of the three sources of uncertainty present in Citizen

Science data.

Hence, a proper blend of the three aggregations is desirable in order to

employ the whole information present in the amateur-labelled data. However,

the modified scores only focus on one of the uncertainties and ignore the others.

Also, depending on the classification problem addressed, these uncertainty types

may hold dissimilar relevance within the data. For example, the weight of the

DK choice can vary in accordance with the nature of the problem and other

factors such as the quality of the images shown to participants. Likewise, when

the number of main classes is increased, the distribution of votes may naturally

tend to be more uniform. Also, the variability in the LC depends on the running

of the project in case a fixed number of votes for each of the instances is required
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by project developers.

The method presented here proposes to hybridise the three transformations

in all possible combinations to perform a posteriori selection of the best sequence

for the problem. The hybridisation performs an independent, sequential, and

cumulative application of the single transformations over the reduced score vec-

tor, X̂. As a result, the three transformations are applied following a certain

order and taking the modified scores as input of the next transformation. With

the three transformations listed above ({1} Normalisation, {2} DK votes

shift, and {3} Votes boost), a combinatorial calculation yields we can build

a total of
(
3
1

)
+
(
3
2

)
· 2! +

(
3
3

)
· 3! = 15 different sequences, which we will denote

explicitly from now on by the numerical sequence enclosed by keys3.

The whole process is developed as depicted in Figure 3. Firstly, taking the

amateur-labelled data as input, the method tests all hybrid transformations,

where the modified scores work as input of the next transformation of the se-

quence. A subset of expert classifications allows for the parameters optimisation

and for assessing the sequences and ranking them in terms of their quality, using

an adequate metric. At the end of the process, the ranking provides a set of

improved scores (Refined Data) for their later use to obtain final classifications

for the objects classified by the crowd of amateurs.

4. Case study: Improving galaxy morphology classification with Cit-

izen Science data

In this section, we illustrate the proposed method with a case study. We

look upon the first edition of the Galaxy Zoo (GZ1) project [32], taking the

data produced during the run of this project. First, in Section 4.1 we present

the particular features of GZ1, concerning the running of the project and the

3The factorial terms are a result from the no commutability of the single transformations

taken alone. For example, the modified scores generated applying the DK-shift followed by

a normalisation ({21} sequence) are not equal if the shift is applied after the normalisation

({12} sequence).
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Figure 3: General workflow of the proposed approach. The Amateur-labelled Data

obtained after the project closure is enriched by means of a hybridisation of three

independent transformations, giving rise to a set of transformation sequences. This

process leverages Expert-labelled Data available for the problem, which is used both

in the optimisation of parameters and ranking of transformation sequences.

available data. After this, Section 4.2 introduces the two expert catalogues

that allow for an assessment of the proposed approach. Then, we describe

the experiments implemented for the testing of the method in Section 4.3, and

finally we summarise and discuss the results in Section 4.4.

4.1. Galaxy Zoo

The GZ1 project has constituted the very first successful implementation of a

Citizen Science project using the Internet. For over a decade it has been bringing

together myriads of little efforts from a huge community of amateurs committed

to making a contribution to a classical astrophysical problem: the morphological

classification of galaxies [24]. This long way has resulted in a list of publications

that have supposed a great advances in the astrophysical research [20], via the

relaunching of the project in multiple editions as well. Since the first edition of

22



the project, an application was made available on-line4, by which any interested

individual was able to sign up and start classifying galaxy images from the Sloan

Digital Sky Survey5 (SDSS), one of the main databases of astronomical images

compiled to date. GZ1 focused on disentangling the observed bimodality in

galaxy morphologies that roughly divides the population between elliptical and

spiral galaxies. The first launch caused a great impact, and after six months

more than 100,000 volunteers had completed over 40 million classifications for a

sample of nearly 900,000 galaxy images [31]. A sample of these images is shown

in Figure 4.

Figure 4: Selection of GZ1 images. The four in the top correspond to elliptical galaxies. The

four in the bottom to spiral examples.

In GZ1 project, participants were asked to classify galaxy images choosing

between one of six categories: Elliptical, Clockwise Spiral, Anti-clockwise Spiral,

Edge-on Spiral, Star / Don’t Know, and Merger. Images shown held a common

scaling of 423×423 pixels in order to provide a similar basis for all classifications

[32]. In this edition, the classification was focused on the distinction between

elliptical and spiral morphologies as main classes. However, there are multiple

factors that complicate this classification problem. Whereas elliptical galaxies

present spherical symmetry, spirals hold plane symmetry. One selection of such

4The original GZ1 portal is still maintained at http://zoo1.galaxyzoo.org.
5http://www.sdss.org

23

http://zoo1.galaxyzoo.org
http://www.sdss.org


images is presented in Figure 4. Consequently, the orientation of the galaxy

plays a fundamental role in the identification of its morphology. In addition,

the quality of the image strongly depends on several factors such as the dis-

tance to the galaxy, and its physical size and brightness. This brings a huge

multiplicity of grades of difficulty that is reflected in the uncertainty in amateur

classifications.

At the time the project was closed, each image had received an average

number of ∼38 independent amateur classifications with a standard deviation

of ∼14 votes, producing the amateur-labelled data of the problem. Then, the

GZ1 team started analysing this data to evaluate the influence of biases in the

classification task. This resulted in a thorough study by Bamford et al. [4] by

which a (manual expert) transformation of the scores obtained from amateurs’

votes was developed. Referred as debiasing of the scores, it was intended to

counter the tendency of classifying blurred images of spiral galaxies as elliptical.

As a result, the overall effect was to favour spiral classifications at the expense of

elliptical ones. For this amendment, the three spiral sub-categories were joint,

giving a combined spiral score (the addition of the Clockwise, Anti-clockwise,

and Edge-on scores), which we will refer to as Spiral score henceforth.

The GZ1 data was collected in a set of csv files and published6. These

files include the ID of the galaxy in the SDSS database, the location in the

sky, total number of votes received by the galaxy, the set of original scores for

all categories, and the debiased scores for the main categories: Elliptical and

Spiral. In addition, the GZ1 team provides final classifications, known as GZ1

flags. These are generated via a process that involves the application of a 0.8

threshold over the debiased scores7. However, the debiasing of scores required

an additional parameter8 that was not available for the whole GZ1 dataset at

the time. Therefore, the debiasing and thus the GZ1 flags were only computed

6http://data.galaxyzoo.org
7Further details about how the GZ1 flags are produced can be found at http://data.

galaxyzoo.org.
8This is the redshift of the galaxy, which works as an indicator of the distance to the object.
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for a portion of the GZ1 dataset. In the following, we will refer to this sample

as GZ1 subset, consisting of 667,944 galaxies.

4.2. Expert validation

To validate amateurs’ performance through the GZ1, the developers team

originally used two expert catalogues [32]. These two expert catalogues will

operate as the ground truth needed for the comparison of results. On the one

hand, the MOSES catalogue [36] includes 16,516 galaxies present in the GZ1

subset, all of them classified by a team of professional astronomers as elliptical.

On the other hand, the Longo catalogue [33] includes 25,190 galaxies all labelled

as spiral by another set of experts and part of the GZ1 subset as well. When

both catalogues are compared, we found an overlap of 141 examples, which

were removed for the consistency of results. After this adjustment is made, we

take the joint expert catalogue, now composed of 41,424 galaxies from the GZ1

subset, which we will refer to as the validation subset. This part of the GZ1 data

have both expert and amateur classifications. Therefore, it is used to validate

the GZ1 flags. Also, as the available expert knowledge on the problem at hand,

this subset plays a fundamental role in order to assess the performance of our

approach through the following experimental trials. From now on, we will take

the validation subset as the ground truth of the problem.

Throughout the set of experiments, we use two metrics for the comparison

and validation of results specially convenient for the study of this problem: Ac-

curacy (Acc) and Rejection Rate (RR). As the standard classification measure,

the Acc computes the proportion of proper classifications with respect to the

number of classified examples. Nonetheless, these classifications are obtained

applying a threshold over the scores. In case no score reaches the threshold, the

example is annotated as uncertain. Hence, the RR measures the fraction of un-

certain examples. Taking both measures, we perform a preliminary assessment

of the GZ1 flags restricted to the validation subset. This provides a benchmark

for the subsequent experiments (Tables 5 and 6, respectively).

This way of validating results involves looking upon GZ1 as a binary clas-
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MOSES Longo Joint

Present in GZ1 subset 16,375 25,049 41,424

Correctly flagged 4,181 20,385 24,566

Incorrectly flagged 1,040 26 1,066

Flagged as uncertain 11,154 4,638 15,792

Table 5: Expert validation of GZ flags using MOSES (second column) and Longo (third

column) expert catalogues separately, and the joint expert catalogue (fourth column)

after removing the 141 overlapped galaxies.

Accuracy 0.9584

Rejection Rate 0.3812

Table 6: Evaluation of GZ1 flags, using the joint expert catalogue over the validation

subset.

sification problem. Under this view, Elliptical and Spiral are the main classes,

working as negative and positive classes, respectively, since the identification

of spiral patterns entail much more detail and observation. Merger and Star /

Don’t Know categories are regarded as secondary classes for which we do not

count with any form of expert validation. However, we point to the employment

of DK votes to improve the quality of the classifications for the two main classes.

4.3. Experimental setting

Here we present and explain the set of experiments executed for the testing

of our approach. In the first place, we illustrate the performance of the three

transformations taken independently (Section 4.3.1). After this, we test the

hybridisation of the transformations over the GZ1 validation set (Section 4.3.2).

In GZ1 there are two sets of main scores: first, we have the original scores

directly obtained from the final count of amateur votes, which we will refer to

as raw scores. Also, we have the debiased scores obtained after the debiasing

process explained above. These debiased scores serve of a comparison method

26



proposed by the experts in [4], as a manual transformation of the raw scores.

Here we consider independently both sets of scores for the evaluation of the

experiments results.

Similarly to the procedure followed by the GZ1 team, we apply a threshold

over the scores in order to assign final classifications to the examples. However,

we do not restrict the threshold to one single choice: we explore a series of

thresholds in order to get a better intuition about the quality of the classifica-

tions provided after certain data transformation has been applied. Here we use

six thresholds in the interval [0.5-1.0] taking 0.1 steps, that is, the set (0.5, 0.6,

0.7, 0.8, 0.9, 1.0). These values allow for a well-spread set of cuts that enables a

fair comparison between unmodified and transformed scores over a wide range

of consensus levels, ranging from 50% consensus (0.5 threshold) to full consen-

sus (1.0 threshold) amongst participants required for the class to be assigned to

the object. By this, objects with Elliptical or Spiral score greater or equal than

the threshold being used are labelled as elliptical or spiral, respectively. In any

other case, the galaxy is annotated as uncertain and counts as not classified.

Therefore, each threshold gives one final label for each of the examples in the

validation subset, so we can regard each of the thresholds as a single classifier.

Likewise, the application of this series over the scores enables us to check the

trade-off between Acc and RR as the IU varies across the sample. That is to

say: the higher is the threshold, the larger is the amount of uncertain galaxies

but more accurate the classifications provided.

By using this set of thresholds we compare the quality of the modified scores

obtained after applying either a single transformation, or any hybrid combina-

tion of them. This is made according to the expert validation explained above.

To do this, we represent in a Acc-RR chart the (Acc, RR) points obtained for

each of the thresholds in the [0.5-1.0] interval. In addition, for the sake of mak-

ing the comparison easy and quantitative, along with Acc and RR we consider

a third metric: the Hypervolume [50] (HV) subtended by the set of (Acc, RR)

points. Since we pursue a two-objective optimisation (we aim to maximise Acc

and diminish RR), the HV enables a numerical comparison and ranking of dif-
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ferent scores. For its calculation, we take as reference the optimum point (Acc

= 1.0, RR = 0.0), that is, the right-bottom corner of the chart. Hence, we are

after the minimisation of this measure: the smaller is the HV value, the better

is the performance of the transformation.

The last key aspect in the experimental setting is the optimisation of param-

eters and ranges for transformations {2} and {3} (Equations 2 and 5). A fixed

selection of parameters works well for a single application of these transforma-

tions. However, the hybridisation of transformations {2} and {3} in distinct

order shows that pre-fixed values are not appropriate when we mix these two

in variable order. To overcome this issue, we conduct an independent optimi-

sation of the parameters and range of application each time the transformation

is applied in a sequence, and therefore using the input scores at the time. This

means, for instance, that for sequence {213}, the γ parameter and range of

application for transformation {3} is optimised using the scores obtained after

application of {2} and {1} in that order, as the sequence establishes in this case.

The optimisation is always performed in the same manner:

– First, we select the optimal range of application, squeezing the interval

(0.5, 1.0) in 0.01 steps up to a minimum amplitude of 0.2. That is to say,

we test the intervals (0.5, 1.0), (0.51, 0.99), (0.52, 0.98),... (0.65, 0.85),

and choose that one according to the minimal HV value. In this phase,

we use the fixed values α = 0.1, β = 1.0 and γ = 0.4.

– Secondly, we test the parameters in a range of values. For transformation

{2}, parameter α is first tested in the interval [0.01, 1.0] taking 0.01 steps,

and then it is done the same with β in the interval [0.1, 10] taking 0.1

steps; for {3}, parameter γ is computed in the interval [0.01, 1.0] taking

0.01 steps as well. For all cases, the value that minimises the HV is

selected.

In the hybridisation of transformations, the optimisation of parameters is devel-

oped implementing a 70/30 validation. We split the validation subset into two

parts: the 70% of the sample is used to perform the parameters optimisation
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as explained above; the remaining 30% is used for the expert validation of the

sequences obtained after completing the parameter optimisation process. This

validation ensures that the model is not adjusting the values to the same data

used for both optimisation of parameters and evaluation of final classifications.

4.3.1. Single transformations testing

In this first trial of experiments, we test the behaviour of the three proposed

transformations (Section 3.2) one at a time, over both raw and debiased scores.

Here we adopt a fixed selection of values for the parameters that are found

completing a grid optimisation over a reduced range of values. At this point we

do not aim to optimise these values, but to use example values to show how the

single transformations work.

Transformation {1} develops a normalisation of the main categories scores.

Being M = 2 for GZ1, with Elliptical and Spiral the two main categories, we

take the reduced score vector X̂ = (xEl, xSp) for each of the examples in the

validation subset and calculate the normalised score vector Ẑ = (zEl, zSp) as

expressed in Equation 1. For both raw and debiased scores, the application of

the set of thresholds brings the charts shown in Figure 5. From left to right, each

(Acc, RR) point in the chart corresponds to one of the thresholds in the interval

[0.5-1.0], respectively. The HV values indicated in the legend are multiplied by

a factor 103 for an easier comparison of the quantities.

Transformation {2} introduces a shift into the main scores and uses the DK

votes present in the data. To better illustrate the adequacy of this procedure, we

firstly check the distribution of this count of votes through the whole population

of examples in the GZ1 data. Figure 6 shows the distribution of DK votes across

the GZ1 subset. The average number of DK votes is µDK = 2.82 votes, with a

standard deviation of σDK = 3.55 votes. The maximum value is nDKMax = 81

votes, and there are 153,983 examples (∼23% of the GZ1 subset) for which

nDK = 0 votes. As before with {1}, we take the reduced score vector X̂ =

(xEl, xSp) for each of the examples in the validation subset and compute the

shifted score vector Ŵ = (wEl, wSp) as indicated in Equations 2 and 3. For
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Figure 5: Test of transformation {1}: the charts show (Acc, RR) points generated by the

application of [0.5-1.0] thresholds over raw (a) and debiased (b) scores. Square points represent

the unmodified scores, and circular points the scores after the {1} transformation. The HV

values indicated in the legend are multiplied by a factor 103.

both raw and debiased scores, the application of the set of thresholds brings the

charts shown in Figure 7. From left to right, each (Acc, RR) point in the chart

corresponds to one of the thresholds in the interval [0.5-1.0], respectively. The

HV values indicated in the legend are multiplied by a factor 103 for an easier

comparison of the quantities. We adopt the values α = 0.05 votes and β = 1.0

votes for calculating the shift (Equation 2), which we select after testing several

pairs of values and minimising the HV using expert classifications to compare

between original and modified scores. In the same manner, we restrict the range

of application to the interval (0.6, 0.9). This means that any object with scores

out of this interval is not modified.

Transformation {3} converts the main categories scores, leveraging the dis-

tribution of votes in the category through the whole set of instances. This con-

version intends to aggregate information codified in the count of votes, so that

examples with similar scores but different number of votes can be disentangled

for the labelling. As we did with {2}, we first check the distribution of the votes

across the population and the two main categories in GZ1. Figure 8 presents the

distribution of the total number of votes in the GZ1 subset. The average num-
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Figure 6: Distribution of DK votes across the GZ1 subset in logarithmic scale. The

maximum value is nDKMax = 81 votes, with µDK = 2.82 votes and σDK = 3.55 votes.
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Figure 7: Test of transformation {2}: the charts show (Acc, RR) points generated by the

application of [0.5-1.0] thresholds over the shifted raw (a) and shifted debiased (b) scores.

Square points represent the unmodified scores, and round points the scores after the {2}

transformation. The HV values indicated in the legend are multiplied by a factor 103.
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ber of votes is µN = 38.76 votes, with a standard deviation of σN = 13.83 votes.

The maximum value encountered is NMax = 94 and the minimum NMin = 4

votes. For this case, transformation {3} shows a meaningful performance tak-

ing as input the normalised scores. Consequently, here we consider the hybrid

sequence {13}: we take the normalised score vector Ẑ = (zEl, zSp) for each of

the examples in the validation subset and compute the transformed score vector

R̂ = (rEl, rSp) as it is shown in Equation 5. For both raw and debiased scores,

the use of the same series of thresholds results in the charts shown in Figure

9. From left to right, each (Acc, RR) point in the chart corresponds to one of

the thresholds in the interval [0.5-1.0], respectively. As in previous tests, the

HV values indicated in the legend are multiplied by a factor 103 for an easier

number handling. Here, we adopt the value γ = 0.4 (Equation 5), which we

find after optimising the parameter by testing a range of values: we adopt the

value that minimises the HV comparing with original scores and using expert

classifications as ground truth. Following the same procedure, we also restrict

the range of application to the interval (0.6, 0.9).

4.3.2. Hybridisation of transformations

After the testing of the single transformations presented through the pre-

vious section, in the following we explain the hybridisation of transformations.

In order to extract and combine all information present in GZ1 data, here we

propose one hybridisation strategy in two steps: (1) first, we concatenate the

three transformations in all their possible combinations; (2) second, we rank

the resulting scores according to the HV metric and using the expert classifi-

cations. This procedure ensures a proper blend of the transformations in order

to aggregate both the information held in DK and total number of votes. We

employ the notation {xyz} meaning that transformation {x} is applied to the

scores, then the output scores are used as input to transformation {y}, and after

this, in turn, the result is taken as input to transformation {z}. When three

initial transformations, we can build a total of 15 different sequences: {1}, {2},

{3}, {12}, {13}, {23}, {21}, {31}, {32}, {123}, {132}, {213}, {231}, {312} and
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Figure 8: Distribution of total number of votes across the GZ1 subset in logarithmic

scale. The maximum value is NMax = 94 votes and the minimum NMin = 4 votes, with

µN = 38.76 votes and σN = 13.83 votes.
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Figure 9: Test of sequence {13}: the charts show (Acc, RR) points generated by the appli-

cation of [0.5-1.0] thresholds over the normalised raw (a) and normalised debiased (b) scores.

Square points represent the unmodified scores, and round points the scores after the {13}

transformation. The HV values indicated in the legend are multiplied by a factor 103.
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{321}. In addition, since in GZ1 there are two primary scores, raw and debiased,

we take both score types available and compute the whole set of transformation

sequences over them. Hence, this hybridisation provides a total of 30 different

sets of (Acc, RR) points to compare, after validating each of the final scores

obtained with expert classifications (Section 4.2).

As a preliminary trial, we compute and rank the transformation sequences

taking the same parameters values used in the previous section. We take α =

0.05 votes, β = 1.0 votes, and γ = 0.4, and restrict the application range to the

interval (0.6, 0.9). Figure 10 shows this ranking of transformation sequences.

Following the parameters optimisation and the 70/30 validation, we complete

a second trial computing the same set of hybrid transformations. Figure 11

shows the ranking obtained with this validation for parameters optimisation.

4.4. Discussion of results

We have completed two sets of experiments for the testing of the method.

Although the final goal is to obtain the best global transformation to be cho-

sen amongst the set of hybrid sequences for the problem studied, the testing

of the transformations alone illustrate how the method works. In broad terms,

both experimental trials bring better trade-offs between Acc and RR with re-

spect to the GZ1 benchmark (Table 6). In addition, classifications provided by

application of the proposed set of thresholds generally outperform the marks ob-

tained by considering the original scores without modification. In the following,

we highlight the most meaningful results in accordance with the experiments

presented above:

• In GZ1 we have two sets of scores available, raw and debiased. As it is

shown in Figures 5, 7 and 9, debiased scores reach better results compared

with raw scores. This trend is maintained in the ranking of transformation

sequences (Figures 10 and 11), for which all hybrid transformations ap-

plied over debiased scores outweigh those ones obtained from raw scores

excepting one: the transformation {3} over debiased scores. These re-

sults confirm the critical importance of developing debiasing procedures

34



{312} D

{12} D

{123} D

{21} D

{132} D

{321} D

{213} D

{231} D

{1} D

{31} D

{2} D

{13} D

{23} D

{32} D

{31} R

{1} R

{231} R

{13} R

{3} D

{123} R

{321} R

{132} R

{312} R

{213} R

{12} R

{3} R

{23} R

{21} R

{32} R

{2} R

Se
qu

en
ce
s

123456789101112131415 HV

6.73

6.76

7.05

7.13

7.27

7.3

7.34

7.62

8.45

8.68

8.69

8.76

8.91

9.34

9.81

10.39

10.49

10.72

10.77

11.04

11.26

11.3

11.44

11.45

11.88

11.96

12.4

12.51

12.83

13.14

Ra
nk
in
g 
of
 H
yb
rid

 T
ra
ns
fo
rm

at
io
ns
 (F

ix
ed
 p
ar
am

et
er
 v
al
ue
s)

Ra
w 
Sc
or
es
 (1

1.
39

)
De

b.
 S
co
re
s (
10

.6
3)

F
ig

u
re

1
0
:

R
a
n

k
in

g
o
f

h
y
b

ri
d

se
q
u

en
ce

s
o
f

tr
a
n

sf
o
rm

a
ti

o
n

s
w

it
h

fi
x
ed

v
a
lu

es
o
f

p
a
ra

m
et

er
s:
α

=
0
.0

5
,
β

=
1
.0

,
a
n

d
γ

=
0
.4

,
a
n

d
(0

.6
,

0
.9

)
ra

n
g
e

o
f

a
p

p
li
ca

ti
o
n

.
T

h
e

b
a
r

h
ei

g
h
t

re
p

re
se

n
ts

th
e

H
V

v
a
lu

e
o
f

th
e

se
q
u

en
ce

in
d

ic
a
te

d
in

th
e

b
a
se

,
w

it
h
R

st
a
n

d
in

g
fo

r
R

a
w

sc
o
re

s,
a
n

d
D

fo
r

D
eb

ia
se

d

sc
o
re

s.
T

h
e

re
d

h
o
ri

zo
n
ta

l
li
n

e
re

p
re

se
n
ts

th
e

H
V

v
a
lu

e
fo

r
in

it
ia

l
R

a
w

sc
o
re

s,
a
n

d
th

e
b

lu
e

h
o
ri

zo
n
ta

l
li

n
e

th
e

sa
m

e
fo

r
D

eb
ia

se
d

sc
o
re

s.
A

ll
H

V

v
a
lu

es
a
re

a
u

g
m

en
te

d
b
y

a
1
0
3

fa
ct

o
r.

35



{123} D

{312} D

{12} D

{132} D

{21} D

{213} D

{231} D

{321} D

{23} D

{2} D

{32} D

{1} D

{31} D

{13} D

{231} R

{312} R

{321} R

{31} R

{1} R

{3} D

{12} R

{21} R

{13} R

{132} R

{123} R

{213} R

{2} R

{32} R

{3} R

{23} R

Se
qu

en
ce
s

123456789101112 HV

5.8

5.82

5.86

6.05

6.42

6.51

6.7

6.71

7.2

7.37

7.54

7.66

7.67

7.76

9.36

9.39

9.39

9.5

9.56

9.56

9.59

9.59

9.63

9.65

9.69

9.7

10.36

10.39

10.4

10.42

Ra
nk
in
g 
of
 H
yb
rid

 T
ra
ns
fo
rm

at
io
ns
 (O

pt
im
ise

d 
pa
ra
m
et
er
 v
al
ue
s)

Ra
w 
Sc
or
es
 (1

1.
39

)
De

b.
 S
co
re
s (
10

.6
3)

F
ig

u
re

1
1
:

R
a
n

k
in

g
o
f

h
y
b

ri
d

se
q
u

en
ce

s
o
f

tr
a
n

sf
o
rm

a
ti

o
n

s
im

p
le

m
en

ti
n

g
p

a
ra

m
et

er
s

o
p

ti
m

is
a
ti

o
n

a
n

d
w

it
h

7
0
/
3
0

v
a
li
d

a
ti

o
n

o
f

th
e

d
a
ta

.
T

h
e

b
a
r

h
ei

g
h
t

re
p

re
se

n
ts

th
e

H
V

v
a
lu

e
o
f

th
e

se
q
u

en
ce

in
d

ic
a
te

d
in

th
e

b
a
se

,
w

it
h
R

st
a
n

d
in

g
fo

r
R

a
w

sc
o
re

s,
a
n

d
D

fo
r

D
eb

ia
se

d
sc

o
re

s.
T

h
e

re
d

h
o
ri

zo
n
ta

l

li
n

e
re

p
re

se
n
ts

th
e

H
V

v
a
lu

e
fo

r
in

it
ia

l
R

a
w

sc
o
re

s,
a
n

d
th

e
b

lu
e

h
o
ri

zo
n
ta

l
li
n

e
th

e
sa

m
e

fo
r

D
eb

ia
se

d
sc

o
re

s.
A

ll
H

V
v
a
lu

es
a
re

a
u

g
m

en
te

d
b
y

a
1
0
3

fa
ct

o
r.

36



depending on the problem, which also enables here a comparison between

our proposal and a comparable method developed by experts in the field.

• Taken independently, transformation {1} is the only one able to provide

a simultaneous improvement of both raw and debiased scores. Transfor-

mation {2} worsens the Acc-RR marks for raw scores, and transformation

{3} does not provide any improvement to original scores, either raw or

debiased. However, through the hybridisation process, it can be seen that

{3} is key for the enhancement of the amateur-labelled data: it takes part

in 7 of the 10 best sequences for both optimised and not-optimised rank-

ings. This result shows a variety of transformations behaviour, justifying

the hybridisation strategy in order to get the most convenient merge of

information for the problem being studied.

• The parameters optimisation provides a substantial improvement in the

quality of the transformation sequences. Previous to the optimisation, the

ranking shows an average HV value of 9.78, with standard deviation of

2.00. After the optimisation, along with the 70/30 validation, the average

reduces to 8.37, with standard deviation of 1.58. The best transforma-

tion sequence in the optimised ranking, the {123} sequence with debiased

scores, gets HV = 5.8, outperforming the best one in the non-optimised

({312} with debiased scores, HV = 6.73) as well as the best result of

transformations alone ({3} with debiased scores, HV = 8.69). These re-

sults support the adequacy of the optimisation method used. Additionally,

all transformation sequences in the optimised ranking outperform the raw

and debiased benchmarks, that is, the HV values obtained by unmodified

scores (11.39 and 10.63, respectively).

These results confirm the potentiality behind this approach, as able to find an

adequate adjustment for the aggregation of information about the uncertainty

present in the data, taking the form of either MU or LC, and hidden in the

DK votes and distribution of votes through the main categories, respectively.

This depends on the choice of metrics for the evaluation of results, and different
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metrics could lead to different optimal solutions. However, the results presented

here ensure a wide margin of improvement using the proposed method, consid-

ering the state-of-art of the problem that is represented by the debiased scores

computed by experts.

5. Conclusions and further work

In this paper, we proposed a novel approach for a better employment of the

data generated in the course of Citizen Science projects that deal with clas-

sification problems. The main achievement of this approach is to be able to

aggregate information about different types of uncertainty present in this sort

of data: inherent uncertainty, due to the lack of consensus amongst participants

that annotate a same example; uncertainty quantified by participants themselves

and included as part of the data; and the uncertainty codified in the distribution

of votes through the whole dataset for the main classes of the problem. Using

this information, our method has proposed three mathematical transformations

that modify the original scores and a hybridisation of them that provides the

best combined application in accordance with available expert classifications for

the problem. To test our approach, we have analysed as case study one of the

most representative Citizen Science projects to date, the Galaxy Zoo project.

We have presented two sets of experiments: the first one addresses the trans-

formations alone, showing their performance in classifications generated using

a threshold over the modified scores; the second implements the hybridisation

of the three transformations, demonstrating the advantage of this procedure in

order to explore the most adequate blending of them depending on the problem

at hand. As a result, the method has proven to enhance classifications accuracy

and diminish the amount of unclassified images, comparing with an existing

method and using expert classifications as ground truth.

For future work, we plan to extend this approach to more complex settings

such as projects involving classification problems with large number of classes,

or the aggregation of further information regarding, for instance, participants’
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and/or experts’ expertise in the classification task. These frameworks will entail

new analyses on the aggregation of this sort of data. Eventually, we aim to study

the merging of all information available about the problem, pursuing the best

results and utility of Citizen Science outcomes for science and research.
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Funding: The work of M. Jiménez was funded by a Ph.D. scholarship from

the School of Computer Science of the University of Nottingham.

References

[1] Alabri, A., Hunter, J., 2010. Enhancing the quality and trust of citizen

science data, in: Proceedings of the 6th IEEE International Conference on

e-Science, pp. 81–88. doi:10.1109/eScience.2010.33.

[2] Anderson, T., White, S., Davis, B., Erhardt, R., Palmer, M., Swanson, A.,

Kosmala, M., Packer, C., 2016. The spatial distribution of african savannah

herbivores: Species associations and habitat occupancy in a landscape con-

text. Philosophical Transactions of the Royal Society B: Biological Sciences

371. doi:10.1098/rstb.2015.0314.

[3] Ball, N., Brunner, R., 2010. Data mining and machine learning in as-

tronomy. International Journal of Modern Physics D 19, 1049–1106.

doi:10.1142/S0218271810017160.

[4] Bamford, S., Nichol, R., Baldry, I., Land, K., Lintott, C., Schawinski, K.,

Slosar, A., Szalay, A., Thomas, D., Torki, M., Andreescu, D., Edmondson,

E., Miller, C., Murray, P., Raddick, M., Vandenberg, J., 2009. Galaxy

zoo: The dependence of morphology and colour on environment. Monthly

Notices of the Royal Astronomical Society 393, 1324–1352. doi:10.1111/

j.1365-2966.2008.14252.x.

39

http://dx.doi.org/10.1109/eScience.2010.33
http://dx.doi.org/10.1098/rstb.2015.0314
http://dx.doi.org/10.1142/S0218271810017160
http://dx.doi.org/10.1111/j.1365-2966.2008.14252.x
http://dx.doi.org/10.1111/j.1365-2966.2008.14252.x


[5] Banerji, M., Lahav, O., Lintott, C., Abdalla, F., Schawinski, K., Bamford,

S., Andreescu, D., Murray, P., Raddick, M., Slosar, A., Szalay, A., Thomas,

D., Vandenberg, J., 2010. Galaxy zoo: Reproducing galaxy morphologies

via machine learning. Monthly Notices of the Royal Astronomical Society

406, 342–353. doi:10.1111/j.1365-2966.2010.16713.x.

[6] Barnard, L., Scott, C., Owens, M., Lockwood, M., Tucker-Hood, K.,

Thomas, S., Crothers, S., Davies, J., Harrison, R., Lintott, C., Simp-

son, R., O’Donnell, J., Smith, A., Waterson, N., Bamford, S., Romeo,

F., Kukula, M., Owens, B., Savani, N., Wilkinson, J., Baeten, E., Poeffel,

L., Harder, B., 2014. The solar stormwatch cme catalogue: Results from

the first space weather citizen science project. Space Weather 12, 657–674.

doi:10.1002/2014SW001119.

[7] Beaumont, C., Goodman, A., Kendrew, S., Williams, J., Simpson, R., 2014.

The milky way project: Leveraging citizen science and machine learning to

detect interstellar bubbles. Astrophysical Journal Supplement Series 214,

3. doi:10.1088/0067-0049/214/1/3.

[8] Bird, T., Bates, A., Lefcheck, J., Hill, N., Thomson, R., Edgar, G., Stuart-

Smith, R., Wotherspoon, S., Krkosek, M., Stuart-Smith, J., Pecl, G.,

Barrett, N., Frusher, S., 2014. Statistical solutions for error and bias

in global citizen science datasets. Biological Conservation 173, 144–154.

doi:10.1016/j.biocon.2013.07.037.

[9] Bonney, R., Cooper, C., Dickinson, J., Kelling, S., Phillips, T., Rosenberg,

K., Shirk, J., 2009. Citizen science: A developing tool for expanding science

knowledge and scientific literacy. BioScience 59, 977–984. doi:10.1525/

bio.2009.59.11.9.

[10] Bonney, R., Shirk, J., Phillips, T., Wiggins, A., Ballard, H., Miller-Rushing,

A., Parrish, J., 2014. Next steps for citizen science. Science 343, 1436–1437.

doi:10.1126/science.1251554.

40

http://dx.doi.org/10.1111/j.1365-2966.2010.16713.x
http://dx.doi.org/10.1002/2014SW001119
http://dx.doi.org/10.1088/0067-0049/214/1/3
http://dx.doi.org/10.1016/j.biocon.2013.07.037
http://dx.doi.org/10.1525/bio.2009.59.11.9
http://dx.doi.org/10.1525/bio.2009.59.11.9
http://dx.doi.org/10.1126/science.1251554


[11] Bonter, D., Cooper, C., 2012. Data validation in citizen science: A case

study from project feederwatch. Frontiers in Ecology and the Environment

10, 305–307. doi:10.1890/110273.

[12] Bouveyron, C., Girard, S., 2009. Robust supervised classification with mix-

ture models: Learning from data with uncertain labels. Pattern Recognition

42, 2649–2658. doi:10.1016/j.patcog.2009.03.027.

[13] Brabham, D., 2008. Crowdsourcing as a model for problem solving:

An introduction and cases. Convergence 14, 75–90. doi:10.1177/

1354856507084420.

[14] Chiclana, F., Herrera-Viedma, E., Herrera, F., Alonso, S., 2007. Some in-

duced ordered weighted averaging operators and their use for solving group

decision-making problems based on fuzzy preference relations. European

Journal of Operational Research 182, 383–399. doi:10.1016/j.ejor.2006.

08.032.

[15] Cohn, J., 2008. Citizen science: Can volunteers do real research? Bio-

Science 58, 192–197. doi:10.1641/B580303.

[16] Crowston, K., Osterlund, C., Lee, T.K., 2017. Blending machine and hu-

man learning processes, in: Proceedings of the 50th Hawaii International

Conference on System Sciences, pp. 65–73. doi:10.24251/HICSS.2017.009.

[17] Dickinson, J., Zuckerberg, B., Bonter, D., 2010. Citizen science as

an ecological research tool: Challenges and benefits. Annual Review

of Ecology, Evolution, and Systematics 41, 149–172. doi:10.1146/

annurev-ecolsys-102209-144636.

[18] Dieleman, S., Willett, K., Dambre, J., 2015. Rotation-invariant convolu-

tional neural networks for galaxy morphology prediction. Monthly Notices

of the Royal Astronomical Society 450, 1441–1459. doi:10.1093/mnras/

stv632.

41

http://dx.doi.org/10.1890/110273
http://dx.doi.org/10.1016/j.patcog.2009.03.027
http://dx.doi.org/10.1177/1354856507084420
http://dx.doi.org/10.1177/1354856507084420
http://dx.doi.org/10.1016/j.ejor.2006.08.032
http://dx.doi.org/10.1016/j.ejor.2006.08.032
http://dx.doi.org/10.1641/B580303
http://dx.doi.org/10.24251/HICSS.2017.009
http://dx.doi.org/10.1146/annurev-ecolsys-102209-144636
http://dx.doi.org/10.1146/annurev-ecolsys-102209-144636
http://dx.doi.org/10.1093/mnras/stv632
http://dx.doi.org/10.1093/mnras/stv632


[19] Fedrizzi, M., Pasi, G., 2008. Fuzzy logic approaches to consensus modelling

in group decision making. Studies in Computational Intelligence 117, 19–

37. doi:10.1007/978-3-540-78308-4_2.

[20] Fortson, L., Masters, K., Nichol, R., Borne, K., Edmondson, E., Lintott, C.,

Raddick, J., Schawinski, K., Wallin, J., 2012. Galaxy zoo: Morphological

classification and citizen science. Machine Learning and Data Mining for

Astronomy 11, 118–125. doi:10.1017/S1743921315010911.

[21] Garibaldi, J., Ozen, T., 2007. Uncertain fuzzy reasoning: A case study in

modelling expert decision making. IEEE Transactions on Fuzzy Systems

15, 16–30. doi:10.1109/TFUZZ.2006.889755.

[22] Grayson, R., 2016. A life in the trenches? the use of operation war diary and

crowdsourcing methods to provide an understanding of the british armys

day-to-day life on the western front. British Journal for Military History

2, ISSN: 2057–0422.

[23] Hennon, C., Knapp, K., Schreck, C.J., I., Stevens, S., Kossin, J., Thorne,

P., Hennon, P., Kruk, M., Rennie, J., Gada, J.M., Striegl, M., Carley,

I., 2015. Cyclone center can citizen scientists improve tropical cyclone

intensity records? Bulletin of the American Meteorological Society 96,

591–607. doi:10.1175/BAMS-D-13-00152.1.

[24] Hubble, E., 1926. Extra-galactic nebulae. The Astrophysical Journal 64,

321–373.

[25] Jimenez, M., Triguero, I., John, R., 2018. A first approach for handling un-

certainty in citizen science, in: Proceedings of the 2018 IEEE International

Conference on Fuzzy Systems (in press).

[26] Kamar, E., Hacker, S., Horvitz, E., 2012. Combining human and machine

intelligence in large-scale crowdsourcing, in: Proceedings of the 11th Inter-

national Conference on Autonomous Agents and Multiagent Systems, pp.

467–474.

42

http://dx.doi.org/10.1007/978-3-540-78308-4_2
http://dx.doi.org/10.1017/S1743921315010911
http://dx.doi.org/10.1109/TFUZZ.2006.889755
http://dx.doi.org/10.1175/BAMS-D-13-00152.1


[27] Klir, G., 1987. Where do we stand on measures of uncertainty, ambiguity,

fuzziness, and the like? Fuzzy Sets and Systems 24, 141–160. doi:10.1016/

0165-0114(87)90087-X.

[28] Kosmala, M., Wiggins, A., Swanson, A., Simmons, B., 2016. Assessing

data quality in citizen science. Frontiers in Ecology and the Environment

14, 551–560. doi:10.1002/fee.1436.

[29] Kuminski, E., George, J., Wallin, J., Shamir, L., 2014. Combining hu-

man and machine learning for morphological analysis of galaxy images.

Publications of the Astronomical Society of the Pacific 126, 959–967.

doi:10.1086/678977.

[30] Li, W., Duan, L., Tsang, I., Xu, D., 2012. Co-labeling: A new multi-view

learning approach for ambiguous problems, in: Proceedings of the IEEE

International Conference on Data Mining, pp. 419–428. doi:10.1109/ICDM.

2012.78.

[31] Lintott, C., Schawinski, K., Bamford, S., Slosar, A., Land, K., Thomas,

D., Edmondson, E., Masters, K., Nichol, R., Raddick, M., Szalay, A., An-

dreescu, D., Murray, P., Vandenberg, J., 2011. Galaxy zoo 1: Data release

of morphological classifications for nearly 900 000 galaxies. Monthly No-

tices of the Royal Astronomical Society 410, 166–178. doi:10.1111/j.

1365-2966.2010.17432.x.

[32] Lintott, C., Schawinski, K., Slosar, A., Land, K., Bamford, S., Thomas, D.,

Raddick, M., Nichol, R., Szalay, A., Andreescu, D., Murray, P., Vanden-

berg, J., 2008. Galaxy zoo: Morphologies derived from visual inspection of

galaxies from the sloan digital sky survey. Monthly Notices of the Royal

Astronomical Society 389, 1179–1189. doi:10.1111/j.1365-2966.2008.

13689.x.

[33] Longo, M., 2011. Detection of a dipole in the handedness of spiral galaxies

with redshifts z 0.04. Physics Letters, Section B: Nuclear, Elementary

43

http://dx.doi.org/10.1016/0165-0114(87)90087-X
http://dx.doi.org/10.1016/0165-0114(87)90087-X
http://dx.doi.org/10.1002/fee.1436
http://dx.doi.org/10.1086/678977
http://dx.doi.org/10.1109/ICDM.2012.78
http://dx.doi.org/10.1109/ICDM.2012.78
http://dx.doi.org/10.1111/j.1365-2966.2010.17432.x
http://dx.doi.org/10.1111/j.1365-2966.2010.17432.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13689.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13689.x


Particle and High-Energy Physics 699, 224–229. doi:10.1016/j.physletb.

2011.04.008.

[34] Miller-Rushing, A., Primack, R., Bonney, R., 2012. The history of public

participation in ecological research. Frontiers in Ecology and the Environ-

ment 10, 285–290. doi:10.1890/110278.

[35] Candido dos Reis, F., Lynn, S., Ali, H., Eccles, D., Hanby, A., Proven-

zano, E., et al., C., 2015. Crowdsourcing the general public for large

scale molecular pathology studies in cancer. EBioMedicine 2, 681–689.

doi:10.1016/j.ebiom.2015.05.009.

[36] Schawinski, K., Thomas, D., Sarzi, M., Maraston, C., Kaviraj, S., Joo,

S.J., Yi, S., Silk, J., 2007. Observational evidence for agn feedback in

early-type galaxies. Monthly Notices of the Royal Astronomical Society

382, 1415–1431. doi:10.1111/j.1365-2966.2007.12487.x.

[37] Schwamb, M., Lintott, C., Fischer, D., Giguere, M., Lynn, S., Smith, A.,

Brewer, J., Parrish, M., Schawinski, K., Simpson, R., 2012. Planet hunters:

Assessing the kepler inventory of short-period planets. Astrophysical Jour-

nal 754, 129. doi:10.1088/0004-637X/754/2/129.

[38] Shamir, L., Yerby, C., Simpson, R., Von Benda-Beckmann, A., Tyack, P.,

Samarra, F., Miller, P., Wallin, J., 2014. Classification of large acoustic

datasets using machine learning and crowdsourcing: Application to whale

calls. Journal of the Acoustical Society of America 135, 953–962. doi:10.

1121/1.4861348.

[39] Show, H., 2015. Rise of the citizen scientist. Nature 524, 265. doi:10.1038/

524265a.

[40] Silvertown, J., 2009. A new dawn for citizen science. Trends in Ecology

and Evolution 24, 467–471. doi:10.1016/j.tree.2009.03.017.

[41] Simpson, R., Page, K., De Roure, D., 2014. Zooniverse: Observing the

world’s largest citizen science platform, in: Proceedings of the 23rd Inter-

44

http://dx.doi.org/10.1016/j.physletb.2011.04.008
http://dx.doi.org/10.1016/j.physletb.2011.04.008
http://dx.doi.org/10.1890/110278
http://dx.doi.org/10.1016/j.ebiom.2015.05.009
http://dx.doi.org/10.1111/j.1365-2966.2007.12487.x
http://dx.doi.org/10.1088/0004-637X/754/2/129
http://dx.doi.org/10.1121/1.4861348
http://dx.doi.org/10.1121/1.4861348
http://dx.doi.org/10.1038/524265a
http://dx.doi.org/10.1038/524265a
http://dx.doi.org/10.1016/j.tree.2009.03.017


national Conference on World Wide Web, pp. 1049–1054. doi:10.1145/

2567948.2579215.

[42] Sprinks, J., Wardlaw, J., Houghton, R., Bamford, S., Morley, J., 2017.

Task workflow design and its impact on performance and volunteers’ sub-

jective preference in virtual citizen science. International Journal of Human

Computer Studies 104, 50–63. doi:10.1016/j.ijhcs.2017.03.003.

[43] Tsiporkova, E., Boeva, V., 2006. Multi-step ranking of alternatives in a

multi-criteria and multi-expert decision making environment. Information

Sciences 176, 2673–2697. doi:10.1016/j.ins.2005.11.010.

[44] Wardlaw, J., Sprinks, J., Houghton, R., Muller, J.P., Sidiropoulos, P.,

Bamford, S., Marsh, S., 2018. Comparing experts and novices in mar-

tian surface feature change detection and identification. International

Journal of Applied Earth Observation and Geoinformation 64, 354–364.

doi:10.1016/j.jag.2017.05.014.

[45] Wright, D.E., Lintott, C.J., Smartt, S.J., Smith, K.W., Fortson, L.,

Trouille, L., Allen, C.R., Beck, M., Bouslog, M.C., Boyer, A., Chambers,

K.C., Flewelling, H., Granger, W., Magnier, E.A., McMaster, A., Miller,

G.R.M., O’Donnell, J.E., Simmons, B., Spiers, H., Tonry, J.L., Veldthuis,

M., Wainscoat, R.J., Waters, C., Willman, M., Wolfenbarger, Z., Young,

D.R., 2017. A transient search using combined human and machine clas-

sifications. Monthly Notices of the Royal Astronomical Society 472, 1315–

1323. doi:10.1093/mnras/stx1812.

[46] Wu, T., Liu, X., Liu, F., 2018. An interval type-2 fuzzy topsis model for

large scale group decision making problems with social network informa-

tion. Information Sciences 432, 392–410. doi:10.1016/j.ins.2017.12.

006.

[47] Yager, R., 2017. Owa aggregation of multi-criteria with mixed uncertain

satisfactions. Information Sciences 417, 88–95. doi:10.1016/j.ins.2017.

06.037.

45

http://dx.doi.org/10.1145/2567948.2579215
http://dx.doi.org/10.1145/2567948.2579215
http://dx.doi.org/10.1016/j.ijhcs.2017.03.003
http://dx.doi.org/10.1016/j.ins.2005.11.010
http://dx.doi.org/10.1016/j.jag.2017.05.014
http://dx.doi.org/10.1093/mnras/stx1812
http://dx.doi.org/10.1016/j.ins.2017.12.006
http://dx.doi.org/10.1016/j.ins.2017.12.006
http://dx.doi.org/10.1016/j.ins.2017.06.037
http://dx.doi.org/10.1016/j.ins.2017.06.037


[48] Yu, J., Wong, W., Hutchinson, R., 2010. Modeling experts and novices

in citizen science data for species distribution modeling, in: Proceedings of

the IEEE International Conference on Data Mining, pp. 1157–1162. doi:10.

1109/ICDM.2010.103.

[49] Zevin, M., Coughlin, S., Bahaadini, S., Besler, E., Rohani, N., Allen, S.,

Cabero, M., Crowston, K., Katsaggelos, A., Larson, S., Lee, T., Lintott,

C., Littenberg, T., Lundgren, A., Osterlund, C., Smith, J., Trouille, L.,

Kalogera, V., 2017. Gravity spy: Integrating advanced ligo detector char-

acterization, machine learning, and citizen science. Classical and Quantum

Gravity 34, 64003–64025. doi:10.1088/1361-6382/aa5cea.

[50] Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., Da Fonseca, V., 2003.

Performance assessment of multiobjective optimizers: An analysis and

review. IEEE Transactions on Evolutionary Computation 7, 117–132.

doi:10.1109/TEVC.2003.810758.

Vitae
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