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Abstract—In this paper, a cost-effective and highly 

accurate resolver-to-digital conversion (RDC) method is 

presented. The core of the idea is to apply a third-order 

rational fraction polynomial approximation (TRFPA) for the 

conversion of sinusoidal signals into the pseudo linear 

signals, which are extended to the range 0-360° in four 

quadrants. Then, the polynomial least squares method 

(PLSM) is used to achieve compensation to acquire the 

final angles. The presented method shows better 

performance in terms of accuracy and rapidity compared 

with the commercial available techniques in simulation 

results. This paper describes the implementation details of 

the proposed method and the way to incorporate it in 

digital signal processor (DSP) based permanent magnet 

synchronous motor (PMSM) drive system. Experimental 

tests under different conditions are carried out to verify the 

effectiveness for the proposed method. The obtained 

maximum error is about 0.0014° over 0-360°, which can 

usually be ignored in most industrial applications. 

 

Index Terms—Arc tangent function, Analog processing 

circuits, Pseudo linear signals, Resolver-to-digital 

conversion (RDC), Third-order rational fraction polynomial 

approximation (TRFPA). 

I. INTRODUCTION 

esolvers are extensively used as speed and angle 

measurement sensors in a variety of fields, including 

electric drive system and industrial servo system, because of 

their reliability, high efficiency and vibration-proof 

characteristics. Normally, the input of a resolver is excited by 

high frequency signals. The output signals of a resolver contain 

angular position information, which is modulated by the 

high-frequency signals with sine and cosine waves.  

The next step is to demodulate the resolver output signals 

and determine the angles. In many applications, an integrated 

circuit (IC), called resolver-to-digital converter (RDC), is used 

to extract the rotor position from resolver output signals. This is 

often used in industrial products, with the drawback of 

increasing the cost (about 25$ for 16bit resolver single chip 

AD2S1210, according to Digikey), which represents almost the 

50% of a resolver cost (e.g., Resolver Tamagawa, 53$). 

Therefore, many software and hardware strategies have been 

proposed in literature [1]-[24] to realize RDC method with low 

cost hardware to achieve higher angle precision and faster 

responses, which can be mainly divided into open-loop and 

closed-loop methods.  

Some open-loop methods are illustrated in [1]-[13]. For 

example, in [1]-[4], direct or indirect arc tangent computation is 

used with LUT stored in the EPROM or other storage. However, 

because of the functions nonlinearity, large amounts of data 

storage or even extra memory are needed. Limited sampling 

points and interpolation methods are the key issues. CORDIC 

(Coordinate Rotation Digital Computer) algorithm is another 

method suitable for fast calculation of trigonometric functions, 

mentioned in [5]-[7]. The only operations it requires are 

addition, subtraction, shift and a LUT. However, the accuracy 

of CORDIC algorithm is mainly affected by the limited number 

of iterations for microcontroller. Several other open loop 

methods are proposed to construct pseudo linear signals, 

described in [8]–[13]. Pseudo linear signals utilize the local 

nonlinear approximation of sine signals, cosine signals or their 

combination as linear signals and make a compensation for 

further linearization. In [8]-[10], the pseudo linear signals are 

made up of the difference between the absolute values of sine 

and cosine signals. In [11], a pseudo linear signal is obtained 

through appropriate mathematical manipulation between the 

auxiliary sinusoidal signals generated by plus and minus 

operation and the demodulated ones. In [12], multiple 

phase-shifted sinusoids (PSS) construct the pseudo-linear 

segments to determine the angle. The method proposed in [13] 

is based on computing a number of phase-shifted sine and 

cosine signals to reduce nonlinearity of the resulting tangent. 

For all the above mentioned open-loop methods, they utilize the 

different combination or operation from sine and cosine signals 
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to construct pseudo linear signals, so there is no need to 

consider the stability and rapidity of RDC. However, such 

methods still need to compensate pseudo linear signals, either 

from the software part or from the hardware part. The accuracy 

for the angles has still a good margin of improvement. 

Most of closed-loop methods employ commercially 

available the phase-locked loop (PLL), also called angular 

tracking observer (ATO) to achieve RDC as mentioned in 

[14]-[24]. Typical software implementations and hardware 

implementations are discussed in [14]-[21] and [22]-[24], 

respectively. The excitation signals and trigger signals for the 

ADCs are usually generated by a single microprocessor in 

[15]-[17] or high frequency wave generating chip in [22][23]. 

The resolver outputs are synchronously sampled and 

demodulated to enter two ADC channels for microprocessor. 

The final angle is obtained from demodulated sine and cosine 

signals using ATO algorithm. A typical ATO mentioned in 

[14]-[17] consists of a PI controller, an integrator, two 

trigonometric functions and four multiplications. In [18]-[19], 

the accuracy and time-delays issues for ATO are fully 

investigated. Double synchronous rotation coordinate system 

approach (DSRF) and Least Squares Method (LMS) are 

discussed in [20] and [21] aiming to improve the accuracy of 

angle measurement. In [20], oversampling methods and 

down-sampling finite-impulse response digital filters are 

introduced to reduce the time lag problems for ATO. Although 

the closed-loop ATO method has good noise immunity, delay, 

bandwidth and stability are still the key issues that many 

researchers are trying to address. 

In this paper, a cost-effective and highly accurate open-loop 

method is proposed to realize RDC with a practical hardware 

and real-time software. Unlike other open loop methods, the 

absolute value of demodulated sine signals and cosine signals 

are transformed into pseudo linear signals directly by TRFPA 

method. The pseudo linear signals are then extended to 0-360° 

by means of the quadrants information. PLSM is used to 

compensate the angle error. Compared with common used 

methods and commercial solutions, the proposed method 

improves the accuracy of angle a lot and the cost of the system 

is reduced.  

In Section II, the principle of the brushless resolver operation 

principle is described. The proposed approach is explained in 

Section III. Some simulation and experimental results are 

presented in Section IV and Section V, respectively. Section VI 

concludes this paper highlighting the outcomes. 

II. BRUSHLESS RESOLVER PRINCIPLE 

 
Fig.1. Electrical structure of a resolver 

A typical structure of resolver is composed of one primary 

winding and two secondary windings, as shown in Fig.1. The 

resolvers operate like a special transformer excited by high 

frequency voltage in the primary windings. Generally, typical 

1-15 kHz sinusoidal signals are applied on the primary winding 

as excitation signals, which introduce (1): 

·sin( t)exc excV E   (1) 

Where E is the amplitude of the excitation voltage, ωext is the 

angular frequency of the excitation signals. Since the frequency 

of the exited signals is much higher than the electrical angular 

frequency of the motor, in practice, the condition is usually 

satisfied because of their relatively high frequency (typically a 

few kHz). The two secondary windings generate the following 

outputs signals: 
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Where k is the transformation ratio and θe is the electrical 

angles of the motor. The equation (2) shows that the angles are 

modulated in sine and cosine signals with the high frequency 

excitation signals acting as carriers. Therefore, the resolver 

output signals require a suitable demodulation method to 

remove the carriers. In practice, one simple method mentioned 

in [15]-[17] is to trigger the sampling of analog-to-digital 

converter (ADC) when the excitation signal reaches its positive 

peak, which is a commonly applied technique. After 

demodulation, the signals become: 
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The most common and commercially applied method to 

determine θe is to utilize a four-quadrant arc tangent function: 
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However, despite of its simplicity and feasibility, there are 

still some drawbacks as listed below: 

1) The slope is quite high at zero-crossing point, which can 

lead to inaccuracies due to small interferences. When the 

cosine signals are approaching to the value zero, the result 

of the whole division is infinite, which may be 

unacceptable in the processor. 

2) The equation (4) shows that the angle is not a continuous 

function. Because of the periodic nature of the arc tangent 

function, the full range of 360° is divided into four 

sections. For this reason, extra information is required to 

identify the sections.  
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3) Direct arc tangent function can be difficult to use. In 

practice, the LUT method is commonly used to replace this 

function in [1]-[4]. However, the selecting sampling points 

and interpolation methods are limited by the sampling 

time. The more is the approximation detail, the larger is the 

resource occupied in the controller. 

III. PROPOSED CONVERSION STRATEGY 

The basic principle of the proposed conversion strategy is 

depicted in the Fig.2. In Part I, the resolver output signals are 

demodulated. In Part II, the absolute values of the two signals 

are determined and the TRFPA method is used to make a 

conversion from sine and cosine wave into pseudo linear 

signals. In Part III, the final angles measurement is extended to 

the entire cycle and the quadrant of the angle is determined by 

the sign of the sine and cosine signals. In Part IV, PLSM 

method is utilized to make a compensation to acquire the final 

angles. 

 
Fig.2. Block diagram of the proposed resolver conversion scheme 

 

A. Third-Order Rational Fraction Polynomial 
Approximation 

The TRFPA method illustrated in [25] is used to replace the 

arc tangent function for theoretical analysis in image signals 

processing. In this paper, some basic theories have been revised 

so that they can be applied to practical RDC systems. The 

third-Order rational fraction polynomial approximation 

(TRFPA) is chosen, because of a tradeoff between the 

computational complexity and accuracy. 

Due to odd function and periodic function features of arc 

tangent function, only the value in the first quadrant in [0, π/2] 

need to be taken into consideration for the angle. Then the 

proposed approximation method TRFPA can be written as (5). 

Note that the approximate result is normalized in the interval [0, 

1] and the multiplication by π/2 can be done later, if necessary. 
2 3
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Where u equals to y/x, x and y stands for the sampling value 

of cosine and sine signals in the current time (x= cos e , y=

sin e ), respectively. The variables x and y are not independent 

and they have an intrinsic relevance (the square root of x
2
+y

2
 is 

unitary). The eight parameters a0 a1 a2 a3 b0 b1 b2 b3 are the 

coefficients required to be determined. The arctangent function 

with the following three properties enable the calculation of the 

ai, bj (i,j=0,1,2,3) coefficients in a much simpler way: 
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These three constraints (6)(7)(8) are applied to (5) and (5) 

can be simplified as: 
2
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(9) 

The equation (9) is flexible, which can be transformed in 

polar coordinates with u=y/x.  

Since only one coefficient a1 is required, this can be 

determined using the error function e3 (10) and the objective 

function J3 (11), defined as: 
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(11) 

 

Solving (11), the value of the parameter a1≈0.64039 is 

univocal, which corresponds to a maximum angle 

approximation error of about 0.00810°, which means that the 

RDC is up to about 15bit resolution (360°/32768) in the first 

quadrant. The derivation process and 3D-figure of the error are 

described in detail in the appendix. Substituting a1=0.64039 

into (10) introduces: 
2

3 2
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Substituting u= y/x into (12), the equation can be rewritten as 

a homogeneous formula: 
2 2

3
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Note that it is necessary to calculate the absolute values of 

sine and cosine signals before using (13), since the 

prerequisites are x>0 and y>0. Furthermore, when the cosine 

signals are approaching the value zero, the case of zero 

denominators for y/x is avoided.  

 
Fig.3. Angle rearrangement for Part III 
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TABLE I 

QUADRANTS AND FINAL ANGLES 

Quadrant Bit1,Bit0 ˆ
e  

I (0,0) 0.25×Eψ3
 

II (1,0) 0.5-0.25×Eψ3

 

III (1,1) 0.5+ 0.25×Eψ3
 

IV (0,1) 1- 0.25×Eψ3
 

 

After the acquisition of the pseudo linear signals Eψ3, the sign 

of sine and cosine signals are acquired to determine the 

partition information, as shown in Fig.3. Considering the parity 

and periodicity of the functions, the entire range 360° for angles 

are divided into four quadrants in order to make full use of Eψ3's 

linear approximation. The relationship for the quadrant 

information and the pseudo-linear angle Eψ3 per unit is depicted 

in Table I. The logical operation Bit1 and Bit0 are calculated 

according to the sign of x and y, respectively. For example, 

when the sine wave is positive (Bit0=0) and the cosine is 

negative (Bit1=1), the angle estimation ˆ
e  is 0.5- 0.25Eψ3 per 

unit. 

B. Angular Position Compensation Method 

 
Fig.4. PLSM compensation method for error for Part IV 

 

Applying x= cosθe and y= sinθe to (12) for the angle in [0, 

π/2], the error e3 can be rewritten in polar coordinates: 
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(14) 

Fig.4 describes the error e3 with black solid line. Seen from 

the figure, the error curves fluctuate in the period of 0-90° with 

six poles. The most popular methods used for curve fitting is 

the PLSM. Because of six poles in the range 0-90° (explained in 

appendix), a seventh order polynomial is selected and the 

polynomial coefficients are acquired by MATLAB simulation, 

described in (15). After the compensation by (15), the new error 

 ̃  and the final angles  ̃  can be written in (16) and (17), 

respectively. 
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(15) 

 ̃      ̂ 

 

(16) 

 ̃   ̂   ̂  
(17) 

PLSM is used to reconstruct the error 3ê  as shown in Fig.4, 

marked with dashed lines. The error shows quite perfect match 

with the true error e3 in (14). The curve of the new error 3e

( ̃      ̂ ) is marked with dotted lines. After compensation, 

the maximum error is reduced from 0.00810 ° to 0.0014°.  

 

C. Simulation Process For Angular Position 
Determination 

 

Fig.5. Simulation of the angular position determination (a) the sine 

and cosine signals after demodulation (b) the sine and cosine signals 

after absolute value operation (c) pseudo linear signal after proposed 

approximation method (d) angular position before compensation (e) 

error before compensation (f) final angular position (g) new error after 

compensation 

 

Fig.5 shows the results for angular position determination in 

the acceleration process. Fig.5(a) depicts the simulation results 

for the demodulated signals of two resolver output signals, 

which is converted into the absolute values in Fig.5 (b). The 

TRFPA is used to convert the two positive sine and cosine 

wave to pseudo linear signals Eψ3 shown in Fig.5(c). The 

partition information related to the sign of sine and cosine 

signals can be used to extend Eψ3 to 0-360 degrees to acquire 

the angles ˆ
e , as shown in Fig.5(d). The errors before and after 

compensation are shown in the Fig.5(e) and Fig.5(g), 

respectively. The final angles  ̃  after complements are 

obtained finally, as shown in Fig.5(f). After compensation by 

means of PLSM, the maximum error is reduced from 0.0081° to 

0.0014°. 

IV. SIMULATION 

Simulations results are shown in Fig.6 to make a precision 

comparison between the proposed method and two common 

methods arctangent LUT method and CORDIC method in the 

acceleration process. In our simulation tests, the LUT method is 

calculated by a finite number of values and improved by linear 

interpolation method, considering the storage space and 

sampling time constraints. The LUT is set according to the 

input signals values: 300 sampling points are selected in the 

range from -15 to 15; 85 sampling points are selected in the 

range from -100 to -15 and from 15 to 100; 18 sampling points 

are selected from the range of from -1000 to -100 and from 100 

to 1000. The Maximum error values are 0.042 degrees depicted 

in the simulation results in Fig.6. Another method, based on 

CORDIC algorithm, takes 12 times iteration to complete the 

decoding angles for fast calculation of arc tangent function, 

described in [5]-[7]. Therefore, the maximum error values are 

0.028°, which is about arc tan (1/211), as shown in Fig.6. 

Compared with two abovementioned methods, the proposed 

http://www.baidu.com/link?url=bLNKB0N-zVm4iuToxwRltoNIGdqMRjwOUteC5O76KrJL31y2194KabRKqfQRM1otL3yWbhvRgjdGNvsBMSq_3XNa_2JaBve4aUsHfNCjlfK
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method shows only 0.0014°error in 17 bit resolution and the 

accuracy of the proposed method is greatly improved. 

 
Fig.6 Simulation results comparing the errors using (a) arctangent LUT 

method, (b) CORDIC method and (c) the proposed method 

 

The second simulation compares the proposed method with 

commercially available ATO method, when dealing with 

reference jumps, as shown in Fig.7. The parameters of PI 

controller for ATO method are designed according to [15][16]. 

The sample time Ts is the same as PWM period 100us. The 

reference angle jumps from 0° to 22.5° at 4Ts, from 22.5° to 45° 

at 8Ts and from 45° to 67.5° at 12Ts. Note that the simulation 

results are exaggerated in the actual process in order to test the 

response speed of the entire control loop. At these three time 

instants, the presented strategy shows good rapidity without 

any delay, while settle time (2Ts) or some overshoots (1.72°) 

exist in the result of the commercially available ATO scheme. 

 

Fig.7 Simulation for proposed method compared with ATO method 

dealing with reference angle step 

 

One more simulation for comparison between a 

commercially available ATO method and proposed method is 

shown with random noise superposed at the demodulated sine 

wave and cosine wave, as shown in Fig.8. In fact, input signals 

are always affected by interference or noise, such as the circuit 

system errors, AD sampling errors or sample/holder errors and 

so on. The motor is running at the speed of 150 rpm at the 

steady state. Then the Gaussian noise is added to the 

demodulated sine and cosine waves at 0.2s. The maximum 

value of random noise is 10% of the sine amplitude, while the 

frequency is the same as the switching frequency 10 kHz, 

which is more serious than the actual experiment. At 0.3s, the 

motor is ramping with speed transients and finally settle down 

at 0.7s at the speed of 750 rpm. Compared the angle and error 

shown in Fig.8(c) and Fig.8(d), the maximum angle error for 

standard ATO is about 0.2rad, while the proposed method is 

about 0.1rad with less distortion. The proposed RDC strategy 

can presents a good speed dynamics and noise immunity, while 

commercially available ATO method presents more delay error, 

spikes and distortion. 
 

Fig.8 Simulation for proposed method compared with ATO method 

dealing with noise environment (a) speed (b) demodulation signals(c) 

final angle and error using proposed RDC(d) final angle and error using 

standard ATO (e) zoom figure 

TABLE II 

COMPARISON OF DIFFERENT RDC METHODS 

Methods Accuracy 
Calculation  

burden 

Noise 

Immunity 
Rapidity 

CORDIC 
0.028° 

(13 bit) 
low medium fast 

LUT 
0.042° 

(13 bit) 
high low fast 

TRFPA 
0.0014° 

(17 bit) 
low high fast 

ATO 

0.0879° 

(12 bit for  

 RDC IC) 

high high 
delay or 

overshoots 

 

In conclusion, , Table II shows the results obtained with the 

proposed method in comparison with three commonly used 

industrial methods considering the following figures of merit: 

accuracy, calculation burden, noise immunity and delay 

problems. The TRFPA method shows highest accuracy about 

17bit resolution (360°/2
17

=0.0027) theoretically. The 

calculation burden is lower compared with ATO and LUT,  
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Fig.9. Detailed implementation of the proposed RDC 

 

since both ATO and LUT need to store a large number of 

trigonometric functions and they need interpolation to 

compensate. As far as external noise immunity is concerned, 

ATO and TRFPA show good robustness compared with other 

two methods, however, undesired delays and overshoot 

problems occur for ATO method. The reason is that ATO 

method utilizes both current and last sampling points, and a PI 

controller and an integrator are used. Therefore, the stability is 

a key issue to be addressed while applying the ATO method. In 

summary, the TRFPA method shows better performance 

compared with other methods in terms of accuracy, calculation 

burden and rapidity. 

V. IMPLEMENTATION AND EXPERIMENT 

Since the proposed RDC method is based on some basic 

operations, such as addition, multiplication, division 

andquadrant judgment operation, it can be implemented by all 

analog circuits to cut down the cost. In this particular work, a 

DSP28335 is used to implement the field-oriented control 

(FOC) algorithm for PMSM drive, the proposed RDC method 

can be completed by bespoke analog circuits and 

abovementioned DSP interfaces. 

A. Converter Circuit 

The detailed analog interface circuits for implementing the 

RDC are shown in Fig. 9. Most chips prices are given in Table 

III according to the Digikey or Farnell. The 10 kHz excitation 

signals are generated by a voltage controlled oscillator IC 

ICL8038 and then applied to the resolver by a push-pull power 

amplifier. The operational amplifiers OA3 and OA4 constitute 

two differential subtractors to acquire resolver output signals. 

Two sample-holders IC LF398 are utilized to demodulate the 

output signals, when the excitation signals reach their positive 

peak values by means of two comparators CP1 and CP2). The 

operational amplifiers OA5-OA8 achieve the absolute values of 

the signals transformation. The operational amplifiers OA9 and 

OA10 are used to adjust the voltage to the range 0-3V which 

DSP can accept. The total cost of the whole circuit can be 

estimated at $6.12 in total, less than the commercial IC (RDC 

IC AU6802). 
TABLE III 

PRICE COMPARISON BETWEEN PROPOSED METHOD AND COMMERCIAL 

METHODS 

Proposed 

Method 
Price 

Commercial 

Method 
Price 

ICL8038 $0.66 AU6802 $18.5 

LF398 $0.81×2 74LVC245AD $0.2×2 

LM311 $0.21×4 Crystal Oscillator $0.12 

LM358 $0.12×10 LM358 $0.12×2 

Push-pull 

Circuits 
$1.30 

Push-pull 

Circuits 
$1.30 

Others $0.50 Others $0.50 

Total $6.12 Total $21.06 

Key points are: 

1) The two differential amplifier circuits are used to reduce 

the common mode interference of the whole circuit. Other 

minor details are ignored, such as pull-up resistors and 

decoupling capacitors in the Fig.9, which are less 

significant to illustrate the converter functionalities. 

2) The ICL8038 is used as a high frequency waveforms 

generator, which can be replaced by an expensive Digital 

to Analog (DA) or PWM with low pass filters. For PWM 

method, synchronization could be an issue. 

3) The absolute value circuits can be embedded in the DSP 

chip itself. However, the external absolute value circuits 

with the operational amplifiers OA5-OA10 are used to 

make full usage of the AD input range. Without the 

rectifier circuit, 1 bit of precision would be lost. 

4) The comparators CP3 and CP4 are designed to reduce the 

zero-crossing error of the sine and cosine signals. The 

threshold for the change of the signal symbol is ±0.01, 

which is a negligible error for quadrant judgment. Without 

such threshold, quadrant misjudgment may occur for the 

final angle signals. 
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5) Two RC circuits have been added to the signals of sine and 

cosine wave before the sample-holders LF398, in order to 

ensure that there is no spike at the sampling point. The RC 

time constant values for the filter have been chosen to less 

than 100μs, which can be compensated subsequently in 

the processor. Without such delay elements, there may be 

some spikes for the output signals after sample-holders.  

B. Experimental Setup 

The PMSM test rig and its controller used for testing the 

proposed RDC is shown in Fig.10(a) and Fig.10(b). The 

detailed circuit for proposed RDC is shown in Fig.10(c). Seen 

from Fig.10(a), the platform consists of an 8kW 4-pole pairs 

PMSM incorporating a 5:1 reduction gear with a resolver 

(Tamagawa Type: J52XU9734A) installed as angle sensor. The 

detail parameters for PMSM and resolver are listed in Table IV. 

A processor DSP (Type: TMS320F28335) is the core 

component of the system to achieve both RDC and FOC 

algorithm. In order to show the better results of the intermediate 

process, the outcome transmits signals to four digital-to-analog 

converters (DAC) (Type: MAX538 with AMS1117-2.5 as 

reference voltage) with 12-bit resolution for the oscilloscope to 

display. A commercial PLL-type RDC special IC (Type: 

AU6802N1 with selectable resolution mode, 10Bit or 12Bit) is 

used for comparative tests. 
TABLE IV 

PMSM AND RESOLVER PARAMETERS 

PMSM Value Resolver Value 

Rated power 8kW Input impedances 80±12Ω 

Rated speed 2400rpm Output impedances 350±51Ω 

Max speed 4500rpm Excitation voltages 7V RMS 

Rated Torque 32N.m Excitation frequency 10kHz 

Pole pairs 4 Pole pairs 4 

 

 
(a) 

 
(b)                                                        (c) 

Fig.10. Experimental test bench (a) PMSM test bench (b) Motor drive 

system (c) proposed RDC 

 

C. Experimental Results 

To verify the effectiveness of the proposed method, several 

experiments are carried out on PMSM drive system from low 

speed range to high speed range. Due to the restriction of the 

motor itself, the maximum speed can only reach 4500rpm. Note 

that it is hard to show all experimental waveforms under all 

conditions. Therefore, two typical speeds, 250rpm and 

4250rpm are selected as low speed range representatives and as 

high speed range representatives, as shown in Fig.11 and Fig.12 

respectively. In Fig.11, the pseudo linear signals Eψ3 are 

extended to a complete 0-360° range according to the partition 

information Bit0 and Bit1 (corresponding to Part III in Fig.3), 

and also the final angle waveforms after PLSM compensation 

are demonstrated. The corresponding pseudo linear signals, 

final angles signals and demodulated sine and cosine signals at 

the speed of 4250rpm are shown in Fig.12. By comparing all 

these signals shown in the oscilloscope with the simulation 

results in Fig.5, the obtained signals show perfect matches with 

the simulation results. The wide speed range and feasibility for 

the algorithm are confirmed. 

 
Fig.11. The pseudo linear signals (Upper), final angle (Upper-middle) 

and the partition information bit0 and bit1(Lower) for the speed 250rpm 

 
Fig. 12 The pseudo linear signals (Upper), final angle signals and the 

demodulation results for sine and cosine signals (Lower) for 4250rpm 

 

In order to test the proposed method dealing with speed 

variation, two experiments from different perspectives are 

carried out. The first experiment focuses on the observation of 

pseudo linear signals and final angles dealing with ramp 

reference speed from 500rpm to 2000rpm, shown in Fig.13(a). 

The pseudo linear signals Eψ3 and the final angles show quite 
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perfect ascending frequency tracking with the rising speed. The 

proposed RDC method shows perfect tracking property both in 

steady state and in the accelerating transient process. Another 

test results in Fig.13(b) shows the transient process, when the 

PMSM is running from positive 200rpm to reverse 200rpm. 

The pseudo linear signals Eψ3 and the final angles demonstrate 

descending and reversal frequency property with less distortion 

with variable direction operating conditions, which proves that 

the proposed method can be applied in both directions for 

transient process.  

 
(a) 

 
(b) 

Fig. 13 The experimental results for speed (Upper), final angle 

(Upper middle), pseudo linear signals (Lower middle) and sine signals 

(Lower) dealing with (a) rising speed (b) descending and reversing 

speed 

 
Fig.14. The error between the proposed method and accurate arc 

tangent signals: Standard angle (Upper) the angle acquired by 

proposed method (Upper-middle), the error without compensation 

(Lower-middle), the error with compensation (Lower) 

 

The last experimental test is conducted to assess the accuracy 

between the proposed methods and commercial RDC with 

standard high accurate arc tangent signals. The commercial 

RDC IC AU6802N1 is firstly tested. Seen from chip manual, 

two selectable resolution modes are commonly used for the 

commercial Chip, 10Bit for ±2LSB and 12Bit for ±4LSB. Note 

that the max error is 0.35° (360°×4/4096=0.35°) for 12bit mode 

and 0.70°(360°×2/1024=0.70°) for 10bit mode. In the actual 

measurement of AU6802N1, the maximum error is about ± 0.1° 

for 12bit mode, compared with high accurate arc tangent 

function.  

The experimental results of accuracy comparison between 

the proposed method and high accurate arc tangent function are 

conducted at the speed of 600rpm depicted in Fig.14. Seen from 

Fig.14, the errors before and after compensation by PLSM are 

18000 times the magnifications for DA output. The maximum 

angle error  ̂  before compensation is less than ±0.01° and the 

maximum angle error  ̃  after compensation is less than ±0.002° 

shown in the oscilloscope, quite matched with the theoretical 

values ±0.00810° and ±0.00140°. Under different speed 

conditions, the maximum experimental angle error is about 

0.01°, quite higher with respect to the theoretical one, which 

can still be considered as negligible error in most industrial 

applications. Non-idealities in the ADC and in the operational 

amplifier can be recognized as the source of the error. A more 

accurate investigation on how the analog circuits affect the 

angle tracking will be object of future research. 

VI. CONCLUSION 

In this paper, it has been demonstrated how the proposed 

method provides a reliable, low-cost and high-precision 

solution for high speed and high performance motor position 

detection system. The new scheme utilizes the third-order 

rational fraction polynomials (TRFPA) to achieve 

approximations for precise triangular wave with two absolute 

values of sine and cosine signals. The pseudo linear signals are 

rearranged to the final angle signals compensated by PLSM 

method within the full range 0-360°. After compensation, the 

accuracy of angles is less than 0.00140° theoretically and less 

than 0.01° practically, which can be considered negligible in 

most high-precision industrial applications. A simulation 

comparison between different methods has been shown 

highlighting the benefits of the proposed method. For the 

implementation, only two ADC channels of a commercially 

available DSP and some common low-cost chips are needed. 

The proposed method is advantageous because of the low-cost, 

low computational effort and high accuracy, as demonstrated 

by the experimental verification. 

APPENDIX 

The minimum value of (A.1) is figured out under the 

condition that (A.2) is satisfied. Since the direct solving (A.2) 

may be a more complex calculation, some analytical methods 

such as Newton interpolation or particle swarm optimization 

are suitable for solving such problem. The optimal value for a1 

is 0.64039 and the maximum angle approximation error is 
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0.00810°. The changing trend can be seen more clearly from 

the 3-D plot of e3 in Fig.15. The red dotted line frame represents 

the location optimal parameter a1. Fig. 16 depicts the side view 

of Fig. 14 with different parameter a1. The arrow indicates the 

direction of increase of a1. The bold red line is the optimal 

parameter a1 to be found. The optimal value for a1 is 0.64039 

and the maximum angle approximation error is 0.00810°, 

which is a very slight error in practical application. Under the 

selected optimal parameter 0.64039, the error curves fluctuate 

in the period of 0-90° with six poles, from left to the right, listed 

as:A(3.438°,-0.0081°),B(16.616°,0.0078°),C(35.523°,-0.0041°

),D(54.431°,0.0041°),E(73.912°,-0.0078°), F(86.517°,0.0081°), 

which can be compensated by seventh-order PLSM method. 

The equation (10) can be rewritten in polar coordinates: 
2 2
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The partial derivative of e3 to θe is 
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Fig. 15 Three-dimensional plot for TRFPA of e3  

 
Fig. 16 The side view of e3 with different parameter a1 for TRFPA. 
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