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Abstract 

River temperature has a major influence on biophysical processes in lotic environments. River temperature 

is expected to increase due to climate change, with potentially adverse consequences for water quality and 

ecosystems.  Consequently, a better understanding of the drivers of river temperature space-time 

variability is important for developing adaptation strategies.  However, existing river temperature archives 

are often of low resolution or short timespans, and the analysis of patterns or trends can therefore be 

difficult. In light of these limitations, researchers have increasingly used models to generate river 

temperature estimates suitable for addressing fundamental and applied questions in river science.  Of 

these models, process-based approaches are well suited to helping improve knowledge of the mechanisms 

controlling river temperature, because of their ability to explore the energy (and water) fluxes responsible 

for temperature patterns.  While process-based modelling approaches can often be more data intensive 

than their statistical counterparts, they offer significant advantages with regards to simulating the impacts 

of projected land-use or climate change, and can provide valuable insights for informing the development 

of statistical models at larger scales. However, a wide range of process-based river temperature models 

exist, and choosing the most appropriate model for a given investigation requires careful consideration.  In 

this paper, we review the foundations of process-based river temperature modelling and critically evaluate 

the features and functionality of existing models with a view to helping river scientists better understand 

their utility.  In conclusion, we discuss key considerations and limitations of currently available process-

based models and advocate directions for future research.  We hope that this review will enable river 

researchers and managers to make informed decisions regarding model selection and spur the continued 

refinement of process-based temperature models for addressing fundamental and applied questions in the 

river sciences. 
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1. Introduction 

River temperature is one of the most important river habitat variables (Caissie, 2006; Hannah and Garner, 

2015), controlling biogeochemical processes (Durance and Ormerod, 2009; Kaushal et al., 2010), ecosystem 

dynamics (Durance and Ormerod, 2007; Bärlocher et al., 2008; Dugdale et al., 2016) and water quality 

(Finlay, 2003; Bloomfield et al., 2006; Delpla et al., 2009). Quantifying river temperature is therefore key for 

improved understanding of fluvial environments.  River temperature regimes in most locations are 

expected to change as a result of future climate change (van Vliet et al., 2013; Caldwell et al., 2015; Hannah 

and Garner, 2015; Muñoz-Mas et al., 2016) and other anthropogenic drivers (e.g. abstraction, 

impoundment, land-use change; Poole and Berman, 2001; Hester and Doyle, 2011).  However, 

shortcomings in several key aspects of river temperature research mean that little is currently known about 

the complex nature of future temperature variability.  River temperature science has in the past been 

based on data with low spatial and temporal resolution, frequently collected as a side product of water 

quality and/or ecological sampling.  Water temperature data quality is consequently highly variable and 

elucidating the controls of river temperature remains difficult (Webb et al., 2004; Jonsson and Jonsson, 

2009; Watts et al., 2015).  Efforts have been made to resolve this using novel temperature logger networks 

(e.g. Isaak et al., 2010; Jackson et al., 2016; Boyer et al., 2016) or remote sensing techniques (see. Dugdale, 

2016).  While such investigations are fast becoming the new norm, process-based understanding has not 

always kept pace with methodological development, and the exact mechanisms controlling river 

temperature heterogeneity remain difficult to isolate (Hannah and Garner, 2015).  Further research into 

river temperature dynamics is consequently of key importance with regards to predicting the impacts of 

future climate change on river environments. 

Several key review papers (including Webb, 1996; Caissie, 2006; Webb et al., 2008; Hannah and Garner, 

2015) summarise the current state-of-the-art with regard to the processes driving river temperature.  At 

the fundamental level, river temperature is determined by so-called ‘first-order’ climatic and hydrological 

processes (Hannah & Garner et al., 2015) which govern the initial temperature of the stream at the 

headwater and control rates of downstream warming or cooling due to radiative, latent, sensible and 

advective heat exchanges.  However, the degree with which a river channel responds to these broad scale 

climatic and hydrological processes depends upon ‘second-‘ and ‘third-order’ controls pertaining to the 

properties of the river basin (ie. land-use, hydrogeology, hydromophology), which influence energy and 

mass transfers at a range of nested scales (Figure 1).  At the whole-river scale, riparian forests and steep 

topography act as ‘second-order’ controls on stream temperature by moderating incoming solar or 

longwave radiation (e.g. Leach and Moore, 2010; Benyahya et al., 2012; Garner et al., 2014; Garner et al., 

2015).  Topography also drives localised variability in precipitation (Hannah and Garner, 2015), in addition 

to controlling the distribution of advective inputs from tributaries or diffuse groundwater inputs (e.g. Webb 

and Zhang, 1999; Yearsley, 2009) through interactions with geology and subsurface stratigraphy (eg. 

Malcolm et al., 2008).  At the reach scale, channel morphology and topology constitute ‘third-order’ 

controls on river temperature. Localised advective warming or cooling is driven by discrete or diffuse 

groundwater inputs (e.g. Torgersen et al., 1999; Dugdale et al., 2015) linked to channel morphology, or by 

hyporheic exchange (engendered by gravel bars; e.g Gooseff et al., 2006; Burkholder et al., 2008).  Deep 

stratified pools may also create pockets of cool water (Matthews et al., 1994; Nielsen et al., 1994).  When 

combined, these processes interact to create a mosaic of river temperature heterogeneity along a river’s 

length (ie. a river’s ‘thermal landscape’; Steel et al., 2017).  However, although these processes are 

reasonably well understood in isolation, the way in which they interact to determine stream temperature is 

still the subject of considerable research. These mechanisms must therefore be unravelled to better 

understand river temperature patterns and processes. 
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Figure 1. Basin controls on river water temperature heterogeneity across multiple scales 

In light of such knowledge gaps, researchers have increasingly turned to models to explore space-time 

variance in river temperature patterns (e.g. Tung et al., 2006; Ruesch et al., 2012) and to yield process-

based understanding of stream temperature dynamics (e.g. Garner et al., 2014).  Because river 

temperature science is still a relatively data-poor domain, models are one of the few ways in which 

researchers can generate estimates of river temperature and its associated energy transfers suitable for 

answering these fundamental questions.    

River temperature models can be divided into those based in statistics and those that simulate physical 

processes (alternately labelled ‘deterministic’, ‘mechanistic’ or ‘process-based’ models) to predict water 

temperature (Caissie, 2006).  Benyahya et al. (2007) provide a detailed account of statistical water 

temperature models.  Broadly speaking, they function through fitting statistical linkages between water 

temperature and a range of related covariates, either by parametric means (eg. regressive, correlative or 

autoregressive models) or through non-parametric approaches (eg. artificial neural networks, nearest-

neighbours approaches; Benyahya et al., 2007).  Statistical temperature models can generate accurate 

stream temperature predictions (e.g. Jeong et al., 2013; Daigle et al., 2015) and are particularly useful at 

large spatial scales where the data requirements of process-based models make their application 

unfeasible (eg. Isaak et al., 2015; Jackson et al. 2017; Steel et al., 2016). They can also be used to infer the 

drivers of river temperature variability (e.g. Hrachowitz et al., 2010; Imholt et al., 2013; Jackson et al., 

2017).  However, they are unable to reveal the specific energy transfer mechanisms responsible for stream 

temperature patterns, and their space-time transferability to dissimilar locations is limited.  In contrast, 

process-based models simulate the processes controlling river temperature.  Unlike statistical models, the 

intricacy of these processes means that such models are relatively data-intensive and highly parameterised 

(Benyahya et al., 2007), and they can be difficult to apply very large scales. However, they are particularly 

useful for a) providing process-based insights into the drivers of river temperature, b) for informing 

appropriate metrics to use in larger statistically based models and c) for predicting temperature response 

to climate or land-use change scenarios (e.g. Morin and Couillard, 1990; Caissie et al., 2007) in situations 

where statistical solutions may break down due to scenarios outside of their calibration range. 

A range of process-based stream temperature models have been produced and published (often on a non-

commercial basis) for use by the research community (Table 1).  However, there are considerable 

differences between the types of models available and their utility for simulating water temperature in 

various contexts.  Choosing the most appropriate model for a given investigation is therefore often difficult, 
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due to differences in model functionality, features, outputs and data requirements.  Furthermore, 

elucidating the key features of the various models is often laborious as important details regarding the 

functionality of some models can be buried within the grey literature.  Consequently, a detailed 

understanding of the advantages and limitations of the various river temperature models is vital for making 

an informed choice of temperature model.   

In this review, we aim to evaluate existing process-based stream temperature models with a view to 

helping researchers (and potentially managers) identify the most appropriate model for their given 

purpose, building on the previous meta-analyses presented in Norton and Bradford (2009) and Ficklin et al. 

(2012).  To achieve this, the article is structured around four key objectives: 

1. Review the foundations of process-based river temperature modelling.   

2. Compare the ways in which currently available process-based temperature models represent the 

physical energy flux processes responsible for river temperature dynamics.   

3. Document differences in model implementation, features and practicalities.   

4. Discuss limitations, future prospects and key considerations regarding model use.   

In an attempt to aid readability, citations for individual models are given by numbers (1 - 21) corresponding 

to the rows in Tables 1-6.  Standard references for each model are given in Table 1. We only explicitly 

consider ‘named’ models that a) have been published in the peer-reviewed literature, b) have been used 

for more than one study and c) for which information is readily available.  Every attempt has been made to 

gain accurate information about each model, although in some cases, the difficulty in elucidating the 

models’ technical details means that it has been necessary to simplify the contents of Tables 1-6.  We do 

not examine models that have only been documented on single occasions or that only appear in the grey 

literature.  Furthermore, we only detail the most up-to-date incarnation of a given model (or series of 

models), as an appraisal of a model’s evolutionary development is outside the scope of this article. 
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Table 1. List of reviewed process-based river temperature models (including programming language, source code and availability) 

No. Model name Main reference(s) Further reading Language Availability Source code  URL for model download 

1 BasinTemp Allen (2008) Allen et al. (2007) N/a 
Proprietary (Stillwater 
Sciences)  

N/a 

2 CE-QUAL-W2 Cole & Wells (2015) 
Rounds (2007)  
Norton & Bradford (2009) 

Fortran / 
Visual Basic 

Free download Yes http://www.ce.pdx.edu/w2/ 

3 CEQUEAU Morin & Paquet (2007) 
Morin & Couillard (1990) 
St-Hilaire et al. (2000) 

MATLAB / 
C++ 

Available on request Yes http://ete.inrs.ca/ete/publications/cequeau-hydrological-model 

4 CrUSTe LeBlanc et al. (1997) LeBlanc & Brown (2000) STELLA N/a 
 

N/a 

5 Delft3D-FLOW Deltares (2014) 
Carrivick et al. (2012) 
Shen et al. (2014) 

Fortran Free download Yes http://oss.deltares.nl/web/delft3d/download 

6 Heat Source Boyd & Casper (2003) 
Bond et al. (2015) 
Woltemade et al. (2016) 

Python / 
Visual Basic 

Free download Yes http://www.oregon.gov/deq/wq/tmdls/Pages/TMDLs-Tools.aspx 

7 DHVSM-RBM 
Sun et al. (2015) 
Yearsley et al. (2001) 

Yearsley et al. (2009) 
Yearsley et al. (2012) 

Fortran Free download Yes 
http://www.hydro.washington.edu/Lettenmaier/Models/RBM/ind
ex.shtml 

8 GIS-STRTemp Sansone (2001) Sridhar et al. (2004) N/a N/a 
 

https://www.niwa.co.nz/freshwater-and-estuaries/our-
services/catchment-modelling/water-allocation-impacts-on-river-
attributes-waiora 

9 HEC-RAS Brunner (2016) Drake et al. (2010) Java Free download 
 

http://www.hec.usace.army.mil/software/hec-ras/ 

10 MIKE 11 DHI (2016) Loinaz et al. (2013) N/a 
Commercially 
available  

https://www.mikepoweredbydhi.com/products/mike-11 

11 MNSTREM Sinokrot & Stefan (1993) Sinokrot & Stefan (1994) Fortran Free download Yes N/a 

12 Qual2K Chapra et al. (2012) Kannel et al. (2007) 
Fortran / 
Visual Basic 

Free download Yes http://www.ecy.wa.gov/programs/eap/models.html 

13 RAFT Pike et al. (2013) Danner et al. (2012) N/a N/a 
 

N/a 

14 RMA11 King (2016) Lowney (2000) Fortran 
Proprietary (Resource 
Modelling Associates)  

http://ikingrma.iinet.net.au/ 

15 SHADE-HSPF Becknell et al. (1997) 
Chen et al. (1998a) 
Chen et al. (1998b) 

Fortran Free download Yes https://www.epa.gov/exposure-assessment-models/hspf 

16 SNTemp Theurer et al. (1984) 
Bartholow (1984) 
Norton & Bradford (2009) 

Basic, Fortran Free download Yes https://www.fort.usgs.gov/products/sb/7557 

17 Streamline Rutherford et al. (1997) Rutherford et al. (2004) 
Fortran / 
Visual Basic 

Available on request 
 

N/a 

18 TVA-RMS Deas et al. (2003) Null et al. (2010) C Available on request Yes N/a 

19 WAIORA Jowett et al. (2004) Davies-Colley et al. (2009) Delphi Free download 
  

20 WASP7 Wool et al. (2008) 
 

Fortran Free download Yes 
https://www.epa.gov/exposure-assessment-models/water-
quality-analysis-simulation-program-wasp 

21 WET-Temp Cox & Bolte (2007) Watanabe et al. (2005) C++ Available on request Yes N/a 
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2. Basics of process-based water temperature models 

2.1 Energy fluxes determining stream temperature 

Stream temperature is determined by a series of energy and hydrological exchanges that act at the air-

water and water-streambed interface (Eq. 1, Figure 2; Hannah et al., 2008).  At the air-water interface, net 

radiative (longwave and shortwave energy) fluxes dominate (Caissie, 2006; Hannah et al., 2004).  Incident 

shortwave radiation (Hsw) from the sun is typically the largest source of energy for a river system 

(particularly during summer months; Webb & Zhang, 1997), although bankside objects such as vegetation 

and/or topography can reduce the amount of solar radiation received by the river through providing shade 

(e.g. Garner et al., 2014, 2017).  Longwave radiation (Hlw; thermal energy emitted by all objects with a 

temperature above 0 °K; Dugdale, 2016) can be both a heat source and sink, with downwelling longwave 

radiation from clouds, the land surface and bankside vegetation contributing to heat gains, and upwelling 

radiation from the water surface driving energy losses from the stream (e.g. Benyahya et al., 2012).  Energy 

at the air-water interface is also gained or lost through non-radiative means (latent and sensible heat 

fluxes; Hannah & Garner, 2015).  Latent heat flux (He) comprises energy lost (gained) by the stream during 

evaporation (condensation) as water moves from a higher to lower energy state (or vice versa).  Sensible 

heat flux (Hs) encompasses mainly convective exchange between the air and water surface depending upon 

temperature differences and atmospheric mixing (Webb & Zhang, 1999). 

 

Figure 2. Energy and hydrological exchanges determining stream temperature (modified from Hannah et al., 2008) 

At the water-streambed interface, heat is principally exchanged through advective (Ha) and conductive 

(Hbhf) processes.  Advective heat transfers from groundwater exfiltration and hyporheic exchanges drive 

both river temperature warming and cooling (e.g. Hannah et al., 2009; Hébert et al., 2011). Because the 
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temperature of groundwater is broadly stable over the year and the water column exhibits a sinusoidal 

annual cycle, streambed advective exchanges contribute to stream cooling in the summer and warming 

during winter months (Caissie, 2006).  In addition to these advective processes, conduction between the 

water column and streambed also drives heat exchange.  These fluxes generally act in the same direction as 

advective transfers, with heat being lost from the water column to the (comparatively) cooler bed in the 

summer (Webb & Zhang, 2004).  However, radiative (shortwave) heating of the bed in in shallow streams 

can also drive positive conductive transfers from the bed to the water column (e.g. Evans et al, 1998).  A 

final source of energy at the water-streambed interface is fluid friction between the water column and 

bed/banks. Friction gains are generally minor (e.g. Evans et al., 1998) and often considered negligible 

(Carrivick et al., 2012) for most rivers, but are sometimes observed in energetic environments (i.e. 

mountainous streams) with high roughness coefficients (Brown & Hannah, 2008) or large bed material 

(Chikita et al., 2010). 

Taken together, the sum of these heat fluxes occurring at both the air-water and water-streambed 

interfaces exerts a direct control on the thermal regime of a river.  However, the relative magnitude of the 

fluxes can vary substantially between locations (e.g. Webb & Zhang, 1999; Hannah et al., 2008; Hebert et 

al., 2011) as a function of variability in prevailing first-order climatic/hydrologic processes and their 

subsequent modification by second- and third-order river basin controls (Hannah & Garner, 2015).  

Consequently, the potential of a process-based river temperature model to provide accurate predictions of 

water temperature is reliant on its capacity to faithfully represent these energy transfers and their 

interaction with the physical environment through which the river flows. 

 

2.2 Mathematical basis of stream temperature models 

Process-based river temperature models function by simulating the addition (removal) of heat to (from) the 

river channel as a result of the processes detailed in section 2.1. This is achieved by calculating energy 

fluxes associated with each of these processes and subsequently computing the temperature change to a 

volume of water. Process-based models are based around two key equations which quantify these 

processes.  Energy fluxes to or from the river channel are first calculated using an energy balance equation 

(see Webb and Zhang, 1997; Hannah et al., 2004) which describes the net energy gains or losses as a series 

of radiative, latent, sensible and advective heat exchanges: 

(1)                              

where Htotal represents the total energy available for transfer to or from the river channel, Hsw is the net 

shortwave solar radiation flux, Hlw is the net longwave radiation flux, He is the net energy flux due to 

evaporation or condensation (latent heat flux), Hs is the net energy gain or loss from convection or 

conduction (sensible heat flux), Hbhf represents heat fluxes to or from the river bed and Ha is the energy 

gained or lost from groundwater or tributary inflows (all in W m-2). 

Depending on the complexity and scope of the river temperature model, some of these energy exchange 

terms may be omitted from the overall energy balance equation.  Indeed, some models only compute 

surface fluxes and consider bed energy transfers to be negligible.  Depending on available data, the 

individual heat flux terms in Equation 1 are computed using a mix of observed hydrometeorological values 

and values derived from these observations using empirical or physically based equations.  Ouellet et al. 

(2014b) provide an in-depth review of the various formulae. 
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Once net heat flux has been calculated, the river temperature change resulting from this energy gain (loss) 

is computed using Equation 2.  The literature contains many variations on this equation (e.g. Sinokrot and 

Stefan, 1993; Rutherford et al., 1997; Tung et al., 2006; Hebert et al., 2011; Garner et al., 2014) which 

attempt to account for variability in discharge and channel morphology or compute heat transport in 

multiple dimensions.  However, the basic one-dimensional heat advection-dispersion equation for an open 

channel of constant cross section and flow is given by Sinokrot and Stefan (1993): 

(2) 
   

  
   

   

  
   

    

    
      

      
 

where Tw is water temperature (°C) at time t, U is mean channel velocity (m s-1), x is streamwise distance 

(m), DL is an empirically derived longitudinal dispersion coefficient (m s-2), ρ is the density of water (kg m-3), 

cp is the specific heat of water (41.8 x 103 J kg-1 °C-1) and d is the mean channel depth (m).  Equation 2 

allows for Eulerian (temporal) computation of river temperature; its rearrangement in the form (
   

  
) also 

permits the calculation of river temperature in a Lagrangian (spatial) framework (e.g. Garner et al., 2014).  

Provided that the channel is well mixed and does not contain notable lateral temperature gradients, the 

combination of Equations 1 and 2 can be used to simulate water temperature as a function of the input 

hydrometeorological and geomorphological data. 

 

3. Representation of energy exchange processes 

All process-based river temperature models use observed hydrometeorological data to calculate the energy 

fluxes detailed in Equation 1.  However, there exists considerable disparity between the various energy flux 

terms included within each model and between the routines used to calculate them.  This means that the 

numerical representation of the physical energy fluxes can vary substantially between different river 

temperature models, and has implications for both model complexity and the quality of river temperature 

simulations.  In this section, we evaluate differences between the models in terms of how they represent 

the energy fluxes required to compute Equation 1. 

 

3.1 Quantification of radiative fluxes 

3.1.1 Incoming solar shortwave radiation 

Typically, radiative fluxes (net shortwave and longwave radiation) dominate the heat budget of most river 

environments (Caissie, 2006), with solar shortwave radiation generally being the largest heat source for a 

river or stream (Morin and Couillard, 1990; Webb and Zhang, 1997, 2004).  If observations of solar radiation 

are available for a given location, most models (2-5, 7, 9-12, 14-20; Table 2) allow for the direct input of 

such data.  However, observations of incoming solar radiation are often scarce compared to other 

meteorological variables (i.e. air temperature, precipitation, wind speed, pressure).  Consequently, many 

process-based river temperature models (1, 4-10, 13, 14, 16, 20, 21) contain complex routines capable of 

approximating the solar radiation received by a given point on the Earth’s surface as a function of the date 

and time (see Boyd and Kasper (2003) for appropriate algorithms).  Because such algorithms yield 

predictions of solar radiation uninfluenced by the atmosphere, these models include further functions 

allowing for solar radiation values to be corrected for atmospheric transmissivity resulting from a range of 

factors (e.g. cloud cover, atmospheric dust/water vapour scattering; see Theurer et al. (1984) and Boyd and 

Kasper (2003) for more detailed summary).  Certain models (4, 5, 7, 9, 10, 14, 16, 20) even offer the facility 
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to use both observed solar radiation values and computed data, aiding their flexibility for application in 

data-poor regions.  However, care must be taken when using computed solar radiation values to ensure 

that they provide a good analogue of real data, either by comparing them to in-situ measurements 

acquired using a pyranometer or data from meteorological re-analysis programmes (eg. Rienecker et al., 

2011).  Model choice should therefore be informed by an appraisal of existing solar radiation data and 

(when using computed values) an appreciation of how well a given model is able to replicate observed 

data. 

 

3.1.2 Net longwave radiation 

While outgoing longwave radiation from the river channel represents a common heat sink, especially 

during night time or the winter months, studies have also demonstrated that incoming longwave energy 

from the atmosphere (and riparian vegetation) can mediate heat losses in certain circumstances (Benyahya 

et al., 2012; Hannah et al., 2008).  The effect of longwave radiation must therefore be properly accounted 

for by the stream temperature model.  Some studies involving process-based river temperature models 

(e.g. Garner et al., 2014) incorporate observations of longwave radiation acquired from net radiometers, 

but such data are rarely available from meteorological service databases.  As a result, all of the river 

temperature models summarised in Table 1 offer the ability to compute longwave radiative fluxes as a 

function of other meteorological variables using a variant of the equation: 

(3)                        

given: 

(4)                         
  

(5)                   
  

where εatm and εw (≈ 0.97) are the emissivity of the stream and the atmosphere respectively, RL is the 

reflectance coefficient of the stream surface (given as 1 - εw), σ is the Stefan-Boltzmann constant 

(5.670367×10−8 W m−2 K−4) and Ta and Tw are the air and water temperature (°K) respectively.   

While these equations may appear relatively simple, complexities arise from the range of different 

formulae available for the calculation of εatm (Table 2). Most models (1-4, 7, 8, 10, 11, 14-20) calculate εatm 

as a function of either air temperature or vapour pressure using simple empirically derived formulae (air 

temperature; Swinbank, 1963; Idso and Jackson, 1969; vapour pressure; Brunt, 1932; Anderson, 1954), 

while others (6, 12) use the physically derived method of Brutsaert (1975) to compute εatm as a function of 

both air temperature and vapour pressure.  Some models (5, 12) even offer multiple or composite methods 

for characterising εatm.  Additionally, because atmospheric emissivity is heavily influenced by cloud cover, a 

number of models (1, 4, 6, 7, 12, 14-19) offer the ability to correct computed emissivity values for the effect 

of cloud cover using the approach of Bolz (1949), something that is particularly useful in regions where 

cloudy/overcast conditions dominate.  However, several models (5, 9, 13, 21) omit information detailing 

the method (or derivation thereof) used to compute εatm. This, coupled with the wide choice of formulae 

available, means that the choice of river temperature model should therefore be informed by both the 

availability of data required by the given εatm equation and an a priori assessment of the importance of the 

longwave radiation contribution to the given river’s energy budget.  Indeed, particular care should be taken 

when attempting to apply a river temperature model in environments with potential for a high proportion 
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of longwave fluxes (eg. those with substantial tree/vegetation cover, or cloud-dominated meteorology); in 

such instances, it may be advisable to quantify incoming radiative energy (eg. Hannah et al., 2008) using net 

radiometers. 

 

3.1.3 Accounting for the effects of riparian vegetation/topography on radiative fluxes 

The presence of near-stream vegetation and topography (ie. steep terrain such as canyons) can have a large 

influence on the amount of radiation received by a given river reach.  Indeed, numerous studies have 

highlighted how shading from riparian tree cover or steep valley walls can moderate high temperatures, 

particularly in summer months (e.g. St-Hilaire et al., 2000; Malcolm et al., 2004; Hannah et al., 2008; Leach 

and Moore, 2010; Garner et al., 2014; Garner et al., 2015).  As a result, it is necessary to account for the 

effect of trees and topographic shading on radiative fluxes when modelling stream temperature in such 

environments.  While some models (3, 5, 9, 10, 13, 14, 20) do not contain any mechanism to account for 

the effect of vegetation/topography on radiation fluxes, most incorporate algorithms that are able to 

simulate the reduction in solar shortwave radiation received by the stream (Table 2).  Although an in-depth 

appraisal of the various shading algorithms is beyond the scope of this article, it is pertinent to note that 

there are clear differences between them.  Some models (16, 18, 19) compute the effects of shading using 

(amongst other variables) sun elevation, tree/topographic height and bank distance, canopy density and 

stream azimuth to compute a ‘shade factor’ coefficient that represents the fraction of radiation that does 

not reach the stream surface due to shading.  This coefficient can then be applied to scale the solar 

radiation components of Equation 1.  Other more complex algorithms (2, 6-8, 15, 17, 21) function similarly, 

but partition incoming solar radiation into its direct and diffuse components.  The direct solar radiation 

received at the stream surface is subsequently calculated either through application of the ‘shade factor’ 

coefficient (2, 6, 17) or through modelling the amount by which the solar ‘beam’ is attenuated as it travels 

through the tree canopy (7, 8, 15, 21).  The fraction of diffuse radiation received by the stream is then 

quantified separately, usually by means of an algorithm that computes the reach’s sky view factor (e.g. 6, 7, 

15, 21), a coefficient that represents the fraction of the hemisphere that is unblocked by tree 

cover/topography.  Most shading algorithms are directly integrated within their given stream temperature 

model.  However, some models (1, 4, 11, 12) require that the shading correction be computed externally.  

Generally, these models rely on GIS analysis or similar to compute either the shade factor coefficients (1, 

11, 12) or canopy transmissivity values (4) which are then entered manually into the model.  Although this 

additional step may mean that such models require more time to implement, the ability to manually enter 

shade correction values means that they are a) able to make use of advances in new shade correction 

algorithms or b) can be used with field-derived values for shade correction (e.g. Rutherford et al., 1997) 

that do not rely on the application of an algorithm. 

Most shading algorithms are concerned with modifying solar radiation fluxes but some models also apply 

shading correction to longwave fluxes (4, 6, 7, 16, 17, 19, 21).  Atmospheric longwave radiation is affected 

by riparian/topographic shading in much the same as the diffuse component of solar radiation flux (Hannah 

et al., 2008). As such, the impact of shading on the atmospheric longwave flux is generally calculated by 

computing a given reach’s sky view factor (e.g. Cox and Bolte, 2007) and applying the resulting coefficient 

to scale the longwave flux given by Equation 4.  Given that all objects with a temperature >0 °K emit 

longwave radiation, radiation from near-stream vegetation or topography can also represent a significant 

source of longwave energy.  Indeed, studies show that longwave radiation from tree cover can contribute 

significantly to river temperature during night-time (in comparison to open reaches; Benyahya et al., 2012; 

Hannah et al., 2008).  As a result, the same models also contain routines that compute incident longwave 
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radiation from riparian tree cover and/or topography.  This allows such models to estimate longwave 

radiation fluxes in tree-covered reaches with a high degree of accuracy, potentially improving their utility 

for predicting water temperature in steep headwater streams or heavily forested catchments. 

An additional consideration concerns the spatial discretisation of the computed impacts of riparian 

vegetation on stream temperature.  Because riparian vegetation can vary substantially along a river, any 

correction for riparian shading or longwave fluxes must account for spatial variability in riparian vegetation.  

All of the models reviewed here contain routines capable of generating such spatially explicit data using 

either GIS polygons, tree height rasters or shading coefficients as input data to correct radiative fluxes at 

the scale of the model’s structure (see section 4.3).  However, it is important that the chosen model’s 

resolution is sufficiently high to encapsulate true spatial variability in the impacts of riparian vegetation on 

stream temperature.  Similarly, the riparian vegetation data provided to the model must be of a resolution 

equal to or better than that of the model itself.  Recent studies have demonstrated the utility of LiDAR data 

for providing high resolution raster datasets of riparian vegetation height/shading (eg. Wawrzyniak et al., 

2017); such data are therefore particularly appropriate if attempting to model the fine-scale (ie. sub-reach) 

impacts of vegetation on stream temperature. 
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Table 2. Methods used to compute radiative flux by reviewed temperature models 

  Solar radiation Longwave radiation 

No. Model name Computed or 
observed 

Shading 
correction 

Solar radiation partitioning 
(direct, diffuse) 

Sky emissivity equation(s) Sky emissivity corrected 
for cloud cover 

Shading 
correction 

Incident longwave from 
vegetation/ topography 

1 BasinTemp Computed Yes (computed 
externally) 

 Swinbank (1963) Yes   

2 CE-QUAL-W2 Observed Yes Yes Brunt (1932)    

3 CEQUEAU Observed   Anderson (1954)    

4 CrUSTe Both Yes (computed 
externally) 

 Swinbank (1963) Yes Yes Yes 

5 Delft3D-FLOW Both   Brunt (1932) 
Modified Brutaseart (1975) 

   

6 Heat Source Computed Yes Yes Brutaseart (1975) Yes Yes Yes 

7 DHVSM-RBM Both Yes Yes Swinbank (1963) Yes Yes Yes 

8 GIS-STRTemp Computed Yes Yes Idso and Jackson (1969)   Yes 

9 HEC-RAS Both   N/a    

10 MIKE 11 Both   Brunt (1932)    

11 MNSTREM Observed Yes (computed 
externally) 

 Idso and Jackson (1969)    

12 Qual2K Observed Yes (computed 
externally) 

 Brunt (1932) 
Brutaseart (1975) 
Koburg (1964) 

Yes   

13 RAFT Computed (from 
circulation model) 

  N/a    

14 RMA11 Both   Swinbank (1963) Yes   

15 SHADE-HSPF Observed Yes Yes Swinbank (1963) Yes   

16 SNTemp Both Yes  Brunt (1932) Yes Yes Yes 

17 Streamline Observed Yes Yes Swinbank (1963) Yes Yes Yes 

18 TVA-RMS Observed Yes  Swinbank (1963) Yes   

19 WAIORA Observed Yes Yes Brunt (1932) Yes Yes Yes 

20 WASP7 Both   Brunt (1932)    

21 WET-Temp Computed Yes Yes Equation based on relative 
humidity 

 Yes Yes 
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3.2 Modelling latent and sensible heat fluxes 

3.2.1 Latent heat flux 

Latent (evaporative) heat loss is a significant energy sink at the river surface (Webb and Zhang, 1997, 2004), 

particularly in large or open rivers (Maheu et al., 2013; Caissie, 2016).  Because direct measurements of 

energy gains or losses from latent or sensible heat fluxes are rare (Maheu et al., 2013; Caissie, 2016), all of 

the river temperature models reviewed here derive net latent and sensible heat from meteorological 

observations.  The majority of equations for calculating latent heat fluxes take the same initial form: 

(6)           ̅ 

where ρW is the density of water (1x103 kg m-3), Le is the latent heat of vaporisation (2.5x106 J kg-1) and   is 

the rate of evaporation (m s-1).  However, differences in computed latent heat fluxes arise from the choice 

of equation used to compute   (Table 3).  While some models (3) currently offer only relatively basic 

functionality for predicting evaporation rates as a function of air temperature and number of daylight hours 

(using the Thornthwaite (1948) formula), the majority (1, 2, 4, 5, 7, 9-21) use a variation on Dalton’s 

equation for evaporation (see Lim et al., 2012) to compute evaporation rates using wind speed, actual 

vapour pressure and saturation vapour pressure.  Most equations based around Dalton’s equation involve 

some kind of empirical expression that estimates the adiabatic portion of evaporation as a function of wind 

speed and field-derived coefficients (referred to as the ‘wind function’, common coefficients for which can 

be found in Boyd and Kasper (2003) and Cole and Wells (2015).  The accuracy of evaporation predictions 

can thus depend greatly upon the coefficients used. 

In an attempt to reduce the uncertainty associated with such empirical approaches, other models (6, 8) 

offer the ability to use physically based equations (e.g. Penman, 1948; Monteith, 1965; Priestly and Taylor, 

1972) that calculate evaporation rates based on a range of input hydrometeorological data (e.g. net 

irradiance, wind speed, saturation vapour pressure curve, aerodynamic conductance, etc).  The use of a 

model that incorporates a physically-based evaporation routine may be advisable when implementing a 

river temperature model in an environment for which ‘wind function’ coefficients needed by Dalton-type 

approaches are unavailable.  However, comparative studies present conflicting results regarding the 

relative accuracy of the various methods for computing evaporation (e.g. McJannet et al., 2013; Ouellet et 

al., 2014b; Alazard et al., 2015) meaning that is may not be advisable to apply these more complex routines 

unless evaporation rates predicted by simpler methods (e.g. Dalton’s equation) are clearly erroneous.  

Conversely, while evaporative fluxes are generally of greater magnitude in warmer climates, they can 

represent a highly significant component of stream energy budgets in temperate regions (eg. Hannah et al., 

2008).  It may therefore be advisable to measure the importance of evaporative flux using an energy 

balance study (eg. Hannah et al., 2008) or evaporation pan experiments (eg. Maheu et al., 2014) prior to 

determining whether to apply a model with more complex routines for computing latent heat flux.  As a 

result, model choice must be driven by a) an appreciation of the relative importance of evaporative flux in 

comparison to other heat fluxes and b) the availability of data required by a given model’s evaporation 

routines. 
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Table 3. Methods used to calculate evaporation rate by reviewed river temperature models 

No. Model name Evaporation rate equation 

1 BasinTemp Dalton's equation 

2 CE-QUAL-W2 Dalton's equation 

3 CEQUEAU Thornthwaite (1948) 

4 CrUSTe Dalton's equation 

5 Delft3D-FLOW Dalton's equation 

6 Heat Source Dalton’s equation, Penman (1948) 

7 DHVSM-RBM Dalton's equation 

8 GIS-STRTemp Penman (1948) 

9 HEC-RAS Dalton's equation 

10 MIKE 11 Dalton's equation (modified) 

11 MNSTREM Dalton's equation 

12 Qual2K Dalton's equation 

13 RAFT Dalton's equation 

14 RMA11 Dalton's equation 

15 SHADE-HSPF Dalton's equation 

16 SNTemp Dalton's equation 

17 Streamline Dalton's equation 

18 TVA-RMS Dalton's equation 

19 WAIORA Dalton's equation 

20 WASP7 Dalton's equation 

21 WET-Temp Dalton's equation 

 

3.2.2 Sensible heat flux 

The magnitude of energy lost or gained through sensible heat exchange is generally lower than radiative or 

latent fluxes (Caissie, 2006).  However, sensible heat fluxes can nonetheless impose a non-negligible control 

on river temperature (e.g. Webb and Zhang, 1997), acting as both a heat sink in the winter and a heat 

source during summer months.  All of the models reviewed here calculate sensible heat exchanges in 

essentially the same way following the method of Bowen (1926), either through multiplying the product of 

the wind function and the air-water temperature gradient by an empirical coefficient, or by applying the 

Bowen ratio (itself a function of air and water temperature and vapour pressure) to the evaporative flux.  

Consultation of the literature for the various temperature models documented here reveals minor 

discrepancies between the various sensible heat flux equations and coefficients used therein (e.g. 4, 9, 10, 

15, 16), largely resulting from either unit conversions and/or the necessity of accounting for different wind 

function coefficients.  There is consequently little effective difference in sensible heat flux estimates yielded 

by the various models discussed here, meaning that model selection is generally driven by other (greater 

magnitude) sources of thermal energy (eg. radiative, latent and advective fluxes). 

 

3.3 Heat fluxes at the streambed interface 

3.3.1 Bed heat flux 

While generally smaller in magnitude than surface heat fluxes (Sinokrot and Stefan, 1994; Evans et al., 

1998), energy exchange at the streambed-water interface has been noted an important component of the 

energy balance in some studies, particularly in the winter (e.g. Webb and Zhang, 1997; Hannah et al., 2004; 

Leach & Moore, 2014).  Some river temperature models do not incorporate routines capable of calculating 

bed heat flux (Table 4), considering its effect on water temperature to be negligible (3-5, 8-10, 21).  This is 

presumably because the majority of these models are designed for application in large river systems where 

the magnitude of heat exchanges at the streambed interface is particularly diminished in relation to other 
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fluxes (Caissie et al., 2014).  However, many other models (1, 2, 6, 7, 11-20) do incorporate bed heat fluxes 

into their energy balance computations.  This is generally accomplished using a variation on Fourier’s Law 

(eg. Story et al., 2003) whereby bed heat flux is computed as a function of the streambed thermal gradient 

(change in temperature between the streambed-water interface and a given depth within the streambed; 

Theurer et al., 1984) multiplied by the bed thermal conductivity (the product of bed sediment density, bed 

heat capacity and bed thermal diffusivity; Boyd and Kasper, 2003).  Most of these models refer to this 

equation as quantifying heat flux arising from conduction between the bed and the water column.  

However, Hannah et al. (2004) note that it is extremely difficult to disaggregate bed conduction, convection 

and advection when estimating bed heat flux.  Bed heat flux computed with this method may therefore be 

considered a combination of these three energy exchanges. 

As with other heat fluxes detailed here, the quality of bed heat flux predictions is reliant on input data 

quality and availability.  Bed temperature gradient is generally measured using temperature loggers 

installed at given depths within the bed or modelled numerically given a priori knowledge of the bed 

material and temperature gradients within the riverbed (e.g. Sinokrot and Stefan, 1993), while thermal 

conductivity is governed by the type of bed material (ie. lithology, porosity, etc) and derived from 

laboratory analysis of bed sediments (data for which are often available in the literature; Hondzo and 

Stefan, 1994).  Observations of these parameters can be difficult to ascertain, and it is often necessary to 

provide estimates to the temperature model.  However, owing to the high degree of heterogeneity often 

present in bed temperatures (eg. Birkel et al., 2016), obtaining even an average or estimate can be difficult.  

In such circumstances, care must be taken to ensure that modelled bed heat fluxes stay within realistic 

values.  Furthermore, given the importance of conductive and advective (eg. hyporheic-driven) bed heat 

fluxes in some regions (eg. Leach & Moore, 2014), the use of such ‘bulk’ approaches for computing bed 

heat fluxes produces a highly simplified estimate of true bed energy transfer processes. Although recent 

research (eg. Kurylyk et al., 2016; Caissie and Luce, 2017) has proposed improved methods for 

quantification of bed heat fluxes (and subsequent partitioning into their conductive, convective and 

advective components), these approaches have not yet been integrated into existing river temperature 

models and accurate modelling of bed heat fluxes therefore remains a challenge. 

In addition to the calculation of ‘bulk’ bed heat fluxes, some models (6, 13, 18) also include separate 

routines capable of estimating heat flux due to solar heating of the bed.  In most cases, river temperature 

models function under the assumption that the channel is deep enough that all solar radiation is 

attenuated within the water column.  However, in certain circumstances (ie. shallow headwater streams, 

streams with considerable exposed boulder material, very low turbidity environments; Chen et al., 1998a), 

solar warming of the streambed may contribute significantly to river temperature warming (e.g. Evans et 

al., 1998; Clark et al., 1999; Webb and Zhang, 1999; Johnson, 2004).  Because the magnitude of such heat 

fluxes is both temporally or spatially variable (Webb and Zhang, 1997), it may be beneficial to choose a 

model that accounts for these processes when modelling temperature in environments where radiative 

streambed warming is thought to occur.  Where possible, it is therefore advisable to quantify the 

magnitude of bed heat fluxes either by means of Fourier’s law (eg. Story et al., 2003) or by using soil heat 

flux plates, in order to determine whether a) the use of a model capable of accounting for bed heat fluxes is 

necessary and b) the extent to which modelled fluxes approximate observed data. 
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Table 4. Details of reviewed river temperature models’ capacity to include bed heat fluxes 

No. Model name Computes bed 
heat flux 

Computes flux from 
radiative warming of bed 

Computes fluid friction 
with bed/banks 

1 BasinTemp Yes   

2 CE-QUAL-W2 Yes   

3 CEQUEAU    

4 CrUSTe    

5 Delft3D-FLOW    

6 Heat Source Yes Yes  

7 DHVSM-RBM Yes   

8 GIS-STRTemp    

9 HEC-RAS    

10 MIKE 11    

11 MNSTREM Yes   

12 Qual2K Yes   

13 RAFT Yes Yes  

14 RMA11 Yes   

15 SHADE-HSPF Yes   

16 SNTemp Yes  Yes 

17 Streamline Yes   

18 TVA-RMS Yes Yes  

19 WAIORA Yes  Yes 

20 WASP7 Yes   

21 WET-Temp    

 

3.3.3 Fluid friction with the bed and banks 

Heat gains from fluid friction can be a significant source of heat in steeper streams with high roughness 

coefficients (e.g. Hannah et al., 2004; Chikita et al., 2010; Khamis et al., 2015).  Although only two publicly 

available models (16, 19) currently include routines for calculating fluid friction, a range of studies have 

used the same simple equation for manually estimating friction-driven heat fluxes (e.g. Marsh, 1990; Webb 

and Zhang, 1997; Hannah et al., 2004; Tung et al., 2006; Chikita et al., 2010; Cardenas et al., 2014). Should 

suspicions arise that the non-accounting for fluid friction by a given model is biasing temperature estimates 

(eg. in the case where the user is confident that all other heat flux parameters are accurately modelled but 

temperature simulations still do not match observed data), it should at least possible to estimate friction 

gains/losses outside of the model. Furthermore, many coupled hydraulic-water temperature models 

already include routines for quantifying fluid friction as part of their hydraulic computations.  Given the 

ready ability to customise/script these models, it may be possible to devise routines which use the outputs 

of these computations to improve temperature estimates in high gradient streams.  Nevertheless, with the 

exception of a few studies (e.g. Webb and Zhang, 1997, 1999) where fluid friction was estimated to be high, 

such heat exchanges are generally assumed to be minor and can be considered negligible for the majority 

of temperature modelling scenarios (e.g. Carrivick et al., 2012; Johnson et al., 2014).  The ability of a model 

to account for fluid friction can therefore be considered a low priority during model selection, unless 

working in particularly high-energy environments. 

 

3.4 Advective heat fluxes 

Inflows from tributaries or subsurface inputs can engender substantial temperature gradients in river 

systems (e.g. Torgersen et al., 1999; Torgersen et al., 2001).  All of the models covered in this review 

contain routines capable of computing advective heat fluxes (Table 5) using the same general equation: 
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(6)      
(        )          

     
 

where Q and Qin are the discharge of the main channel and inflow respectively and Tin is the temperature of 

the inflow (Boyd and Kasper, 2003).  However, differences between the various models arise from a) the 

way in which boundary conditions are assigned to advective inputs, b) the way in which inflows arriving 

from different sources are disaggregated and c) the resolution at which inflows can be assigned within the 

model.   

In terms of assigning boundary conditions to advective inputs, the majority of temperature models require 

the user to manually input discharge and temperature data associated with inflows.  These observations 

are relatively easy to obtain for surface inflows by means of temperature loggers and discharge gauges. 

Subsurface inputs are harder to quantify, given the scarcity of groundwater temperature records in many 

locations and the difficulty of quantifying groundwater flux.  Groundwater temperature is therefore often 

assigned a value equal to mean annual air temperature given the close correlation between these two 

variables (e.g. Karanth, 1987).  However, in regions where groundwater temperature departs significantly 

from this trend, advective heat fluxes resulting from groundwater inflows may be over- or under-

represented.  The need for flow or temperature observations can be minimised by using coupled hydraulic 

or hydrological models (e.g. 3, 7, 9, 10, 15; see sections 4.1 and 4.2) which are able to estimate the flows 

and temperatures associated with advective inputs.  However, although these models are able to simulate 

surface water contributions with a reasonable degree of accuracy, the resolution of simulated groundwater 

inflows is often extremely course, requiring additional data on groundwater exfiltration/temperature to be 

manually entered.   

In terms of the disaggregation of inflows resulting from different sources, some models discriminate 

between tributary inflows and those arising from groundwater processes, allowing tributary inflows to be 

assigned as point inputs, with groundwater inflows (or indeed, losses to the aquifer; Boyd and Kasper, 

2003) modelled as diffuse inputs distributed along a given reach (e.g. 1, 4, 6, 8, 12, 19, 21).  Because inflows 

from different subsurface zones (ie. hyporheic vs. shallow groundwater) have varying hydrologic 

characteristics (ie. groundwater flux generally involves a permanent change in water volume whereas 

hyporheic flux is characterised by recurrent exchanges to and from the bed over shorter distances and time 

periods), some models even offer the ability to model thermal inputs from different subsurface zones (ie. 

saturated vs unsaturated zones; 3; hyporheic flow; 7, 12, 18).  However, other models (2, 5, 10, 14, 16-18, 

21) require input of ‘bulk’ inflows at discrete intervals within the model which merge surface and 

groundwater inputs together.  This means that the true location of a given inflow may not be accurately 

represented within the model as the ‘merging’ of several inflows will require that their input location is also 

a reflection of their combined values.  Because subsurface inflows are often more diffuse than tributaries, 

the merging of advective inputs in this manner may result in a river temperature response that is not 

properly representative of true subsurface or surface water mixing processes (Pike et al., 2013).  Assigning 

temperatures to these combined inflow data can be difficult given the likely temperature difference 

between surface and subsurface inflows owing to their different thermal characteristics.  In such instances, 

it may therefore be advisable to apply Equation 6 to estimate the bulk temperature of the combined 

inflows before it is input into the model.  However, it should be noted that through merging diffuse and 

discrete advective inputs in this manner, a model may produce a false representation of the location and 

magnitude of warm or cool water inputs which may have implications for certain studies focusing on such 

phenomena (eg. the ecological significance of cool water refuges; Dugdale et al., 2016). 
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The ability of a river temperature model to represent advective fluxes is also dependent upon its resolution 

and structure (covered in further detail in section 4.3).  While less of an issue for models using a high 

resolution gridded structure (2, 5, 13, 14, 20) whereby inflows can be assigned to each grid cell (allowing for 

multiple advective inputs in a relatively small spatial scale), models operating at reach scales only allow for 

inflows to be assigned at the resolution of nodes/segments (2, 5, 7, 9, 12, 16-18, 20, 22).  An appropriate 

segment resolution must be chosen in order to ensure that the river temperature response to local 

advective inputs is represented in the correct geographic location in order that modelled temperature 

accurate reflects observed data when conducting model calibration.  Model selection should therefore be 

informed by an appreciation of both the relative importance of advective heat inputs (ascertained through 

flow accretion surveys, tributary gauging, piezometric measurements or similar techniques) and the 

distribution of these inputs along the study river; in the case of rivers found to have strong advective 

inflows, only those models capable of accurately representing these features should be considered. 
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Table 5. Details of reviewed river temperature models’ capacity to include advective heat fluxes (bulk inflows vs. separate surface and groundwater inputs) 

No. Model name Advective input separation Details 

1 BasinTemp Separate Can incorporate groundwater inputs, assumes linear mixing along model segment 

2 CE-QUAL-W2 Bulk  

3 CEQUEAU Separate Hydrological model component allows for separate computation of inflows from surface and saturated and 
unsaturated subsurface zones 

4 CrUSTe Separate Can incorporate groundwater inputs, assumes linear mixing along model segment 

5 Delft3D-FLOW Bulk  

6 Heat Source Separate Can incorporate point and diffuse groundwater inputs, hyporheic inflows 

7 DHVSM-RBM Separate Hydrological model component allows for computation of groundwater inflows. Lagrangian (cellular) 
structure of model permits inflows from different sources (tributaries/groundwater) at each cell 

8 GIS-STRTemp Separate Can incorporate groundwater inputs, assumes linear mixing along model segment 

9 HEC-RAS Separate Models groundwater seepage/throughflow using Darcy's Law (see Drake et al., 2010) 

10 MIKE 11 Bulk Hydrological component allows for computation of groundwater inflows 

11 MNSTREM Bulk  

12 Qual2K Separate Can assign separate point and diffuse advective fluxes 

13 RAFT Separate Lagrangian (cellular) structure of model permits inflows from different sources (tributaries/groundwater) an 
each cell 

14 RMA11 Bulk  

15 SHADE-HSPF Separate Hydrological component allows for computation of groundwater inflows 

16 SNTemp Bulk  

17 Streamline Bulk  

18 TVA-RMS Bulk  

19 WAIORA Separate Can incorporate groundwater inputs, assumes linear mixing along model segment 

20 WASP7 Bulk  

21 WET-Temp Separate Can incorporate groundwater inputs, assumes linear mixing along model segment 
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4. Model implementation 

The differences between the available temperature models are not limited simply to their representation 

of physical energy fluxes.  Indeed, there is also substantial variability in the ways in which the various 

models are implemented.  These differences lie in their ability to model hydraulic (ie. flow velocity and 

wetted cross-section) and/or hydrological (ie. discharge or rainfall-runoff) data, their structure (ie. their 

spatio-temporal resolution and dimensionality; Figure 3), considerations regarding their calibration, and the 

degree to which the models are publicly available and/or open to customisation.   These differences have 

substantial implications regarding the choice of a suitable river temperature model for a given purpose, and 

require careful consideration prior to a given model’s application (see Table 6 for guidance regarding key 

model features and contexts in which they may be advantageous).  In this section, we review these 

logistical and operational differences. 

 

Figure 3. Spatial and temporal resolution of reviewed process-based river temperature models.  Red text indicates model with 
hydraulic coupling, green text indicates hydrological coupling.  Figure is greatly simplified for sake of clarity.  We acknowledge that 
spatial resolution can be variable and that it is possible to have node/segment-based models with higher resolution than gridded 
models. 
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Table 6. Key model features and contexts in which they may be advantageous 

Model feature When/where is it advantageous? Energy flux affected (where appropriate) 

Ability to estimate incoming solar 
radiation as a function of date/time 
and location 

Regions for which observations of solar 
radiation data are scarce.  

Shortwave flux 

Multiple methods for 
computation/correction of 
atmospheric emissivity 

Areas prone to overcast conditions and/or 
significant cloud cover.  

Longwave flux 

Routines capable of accounting for 
riparian and topographic shading 

Rivers in areas of high forest cover and/or 
steep topography (ie. valleys, canyons).  

Radiative (shortwave and longwave) 
fluxes.  NB. Riparian vegetation also 
impacts turbulent fluxes (through 
alterations to the riparian microclimate; 
see Dugdale et al., 2018), although no 
existing models account for this (see 
section 5). 

Ability to enter external 
riparian/topographic shading data 

Make use of advances in shading algorithms; 
input of direct shading observations (eg. 
from hemispheric photography; Garner et 
al., 2014).  

Radiative (shortwave and longwave) fluxes 

Physically based latent heat flux 
equations 

When more basic (ie. Dalton-type) equations 
fail to provide a reasonable estimate of 
latent heat flux; areas with high latent heat 
flux.  

Turbulent (evaporative and sensible) 
fluxes.  Predominantly latent heat flux, but 
can also impact sensible heat flux through 
application of Bowen ratio (see section 
3.2.2). 

Ability to model bed heat flux Rivers with significant groundwater or 
hyporheic contributions; regions with 
permeable bedrock and/or elevated water-
table.  

Bed heat flux 

Ability to disaggregate advective 
inflows from multiple different 
sources (ie. surface vs groundwater) 

Rivers with strong spatial temperature 
heterogeneity.  

Advective flux 

Hydraulic model coupling Dynamic rivers; environments prone to rapid 
spatio-temporal changes in width:depth or 
velocity 

- 

Hydrological model coupling Regions where hydrometric data are scarce; 
prediction of potential climate change 
impacts on rivers 

- 

Higher dimensionality (ie. 2D, 3D) Rivers with strong vertical or lateral 
temperature gradients or stratification (eg. 
impounded rivers, estuaries) 

- 

Sub-daily model timestep Generation of advanced thermal metrics (ie. 
degree hours, time spent above a given 
threshold) 

- 

 

4.1 Hydraulic model integration and representation of channel morphology 

As accurate temperature predictions require a good representation of channel morphology, it is important 

to consider the methodology that a given temperature model uses to obtain these parameters.  At the 

most basic level, a river temperature model requires input data concerning the area and time over which 

energy transfers occur (e.g. Theurer et al., 1984) in order to calculate total heat flux for a given section of 

river.  Values of channel width, depth, and velocity for each element within a model must be available in 

order to compute Equation 2.  While these data are generally derived from field measurements or GIS 

databases, one of the principal limitations of stream temperature models that require these data is their 

assumption that channel width, depth and velocity remain temporally stable.  In reality, variations in 

discharge will inherently lead to changes in wetted cross-section and flow velocity, which will alter energy 

fluxes at the channel surface and bed.  In ideal circumstances, time series of width, depth and velocity 
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change (obtained using dataloggers or similar) would enable the appropriate values to be input into the 

model at each timestep, but such data (especially spatially distributed observations) are rarely available in 

practise.  Instead, some temperature models have a limited ability to account for changes in wetted cross-

section and/or velocity either through the use of Manning’s equation (e.g. Robert, 2003) to compute 

changes in width/depth as a function of stream gradient and velocity (e.g. 21) or by using empirically 

derived discharge-width and discharge-velocity ratings curves (e.g. 13, 17).  However, given that these 

methods rely on empirical or semi-empirical functions, the temperatures predicted by such models may 

only hold true in relatively steady-state environments where there is little spatio-temporal change in 

channel morphology or flow velocity. 

In an attempt to address these limitations, many river temperature models are now coupled to hydraulic 

models (Table 7), allowing them to simulate flow velocity and wetted cross-section as a function of input 

channel morphology data for the entire range of discharges exhibited by the river (2, 5, 6, 9, 10, 12, 14, 18, 

20).  The ability to incorporate spatially and temporally explicit hydraulic data into the temperature model 

means that such models are able to calculate energy fluxes in more dynamic fluvial environments with a 

greater degree of accuracy, improving temperature predictions.  However, such models are necessarily 

more complex, and their increased data requirements and higher parameterisation may mean that their 

use is beyond the scope of some river temperature studies.  Additionally, the hydraulic model’s 

velocity/stage predictions must also be thoroughly calibrated/validated against observed data, meaning 

that the implementation of such models can be time consuming when compared to more simplistic 

systems.  Nevertheless, when working in environments that are particularly dynamic and/or prone to rapid 

changes in width/depth ratio which could greatly impact stream temperature (eg. upland environments), 

the selection of a hydraulically-coupled model may be advisable. 
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Table 7. Details of hydraulic/hydrological coupling, dimensionality, and spatial and temporal resolution/structure for reviewed river temperature models 

No. Model name Hydraulically 
coupled 

Hydrologically 
coupled 

No. dimensions Minimum timestep Model structure 

1 BasinTemp   1 Hourly Nodes/segments 

2 CE-QUAL-W2 Yes  2 (longitudinal, vertical) None Cross-sections with vertical cells (2D) 

3 CEQUEAU  Yes 1 Daily Gridded hydrological model, but 1D temperature (node-based) 

4 CrUSTe   1 Hourly Nodes/segments 

5 Delft3D-FLOW Yes Yes 3 None Gridded (2D/3D) 

6 Heat Source Yes  1 Minute Cross-sections 

7 DHVSM-RBM  Yes 1 None Nodes/segments (each segment subdivided into cells for Lagrangian functionality) 

8 GIS-STRTemp   1 Hourly Nodes/segment 

9 HEC-RAS Yes  1 Minute Cross-sections 

10 MIKE 11 Yes Yes 1 None Cross-sections 

11 MNSTREM   1 Minute Nodes/segments 

12 Qual2K Yes  1 None Cross-sections 

13 RAFT  Yes 1 None Cellular (Lagrangian) 

14 RMA11 Yes  1 to 3 None Nodes/segments (1D) or gridded (2D/3D) 

15 SHADE-HSPF  Yes 1 Hourly Nodes/segments 

16 SNTemp   1 Daily Nodes/segments 

17 Streamline   1 15 minutes Nodes/segments 

18 TVA-RMS Yes  1 Hourly Cross-sections 

19 WAIORA   1 Daily Nodes/segments 

20 WASP7 Yes  1 to 3 None Nodes/segments (1D) or gridded (2D/3D) 

21 WET-Temp   1 None Nodes/segments 
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4.2 Hydrological model integration 

In addition to hydraulic functionality, other river temperature models offer full hydrological coupling, 

enabling the simulation of discharge (as a function of input meteorology data) in addition to temperature 

(Table 7).  Such models are useful for simulating river temperature in remote or sparsely gauged 

watersheds where hydrometric data are rare.  Additionally, these models often allow for the 

representation of different thermal characteristics of multiple source water components, offering a high 

degree of utility for assessing the consequences of changing hydroclimatic conditions on stream 

temperature across watersheds with varying patterns of recharge and discharge.  However, the prediction 

of water temperature is often not the prime function of such models. Indeed, of the coupled temperature-

hydrological models detailed here, two were first conceived as hydrological models, with water 

temperature routines being added at a later date (3, 15), while (5) and (10) are principally 

hydraulic/hydrodynamic models which also offer routines for rainfall-runoff and water temperature 

simulation.  This does not necessarily mean that temperature simulations from such models will be of lower 

accuracy than dedicated river temperature models. However, model implementation is generally more 

complex and the data requirements greater than dedicated water temperature models.  Nevertheless, 

because coupled temperature-hydrological models allow for the simultaneous simulation of discharge and 

temperature, they offer increased utility with regards to predicting the effects of climate change to river 

ecosystems (e.g. Danner et al., 2012; van Vliet et al., 2012; Ficklin et al., 2014), given that climate change is 

expected to influence both of these metrics in the future.  The use of a coupled temperature-hydrological 

model may therefore be advisable should the scope of a study extend to modelling the impacts of future 

climatic warming on river ecosystems or should temperature predictions be required for a river that lacks 

discharge measurements.  However, the hydrological model’s discharge simulations must be thoroughly 

calibrated/validated prior to use, a process which can be time consuming.  This, coupled with the relative 

complexity of hydrological model implementation means that such models will generally be unnecessary 

for most ‘conventional’ stream temperature studies. 

 

4.3 Model structure and resolution 

4.3.1 Spatial resolution and dimensionality 

The spatio-temporal resolution of river temperature simulations varies substantially between the various 

models discussed here (Figure 3).  While some models are limited to providing temperature predictions at 

relatively coarse scales and time steps, others effectively offer no upper limit on resolution, allowing 

temperature predictions to be discretised at a scale of the user’s choosing.  In terms of spatial resolution, 

model choice is largely informed by the intended application.  Models capable of providing data at fine 

spatial scales offer increased utility to understanding linkages between ecosystem dynamics and water 

temperature (through the use of models to locate cool or warm water refuges or determine the fine-scale 

response of stream temperature to vegetation), while lower resolution models may be more relevant for 

providing synoptic data to inform water resources management.  In examining their spatial resolution, river 

temperature models can generally be separated into two classes: one-dimensional models, and multi-

dimensional (gridded) models (Table 7). 

In one-dimensional models (1, 3, 4, 6-13, 15-19, 21), the river channel is generally discretised as a series of 

segments or nodes of essentially homogeneous conditions whose length is dependent on the requirements 

of the study and/or the presence of longitudinal discontinuities (e.g. tributary inflows, substantial changes 

in channel morphology).  Hydrometeorological data necessary for computing Equation 1 are attributed to 
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each segment/node.  Because meteorological observations are rarely discretised at the resolution of each 

segment/node, meteorological data are either attributed to each model segment/node manually (4, 6, 10, 

12, 15-18) or by interpolation from one or more nearby weather stations (3, 7, 9, 21).  Channel morphology 

and hydrometric data necessary for computing Equation 2 are also attributed to each node or segment; in 

the case of 1D coupled hydraulic-temperature models (6, 9, 10, 12, 18) nodes are assigned detailed 

measurements of channel cross-section required by the hydraulic computations.  Where applicable, 

measurements of riparian vegetation necessary for the shading routines of the model are also attributed to 

each segment/node.  Equations 1 and 2 are subsequently computed for each segment/node, yielding 

temperature simulations in a single (longitudinal) dimension. The longitudinal resolution of simulated 

temperatures is thus dependent upon either the length of the segments or the spacing between model 

nodes, and is generally a user-defined property.  In theory, this means that such models should allow for 

predictions at extremely fine spatial resolution where required.  However, in practise, the resolution of 

temperature predictions is driven largely by the resolution of the input channel morphology and 

hydrometeorological data. While interpolation can be used to increase the resolution of input data allowing 

for finer scale simulations, the memory and processing/programming limitations of the model may prohibit 

the use of very high resolutions.  Although some one dimensional temperature models focus on providing 

simulations for single thread channels (4, 8, 11, 17), most also allow for the computation of river 

temperature across entire networks, through representing the river network as a directed graph (1, 3, 6, 7, 

9, 10, 12, 13, 15, 16, 18, 19, 21).  Such models are particularly useful for providing basin-wide predictions of 

water temperature, should such information be needed for management purposes or similar. 

Gridded models (2, 5, 14, 20) allow for the simulation of temperature in multiple dimensions.  This facility is 

often unnecessary in smaller rivers but such models are useful in larger systems where significant vertical 

and/or lateral temperature gradients exist such as impounded rivers with deep stratified channels and 

reservoirs (e.g. Wang and Martin, 1991; Hanna et al., 1999) or large rivers/estuarine environments (e.g.  

Ouellet et al., 2014a).  Gridded models function in the same general manner as 1D models using Equations 

1 and 2.  However, Equation 2 also computes advection/dispersion in multiple dimensions and is 

necessarily more complex.  Furthermore, because most gridded temperature models are based on 

hydraulic/hydrodynamic models, temperature simulations are provided at the same resolution as the 

bathymetric grid used for hydraulic simulations (e.g. Deltares, 2014).  While this means that temperature 

predictions from gridded models can be of a higher resolution than their 1D counterparts, input 

hydrometeorological data used in Equation 1 are generally interpolated up to the resolution of the model 

grid.  Therefore, despite the higher spatial resolution, the accuracy of temperature predictions is largely 

dependent on the quality of the interpolation, and may not be better than 1D simulations.  Furthermore, at 

particularly fine resolution, the extremely small modelled temperature differences between successive grid 

cells may indeed be smaller than the error of the model itself.  In light of this and the fact that 2D and 3D 

river temperature models are generally more complex to implement than simpler 1D models (and have 

substantially increased processing requirements), the additional functionality of gridded models may be 

redundant unless a study specifically requires the ability to simulate water temperature in multiple 

dimensions (eg. in the presence of significant stratification or highly variable turbulence/mixing patterns). 

 

4.3.2 Temporal resolution 

Temporal resolution is also an important consideration when choosing a river temperature model.  While 

some applications (ie. stream thermal regime classification) require only simple daily metrics (eg. 

mean/maximum temperature) generated by models operating at low temporal resolution, higher 
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frequency data are often important.  Indeed, models operating at higher temporal resolution are able to 

generate more advanced thermal metrics (eg. period of time spent above a given threshold), which can be 

useful for detailed studies of stream thermal ecology or for informing river management decisions.  

The difference between models in terms of their temporal resolution is considerably more limited than in 

terms of their spatial resolution (Table 7).  The lowest temporal resolution models reviewed here (4, 17, 20) 

provide temperature simulations on a daily timestep, allowing for broad characterisation of river 

temperature metrics.  However, the majority of models offer considerably shorter timesteps, simulating 

temperature on hourly or sub-hourly steps (1, 4, 6, 8, 9, 11, 15, 17, 18) or even offering no effective 

minimum temporal resolution (2, 5, 7, 10, 12-14, 20, 21).  Such models are readily able to reproduce diurnal 

temperature variability and allow for the extraction of key temperature metrics relevant to fluvial ecology 

or water quality studies.  However, similar to that noted in section 4.3.1, the minimum timestep of a model 

is essentially governed by the temporal resolution of the input hydrometeorological data used to drive it, 

meaning that model choice should be advised by both the requirements of the study and the available 

discharge and meteorology observations.  Given that model runtime is intrinsically linked to the number of 

model timesteps (ie. the length of the simulation period divided by the temporal resolution), model 

selection must be made with an appreciation of the processing time required to generate a temperature 

simulation. 

 

4.4 Model calibration/validation 

Most river temperature models require calibration/validation to ensure that they produce an accurate 

representation of true river temperature.  This is because models contain a simplified representation of 

true energy fluxes and basin physiography (see section 3, 4.1-4.3), meaning that simulations do not provide 

a perfect analogue of true river temperature.  In order to ensure that simulated temperatures are as close 

to observed data as possible, the model must be calibrated by tuning coefficients related to the empirical 

elements of the heat budget equations (see Ouellet et al., 2014b) or channel morphology (e.g. bed thermal 

conductivity, Manning’s roughness) of the study river.  Descriptive statistics are then used to quantify the 

relative performance of the model against temperature observations recorded in-situ.  Because of the 

strong seasonal component present in river temperature series, the use of the model’s root mean-squared 

error (RMSE) is generally preferred to the Nash-Sutcliffe model efficiency coefficient (NSE; see Janssen and 

Heuberger, 1995) or other similar measures due to the fact that RMSE remains unbiased by seasonal 

cyclicity.  Some river temperature models are relatively highly parameterised, meaning that model 

calibration can be laborious.  In such cases, it may be advisable to calibrate the model using algorithmic 

approaches (e.g. Zheng and Wang, 1996; Hansen and Ostermeier, 2001; Arsenault et al., 2014) that 

optimise model calibration by iteratively refining parameters to minimise the difference between observed 

and predicted values (ie. by minimising RMSE).  However, when using such algorithms, care must be taken 

to ensure that physically plausible bounds are used to constrain the calibration coefficients to ensure that 

the algorithm does not automatically arrive at a calibration which produces good temperature simulations 

at the expense of unrealistic energy fluxes.  It may also be advisable, when calibrating highly parameterised 

models, to conduct sensitivity analyses to better understand how changes to the various parameters 

influence model predictions.  Such an exercise may help to reveal not only important information regarding 

model functionality and the influence of various parameters on simulated temperatures, but may also infer 

the dominant processes controlling the thermal regime of the modelled river. 
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In terms of data required for model calibration/validation, the vast majority of studies involving river 

temperature modelling use temperature loggers to provide observations of true water temperature.  

Loggers are typically installed within the active channel and housed in shielding to prevent bias from solar 

radiation and damage from collision with bedload.  The spatial distribution and logging frequency (temporal 

resolution) of temperature observations acquired using loggers is informed by the study and chosen model.  

While loggers are an appropriate source of data for calibration/validation in most studies, models operating 

at particularly fine longitudinal scales may require data at higher spatial resolutions.  Indeed, spatially-

continuous data from fibre-optic distributed temperature sensing (FO-DTS) technology (eg. Bond et al., 

2015) or airborne thermal infrared (TIR) data (eg. Boyd and Casper, 2003; Cristea and Burges, 2009) have 

been successfully used as data sources for river temperature model calibration/validation (models 6, 12).  

However, it should be noted that all three of these methodologies (loggers, FO-DTS and airborne TIR) have 

limitations; loggers in terms of their inability to provide spatially-continuous data, FO-DTS in terms of the 

relatively short distance over which it can be used and airborne TIR in terms of its ability to provide only a 

temporal ‘snapshot’ of longitudinal river temperature variability.  Where possible, efforts should therefore 

be made to combine these approaches for achieving the best possible model calibration/validation. 

 

4.5 Model availability and customisability 

Another key consideration when determining the most appropriate river temperature model for a given 

study is the model’s availability and potential for customisation to a specific application (Table 1).  Of the 

models discussed in this paper, the majority are either publicly available (as of 2016) or have been made 

available at some point during their development cycle.  However, it is necessary to differentiate between 

models that are freely available to download (2, 5-7, 9, 11, 12, 15, 16, 19, 20) or on request from the 

authors (3, 17, 18, 21) and those that are either proprietary (1, 14) or only available commercially (10).  

Although some studies will require the additional functionality of proprietary/commercial models (eg. full 

hydrodynamic integration; 10, 14), the range of publicly available models that now exists means that open-

source/freeware alternatives are often the preferred option for studies involving river temperature 

modelling.  Additionally, the source code of many publicly available models is also available for modification 

(2, 3 5-7, 11, 12, 15, 16, 18, 20, 21), allowing the user to edit the model routines and develop new modules 

as required.  Such a facility offers increased flexibility to a given temperature model, with user-driven 

development of new functions allowing it to stay abreast of advances in river temperature research.  For 

example, the authors are aware of at least one river temperature model where ready access to the model’s 

source code is driving user development of improved evaporative flux and canopy shading functions (see 

St-Hilaire et al., 2015). 

 

5. Current limitations and opportunities for future research 

Despite the generally high degree of accuracy with which modern process-based temperature models are 

able to simulate thermal processes in rivers (e.g. RMSE ≲1.0 °C at sub-hourly to hourly timesteps over 

seasonal to annual periods; Garner et al., 2014; Hébert et al., 2015; Woltemade and Hawkins, 2016), there 

remain several limitations to their application.  Primarily, these limitations relate to issues associated with 

the energy balance calculations or input resolution (see sections 3 and 4.3).   In terms of energy balance, 

models are often limited by the relative simplicity of their process representation.  Surface fluxes usually 

dominate the energy budget (Caissie, 2006) and so models have focused on quantifying surface heat 

transfers with a good degree of detail.  However, there is still room for improvement, particularly with 
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regards to modelling the impacts of riparian vegetation on heat fluxes at the air-water interface.  While 

most models are now capable of computing the impact of riparian tree cover on radiative fluxes, none are 

currently able to quantify how bankside vegetation alters turbulent heat fluxes through alterations to the 

riparian microclimate (eg. Dugdale et al., 2018).  Improvements in this regard would aid model 

performance in forested regions and help efforts to understand future impacts of land-use or climate 

change on river temperature regimes.    

Energy fluxes at the streambed interface are less well represented by currently available models, and many 

provide only a relatively generalised ability to quantify bed heat fluxes or advective heat transfer.  Because 

of this, modelling river temperature in systems with major groundwater contributions requires special 

attention. The limited ability of currently available models to represent heat and mass transfers from 

different sources (eg. soil water, groundwater) coupled to the lack of large-scale estimates of certain inflow 

types (eg. hyporheic flow) is a major challenge, and future research should therefore focus on improving 

model representation of subsurface fluxes.  The potential coupling of river temperature models to detailed 

groundwater-surface water flux routines (e.g. Kurylyk et al., 2014) could help to address this shortcoming, 

as could further research characterising the spatio-temporal variability (and driving mechanisms) of 

hyporheic fluxes (eg. Birkel et al., 2016).  Such advances would help improve model performance in 

groundwater dominated regions and also shed new light on the role of subsurface hydrological processes in 

driving river temperature (a research gap noted by Hannah and Garner, 2015). 

In addition to groundwater, the representation of energy advected by other phenomena such as 

precipitation (e.g. Null et al., 2013) or meltwater (e.g. Greene and Outcalt, 1985) is often omitted from the 

energy balance.  While these energy transfers are sometimes covered by coupled hydrological-water 

temperature models (e.g. van Vliet et al., 2012), more ‘unusual’ fluxes such as heat generated through fluid 

viscosity (resulting from friction generated by the movement of water molecules against each other) or 

energy contributions from in-stream chemical and biological processes (Webb & Zhang, 1997) or 

precipitation are very rarely quantified.  The development of model routines capable of computing these 

heat fluxes would help to ‘close’ the model’s energy balance, minimising errors resulting from the non-

representation of such fluxes.  Indeed, such data would reduce uncertainty regarding whether model errors 

arise from the simplicity of the model’s heat budget or from other sources.  Further research is therefore 

needed into how best to implement these ‘unusual’ energy fluxes within river temperature models and the 

circumstances where they may represent a significant source (sink) of energy.  However, it is important to 

remember that in the majority of cases, the conventional energy balance equation (Equation 1) produces a 

more-than-adequate representation of heat fluxes, and the addition of such extra layers of complexity is 

generally unnecessary. 

Another limitation of current process-based river temperature models relates to the availability and 

resolution of input meteorological and physiographic data.  Because process-based models require input 

meteorology or land-use data, their utility for modelling temperatures in remote locations is limited.  

Furthermore, even when data does exist, river temperature model inputs are often based on point data 

(i.e. single isolated meteorological stations or coarse-resolution land-use data) which are unable to 

encapsulate variability in hydrometeorology or basin physiography.  Difficulties in scaling up model inputs 

from these point locations to the resolution of the chosen model can impact simulation quality. There is 

consequently a need to develop approaches for the acquisition and/or upscaling of data necessary for 

modelling temperatures in inaccessible regions or at increased resolutions. Geostatistical approaches have 

previously been used with success to upscale meteorological data (e.g. air temperature; Spadavecchia and 

Williams, 2009) and channel morphology (e.g. Legleiter and Kyriakidis, 2008; Merwade, 2009).  However, 

neither of these approaches has been applied in a river temperature modelling context, and more research 
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is therefore needed in order to facilitate the application of process-based models in data-poor regions.  

Similarly, while remote sensing has shown strong potential for deriving fine scale observations of 

meteorology (e.g. Rienecker et al., 2011; Vinukollu et al., 2011) and/or channel morphology (e.g. Marcus 

and Fonstad, 2008; Fonstad et al., 2013) that would be suitable as inputs to river temperature models, 

studies combining these remote sensing approaches with river temperature modelling are uncommon.  

Future research combining statistical upscaling methods with remote sensing should thus be prioritised 

with a view to generating high resolution meteorology and physiographic inputs necessary for improving 

river temperature model performance, particularly in remote locations.  Given that remote sensing has 

been demonstrated useful both for deriving and providing fine scale temperature data needed for model 

calibration/validation (through the application of thermal infrared imagery; Handcock et al., 2012), the 

combination of river temperature models with remote sensing data (e.g. Vatland et al., 2015) clearly has 

potential. 

A final limitation to the use of water temperature models concerns the necessity of specifying boundary 

conditions to the model and the implications of this for reach- to watershed-scale temperature models.  In 

all process-based water temperature models, water temperature is both the product and a boundary 

condition of the energy balance because it is required for the calculation of outgoing longwave radiation, 

turbulent heat fluxes and bed heat flux (see sections 3.1.2, 3.2 and 3.3.1) which are in turn used to 

compute water temperature (Moore et al, 2005).  This means that data concerning water temperature are 

actually required by the model to then simulate temperature.  For small reach-scale models with few 

advective inputs, a single upstream temperature boundary condition may suffice.  However, in the case of 

larger models with multiple inflows, it is necessary to attribute a temperature boundary condition to each 

of these inputs, meaning that additional input river temperature observations are required.  Unfortunately, 

this can lead to considerable data requirements when modelling entire river networks. The use of coupled 

hydrological-water temperature models (which effectively simulate river discharge and temperature from 

source to confluence; e.g. 3, 7, 15) may alleviate this problem, as only the boundary condition required is 

the water temperature of the headwater exfiltration (which can be approximated by mean annual air 

temperature; e.g. Karanth, 1987).  Alternatively, spatial regression models or spatial statistical network 

models (eg. Jackson et al., 2017; Isaak et al., 2015) could be used to provide boundary conditions at 

locations for which temperature observations do not exist.  However, it is necessary to note that composite 

model approaches such as these may increase model error due to the multiple layers of uncertainty 

associated with the simulated data. 

In their review paper, Benyaha et al. (2007) noted the importance of the newer generation of statistical 

models for understanding the influence of environmental variables on stream temperature.  We suggest 

that process-based temperature models have an equally important role to play in the river sciences and 

that the two approaches are highly complementary.  Because of process-based models’ unique ability to 

illuminate the fundamental processes driving river temperature dynamics, they are ideally positioned to 

inform appropriate metrics to be used in larger-scale statistical approaches.  Conversely, statistical 

approaches provide a potential solution for addressing issues of data or boundary condition availability 

within process-based models.  There is therefore substantial scope to combine statistical and process-

based models in a complementary capacity, not only to improve the quality of river temperature 

simulations from existing models, but also to better identify and understand the fundamental linkages 

between hydrometeorology, river basin properties, and river temperature.  Such advances will allow for 

more accurate river temperature projections in space and time, and will be of great use to water resource 

managers and other environmental practitioners charged with better understanding and protecting 

sensitive river environments.  We hope that the information presented here spurs further investigations 
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using process-based river temperature models, in terms of both their continued refinement and their use 

for addressing fundamental questions in the river sciences. 
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