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Abstract 29 

 30 

Sight depends on the passage of light through the transparent cornea and being 31 

focused on the fovea. Its exposed position renders it vulnerable to microbial infection. 32 

The cornea has developed a wide array of defense mechanisms against infection, of 33 

which endogenous antimicrobial peptides (AMPs) are key. AMPs are essentially small 34 

molecular weight cationic peptides with a wide range of activity against virus, bacteria, 35 

fungi and parasites. Some proteins such as RNases and S100As are also included in 36 

this group. Several AMPs act synergistically allowing low expression of multiple AMPs to 37 

act efficiently. AMPs also have a range of non-microbicidal functions and serve as 38 

signaling molecules, immunomodulators; show anti-tumour activity, and influence 39 

vascularization and wound healing. Different toll-like receptors (TLR) have been 40 

implicated in the preferential induction of specific AMPs. A range of bacteria, including 41 

mycobacteria tuberculosis, viruses including herpes virus, fungi and parasites including 42 

acanthamoeba, that cause ocular infections have been shown to induce specific AMPs 43 

via TLR activation. Non-TLR mediated induction of AMP expression can occur and 44 

several molecules such as L-isoleucine, sodium butyrate, vitamin D3, phenylbutyrate, 45 

vasoactive intestinal peptide, and etinostat have been identified in this regard.  Given 46 

the rising microbe resistance to antibiotics, the slow rate of development of new 47 

antibiotics and the limited access to effective antibiotics by patients living in the 48 

developing world, an ideal solution would be to find AMPs that are effective singly or in 49 

combination with each other or other antimicrobial proteins to reduce, if possible 50 

eliminate reliance on antibiotics alone. 51 

 52 
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1. Introduction 154 

Sight is arguably the most important of the special senses across species, especially so 155 

in humans. The cornea, the clear window in the front of the eye, is the critical part of the 156 

ocular surface. The ocular surface is an anatomical and functional unit. It is made of the 157 

tear film, the conjunctival, limbal and corneal epithelium, the lacrimal, mucous and 158 

meibomian glands and the lids and blink reflex. The transparency of the cornea and its 159 

optical properties allows for two thirds of the focusing of light rays to occur at the air-160 

cornea interface, en route to the focal point on the retina (Cursiefen, 2007). The tear film 161 

provides the optical polish to the cornea. The tear film is composed of a basal layer of 162 

mucin derived from conjunctival goblet cells and the underlying corneal and conjunctival 163 

epithelium (Gipson, 2016). Mucin makes the hydrophobic epithelial surface into a 164 

hydrophilic surface that holds the aqueous component of the tear film derived from the 165 

lacrimal gland. This in turn is covered by a thin layer of lipid secreted by the meibomian 166 

glands located in the lids and discharging their content on to the ocular surface through 167 

tiny orifices along the lid margins (Gipson, 2007; Yanez-Soto et al., 2014).  168 

To fulfill its function, the cornea is naturally and constantly exposed to the environment, 169 

which poses risks of contamination with environmental pathogens and irritants. This is 170 

compounded by the lack of an established vascular or lymphatic system in the cornea, 171 

which is integral to its transparency (Cursiefen, 2007). The battle with microbes and 172 

irritants is not won by just getting rid of the offending agent but also requires 173 

maintenance of transparency while doing so. A healed cornea, which is opaque, is 174 

functionally compromised and leads to visual impairment or blindness. It is not surprising 175 

therefore that the ocular surface has developed an array of innate and adaptive 176 

protective and defense mechanisms to gain a survival advantage. The physical lid blink 177 

reflex; the relative lower temperature of the ocular surface due to tear fluid evaporation 178 

making the environment less conducive to bacterial proliferation; the OS cellular defense 179 

including neutrophils, macrophages and antigen presenting Langerhans cells (Hamrah 180 

and Dana, 2007) and the humoral constituents of the tear fluid including secretory 181 

immunoglobulins, lactoferrin, lysozyme, lipocalin and a host of cationic proteins, the 182 

antimicrobial peptides make for a formidable defense armamentarium (McDermott, 183 

2013).  184 
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Epidemiology of corneal diseases is complex and determined by varied environmental 185 

influences in different geographical regions (Shah et al., 2011). The prevalence of 186 

corneal blindness in developed and industrialized countries is not the same as in 187 

developing countries, reflecting the diverse standards of eye care and socio-economic 188 

conditions. For instance, incidence of viral keratitis in America is declining and in Africa it 189 

is increasing with corneal ulceration being the major cause of monocular blindness 190 

(WHO, 2010). According to the World Health Organization (WHO) 2010 report, it was 191 

estimated that about 4.9 million of the world’s population is blind from corneal diseases 192 

with 98% cases existing in developing countries (WHO, 2010). In 2013, the global 193 

initiative, “Universal Eye Health: A global action plan 2014-2019”, was endorsed by the 194 

WHO and the International Agency for the Prevention of Blindness (IAPB) with the aim 195 

to reduce the avoidable causes of visual impairment by improving preventive care and 196 

initiation of public health programs (WHO, 2013).  197 

The emergence of microbial resistance to conventional antibiotics has added another 198 

dimension to the challenge in the management of infections (O'Neill, 2016). A report 199 

published by the WHO in 2015 “Global action plan on antimicrobial resistance” highlights 200 

the increase in incidence of antimicrobial resistance in large parts of the world (WHO, 201 

2015). It specifically draws attention for the need to develop newer antimicrobial agents 202 

and diagnostic tools to combat antimicrobial resistance. Moreover, the treatment options 203 

for viral, fungal and parasitic infections are limited and only provide palliative care to the 204 

patients (Upadhyay et al., 2015), where even ‘successful treatment’ of the infection is 205 

associated with visual impairment. There is an urgent need to develop alternative 206 

antimicrobial drugs. The identification and exploitation of endogenous host defense 207 

proteins (Antimicrobial peptides [AMPs]) as potential agents is a promising avenue in 208 

this regard.  209 

An antibiotic is classically defined as a substance produced by a living microorganism 210 

(prokaryotic) that specifically inhibits or kills another microorganism. AMPs are the 211 

eukaryotic analogues of antibiotics. Nowadays synthetics antibiotics, structured on 212 

natural antibiotics are commonplace. For example, POL7080, a peptidomimetic is in 213 

Phase-I clinical trials for its potent activity against Pseudomonas aeruginosa. It is 214 
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developed based on the scaffold structure of a porcine leukocytes-derived antimicrobial 215 

peptide, protegrin-1 (Brown et al., 2014). 216 

AMPs are also known as Host Defence Peptides (HDPs). They are naturally occurring 217 

molecules that are conserved across the plant and animal kingdom (Broekaert et al., 218 

1995; Brogden et al., 2003; Hancock and Diamond, 2000). AMPs are by and large small, 219 

cationic and amphipathic peptides ranging from 12 to 50 amino acids in length (Hancock 220 

and Diamond, 2000). They have a net positive charge of +2 to +9 due to low acidic 221 

residues (glutamate or aspartate), high cationic residues (arginine or lysine and/or 222 

histidine) and around 30-50% of hydrophobic residues. The cationic charge of the 223 

peptide provides an ideal motif that binds with the anionic surface of the bacterial 224 

cytoplasmic membrane (Shafee et al., 2016). Some larger molecules such as RNases 225 

and S100A proteins are also included in the group. There are other molecules with 226 

definitive bactericidal activity, notably the Peptidoglycan recognition proteins, which are 227 

also found at the ocular surface (Ghosh et al., 2009; Gowda et al., 2015; Hua et al., 228 

2015; Ma et al., 2010) but these have a different structure, mechanism of action and 229 

expression from the currently known mammalian AMPs (Royet and Dziarski, 2007). 230 

AMPs possess broad-spectrum activity against a variety of microbes such as bacteria, 231 

viruses, fungi and parasites (Selsted and Ouellette, 2005). Furthermore, they also 232 

participate in immune-modulation, proliferation, wound healing and chemotaxis 233 

(Hemshekhar et al., 2016; Mangoni et al., 2016). The antimicrobial potential of AMPs 234 

may vary at different sites for a particular organism and between different species. In 235 

mammals, they can be systemically expressed or concentrated in a specific tissue, such 236 

as skin and mucosal epithelia (Haynes et al., 1999; van Wetering et al., 1999; Zanetti, 237 

2004).  On ocular mucosa, constitutive production and secretion of AMPs from 238 

epithelium in to the tear fluid reflects the constant microbial threat to this site (McDermott, 239 

2004). It is now evident that any imbalance in AMPs expression bears a casual 240 

relationship with human disease conditions. Because of their diverse functions, AMPs 241 

are now being clinically tested to combat antibiotic-resistant superbugs, human 242 

immunodeficiency viral infection and cancer (Gordon et al., 2005). 243 

In this paper, based on a review of the literature and our own published and unpublished 244 

work we discuss our current understanding of AMP function in OS defense. We 245 
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summarize how AMPs are modulated during OS disease and health and provide insight 246 

on the mechanisms associated with their production at the OS epithelium.  247 

2. Antimicrobial peptides 248 

2.1. History 249 

Lysozyme was the first protein to be identified as an antimicrobial agent by Alexander 250 

Fleming in 1922. The discovery of penicillin in 1928 heralded the era of ‘Golden Age of 251 

Antibiotics’ and overshadowed any existing interest in natural AMPs. Since the 1940s, 252 

inappropriate and often widespread usage of antibiotics has led to emergence of multi-253 

drug resistant pathogens. This issue was further compounded by the lack of substantial 254 

antibiotic development attributed to the increased cost burden for healthcare companies 255 

to develop them. In the 1960s, discovery of lactoferrin from milk reignited the interest in 256 

AMP research and ushered the interest in identifying AMPs in different species. In the 257 

1980s, cecropin and magainin were identified as potential AMPs from silk moth and frog, 258 

respectively. AMPs have since been studied extensively resulting in the identification of 259 

several other sub-classes of AMPs. In 1997, cecropin-A and melittin were the first to be 260 

tested for their antimicrobial efficacy in a Pseudomonas aeruginosa keratitis model in 261 

rabbits (Nos-Barbera et al., 1997). In humans, our group was the first to report the 262 

presence of defensins on the ocular surface (Haynes et al., 1998, 1999) and intra-ocular 263 

tissue (Haynes et al., 2000). To date, there are more than 2500 AMPs identified in six 264 

life kingdoms and they can be found in the Antimicrobial peptide database (APD) (refer 265 

http://aps.unmc.edu/AP/main.php). APD provides details on AMPs discovery, source, 266 

nomenclature, classification and prediction tools. A recent review by Wang and co-267 

workers provides a complete update on APD as a tool for AMP research (Wang et al., 268 

2016).  269 

Natural AMPs are classified on the basis of their secondary structure into four groups: 270 

alpha (α)-helical, beta (β)-stranded, loop and extended peptides (contains both α and β). 271 

Loop and extended AMPs (e.g. θ-defensins) are mainly from non-human sources or 272 

represent synthetic peptides (Powers and Hancock, 2003). 273 
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2.2. Microbicidal activity of AMPs 274 

Numerous mechanisms of microbial killing are reported for AMPs and these are 275 

constantly growing with increase in knowledge of structure-activity relationship of natural 276 

AMPs (Huang et al., 2010). Most mechanistic studies available are limited by the use of 277 

‘membrane’ as a model system. However, few AMPs (e.g. dermaseptin and temporin) 278 

were studied with whole microbes utilizing fluorescence labeling chemistry (Andre et al., 279 

2015; Pouny et al., 1992). Generally, AMPs are known for their propensity to kill a 280 

variety of microbes. They exhibit high cationic charge related to hydrophobic amino acid 281 

residues, facilitating their selective binding to the negatively charged surface of 282 

pathogens. Based on their electrochemical affinity, AMPs are classified into two 283 

categories: membrane disruptive and non-membrane disruptive peptides (Powers and 284 

Hancock, 2003). 285 

The membrane disruptive peptides, such as LL-37 and magainin (belong to α-helical 286 

group), utilize one of the three well-known killing mechanisms: carpet model, barrel-287 

stave model and micellar aggregate model (Bahar and Ren, 2013; Huang et al., 2010; 288 

Powers and Hancock, 2003). In the carpet model, the peptides align parallel to the 289 

microbial membrane inducing membrane instability and disruption. In the barrel-stave 290 

model, the peptides align perpendicular to the membrane and form transmembrane 291 

pores by virtue of a high electrical gradient leading to leakage of cytoplasmic 292 

components. In the micellar aggregate model, peptides form micelle-like aggregates and 293 

disrupt membrane integrity leading to osmotic cell lysis. In both barrel-stave and micellar 294 

aggregate models, AMPs induce pores across the microbial cytoplasmic membrane and 295 

create transmembrane channels, leading to membrane depolarization, leakage of 296 

internal organelles and cell death. For some peptides, bacterial killing by pore-formation 297 

was noted within a few minutes of interaction with AMPs (Friedrich et al., 1999). 298 

Non-membrane disruptive peptides exhibit antimicrobial activity by acting on intracellular 299 

targets rather than acting on the membrane surface. These peptides translocate into 300 

bacterial cytoplasm and perturb nucleic acids (e.g. buforin II and magainin 2) and 301 

cellular protein synthesis (e.g. pyrrhocoricin, apidaecin and drosocin) (Powers and 302 

Hancock, 2003). Pyrrhocoricin, an insect AMP, binds heat shock protein (DnaK) and 303 
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induces bacterial killing by inhibiting protein folding (Kragol et al., 2001). In contrast to 304 

membrane disruptive peptides, intracellular acting AMPs exert the action within hours as 305 

was demonstrated for phyrrhocoricin (Kragol et al., 2001).   306 

In contradiction to known mechanisms of AMPs, it is also proposed that penetration of a 307 

peptide into bacterial cytoplasm does not always induce bacterial killing. For instance, 308 

cecropin-A, a lytic peptide, only induces transcriptional changes in Escherichia coli but 309 

does not affect its survival (Hong et al., 2003). From the expanding body of knowledge 310 

on AMP-microbe interaction, it is evident that the study of the response of microbe to 311 

AMPs is as important as the mechanisms by which AMPs attack microbes. Both 312 

mechanisms are crucial and could enhance our understanding by which bacteria may 313 

resist or overcome AMPs to cause infection. 314 

AMPs also possess lytic activities against enveloped viruses (Ganz et al., 1988; Sinha et 315 

al., 2003) and some non-enveloped viruses such as adenovirus (Bastian and Schafer, 316 

2001; Gropp et al., 1999) and papillomavirus (Buck et al., 2006). However, unlike 317 

antibiotics that generally do not act against fungi, and unlike antifungals that are not 318 

antibacterial, AMPs have potential to act across the microbial spectrum. They also have 319 

been shown to act against multidrug resistant Pseudomonas aeruginosa or methicillin-320 

resistant Staphylococcus aureus (MRSA) (Steinberg et al., 1997). 321 

Another important facet of their action is synergy between a number of AMPs, such that 322 

a reduced expression of one AMP is balanced by an increase in others (Nagaoka et al., 323 

2000). LL-37 and HBD-2 act synergistically against S. aureus (Ong et al., 2002) and the 324 

activity of HBD-3 is boosted by Lysozyme (Maisetta et al., 2003). Such synergy 325 

enhances not only the killing properties of AMPs but also the production of the 326 

chemokine IL-8 (by the action in concert of HBD-1 to-4 and LL-37), which has been 327 

shown to induce microbial killing (Niyonsaba et al., 2005). AMPs even synergize with 328 

antibiotics and enhance their microbicidal activity (Cirioni et al., 2008; Midorikawa et al., 329 

2003; Scott et al., 1999).  330 

Some AMPs are also shown to inhibit pathogens by limiting metal availability and the 331 

process is termed nutritional immunity. Hepcidin or liver-expressed antimicrobial peptide 332 

(LEAP-1) and S100 proteins such as psoriasin (S100A7) and calprotectin (S100A8/9) 333 
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are known to play an essential role in nutritional immunity (Verga Falzacappa and 334 

Muckenthaler, 2005; Zackular et al., 2015). LEAP1/hepcidin has a broad spectrum of 335 

activity against bacteria and fungi (Garcia et al., 2001). It is a very important iron 336 

hormone (Ganz, 2011), expression of which is increased in inflammation (Lemaitre et 337 

al., 1996) and excretion of which has been shown to decrease with resolution of sepsis 338 

(Nemeth et al., 2003). LEAP1/hepcidin reduces iron absorption from the gut and 339 

increases its retention in macrophages; it was proposed that these strategies would limit 340 

the iron available to microbes for growth (Ganz, 2011). Psoriasin was discovered in 341 

psoriatic skin with strong microbicidal properties (Madsen et al., 1991). Its antimicrobial 342 

activity is primarily shown to be dependent on its ability to limit zinc (Zn2+) to pathogens 343 

(Glaser et al., 2005). On the other hand, calprotectin-mediated limitation of manganese 344 

(Mn2+) was shown to increase the bacterial susceptibility to neutrophil killing due to 345 

weakening of the bacterial Mn2+ dependent defense system (Damo et al., 2013; Wheeler 346 

et al., 2016). These studies demonstrated that at the host-pathogen interface, 347 

sequestration of essential metal ions by these AMPs induces starvation and weakens 348 

their defence system against host immunity. 349 

2.3. Non-microbicidal activity of AMPs 350 

AMPs were originally regarded as molecules that kill microbial pathogens, but recent 351 

studies have highlighted their multifunctional potential (Elsbach, 2003). At certain sites 352 

such as airway surface (Cole et al., 1999) and gut lumen (as opposed to intestinal 353 

crypts) (Elphick et al., 2008), concentration of AMPs is too low to exhibit microbicidal 354 

activity. It is implied that they act as signalling molecules at these sites. AMPs also 355 

stimulate the release of cytokines such as IFN-α, IFN-γ, IL-2 and IL-13, but not TNF-α or 356 

IL-6 in some instances (Vallespi et al., 2000) and this has been shown to correlate with 357 

increased survival in mice following lethal doses of P. aeruginosa (Vallespi et al., 2003). 358 

Anti-inflammatory activity is further enhanced by inhibition of immuno-suppressive 359 

adrenal steroid hormones by competitive binding to their receptors (Solomon et al., 360 

1991; Zhu and Solomon, 1992). LL-37 has been shown to induce pro-IL-1b processing 361 

and mature IL-1b release from LPS-treated human monocytes via a purinergic receptor 362 

(P2X7 receptor) (Elssner et al., 2004). LL-37 in synergy with IL-1b was shown to 363 
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enhance human neutrophil activity by increasing production of cytokines (IL-6, IL-8 and 364 

IL-10), chemokine (CCL2) as well as synthesis and release of HNP1-3 (Zheng et al., 365 

2007). Subsequently, it was demonstrated that the LL-37 mediates its anti-inflammatory 366 

effect on neutrophils via binding to CXCR2 (Zhang et al., 2009b).  367 

Besides being early effectors of the innate immune system, AMPs act as a link between 368 

the innate and the adaptive immune systems. Alpha defensins induce chemotaxis of 369 

monocytes (Territo et al., 1989) and T-cells (Yang et al., 2000) and enhance antibody 370 

production from B-cells (van Wetering et al., 1999) whereas b-defensins are potent 371 

ligands for the chemokine receptor CCR6 on immature dendritic cells (iDC) and T-cells 372 

(Yang et al., 2000). Human Beta Defensin 4 (HBD4) also exhibits chemoattractant 373 

properties toward monocytes (Rodriguez-Martinez et al., 2005). LL-37, like b-defensins, 374 

is a receptor ligand; it uses formyl peptide receptor-like 1 (FPRL-1) to orchestrate 375 

activities in neutrophils, monocytes and T cells (Anderson, 2000). Adaptive immunity 376 

comes into play with the uptake of antigens by iDC, which subsequently mature and 377 

traffic to secondary lymphoid tissue to present those antigens to naive T-cells 378 

(Banchereau and Steinman, 1998). Thus, by the recruitment of iDC, defensins start the 379 

process, then chaperone it onward by the induction of TNF-a and IL-1b production by 380 

monocytes (Chaly et al., 2000), a process important for DC maturation. Bovine 381 

lactoferrin was shown to enhance both natural-killer (NK) cell activity by increasing IL-18 382 

and IFN-γ production (Kuhara et al., 2006) and the function of intraepithelial 383 

lymphocytes in small intestine by increasing IL-10 secretion (Takakura et al., 2006).   384 

AMPs are able to curtail immune responses as effectively as they stimulate them in 385 

order to protect the host from destructive or even lethal inflammation, which occurs 386 

when LL-37 neutralizes LPS and lipotechoic acid (Larrick et al., 1995; Mookherjee et al., 387 

2006). The pig cathelicidin, PR-39, though potent against both gram-positive and gram-388 

negative organisms, has anti-inflammatory action when required (Hoffmeyer et al., 2000; 389 

Sayama et al., 2005). Moderate inflammation is beneficial to the host but an excessive 390 

response can even lead to death. Neutralisation of such a response is effected by 391 

inhibition of LPS binding and suppression of LPS-induced TNFa production (Yan and 392 

Hancock, 2001). 393 
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There are other less well-known roles of AMPs, which are important nonetheless. They 394 

have been shown to have anti-tumour activity (Lichtenstein et al., 1986), inhibit 395 

fibrinolysis and stimulate fibroblasts and keratinocytes (McDermott et al., 2006; 396 

Panyutich et al., 1995; Sayama et al., 2005). They play a role in smooth muscle 397 

contraction (Nassar et al., 2002) and LL-37 and α-defensins are implicated in 398 

angiogenesis (Koczulla et al., 2003) (Chavakis et al., 2004). The role of LL-37 in wound 399 

healing may have important therapeutic implications; LL-37 is found in abundance in 400 

skin wounds and anti-LL-37 antibody inhibits re-epithelialization of skin wounds 401 

(Heilborn et al., 2003).  402 

3. Antimicrobial peptides during ocular surface infection 403 

The ocular surface, specifically the cornea, has to balance the contradiction of 404 

maintaining an immune privileged status and yet warding off a wide-ranging spectrum of 405 

microbes. It is not surprising therefore that the ocular surface epithelium produces a 406 

multitude of AMPs. Key AMPs at the ocular surface include defensins and cathelicidin. 407 

However, other families of AMPs such as RNases, S100As and LEAPs have also been 408 

identified but their specific role at this site remains to be fully elucidated.  409 

3.1. Bacterial infection 410 

Bacterial infections of the ocular surface can range from mild conjunctivitis to severe 411 

corneal ulcers. Bacterial keratitis is the most frequent cause of corneal disease 412 

worldwide and its risk is mainly associated with contact-lens use and trauma (Shin et al., 413 

2016; Willcox, 2007). Pseudomonas aeruginosa, an opportunistic gram-negative 414 

bacteria, is a frequently isolated bacterium from the extended contact-lens wearers 415 

(Fleiszig and Evans, 2010) and it accounts for 70% of bacterial keratitis in the United 416 

States (Schein et al., 1989). Chronic hypoxia was initially thought to be the risk factor 417 

related to P. aeruginosa biofilm formation between the contact lens and corneal 418 

epithelial surface (Zaidi et al., 2004). Although lens technology and storage solutions 419 

have improved considerably in recent years, the incidence of bacterial keratitis related to 420 

contact-lens use is rising (Dart et al., 2008; Radford et al., 2009). Lack of appropriate 421 

experimental models has further compounded the challenges to test available therapies 422 

against contact lens-related bacterial keratitis (Fleiszig and Evans, 2010).  423 
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Genetic models of bacterial keratitis have provided sizeable evidence on the role of 424 

innate and adaptive immunity in host response against infection (Gerke and Magliocco, 425 

1971; Hazlett, 2004; Marquart, 2011). There are a number of factors that have been 426 

identified when using specific background strains of mice for studying the pathogenesis 427 

of Pseudomonas aeruginosa keratitis. It has been shown that IL-12 triggered IFN-γ 428 

production contributes to corneal destruction in C57BL/6 background of mouse while IL-429 

18-driven IFN-γ induces more bacterial killing but less destruction to host tissue in 430 

Balb/C mice (Hazlett, 2005).  431 

The importance of AMPs against bacterial infections was first demonstrated by the 432 

development of cathelicidin knockout mice (Cnlp-/-) (Nizet et al., 2001). Deficiency of 433 

cathelicidin enhanced susceptibility to a wide-variety of bacteria including Escherichia 434 

coli (Chromek et al., 2006), Neisseria meningitidis (Bergman et al., 2006; Merres et al., 435 

2014) and Klebsiella pneumoniae (Kovach et al., 2012). Importance of cathelicidin in 436 

corneal and retinal defense against bacteria has also been demonstrated. Cathelicidin 437 

deficiency increased the susceptibility of mice to P. aeruginosa keratitis (Huang et al., 438 

2007) and S. aureus endophthalmitis (Talreja et al., 2015). Silencing of murine b-439 

defensins (mBDs) with small interfering RNA (siRNA) demonstrated the key role of 440 

mBD-2 and mBD-3 (homolog of HBD-2) but not mBD-1 and mBD-4 (homologs of HBD-1 441 

and HBD-3) in ocular defense against P. aeruginosa (Wu et al., 2009a; Wu et al., 442 

2009b). Moreover, induction of murine cathelicidin and defensins during P. aeruginosa 443 

keratitis (Berger et al., 2013) and E. coli infection of urinary tract (Lin et al., 2015) has 444 

been shown to be dependent on the hypoxia-inducible factor (HIF)-1α transcription 445 

factor.  446 

We have previously profiled a spectrum of AMPs in corneal and conjunctival epithelial 447 

specimen collected by impression cytology (IC) from patients with bacterial or viral 448 

infections. These are compared to AMP expression in corneal epithelial cells that were 449 

sourced from healthy adult eyes, cadaver corneal disc and cultured limbal explants. We 450 

showed positive expression of 7 out of 21 AMPs investigated. HBD1 and -2, LEAP1 and 451 

-2 and LL-37 were shown to be present in all samples tested while HBD3 was only 452 

induced during disease conditions (McIntosh et al., 2005). In 2008, we discovered a 453 

novel defensin gene, HBD9, which was constitutively expressed on corneal and 454 
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conjunctival epithelium of healthy eyes but during infectious keratitis, HBD9 mRNA was 455 

expressed at a very low level (Abedin et al., 2008). We also characterized its protein 456 

expression in healthy cadaver sections of OS tissue using polyclonal antibody generated 457 

against the HBD9 synthetic peptide. A punctate pattern of HBD9 protein in healthy 458 

corneal and limbal epithelium was observed. In stromal keratocytes, conjunctival 459 

epithelial and globlet cells and cadaver tonsil tissue sections - HBD9 was ubiquitously 460 

present (Mohammed et al., 2010). Since HBD3 was induced and HBD9 was decreased 461 

during infective keratitis, we further carried out a detailed ex-vivo study wherein we 462 

investigated the expression of HBD3 and HBD9 mRNA in IC samples collected from 463 

patients with active infection (gram-negative and gram-positive bacterial keratitis (BK)) 464 

and after healing. HBD3 mRNA was increased 10-fold during gram-positive BK and 4-465 

fold during gram-negative BK. It then returned to normal control levels after healing. On 466 

the other hand, HBD9 mRNA was decreased 5-fold during both gram-negative and 467 

gram-positive BK. Notably, it returned to its normal levels after healing of gram-negative 468 

BK but not gram-positive BK (Otri et al., 2012). It could be hypothesized that different 469 

bacteria utilize specific mechanisms to dampen the host innate immunity. Non-recovery 470 

of HBD9 mRNA to its normal levels post-healing of gram-positive BK indicates that 471 

these bacteria may have affected the transcriptional regulatory mechanisms of HBD9. 472 

Further studies are underway in our laboratory to understand the mechanism of HBD9 473 

mRNA down regulation during bacterial infections. We extended our search for newer 474 

AMPs and also studied the expression of ribonuclease-7 (RNase-7), originally found in 475 

skin keratinocytes (Harder and Schroder, 2002), in OS epithelial cells at mRNA and 476 

protein level. Unlike HBD9, we noted an increased expression of RNase-7 mRNA in 477 

infective keratitis samples (Figure 1). RNase-7 was mainly localized to the apical layer 478 

of OS epithelium with minimal staining noted in stromal keratocytes (Mohammed et al., 479 

2011b). More recently, we further investigated the mRNA expression of AMPs in corneal 480 

epithelial cells treated with P. aeruginosa and S. aureus (from patient ocular isolates). In 481 

response to P. aeruginosa infection, 5 of the 8 AMPs increased while HBD9 and LEAP-1 482 

consistently showed a reduced expression pattern. During S. aureus infection, all AMPs 483 

showed a trend towards increased expression. LL-37 and RNase-7 were notably the 484 
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most responsive against P. aeruginosa and HBD2 was highly induced in response to S. 485 

aureus (Dua et al., 2014).  486 

Toll-like receptors (TLRs) are evolutionarily conserved pathogen-recognition receptors 487 

(PRRs) that are known to recognize and respond to a variety of microbial stimuli, known 488 

as pathogen-associated molecular patterns (PAMPs) (Kawai and Akira, 2009). The ‘Toll’ 489 

was first discovered in Drosophila melanogaster as a homologue of the pleiotropic 490 

interleukin-1 receptor type–I (IL-1R1) (Anderson et al., 1985). The only known function 491 

of Toll was then linked to the development of D. melanogaster embryo (Hashimoto et al., 492 

1991; Hashimoto et al., 1988). In the late 1990s, the pioneering work from Beutler’s 493 

group demonstrated that LPS unresponsiveness in C3H/HeJ and C57BL/10ScCr mice 494 

was due to a specific mutation in Lpsd allele (that encodes for TLR4) (Poltorak et al., 495 

1998). This led to the discovery that LPS is specifically recognized by TLR4 (Hoshino et 496 

al., 1999) and implicated an unequivocal role of TLRs in the immune system. Further 497 

work from laboratories of Akira and Medzhitov, who generated multiple TLR and adaptor 498 

molecules gene knockout mice, has provided the basis for discovery of specific PAMPs 499 

that are recognized by each TLR (Barton et al., 2006; Horng et al., 2002; Kagan et al., 500 

2008; Yamamoto et al., 2003; Yamamoto et al., 2002). In 2011, the Nobel Prize in 501 

Medicine and Physiology was conjointly awarded to Bruce A. Beutler and Jules A. 502 

Hoffmann for the work related to the TLRs (Nobel-Prize, 2011). To date, it has been 503 

shown that the human genome encodes 10 TLRs and mouse genome encodes 13 504 

TLRs. TLRs are localized both on cell surface and in endosomal compartments (Kawai 505 

and Akira, 2009). In most cell types, TLR2/1, TLR2/6, TLR4 and TLR5 were found to be 506 

present on cell surface, whereas TLR3, TLR7, TLR8 and TLR9 localized to endosomes 507 

(Kawai and Akira, 2009). When PAMPs bind to the TLR ectodomain they initiate the 508 

activation of myeloid-differentiation protein 88 (MyD88)-dependent or MyD88–509 

independent pathways (Barton and Medzhitov, 2003). Although the general scheme for 510 

the activation of TLRs pathway is well known, it is only in the last decade that the 511 

associated molecular mechanisms have begun to be understood (O'Neill et al., 2013).  512 

On OS epithelium, TLRs are essential for first line defense against invading pathogens. 513 

In humans and mice, TLR2, TLR4, TLR5 and TLR9 have been widely shown to play an 514 

important role in P. aeruginosa and S. aureus induced corneal inflammation (Chang et 515 
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al., 2006; Huang et al., 2005; Johnson et al., 2005; Pearlman et al., 2008; Sun et al., 516 

2006b; Sun et al., 2010). Protein and mRNA levels of TLR-1 to -6 and -9 were shown to 517 

be constitutively present in human conjunctival, limbal and corneal epithelial cells, while 518 

those of TLR7, -8 and -10 were shown to be absent (Li et al., 2007). Previously, we 519 

surveyed the profile of TLRs 1 to 10 mRNA expression on OS epithelium collected from 520 

patients with infective keratitis. In bacterial keratitis specimen, TLR2 and TLR8 mRNA 521 

were moderately increased while the level of TLR1, TLR3, TLR5, TLR6, TLR7 and 522 

TLR10 remained unchanged. Notably, TLR4 and TLR9 mRNA were down regulated 523 

during bacterial infection (Mohammed et al., 2011a). In the same year, McDermott’s 524 

group also reported a baseline expression profile of TLRs 1-10 in various OS cell types 525 

(Redfern et al., 2011). This study has corroborated to our findings on TLR4 and TLR8 526 

mRNA expression in healthy corneal epithelium (Mohammed et al., 2011a). However, 527 

the reports on TLR2 and TLR4 expression and localization on OS epithelium has been 528 

conflicting. It was demonstrated that LPS treatment of corneal epithelial cells activates 529 

TLR4 signaling and modulates cytokine production (Song et al., 2001) while 530 

peptidoglycan (PGN) treatment was shown to increase cytokines and HBD-2 secretion 531 

in a TLR2 dependent manner (Kumar et al., 2004). In contrast, two studies later reported 532 

that both TLR2 and TLR4 are unresponsive to their specific PAMPs on corneal, limbal 533 

and conjunctival epithelium (Li et al., 2007; Ueta et al., 2004). Blais and co-workers 534 

demonstrated that human tears secrete soluble lipopolysaccharide binding protein 535 

(sLBP) and CD14 and suggested these may regulate the LPS responsiveness on 536 

corneal epithelium (Blais et al., 2005). Using structural studies, it was confirmed that 537 

LPS recognition and response on a cell-surface is mainly mediated via a complex of 538 

LPS binding protein (LBP)/CD14 and TLR4/MD-2 (myeloid differentiation protein-2) 539 

(Figure 2) (Park and Lee, 2013; Park et al., 2009). A subsequent study demonstrated 540 

that the LPS unresponsiveness on corneal epithelium was related to the lack of MD-2 541 

expression (Lang et al., 2011; Zhang et al., 2009a). Utilizing MD-2 deficient mice, it was 542 

shown that interferon-gamma (IFN-γ) produced during P. aeruginosa keratitis could 543 

induce the MD-2 cell–surface expression and trigger TLR4 responses to LPS on corneal 544 

epithelium (Roy et al., 2011). Furthermore, exogenous supply of MD-2 to the human 545 

corneal epithelial cell culture was shown to induced cell-surface expression of TLR4 and 546 
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CD14 and restored the LPS responsiveness (Lang et al., 2011). Moreover, enhanced 547 

TLR4 surface expression during disease condition was further confirmed in an 548 

experimental dry eye disease model (Lee et al., 2012). It is notable that this regional 549 

specialization of TLR expression is not unique to OS epithelium. For example, low levels 550 

of TLR4 and MD-2 have also been demonstrated in the intestinal epithelium, which does 551 

not normally respond to LPS derived from the commensal microbes of the gut (Abreu et 552 

al., 2001). Similarly, it was also reported that the intestinal epithelium is unresponsive to 553 

a TLR2 ligand, PGN (Melmed et al., 2003). TLR5 that recognizes flagellin from gram-554 

negative bacteria was shown to be only localized to basal and wing cell layers of corneal 555 

epithelium. It was proposed that TLR5 might only respond when the apical squamous 556 

layer is breached (Zhang et al., 2003). The variable expression pattern of TLRs at the 557 

OS is suggestive of the presence of an immunosilent milieu to contain the excessive 558 

inflammatory responses triggered by aberrant TLR stimulation. This is a useful strategy 559 

resulting in efficient microbial kill without undue inflammation.  With inflammation, the 560 

risk of corneal scarring is high.  561 

TLRs were shown to be the major inducers of AMP expression in response to bacterial 562 

infection on various cell types including corneal epithelium (Figure 2). P. aeruginosa 563 

derived-LPS treatment of corneal and conjunctival epithelial cells (McNamara et al., 564 

1999), gingival keratinocytes (Mathews et al., 1999), tracheobronchial epithelial cells 565 

(Becker et al., 2000) and intestinal epithelial cells (Vora et al., 2004) enhanced HBD-2 566 

levels. These studies suggested that LPS-mediated TLR4 activation plays an important 567 

role in HBD2 induction. TLR2 activation by S. aureus or PGN also enhanced HBD-2 but 568 

not HBD-1 and HBD-3 levels in corneal (Kumar et al., 2006) and intestinal epithelial cells 569 

(Vora et al., 2004). Further studies demonstrated that S. aureus lipopeptide (SaLP) but 570 

not S. aureus protein A (SpA) increases HBD-2 and LL-37 expression in corneal 571 

epithelial cells via TLR2 activated NF-κB and mitogen-activated protein kinase (MAPK) 572 

pathways (Kumar et al., 2007a; Li et al., 2008). As mentioned before, we have 573 

previously demonstrated that HBD9 mRNA, which expresses constitutively in normal 574 

control epithelial cells, was found to be down regulated in infective keratitis (Abedin et 575 

al., 2008; Otri et al., 2012). This intriguing observation led us to further test the effect of 576 

potential inducers of HBD9. Of the tested targets, TLR2 was found to be a major inducer 577 
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of HBD9 at shorter durations of culture stimulation (Mohammed et al., 2010). In a 578 

subsequent study, we further characterized the signaling mechanisms involved in TLR2-579 

induced HBD9 expression. Both NF-κB and MAPK pathways were shown to play an 580 

essential role in TLR2 mediated HBD9 induction (Figure 2) (Dua et al., 2014). We have 581 

further demonstrated that dexamethasone (clinically used for its anti-inflammatory 582 

properties) was able to mitigate the TLR2-induced HBD9 expression. MAPK 583 

phosphatase-1 (MKP-1; negative regulator of MAPK signaling pathway) was implicated 584 

in this inhibitory effect of dexamethasone as tested by RNAi silencing method (Figure 2) 585 

(Dua et al., 2014). Our results were consistent with previous studies demonstrating an 586 

inhibitory effect of dexamethasone on IL-1β (McDermott et al., 2003) and TLR2 (Winder 587 

et al., 2009) induced HBD2 expression in corneal and airway epithelium respectively. 588 

Activation of TLR5 with purified flagellin from P. aeruginosa was shown to induce 589 

proinflammatory cytokines and HBD2 and LL-37 expression in corneal epithelial cells 590 

(Zhang et al., 2003). It was further demonstrated that pre-exposure of corneal epithelial 591 

cells to low-dose flagellin could mitigate pro-inflammatory responses and induced 592 

antimicrobial defense against P. aeruginosa infection (Kumar et al., 2007b). This 593 

phenomenon of endotoxin tolerance was conceived in the 1940s and currently it is being 594 

applied as an adjuvant therapy to attenuate the immunopathology associated with septic 595 

shock (Albrecht et al., 2008; Cohen, 2002; Nomura et al., 2000). Previous studies have 596 

demonstrated that RNase-7 was induced in response to bacterial infections and 597 

inflammatory cytokines in a variety of cell types (Koczera et al., 2016; Koten et al., 2009; 598 

Reithmayer et al., 2009; Spencer et al., 2014). We have recently showed that IL-1β 599 

displays a rapid but transient effect on RNase-7 in CECs (Figure 2). Notably, we 600 

reported that IL-1β induced RNase-7 expression is dependent on transforming growth 601 

factor β activated kinase-1 (TAK-1)-activated MAPKs but not NF-κB signaling 602 

(Mohammed et al., 2011b). This intriguing signaling mechanism is not unique to RNase-603 

7 and this dichotomy also exists with other AMPs. In gingival epithelial cells, HBD-2 604 

expression was also shown to be dependent on MAPKs but not NF-κB in response to 605 

Fusarium nucleatum (Krisanaprakornkit et al., 2002). More commonly, both MAPKs and 606 

NF-κB are known to regulate P. aeruginosa induced HBD-2 and HBD-3 in skin 607 

keratinocytes (Wehkamp et al., 2006) and IL-1β induced HBD-2 in CECs (McDermott et 608 
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al., 2003). We have also shown that RNase-7 was induced in CECs infected with P. 609 

aeruginosa and S. aureus (Dua et al., 2014). We further elucidated the role of TLRs in 610 

regulation of RNase-7 mRNA in corneal epithelial cells. As shown in figure 3, in 611 

response to activators of TLR2 (Pam3CSK4; 1 μg/mL), TLR3 (Poly I:C; 10 μg/mL) and 612 

TLR5 (Flagellin; 100 μg/mL) we noted a modest increase in RNase-7 at 1 hour. Notably, 613 

at the 24-hour time point there was a 2-fold reduction compared to untreated controls. 614 

However, treatment with PAMPs for other TLRs did not effect RNase-7 expression.  615 

Corynebacterium pseudodiphtheriticum is an opportunistic commensal organism 616 

commonly found in skin and upper respiratory tract (Izurieta et al., 1997). Although CP is 617 

an uncommon cause of OS infection, a first case of such infection was reported in an 618 

immunocompromised patient in Australia (Li and Lal, 2000). Subsequent case studies 619 

have also reported other strains of Corynebacterium spp. as causative of OS infection 620 

(Giammanco et al., 2002; Ruoff et al., 2010; Todokoro et al., 2015). Recently, it was 621 

reported that 5% of total bacterial keratitis cases at a single center in India are 622 

diagnosed as Corynebacterium keratitis and a number of reported cases has been rising 623 

in the last decade (Ramesh et al., 2010). A recent study has reported an increased 624 

expression of TLR1 to -4, cytokines and antimicrobial peptides such as HBD1, S100A8 625 

and S100A9 in corneal scrapings from Corynebacterium keratitis patients. These were 626 

further substantiated in corneal epithelial cell cultures treated with Corynebacterium spp. 627 

(Roy et al., 2015). 628 

Mycobacterium tuberculosis primarily infects lungs and it remains the most common 629 

cause of infection related high mortality worldwide (Dirlikov et al., 2015). Extra-630 

pulmonary infections are commonly reported in more than 50% of patients with 631 

tuberculosis (Gupta et al., 2007). Both intraocular and ocular surface infections due to 632 

M. tuberculosis are uncommon but increased incidence of multi-drug resistant strains of 633 

Mycobacterium spp. has amplified the challenges for its treatment (Gupta et al., 2007). 634 

AMPs have been recently shown to possess strong anti-mycobacterial properties and it 635 

has been suggested that they could play an important role in tuberculosis control (Dong 636 

et al., 2016; Fu, 2003; Ganz, 2002). Recent studies have shown that the human corneal 637 

fibroblasts (Castaneda-Sanchez et al., 2013) and human macrovascular endothelial 638 

cells (Garcia-Perez et al., 2011) increased production of HBD-1 to 3 in response to 639 
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infection with M. tuberculosis and non-tuberculous strains such as M. abscessus and M. 640 

smegmatis. Similarly, elevated levels of HBD-2 and HBD-3 but not LL-37 were also 641 

been reported in skin specimen collected from patients with cutaneous tuberculosis 642 

(Zhao et al., 2016b).  M. tuberculosis infection of macrophages was shown to 643 

specifically induce HBD4 (Liu et al., 2009). RNase-3 and RNase-7 were shown to 644 

display a potent microbicidal activity against M. vaccae (Pulido et al., 2013). 645 

Furthermore, an amino acid, L-isoleucine was specifically shown to induce expression of 646 

defensins in-vivo in an experimental animal model of pulmonary tuberculosis (Fehlbaum 647 

et al., 2000; Rivas-Santiago et al., 2011). This suggests that the administration of 648 

recombinant/synthetic AMPs or the pharmacological induction of AMPs could be 649 

beneficial in combating sight-threatening ocular infections. This potential needs to be 650 

explored further in in-vitro and in-vivo studies. 651 

3.2. Viral infection 652 

Defensins have been shown to display antiviral properties against both enveloped and 653 

non-enveloped viruses. Antiviral property of α-defensins is chiefly dependent on the 654 

stability of their 3D-structure, i.e., disulphide bonds. It was shown that α-defensins in 655 

linear form demonstrated reduced antiviral activity against HSV-1, influenza virus, 656 

adenoviruses and HIV-1 (Demirkhanyan et al., 2012; Rapista et al., 2011; Salvatore et 657 

al., 2007; Smith et al., 2010). However, β-defensins showed similar antiviral activity in 658 

either forms (Nigro et al., 2015; Scudiero et al., 2010). The fundamental differences in 659 

antiviral activity of both defensin groups needs to be clarified. It could be suggested from 660 

these studies that α-defensins exhibit their antiviral property due to their amphipathic 661 

structure or their intrinsic ability to oligomerize rather than their net positive charge. It 662 

was also reported that the antiviral activity of HBD-2 and HBD-3 against HIV (Quinones-663 

Mateu et al., 2003) and human α-defensin 5 (HD-5) binding to adenovirus (Gounder et 664 

al., 2012) is salt-dependent. Defensins are known to exhibit antiviral property by direct 665 

neutralization of enveloped viruses through lipid bilayer interaction or their affinity 666 

towards envelope glycoproteins (e.g. HIV-1 and HSV). Human neutrophil peptide-2 667 

(HNP-2), an α-defensin, interferes with gp120 glycoprotein interaction with CD4 receptor 668 

on T-cells and prevents the initial phase of HIV infection (Furci et al., 2007). HBD3 and 669 

HD5 but not HBD1 and HBD2 were shown to inhibit both HSV-1 and HSV-2 entry into 670 
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host cells by binding gB glycoprotein of HSV (Hazrati et al., 2006). Similarly, HBD2 was 671 

shown to exhibit antiviral activity against enveloped respiratory syncytial virus (RSV) by 672 

damaging its lipid bilayer (Kota et al., 2008). This activity of defensins is favored by its 673 

interaction with positively charged phospholipids hence viruses with inert bilayers 674 

(Lorizate and Krausslich, 2011) might show tolerance to defensins. A mechanism 675 

involving protein-protein interaction for neutralization of non-enveloped viruses (e.g. 676 

Adenoviruses and human papillomavirus) was attributed to HD5 (Buck et al., 2006; Flatt 677 

et al., 2013; Tenge et al., 2014). Such variations account for the differential susceptibility 678 

of viruses to defensins. The antiviral mechanism of defensins is well described and 679 

readers are directed to the following review paper for more information (Wilson et al., 680 

2013). 681 

Clinical manifestations of OS viral infections vary greatly depending on the disease-682 

causing viruses (Dua, 2000; Otri et al., 2013). The changes induced by viruses on OS 683 

range from benign, self-limiting conjunctivitis to vision threatening ulceration and 684 

vascularization. Herpes simplex virus-1 (HSV-1) and adenoviruses (A to G serotypes) 685 

are the most common causes of OS viral infections (Dua, 2000; Mukherjee et al., 2015). 686 

Ocular manifestations due to other viruses such as West Nile virus (Blitvich et al., 2016), 687 

Zika virus (Miner et al., 2016), Varicella-Zoster virus (Khalafallah et al., 2013; Liesegang, 688 

1999) and Human Immunodeficiency virus-1 (HIV-1) (Baranwal et al., 2015; Biswas and 689 

Sudharshan, 2008) have also been reported.  690 

HSV-1 infections are highly prevalent and a majority of the world’s population carries 691 

virus as a latent load in the trigeminal ganglion (Dua, 2000; Maroui et al., 2016). New 692 

cases of ocular HSV-1 infection have been estimated annually at 11.8 per 100,000 in 693 

the USA (Young et al., 2010). In Europe, France has a high incidence of HSV-1 cases 694 

estimated at 31.5 per 100,000 (Labetoulle et al., 2005). Thus, HSV-1 ocular infections 695 

represent a significant burden globally. Primary HSV-1 ocular infections are rare and 696 

can be restricted to blepharoconjunctivitis (inflammation of conjunctiva and eyelids) with 697 

or without keratitis. When cornea is involved, this is typically referred to as ‘Infectious 698 

Epithelial Keratitis (IEK)’ (Rowe et al., 2013). Clinical symptoms of IEK include pain, 699 

photophobia, blurred vision, excessive tearing and redness. In IEK, the corneal lesion 700 

starts as punctate vesicular eruptions and often progresses to non-linear geographic 701 
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lesions (Green and Pavan-Langston, 2006). More commonly, HSV-1 ocular infections 702 

can result from reactivation of latent virus that was originally established in the trigeminal 703 

ganglion following non-ocular infection (Maroui et al., 2016; Toma et al., 2008). 704 

Recurrent HSV-1 infection can present with dendritic ulcers, which represent active viral 705 

replication, or immune mediated stromal keratitis. ‘Herpes Stromal Keratitis (HSK)’ can 706 

occur with or without epithelial involvement and can be further sub-divided into two 707 

categories: necrotizing and non-necrotizing (Rowe et al., 2013). The former is a severe 708 

vision threatening infection and often managed surgically, whereas non-necrotizing HSK 709 

causes stromal inflammation without epithelial defect and is frequently referred to as 710 

immune keratitis or disciform keratitis (Knickelbein et al., 2009; Rowe et al., 2013). 711 

Studies employing mouse model have provided substantial evidence of the role of 712 

macrophages (Cheng et al., 2000), dendritic cells (Jiang et al., 2015), natural killer cells 713 

(Carr et al., 2008) and neutrophils (Tumpey et al., 1996) in HSV-1 OS disease 714 

pathogenesis. All of these cell types are known to contribute in HSV-1 clearance from 715 

the cornea. HSV-1 infection of corneal epithelial cell cultures has been reported to show 716 

expression of cytokines and interferons via activation of TLR7 (Li et al., 2006) and TLR9 717 

(Takeda et al., 2011). HSV-1 recognition by immune cells is mainly mediated via TLR3, 718 

TLR7 and TLR9 (Hochrein et al., 2004; Krug et al., 2004; Sarangi et al., 2007; Taube et 719 

al., 2015). Activation of these TLRs was shown to induce production of type-I IFNs, 720 

proinflammatory cytokines and chemokines, resulting in further recruitment of immune 721 

cells (Yang et al., 2005; Zhang et al., 2007). T-cells, in particular, CD4+ subsets have 722 

been shown to be the principal mediators of HSK immunopathology (Gangappa et al., 723 

1999; Lepisto et al., 2006). Whilst CD8+ T-cells are involved in immune surveillance of 724 

HSV-1 infected neurons in trigeminal ganglia and prevent virus reactivation from latency 725 

(Liu et al., 2000; St Leger et al., 2011).  726 

Adenoviruses are mainly responsible for 75% of cases of conjunctivitis worldwide (Jhanji 727 

et al., 2015). Adenoviral ocular infections are presented as epidemic keratoconjunctivitis 728 

(EKC; involves both cornea and conjunctiva) whereas isolated adenoviral conjunctivitis 729 

without corneal involvement is also reported (Jhanji et al., 2015). The National 730 

Surveillance Centre reported about 1 million cases per year of EKC in Japan alone (Aoki 731 

and Tagawa, 2002; Kaneko et al., 2011). Other forms of adenoviral infections termed as 732 
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pharyngoconjunctival fever (PCF) also involves the conjunctiva. Subepithelial multifocal 733 

cellular infiltrates and formation of pseudomembranes are two common complications 734 

associated with EKC (Chintakuntlawar and Chodosh, 2010). The former may cause 735 

visual impairment if it involves the visual axis with persistent subepithelial opacity. 736 

However, lack of effective antiviral agents has made the treatment of adenoviral 737 

infections difficult. Clinically it is often managed by topical steroids to reduce associated 738 

inflammation (Viswalingam, 1993). Adenoviruses are in majority sensed by TLRs such 739 

as TLR2, -4, -7, -8 and -9 (Blasius and Beutler, 2010; Fejer et al., 2011; Huang and 740 

Yang, 2009). Interaction of DC with adenoviruses activates TLR9-mediated type I IFN 741 

responses (Fejer et al., 2008), whereas TLR2, 4 and 9 on macrophages elicits IL-12, 742 

MCP-1 and RANTES production (Nociari et al., 2009; Yamaguchi et al., 2007). 743 

However, recent studies have reported that the double-stranded DNA (dsDNA) of 744 

adenoviruses could also induce type-I IFN and proinflammatory cytokines without 745 

activating TLR-dependent pathways (Hendrickx et al., 2014; Ishii et al., 2006; Nociari et 746 

al., 2007). Animal models of adenovirus keratitis have provided considerable evidence 747 

of neutrophils, macrophages and dendritic cells in disease pathogenesis 748 

(Chintakuntlawar et al., 2007; Hamrah and Dana, 2007; Ramke et al., 2016). Corneal 749 

fibroblasts from human and mouse were also shown to contribute towards 750 

immunopathology by increase production of IL-8, IL-6, IP-10 and MCP-1 in response to 751 

adenovirus infection (Chodosh, 2006; Natarajan et al., 2003; Rajaiya et al., 2008; Xiao 752 

and Chodosh, 2005).  753 

Although as mentioned above that defensins possess potent antiviral activity, it was not 754 

known whether OS infection due to adenovirus or HSV has any effect on AMP 755 

production. Our group was the first to demonstrate the low levels of HBD-9 during viral 756 

keratoconjunctivitis (Abedin et al., 2008). This interesting result led us to further test the 757 

expression of known AMPs and TLRs during OS diseased conditions including viral 758 

keratoconjunctivitis. Of 6 AMPs tested, we demonstrated an increased expression of LL-759 

37 and LEAP-1 (also known as hepcidin) (Mohammed et al., 2011a). In similar samples, 760 

we also showed elevated levels of TLR2, TLR7, TLR8 and TLR10 mRNA (Mohammed 761 

et al., 2011a). As there is no known ligand for TLR10 available and it is likely that TLR10 762 

could play an essential role during viral infections, at least on OS; It is imperative to 763 
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further validate the role of TLR10 during viral infections using gene-knockout mice or 764 

siRNA-mediated TLR10 knockdown. A recent study has confirmed the anti-inflammatory 765 

role of TLR10 demonstrating direct inhibition of TLR2 responses and increase IL-1R 766 

antagonist production (Oosting et al., 2014). Similarly, TLR10 knockdown in a monocytic 767 

cell line (THP-1) was shown to attenuate the proinflammatory cytokines that are induced 768 

in response to activation of TLR2, TLR4 and TLR5 (Le and Kim, 2016). In HSK diseased 769 

corneas, increased mRNA expression of TLR4, 7, 8 and 9 was also reported, whereas 770 

TLR7 mRNA was only shown to be elevated in non-active HSK cornea (Jin et al., 771 

2007a). Together, these studies indicate an unequivocal role of TLRs in HSV-1 disease 772 

pathogenesis. A recent study showed that LEAP-1 was reduced in response to hepatitis 773 

C virus (HCV) infection of primary hepatocytes (Liu et al., 2012). In contrast, IL-6 was 774 

shown to induce LEAP-1 expression both in-vitro in human hepatocytes (Wrighting and 775 

Andrews, 2006) and in-vivo in mouse liver (Pietrangelo et al., 2007). HSV-1 infection of 776 

corneal epithelial cells and corneal fibroblast was also shown to induce IL-6 levels in a 777 

TLR-dependent manner (Hayashi et al., 2006). From these studies, it could be 778 

postulated that elevated levels of LEAP-1 in viral keratoconjunctivitis specimen could be 779 

mediated via IL-6. However, this needs to be further validated in a separate study and 780 

potentially tested in an animal model of viral keratoconjunctivitis. We have also studied 781 

and elucidated   RNase-7 mRNA expression in viral keratoconjunctivitis specimen. We 782 

noted a modest increased in RNase-7 mRNA levels in viral keratoconjunctivitis samples 783 

(Figure 1). A recent study has also demonstrated an induced expression of RNase-7 in 784 

keratinocytes infected with dengue virus (Surasombatpattana et al., 2011). RNase-1, -2, 785 

-3 and -5 are shown to exhibit strong antiviral activity against RSV and HIV-1 (Bedoya et 786 

al., 2006; Domachowske et al., 1998a; Domachowske et al., 1998b; Koczera et al., 787 

2016). However, the antiviral activity of RNase-7 against HSV needs to be investigated.  788 

3.3. Fungal infection 789 

Fungi are opportunistic pathogens and are recognized as the commonest cause of 790 

ocular morbidity in sub-tropical countries (Shah et al., 2011). In such regions, fungal 791 

keratitis may constitute up to 50% of all cases of ulcerative keratitis (Saad-Hussein et 792 

al., 2011). It may occur secondary to trauma, any vegetative injury and contact-lens 793 

wear (Klotz et al., 2000). Fungal keratitis is also common in immuno-compromised 794 
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patients and in those suffering from chronic dry eye (Klotz et al., 2000). More recently, 795 

fungal keratitis cases in temperate regions such as UK have risen and its risk is mainly 796 

associated with contact-lens use and ocular surface trauma. A recent retrospective 797 

study has reported an upward trend of FK incidence from 4.5 cases per year (between 798 

1994 to 2006) to 14 cases per year (between 2007 to 2014) at a single centre in the UK 799 

(Ong et al., 2016). More than 70 species of fungi are known to cause ocular mycoses. 800 

Candida, Aspergillus and Fusarium species are common causative organisms (Said et 801 

al., 2011). Clinically, fungal keratitis presents as dry and raised satellite lesions with a 802 

feathery border, stromal infiltration, endothelial plaque and hypopyon. However, mixed 803 

bacterial and fungal infections and severe fungal infections that resemble Pseudomonas 804 

keratitis are difficult to diagnose (Said et al., 2011). Management of FK is challenging 805 

due to several factors such as delayed diagnosis, limited availability of broad-spectrum 806 

antifungal agents, and poor corneal penetration of available antifungals (Said et al., 807 

2011). Therefore, it is warranted that alternative antifungal treatment modalities for sight-808 

threatening fungal infections are identified. 809 

AMPs offer promise due to their distinct antifungal properties. Both native and synthetic 810 

peptides of AMPs have been developed and studied extensively for their antifungal 811 

properties. The α-defensins have been shown to exhibit potent fungicidal activity against 812 

Aspergillus fumigatus (Levitz et al., 1986), Cryptococcus neoformans (Alcouloumre et 813 

al., 1993) and Candida albicans (Edgerton et al., 2000). The candidacidal activity of 814 

HNP-1 and histatin-5 (found in human saliva) was attributed to their non-lytic release of 815 

mitochondrial ATP and metal chelation (Edgerton et al., 2000; Puri and Edgerton, 2014). 816 

HBD-1, -2 & -3 and LL-37 have also been shown to display antifungal effects against 817 

Candida spp. (Durnas et al., 2016; Joly et al., 2004; Krishnakumari et al., 2009; Vylkova 818 

et al., 2007b). Both β-defensins and cathelicidin have been shown to induce yeast cell 819 

death by affecting membrane permeabilisation (den Hertog et al., 2005; Durnas et al., 820 

2016; Krishnakumari et al., 2009). HBD3 and LL-37 are also known to bind to the C. 821 

albicans cell wall component, β-1, 3-exogluconase Xog1p, thereby reducing its infectivity 822 

(Chang et al., 2012). Recent studies have reported the potent candidacidal activity of 823 

RNase-3 and RNase-7 at a low micromolar concentration (Harder and Schroder, 2002; 824 

Koczera et al., 2016; Salazar et al., 2016). They have been shown to exhibit a dual 825 
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mechanism of action against C. albicans, namely membrane destabilization and 826 

perturbation of cellular RNA (Salazar et al., 2016). A recent study has demonstrated the 827 

fungicidal role of psoriasin in protection of psoriasis lesions against fungal infection 828 

(Hein et al., 2015). Notably, a reduced form of psoriasin (a linear peptide) showed 829 

activity against A. fumigatus but not C. albicans. The mechanism of fungicidal action 830 

was imparted via zinc chelation and induction of fungal apoptosis (Hein et al., 2015). 831 

Similar to psoriasin (S100A7), calprotectin (S100A8/A9 dimer) has also been shown to 832 

exhibit antimicrobial activity against a range of pathogens (Clohessy and Golden, 1995; 833 

Damo et al., 2013; Zackular et al., 2015). A recent study has demonstrated the essential 834 

role of calprotectin-derived from neutrophils in Aspergillus keratitis using S100A9 835 

knockout mice (Clark et al., 2016). It was also shown that recombinant calprotectin 836 

inhibited hyphal but not conidial growth of A. fumigatus (Clark et al., 2016). 837 

Similar to gram positive bacteria (Frick et al., 2003; Omardien et al., 2016; Peschel and 838 

Sahl, 2006), fungi have also developed numerous escape mechanisms against AMPs 839 

(Swidergall and Ernst, 2014). In particular, C. albicans has been shown to evade 840 

histatin-5 effect via three mechanisms: influx/efflux pumps, activation of stress-response 841 

pathways and secretion of proteases (Swidergall and Ernst, 2014). Firstly, C. albicans 842 

allows intracellular uptake of histatin-5 by influx transporters Dur3/Dur31 (Kumar et al., 843 

2011). Once inside, histatin-5 induces ATP efflux, which triggers the formation of 844 

reactive oxygen species (ROS) and further activation of the HOG (high osmolarity 845 

glycerol) stress-response pathway (Vylkova et al., 2007a). Ultimately, it leads to 846 

extrusion of histatin-5 via efflux transporter, Flu1 (Li et al., 2013) and subsequent 847 

inactivation by the secreted aspartate proteases (SAP 9/10) when outside the cell (Puri 848 

and Edgerton, 2014; Swidergall and Ernst, 2014). C. albicans has also been shown to 849 

evade other AMPs such as LL-37, HNP-1, histadin-5 and HBD1 via secreted 850 

glycosylated exodomain protease, Msb2 (Puri et al., 2015; Swidergall et al., 2013; 851 

Szafranski-Schneider et al., 2012).  852 

TLR2, 4 and 9 are known to recognize and become activated in response to the fungal 853 

PAMPs such as mannans, β-glucan, zymosan and fungal DNA (Romani, 2011; 854 

Smeekens et al., 2013). Other innate immune receptors such as nucleotide 855 

oligomerization domain 2 (NOD2), galectin 3, complement receptor 3 (CR3) and dectin-856 
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1 have also been shown to play an essential role in eliciting innate immune response 857 

against fungi (Netea et al., 2008; Xu et al., 2012; Zhao et al., 2016a; Zhu et al., 2015). 858 

Recent studies have indicated that a polymorphism in TLR4 is linked to pulmonary 859 

aspergillosis (Bochud et al., 2008) and systemic candidiasis (Van der Graaf et al., 2006), 860 

whereas a point mutation in TLR9 increases the risk to allergic bronchopulmonary 861 

aspergillosis (Smeekens et al., 2013). Single nucleotide polymorphism in TLR1 862 

(Plantinga et al., 2012), TLR2 (Woehrle et al., 2008) and TLR3 (Nahum et al., 2011) 863 

genes have also been reported to increase the risk of candidiasis but these results have 864 

not yet been confirmed in larger cohorts.  865 

At the OS, TLR2 and TLR4 have also been implicated in host response against 866 

Fusarium solani (Jin et al., 2008; Jin et al., 2007b), A. fumigatus (Guo and Wu, 2009; Jie 867 

et al., 2009; Zhao and Wu, 2008) and C. albicans (Yuan and Wilhelmus, 2010) infection. 868 

TLR5 has not being directly implicated in fungal keratitis, but its exogenous activation 869 

with flagellin has been shown to be protective against C. albicans infection. Notably, this 870 

was mediated through murine cathelicidin and neutrophils (Gao et al., 2011) and in 871 

another study through CXCL10 producing CXCR3 positive natural killer (NK) cells (Liu et 872 

al., 2014). In a C. albicans keratitis model, Yuan and co-workers have demonstrated an 873 

increased level of cathelicidin and reduced levels of mBD1 and -2 mRNA (Yuan et al., 874 

2010). Similarly, reduced level of mBD1 has also been reported during oral candidiasis 875 

(Tomalka et al., 2015). Polymorphism in human DEFB1 gene (HBD1) has been 876 

implicated in susceptibility to oral candidiasis (Jurevic et al., 2003). A recent study has 877 

correlated the role of mBD3 to increased susceptibility of CCAAT/Enhancer binding 878 

protein-β (C/EBPβ) transcription factor knockout mice to systemic candidiasis (Simpson-879 

Abelson et al., 2015). Similarly, genetic deficiency of cathelicidin has been shown to 880 

increase the disease severity of C. albicans keratitis (Gao et al., 2011). Using human 881 

CECs, increased levels of LL-37, HBD2 and HBD3 have also been reported in response 882 

to heat-killed C. albicans (Hua et al., 2014). Collectively, these studies indicate an 883 

important role of AMPs in host immunity against C. albicans infection. During F. solani 884 

corneal infection, increased expression of murine cathelicidin, murine β-defensin 3 885 

(mBD3) and mBD4 have been reported (Kolar et al., 2013). Using siRNA knockdown 886 
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and genetic knockout mice, this study has also established that mBD-3 and -4 and 887 

cathelicidin play an important role in defense against F. solani (Kolar et al., 2013).  888 

3.4. Protozoan infection 889 

Acanthamoeba is a free-living protozoan that is capable of causing vision debilitating 890 

corneal infection. The infective form is the motile trophozite, and a dormant form exists 891 

as a cyst. Acanthamoeba trophozoites feed on bacteria, fungi and other organism to 892 

replicate and propagate. Trophozoites revert to a cyst form during adverse changes of 893 

pH, temperature, nutrient supply and desiccation. Risk of acanthamoeba keratitis (AK) is 894 

related to contact-lens wear and corneal injury (Otri et al., 2013). A recent genetic study 895 

has reported 19 genotypes (T1 to T19) of acanthamoeba (Corsaro et al., 2015) and T4 896 

genotype has been frequently isolated from AK patients (Derda et al., 2015). In the 897 

developed world, poor hygiene and improper storage of contact-lenses has been 898 

identified as risk factors for contact-lens related AK (Cope et al., 2016; Radford et al., 899 

2002). Clinically, AK is associated with severe pain, blurred vision, watery eyes, 900 

photophobia, hypopyon, diffuse inflammation and in 50% of patients ring-like corneal 901 

infiltrates are also present (Sun et al., 2006a; Tu et al., 2008). Diagnosis and treatment 902 

of AK is challenging and if not treated early, could lead to vision loss (Dua et al., 2009). 903 

During the early stage, AK is often confused with herpes keratitis and when the patient 904 

presents at an advanced stage it is mistaken for fungal keratitis (Alkharashi et al., 2015). 905 

To compound matters, AK also presents as mixed infection due to its symbiotic 906 

relationship with bacteria and fungi (Iovieno et al., 2010). Currently, there are no 907 

licensed drugs available for treatment of AK. Most often it is aggressively managed by 908 

combination of antibiotics, antifungals and topical biguanides (Azuara-Blanco et al., 909 

1997; Dart et al., 2009; Otri et al., 2013). Penetrating keratoplasty is required when 910 

medical treatment is unsuccessful or when AK has advanced to the formation of 911 

extensive corneal abscess or perforation (Alkharashi et al., 2015; Azuara-Blanco et al., 912 

1997).  913 

Both innate and adaptive immune systems have been shown to play a pivotal role in 914 

host immunity against acanthamoeba. Macrophages and neutrophils are key players in 915 

AK and are shown to kill both trophozoites and cysts (Hurt et al., 2003b; Stewart et al., 916 
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1992). Immunoglobulin A (IgA) induced immune responses have been shown to be 917 

protective against acanthamoeba. IgA has been shown to specifically facilitate 918 

complement activation and neutrophil-mediated killing of acanthamoeba (Stewart et al., 919 

1992; Stewart et al., 1994) but there are contrasting reports on the lytic activity of 920 

complement against acanthamoeba (Pumidonming et al., 2011; Toney and Marciano-921 

Cabral, 1998). Mannose-induced cytolytic proteins, acanthamoeba plasminogen 922 

activator (aPA) (Alizadeh et al., 2007; Hurt et al., 2003a; Tripathi et al., 2014; Yang et al., 923 

1997) and sIgA (Said et al., 2004) have also been implicated in AK disease 924 

pathogenesis. Acanthamoeba was shown to establish corneal infection via a major 925 

virulence protein, mannose-binding protein (MBP), which mediates adhesion to the 926 

corneal surface (Garate et al., 2006b; Panjwani, 2010). Oral immunization of animals 927 

with MBP but not aPA prior to infection was shown to reduce the AK disease severity 928 

(Alizadeh et al., 2007; Garate et al., 2006a; Hurt et al., 2003a). More recently, the role of 929 

TLRs as innate immune sensors of Acanthamoeba spp. has been demonstrated. Using 930 

in-vitro and in-vivo AK models, TLR4 has been shown to play an essential role in OS 931 

immunity against Acanthamoeba spp. (Alizadeh et al., 2014; Pan and Wu, 2012; Ren et 932 

al., 2010; Ren and Wu, 2011). Similarly, an increased expression of TLR2 and TLR4 933 

was also reported in Acanthamoeba T4 strain infected murine lungs (Derda et al., 2016) 934 

and brain (Wojtkowiak-Giera et al., 2016). Mattana and co-workers have recently 935 

demonstrated that acanthamoeba are capable of countering host inflammatory 936 

responses by inducing IL-10 production from effector cells (Mattana et al., 2016).  937 

AMPs derived from animal sources such as magainins, gomesin and trialysin have been 938 

shown to be effective against trophozoites and cysts of Acanthamoeba spp. (Ondarza, 939 

2007; Sacramento et al., 2009; Schuster and Jacob, 1992). However, acanthamoeba 940 

trophozoites have been shown to secrete proteases (Ondarza, 2007) that impair the 941 

host responses (Na et al., 2002) including proteolysis of certain AMPs (Sacramento et 942 

al., 2009). A recent study has demonstrated that activation of protease-activated 943 

receptor-2 (PAR2) on corneal epithelial cells in response to trophozoite protease (aPA) 944 

elicits IL-8 production (Tripathi et al., 2014). It was suggested that inhibition of PAR2 945 

would alleviate the inflammation associated with AK.  946 
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We have previously demonstrated that HBD9 mRNA was found to be low in AK patient 947 

specimen (Abedin et al., 2008). In subsequent study, we also profiled the expression of 948 

other AMPs such as HBD1 to 3, LL-37 and LEAP1 & 2 in samples obtained from AK 949 

patients. Unlike HBD9, we did not observe any significant changes in levels of tested 950 

AMPs (Mohammed et al., 2011a). We have also investigated the expression of RNase-7 951 

in AK specimen (n=3) and as shown in figure 1, we noted 3-fold increase in RNase-7 952 

levels. The unusual trend of AMPs in AK specimen led us to further characterize the 953 

AMPs expression in in-vitro CEC cultures exposed to live A. castellanii trophozoites (Otri 954 

et al., 2010). HBD3 was increased 10 fold, whereas HBD2, LEAP1 & 2 and RNase-7 955 

were increased up to 4 fold. LL-37 was slightly increased and HBD1 showed a reduced 956 

pattern for all time-points of treatment. HBD9 showed a trend of decreased expression 957 

for first 6 hours and modestly increased to 1.5 times at 9 hours (Otri et al., 2010). Unlike 958 

in samples taken from AK patients, in-vitro infection study showed variable AMPs 959 

expression suggesting that the trophozoite-induced endogenous factors present in the 960 

milieu of diseased cornea would have dampened the AMPs production n-vivo. Although 961 

we were first to provide the profile of known human AMPs in response to acanthamoeba 962 

infection, it is still unknown whether these possess amoebicidal activity. Studies to 963 

improve our understanding of the role of AMPs against acanthamoeba such as to 964 

establish the role of TLRs or PARs in induction/reduction of AMPs in response to 965 

acanthamoeba infection and to elucidate the amoebicidal activity of human AMPs in 966 

combination with other potent AMPs or protease inhibitors are warranted  967 

Trypanosoma infections are commonly endemic in Central and South America and 968 

globally affect about 25 million people (Soares-Silva et al., 2016; Tanowitz et al., 1992). 969 

Trypanosoma cruzi is responsible for causing Chagas’ disease. It occurs when an 970 

infected reduviid bug (Triatoma infestans) bites humans. The parasite is transmitted to 971 

the ocular surface either by systemic dissemination of trypomastigotes or by direct 972 

inoculation when the insect bites near the orbit (Klotz et al., 2000). Trypanosoma cruzi 973 

derived glycosylphosphatidylinositol (GPI) anchor protein is specifically recognized by 974 

TLR2 on APCs leading to activation of adaptive immunity against the parasite (Gil-975 

Jaramillo et al., 2016; Tarleton, 2007). In addition, TLR4 and TLR9 have also been 976 

implicated in recognition of T. cruzi (Bafica et al., 2006; Kayama et al., 2009; Koga et al., 977 
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2006). Mice deficient in UNC93B1, an essential protein that is required for TLR3, TLR7 978 

and TLR9 activation, are highly susceptible to infection with T. cruzi (Caetano et al., 979 

2011; Fukui et al., 2009). These studies indicate the critical role of TLRs in host 980 

resistance to T. cruzi infections. Human α-defensins such as HD-1 (Madison et al., 981 

2007) and HD-5 (Tanaka et al., 2010), equine cathelicidin (eCATH1) (Cauchard et al., 982 

2016) and bovine AMP (BMAP18) (Haines et al., 2009) were shown to exhibit strong 983 

anti-protozoan activity against Trypanosoma spp. Furthermore, a recent study has 984 

demonstrated an increased expression of HD1 from colonic epithelial cells in response 985 

to T. cruzi infection (Johnson et al., 2013). The anti-parasitic activity of AMPs against 986 

Trypanosoma brucei (McGwire et al., 2003) Cryptosporidium parvum (Zaalouk et al., 987 

2004) Toxoplasma gondii (Morampudi et al., 2011), Leishmania major (Dabirian et al., 988 

2013) and microsporidia species (Leitch and Ceballos, 2009) is well known. However, 989 

we did not find any reports on the effect of AMPs on T. cruzi. The effect of T. cruzi 990 

infection on OS epithelial cells and AMP production also remains to be elucidated. One 991 

reason for lack of AMPs study would be that trypanosoma ocular infections are 992 

uncommon in the developed world and are only endemic in Latin America (Requena-993 

Mendez et al., 2016; Tanowitz et al., 1992). 994 

4. Exogenous induction of AMPs for OS disease treatment 995 

Rapid emergence of antibiotic-resistant pathogens and steady decline in development of 996 

newer antibiotic agents has contributed towards the rise in number of deaths due to 997 

infectious diseases globally (Mortality and Causes of Death, 2015, 2016; Spellberg et al., 998 

2008). Alternative approaches such as direct application of AMPs singly or in 999 

combination and exogenous induction of host AMPs to treat infectious diseases need to 1000 

be pursued. As mentioned above, AMPs are produced constitutively at the mucosal 1001 

surfaces or modulated in response to microbial infection. Numerous studies have 1002 

demonstrated the potency of AMPs against a range of microbes. AMPs have also been 1003 

shown to enhance the efficacy of conventional antibiotics against P. aeruginosa biofilms 1004 

(Dosler and Karaaslan, 2014) and MRSA biofilms (Mataraci and Dosler, 2012). TLR 1005 

activation in response to microbial infection induces AMP expression that enables 1006 

clearance of pathogens (Ganz, 2003; Stolzenberg et al., 1997; Zasloff, 2002) and 1007 

accelerates wound healing (Mangoni et al., 2016). Exogenous activation of TLR5 with 1008 
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flagellin has been shown to protective against P. aeruginosa (Kumar et al., 2007b) and 1009 

C. albicans keratitis (Gao et al., 2011; Liu et al., 2014) and also enhanced wound 1010 

healing (Gao et al., 2010) by inducing LL-37, HBD2 and CXCL10 levels.  1011 

Exogenous induction of AMPs during disease conditions could be beneficial to host 1012 

tissue. This might reduce the unwanted inflammation from proinflammatory cytokines 1013 

that are produced particularly in response to TLR activation. One of the first non-TLR 1014 

exogenous inducer of AMPs identified was L-isoleucine, an essential amino acid (Figure 1015 

4), which has been shown to induce β-defensins in bovine kidney epithelial cells 1016 

(Fehlbaum et al., 2000). L-isoleucine induced mBD3 & -4 has been shown to be 1017 

protective in a late-stage multi-drug resistant tuberculosis mouse model (Rivas-Santiago 1018 

et al., 2011). L-isoleucine was shown to be non-toxic and also increased HBD2 in lung 1019 

epithelial cells (Rivas-Santiago et al., 2011). Another exogenous inducer is sodium 1020 

butyrate (BA), a short chain fatty acid, which was shown to induce LL-37 expression and 1021 

provided protection against shigellosis (Raqib et al., 2006; Schauber et al., 2003). 1022 

Similarly, phenylbutyrate (PBA) alone and in synergy with vitamin D3 was also shown to 1023 

induce LL-37 expression in a variety of human cell lines (Figure 4) (Steinmann et al., 1024 

2009). Jiang and co-workers have demonstrated that hexanoate, heptanoate and 1025 

valerate are more potent than butyrate in promoting LL-37 expression (Jiang et al., 1026 

2013). However, the molecular mechanisms associated with LL-37 induction are unclear 1027 

and possibly it could be a result of de novo protein synthesis through unknown factors. 1028 

Entinostat, a histone deacetylase inhibitor was shown to induce LL-37 and HBD1 but not 1029 

HBD2 in HT-29 cells (Miraglia et al., 2016; Ottosson et al., 2016). It was also 1030 

demonstrated that STAT3 (signal transducer and activator of transcription-3) and HIF-1α 1031 

(hypoxia-inducible factor-1α) are essential for LL-37 induction by Entinostat (Figure 4) 1032 

(Miraglia et al., 2016). Fan and co-workers have recently demonstrated that commensal 1033 

anaerobic bacteria of gut induce LL-37 via activation of HIF-1α and provide protection 1034 

against C. albicans colonization (Fan et al., 2015). Furthermore, HIF-1 targeting drugs 1035 

are in clinical trials for anemia and other infectious diseases (Bhandari and Nizet, 2014).  1036 

Vasoactive intestinal peptide (VIP) is an essential neuropeptide that plays a bidirectional 1037 

role in communication between immune and neuronal systems (Delgado et al., 2004). It 1038 

is secreted by neurons and activates immune cells and modulates both innate and 1039 
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adaptive immunity (Delgado et al., 2004). During P. aeruginosa keratitis, VIP is elevated 1040 

and promotes wound healing by reducing proinflammatory cytokines (Szliter et al., 2007). 1041 

This protective effect of VIP was attributed to the enhanced production of growth factors, 1042 

which in turn are shown to regulate cytokine and mBD2 & -3 production (Figure 4) 1043 

(Jiang et al., 2011).  VIP has also been shown to protect against P. aeruginosa by 1044 

modulating the adhesion molecules (Berger et al., 2010) and TLRs expression (Jiang et 1045 

al., 2012).  1046 

Vitamin D3 plays an important role in calcium homeostasis (Holick et al., 1972; Raisz et 1047 

al., 1972). It is mainly obtained from dietary source or from the action of UV-B light on 1048 

skin (Wallis and Zumla, 2016). Vitamin D3 was also shown to modulate the immune 1049 

system (Lin and White, 2004) and induce the expression of TLR4 co-receptor CD14 1050 

(Hmama et al., 1999). It was demonstrated that vitamin D3 could induce LL-37 and 1051 

HBD2 both directly and in synergy with TLR4 in a variety of cell types (Figure 4) 1052 

(Gombart et al., 2005; Wang et al., 2004). Vitamin D3 was also shown to provide 1053 

protection against P. aeruginosa (Wang et al., 2004) and M. tuberculosis (Liu et al., 1054 

2006) through induced secretion of AMPs. TLR2-induced LL-37 and HBD-2 expression 1055 

in monocytes was shown to be dependent on IL-1β and vitamin-D receptor (VDR) 1056 

pathway (Liu et al., 2009). In human keratinocytes, LL-37 induction by vitamin D was 1057 

shown to be dependent on retinoid X receptor α (RXRα) rather than VDR pathway 1058 

(Svensson et al., 2016b). Th-1 and Th-2 cytokines on the other hand were shown to 1059 

have differential effect on TLR2-mediated vitamin D metabolism and subsequently on 1060 

AMP secretion from human monocytes (Edfeldt et al., 2010). Significant levels of active 1061 

vitamin D3 metabolite, 1α-hydroxylase enzyme and VDR expression have been 1062 

demonstrated in OS epithelium (Yin et al., 2011) and various intraocular epithelial cells 1063 

(Alsalem et al., 2014). It was also reported that exogenous application of vitamin D3 1064 

could enhance the barrier function of OS and intraocular epithelium (Alsalem et al., 1065 

2014; Yin et al., 2011). Subsequent studies have demonstrated that deficiency of VDR 1066 

could modulate the function of epithelial junction proteins (Lu and Watsky, 2014) and 1067 

reduce the wound healing ability of corneal epithelium (Elizondo et al., 2014). 1068 

Immunomodulatory and antimicrobial function of vitamin D3 too has been demonstrated 1069 

(Reins et al., 2015; Reins et al., 2016; Svensson et al., 2016a; Svensson et al., 2016b). 1070 
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Vitamin D3 in synergy with TLR3 and other viral RNA sensors was shown to induce LL-1071 

37 (Figure 4) and reduce proinflammatory cytokines and MMP9 in corneal epithelial cells 1072 

(Reins et al., 2015; Reins et al., 2016).  1073 

5. Future directions   1074 

Microbial keratitis poses several challenges. It is the commonest cause of corneal 1075 

blindness in the world; the efficacy of existing antibiotics is rapidly declining due to 1076 

evolving microbial resistance; the pace of development of new antibiotics is very slow 1077 

and those that are available are too expensive and inaccessible to the vast majority of 1078 

the world’s population who need them most. Often keratitis is polymicrobial with 1079 

bacterial infections combined with fungal, parasitic or both. Licensed antibiotics for the 1080 

latter two are few and far between. By virtue of their wide range of activity against 1081 

viruses, bacteria, fungi and parasites; their low propensity to induce microbial resistance 1082 

and the limited ability of microbes to counter their effect, AMPs have the potential to 1083 

provide answers to most, if not all, of the challenges posed.  1084 

A lot more however needs to be done before this potential can be realized. AMPs that 1085 

are specific to different groups of organisms have to be clearly defined and the ideal 1086 

concentrations of these for maximum efficacy will need to be worked out. The tendency 1087 

of AMPs to induce an inflammatory response could be countered by exploiting the 1088 

synergistic action of multiple AMPs in low concentrations. This will need to be 1089 

systematically worked out. Strategies to promote endogenous secretion of AMPs need 1090 

to be explored as this approach holds promise. As is often the case, progress in one 1091 

direction uncovers other challenges. The non-microbicidal effects of AMPs could be a 1092 

friend or foe. Suppression of inflammation with microbial killing can be an advantage but 1093 

other consequences could lead to undesirable side effects. It is likely that in the coming 1094 

years answers to these questions will be found as research in the field progresses. Our 1095 

group is investigating the synergy between AMPs to determine the optimal 1096 

concentrations and combinations that are effective against pathogenic isolates from 1097 

clinically infected patients.  1098 

 1099 
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Use of AMPs in combination with antibiotics also holds promise in reducing the dose 1100 

and strength of the antibiotic required to treat the infection. This has considerable 1101 

implications for reducing toxicity of antibiotics, which at present can itself cause damage 1102 

to the ocular surface and cause more inflammation and scarring despite combating the 1103 

infection.  1104 

Synthetic peptides with antimicrobial effects have been developed (Brown et al., 2014; 1105 

Silva et al., 2016). This is one direction in which research is very likely to accelerate. 1106 

The ability to tailor-make peptides will enable blending of different synthetic peptides in 1107 

one dispensation, to combat polymicrobial corneal infections.  This approach will also 1108 

open the door to utilize and adapt AMP structures from a wide range of species, for 1109 

example protegrins (Brown et al., 2014) and clavanins (Silva et al., 2016) to treat human 1110 

infections.  1111 

With regard to the burden of blindness secondary to cornea infections, another serious 1112 

limitation is the paucity, in relation to demand, of donor human corneas to perform vision 1113 

restoring corneal transplant surgery. With improving ability to employ AMPs as 1114 

alternatives to antibiotics with improved killing efficacy and immunomodulatory 1115 

properties, earlier control of infection thereby limiting scarring, can have a huge impact 1116 

on eye banks and the need to develop engineered corneas, which is providing a 1117 

challenge of its own. 1118 

  1119 
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Legends for Figures 2349 

Figure 1: RNase-7 gene expression in healthy control and disease groups. Quantitative 2350 

mRNA levels of RNase-7 in impression cytology specimens collected from healthy control 2351 

subjects and patients with bacterial, viral and acanthamoeba (n=3 for each). One-way ANOVA 2352 

was applied for statistical analysis of mRNA levels between control and disease groups. Data 2353 

are presented as means ± standard error of mean (SEM).  2354 

 2355 

Figure 2: Mechanisms involved in AMPs production in corneal epithelial cells in response 2356 

to bacterial infection. Pathogen-associated molecular pattern (PAMPs) are recognized by toll-2357 

like receptors (TLRs) and trigger multiple intracellular signalling pathways resulting in production 2358 

of antimicrobial peptides (AMPs). TLR2/1 and TLR2/6 are shown to recognize diacylated (DAL) 2359 

and triacylated (TAL) lipopeptides respectively. Lipopolysaccharide (LPS) on bacterial surface is 2360 

recognized by LPS binding protein (LBP) and presented to CD14 (a glycosylphosphatidylinositol 2361 

(GPI)-anchored protein; also present in a soluble form in tear fluid). CD14 facilitates the transfer 2362 

of LPS to myeloid differentiation-2 (MD-2)/TLR4 complex and modulates LPS recognition. In 2363 

naïve OS cells, TLR4 is present intracellularly but upon infection or inflammation it is transported 2364 

to the cell surface (Lang et al., 2011; Lee et al., 2012). Flagellin (Flag), a flagellar protein of 2365 

gram-negative bacteria is recognized by TLR5 on cell-surface. TLR9 present on endosomes 2366 

recognizes CpG containing bacterial DNA, however, its role in production of AMPs and 2367 

associated signalling mechanisms in corneal epithelial cells is unknown. Endogenous IL-1β 2368 

released in response to bacterial infection is recognized by interleukin-1 receptor (IL-1R) on cell 2369 

surface. Upon ligand binding, Toll/IL-1-receptor (TIR) domain of both TLR and IL-1R triggers 2370 

recruitment of the adaptor molecule myeloid differentiation primary response protein 88 (MyD88). 2371 

TLR4 activates both MyD88 and TIR-domain-containing adaptor protein inducing interferon-β 2372 

(TRIF). Both MyD88 and TRIF initiate phosphorylation and ubiquitylation of several other 2373 
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molecules (not shown) leading to activation of transforming growth-factor-β activated kinase-1 2374 

(TAK1). In the cytosol, TAK-1 triggers activation of mitogen-activated protein kinases (MAPKs) 2375 

and nuclear-factor-κ-B (NF-κB) pathways. This allows nuclear translocation of NF-κB and 2376 

activator protein 1 (AP-1; complex of Jun and Fos protein) transcription factors and modulates 2377 

expression of target AMPs. Dexamethasone (Dex), an anti-inflammatory steroid binds to 2378 

glucocorticoid receptors (GR) in cytosol and leads to production of MAPK phosphatase 1 2379 

(MKP1), which in turn inhibits MAPKs and reduces production of AMPs downstream of TLRs.  2380 

 2381 

Figure 3: Role of TLRs in RNase-7 expression in human corneal epithelial cells. The cells 2382 

were incubated with following TLR ligands: Pam3CSK4, Poly I:C, LPS, Flagellin, R848 and CpG 2383 

dinucleotide for indicated time-points (in hours). Cell lysate was prepared for RNase-7 analysis 2384 

by quantitative polymerase chain reaction (qPCR) using taqman probes on Mx3005p qPCR 2385 

machine (Agilent technologies). RNase-7 mRNA expression was normalized to the 2386 

housekeeping gene (18s rRNA) and relative gene expression was calculated by delta-delta Ct 2387 

method. Data represents means ± standard error of mean (SEM) of triplicate samples repeated 2388 

twice. Statistical analysis was performed with One-way ANOVA and Bonferroni posthoc test on 2389 

GraphPad prism v7.0a. * denotes p<0.05 and ** denotes p<0.001.  2390 

 2391 

Figure 4: Schematic diagram representing the exogenous induction of AMPs. Vasoactive 2392 

intestinal peptide (VIP) and L-isoleucine (L-iso) were shown to induce the expression of murine 2393 

β-defensins and protect against P. aeruginosa keratitis and M. tuberculosis lung infection. 2394 

Butyrate, phenyl butyrate and Entinostat are shown to induce LL-37 in a variety of cell types. 2395 

Entinostat was shown to modulate LL-37 expression via STAT3-HIF1α pathway. Of all 2396 

exogenous inducers of AMPs, Vitamin D3 has been studied the most and was shown to induce 2397 
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(via vitamin-D receptor (VDR) and retinoid X receptor-α (RXRα) both LL-37 and HBD2 in 2398 

synergy with TLR2, TLR3 and TLR4; RIG1/MDA5 and butyrate.  2399 





HBD1

HBD2

HBD3

HBD9

LL-37

RNase7
S100A7

LEAP1 LEAP2

MAPKs

TAK-1

Jun Fos

M
yD

88

M
yD

88

M
yD

88

MyD88

TR
IF

TRIF

NF-�B

Degraded I�B

TLR4
TLR5 TLR2-TLR6

TLR2-TLR1

TLR9

TLR4

MyD88

M
yD

88

IL-1R

TAL

DAL

LPS

Flag

CpG
DNA

LBP

CD14

MD2

IL-1β

Dex

GR

�MKP1





VIP

Vitamin D3Butyrate/

Phenyl Butyrate

EntinostatL-Iso

mBD2
mBD3

mBD3
mBD4

LL-37

VDR/RXR

HBD2

TLR3/RI
G1/MD
A5

STAT3

HIF-1α
HIF-1α

TLR2/
TLR4


