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Abstract: PNT stands for Positioning, Navigation, and Timing. 
Space-based PNT refers to the capabilities enabled by GNSS, 
and enhanced by Ground and Space-based Augmentation 
Systems (GBAS and SBAS), which provide position, veloc-
ity, and timing information to an unlimited number of users 
around the world, allowing every user to operate in the same 
reference system and timing standard. Such information has 
become increasingly critical to the security, safety, prosperity, 
and overall qualityof-life of many citizens. As a result, space-
based PNT is now widely recognized as an essential element 
of the global information infrastructure. This paper dis-
cusses the importance of the availability and continuity of 
PNT information, whose application, scope and significance 
have exploded in the past 10–15 years. A paradigm shift in 
the navigation solution has been observed in recent years. It 
has been manifested by an evolution from traditional single 
sensor-based solutions, to multiple sensor-based solutions 
and ultimately to collaborative navigation and layered 
sensing, using non-traditional sensors and techniques – so 
called signals of opportunity. A joint working group under 

Research Article

Allison Kealy, Guenther Retscher*, Charles Toth, Azmir Hasnur-Rabiain, Vassilis Gikas,  
Dorota Grejner-Brzezinska, Chris Danezis and Terry Moore

Collaborative Navigation as a Solution 
for PNT Applications in GNSS Challenged 
Environments – Report on Field Trials of a Joint 
FIG / IAG Working Group

the auspices of the International Federation of Surveyors 
(FIG) and the International Association of Geodesy (IAG), 
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1  Introduction and Motivation
Numerous civilian and military applications, including, 
intelligent transport systems (ITS), location based services 
(LBS) and personal navigation systems are heavily depend-
ent on the availability of Global Navigation Satellite Systems 
(GNSS) signals. Hence, the provision of robust navigation 
and timing (PNT) information is critical for many applica-
tion. An essential question is: what are the users looking 
for? In fact, the user is, generally, not focused on how the 
PNT information is obtained, but that it is provided reliably 
and continuously with the accuracy suitable for the applica-
tion. For a growing number of users, navigation should be 
done in the background; it ought to serve its purpose, and it 
should not be the objective by itself. Consider smartphones; 
they can track themselves with the use of digital maps and 
location sensors and services, and are also capable of track-
ing other smartphones (a network of users?) [18].

Finding the correct balance between the performance 
(availability, continuity, accuracy and integrity) and cost is 
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a significant challenge for many applications such as ITS 
and LBS. GNSS has become the primary means of obtaining 
positioning solutions, enabling users to easily compute their 
positions, at a global scale, with an achievable accuracy of 
between 5 to 15 m. The major drawback of GNSS, however, 
is that it requires an open-sky view and therefore does not 
work in dense urban environments, tunnels, underground 
car parks etc. In such situations, differential GNSS, external 
sensor systems or mobile communications network-assisted 
techniques may be used to enhance partial, stand-alone 
GNSS performance. Also, for certain applications, the use 
of other sources of available information, such as receiver 
elevation obtained from a digital terrain model (DTM), may 
potentially only recover a small fraction of the missing or bad 
GNSS observables [5]. Hence, relying on GNSS alone may not 
always be sufficient for critical applications such as vehicu
lar collision avoidance systems, emergency response and 
autonomous vehicles. Also, these applications typically need 
sub-metre and potentially even centimetre level accuracy, 
and high update rates (> 10  Hz), which are not achievable 
using standalone GNSS solutions [45]. 

To overcome the shortcomings of GNSS PNT the 
concept of Collaborative Positioning (or also referred to as 
cooperative positioning) CP has been developed, to further 
improve the navigation capability of a group of users. Col-
laborative positioning techniques leverage the availability 
of a communications infrastructure to share information 
and data between objects within a neighbourhood. Devel-
oped originally for use across wireless sensor networks, CP 
techniques offer a viable solution for improving position-
ing for land mobile applications. CP is a logical evolution of 
the multi-sensory navigation approach that has developed 
over the last few years, where GNSS augmentation was pro-
vided for each individual user by sensors such as Inertial 
Measurement Units (IMU’s), barometers, magnetometers, 
odometers, or digital compasses, for applications ranging 
from pedestrian navigation, to georeferencing of remote 
sensing sensors in land-based and airborne platforms. The 
simple objective of much of the CP research is to develop an 
algorithm, which will provide an optimum navigation solu-
tion for all networked users for which a navigation solution 
is possible. Hence, CP can increase the accuracy, integrity, 
availability, and continuity of the positioning solution. The 
information shared between the users, or between sensor 
platforms, can be in the form of inter-nodal ranges, relative 
speed, orientation, and satellite related data. 

The work presented in this paper is an initiative of a 
joint working group on ‘Ubiquitous Positioning Systems’ 
within the International Federation of Surveyors (FIG), 
Commission 5 and the International Association of 
Geodesy (IAG), Commission 4. The foci of the working 

group are the performance characterisation of positioning 
sensor technologies that can play a role in the develop-
ment of ubiquitous positioning systems; the theoretical 
and practical evaluation of current algorithms for meas-
urement integration; the development of new integration 
algorithms and innovative modelling techniques and the 
generation of formal parameters that describe the per-
formance of emerging technologies.

A series of field experiments related to the concept 
of CP and navigation were performed at the University of 
Nottingham in May 2012. In this paper, a discussion of the 
importance of robust PNT information in our daily lives is 
presented in section 2. An introduction and description of 
the CP concept is presented in section 3. The test platforms, 
field experiments and selected results are given in sections 4 
and 5 respectively. Finally, in section 6 some concluding 
remarks and an outlook on future work are given.

2  �Importance of Continuous Position, 
Navigation and Timing (PNT)

Over the last 10 to 15 years the application, scope and signif-
icance of PNT information have exploded. Space-based PNT 
refers to the capabilities enabled by GNSS, possibly enhanced 
by Ground and Space-based Augmentation Systems (GBAS 
and SBAS). Collectively, the space-based PNT capabilities 
provide position, velocity, and timing information to an 
unlimited number of users around the world, allowing every 
user to operate in the same reference system and timing 
standard. Such information has become increasingly critical 
to the security, safety, prosperity, and overall quality of life 
of many citizens. As a result, space-based PNT is now widely 
recognized as an essential element of the global information 
infrastructure. Examples showing the growing importance 
and necessity of continuous PNT information are: 

–– Intelligent Transportation Systems (ITS), 
–– Vehicle collision avoidance systems, 
–– Personal / pedestrian navigation (PN), 
–– Location-Based services (LBS),
–– Air traffic management, 
–– Unmanned, and autonomous land-based and aerial 

vehicles (UAVs) navigation for mapping and surveil-
lance (this application extends to land and under
water applications),

–– Navigation and guidance of teams of robots, etc., 
–– Emergency response and rescue operations in large 

warehouses, multi-storey buildings, train / metro sta-
tions, airports, etc., 

–– First responders and fire-fighters, 
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–– Dismounted soldier navigation, 
–– Asset location and tracking, 
–– Precision farming.

Consequently, robust PNT plays a vital role in these appli-
cations. Another example of a growing importance of PNT 
is in utilization of wireless communication systems and 
mobile computing. Global PNT combined with the prolife-
ration of wireless technologies, mobile computing devices 
and mobile Internet has fostered a new growing interest 
in location-aware systems and services. The PNT systems 
supporting these applications are becoming increasingly 
multi-sensory.

2.1  Requirements for Continuous PNT

Robust positioning is typically described in terms of per-
formance metrics including accuracy, availability, conti-
nuity and integrity. These metrics have been fully defined 
in the aviation community where safety critical needs 
have mandated requirements for standards of positioning 
performance. Similar trends are evidenced in the maritime 
sector with the international maritime organisation (IMO) 
developing standards for positioning based on current 
and future capabilities of GNSS. The land mobile sector, 
however, has lagged significantly behind with the adop-
tion of similar performance based standards and there are 
currently no formal specifications for land-based applica-
tions. The emerging capabilities of Cooperative Intelligent 
Transport Systems (C-ITS) have significantly changed the 
landscape for positioning information and in particular, 
positioning quality. C-ITS are driving the development of 
an increasing range of safety and liability critical appli-
cations that will require certain levels of positioning per-
formance in order to realise the maximum benefits for 
improving road safety and efficiency of the road network.

In aviation (see e. g. [32]), for instance, the metrics 
used to describe positioning quality are the aforemen-
tioned parameters: accuracy, integrity, continuity and 
availability. Accuracy is defined as the degree of conform-
ance of an estimated or measured position at a given time 
to a defined reference value. Integrity relates to the level 
of trust that can be placed in the information provided by 
the navigation system. It includes the ability of the naviga-
tion system to provide timely and valid warnings to users  
when the system must not be used for the intended operation 
or phase of flight. Specifically, a navigation system is required 
to deliver a warning (an alert) of any malfunction (as a result 
of a set alert limit being exceeded) to users within a given 
period of time (time-to-alert). Continuity of a navigation  

system is its capability to perform its function without 
non-scheduled interruptions during the intended period of 
operation. Availability is defined as the percentage of time 
during which the service is available (i. e. reliable informa-
tion is presented) for use taking into account all the outages 
whatever their origins. The service is available if accuracy, 
integrity and continuity requirements are satisfied.

What is evident across these definitions is that their 
computation is based on the availability of sufficient 
measurements that not only facilitate computation of 
the position solution but typically will enable the iden-
tification and potential rejection of incorrect or spurious 
measurements. To ensure that sufficient measurements 
are available the majority of positioning solutions rely 
on the integration of multiple sensors and signals. These 
hybrid solutions typically integrate GNSS with meas-
urements from inertial navigation sensors or similar in- 
vehicle sensor systems. Over periods of prolonged GNSS 
outages, as experienced in dense urban environments, 
the error characteristics of these sensors mean that in 
many cases simply integrating additional measurements 
will not improve the overall outcome. 

Driven by the availability of Dedicated Short Range 
Communications (DSRC) for vehicle to vehicle and vehicle 
to infrastructure communications, the shortcomings of 
GNSS in C-ITS can be addressed using CP techniques. In 
such cases, vehicles within a vehicular ad-hoc network 
(VANET) share positioning related information with 
other vehicles or the surrounding infrastructure, in an 
attempt to try to improve their positioning solutions. 
Figure 1 shows a CP concept for VANET ITS applications. 
For vehicle collision avoidance systems, for instance, a 
navigation-to-navigation (Nav2Nav) approach is required 
to reduce road accidents. Hence, vehicle-to-vehicle (V2V) 
and vehicle-to-infrastructure (V2I) communications must 
be established. Thus, ITS include telematics and all types 
of communications in vehicles, between V2V, and between 
vehicles and fixed locations (e. g. V2I). The sharing of 
information between vehicles can only be achieved 
through the availability of a communications infrastruc-
ture that supports information exchanges between vehi-
cles in the VANET and / or between vehicles and roadside 
infrastructure. The backbone of this approach is the wide-
spread availability and use of navigation systems with no 
additional installation requirement, as well as the avail-
ability of map databases in navigation systems, which 
support map matching and predictive navigation. 

However, ITS are not restricted to Road Transport –  
they also include the use of information and com-
munication technologies (ICT) for rail, water and air 
transport, including navigation systems. The mission 
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navigation technologies, and associated technological 
innovations in weather forecasting, data and sensor net-
working and digital communications, must be developed. 
Modern navigation, positioning and imaging techniques 
are integrated, and networked, to provide reliable loca-
tion and tracking of objects, vehicles and people, as well 
as for obstacle avoidance. Applications of state-of-the-art 
technologies in air traffic management, airport operations 
and infrastructure management will, according to the 
Federal Aviation Administration (FAA), “allow more air-
craft to safely fly closer together on more direct routes, 
reducing delays and providing unprecedented benefits for 
the environment and the economy through reductions in 
carbon emissions, fuel consumption and noise.” 

PNT is also an indispensable part of navigation of 
unmanned land-based and aerial vehicles (UAVs or now-
adays referred to as Unmanned Aerial Systems UASs). It is 
expected that the use of unmanned platforms will rapidly 
grow in the future, as the regulatory issues are expected to 
be eased, and, ultimately resolved. This is particular sig-
nificant in the case of UAVs, according to the FAA NextGen 
program.2 By the end of 2013 a roadmap for the use of UAVs 
was announced by the FAA with special mitigations and 
procedures to safely accommodate limited UAS access to 
the US airspace.3 Six test sites are now being established 
in the US. In the European Union the institutional situation 
is much more complex as each member state has its own 
regulations. Information about the EU roadmap may be 
found in this document4 and on a new designated website 
about Remotely Piloted Aircraft Systems (RPAS).5 Further 
information about UAS regulations and technologies has 
been published in Coordinates magazine issue No. 1, Vol. 
X in January 2014.6

Another important application area for PNT is preci-
sion farming. The concept of the “farm of the future” is 
enabled by accurate and continuous PNT and other geo-
spatial technologies and infrastructure. Hence, precise 
PNT is required anywhere in the world, at all times, for 
automated and autonomous farm machinery navigation 
and precision application of seed, water, fertiliser and 
pesticides. The farm’s operation is facilitated by remote 
sensing and GNSS, integrated into a GIS, to measure and 

2 http://www.faa.gov/nextgen/; http://www.faa.gov/news/press_ 
releases/news_story.cfm?newsId=15334
3 http://www.faa.gov/news/press_releases/news_story.cfm?news-
id=15334
4 http://easa.europa.eu/certification/docs/policy-statements/E.
Y013-01_%20UAS_%20Policy.pdf
5 http://ec.europa.eu/growth/sectors/aeronautics/rpas/index_
en.htm 
6 http://mycoordinates.org/uav-yet-to-fly-high/

Figure 1: Positioning concept for VANET ITS applications (from Intelli-
gentdots cited in [25]).

Figure 2: Cooperative system applications including all types of 
communications (from ETSI1).

of ETSI’s Technical Committee Intelligent Transport 
Systems (TC ITS)1 is the creation and maintenance of 
standards and specifications for the use of information 
and communications technologies in future transport 
systems in Europe. As illustrated in Figure 2, the various 
types of ITS rely on radio services for communication 
and use specialized technologies. 

For air traffic management an evolution from a 
ground-based system of air traffic control to a satellite
based system has to be achieved. To realise this goal, avia-
tion-specific applications of the existing technologies that 
provide PNT, such GNSS and its integration with other 

1 http://www.etsi.org/index.php/technologies-clusters/technolo-
gies/intelligent-transport
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monitor soil moisture and yield. Local GNSS networks 
help to improve weather forecasting, accurate terrain 
elevation and land cover information integrated with 
a GIS for agronomy applications such as complex crop 
management.

The precision requirements of current PNT applica-
tions, as a function of the required temporal interval, is 
illustrated in Figure 3. Note that the positioning scale is in 
powers of 10 and that range of geodetic applications spans 
approximately nine orders of magnitude in the time scale. 
Clearly, most of the engineering and navigation applica-
tions require both high accuracy and real-time availability 
on a continuous basis. The most demanding applications 
at the shortest time interval include GNSS / GPS seismology 
and tsunami warning systems. At the longest time intervals, 
the most demanding applications include sea level change 
and geodynamics. Applications such as the navigation of 
aircrafts are on the few meter level whereby the highest 
precision is required for landing – especially in height. For 

vehicle navigation the required positioning precision is on 
the dm level and higher for autonomous navigation.

Some applications listed in Figure 3 happen in GNSS- 
challenged environments, where GNSS signals may be of 
inadequate availability, limited accuracy and / or continuity, 
or may not be available at all. In other words it can be said 
that these applications operate within the so-called GNSS 
navigation gap as illustrated in Figure 4. The applications 
enumerated in the beginning of this section which require 
continuous PNT operate largely in this gap. In the follo-
wing, the challenging use case of autonomous navigation 
is picked as one example demonstrating that a CP solution 
(see section 3) is an essential part of such an application. 

2.2  Autonomous Navigation Challenges

Solving the autonomous navigation problem will result 
not only in operational infrastructure development and 
the necessary regulatory issues, but also in a multitude of 
engineering and technical breakthroughs in sensing and 
control (amongst other areas). As far as the PNT compo-
nent is concerned, the exploitation of multi-sensory data 
acquired on the platform as well as inter-platform infor-
mation exchange, which is used for both navigation and 
geospatial data acquisition, are expected to evolve rapidly. 
It can be argued that the ultimate holy grail of unmanned 
systems is autonomous operation, which means that 
an unmanned vehicle should be able to complete tasks 
without direct control from a human operator. Autono-
mous operation would fundamentally revolutionise many 
aspects of our way of life. One of the most fundamental 
autonomous behaviours in navigation is getting from point 
A to point B without human intervention. This task may 
sound very simple, considering a widespread availability 
of GNSS, but in fact, it is a very difficult and multi-faceted 
problem. In real-world applications an autonomous plat-
form must operate in an unstructured environment, deal 
with other users of the land-based transportation network 
or air space, detect terrain formations and man-made 
obstacles, maintain a roll-over stability, manage power, 
communications with other systems around it, and cope 
with numerous other factors. 

In land-based autonomous navigation, high accuracy 
and reliable PNT information is essential for lane track-
ing, car following, intersections, passing, obstacle avoid-
ance, parking and dynamic route planning. Some of the 
ongoing research trends are:7 

7 http://www.quantumsignal.com/robotics/autonomous_navigation/

Figure 3: Precision of the current geodetic applications as a function 
of the required time interval (courtesy of National Research Council 
(NRC) of the National Academies, USA).

Figure 4: The GNSS navigation gap (courtesy of Prof. John Raquet, 
Air Force Institute of Technology (AFIT), USA).
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–– Image-based navigation or visual odometry – a tech-
nology for estimating robot position and orientation 
based on analyzing of camera (vision) data;

–– Terrain-based navigation and terrain sensing – tech-
nologies for autonomously sensing and analyzing 
surface, terrain characteristics and other components 
of environment to locate and navigate; and

–– Mobility prediction – leveraging sensed environment 
and terrain information and new, advanced algo-
rithms to analyse robotic traversability.

Figure  5 illustrates an example of an autonomous land-
based vehicle built at Ohio State University OSU ACT 
(Autonomous City Transport)8 for the US DARPA Grand 
Challenge 2007 [18]. As can be seen in Figure 5 the vehicle 
included sensors ranging from GPS and inertial naviga-
tion to cameras, radar and laser range finders. 

2.3  �The Role of Smartphones as Driver for 
Continuous PNT 

Almost three billion mobile applications currently in use 
rely on positioning information. In the recent GNSS market 

8 http://archive.darpa.mil/grandchallenge/Teams/osu_act.html

report, issue 4, 2015, from the European GNSS Agency9 it is 
reported that GNSS is used around the globe, with almost 
four billion GNSS devices in use in 2014. By 2019, this is 
forecasted to increase to over seven billion – for an average 
of one device per person on the planet. Although there is 
significant regional variation in the world in GNSS pene-
tration in terms of devices per capita, the up-take of smart-
phones in emerging regions will change the situation in 
almost every corner of the world. As a result, the ‘digital 
divide’ is forecasted to narrow. Smartphones continue to 
dominate (around three billion in 2014), being the most 
popular platform to access LBS, followed by devices used 
for road applications (0.26 billion). It is forecasted that 
the market for smartphones will grow by 6.2 % per year 
through 2023. Other devices may be less numerous, but bil-
lions of passengers, professionals, consumers and citizens 
worldwide benefit from their application in efficient and 
safe transport networks, in productive and sustainable 
agriculture, surveying, and critical infrastructures.

These statistics prove notable that navigation services 
and LBS on smartphones have become very popular 
Hence, the characteristics (i. e. accuracy, limitations and 
potential) of modern low-cost, mass-market user sensors 
in smartphones for vehicle location in narrow / deep urban 

9 http://www.gsa.europa.eu/2015-gnss-market-report

Figure 5: Essential parts of DARPA Challenges OSU ACT 2007.
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canyons and in partly indoor environments is briefly 
discussed. Figure 6 shows the position test statistics (pre-
cision and accuracy) for two contemporary smartphones 
obtained under open sky (on the left) and obstructed sky 
(on the right) environment in the along-track and off-
track directions. The precision is a position quality figure 
reported directly from the smartphone navigation sensors 
and shows the measurement repeatability or reproducibil-
ity, whereas accuracy expresses the proximity of the nav-
igation solution to the actual (“true”) trajectory realized 
by a rigorously defined reference trajectory, which in this 
case was obtained using a high-end GNSS / IMU (NovAtel 
SPAN) system. Moreover, the along-track error represents 
the error in the direction of movement between the com-
puted position and the ground truth whereas the off-track 
error reflects the lateral offset of the computed position 
from the reference travel path. The analysis of the GNSS 
data indicates that the overall positioning performance of 
the smartphones relates to the driving environment. An 
analysis of the vehicle location statistics reveals a deteri
oration in the standard deviation of accuracy and the 
precision mean by around 75 % and 30 % respectively in 
the deeply obscured environment compared to the open 
sky scenarios, whereas the along-track statistics exhibit 
marginally higher values compared to the off-track ones. 
Further analysis of the corresponding error time series 
revealed that the precision values obtained for the first 
smartphone (iPhone 5S) tend to be more stable than those 
for the second one (HTC One S) which might associated 
with differences in the data filtering procedures applied 
by their manufactures [8].

As expected, the smartphone tests show, remarkably, 
that in the GNSS navigation gap the performance degrades 
quickly, especially prior to entering indoor environments. 
Thus, using the traditional GNSS receiver approach, indi-
vidual or all users in the area may be denied the ability to 

navigate. However, in a number of situations, groups (or 
networks) of GPS users may operate together using useful 
satellite signal information combined together from mul-
tiple users. The multi-sensory approach has then been 
further extended by the concept of CP [18]. In the follow-
ing section the CP concept is discussed in more detail.

3  Collaborative Navigation Concept
A paradigm shift in the navigation solution has been 
observed in recent years. It has been manifested by an evo-
lution from a traditional single sensor-based solution, to a 
multiple sensor-based solution, and now to collaborative 
navigation and layered sensing, often using unconven-
tional sensors and techniques. This development fol-
lows-on from the multisensor navigation approach where 
GNSS augmentation was provided for each individual user 
by such sensors as IMUs, barometers, magnetometers, 
odometers, or digital compasses for applications ranging 
from pedestrian navigation, to georeferencing of remote 
sensing sensors in land-based and airborne platforms (see 
e. g. [4, 9, 10, 12, 13, 31, 34, 37, 41, 42]). 

3.1  Operational Principle of CP

Collectively, a network of GNSS users (hereafter referred to 
as nodes) may be able to receive sufficient satellite signals, 
augmented by inter-nodal ranging measurements and 
other sensors, such as IMUs or active / passive imaging 
sensors, in order to form a joint position solution [15, 17, 
18, 22, 25, 26, 46]. This network of GNSS users represents 
a distributed antenna aperture with large inter-element 
spacing, which has some advantages and also drawbacks. 
The primary advantage is the increased spatial resolution, 
which allows discriminating between signals sources 
with small angular separations. An increased inter- 
element spacing, however, will lead to the loss of correla-
tion between the signals received at various nodes. Thus, 
the main challenge here is to develop approaches for com-
bined beam pointing and null steering using distributed 
GNSS apertures.

Figure  7 illustrates the concept of CP in a dynamic 
network environment for emergency response and rescue. 
Sub-networks of nodes navigating jointly, can be created 
ad-hoc, as indicated by the circles in Figure 7. Some nodes 
may be part of different sub-networks. In a larger network, 
the selection of a sub-network of nodes is an important 
issue, as in case of a large number of users in the entire 

Figure 6: Estimated mean value and standard deviation of position-
ing trueness and smartphone reported precision values [8].
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network, computational and communication loads may 
not allow for the entire network to be treated as one entity. 
Still, information exchange among the sub-networks must 
be assured. Conceptually, the sub-networks can consist of 
nodes of equal hierarchy or may contain a master node 
(also called anchor node) that will normally have a better 
set of sensors and will be collecting measurements from 
all client nodes to perform the CP solution. It should be 
noted that the concept of a master node is also crucial 
from the standpoint of distributed GNSS aperture, where 
it is mandatory to have a master node responsible for 
combining all available GNSS signals. For more detail the 
reader is referred to [15]. 

The key components of a collaborative network system, 
illustrated in Figure 7, are the:

–– Inter-nodal ranging sub-system (each user can be 
considered as a node of a dynamic network), 

–– Optimisation of dynamic network configuration, 

–– Time synchronisation, 
–– Optimum distributed GNSS aperture size for a given 

number of nodes, 
–– Communication sub-system, 
–– Selection of master or anchor nodes, and
–– Network topology.

3.2  CP for ITS

In the context of C-ITS, the CP approach relies on informa-
tion being shared between vehicles within a VANET, to over-
come the limitations for positioning in the GNSS navigation 
gap. In this case, the information shared between vehicles 
can be in the form of inter-vehicle ranges, relative speed, ori-
entation, and satellite related data. This is the case when all 
or some of the nodes (vehicles) are equipped with GPS. The 
network CP is done once the ranges and the position infor-
mation are exchanged between the nodes. Sharing informa-
tion could help the vehicles within the network to obtain 
positioning solutions even when the requirement of GNSS 
positioning cannot be met [25]. As an example, Figure  8 
shows a possible positioning architecture for a VANET. 

3.3  Sensors, Signals and Techniques

Different sensors and signals such as GNSS, UWB, WiFi, 
RFID, IMUs, MEMS-based accelerometers, gyroscopes, mag-
netometers, barometric pressure sensors, as well as optical 

Figure 8: Example for a CP positioning architecture in a VANET [25].

Figure 7: CP concept for emergency situations showing ground and 
combined ground/airborne ad-hoc networks.
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Table 1: Overview of most commonly used sensors for collaborative navigation [3, 10, 18, 19, 21, 27, 34, 35, 38, 39].

Type Sensor Navigation Information Typical Accuracy Characteristics

Radio Fre-
quency (RF)

GNSS
Position coordinates

Velocity

X, Y, Z

vx, vy

vz

~ 10 m
(DGPS: 1–3 m )

~ 0.05 m / s
~ 0.2 m / s

Line-of-sight system  
Positions in global reference system

Pseudolites 
(e. g. Locata) 

X, Y, Z
vx, vy, vz

comparable to GNSS Line-of-sight system  
GNSS or non-GNSS signals in the  
1–2 GHz frequency band

UWB X, Y, Z dm-level Time-of-Arrival (ToA) and Angle-of-Arrival 
(AoA)
Resistant to multipath fading
Strong signal penetration
Possible interference with GNSS

WiFi X, Y 1–3 m
2–6 m

for WiFi fingerprinting  
for WiFi signal strength-based  
Positions in a local frame
Signal attenuation due to distance  
Penetration through walls  
Multipath affected
Interference from other users in 2.4 GHz 
frequency band

RFID X, Y depending on cell size
1–3 m 

for RFID cell-based positioning  
for RFID Fingerprinting  
Different range for passive and active 
RFID tags 

INS
Accelerometer atan, arad, az < 0.03 m / s2 Subject to drift  

Calibration should be made when GPS is 
available

systems and image-based sensors (i. e., digital cameras 
[19, 28], Flash LiDAR [38] and laser [39]) may be used in CP. 
Table 1 lists the most commonly used example sensors and 
techniques that can be used in collaborative navigation. 
Depending on the application additonal and newly emerg-
ing sensors / signals may be integrated. For a comprehen-
sive compendium of currently available and deployable 
sensors the reader is referred to the paper [36] presented 
in a recent previous issue of this journal. Especially in con-
nection with ubiquitous indoor localisation the trend is to 
integrate infrastructure-based systems (such as infrared or 
ultrasonic signals, UWB, RFID or other RF-based systems) 
with all available systems using so-called ‘signals-of- 
opportunity’ (i. e. RF signals not intended for positioning, 
for instance, WiFi, digital television, mobile telephony, FM 
radio and others) together with inertial navigation sensors. 
Commonly used sensors in a multi-sensor portable naviga-
tor, e. g., the personal navigator of the Ohio State University 
or the University of Nottingham (compare Table 3 or 4 for the 

detailed sensor specifications), include GNSS, IMU, mag-
netometer, barometer, step sensors (e. g. foot mounted), RF- 
and image-based ranging, etc. In general, a human location 
model is used to determine motion modes, such as running, 
walking, standing, etc., and aids navigation by distance 
travelled and direction estimation. The modeling, however, 
is quite complex and employs usually knowledge-based 
systems to infer information based on existing models and 
navigation status. Maps can be used to constrain position 
and heading. The key issue is the quality of georeferenc-
ing and data, including accuracy, spatial resolution, age of 
data, etc. A recent trend is the use of SLAM (Simultaneous 
Localization and Mapping) algorithms which are tailored to 
the available resources, hence at operational compliance. In 
the SLAM approach a map of an unknown environment is 
constructed or updated while simultaneously keeping track 
of an user’s or other mobile platform’s location within it. 
Popular approximate solution methods include the particle 
filter and extended Kalman filter (see section 3.4). 
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Type Sensor Navigation Information Typical Accuracy Characteristics

INS

Gyroscope heading φ 0.5°–3° Short term accuracy stability  
Not subject to external disturbances but 
to drifts 
Calibration should be made when GPS is 
available

Optical 
Systems

2D image-based α, β 0.01°–0.1° Passive line-of-sight system

Multi 2D image-based X, Y, Z
ω, ψ, κ

0.1 mm at image 
scale
0.01°–0.1°

Image overlap and conjugate points are 
required  
Scale is undefined

3D image-based X, Y, Z
ω, ψ, κ

0.01–1 m
0.01°–0.1°

Active line-of-sight system  
Scale is known through ranging

Optical sensor 
network

X, Y 
(Z optional)

few m Image overlap required for 3D

Laser X, Y, Z cm to dm Local or global reference frame

Others

Digital compass /  
magnetometer

heading φ 0.5°–3° Long-term accuracy stability  
Subject to magnetic disturbances 
Sensitive to tilt

Barometric pressure 
sensor

Z 1–3 m Requires calibration by a given initial 
height to provide heights with respect to 
a global reference frame

Temperature sensor T 0.2°–0.5° C For barometric height conversion  
Specifications are for low-cost sensors, 
e. g. which are built-in in smartphones or 
other mobile devices

Odometer n 0.01–0.1 % Long term stibilty 
Needs calibration

Step sensor n 2–20 % Subject to human characteristics and 
motion mode  
Should be calibrated when reference 
(GNSS, etc.) is available

Table 1: (Continued)

Figure  9 shows an example for a CP module consisting 
of a positioning device (GPS unit), communication and 
ranging device (Dedicated short-range communications 
DSRC), computational processor (Kalman Filter KF pro-
cessing unit) and digital map [25]. 

Dedicated short-range communications (DSRC) is a 
wireless communication channel designed specifically 
to support V2V and V2I communications. In the U. S., 
the Federal Communication Commission (FCC) has allo-
cated DSRC with a dedicated bandwidth of 75  MHz in 
the 5.850 to 5.925 GHz band, whereas the European Tele
communications Standards Institute (ETSI) has alloc
ated a dedicated bandwidth of 30  MHz in the 5.9  GHz 
band. DSRC is able to provide low latency, high speed 
communication, and strong and relative close proxim-
ity signals [33], hence making it a suitable candidate 

for the enablement of CP techniques within a VANET. 
In fact, DSRC underpins plans in the US to develop 
telematics regulations that will require new cars and 
light trucks sold in the US to be equipped with systems 
for V2V communications. Raising concerns about 
privacy, the intention is for “vehicles equipped with 
DRSC chips to receive and process signals from nearby 
DRSC-enabled cars to learn their location, direction 
and speed. If a driver does not react to an impending 
collision, the car could then sound a warning or apply 
the brakes automatically to prevent an accident.10” 
Fundamentally, DSRC communications combined with 

10 http://www.thetruthaboutcars.com/2014/02/u-s-dot-to-mandate-
vehicle-to-vehicle-telematics-for-crash-avoidance-sparking-privacy-
concerns/
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a robust positioning capability and the core technolo-
gies are required to realise the significant benefits of 
C-ITS for road safety [25]. 

3.4  CP Integration Algorithms

Many different types of network configuration and 
sensor integration techniques are possible in CP (see e. g. 
[25, 41, 42]). Perhaps one of the most widely used algo-
rithm is the Kalman Filter (KF). The KF is a recursive algo-
rithm that uses a series of prediction and measurement 
update steps to obtain an optimal, in a minimum variance 
sense, estimate of the state vector. The KF algorithm can 
be categorized into the prediction and update groups. 
Essentially, the prediction group describes how the state 
vector and its covariance propagate through time, based 
on the current state and assumed system model. Then, 
the update group updates the Kalman Gain, state vector 
and system variance. The Kalman Gain, in a loose sense, 
weights the process and measurements accordingly, taking 
account of their respective variances. Then, using the 
Kalman Gain, the state vector is updated with new meas-
urements. Finally, the system variance is updated, using 
both Kalman Gain and the a priori variance. The algorithm 
is then recursively applied to subsequent epochs. For 
non-linear systems, the Extended KF (EKF) is widely used 
where the process or measurement nonlinear models are 
linearized before implementing the KF. The integration of 
the sensor observations and inter-nodal range measure-
ments is performed either with loose, tight or ultra-tight 

coupling. Hence, the collaborative navigation solution is 
formed by integrating the inter-nodal range measurements 
to other users or platforms. The advantage of using a tight 
coupling approach is that the inter-nodal range measure-
ments directly are integrated to each node’s local mea
surements in order to calibrate the IMU errors even during 
GNSS outages. To strengthen the final CP solution, single 
user GNSS observables may be enhanced using external 
information such that derived from a terrain model and 
an estimate of its uncertainty. Depending on CP node 
configuration, the integration level of such an approach 
may be applied at a pre-processing stage to blend GNSS  
pseudo-ranges with receiver elevation and some knowl
edge of at least way-point direction through pre-filtering 
or potentially may be fully embedded in the KF model at a 
CP network level. 

Monte Carlo Localization (MCL), also known as particle 
filter (PF), is widely used for robot localization in an indoor 
environment where it uses fast sampling technique to rep-
resent the robot’s belief. As presented in [6], the MCL algo-
rithm is summarized as: starting with a prediction phase, 
a set of particles Sk–1 is sampled. Then each set is applied 
through a motion model by sampling P(xk|si

k–1, uk–1). This 
results in a new set of S'k, which approximates a random 
sample from the predictive density P(xk|zk–1). Next, the 
update phase is applied where measurements zk are taken 
into account to weigh all of the sampling sets, which is 
given by mi

k = p(zk|s'ki). Then Sk is computed by re-sampling 
from the weighted set. These two phases are repeated recur-
sively for the subsequent steps. The MCL has some advan-
tages over the other algorithms such as, unlike KF, MCL 
is able to represent multi-modal distributions, which is 
useful for self-localization and it is relatively easy to imple-
ment (see  [24]). The MCL algorithm is not only limited to 
robot localization, but extends to wireless sensor networks 
(WSN) as shown in [43]. 

Another algorithm used for WSN localization is the 
SPAWN algorithm. The SPAWN algorithm makes use of 
factor graphs (FG) and sum product algorithm (SPA) where 
the FG is a method of graphically represent a factorization 
of a Bayesian network while the SPA is a message passing 
algorithm for performing inference on the FG. Consider a 
WSN consisting a set of nodes and a set of anchors. Each 
node elaborates its information from the previous step 
from its last position estimation. Then it receives messages 
from visible anchors and neighbouring nodes. Using the 
new information, it updates its positional estimation and 
shares it with its neighbours. The messages shared among 
the nodes represent a probability density function. This 
makes the approach a truly distributed algorithm which is 
highly suitable for CP [44]. 

Figure 9: CP module consisting of positioning device (GPS unit), 
communication and ranging device (DSRC), computational 
processor (KF processing unit) and digital map [25].
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4  Nottingham Field Trials
The CP concept is investigated and validated based on 
field test data collected in a campaign at the University 
of Nottingham in one week of May 2012. A network of five 
kinematic platforms were employed in the field trials, i. e., 
a roof top train on the Nottingham Geospatial Building 
(NGB), two mobile mapping vans, and two personal nav-
igators from the Ohio State University (OSU) and the Uni-
versity of Nottingham. A sample of the platforms used in 
the experiments are shown in Figure 10. 

The train on the roof of the NGB was equipped with a 
Novatel GPS, a tactical grade Novatel SPAN IMU, and two 
MEMS-based IMU’s, i. e., the Xsens MTi-G and the Systron 
Donner Inertial MMQG, and an Omnisense UWB receiver 

Figure 10: Impressions from the Nottingham field experiments showing Charles Toth with the personal navigator from the Ohio State 
University (left), Dorota Grejner-Brzezinska with the personal navigator of the University of Nottingham (middle) and the roof top train 
on the Nottingham Geospatial Building (right).

SENSOR INTERFACE DATA RATE GPS TIMETAGGING RECORDING

Novatel GPS USB 10 Hz yes Internal

SPAN HG1700 IMU COM / USB 100 Hz GPSCard Laptop

Xsens MTi-G USB 100 Hz yes Laptop

Systron Donner Inertial MMQG USB 100 Hz yes Laptop

in some of the tests. The sensor specifications are given in 
Table 2. The personal navigator from the Ohio State Univer-
sity OSU consists of the sensors listed in Table 3. In addition, 
an Xsens MTi IMU, either an Omnisense or Thales UWB 
receiver and a tracking prism have been mounted on the 
personal navigator in some of the tests. The personal navig
ator from the University of Nottingham includes the sensors 
given in Table 4. Also, an Xsens MTi-G and an UWB receiver 
(Omnisense or Thales) was carried with the personal naviga
tor. The two mobile mapping vans were equipped with the 
sensors described in Table 5 and 6. Using DSRC the distances 
between the vehicles can be estimated by radio ranging 
for their positioning solutions besides sharing information 
among vehicles (see e. g. [1, 7]). The specifications of the 
DSRC transceivers can be found in Table 7.

Table 2: Sensor Specifications of the roof top train.

Table 3: Sensor Specifications of the personal navigator of the Ohio State University.

SENSOR INTERFACE DATA RATE GPS TIMETAGGING RECORDING

SPAN on OEMV3 COM / USB 50 Hz n / a Laptop II

iMAR FSAS IMU COM / USB 200 Hz GPSCard Laptop II

NavChip MEMS IMU USB 200 Hz Software Laptop I

eTrex recreational GPS n / a 1 Hz n / a Internal

HMR3000 magnetometer COM / USB 100 Hz Software Laptop II

PTB2000 barometer COM / USB 10 Hz Software Laptop II
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SENSOR INTERFACE DATA RATE GPS TIMETAGGING RECORDING

Step sensor USB 20 Hz Software Laptop II

Casio EXILIM / GPS camera I, image n / a 0.5 Hz Software Internal

Casio EXILIM / GPS camera II, video n / a 30 Hz n / a Internal

Microsoft Kinect 2D / 3D camera USB 5 Hz Software Laptop II

Table 4: Sensor Specifications of the personal navigator of the University of Nottingham.

SENSOR INTERFACE DATA RATE GPS TIMETAGGING RECORDING

Microstrain 3DM-GX3-25 Serial 100 Hz no11 PTDL12

Xsens MTi-G USB 100 Hz no11 Laptop

Leica GS10 with AS10 antenna n / a 10 Hz n / a Internal

u-blox ANTARIS 4 Serial 10 Hz n / a PTDL12

Table 5: Sensor Specifications of the mobile mapping van 1.

SENSOR INTERFACE DATA RATE GPS TIMETAGGING RECORDING

SPAN HG1700 IMU COM / USB 100 Hz GPSCard Laptop

DSRC Transceiver USB 10 Hz yes Internal / external 
(laptop)

Xsens MTi-G USB 100 Hz yes Laptop

Systron Donner Inertial MMQG USB 100 Hz yes Laptop

Table 6: Sensor Specifications of the mobile mapping van 2.

SENSOR INTERFACE DATA RATE GPS TIMETAGGING RECORDING

Leica GS10 with AS10 antenna n / a 10 Hz n / a Internal

CIMU COM / USB 100 Hz yes Internal

DSRC Transceiver USB 10 Hz yes Internal / external 
(laptop)

Xsens MTi-G USB 100 Hz yes Laptop

Systron Donner Inertial MMQG USB 100 Hz Yes Laptop

Different test scenarios with different mobile platforms 
in combined indoor / outdoor environments have been 
performed. Several scenarios on the roof of the NGB tested 
the use of the sensors on the train in conjunction with the 
personal navigators. In these tests the train moves along 

a known reference track in the shape of a figure of 8. The 
persons with the personal navigators partly followed the 
moving train or were walking in front of the train either in 
the same or different directions. In some of the tests also an 
UWB receiver from Omnisense was carried by the persons 
with the personal navigators, another one was mounted on 
the train and a fourth receiver was stationary. Apart from 
the movement on the building roof the persons with the 
personal navigators moved inside the building, went down-
stairs to the ground floor and walked outside and away from 
the building. Stops on survey markers outside the building 
were also made for checking. The path outside the building 

11 The MTi-G has an internal GPS receiver that can be used for 
time-stamping. To reduce the numbers of antennas, instead the 
Microstrain data is cross-correlated to this data against to derive the 
timestamps.
12 PTDL refers to the Precise Time Data Logger which is a serial data 
logger that also timestamps data using the internal u-blox receiver’s 
1PPS signal.

Table 3: (Continued)
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Figure 11: Two mobile mapping vans equipped with GNSS receivers, inertial sensors and DSRC transceivers.

led through parts of the Jubilee Campus of the University of 
Nottingham passing by several other buildings. Along the 
outdoor path the GNSS availability varied significantly. 

In a dedicated indoor test the positioning capabilities 
of the personal navigators inside the building was inves-
tigated. For that purpose six stationary UWB receivers 
from Thales were deployed in the building in the hallway, 
i. e. two each on the ground floor and on the first and 
second floor. Two other UWB receivers were carried by the 
persons with the personal navigators. In addition, a Leica 
total station was positioned on the ground floor near the 
building entrance for tracking of the personal navigators 
(which were equipped with a tracking prism). The two 
persons with the moving platforms walked around in the 
building, climbed the stairs up and down and also went 
outdoors to be able to receive GNSS signals. 

In the tests with two mobile mapping vans the per-
sonal navigators moved around the car park in front of the 
Nottingham Geospatial Building. The persons with the 
personal navigators finally went also inside the building 

PARAMETERS

Frequency 5.9 GHz

Bandwidth 75 MHz

Channels 7

Max transmit power 20 dBm

Interfaces Serial / USB / Ethernet

Inputs 5.9 GHz and GPS antennas 

Power supply 12 v DC

Data logging Internal / external (laptop)

GPS time tagging yes

Received signal attribute 
logging RSS / CFO

Packet time tag resolution Below 10 ns

Memory Internal / external (Micro SD)

Table 7: Specifications of the DSRC transceivers.
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at the end of this test. In addition, the mobile mapping 
vans were driven on road sections of the A52 Clifton Blvd. 
near the university campus to test the DSRC performance. 
Figure 11 shows the two mobile mapping vans equipped 
with the sensors listed in Table 5 and 6.

First results of these experiments are presented in 
the papers [22–24]. They indicate that CP is capable of 
providing significant navigation improvements, as well 
as enabling navigation in otherwise challenging envi-
ronments. The most important aspect is the continuity 
and availability of the navigation solution, particularly 
in the transition environments. Sub-meter to a few-meter 
level of accuracy can be achieved indoors and in transi-
tion environments, if image-based navigation is properly 
integrated with the IMU-supplied navigation informa-
tion, using (1)  tight integration (compare section 3) and 
(2) sensor calibration using GNSS signals during the clear 
line-of-sight navigation period [18]. 

The observation data of the Nottingham experiments 
has been made available online for interested researchers. 
Further information can be found at http://ubpos.net/. In 
the following section selected test results are presented 
and discussed. 

5  �Selected Field Experiment Test 
Results

In this section selected results from the Nottingham trials are 
presented. Firstly, a brief summary about the performance of 
the personal navigator of the Ohio State University is given, 
followed by an investigation of the use of UWB with the per-
sonal navigators. Then an approach called ‘Terrain-Aiding’ 
for GNSS pseudo-range data is discussed. To conclude this 
section tests with the two mobile mapping vans are described 
showing the performance of CP under different GNSS satel-
lite visibility conditions and partial outages. 

5.1  OSU Personal Navigator Performance 

Interest in personal navigation (PN) has been rapidly 
growing as advancements in sensor miniaturization and 
integration make the technology increasingly affordable. 
PN, in particular, is important in indoors, as in open-sky 
environment GNSS can provide adequate navigation 
performance. The OSU SPIN Lab has been involved in 
PN research for about a decade, with a primary focus on 
human motion modeling, using Artificial Intelligence (AI) 

techniques, image-based and collaborative navigation 
topics. PN navigation represents a rather different scenario 
compared to other platforms, such as aircraft and land 
vehicle navigation, as due to the slower motion the attitude 
can vary over a broad range; people can move sideways, 
turn rapidly, etc. This means that the classical trajectory 
estimation methods, which are mostly based on Extended 
Kalman-filter (EKF) solution, cannot be directly applied to 
PN navigation because of the high nonlinearity of motion 
model. Therefore, non-physical model-based approaches 
are considered, such as neural networks or Fuzzy logic 
that try to correlate the sensory data to the trajectory in a 
general way. In both cases, knowledge must be acquired 
in typical situations before the method actually can be 
applied to PN navigation (see [11, 29]). In addition, neural 
network may be combined with EKF for PN integrity moni-
toring (see [30]). Modeling the human motion can provide 
essential information to the trajectory estimation process, 
as it may narrow down estimation space, resulting in faster 
and more reliable solutions. For example, sensing footsteps 
and combining it with other sensory data can effectively 
support dead-reckoning and attitude estimation [14]. 

Image based navigation has been around for a long 
while, and was originally applied to airborne platforms; 
first based on optical imagery, and more recently laser-
scanning too (see [2]). Imaging sensors are particularly 
advantageous for PN, as they can effectively map the 
area around the platform and may provide information 
beyond navigation, such as obstacle avoidance or mon-
itoring other moving objects in the vicinity (see [20]). 
More recently, 3D or depth cameras (RGB-D) have become 
widely available, providing direct 3D observation of the 
object space, resulting in more robust solutions in most 
scenarios (see [40]). More importantly, the availability of 
imaging sensors is supported with powerful computer 
vision techniques, such as dense point matching, includ-
ing point cloud generation based on imagery and point 
cloud matching. In favorable conditions, such as not too 
complex object space with good texture and depth infor-
mation image based navigation could be quite accurate, 
reaching a few cm relative positioning accuracy. The Not-
tingham Field Trial was an important milestone in PN  
performance validation, as it provided a very controlled 
environment. The building inside had several reference 
point, the blueprint of the structure was available, and a  
robotic total station tracked to PN. In addition, UWB sensors 
were also used in the testing, to advance collaborative 
navigation research, two PN platforms acquired data. 
The performance evaluation has confirmed that cm and 
dm-level accuracy can be achieved for different segments 
of the PN trajectory; an intermittent time synchronization  
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error prevented to reconstruction of the entire PN trajecto-
ries. Since the Nottingham test, smartphone have shown 
remarkable development in sensor performance and are 
becoming a generic platform for indoor PN navigation; 
obviously, they have been already used for PN outdoors. 

5.2  Investigation of UWB Usage

As already stated, an UWB system by Omnisense was 
tested in conjunction with the rest of the equipment. The 
UWB system consisted of four sensors; a stationery master 
(node #20), and three additional roving nodes; one placed 
on the OSU personal navigator (node #26), one on the NGI 
personal navigator (#27) and the last one onboard the 
NGB roof top train (#21). Data acquisition was carried out 
by logging raw data from the master station. The output of 
the UWB sensors was delivered in three different custom 
formats (JSON, NMEA-like sentences, and a specific Esti-
mated Position sentence type) and included observables 
from the embedded accelerometers, gyroscopes, range 
finders and GPS sensors. Specific software was written in 
C# WPF to analyze the output and to visualize the posi-
tioning solution as computed by the system. (In total, 3861 
sentences were recorded, corresponding to a time span of 
approximately 16 minutes.) Unfortunately, issues related 
to the overall configuration and logging setup strategy 
deprived further processing from being carried out. The 
main reason behind this pitfall was the inability to cor-
relate the UWB observables with the collected data from 
the other sensors onboard the platforms. Despite the 
unfavourable results obtained in this test, the potential 
of UWB technology as a complement to other systems for 

PNT applications is high due to its precision peer-to-peer 
ranging, radar sensing and communication capabilities. 
Currently, further testing is undertaken by the authors 
using other UWB systems in variant operating environ-
ments and in combination with other sensor types.

5.3  Test of Terrain-Aiding for GNSS Positioning

At a preliminary stage, in order to investigate the poten-
tial of processing GNSS pseudo-range data in conjunction 
with a terrain model a new formulation of the standard 
height-aiding algorithm, named Terrain-Aiding (TA) [5] 
was tested. In this approach an approximate position is 
used to look up a height which provides a loose constraint 
to get a more accurate position and so a more accurate 
height from the terrain model, whereas the process con-
tinues iteratively until convergence is reached.

Notably, due to the relatively flatness of the trajecto-
ries and the entire lack of satellites in the building area, 
the Nottingham data cannot take full advantage of the 
technique. However, as an example, we simulated (arti-
ficially decimated) the GNSS observations collected with 
the OSU personal navigator for part of the outdoor test 
passing by the Nottingham Geospatial Building to obtain 
the best possible conditions for testing the algorithm. 
In one of the trials, the original data were decimated to 
epochs consisting only three satellites resulting to 25822 
combinations of satellite triplets and subsequently the TA 
algorithm was applied using a constant receiver height 
value. Figure 12 shows the frequency distribution and sta-
tistics of the 2D error; namely, the deviation in the receiver 
horizontal position obtained between the TA solution and 

Figure 12: Deviation in GNSS receiver horizontal position obtained between the “terrain-aided” and standard GNSS/INS solution.
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that of the integrated GNSS/INS one. From these results 
it appears that a use of the TA approach for stand-alone 
GNSS positioning may render ill-conditioned GNSS epochs 
to “usable” locations, whereas its potential may further be 
enhanced through its integration within a GNSS / IMU KF 
processing scheme.

5.4  Mobile Mapping Vans Test Results

This test aims to evaluate the effectiveness of a proposed 
CP approach where GNSS / IMU and inter-vehicular ranges 
are used to improve positioning outputs, without the 
use of radio based ranging. The participating vehicles 
exchange pseudo-ranges, positions and their respective 
variances and the medium of which they are exchanged 
is by utilizing the DSRC as depicted in Figure  13. In each 
vehicle, the integration engine makes use of the inertial 
measurements acceleration and turning rate ( fv, ωv) from 
its IMU, pseudo-ranges ( ρv) from its GNSS receiver, pseudo- 
ranges and position from the neighbouring vehicle via 
DSRC. The EKF is chosen as the integration estimator where 
all of these measurements are used to provide positioning 
output, i. e. position, velocity and orientation (rv, vv, θv). 

The proposed CP approach was compared against a con-
ventional GNSS / IMU integrated system, under the influence 
of signal shadowing effects, or better known as GNSS outage. 
Here, one vehicle acts as the aiding source, while the other 
receives information through its DSRC, termed as the target 
vehicle. Two scenarios are considered in this test to reflect a 
typical urban environment; performance with partial GNSS 
with only three and two satellites available. To observe its 
performance further, the duration of the simulated GNSS 
outages was varied from 60, 180 to 300 seconds. The results 
will be presented as root mean squared error (RMSE), 
maximum error and RMSE percentage of improvement. 

Before presenting the results of the CP method with 
partial GNSS availability, it is worth noting that the Figure 14: Position error for 3 satellites, 300 seconds outage.

Figure 13: Schematic of the proposed TC CP approach.

proposed method does not provide any real performance 
gain when full GNSS are available (more than three 
pseudoranges), where the 2D RMSE is around 1.555 m. The 
following paragraphs details the performance of the pro-
posed CP during partial GNSS outages. It will first present 
the result when only three satellites are available, fol-
lowed by two satellites are available, where the duration 
of partial outages are varied to 60, 180 and 300 seconds. 

As seen in Figure  14 and Table  8, the performance 
of CP has improved significantly when only three sat-
ellites are available for the target vehicle. Its 2D RMSE 
improved by 60 % and 50 % when experiencing 60 
and 300 seconds of partial outages respectively. On 
the other hand, CP with three satellites 3D RMSE only 
improved slightly. For example, the CP RMSE improved 
over GNSS / IMU by 6 % and 2 % during the 60 and 300 
seconds outages respectively. The CP maximum error 
shows similar pattern to its RMSE where its 2D maximum 
error has improved more than its 3D maximum error. 
Not all of the CP results improved over GNSS / IMU, for 
example, CP maximum error when experiencing 300 
seconds of partial outage is higher than its GNSS / IMU 
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counterpart. The difference was observed at the later 
part of the simulated outage and is due to the effect of 
positioning errors from the aiding vehicle.

Similar to when three satellites are available, the 
2D results in the two satellites scenario show that CP 
has improved performance compared to GNSS / IMU 
only (compare Figure 15 and Table 9). The percentage of 
improvements are 40 %, 43 % and 24 % for 60, 180 and 
300 seconds of outages. On the other hand, its 3D per-
formance decreased by 25 % or 2 m than its counterpart 
when experiencing 300 seconds of outage. The results 
for CP maximum errors are also similar to RMSE where 
for most part, are significantly better than GNSS / IMU. 
For example, during 60 seconds of partial outage, the 
maximum error observed is reduced by 39 % when com-
pared to GNSS / IMU.

partially available. This would be beneficial for appli-
cations requiring critical positioning in GNSS hostile 
environments.

Table 9: Partial GNSS, 2 satellites RMSE and Max Error.

2 satellites RMSE [m] Max Error [m]

60 seconds 2D 3D 2D 3D

GNSS / IMU 3.143 9.369 8.447 10.937

CP 1.873 9.499 5.091 10.341

Improvement [%] 40.414 –1.390 39.737 5.451

180 seconds

GNSS / IMU 5.121 8.797 10.271 12.044

CP 2.888 9.786 6.944 13.499

Improvement [%] 43.609 –11.242 32.399 –12.080

300 seconds

GNSS / IMU 7.157 9.488 18.219 18.744

CP 5.401 11.917 20.463 21.375

Improvement [%] 24.529 –25.592 –12.315 –14.036

6  Concluding Remarks and Outlook
Current CP initiatives undertaken by a joint working group, 
consisting of FIG Commission 5 and IAG Commission 
4 have been presented. The group has also investigated 
innovative algorithms and DSRC communication methods 
to enhance CP performance in terms of positioning 

3 satellites RMSE [m] Max Error [m]

60 seconds 2D 3D 2D 3D

GNSS/IMU 5.661 9.988 8.029 12.613

CP 2.233 9.384 5.007 10.580

Improvement [%] 60.548 6.043 37.646 16.115

180 seconds 2D 3D 2D 3D

GNSS/IMU 6.128 8.997 8.029 13.583

CP 2.731 8.826 5.013 11.381

Improvement [%] 55.433 1.897 37.560 16.209

300 seconds 2D 3D 2D 3D

GNSS/IMU 6.744 9.078 9.999 13.583

CP 3.360 8.889 9.635 15.979

Improvement [%] 50.179 2.077 3.640 –17.644

When comparing the two scenarios of CP performance 
in terms of RMSE during partial GNSS outages, it can be 
seen that its performance degrades over time. This indi
cates that although CP uses aiding ranging from other 
vehicles, its performance is heavily reliant on the per-
formance of the IMU, where as numerous studies have 
shown that its performance also degrades over time. 
Also, the performance of CP is dependent on the quality 
of the aiding vehicle’s position information. Hence, if the 
quality of the vehicles position is poor, naturally it will 
affect the quality of the aided vehicle. Nonetheless, the 
proposed CP approach has shown significant improve
ments particularly its 2D solutions when GNSS is only 

Figure 15: Position error for 2 satellites, 300 seconds outage.

Table 8: Partial GNSS, 3 satellites RMSE and Max Error
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accuracy and availability on different mobile platforms.  
A significant experimental field campaign and subsequent 
processing and analysis between 2012–2015 has demon-
strated that CP improves positioning and navigation 
information for all users, in terms of accuracy, integrity, 
availability and continuity  –  particularly during gaps in 
the GNSS coverage. Finally, the paper discussed some of 
the challenges for further improving of CP capabilities, 
which will be the focus of the group’s future work. Suit-
able sensors and processing approaches identified in this 
phase of work will be topics of further investigation by 
the group, with further field trials are planned in the near 
future. Interested researchers can download the exper-
imental test data freely from http://ubpos.net/ and are 
invited by the authors to join the work of the group. 
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