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Purinergic receptors are divided into P1 (adenosine) and P2 

(ATP, ADP) receptors,1 with P2 subdivided into P2X (trimeric ion 

channels) and P2Y (metabotropic G-coupled receptors).2 The eight 

members of the P2Y family of receptors, so far characterized, have 

been further subdivided based on their primary signaling through 

specific coupled G-proteins. The first subgroup P2Y1,2,4,6,11 act 

through Gq and the second group, P2Y12,13,14, through Gi.3 The 

P2Y2 receptor (P2Y2R) has been found in a variety of different 

tissues and cell types. Cell types include: epithelial cells, 

endothelial cells, smooth muscles cells and leukocytes. A study 

using P2Y2 knockout mice revealed that the receptor mediates 85-

95% of nucleotide-stimulated chloride secretion in the trachea. 

This suggests that P2Y2R agonists have therapeutic potential as a 

treatment for cystic fibrosis (CF), as activation of this chloride 

secretion channel could compensate for the defective chloride 

secretion in the respiratory epithelium of CF patients.4, 5 Indeed, a 

P2Y2 agonist, diquafosol 2, mediating chloride secretion, has been 

approved in Japan for the topical treatment of dry eye disease.6 

Agonism of the P2Y2R can also lead to keratinocyte 

proliferation and neutrophil migration, indicating that P2Y2 

antagonists have therapeutic potential as a treatment for psoriasis.5, 
7 It has also been reported that ATP released from tumor-cell 

activated platelets, acting through the P2Y2R, induce opening of 

the endothelial barrier, leading to migration of tumor cells and 

hence cancer proliferation. P2Y2R antagonists, therefore have 

therapeutic potential as anti-metastatic agents.8  
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Despite the appeal of the P2Y2R as an important drug target, 

limited reports on P2Y2R antagonists have appeared to date9–11 and 

indeed the only reported discovery of drug-like P2Y2R 

antagonists12 is from an industrial research group within 

AstraZeneca, disclosed within a series of chemical patents.13,14 

One of the most potent and selective of these antagonists, AR-

C118925, has been used as a tool for pharmacological studies on 

the P2Y2 receptor.15,16  More recently, its selectivity profile against 

a range of P2 receptors has been published. AR-C118925 was at 

least 50-fold selective against P2Y4, P2Y6, P2Y11, P2Y12, P2Y14, 

P2X2, P2X4 and P2X7, whilst ~ 40-fold against P2X1 and ~15-fold 

against P2X3. 
17 
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The G protein-coupled P2Y2 receptor, activated by ATP and UTP has been reported as a potential 

drug target for a wide range of important clinical conditions, such as tumor metastasis, kidney 

disorders, and in the treatment of inflammatory conditions. However, pharmacological studies on 

this receptor have been impeded by the limited reported availability of stable, potent and selective 

P2Y2R antagonists. This article describes the design and synthesis of AR-C118925, a potent and 

selective non-nucleotide antagonist of the P2Y2 receptor discovered using the endogenous P2Y2R 

agonist UTP as the chemical starting point.     
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Herein we report the design and synthesis of P2Y2R 

antagonists, which led to the discovery of AR-C118925. 

In the absence of a high throughput screening (HTS), the 

endogenous agonists, adenosine triphosphate (ATP) 3 and uridine 

triphosphate (UTP) 4 were considered as starting points for the 

research program. The greater selectivity of UTP for P2Y2R over 

the other P2 purinoceptors led to its selection as the chemical 

starting point.  Replacing the βγ-oxygen of the triphosphate moiety 

of UTP with a dichloromethylene unit and substitution of the 

oxygen in the 4-position of the uracil with sulfur, gave enhanced 

metabolic stability, whilst maintaining agonist activity.18–20 

Interestingly, it was discovered that that P2Y2R antagonism could 

be achieved through substitution of the 5-position of the uracil ring 

with lipophilic substituents (Table 1). The introduction of a 

benzhydryl group into this position (5) gave a compound with a 

pA2 for the P2Y2R of 6. P2Y2R activity was substantially increased 

by either symmetrically adding substituents to the benzhydryl 

group, compounds 6, 7, 8, and 9,  or by linking the two phenyl 

rings of the benzhydryl to form a tricycle, compounds 10, 11, 12, 

and 13, with the highest activity achieved with the 

dibenzosuberenyl group, compound 13 (pA2 8.5).  

Table 1: Exploration of the 5-position of the uracil ring 

 

 
Compound P2Y2 pA2

a, b 

5 6.0 ± 0.2 

6 7.9 ± 0.2 

7 7.8 ± 0.2 

8 7.1 ± 0.2 

9 7.7 ± 0.2 

10 7.2 ± 0.2 

11 7.3 ± 0.2 

12 8.0 ± 0.2 

13 8.5 ± 0.2 

a) The assay used a human P2Y2R clone which was isolated 

from HL60 cells cDNA and then stably transfected into a Jurkat 

cell line. The cloned receptor mediates an increase in intracellular 

calcium in the cell line, which possesses no endogenous nucleotide 

receptor of its own. Inhibition of UTP mediated calcium responses 

were measured using 17 ktM fluo-3AM dye on a SPEX Fluomax 

using 508 nm excitation and 525 nm emission wavelengths at 

room temperature.b n=≥2 replicates 

The P2Y2R antagonist program ultimately required the 

development of an oral drug-like compound.21 This necessarily 

meant moving away from the high molecular weight, highly 

charged substituted nucleotides. Removing the triphosphate group 

gave the nucleoside analogue 14 (Table 2). Whilst this compound 

was substantially less potent than its parent triphosphate 13, it did 

retain some antagonist activity (pA2 4.7). Furthermore, it was 

discovered that the ribose ring could be replaced with the 

structurally less complex 3-methylenebenzoic acid to give 15, with 

a slight gain in activity. The rationale for having the carboxylic 

acid was to mimic any binding interactions the alpha phosphate of 

UTP might have with the P2Y2R. 

Table 2: Replacement of the ribose-triphosphate group 

 

 
Compound X P2Y2 pA2a 

14 S 4.7 ± 0.2 

15 S 5.4 ± 0.2 

16 S 5.7 ± 0.2 

17 S 5.6 ± 0.2 

18 S 5.4 ± 0.2 

19 S 5.9 ± 0.2 

20 S 5.7 ± 0.2 

21 O 4.4 ± 0.2 

22 S 5.8 ± 0.2 

23 S 5.2 ± 0.2 

24 S 5.6 ± 0.2 
a n=≥2 replicates 

Changing the linker between the carboxylic acid and phenyl 

ring from a direct bond to a one or two atom linker, potentially 

placing the carboxylic acid group further into the triphosphate 

binding region, gave a small increase in activity (16 and 17). In 

addition, the P2Y2R appeared tolerant of a range of hetero 

aromatic replacements for the phenyl ring. For example, the 

furanyl analogue 19 had a further slight gain in activity (pA2 5.9). 

The continuing importance of the 4-thiouracil relative to uracil was 

demonstrated with thiazole replacement, where the uracil analogue 

was > 10-fold less potent (compare compound 20 with 21). 

Having been able to replace the ribose triphosphate with a 

structurally less complicated and synthetically less challenging 

group, P2Y2R antagonism could be increased through symmetrical 

substitution on the 5-suberenyl substituent 25, 26 and 27 (Table 

3). This combines the two features of change to the 5-benzhydryl 

group in the ribose triphosphate series, which independently gave 

an increase in receptor antagonism (Table 1).  

 

Table 3: Further changes to the substituent on the 1-position 

of the uracil ring 

 



 
Compound R’ P2Y2 pA2

a 

25 Me 7.0 ± 0.2 

26 Cl 6.7 ± 0.2 

27 Me 6.6 ± 0.2 

28 Me 7.4 ± 0.2 

29 Me 7.6 ± 0.2 

30 Me 7.5 ± 0.2 

31 Me 7.2 ± 0.2 

1 Me 7.8 ± 0.2 
a n=≥2 replicates 

In a similar manner to compounds discussed in Table 2, moving 

the acidic group further into the triphosphate binding region gave 

an increase in receptor antagonism. Although the dicarboxylic 

acids 28 and 29 had similar activity to the mono carboxylic acid 

30, indicating perhaps that only one of the carboxylic acids is 

involved in binding to the receptor. Finally, bioisosteric 

replacement of the carboxylic acid was employed giving the most 

potent compound, AR-C118925 (1). 

 
Scheme 1: Representative synthesis of nucleotide analogues (5-13). (a) (i) 

TMEDA (2.2 eq), secBuLi (2.1 eq), THF, -78oC (ii) 5-dibenzosuberenone 

(1.5 eq), THF, 55% (b) (i) Et3SiH (2 eq), BF3.Et2O (2 eq), CH2Cl2, 0
oC (ii) 

tBuMe2SiCl (1.5 eq), imidazole (1.5 eq), DMF,  70% (c) P4S10, pyridine, 

reflux, 68% (d) TBAF, THF, r.t., 85% (e) (i) 1.3 eq POCl3, (1.3 eq) proton 

sponge, PO(OEt)3 (ii) clodronic acid (3 eq), nBu3N (9 eq), PO(OEt)3, 16%. 

 
Scheme 1, which shows the synthesis of compound 13, 

illustrates the general procedure for synthesising the compounds 

in Table 1. Selective lithiation of the 5-position of the uracil ring 

(32) using the method of Miyasaka22 followed by addition of 5-

dibenzosuberenone gave the 5-dibenzosuberenol (33). The alcohol 

was then reduced using triethylsilane and borontrifluoride 

etherate. During this reaction, there was some loss of the silyl 

protecting groups, giving a mixture of mono, di and tri silylated 

products. Reprotection using standard procedure gave the 

trisilylated product (33). Thiation of the 4-position of the uracil 

was achieved using P4S10 in pyridine under reflux and removal of 

the silyl protecting groups using tetrabutylammonium fluoride 

gave the 5-substituted 4-thiouridine (14). Phosphorylation of the 

5’-position of the ribose was achieved using phosphorus 

oxychloride followed by treatment with clodronic acid. The crude 

product was purified using DEAE Sephadex® ion exchange 

chromatography eluting with a 0 to 1 molar gradient of 

triethylammonium bicarbonate followed by elution through a Na+ 

form Dowex® ion exchange column to give the sodium salt of the 

product (13). 

 
Scheme 2: Synthesis of AR-C118925. (a) (i) nBuLi, THF. -78oC (ii) 2,8-

dimethyldibenzosuberanone, THF (b) AcOH, reflux, 96% over two steps  (c) 

(i) BSTFA (2.2 eq), 1,2-dichloroethane, reflux (ii) 5-bromomethyl-2-

furancarboxylic acid methyl ester, MeCN, reflux, 53% (d) Lawesson's reagent 

(1 eq.), 1,4-dioxane reflux, 65% (e) LiOH (5 eq.), 3:1 MeOH:H2O, r.t., 95% 

(f) aminotetrazole, (1.5 eq) pybrop (1.5 eq), NEt3 (3 eq), DMF, 60%. 

 

The synthesis of AR-C118925 is shown in scheme 2. Bromo 

lithium exchange of 5-bromo-2,4-di-tert-butoxypyrimidine23 

followed by treatment with 2,8-dimethyldibenzosuberanone gave 

the corresponding dibenzosuberanol product (34). Treatment with 

acetic acid under reflux gave the 5-substituted uracil (35) in very 

good yield over the two steps. Bis-silylation of uracil (35) followed 

by treatment with 5-bromomethyl-2-furancarboxylic acid methyl 

ester, selectively alkylated in the 1-position of the uracil. 

Treatment with Lawesson’s reagent then effected the conversion 

to the 4-thio uracil. Hydrolysis of the methyl ester gave the 

carboxylic acid (25) in good yield. Activation of the carboxylic 

acid with bromo-tris(pyrrolidino)phosphonium 

hexafluorophosphate and coupling with 1-aminotetrazole gave 

AR-C118925 (1). 

In conclusion, a potent and selective non nucleotide P2Y2R 

antagonist, AR-C118925, was discovered using the endogenous 

agonist UTP as the chemical starting point for the program. AR-

C118925 has reasonable physicochemical properties for a tool 

compound (MWt 537, LogD7.4 of 2.26) and was shown to have a 

reasonable rat in vivo pharmacokinetics [i.v. clearance (75 

mL/min/Kg), Vss 4.34 L/Kg, T1/2 2.12 h)] but was not bioavailable 

(F 0%). This approach of starting with the endogenous ligand has 

also been used in the P2Y12  program 24 and complimented the 

alternative, HTS – Active to Hit, Hit to Lead approach to initiating 

receptor agonist/antagonist projects at AstraZeneca.25–27 

Utilization of AR-C118925 in the chemical literature supporting 

future potential clinical applications for P2Y2R antagonists has 

necessitated this present disclosure and we will be reporting 

further studies in due course.  
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