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Abstract

Likelihood-based inference for disease outbreak data can be very challenging due to the
inherent dependence of the data and the fact that they are usually incomplete. In this paper
we review recent Approximate Bayesian Computation (ABC) methods for the analysis of
such data by fitting to them stochastic epidemic models without having to calculate the
likelihood of the observed data. We consider both non-temporal and temporal-data and
illustrate the methods with a number of examples featuring different models and datasets.
In addition, we present extensions to existing algorithms which are easy to implement and
provide an improvement to the existing methodology. Finally, R code to implement the
algorithms presented in the paper is available on https://github.com/kypraios/epiABC.

1 Introduction

The past two decades have seen a significant growth in the field of mathematical modelling
of communicable diseases and this has led to a substantial increase in our understanding of
infectious-disease epidemiology and control. Understanding the spread of communicable infec-
tious diseases is of great importance in order to prevent major future outbreaks and therefore
it remains high on the global scientific agenda, including contingency planning for the threat
of a possible influenza pandemic. The main purpose of this paper is to give an introduction
and overview of some of the recent work concerned with Approximate Bayesian Computation
methods for performing (approximate) Bayesian inference for stochastic epidemic models given
data on outbreaks of infectious diseases. In addition, we present novel modifications to the
existing algorithms and show that such modifications can be more efficient than the existing
state-of-the-art algorithms. In the present section we discuss generic ideas with the bulk of the
remainder of the paper containing various algorithms and illustrative examples.

1.1 Models and Inference for Epidemic Models

It has been widely recognised that mathematical and statistical modelling has become a valuable
tool in the analysis of infectious disease dynamics by supporting the development of control
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strategies, informing policy-making at the highest levels, and in general playing a fundamental
role in the fight against disease spread (Hollingsworth, 2009).

The transmissible nature of infectious diseases makes them fundamentally different from
non-infectious diseases, and therefore the analysis of disease outbreak data cannot be tackled
using standard statistical methods. This is mainly due to the fact that the data are i) highly
dependent and ii) incomplete, in many different ways since the actual transmission process is
not directly observed. However, it is often possible to construct simple stochastic models which
describe the key features of how an infectious disease spreads in a population. The complexity of
the models typically varies depending on the application in question as well as the data available.
For example, models may incorporate a latent period during which individuals are infected but
not yet infectious, reduced infectivity after control measures are imposed, etc. Similarly, aspects
of the population heterogeneity can also be included such as age structure and that individuals
live in households and go to workplaces, etc.

Models can then be fitted to data either within a classical or Bayesian framework to draw
inference on the parameters of interest that govern transmission. In turn these parameters can
be used to provide useful information about quantities of clinical or epidemiological interest.
One needs always to strike a balance between model complexity and data availability. In other
words, it is not wise to construct a fairly complicated model when not much data are available
and vice versa.

1.2 Bayesian Inference

In frequentist inference, model parameters are regarded as fixed quantities. On the other hand,
a Bayesian approach treats all the unknown model parameters as random variables, enabling us
to quantify the uncertainty of our estimates in a coherent, probabilistic manner. The Bayesian
paradigm to inference operates by first assigning to the parameters a prior distribution which
represents our belief about the unknown parameters (θ) before seeing any data. Subsequently
this prior information is updated in the light of experimental data (D) using Bayes theorem
by multiplying it with the likelihood π(D|θ) and renormalising, thus leading to the posterior
distribution π(θ|D) via:

π(θ|D) =
π(D|θ)π(θ)∫

θ π(D|θ)π(θ)dθ
∝ π(D|θ)π(θ). (1)

All Bayesian inference arises from the posterior distribution in the sense that π(θ|D) contains
all the information regarding our knowledge about the parameters θ given the experimental
data D and any prior knowledge which might be available. Point and interval summaries of
the posterior distribution (such as mean, median and credible intervals) can easily be obtained.
The advantage of a Bayesian approach as opposed to a frequentist inference is that the former
enables the complete quantification of our knowledge about the unknown parameters in terms
of a probability distribution. We highlight such advantages in subsequent Sections.

1.3 Approximate Bayesian Computation

The main task in Bayesian statistics is to derive the posterior distribution of the parameters
given the data π(θ|D). For many models the likelihood of observed data π(D|θ) is costly to
compute and in other cases the observed data are insufficient to write down a tractable likelihood.
However, provided that it is possible to simulate from the model, then “implicit” methods such
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as Approximate Bayesian Computation (ABC) allows us to perform inference without having
to compute the likelihood.

We have already mentioned above that one of the difficulties when fitting models to disease
outbreak data is that the infection process is unobserved. The likelihood of the observed data
can become very difficult to evaluate and so is the posterior distribution. This is particularly
the case when analysing temporal data, since calculating the likelihood involves integration over
all possible infection times, which is rarely analytically possible. On the other hand, simulating
realisations from a stochastic epidemic model is relatively straightforward. Therefore, ABC
algorithms are very well suited to make inference for the parameters of epidemic models based
on partially observed data and this has been illustrated when both temporal (McKinley et al.,
2009) and non-temporal data Neal (2012) are available.

1.4 Other Approaches to Inference

One way to overcome this issue is to employ data imputation methods where unknown quantities
(such as the infection times) are treated as additional model parameters and inferred along with
the other parameters. One of the most widely used methods for doing so is Markov Chain
Monte Carlo (MCMC) which have revolutionised not only Bayesian statistics, but have also
been developded for fitting stochastic epidemic models to partially observed outbreak data
(O’Neill and Roberts, 1999; Gibson and Renshaw, 1998). Despite being successfully applied
to a wide variety of applications such as Foot-and-Mouth (Streftaris and Gibson, 2004; Chis-
Ster and Ferguson, 2007; Kypraios, 2007), SARS outbreaks (McBryde et al., 2006), healthcare-
associated infections (such as MRSA and C. difficile) (Forrester et al., 2007; Kypraios et al.,
2010) and Avian, H1N1 and H3N2 influenza (Jewell et al., 2009a; Cauchemez et al., 2004, 2009)
as the population size increases and/or the model becomes more sophisticated, the likelihood
can become prohibitively costly to compute. In addition, non-standard and problem-specific
MCMC algorithms need to be designed to improve on the efficiency of the standard algorithms.

The remainder of the paper is structured as follows. In Section 2, we introduce the ABC
algorithm including extensions to ABC-MCMC and sequential based ABC-PMC. In Section 3,
we apply the ABC algorithm to non-temporal (final outcome) data, firstly to a homogeneously
mixing SIR epidemic model and secondly to a household SIR epidemic model. For the latter
we introduce a new partially coupled ABC algorithm which offers significant gains in efficiency.
In Section 4, we turn to the analysis of temporally observed epidemic data, in particular, the
effective implementation of adaptive ABC-PMC algorithms.

2 ABC Algorithms

Intuitively, ABC methods involve simulating data from the model using various parameter values
and making inference based on which parameter values produced realisations that are “close”
to the observed data. Algorithm 1 generates exact samples from the Bayesian posterior density
π(θ|D) as defined in (1).
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Algorithm 1 Exact Bayesian Computation (EBC)

Input: observed data D, parameters governing π(θ)
Output: samples from π(θ|D)

1. Sample θ∗ from π(θ).
2. Simulate dataset D∗ from the model using parameters θ∗.
3. Accept θ∗ if D∗ = D, otherwise reject.
4. Repeat until the required number of posterior samples is obtained.

This algorithm is only of practical use if D is discrete, else the acceptance probability in Step
3 is zero. For continuous distributions, or discrete ones in which the acceptance probability in
step 3 is unacceptably low, Pritchard et al. (1999) suggested the following algorithm:

Algorithm 2 Approximate Bayesian Computation (vanilla ABC)

Input: observed data D, tolerance ε, distance function d(·, ·), summary statistics s(·), parame-
ters governing π(θ)
Output: samples from π̃(θ|D) = π(θ|D, d

(
s(D), s(D∗)

)
≤ ε)

1. Sample θ∗ from π(θ).
2. Simulate dataset D∗ from the model using parameters θ∗.
3. Accept θ∗ if d

(
s(D), s(D∗)

)
≤ ε, otherwise reject.

4. Repeat until the required number of posterior samples is obtained.

Here, d(·, ·) is a distance function, usually taken to be the L2-norm of the difference between
its arguments; s(·) is a function of the data; and ε is a tolerance. Note that s(·) can be the
identity function but in practice, to give tolerable acceptance rates, it is often the case that it is
a lower-dimensional vector comprising summary statistics that characterise key aspects of the
data. In addition, if the prior and the posterior distribution are rather different, for example,
in the case where the data are very informative about the model parameters then the rejection
sampling approach of this ABC algorithm will be very inefficient. A wide range of extensions
to the original ABC (which is often termed vanilla ABC) algorithm have been developed over
the past decade and it still remains a topic of significant research interest.

2.1 Summary Statistics

As discussed above, using s(·) as the identity function gives an inefficient ABC algorithm if the
data is high dimensional. The underlying reason is a curse of dimensionality issue. Roughly
speaking, for a fixed computational cost the quality of the ABC output sample as an approxi-
mation of the posterior deteriorates as the number of summaries, p, increases. This is the case
even taking into account the possibility of adjusting ε.

The problem is that simulations which produce good matches of all summaries simultaneously
become increasingly unlikely as p grows. A formal treatment of the issue is given by Blum (2010),
Barber et al. (2015) and Biau et al. (2015) amongst others.

ABC samples from π̃(θ|D) = π(θ|D, d
(
s(D), s(D∗)

)
≤ ε). When using summary statistics,

the limit of this under ε → 0 is π(θ|s(D)) rather than π(θ|D). Typically these are different
distributions: some information about θ is lost by using summary statistics. The exception
is when s(·) is sufficient for θ and then limε→0 π̃(θ|D) = π(θ|D). However for models with
intractable likelihoods, it is very rare in practice for low dimensional sufficient statistics to exist.
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Hence for ABC to produce a useful approximation of the posterior, a careful choice of s(·) is
required which balances informativeness and low-dimensionality. Many methods for selecting
summary statistics have been proposed. See Blum et al. (2013) and Prangle (2015b) for reviews
of these methods and more discussion of the points above.

In this paper we make use of a sufficient statistic when analysing final outcome data, and in
the cases where no low order sufficient statistics are available, we use intuitively chosen summary
statistics such as sum-of-squared differences between observed and removal counts in several time
intervals and the duration of the epidemic.

2.2 ABC-MCMC

To overcome issues caused by a low acceptance probability when the prior and posterior distri-
butions are rather different Marjoram et al. (2003) developed an algorithm that embeds the sim-
ulation steps into a standard Metropolis–Hastings (M-H) Markov Chain Monte Carlo (MCMC)
algorithm (henceforth, ABC-MCMC).

Algorithm 3 Approximate Bayesian Computation Markov Chain Monte Carlo
(ABC-MCMC)

Input: observed data D, tolerance ε, distance function d(·, ·), summary statistics s(·), proposal
distribution q(·|·), parameters governing π(θ), initial state θ0

Output: samples from π̃(θ|D)

1. Let θc = θ0.
2. Sample θ∗ from a proposal distribution q(·|θc).
3. Simulate K datasets D∗1, . . . , D

∗
K from the model using parameters θ∗ and calculate

r(D, θ∗) =
1

K

K∑
k=1

I
(
d
(
s(D), s(D∗k)

)
≤ ε
)

where I(E) = 1 if E is true, and 0 otherwise.
4. Accept θ∗ with probability

min

(
1,
r(D, θ∗)

r(D, θc)

π(θ∗)

π(θc)

q(θc|θ∗)
q(θ∗|θc)

)
5. If θ∗ is accepted, then set θc = θ∗.
6. Record the current state.
7. Go to Step 2 and repeat until the required posterior samples are obtained.

The ABC-MCMC algorithm is very similar to the standard M-H algorithm. The only, but
crucial, difference is in the acceptance probability ratio. In the standard M-H algorithm one
has the ratio of the likelihoods evaluated at the candidate and the current value of the Markov
chain, whist in ABC-MCMC the likelihood terms are each approximated by the proportion of
K simulations that “match the data”. McKinley et al. (2009) demonstrated that repeating sim-
ulations of the data given θ? does not seem to contribute (much) to an improved approximation
of the posterior by the ABC sample. This observation appears to be consistent with the findings
of Bornn et al. (2016) who proved that K = 1 is usually very close to optimal. A review of
ABC-MCMC algorithms can be found in Sisson and Fan (2011). A difficulty that often one is
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faced with when using ABC-MCMC is selecting the ε and k tuning parameters, which typically
requires expensive pilot runs.

2.3 ABC-PMC

Several authors have developed algorithms which embed ABC simulation steps in Sequential
Monte Carlo (SMC) algorithms. The idea is to sample from a sequence of approximate ABC
posteriors under successively lower acceptance tolerances. The sample from one iteration, known
as particles, is used to help choose which θ values to simulate from in the next. SMC methods
for ABC have a number of potential advantages over MCMC and vanilla ABC. Unlike vanilla
ABC they concentrate on simulating datasets from θ regions with relatively high acceptance
probabilities, avoiding wasting computational resources. Unlike MCMC, they can adapt tuning
choices, such as acceptance tolerances, during their operation.

In this paper we concentrate on the widely used algorithm of Toni et al. (2009), Algorithm 4.
This effectively performs repeated importance sampling, also known as population Monte Carlo
(Cappé et al., 2004). We therefore refer to this as the ABC-PMC algorithm. There is also
a wider family of related ABC-SMC algorithms, including Sisson et al. (2007) and Del Moral
et al. (2012), which update their particles in more complex ways based on MCMC moves, as
described in Del Moral et al. (2006).

Algorithm 4 Approximate Bayesian Computation Population Monte Carlo
(ABC-PMC)

Input: observed data D, number of intermediate distributions M , number of tolerances
ε1, . . . , εM , distance function d(·, ·), summary statistics s(·), number of particles N , kernel K(·|·),
parameters governing π(θ)
Output: weighted samples from π̃(θ|D)

1. Let t = 1.
2. Repeat the following steps until there are N acceptances.

(a) Sample θ∗ from the importance density qt(θ) given in (2) below.

(b) If π(θ∗) = 0 reject and return to (a).

(c) Simulate dataset D∗ from the model using parameters θ∗.

(c) Accept θ∗ if d
(
s(D), s(D∗)

)
≤ εt

Denote by θt1, θ
t
2, . . . , θ

t
N the accepted parameter values.

3. Let wti = π(θti)/qt(θ
t
i) for i = 1, 2, . . . , N .

4. Increment t = t+ 1.
5. Repeat Steps 2 and 3 until t = M .
6. Return final accepted samples and corresponding weights.

The importance density in Step 2a) is given by

qt(θ) =


π(θ) if t = 1,∑N

i=1w
t−1
i Kt(θ|θt−1i )/

∑N
i=1w

t−1
i otherwise.

(2)
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In other words, in the first iteration qt(θ) is the prior and for the subsequent iterations, weighted
samples from the previous particle population are drawn and the perturbed using the kernel Kt.
The choice of the kernel is arbitrary but Beaumont et al. (2009) illustrate that a good choice is

K(θt|θt−1) = φ
(
θt−1, 2Σt−1) (3)

where φ(·, ·) is the density of a (multivariate) Normal distribution and Σt−1 is the empirical
covariance matrix of the particle population at time t−1, {θt−1i }1≤i≤N , calculated using weights
{wt−1i }1≤i≤N .

One common variation on Algorithm 4 (Drovandi and Pettitt, 2011), which we will use in
this paper, is to determine the sequence of tolerances adaptively during the algorithm. To do
so one selects an initial tolerance, such as ε1 =∞, and then selects εt+1 between steps 3 and 4.
The value used is the α quantile of dt1, d

t
2, . . . , d

t
N , where these are the d

(
s(D), s(D∗)

)
distances

from the accepted simulations at time t, and 0 < α < 1 is a tuning parameter.
We found that adaptive tolerances sometimes perform poorly for discrete summary statis-

tics, which several of our applications use. The problem occurs when most of the distances
from accepted simulations exactly equal the tolerance εt. In practice, these typically correspond
to simulated epidemics in which no infections occur. Then εt+1 = εt and the algorithm be-
comes stuck at this tolerance level. To fix this issue we change the acceptance condition to
d(s(D), s(D∗)) < ε i.e. using a strict inequality. This guarantees that the tolerances form a
strictly decreasing sequence.

3 ABC for Non-Temporal Data

3.1 Introduction

In this Section the focus is on final size data where we observe whom in a population is infected
during the course of the epidemic but have no information on the temporal transmission of the
disease. The lack of temporal information limits the conclusions that can be drawn about the
disease, for example, we can not estimate the mean infectious period length and thus throughout
we take the mean infectious period to be of length 1. On the other hand by exploiting the
Sellke construction (Sellke, 1983) of the epidemic process we can devise efficient algorithms
for simulating realisations from epidemic models. We begin in Section 3.2 by introducing the
homogeneously mixing epidemics and a simple ABC algorithm for this scenario. In Section 3.3
we introduce the coupled ABC algorithm of Neal (2012) for homogeneously mixing populations.
The coupled ABC algorithm exploits a non-centred parameterisation (Roberts et al., 2003) and
ordering of the epidemic process to consider all values of the infection rate λ simultaneously in
a single simulation, and consequently leads to a substantial computational improvement on the
vanilla ABC algorithm. In Section 3.4, we move onto analysing outbreak data from a population
split into households using models suitable for such data. We again consider the ABC algorithm
but instead of using the computationally intensive coupled ABC algorithm of Neal (2012) we
introduce a partially coupled version of the algorithm, which offers substantive gains over the
ABC algorithm for very little additional complexity in coding and implementation over the ABC
algorithm. We apply the algorithms along with ABC-PMC versions (Toni et al., 2009) to a range
of data sets demonstrating the significant improvements that both ABC-PMC and the coupled
ABC algorithm offer over the vanilla ABC.

7



3.2 Homogeneously mixing SIR epidemic model

We use the so-called homogeneously mixing Susceptible-Infective-Removed (SIR) epidemic model
to illustrate the strengths and weaknesses of the ABC algorithm and to introduce extensions to
the ABC methodology. As we shall see in Section 3.4 these extensions are applicable to more
general epidemic models.

3.2.1 Definition

We begin by describing the SIR model in a homogeneously mixing population. Suppose that
we have a closed population of N individuals. Suppose that one individual is infected from
outside the population and initiates an epidemic within the population with no further external
infections. The remaining N − 1 individuals in the population are initially susceptible and
the epidemic progresses as follows. Infectious individuals have independent and identically
distributed infectious periods according to a random variable I, where I is assumed to belong to
some known family of probability distributions, possibly with unknown parameters to estimate.
Whilst infectious individuals make infectious contacts at the points of a homogeneous Poisson
point process with rate λ. Each infectious contact is with an individual chosen uniformly at
random from the entire population. If the contacted individual is susceptible, they become
infected and immediately infectious. Infectious contacts with non-susceptible individuals have
no effect on the recipient. At the end of their infectious period, an individual becomes removed,
either recovery followed by immunity or in severe cases death, and plays no further role in the
epidemic. The epidemic ends when there are no more infectives in the population and the total
number of removed individuals denotes the final size of the epidemic.

3.2.2 Simulation

Simulation of the epidemic process is trivial, if we are only interested in the final size of the
epidemic, as we do not need to consider the time course of the epidemic. In particular, we can
consider in turn the set of individuals infected by a given infective. The number of infectious
contacts made by an infective follows a mixed Poisson distribution with mean λI. The probabil-
ity that an infectious contact is successful (infects a susceptible individual) is S/N , where S is
the current number of susceptibles. Each infection leads to the number of susceptibles decreas-
ing by one and the number of infectives increasing by one. Once we have considered the set of
infections made by an infective, the infective becomes removed and we decrease the number of
infectives by one. The simulation ends when there are no more infectives in the population.

For the coupled ABC algorithm and other extensions of the ABC algorithm which exploit
non-centered parameterisations (Roberts et al., 2003), it is helpful to use the alternative but
equivalent Sellke (Sellke, 1983) construction of the epidemic process. That is, every initially
susceptible individual in the population is assigned an independent and identically distributed
infectious threshold, T ∼ Exp(1/N). Then individual i becomes infectious when the total
amount of infectious pressure exceeds Ti, where the infectious pressure exerted by an infective
j, with infectious period Ij is λIj . As noted in Sellke (1983) and Neal (2012), it is helpful to
consider the ordered thresholds, T(1)(= 0) < T(2) < . . . < T(N), where T(1) denotes the threshold
of the initial infective. It is straightforward to show that, for i = 1, 2, . . . , N − 1, T(i+1) −
T(i) ∼ Exp((N − i)/N). Thus if we let L1, L2, . . . , LN−1 be independent exponential random
variables with Li ∼ Exp((N − i)/N), we can simulate a realisation of the ordered thresholds by
setting T(i) =

∑i−1
j=1 Lj (i = 1, 2, . . . , N). Therefore if we simulate L = (L1, L2, . . . , LN−1) and
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I = (I1, I2, . . . , IN ), then the final size Mλ of an epidemic with parameter λ satisfies

Mλ = min

m : (T(m+1) =)

m∑
i=1

Li > λ

m∑
j=1

Ij

 . (4)

Algorithm 5 illustrates this procedure to simulate the final size by exploiting the Sellke con-
struction.

Algorithm 5 Simulation of the final size of a homogeneously mixing SIR model

Input: population size N , infection rate λ, parameters governing f(I)
Output: final size

1. Simulate I1, I2, . . . , IN independently from the infectious period distribution f(I).
2. Simulate L1, L2, . . . , LN−1 independently with each Li ∼ Exp

(
N−i
N

)
, i = 1, . . . , N − 1.

3. Calculate the ordered thresholds T(i) =
∑i−1

j=1 Lj , i = 1, . . . , N .
4. Find the final size Mλ using Equation (4).

It is worth noting for the homogeneously mixing SIR epidemic the final size of the epidemic
is a one dimensional sufficient statistic as for inference it does not matter which individuals are
infected, only how many individuals are infected. Therefore it is trivial to implement an EBC
algorithm 1 which produces exact samples from the true posterior distribution of the infection
rate.

3.3 Coupled ABC algorithm

The coupled ABC algorithm exploits the non-centered parameterisation underpinning (4). That
is, we can simulate L and I independent of λ and we can use the same L and I with different
choices of λ to simulate epidemics. The coupling terminology comes from probability theory,
see for example Lindvall (1992), and here indicates that if λ1 < λ2 then using the same L and
I, we get Mλ1 ≤ Mλ2 . Moreover, we can consider epidemics for all values of λ ∈ R+ using L
and I with

λ ∈

 max
1≤k≤m−1


k∑
i=1

Li

/
k∑
j=1

Ij

 ,

m∑
i=1

Li

/
m∑
j=1

Ij

 , (5)

generating an epidemic with final size m. Note that often the set on the right hand side of (5)
will be empty with an epidemic which infects at least m individuals infecting at least m + 1
individuals.

Suppose that we observe a final size D and the infection rate λ follows a priori a distribution
with probability density function π(λ). An EBC algorithm (Algorithm 1) to sample from the
posterior distribution of λ is very straightforward to apply. One can also easily apply the ABC
algorithm (Algorithm 2) where the requirement of an exact match of the final size between the
observed and simulated is relaxed. To implement the coupled ABC algorithm (see Algorithm 6
below), we first generate T independent copies of L and I and for t = 1, 2, . . . , T , let

At =

 max
1≤k≤D−1


k∑
i=1

Li

/
k∑
j=1

Ij

 ,
D∑
i=1

Li

/
D∑
j=1

Ij

 , (6)
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denote the set of λ values consistent with an epidemic of size m from the tth realisation. Thus
far we have not mentioned the prior distribution with regards the coupled ABC algorithm. For
t = 1, 2, . . . , T , let

wt =

∫
At

π(λ) dλ, (7)

denote the weight attached to simulation t. Note that wt is the probability that a value of λ
drawn from the prior combined with the tth realisation of L and I results in an epidemic with
final size D. Thus we have sets (At) of λ values from the posterior distribution with associated
weights (wt). These can be used directly to compute posterior moments. For example,

φ̂ =

T∑
t=1

∫
At

λπ(λ) dλ

/
T∑
t=1

wt (8)

is a consistent estimator of E[λ|m]. Alternatively, we can use {(At, wt)} to generate a sample
of size K from the posterior distribution, by for k = 1, 2, . . . ,K, sampling I from {1, 2, . . . , T}
with P (I = t) ∝ wt and then sampling λk from AI using rejection sampling (see Neal (2012) for
details).

Algorithm 6 Coupled-ABC algorithm for a homogeneously mixing SIR model

Input: final size D, population size N , infection rate λ, parameters governing π(λ)
Output: Moments of π(λ|D)

1. Generate T independent copies of L and I.
2. For t = 1, . . . , T find the sets At:

At =

 max
1≤k≤D−1


k∑
i=1

Li

/
k∑
j=1

Ij

 ,
D∑
i=1

Li

/
D∑
j=1

Ij

 .

3. For each t = 1, . . . , T calculate the weights wt =
∫
At
π(λ) dλ.

4. Compute a Monte Carlo estimate of the posterior mean of λ:

Ê[λ|D] =
1∑T
t=1wt

T∑
t=1

∫
At

λπ(λ) dλ

5. Compute the posterior variance of λ:

V̂ [λ|D] =
1∑T
t=1wt

T∑
t=1

∫
At

λ2π(λ)dλ− Ê[λ|D]
2

3.3.1 Application to the Abakaliki smallpox outbreak

For illustrative purposes we use the Abakiliki smallpox data set (see Bailey (1975), page 125).
As we shall see in Section 4.3.1 the data set contains temporal information on when an individual
is detected with smallpox but following Demiris and O’Neill (2006) and Neal (2012) we only
consider the final size data which consists of (D = 30) individuals infected out of a susceptible

10



population of N = 120. We assume an Exp(1) prior for λ and that I ∼ Exp(1). Similar results
are obtained with I ≡ 1 and I ∼ Gamma(2, 2) and a U(0, 5) prior for λ, see Neal (2012), except
for the acceptance rates of the ABC algorithms which are sensitive to prior choice. The more
uninformative the priors are, of course, the lower the acceptance rates will be. Note that for
the coupled ABC acceptance of a simulation is independent of the prior distribution. For the
ABC and coupled ABC algorithms we ran the algorithms until we got 10000 accepted values,
accepting only those simulations which resulted in an exact match. In other words, we are
drawing samples from the exact posterior distribution of λ given the data D. For the ABC-
PMC we ran the algorithm with M = 2 tolerance levels and ε = (10, 0) with each tolerance
level run until 10000 accepted values are generated. For each algorithm we report the estimated
posterior mean and standard deviation of λ along with the number of simulations and time (in
seconds) required to obtain the results in Table 1.

Algorithm E[λ|D]
√
V (λ|D) No. of Simulations Time (sec)

EBC 1.16 0.30 13064009 3355
cABC 1.16 0.29 177887 169

ABC-PMC 1.16 0.30 6607900 2643

Table 1: Comparison of ABC algorithms for the Abakiliki data set

The results demonstrate that the coupled ABC algorithm performs substantially better than
the other ABC algorithms. The improvements offered by the ABC-PMC over the ABC are
modest, due primarily to the prior giving significant support to λ values between 0.8 and 1.6
where the majority of the posterior distribution lies. The ABC-PMC algorithm gives a far
more substantial improvement if a more diffuse prior for λ is chosen. The reason for only using
two tolerance levels for the ABC-PMC is that similar values of λ are responsible for epidemics
infecting between 20 and 40 individuals thus there is no gain by inserting intermediary tolerances.
In fact the estimated posterior mean and standard deviation using ABC and a tolerance of 10
(accepting simulations producing epidemics between 20 and 40 individuals) were 1.15 and 0.31,
respectively, and required 564563 simulations in 145 seconds.

3.4 Household SIR epidemic model

3.4.1 Definition

An important class of epidemic models are the household epidemic models; see Ball et al.
(1997). We consider a population of N individuals whom are partitioned into H households.
Let K denote the maximum household size with for k = 1, 2, . . . ,K, Hk households of size
k. Thus H =

∑K
k=1Hk and N =

∑K
k=1 kHk. As for the homogeneously mixing epidemic we

assume that individuals are independent and identically distributed in terms of their infectious
behaviour should they become infected with an infectious period I. During their infectious
period individuals can make infectious contacts with any member of the population but are
assumed to have increased contact with members of their own household. Specifically, infectious
individuals make global infectious contacts at the points of a homogeneous Poisson point process
with rate λG, during their infectious period, with the individual contacted chosen uniformly at
random from the entire population. Also whilst infectious, an individual, i say, makes infectious
contact with a given member of their own household at the points of a homogeneous Poisson
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point process with rate λL/(di − 1)α, where di is the size of individual i’s household and α
is a power parameter determining the effect of household size on epidemic transmission. Note
that α = 0 and α = 1 correspond to density-dependent and frequency-dependent transmission
within households, respectively, and if λL = 0 we essentially return to the homogeneously mixing
epidemic model introduced above.

3.4.2 Simulation

For simulation of the household epidemic model, especially for using the coupled ABC algorithm,
it is useful to again use a Sellke construction of the epidemic process, see for example Ball
et al. (1997) and Neal (2012). Since the time course of the epidemic is not important for non-
temporal data, we follow Ball et al. (1997) in considering the local epidemic (within household)
generated by a global infection before considering the next global infection. An individual is
chosen at random to be the initial infective. This individual instigates an epidemic in their
household which results in Y1 individuals (including the initial infective) being infected with
severity (sum of the infectious periods of the individuals) being S1. For j = 1, 2, . . ., (Yj , Sj)
denotes the number of individuals infected and the corresponding severity from the within
household epidemic emanating from the jth global infection. Note that the {(Yj , Sj)}’s will be
independent but will depend upon the size of the household and the number of susceptibles
in the household prior to the jth global infectious contact. The Sellke construction for the
homogeneously mixing epidemic with minor modifications to take into account the number of
susceptibles in a household at the start of a local epidemic can be used to simulate (Yj , Sj). We
now turn to the global infections. For i = 1, 2, . . . , let

Li ∼ Exp

N −
i∑

j=1

Yj

 /N

 . (9)

Then Li gives the additional amount of global infectious pressure required after the ith global
infection for the (i+ 1)st global infection to occur, given that the local epidemics instigated by
the first i global infections are taken account of. Then letting T(i) =

∑i−1
j=1 Lj (i = 1, 2, . . .), the

global infectious thresholds, we have that the total number of global infections (including the
initial infective) with global infection rate λG is

MλG = min

m : (T(m+1) =)
m∑
i=1

Li > λG

m∑
j=1

Sj

 . (10)

The key observation is that (10) is virtually identical to (4). The only differences are that the
sum of the infectious periods of the first m infectives is replaced by the sum of the severities of
the first m local epidemics and that Li depends upon how many individuals infected in the first
i local epidemics which in the homogeneously mixing case is simply i. Thus those individuals
infected during the course of the epidemic are those infected by the first MλG global infections
or resulting local epidemics.

3.4.3 A Partially coupled ABC algorithm

A (partially) coupled ABC algorithm can be used in conjunction with the above Sellke construc-
tion of the epidemic. In that, given λL and α, we can simulate the local epidemics {(Yj , Sj)}

12



and subsequently the thresholds L. Then L and S, combined with λG in the range max
1≤k≤m−1


k∑
i=1

Li

/
k∑
j=1

Sj

 ,
m∑
i=1

Li

/
m∑
j=1

Sj

 (11)

will result in an epidemic which has m global infections. As before, often (11) will be empty with
an epidemic which leads to at least m global infections having at least m+ 1 global infections.

Algorithm 7 Partially coupled ABC algorithm for household epidemics

Input: observed data D, tolerances ε1 and ε2, parameters governing π(λL), π(λG) and π(α)
Output: Weighted samples from an approximate π(λL, λG, α|D).

1. Initialise x which will keep track of the state of the epidemic following each global infection
with xij being the number of households of size j with i individuals infected. Initially all
individuals are susceptible with Hi (the number of households of size i) being set equal to
the number of households of size i in the observed data x∗.

2. Sample λL from its prior distributions and set the value of α to be fixed at 0 or 1 if a density
or frequency dependent infection model for households is assumed. Alternatively, sample α
from a prior distribution if it is not chosen to be fixed.

3. For j = 1, . . . , N :

(a) Simulate local epidemic (Yj , Sj) with the individual chosen for the jth global infection
chosen uniformly at random from the set of remaining susceptibles following the (j −
1)st infection.

(b) Update x to take into account the jth local epidemic and record δj = |x − x∗|, the
distance between the simulation after the jth global infection and the observed data.

(c) Simulate Lj ∼ Exp({N −
∑i

j=1 Yj}/N).

(d) Use Equation 11 to compute the range of λG values which will result in exactly j global
infections.

(e) If δj ≤ ε1, |
∑j

i=1 Yi −
∑H

k=1

∑H
l=0 l xlk| ≤ ε2 and the set of λG values is non-empty,

store the information for the simulation; parameters (λG, λL, α) and the precisions
(δj ,

∑j
i=1 Yi −

∑H
k=1

∑H
l=0 l xlk). Note that at most N global infections are required

for everybody in the population to be infected.

In Neal (2012), a coupled ABC algorithm is given which simultaneously considers all choices
of (λG, λL) for fixed α (implicit in Neal (2012), α = 0). Whilst the coupled ABC algorithm
has a higher acceptance probability than the partially coupled ABC algorithm, it is far more
computationally intensive, both in coding and implementation taking approximately 20 times
longer per iteration (see Neal (2012)) and is thus not worth the extra effort. The cost of the
partially coupled ABC algorithm over a vanilla ABC algorithm is relatively small since in both
cases the same procedures are followed except that the simulation of the standard ABC algorithm
stops after the M th

λG
global infection.
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3.4.4 Application to outbreak data in households

We demonstrate the capabilities of the various ABC algorithms using household final size data
from four influenza outbreaks (two from Seattle, Washington and two from Tecumseh, Michigan,
reported in Fox and Hall (1980) and Longini et al. (1982), respectively) previously studied by and
given in Clancy and O’Neill (2007) and Neal (2012). For comparison with earlier work we assume
a constant infectious period I ≡ 1 and we assume Exp(1) priors for the infection rates λG and λL.
Both Clancy and O’Neill (2007) and Neal (2012) report qG = exp(−λGQ/N) and qL = exp(−λL),
where Q is the final size of the epidemic. Note that qG and qL are the probabilities that an
individual avoids a global infection throughout the course of the epidemic and that an individual
avoids a local infection from a given infective in their household, respectively. Thus we report
estimates of the means and standard deviations of qG and qL in the main text with estimates of
the means and standard deviations of λG and λL provided in the Supplementary Material B.

It is straightforward to implement a PMC version of the partially coupled ABC algorithm
which uses an updated proposal distribution for λL at each stage of the PMC algorithm. Details
of a generic PMC algorithm for partially coupled ABC is provided in the Supplementary Material
A. Therefore we have four algorithms to compare vanilla ABC, ABC-PMC, partially coupled
ABC and the partially coupled ABC-PMC. In all cases the algorithms were run to obtain 1000
accepted values with two intermediary stages used for the PMC algorithms. As noted in Neal
(2012), requiring an exact match leads to an unacceptably low acceptance probability therefore
we use the same data set dependent thresholds used in Neal (2012). For each algorithm we
report the estimated posterior mean and standard deviation of (qG, qL) along with the number
of simulations and time (in seconds) required to obtain the results in Tables 2, 3, 4 and 5 for
the Seattle influenza A, Seattle influenza B, Tecumseh 1977-8 outbreak and Tecumseh 1980-1
outbreak, respectively. The results show that the vanilla ABC performs very poorly compared
with the other algorithms taking more than 250 times as long as the partially coupled ABC-
PMC algorithm to obtain comparable results for both of the Tecumseh outbreaks. The partially
coupled ABC-PMC algorithm is the most efficient taking approximately two-thirds of the time of
the partially coupled ABC algorithm without any effort to optimise the PMC algorithm and for
the same set of stages is approximately ten times faster than the standard ABC-PMC algorithm.

Algorithm E[qG|D]
√
V (qG|D) E[qL|D]

√
V (qL|D) No. of Simulations Time (sec)

ABC 0.54 0.05 0.69 0.10 24062289 31597
pcABC 0.54 0.05 0.80 0.15 235861 756
ABC-PMC 0.54 0.04 0.70 0.09 2802265 4046
pcABC-PMC 0.53 0.05 0.70 0.10 174248 564

Table 2: Comparison of ABC algorithms for the Seattle influenza A data set with ε = (8, 1) and
intermediary thresholds ε = (20, 3) and ε = (12, 2) for the ABC-PMC algorithm.
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Algorithm E[qG|m]
√
V (qG|m) E[qL|m]

√
V (qL|m) No. of Simulations Time (sec)

ABC 0.84 0.03 0.84 0.06 14905586 32952
pcABC 0.84 0.03 0.84 0.07 232796 393
ABC-PMC 0.84 0.03 0.84 0.07 2967606 3362
pcABC-PMC 0.84 0.03 0.84 0.06 151319 282

Table 3: Comparison of ABC algorithms for the Seattle influenza B data set with ε = (20, 2)
and intermediary thresholds ε = (50, 5) and ε = (30, 3) for the ABC-PMC algorithm.

Algorithm E[qG|m]
√
V (qG|m) E[qL|m]

√
V (qL|m) No. of Simulations Time (sec)

ABC 0.86 0.02 0.84 0.06 38126827 229535
pcABC 0.86 0.02 0.84 0.06 339775 1334
ABC-PMC 0.86 0.02 0.84 0.06 5077091 14196
pcABC-PMC 0.86 0.020 0.84 0.06 190664 906

Table 4: Comparison of ABC algorithms for the Tecumseh 1977-8 outbreak data set with ε =
(50, 4) and intermediary thresholds ε = (100, 10) and ε = (70, 6) for the ABC-PMC algorithms.

Algorithm E[qG|m]
√
V (qG|m) E[qL|m]

√
V (qL|m) No. of Simulations Time (sec)

ABC 0.89 0.02 0.83 0.05 48301994 349193
pcABC 0.89 0.02 0.83 0.05 413399 1577
ABC-PMC 0.89 0.02 0.83 0.05 5968656 20159
pcABC-PMC 0.89 0.02 0.83 0.05 206031 928

Table 5: Comparison of ABC algorithms for the Tecumseh 1980-1 outbreak data set with ε =
(50, 4) and intermediary thresholds ε = (100, 10) and ε = (70, 6) for the ABC-PMC algorithm.

4 ABC for Temporal Data

In this Section we consider the use of ABC methods to draw Bayesian inference for the parame-
ters that govern transmission (namely, the infection and removal rate) given temporal outbreak
data. In practice, the times at which individuals get infected are rarely observed and this makes
the calculation of the likelihood infeasible. Therefore, the available temporal outbreak data
typically consist of case-detection times or at the times at which the individuals are recovered.
For illustration, we consider the homogeneously mixing SIR model described in Section 3.2 al-
though the algorithms which we describe below can be easily applied to more complex models.
Recall that the person-to-person infection rate is λ/N where N is the size of the population.
Furthermore, the infectious period distribution is assumed to be distributed according to an
Exponential distribution with rate γ (i.e. mean 1/γ).
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4.1 Definition

It is fairly straightforward to simulate temporal realisations from a homogeneously mixing SIR
model since it can be viewed as a bivariate Markov process {S(t), I(t) : t ≥ 0} in continuous
time where (S(0), I(0)) = (N − 1, 1) and with the following transition rates:

(i, j)→ (i− 1, j + 1) :
λ

N
S(t)I(t)

(i, j)→ (i, j − 1) : γI(t)

and the corresponding transition probabilities to an infection and removal:

P[S(t+ δt)− S(t) = −1, I(t+ δt)− I(t) = 1 | Ht] =
λ

N
S(t)I(t) + o(δt)

P[S(t+ δt)− S(t) = 0, I(t+ δt)− I(t) = −1 | Ht] = γI(t) + o(δt).

All other transitions having probability o(δt) and Ht is the sigma-algebra generated by the
history of the process up to time t.

4.2 Simulation

A continuous time Markov chain can be simulated using next event simulation, often called the
Gillespie algorithm (Gillespie, 1977). All that is needed is to generate the time the Markov
chain spends in a state and the next state that it visits. Recall that each infectious individual
remains so for a length time TI ∼ Exp(γ) and during this time, infectious contacts occur with
each susceptible according to a Poisson process with rate λ

N . Thus the overall infection rate is
λ
N S(t)I(t).

Algorithm 8 Simulation of temporal data from a Markovian SIR model

Input: population size N , infection rate λ, removal rate γ
Output: infection and removal times

1. Initialise s = N − 1, i = 1, t = 0.
2. while i > 0 do
3. Simulate τ ∼ Exp

(
λ
N si+ γi

)
4. Simulate u ∼ U(0, 1)
5. if u < λ

N si
/(

λ
N si+ γi

)
then

6. Set s = s− 1 and i = i+ 1
7. else
8. i = i− 1
9. end if
10. t = t + τ
11. Record number of susceptibles and infectives at time t: (s, i), t
12. end while

The output of the Algorithm 8 is a sequence of times t0, t1, t2, . . . and a corresponding
sequence of states (s0, i0), (s1, i1), . . . , (sm, im), where m is the first event where i reaches zero.
Typically we also keep track of the type of each event, i.e. whether it is an infection or a removal.

16



4.3 ABC

In this paper we deal with the case where we have discrete temporal count data which is very
often the case in practice. In other words, typically, the observed data consist of the number of
removed (or recovered) individuals per day or week. Algorithm 8 simulates realisations from an
SIR model in continuous time. Therefore, it is impossible to apply an EBC algorithm (Algorithm
1) requiring an exact match between the observed data and the simulated data (in continuous
time), since such an event has probability zero. Instead, we can easily employ an ABC algorithm
instead (Algorithm 2) by discretising the time. However, that will require the choice of a distance
function d(·, ·) and summary statistics of the data (function s(·)). We discuss such choices below.

Summary statistics. An obvious choice for summary statistics would be to calculate the
number of removals per day and compare these directly to the observed data (requiring even
an exact match). However, one potential issue is that such an approach can be very sensitive
to spurious single time-point deviations between the simulated and observed data, which might
be expected to be fairly common in large-scale stochastic epidemic models. Alternatively, if
the outbreak lasted for T time units, then we can discretise the interval [0, T ] into a number
of bins and count the number of removals in each bin. There is no hard rule on how to choose
how to discretise the interval [0, T ] (i.e. the number of bins) and this largely depends on the
application in hand. Another useful summary statistic that can be informative for inferring the
model parameters is the duration of the epidemic T .

Distance metrics. It appears natural for time-series data to develop distance functions (met-
rics) based on differences between observed and simulated counts. An intuitive distance metric
is the sum-of-squared differences between observed and simulated counts (L2-norm) or perhaps
a sum-of-absolute differences (L1-norm). Another option is to use a distance metric based on
a chi-squared goodness-of-fit criterion (see, McKinley et al., 2009). This is very similar to an
L2-norm but with the contribution at each bin scaled by the observed data (number of removals
in each bin). Such a metric adjusts the contribution of each bin along epidemic curve to reflect
the fact that the variation changes as the epidemic progresses.

4.3.1 Example 1: An Application to the Abakaliki Smallpox Outbreak

We now return the smallpox dataset. The data were originally reported in a World Health
Organisation report and consist of a time series of 30 case detection times. In Section 3.3.1 we
ignored this temporal information and only considered the final size. Instead, we now take into
account the temporal information and apart from inferring the infection rate we are also able
to draw inference for the removal rate. The data have been analysed by numerous authors (see,
for example Becker, 1989; O’Neill and Roberts, 1999; Boys and Giles, 2007, and the references
therein) assuming a homogeneously mixing population of 120 individuals. On the other hand,
Eichner and Dietz (2003) took into account of the population’s mixing structure as well as other
important factors and fitted a more elaborate epidemic model.

It is outside the scope of this paper to provide a detailed analysis of this dataset by taking
account of the population structure etc. Instead, our aim is to illustrate that one can easily
use ABC to draw (approximate) Bayesian inference for the parameters of interest. A data
augmentation MCMC algorithm can be used to draw samples the true posterior distributions
(see O’Neill and Roberts, 1999, for example). Following O’Neill and Roberts (1999) we assume
that the detection times correspond to removal times which are given as follows:

0, 13, 20, 22, 25, 25, 25, 26, 30, 35, 38, 40, 40, 42, 42, 47, 50, 51, 55, 55, 56, 57, 58,
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60, 60, 61, 66, 66, 71, 76

The summary statistics were taken to be (a) the numbers of removals in several time periods
(“bins”) and (b) the epidemic duration which is taken to be the time of the last removal. The
time periods were taken to be:

[0, 13], (13, 26], (26, 39], (39, 52], (52, 65], (65, 78], (78,∞].

The observed summaries were s(D) = (2, 6, 3, 7, 8, 4, 0, 76). We note that the observed du-
ration (76 days) is an order of magnitude larger than the other summaries. Hence, using a
Euclidean distance creates a danger that the distance is dominated by this summary alone.
Hence we use the following weighted distance function:

d(s(D), s(D?)) =

[
7∑
i=1

(bi − b?i )2 +

(
T − T ?

50

)2
]1/2

(12)

where bi is the observed number of removals in the ith bin and T is the observed duration, and
the ? indicates similar notation for simulated data. Selection of weights to put the summaries
on similar scales is straightforward in this situation. More sophisticated methods are available
when this is not the case, see, for example Beaumont et al. (2002) and Prangle (2015a).

We assumed that a priori λ ∼ Exp(0.1) and γ ∼ Exp(0.1) and we first employed the ABC
algorithm using the summary statistics and distance metric described above and choosing a
tolerance ε = 11 until 500 samples were accepted. We also ran an ABC-PMC (Algorithm 4) in
which the sequence of tolerances were determined adaptively using the approach by Drovandi
and Pettitt (2011) and described in Section 2.3. The ABC-PMC algorithm was terminated
after 25 iterations requiring in total about 7% of the samples that were required for the ABC
algorithm and achieving a much lower tolerance ε = 4.69.

Algorithm E[λ|D]
√
V [λ|D] E[γ|D]

√
V [γ|D] No. of Simulations Time (mins)

ABC 0.11 0.054 0.10 0.044 72157599 1543
ABC-PMC 0.13 0.045 0.11 0.044 5276398 207

Table 6: Comparison of ABC algorithms for the Abakaliki smallpox data with ε = 11 for the
ABC algorithm

4.3.2 Example 2: An Application to Gastroenteritis outbreak data.

This example is concerned with an outbreak of gastroenteritis in a hospital ward in South Car-
olina, January 1996, as reported in Cáceres et al. (1998). Although viruses that cause gastroen-
teritis are commonly transmitted through contaminated food, on this occasion person-to-person
spread was believed to have occurred. The data were analysed in Britton and O’Neill (2002)
by fitting a Markovian SIR model in which the underlying social structure of the population
is described by a Bernoulli random graph, see also Section 4.3.3 below. Here, for illustrative
purposes we fit a homogeneously mixing SIR model using ABC.

Data were collected on the date of onset of symptoms for the 28 cases among 89 members of
staff working on the ward during the study period, as well as 10 cases among 91 patients who
were hospitalized for more than one day during the outbreak. Britton and O’Neill (2002) for
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simplicity restricted attention to the cases among staff members since the patient population
was not closed, and only 10 patient cases occurred. We follow Britton and O’Neill (2002) and
also assume a closed population of size 89 with 28 individuals contracting the disease. The staff
data are given in Table 7.

Day 0 1 2 3 4 5 6 7
Cases 1 0 4 2 3 3 10 5

Table 7: Detection times of cases of gastroenteritis

On the final day on which cases were recorded, the hospital ward was closed to new admis-
sions, and no more cases occurred. In addition to the assumption of a homogeneously mixing
population and the fact that we have ignored cases among patients, our model takes no account
of an incubation period, which for viral gastroenteritis is between 1 and 3 days (Benenson,
1990). Our main purpose here is to illustrate that ABC can be used to infer the model parame-
ters rather than perform a careful data analysis. The latter it is outside the scope of this paper
and therefore we will be tolerant towards some of the less realistic assumptions.

Similarly to the Abakaliki data example, the summary statistics were taken to be (a) numbers
of removals in several time periods (“bins”) and (b) the epidemic duration which is taken to be
the time of last removal. The time periods were taken to be:

[0, 1], (1, 2], (2, 3], (3, 4], (4, 5], (5, 6], (6, 7], (7,∞]

and the observed summaries were s(D) = (1, 4, 2, 3, 3, 10, 5, 0, 7). Unlike the Abakaliki data
the observed duration of the outbreak (7 days) is not an order of magnitude larger than the
other summaries, however, we used the same distance metric (Equation 4.3.1). Assuming that
λ and γ a-priori follow an Exponential distribution with rate 0.1 (i.e. mean 10) we first ran
an ABC algorithm using ε = 10 until 500 samples were accepted. In addition, we also ran an
ABC-PMC algorithm and it took 9 iterations to reach a tolerance of 7.41. Table 8 reveals that
both algorithms produce very similar results (in terms of posterior moments).

Algorithm E[λ|D]
√
V [λ|D] E[γ|D]

√
V [γ|D] No. of Simulations Time (mins)

ABC 1.36 0.48 1.14 0.40 120667317 2160
ABC-PMC 1.32 0.45 1.13 0.37 939974 27

Table 8: Comparison of ABC algorithms for the Gastroenteritis data with ε = 10 for the ABC
algorithm

Additionally, the posterior mean of R0 is fairly close to a martingale-based estimator of the
reproduction number as described in Becker (1989, p. 149) based only on the final size (28)
and the population size (89) and found to be 1.14. Furthermore, although Britton and O’Neill
(2002) fitted a model assuming a random social structure (rather than a homogeneously mixing
population) within a Bayesian framework, they report the posterior mean and median of R0 to
be 1.17 and 1.14. Although we would not expect the inferences to be identical due to different
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methods and different models being fitted, the fact that our results using ABC are similar it is
reassuring.

4.3.3 An application to an SIR model upon a Bernoulli random graph

As we have seen in Section 3, we often want to move beyond the simple homogeneously mixing
SIR epidemic model. A variety of extensions appear in the literature such as the household model
(O’Neill et al., 2000), spatial epidemic models (Jewell et al., 2009b) and random graph models
(Britton and O’Neill, 2002). It is beyond the scope of this paper to discuss these extensions in
detail, but we briefly describe the SIR epidemic model upon a Bernoulli random graph studied
using MCMC in Britton and O’Neill (2002) and Neal and Roberts (2005).

The model is as follows. It is assumed that there is an underlying Bernoulli random graph
connecting the N individuals in the population. Specifically, for each pair of individuals i and j
there is assumed to exist an edge between the individuals with probability, p say, independent
of the existence, or otherwise, of edges between other pairs of individuals. The epidemic begins
from a single infective and all infectives have independent and identically distributed infectious
periods according to TI ∼ Exp(γ). It is straightforward to generalise to other infectious period
distributions TI . Whilst infectious, an infective makes infectious contacts with each individual
it is connected to (an edge exists between the two individuals) at the points of a homogeneous
Poisson point process with rate β. If an individual is susceptible when an infectious contact is
made with them, they immediately become infectious and are able to make infectious contacts.
An individual makes no infectious contacts with individuals they are not connected to (no edge
exists between the two individuals). Note that if p = 1, we recover the Markovian SIR model
described above.

Algorithm 9 Simulation of temporal data from an SIR epidemic model upon a Bernoulli
random graph

Input: population size N , edge probability p, infection rate β, removal rate γ
Output: removal times

1. Simulate connectivity matrix, G, where for i < j, Gij = Gji ∼ Bern(p) and Gii = 0.
2. Initialise by setting individual 1 infectious and all other individuals susceptibles along with

t = 0.
3. Let I and S denote the sets of infectives and susceptibles, respectively.
4. while |I| > 0 do
5. Simulate T ∼ Exp(β

∑
i∈I
∑

j∈S Gij + γ|I|).
6. t = t + T
7. Simulate u ∼ U(0, 1).

8. if u < β
∑

i∈I
∑

j∈S Gij

/
(β
∑

i∈I
∑

j∈S Gij + γ|I|) then

9. Sample J from S with P (J = j) =
∑

i∈I Gij
/∑

i∈I
∑

k∈S Gik .
10. Individual J becomes infectious; resulting in S = S/{J} and I = I ∪ {J}.
11. else
12. Sample K uniformly from I.
13. Individual K is removed; I = I/{K}.
14. Record the removal time t.
15. end if
16. end while
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The output of Algorithm 9 is a sequence of times t1, t2, . . . , tm, at which removals are ob-
served, where m denotes the total number of infections in the epidemic. Thus we are assuming
the same scenario as for the Markovian SIR model that removal times but not infection times
are observed. For comparison with observed data, we use t′i = ti − t1 (i = 1, 2, . . . ,m), so that
the first recovery time is set to 0.

We applied the SIR epidemic model upon a Bernoulli random graph to the Gastroenteritis
outbreak data given in example 2 above. We employed a vanilla ABC algorithm with U(0, 1),
Exp(0.2) and Exp(0.5) priors on p, β and γ, respectively, the same binning of time periods and
distance metric as for the Markovian SIR model and ε = 10. We ran the algorithm to obtain 1000
accepted values from the (approximate) posterior distribution. This required 615596 simulations
in R taking 930 seconds to complete with the resulting posterior estimates. The estimates for
p and R0 are similar to those reported in Britton and O’Neill (2002) with the estimates of β
and γ being approximately two-thirds the values reported in Britton and O’Neill (2002). The
discrepancy with Britton and O’Neill (2002) for β and γ is due primarily to the way the removal
times are modelled, in that, in Britton and O’Neill (2002) it is assumed that the removal times
on day k all take place at the end of the day, whilst we assume that the removal times take
place during the course of the day. The ABC-PMC algorithm performed poorly, with a very low
acceptance rate. Hence, we have omitted its results. The reason is because the Normal proposal
kernel (3) is a poor match to the “banana” shaped posterior dependence of p and β. A more
sophisticated kernel or reparameterisation of the model might improve performance.

Parameter E[·|D]
√
V [·|D]

p 0.470 0.262
β 0.038 0.036
γ 0.908 0.371

R0 = Nβp/(β + γ) 1.147 0.394

Table 9: Approximate posterior moments for the parameters of the SIR model upon a Bernoulli
random graph for the Gastroenteritis data

5 Conclusions

In this paper we have described some of the key ideas relating to drawing (approximate) Bayesian
inference for stochastic epidemic models using ABC methods. Although the examples that we
have used in this paper are fairly simple, broadly speaking, the methods are very flexible and
can be used for more complex models; see for example the recent work by Brooks-Pollock et al.
(2014) on fitting a dynamic model of bovine tuberculosis spread in Great Britain. However, as
with any application of ABC (or even MCMC methods), the existence of an algorithm does not
necessarily imply that is either efficient or practical. ABC methods are very well suited for cases
where the models of interest have a relatively few parameters but the likelihood of the observed
data is either unavailable or difficult to compute. The R code to implement the algorithms
presented in the paper can be downloaded from https://github.com/kypraios/epiABC.
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Cappé, O., Guillin, A., Marin, J.-M., and Robert, C. P. (2004). Population Monte Carlo. Journal
of Computational and Graphical Statistics, 13(4):907–929.

22



Cauchemez, S., Carrat, F., Viboud, C., Valleron, A., and Boelle, P. (2004). A bayesian mcmc ap-
proach to study transmission of influenza: application to household longitudinal data. Statis-
tics in medicine, 23(22):3469–3487.

Cauchemez, S., Donnelly, C., Reed, C., Ghani, A., Fraser, C., Kent, C., Finelli, L., and Ferguson,
N. (2009). Household transmission of 2009 pandemic influenza a (H1N1) virus in the united
states. N Engl J Med, 361(27):2619–2627.

Chis-Ster, I. and Ferguson, N. (2007). Transmission parameters of the 2001 foot and mouth
epidemic in great britain. PLoS One, 2(6):e502.

Clancy, D. and O’Neill, P. D. (2007). Exact bayesian inference and model selection for stochastic
models of epidemics among a community of households. Scandinavian Journal of Statistics,
34(2):259–274.

Del Moral, P., Doucet, A., and Jasra, A. (2006). Sequential Monte Carlo samplers. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 68(3):411–436.

Del Moral, P., Doucet, A., and Jasra, A. (2012). An adaptive sequential Monte Carlo method
for approximate bayesian computation. Statistics and Computing, 22(5):1009–1020.

Demiris, N. and O’Neill, P. D. (2006). Computation of final outcome probabilities for the
generalised stochastic epidemic. Statistics and Computing, 16(3):309–317.

Drovandi, C. C. and Pettitt, A. N. (2011). Estimation of parameters for macroparasite popula-
tion evolution using approximate Bayesian computation. Biometrics, 67(1):225–233.

Eichner, M. and Dietz, K. (2003). Transmission potential of smallpox: estimates based on
detailed data from an outbreak. American Journal of Epidemiology, 158(2):110–117.

Forrester, M., Pettitt, A., and Gibson, G. (2007). Bayesian inference of hospital-acquired infec-
tious diseases and control measures given imperfect surveillance data. Biostatistics, 8(2):383.

Fox, J. P. and Hall, C. E. (1980). Viruses in families: surveillance of families as a key to
epidemiology of virus infections. PSG Publishing Company Inc., 545 Great Road, Littleton,
Massachusetts 01460, USA.

Gibson, G. J. and Renshaw, E. (1998). Estimating parameters in stochastic compartmental
models using Markov Chain methods. IMA J. Math. Appl. Med. Biol., 15:19–40.

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The journal
of physical chemistry, 81(25):2340–2361.

Hollingsworth, T. (2009). Controlling infectious disease outbreaks: Lessons from mathematical
modelling. Journal of Public Health Policy, 30(3):328–341.

Jewell, C. P., Kypraios, T., Christley, R. M., and Roberts, G. O. (2009a). A novel approach
to real-time risk prediction for emerging infectious diseases: a case study in avian influenza
H5N1. Preventive veterinary medicine, 91(1):19–28.

Jewell, C. P., Kypraios, T., Neal, P. J., and Roberts, G. O. (2009b). Bayesian analysis for
emerging infectious diseases. Bayesian Analysis, 4(2):191–222.

23



Kypraios, T. (2007). Efficient Bayesian inference for partially observed stochastic epidemics and
a new class of semi-parametric time series models. PhD thesis, Lancaster University.

Kypraios, T., O’Neill, P. D., Huang, S. S., Rifas-Shiman, S. L., and Cooper, B. S. (2010). As-
sessing the role of undetected colonization and isolation precautions in reducing Methicillin-
Resistant Staphylococcus aureus transmission in intensive care units. BMC Infectious Dis-
eases, 10(1):29.

Lindvall, T. (1992). Lectures on the Coupling Method. Wiley, New York.

Longini, I. M., Koopman, J. S., Monto, A. S., and Fox, J. P. (1982). Estimating household
and community transmission parameters for influenza. American Journal of Epidemiology,
115(5):736–751.

Marjoram, P., Molitor, J., Plagnol, V., and Tavaré, S. (2003). Markov chain Monte Carlo
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A PMC for partially coupled ABC algorithm

In this Section we outline how the partially coupled ABC-PMC algorithm can be implemented.
The algorithm is based upon T PMC steps with the output from the final step used as an
estimate from the posterior distribution. The generic algorithm below is given for obtaining
samples from an approximation of π(θ|D), where the parameters θ can be partitioned into two
groups φ and ϕ. For the parameters in φ we sample these and fix them for each simulation
whereas for the parameters in ϕ we consider all possible parameter values. For the household
epidemic example φ = λL (or φ = (λ, α) if α is to be estimated) and ϕ = λG. It will probably
almost always be the case that ϕ is one-dimensional. The algorithm below is an adaption of the
ABC-PMC algorithm given in Toni et al. (2009, Section 2.1).
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Algorithm 10 Partially coupled ABC-PMC algorithm for household epidemics

Input: observed data D, tolerances ε1 and ε2, parameters governing π(λL) and π(λG)
Output: Weighted samples from an approximate π(λL, λG|D).

1. Initialisation:

(a) Set the distance metric for comparing summary statistics which in the case of the
household epidemics are |

∑H
k=1

∑k
l=0 l(xlk − x∗lk)|, the total number of individuals

infected in the epidemic and
∑H

k=1

∑k
l=0 |xlk − x∗lk|, the difference in the configuration

of infectives within households.

(b) Set precisions ε1 and ε2 for accepting simulations.

2. Let t = 1.
3. Repeat the following steps until N occurrences:

(a) If t = 1 sample φ∗∗ from π(φ). Else, sample φ∗ from the previous population {φ(i)
t−1}

with weights {w(i)
t−1}. Perturb the particle to obtain φ∗∗ ∼ Kt(φ|φ∗), where Kt is

a pertubation kernel. Throughout we recommend a multivariate Gaussian kernel
with covariance matrix twice the (weighted) empirical covariance matrix given by

{(φ(i)
t−1, w

(i)
t−1)}, see Beaumont et al. (2009).

(b) If π(φ∗∗) > 0, proceed with simulating from the partially coupled ABC algorithm
using the parameters φ∗∗. Let C denote the set of ϕ parameters which result in an
accepted simulation and let c =

∫
C π(ϕ) dϕ, the probability that a value of ϕ sampled

from the prior will lie in C.

(c) If c > 0, set φ
(i)
t = φ∗∗ and calculate the weight for particle φ

(i)
t ,

v
(i)
t =


1 if t = 1,

π(φ(i)

t )∑N
j=1 w

(j)
t−1Kt(φ

(i)

t |φ
(j)

t−1)
if t > 1,

with w
(i)
t = cv

(i)
t . If t = T , set A(i) = C. That is, for the final step we record the

set of ϕ for each accepted simulations. These are not required for taking forward the
intemediary steps as the ϕ parameters are effectively integrated out.

4. Normalise the weights to sum to 1.
5. Increment t = t+ 1
6. Repeat Steps 3 and 4 until t = T .

The key difference to the ABC-PMC algorithm of Toni et al. (2009) is that we have to take
account of the weight for the set of ϕ values in the coupled simulation which will result in a
simulation being accepted. For the household epidemic moments of λG can easily be estimated

from {(A(i), w
(i)
T )} with a consistent estimate of E[h(λG)|x∗] provided by

N∑
i=1

v
(i)
T

∫
A(i)

h(λG)π(λG) dλG

/
N∑
i=1

v
(i)
T

∫
A(i)

π(λG) dλG.

This is straightforward to compute if the prior on λG is exponentially distributed and the function
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h(·) is either polynomial or exponential which suffice for our needs for the household epidemic.

B Parameter estimates for household epidemic data sets

Algorithm E[λG|D]
√
V (λG|D) E[λL|D]

√
V (λL|D) No. of Simulations Time

ABC 1.139 0.156 0.378 0.147 24062289 31597
cABC 1.144 0.164 0.371 0.148 235861 756
ABC-PMC 1.144 0.130 0.369 0.127 2802265 4046
pcABC-PMC 1.154 0.168 0.366 0.139 174248 564

Table 10: Comparison of ABC algorithms for the Seattle influenza A data set with ε = (8, 1)
and intermediary thresholds ε = (20, 3) and ε = (12, 2) for the ABC-PMC algorithm.

Algorithm E[λG|D]
√
V (λG|D) E[λL|D]

√
V (λL|D) No. of Simulations Time

ABC 0.803 0.166 0.177 0.077 14905586 32952
cABC 0.802 0.165 0.174 0.080 232796 393
ABC-PMC 0.815 0.172 0.175 0.078 2967606 3362
pcABC-PMC 0.801 0.172 0.176 0.078 151319 282

Table 11: Comparison of ABC algorithms for the Seattle influenza B data set with ε = (20, 2)
and intermediary thresholds ε = (50, 5) and ε = (30, 3) for the ABC-PMC algorithm.

Algorithm E[λG|D]
√
V (λG|D) E[λL|D]

√
V (λL|D) No. of Simulations Time

ABC 0.813 0.117 0.179 0.068 38126827 229535
pcABC 0.819 0.117 0.178 0.066 339775 1334
ABC-PMC 0.820 0.117 0.180 0.069 5077091 14196
pcABC-PMC 0.819 0.121 0.177 0.068 190664 906

Table 12: Comparison of ABC algorithms for the Tecumseh 1977-8 outbreak data set with ε =
(50, 4) and intermediary thresholds ε = (100, 10) and ε = (70, 6) for the ABC-PMC algorithm.

Algorithm E[λG|D]
√
V (λG|D) E[λL|D]

√
V (λL|D) No. of Simulations Time

ABC 0.738 0.107 0.188 0.059 48301994 349193
cABC 0.733 0.105 0.192 0.059 413399 1577
ABC-PMC 0.744 0.110 0.186 0.061 5968656 20159
pcABC-PMC 0.741 0.108 0.187 0.060 20031 928

Table 13: Comparison of ABC algorithms for the Tecumseh 1980-1 outbreak data set with ε =
(50, 4) and intermediary thresholds ε = (100, 10) and ε = (70, 6) for the ABC-PMC algorithm.
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