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 

Abstract—Stability analysis is an important research direction 

in evolutionary game theory. Evolutionarily stable states have a 

close relationship with Nash equilibria of repeated games, which 

are characterized by the folk theorem. When applying the folk 

theorem, one needs to compute the minimax profile of the game in 

order to find Nash equilibria. Computing the minimax profile is 

an NP-hard problem. In this paper we investigate a new 

methodology to compute evolutionary stable states based on the 

level-k equilibrium, a new refinement of Nash equilibrium in 

repeated games. A level-k equilibrium is implemented by a group 

of players who adopt reactive strategies and who have no 

incentive to deviate from their strategies simultaneously. 

Computing the level-k equilibria is tractable because the minimax 

payoffs and strategies are not needed. As an application, this 

paper develops a tractable algorithm to compute the 

evolutionarily stable states and the Pareto front of n-player 

symmetric games. Three games, including the iterated prisoner’s 

dilemma, are analyzed by means of the proposed methodology.  

 
Index Terms—Evolutionary game theory, evolutionary stability, 

folk theorem, iterated prisoner’s dilemma, Nash equilibrium.  

 

I. INTRODUCTION 

volutionary game theory has been successful in helping to 

explain many complex and challenging aspects of 

biological and social phenomena in recent decades [1, 2]. Based 

on the idea that biological organisms that are more fit in a given 

environment will tend to produce more offspring, evolutionary 

game theory provides us with the methodology to study 

strategic interactions among individuals in evolving 

populations.  

Evolutionary stability analysis is one of the major research 

directions in evolutionary game theory. It considers strategic 

interactions in the situations when mutant strategies invade an 

infinite or finite population of homogeneous or heterogeneous 

 
This paper is submitted for review on 23rd March 2015.  
J. Li is with the ASAP research group, School of Computer Science, 

University of Nottingham, UK (e-mail: jiawei.michael.li@gmail.com).  

G. Kendall is with the School of Computer Science, University of 

Nottingham Malaysia Campus, Malaysia and the ASAP research group, School 

of Computer Science, University of Nottingham, UK (e-mail: 

graham.kendall@nottingham.edu.my). 
R. John is with the ASAP research group, School of Computer Science, 

University of Nottingham, UK (e-mail: Robert.john@nottingham.ac.uk). 

 Copyright (c) 2012 IEEE. Personal use of this material is permitted. 
However, permission to use this material for any other purposes must be 
obtained from the IEEE by sending a request to pubs-permissions@ieee.org. 

strategies, without concerning the parameters of evolutionary 

dynamics such as the selection scheme [3, 28].  

Classical evolutionary stability analysis is based on the 

concept of evolutionarily stable strategy (ESS). An ESS is a 

strategy such that, if all the members of a population adopt it, 

then no mutant strategy can invade the population under the 

influence of natural selection [3]. According to [4], the 

condition for a strategy x to be ESS is that for any strategy 

𝑦 ≠ 𝑥, 

 

𝑢(𝑥, 𝑥) ≥ 𝑢(𝑦, 𝑥)                 (1.a) 

𝑢(𝑥, 𝑦) > 𝑢(𝑦, 𝑦)           (1.b) 

 

where 𝑢(𝑥, 𝑦) is the payoff of strategy 𝑥 when interacting with 

another strategy 𝑦. 

This condition guarantees that an ESS always outperforms 

mutant strategies so that a homogeneous population can be 

maintained in evolutionary dynamics. However, the definition 

of ESS is so strict that there is frequently no ESS in an infinite 

length or indefinite length two-player [5, 6] or n-player [7] 

repeated game. Except in specific situations, the condition of 

ESS cannot be used to analyze the evolutionary stability of 

strategies in evolutionary games.  

A population is considered to be in an evolutionarily stable 

state if its genetic composition is restored by selection after a 

disturbance [8]. In evolutionary game theory, an evolutionarily 

stable state has a close relationship with Nash equilibrium (NE) 

and the folk theorem for infinitely repeated games [9, 10]. The 

folk theorem, which is the fundamental theory of 

non-cooperative repeated games, states that any feasible payoff 

profile that strictly dominates the minimax profile is a NE 

profile in an infinitely repeated game [11, 12]. The evolutionary 

stable states are a subset of those Nash equilibria in the 

corresponding evolutionary game. 

Computing a NE is generally hard in either a one-shot game 

or a repeated game. It has been proved in complexity theory 

that computing whether a two-player 𝑛 × 𝑛 game has any NE 

in which both players get non-negative payoffs is NP-hard [13]. 

Recent results have shown that the problem of finding a NE is 

PPAD-complete, even for a two-player game, and even if all 

payoffs are ±1, which suggests that these problems are as hard 

as finding Brouwer fixed-point and thus are computationally 

intractable [14-16]. Computing an approximate NE, such as 

𝜀 −NE, is also PPAD-complete [17]. In infinitely repeated 

games, finding a NE or 𝜀 −NE of (k+1)-player games is as hard 

as finding NE of k-player one-shot games [18], unless some 

changes are made to simplify the model [19].  
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The main difficulty of this problem lies in computing the 

minimax profile because the strategy space of a repeated game 

is much more complicated than that of a one-shot game. In [20], 

a polynomial algorithm for finding a NE in a two-player 

average-payoff repeated game is designed by restricting the 

strategies of the players. Some learning algorithms, fictitious 

play for example [47, 49], assume that each player adopts a 

stationary strategy at each round. These methods are flawed if 

reactive strategies are taken into account. The computational 

complexity of finding a NE for a repeated game is still an open 

problem.  

Some specific subsets of NE are tractable. Classical game 

theorists have developed a number of refinements of NE, such 

as subgame perfect NE [21], strong NE [22], and coalition 

proof NE [23, 24], because many games, especially repeated 

games, have multiple equilibria and those equilibria can be 

significantly different in terms of simplicity, stability, and 

commitment. One can refine equilibria to distinguish them in 

which implicit commitments are credible due to incentives [25]. 

Some refinements of NE require less computational complexity 

than computing the Brouwer fixed-point or the minimax payoff 

profile. Unlike a NE, however, none of the refinements of NE 

so far guarantees its existence in a game. 

 In this paper, we propose a new refinement of NE in 

repeated games, namely the level-k equilibrium, in order to 

develop tractable and general algorithms to compute NE of 

repeated games. Based on this concept, we show that specific 

Pareto optimums of the convex hull of the feasible payoff 

profiles are NE payoff profiles. The minimax payoff profile is 

not needed in computing the level-k equilibria. We prove that 

there must be at least one level-k equilibrium in a repeated 

game.  

Symmetric games are a set of fair games in which the 

identity of any player has no influence on the result. Almost all 

evolutionary games are symmetric so that individuals in the 

population face the same situations in the evolution. According 

to the folk theorem and the concept of level-k equilibrium, we 

show that the Pareto front of the payoff profiles must be 

evolutionarily stable states in symmetric games.  

There are two novel contributions in this paper: 

a. We prove the existence of level-k equilibria, a subset of 

NE of repeated games, which are not characterized by the folk 

theorem. Computing a NE is considered to be NP-hard. We 

show that the level-k equilibria are tractable and ubiquitous in 

repeated games. 

b. Stability analysis based on ESS is not suitable for repeated 

games and evolutionary games. We propose a tractable 

algorithm based on the level-k equilibrium to compute the 

evolutionarily stable states of n-player symmetric repeated 

games.  

The rest of the paper is organized as follows. Section 2 

introduces evolutionarily stable state and NE of repeated games 

and the relationship between them. Section 3 defines the 

concept of level-k equilibrium and discusses how a level-k 

equilibrium is implemented among a group of players adopting 

reactive strategies. We prove that level-k equilibria are a subset 

of NE, based on which an algorithm is developed to compute 

the evolutionarily stable payoff and Pareto front of an n-player 

evolutionary game in Section 4. Section 5 analyzes three games 

by means of the proposed algorithm. Section 5 concludes the 

paper.  

II. EVOLUTIONARILY STABLE STATE AND NASH EQUILIBRIUM  

An evolutionarily stable state is a state such that a 

disturbance cannot change the genetic compositions of the 

population, if that disturbance is not too large. Besides intrinsic 

disturbances such as stochastic decisions and noise in game 

dynamics, crossover and mutation in selection process are also 

sources of disturbance. 

The dynamic of an evolutionary game is generally expressed 

by the replicator equation, 

 

𝑥̇𝑖 = 𝑥𝑖(𝑢𝑖(𝑥) − 𝑢̅(𝑥))                (2) 

 

where 𝑥 = (𝑥1, ⋯ , 𝑥𝑛) is the vector of the distribution of types 

𝑖 = 1,⋯ , 𝑛 in the population, 𝑢𝑖(𝑥) is the fitness (payoff) of 

type 𝑖 , and 𝑢̅(𝑥) = ∑ 𝑥𝑗𝑢𝑗(𝑥)
𝑛
𝑗=1  is the average population 

fitness. It is generally difficult to acquire accurate solutions of 

the replicator equation. 

A state 𝑥̂ is said to be evolutionary stable if for all 𝑥 ≠ 𝑥̂ in 

some neighborhood of 𝑥̂, 

 

{
𝑢𝑖(𝑥) ≥ 𝑢̅(𝑥) if 𝑥𝑖 ≤ 𝑥̂𝑖
𝑢𝑖(𝑥) < 𝑢̅(𝑥) if 𝑥𝑖 > 𝑥̂𝑖

                 (3) 

 

When the population deviates from the state 𝑥̂ , due to a 

disturbance, it will be restored by a selection process.  

NE is a stable state in strategic games such that no player can 

be better off by unilaterally deviating from it. Nash has proven 

that any strategic game has at least one NE if mixed strategies 

are taken into consideration [26]. However, there is no upper 

bound of the number of NE. A strategic game may have 

multiple, sometimes unlimited, NE [48]. 

Consider an infinitely repeated n-player game 𝐺 =
{𝐼, 𝑆, 𝑈}𝑇  where 𝐼 = {1,⋯ , 𝑛}  is the player set and 𝑆 =
{𝑆1, ⋯ , 𝑆𝑛} and 𝑈 = {𝑈1, ⋯ , 𝑈𝑛} are the strategy set and the 

payoff set respectively. Let 𝑠−𝑖 = (𝑠1, ⋯ , 𝑠𝑖−1, 𝑠𝑖 , ⋯ , 𝑠𝑛) 
denote the strategy profile excluding the strategy of player i. 

The iteration of the game is counted by 𝑡, starting from 𝑡 = 0. 

Each player has a pure action space 𝐴𝑖
𝑡 in the 𝑡𝑡ℎ stage game. 

A strategy profile (𝑠1, ⋯ , 𝑠𝑛) is a NE if, for any 𝑖 ∈ 𝑛 and 

𝑠𝑖
′ ∈ 𝑆𝑖 there are 

 

𝑢𝑖(𝑠′𝑖 , 𝑠−𝑖) ≤ 𝑢𝑖(𝑠𝑖 , 𝑠−𝑖)              (4) 

 

In repeated games, the set of NE includes any feasible 

payoff profile that dominates the minimax profile, which is 

characterized by the folk theorem. 

The concept of an evolutionarily stable state is equivalent to 

the concept of strong NE [9]. A strong NE is an equilibrium in 

which no coalition of a group of players can be better off by 

deviating from their current strategies simultaneously. In 

repeated games, a strong NE is both a Pareto optimum and a NE 

of the stage game. 

A strategy profile (𝑠̅1, ⋯ , 𝑠̅𝑛) and the corresponding payoff 

profile is a strong NE in a n-player repeated game if, for any 

𝑠𝑖
′ ≠ 𝑠̅𝑖  and 𝑠−𝑖

′ ≠ 𝑠̅−𝑖,  there are 
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𝑢𝑖(𝑠̅𝑖 , 𝑠̅−𝑖) ≥ 𝑢𝑖(𝑠′𝑖 , 𝑠̅−𝑖)               (5.a) 

𝑢𝑖(𝑠̅𝑖 , 𝑠̅−𝑖) ≥ 𝑢𝑖(𝑠′𝑖 , 𝑠′−𝑖)               (5.b) 

 

These inequalities are necessary and sufficient conditions 

for (3) to hold in a selection process. (5.a) is the condition of 

NE while (5.b) is the condition of Pareto optimum. For a 

two-player symmetric game, (5.a) and (5.b) can be simplified 

to  

 

𝑢(𝑠̅, 𝑠̅) ≥ 𝑢(𝑠′, 𝑠̅)            (6.a) 

𝑢(𝑠̅, 𝑠̅) ≥ 𝑢(𝑠′, 𝑠′)           (6.b) 

 

The main difficulty in computing a NE of a repeated game is 

that it is difficult to find a suitable expression of the strategies 

of players. There are not only pure strategies and mixed 

strategies, but also reactive strategies that the choice of a player 

at time t is a function of past choices of all players. In iterated 

prisoner’s dilemma, for example, tit for tat [1], grim trigger, 

Pavlov [27], group strategies [28], and newly appeared 

zero-determinant strategies [29] are all reactive strategies, as 

well as those learning and evolving strategies [30-36]. We will 

show in the next section that a group of players in a game can 

coordinate their repeated choices by means of reactive 

strategies, which may lead to equilibria that are not 

characterized by the folk theorem. 

III. REACTIVE STRATEGIES AND LEVEL-K EQUILIBRIUM  

One assumption in classical game theory is that the players 

believe that a deviation in their own strategy will not cause any 

other player’s deviation from their strategies. This is not a 

reasonable assumption in repeated or evolutionary games 

because of the existence of reactive strategies. A player’s 

strategy is reactive if it is a function of some other players’ past 

actions. Here we give a formal definition of a reactive strategy.  

Let ℏ𝑖
𝑡 = (𝑎𝑖

0, 𝑎𝑖
1, ⋯ , 𝑎𝑖

𝑡−1)  be the sequence of actions 

chosen by player 𝑖 ∈ 𝐼  within 𝑡 − 1  periods, and ℏ−𝑖
𝑡 =

(ℏ1
𝑡 , ⋯ ℏ𝑖−1

𝑡 , ℏ𝑖+1
𝑡 , ⋯ , ℏ𝑛

𝑡 ) the past choices made by all players 

other than i. Player i's strategy, 𝑠𝑖, is a reactive strategy when 

there is 

 

𝑠𝑖
𝑡 = {

𝑠𝑖
0 𝑡 = 0

𝑓(ℏ𝑖
𝑡 , ℏ−𝑖

𝑡 ) 𝑡 > 0
         (7) 

 

The strategy in the first stage game, 𝑠𝑖
0 , is either a pure 

strategy or a mixed strategy. Obviously, reactive strategies do 

not exist in one-shot games since there always are ℏ𝑖
𝑡 = ℏ−𝑖

𝑡 =
∅ for any i . 

Reactive strategies provide a way of coordination among a 

group of players in repeated games. In a repeated game with 

multiple Nash equilibria, for example, convergence to a 

designated Nash equilibrium is not guaranteed unless the 

players adopt specific reactive strategies.  

Reactive strategies also provide a way of maintaining 

coordination among a group of players. Grim trigger, for 

example, is a reactive strategy for the players in iterated 

prisoner’s dilemma to maintain mutual cooperation. There 

exists a set of trigger strategies in a repeated game, by which 

the coordination among a group of players can be enforced. 

Once a group of players have coordinated their actions, they 

switch to the trigger strategy that one player will choose the 

minimax strategy if any other player in the group deviates from 

their coordination strategy.  

Coordination among a group of players can be achieved 

when they adopt specific reactive strategies, which may form 

equilibrium in repeated games.  

 

Definition 1: In a repeated n-player game, a level-k 

coordination (2 ≤ 𝑘 ≤ 𝑛) denotes that a group of k players 

coordinate their actions by adopting some trigger strategies 

such that they will change their strategies simultaneously once 

any player in the group deviates from the assigned action. 

The necessary condition of a level-k coordination is that k 

players can be better off by coordinating their actions. Let 𝑣𝑖  
be the minimax payoff of player 𝑖 ∈ 𝐼  and 𝑠𝑖

∗  the minimax 

strategy. Let 𝐾 = {𝑗,⋯ , 𝑗 + 𝑘 − 1} denote a group of k players 

where 𝑗 = 1,⋯ , 𝑛 − 𝑘 + 1 and 𝐾 ∈ 𝐼. The necessary condition 

for a level-k coordination is that there exists a strategy profile 

𝑠̅ = (𝑠̅1, 𝑠̅2, ⋯ , 𝑠̅𝑛) such that, for any 𝑠𝑖 (𝑖 ∈ 𝐾), there are 

 

{
 
 

 
 

𝑣𝑗 < 𝑢𝑗(𝑠1, ⋯ , 𝑠̅𝑗 , ⋯ , 𝑠̅𝑗+𝑘−1⏟        
𝑘

, ⋯ , 𝑠𝑛) 

⋮
𝑣𝑗+𝑘−1 < 𝑢𝑗+𝑘−1(𝑠1, ⋯ , 𝑠̅𝑗 , ⋯ , 𝑠̅𝑗+𝑘−1⏟        

𝑘

, ⋯ , 𝑠𝑛)
         (8) 

 

A level-k coordination can be maintained if all players 

involved adopt a trigger strategy such as: keep playing the 

coordination strategy if all other players play their coordination 

strategies; otherwise, play the minimax strategy. The best 

responses of the players who do not belong to 𝐾 are determined 

given the strategies of k players who coordinate their actions. 

If the k players cannot further improve their payoffs by 

deviating from 𝑠̅  simultaneously, the strategy profile 𝑠̅  is a 

stable state (equilibrium) in the repeated game. This 

equilibrium is different from the concept of NE in that k  

players coordinate their actions. 

 

Definition 2: In an infinitely repeated n-player game, we call it 

a level-k equilibrium (2 ≤ 𝑘 ≤ 𝑛 ) if a group of k players 

coordinate their actions and they have no incentive to deviate 

from their strategies simultaneously. 

A strategy profile 𝑠̅ is a level-k equilibrium if, for any 𝑠′𝑖  
( 𝑖 = 1,⋯ , 𝑗 − 1, 𝑗 + 𝑘,⋯ , 𝑛 ) and 𝑠′𝑗 ≠ 𝑠̅𝑗 , ⋯ , 𝑠′𝑗+𝑘−1 ≠

𝑠̅𝑗+𝑘−1, there are 

 

{
 
 
 
 

 
 
 
 

𝑢𝑗(𝑠
′
1, ⋯ , 𝑠

′
𝑗 , ⋯ , 𝑠

′
𝑗+𝑘−1⏟        

𝑘

, ⋯ , 𝑠′𝑛)  ≤                

                               𝑢𝑗(𝑠′1, ⋯ , 𝑠̅𝑗 , ⋯ , 𝑠̅𝑗+𝑘−1⏟        
𝑘

, ⋯ , 𝑠′𝑛)

⋮
𝑢𝑗+𝑘−1(𝑠

′
1, ⋯ , 𝑠

′
𝑗 , ⋯ , 𝑠

′
𝑗+𝑘−1⏟        

𝑘

, ⋯ , 𝑠′𝑛)  ≤               

                         𝑢𝑗+𝑘−1(𝑠1, ⋯ , 𝑠̅𝑗 , ⋯ , 𝑠̅𝑗+𝑘−1⏟        
𝑘

, ⋯ , 𝑠𝑛)

      (9) 
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We prove that any level-k equilibrium is also a NE in 

infinitely repeated games. 

 

Theorem 1: In an n-player infinitely repeated game, any 

level-k equilibrium (2 ≤ 𝑘 ≤ 𝑛) is a NE. 

Proof: Let 𝑠̅ denote a level-k equilibrium. We first consider the 

case of 𝑘 = 𝑛 . We have 𝑣𝑖 < 𝑢𝑖(𝑠̅1, ⋯ , 𝑠̅𝑛)  for all 𝑖 ∈ 𝐼 . 

According to the folk theorem, 𝑠̅  is a NE strategy profile. 

In the case of 𝑘 < 𝑛, if 𝑣𝑖 < 𝑢𝑖(𝑠̅1, ⋯ , 𝑠̅𝑛)  are satisfied for 

all 𝑖 ∈ 𝐼, 𝑠̅ must be a NE strategy profile according to the folk 

theorem. It is impossible that, for any player i , there is 

𝑣𝑖 > 𝑢𝑖(𝑠̅1, ⋯ , 𝑠̅𝑛)  because that player could deviate from 𝑠̅𝑖 to 

the minimax strategy so that the payoff is guaranteed to be 𝑣𝑖. 
This conflicts with the fact that 𝑠̅𝑖 is player i’s best response. 

We simply need to consider 𝑣𝑖 = 𝑢𝑖(𝑠̅1, ⋯ , 𝑠̅𝑛)  for some 

players 𝑖 ∉ 𝐾.  

Let 𝑀 be the group of players who receive their minimax 

payoffs. Any player 𝑖 ∈ 𝑀 cannot improve his\her payoff by 

deviating from 𝑠̅𝑖  since 𝑠̅𝑖  is the best response to 𝑠̅−𝑖.  
Any player 𝑖 ∈ 𝐾  cannot improve their payoff by deviating 

from 𝑠̅𝑖. If player i did deviate from 𝑠̅𝑖 in order to gain a higher 

payoff in the current round, all other members of 𝐾 would play 

their minimax strategies in the future rounds. Player i  will have 

to play the minimax strategy and will receive 𝑣𝑖 in the future 

rounds. Knowing this, player i has no incentive to deviate from 

𝑠̅𝑖. 
Since any player has no incentive to deviate from 𝑠̅, it is a 

NE. ■ 

 

Every level-k equilibrium is a NE and a NE is not 

necessarily a level-k equilibrium. Thus, the level-k equilibria 

are refinements of NE in repeated games. The payoff profiles of 

the level-k equilibrium form the Parteto front in an infinitely 

repeated game. We prove the existence of level-k equilibrium 

in general repeated games in proposition 2. 

 

Theorem 2: In an infinitely repeated n-player game, there must 

be at least one level-k equilibrium. 

 

Proof: A game must have at least one NE. We first consider the 

case that a repeated game has only one NE. Let (𝑢1, ⋯ , 𝑢𝑛) 
denote the payoff profile of the NE and (𝑣1, ⋯ , 𝑣𝑛)  the 

minimax payoff profile. There must be 𝑢𝑖 = 𝑣𝑖  for any i 

because, if they are not, the game should have more NE 

according to the folk theorem. Obviously, (𝑢1, ⋯ , 𝑢𝑛)  is a 

level-n equilibrium payoff profile.    

When there exists two or more NE, there must be at least one 

NE that is different from the minimax profile. Let (𝑠1, ⋯ , 𝑠𝑛) 
denote the strategy profile of such a NE. We first prove that 

there must be 𝑣𝑖 < 𝑢𝑖(𝑠1, ⋯ , 𝑠𝑛)  for at least two players. 

Assume that there is 𝑣𝑎 < 𝑢𝑎(𝑠1, ⋯ , 𝑠𝑛) for the player a and 

𝑣𝑖 = 𝑢𝑖(𝑠1, ⋯ , 𝑠𝑛) for any 𝑖 ≠ 𝑎 . Since all players except a 

play their minimax strategies and they have no incentive to 

deviate unilaterally (because (𝑠1, ⋯ , 𝑠𝑛)  is a NE), 𝑠𝑎  is the 

minimax strategy for a. This conflicts with the premise that 

(𝑠1, ⋯ , 𝑠𝑛)  is different from the minimax profile. Thus, there 

must be 𝑣𝑖 < 𝑢𝑖(𝑠1, ⋯ , 𝑠𝑛) for at least two players. 

Suppose that there are 𝑣𝑖 < 𝑢𝑖(𝑠1, ⋯ , 𝑠𝑛)  for k (𝑘 ≥ 2 ) 

players in the NE. If those k players cannot improve their 

payoffs by changing their strategies simultaneously, this NE is 

a level-k equilibrium. Otherwise, there must be a strategy 

profile {𝑠′𝑖} such that those k players cannot further improve 

their payoffs by changing their strategies simultaneously and 

{𝑠′𝑖} is a level-k equilibrium. ■ 

 

A level-k equilibrium is not stable if it is not a NE in the 

stage game because once a player within the coalition changes 

his/her strategy in a level-k equilibrium, all other 𝑘 − 1 players 

will be triggered to change their strategies.  

Some level-k equilibrium can be evolutionary stable. In the 

following section, we give the condition of evolutionarily 

stable states and propose an algorithm to compute 

evolutionarily stable states in n-player symmetric games.  

IV. EVOLUTIONARILY STABLE PAYOFF  

The space of strategy profiles of a repeated game is very 

complicated even for two-player 2 × 2 games. On the other 

hand, the space of payoff profiles is simple. For example, the 

space of payoff profiles of an m-player 𝑛 × 𝑛  game can be 

precisely defined as an m-dimension polyhedron. In this section, 

we study evolutionarily stable state in payoff space rather than 

in strategy space. 

Consider a symmetric two-player game. Let 𝑢(𝑠, 𝑠′) denote 

the payoff for playing strategy s against strategy 𝑠′.  
 

Definition 3: The payoff 𝑢(𝑠, 𝑠) is called evolutionarily stable 

payoff if, for any 𝑠′ ≠ 𝑠 , there are 𝑢(𝑠, 𝑠) ≥ 𝑢(𝑠′, 𝑠)  and 

𝑢(𝑠, 𝑠) ≥ 𝑢(𝑠′, 𝑠′). 
The evolutionarily stable payoff (ESP) is different from the 

concept of ESS in that ESP is defined in payoff space rather 

than in strategy space. The ESP denotes the population payoff 

in the evolutionarily stable state. It is easy to verify that there is 

at most one ESP in a two-player symmetric game. 

An ESP may correspond to a group of strategy profiles, 

rather than a unique strategy profile. In an evolutionarily stable 

state, it is not necessary that all players adopt the same strategy 

even if they receive the same payoff. There might be an 

unlimited set of strategies that the players could adopt in order 

to receive the ESP. 

The ESP is easy to compute because the payoff space of a 

game can be precisely defined. Given the set of NE payoff 

profiles characterized by means of the folk theorem, we simply 

need to check whether or not one point on the Pareto front of 

the set of NE payoff profiles is the ESP, as illustrated in Fig.1. 

The Pareto front intersects with the diagonal at point P. Point P 

represents the subset of NE payoff profiles that satisfy (7.b). 

Point P is the ESP profile if it weakly dominates any other 

payoff profiles within its neighborhood as in the case of Fig. 

1(b). Otherwise, there is no ESP in the game. Based on this idea, 

we propose an algorithm to compute the ESP and/or the Pareto 

front in n-player symmetric games. 

The definition of ESP can be extended to n-player games. 

Let 𝑖 = 1,⋯ , 𝑛  denote the 𝑖𝑡ℎ  player and (𝑢1, ⋯ , 𝑢𝑛)  be a 

payoff profile. Since the game is symmetric, there exists a set of 

payoff profiles that the payoffs of all players are identical, 

𝑢1 = 𝑢2 = ⋯ = 𝑢𝑛  (those profiles located on the main 
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diagonal of the payoff matrix). Let 𝑢 = (𝑢̅,⋯ , 𝑢̅) denote the 

payoff profile that every player receives the maximum identical 

payoff 𝑢̅. We simply need to make clear whether or not 𝑢 is the 

ESP profile. A simple algorithm can compute the ESP and the 

Pareto front. 

 

  
 

Figure 1 In a two-player symmetric game, the set of NE payoff profiles 

characterized by the folk theorem is illustrated by the grid area in the payoff 

space.  X-Y coordinates are the average payoff per round of two players 

respectively. The Pareto front intersects with the diagonal at point P. (a) P is not 

an ESP profile because there exists P’ such that (7.a) is not satisfied.  (b) P is the 

ESP profile. 

 

The profile 𝑢 dominates another profile 𝑢′ = (𝑢′1, ⋯ , 𝑢′𝑛) 
if 𝑢̅ > 𝑢′𝑖 . If 𝑢 dominates every other payoff profile, it is the 

ESP. Otherwise, there is no ESP in the game. Note that we 

simply need to compare 𝑢  with other pure-strategy payoff 

profiles. 

 

 
 

Figure 2 An algorithm to compute ESP and a Pareto optimum of a repeated 

n-player symmetric game. 

 

If 𝑢 is not ESP, it is not necessarily a Pareto optimum. When 

there is 𝑢̅ <
1

𝑛
∑ 𝑢′𝑖
𝑛
𝑖=1 , 𝑢 must be dominated by some NEs in 

which the players receive the identical payoff 
1

𝑛
∑ 𝑢′𝑖
𝑛
𝑖=1 . By 

comparing all payoff profiles, we could find the NE payoff 

profile that is also the Pareto optimum for n players. Given that 

each player has m pure strategies, it needs at most 
1

2
𝑛𝑚𝑛 

comparisons. This algorithm can be illustrated by the flowchart 

in Fig. 2. 

Given the Pareto optimum 𝑢 = (𝑢̅,⋯ , 𝑢̅), the Pareto front 

can be computed by comparing all pure-strategy payoff profile 

with 𝑢 . A payoff profile 𝑢′ = (𝑢′1, ⋯ , 𝑢′𝑛)  belongs to the 

Pareto front if 𝑢̅ < 𝑢′𝑖  for some i and 𝑢′′𝑖 < 𝑢′𝑖  for any 

𝑢′′ ≠ 𝑢′. 

V. EVOLUTIONARY STABILITY ANALYSIS OF THREE GAMES  

In this section, we compute the evolutionarily stable states of 

three repeated games, the iterated prisoner’s dilemma, a 

coordination game and a three-player symmetric repeated game, 

by means of the proposed methodology in previous sections. 

The iterated prisoner’s dilemma and the coordination game are 

typical repeated games in that the former does not have an ESP 

and the latter has one. The third game acts as a computational 

example to show the efficiency of the proposed algorithm.  

A. Iterated Prisoner’s Dilemma 

The prisoner's dilemma (PD) is a two-player non-cooperative 

game in which two players try to maximize their payoffs by 

cooperating with, or betraying the other player. Also an 

n-player version PD is introduced in [37]. A PD can be 

represented as the following matrix (see Fig. 3): 

 

 
 

Figure 3 The payoffs of two players in the prisoner’s dilemma is expressed as a 

matrix. Two players choose between two options, C and D. The values of R, S, 
T, AND P denote Reward for mutual cooperation, Sucker's payoff, Temptation 

to defect, and Punishment for mutual defection respectively. 

 

There are two constraints, 𝑇 > 𝑅 > 𝑃 > 𝑆  and 𝑅 > (𝑇 +
𝑆)/2, which motivate each player to play non-cooperatively 

and prevent any incentive to alternate between cooperation and 

defection. 

The "dilemma" faced by the prisoners is that, whatever the 

other does, each is better off defecting than cooperating. 

However, the payoff when both defect is worse for each player 

than the outcome they would have received if they had both 

cooperated. 

Under the assumption of rationality, game theory predicts 

that both players choose to defect and their payoff profile is (P, 

P), which is the unique NE of this game. 

In the Iterated Prisoner's Dilemma (IPD) game, two players 

have to choose their mutual strategies repeatedly, and they also 

have a memory of their previous choices and the choices of the 

opponents. IPD has been heavily studied as an ideal model to 

study how cooperation emerges and persists in a 

non-cooperative environment [38-40]. According to the folk 

theorem, any payoff profile that strictly dominates the minimax 

P 
S 

Payoff of X player 

Payoff of   

Y player 

The set of feasible  

payoff profiles  

Pareto frontier P 

P

P 

P

’ 

(a) (b) 
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payoff profile (P, P) is a NE in an infinite length IPD. The grid 

area within ADBC in Fig. 4 illustrates the set of  

 

 
 
Figure 4 The set of payoff profiles of all NE in an infinite length IPD can be 

illustrated by the grid area within ADBC, which is characterized by the folk 
theorem. X-Y coordinates are the average payoff per round of two players 

respectively. Point A denotes the minimax payoff profile and B denotes the 

mutual cooperation payoff profile. The shadow area within AFBE denotes the 
set of feasible payoff profiles.  

 

payoff profiles of all. Any payoff profile on CB and BD is a 

Pareto optimum so that any player cannot improve their payoff 

without reducing the other player’s payoff. 

The Pareto front intersects with the diagonal at B that is the 

mutual cooperation payoff profile. B is not an ESP profile 

because it does not dominate all other payoff profiles, B’ for 

example, in the neighborhood. Thus, no ESP exists in IPD. 

An evolutionary game does not necessarily converge to a 

stable state when there is no ESP. We ran a series of 

simulations to study how evolving players interact with each 

other in evolutionary IPD.  

The evolutionary IPD model reflects the payoffs received by 

players in one generation in terms of copies of themselves 

represented in the next generation. Stochastic universal 

sampling is used to ensure that players produce offspring in 

proportion to payoffs received so that those with higher payoffs 

reproduce at a proportionately higher rate than those with lower 

payoffs. We set 𝑅 = 3 , 𝑆 = 0 , 𝑇 = 5 , and 𝑃 = 1  in our 

simulations. Every player plays 50 rounds of IPD against all 

other players in the population in each generation. The fitness 

of an individual player is expressed by average payoff per 

round. The parents simply copy their strategies to produce 

offspring and neither mutation nor crossover is carried out. 

An evolving player adjusts their strategy in order to adapt to 

the evolutionary dynamics. Let (𝜌𝑅 , 𝜌𝑇 , 𝜌𝑆, 𝜌𝑃) denote an IPD 

strategy where 𝜌𝑥 (𝑥 = 𝑅, 𝑇, 𝑆, 𝑃) is the probability of choosing 

C given that the payoff in previous round is x. The evolving 

players in our simulations update 𝜌𝑥 every round according to  

 

𝜌𝑥(𝑡) = 𝜌𝑥(𝑡 − 1) + Δ             (10) 

Δ = −Δ    if 𝑢 < 𝑢̅                (11) 

 

where Δ is a small constant value, 𝑢̅ is the average payoff and 𝑢 

is the average payoff in the past five rounds. The idea is that, if 

a change of 𝜌𝑥 leads to a higher payoff, keep changing it in that 

direction. Otherwise, change 𝜌𝑥 in the opposite direction. Note 

that  𝜌𝑥(𝑡) ∈ [0, 1] and it was bounded if the computed value 

exceeded the limits. 

In each evolutionary IPD game, we choose two evolving 

players randomly (by randomly setting the initial values of 𝜌𝑥) 

and generate a population of 20 individuals. Each strategy has 

10 copies. The population evolves for 2,000 generations.  

Some typical results are shown in Fig. 5 (a)-(d). In some 

situations, the evolution converges to stable states where two 

players receive equal payoffs, such as Fig. 5 (a) and (b). In 

other situations, one player is dominated by another player, 

such as Fig. 5 (c) and (d).  

As the outcome of any single game is affected by chance, we 

repeat the evolutionary IPD for 1,000 times. The payoff profiles 

of two evolving players in 1,000 games are shown in Fig. 6. 

They distribute in the whole area of feasible payoff profiles, 

which shows the diversity and instability of evolutionary IPD 

games. The evolutionary dynamics is significantly influenced 

by the initial strategy combination of the population.  

 

 
(a) 

 
(b) 

 
(c) 

A 

B 

C 

E 

Payoff of X player 

Payoff of   

Y player 

D 

The set of payoff profiles of 

all NE in an IPD 

F 

0 P R T 

T 

R 

P 

Pareto front 

B 
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(d) 

 

Figure 5 Typical results of evolutionary IPD games where two evolving players 

compete against each other. In each evolutionary IPD game, the initial 
population consists of two players and each player has 10 copies. There are 

totally 20 individuals. The population evolves for 2,000 generations. The 

payoffs shown in the figure are average payoffs of 10 copies in the game. 

 

 
 

Figure 6 Payoff profiles in 1,000 evolutionary IPD games. Each diamond in the 
figure illustrates a pair of payoffs received by two players in an IPD. 

 

B. A Coordination Game 

Consider a coordination game with the payoff matrix as 

shown in Fig. 7. There are two pure-strategy NEs in this game 

when one player chooses L and the other chooses R. The 

players do not have any a priori knowledge about which NE 

strategy profile to choose. The probability that any NE is 

achieved is 0.5 no matter what pure or mixed strategies are 

adopted. 

 

 
 

Figure 7 Payoff matrix in a coordination game. Two players choose between 
two options, L and R.   

 

If this game is played repeatedly, it may converge to a NE 

given that some reactive strategies are adopted. The 

coordination between X and Y can be achieved with probability 

𝜌 → 1 in an infinite repeated coordination game if two players 

adopt the below strategies: 

 

𝑠𝑋
𝑡 = {

𝐿 if X chose 𝐿 and Y chose 𝑅 at time 𝑡 − 1
𝑅 if Y chose 𝐿 and X chose 𝑅 at time  𝑡 − 1

𝑟𝑎𝑛𝑑{𝐿, 𝑅} otherwise
 

 

𝑠𝑌
𝑡 = {

𝑅 if X chose 𝐿 and Y chose 𝑅 at time 𝑡 − 1
𝐿 if Y chose 𝐿 and X chose 𝑅 at time  𝑡 − 1

𝑟𝑎𝑛𝑑{𝐿, 𝑅} otherwise
 

 

The set of NE payoff profiles is represented by a line 

segment in X-Y coordinates as shown in Fig. 8. The endpoint A 

denotes the ESP profile, which corresponds to two 

pure-strategy NEs. The two NEs are evolutionarily stable 

states.  

 

 

Figure 8 The set of NE payoff profiles in repeated coordination game is a line 
segment. The endpoint A is the ESP profile. 

 

In a repeated game where the ESP exists, no payoff profile 

can be Pareto superior to the ESP. Thus, the Pareto front of the 

set of NE payoff profiles is simply a point, the ESP. The 

strategy profile corresponding to the ESP is dominant and no 

player has incentive to deviate from it.  

When a game has an ESP, the evolutionary dynamic 

inevitably converges to a stable state so that every player 

receives the ESP. The ESP denotes the highest payoff each 

player could obtain and thus neither an individual player nor a 

coalition of players has an incentive to deviate from it.  

 

C. A Three-player Symmetric Game 

In this game, three players, X, Y, and Z, play a strategic 

game. Each player chooses a number in the range of (0, 1] 

independently. Let 𝑠𝑋, 𝑠𝑌, and 𝑠𝑍 denote three players’ choices. 

Their payoffs are determined by 

 

  𝑢𝑖 = {
𝑠𝑖 if 𝑠𝑋

2 + 𝑠𝑌
2 + 𝑠𝑍

2 ≤ 1
0 otherwise

   (𝑖 = 𝑋, 𝑌, 𝑍) 

 

This is a quadratic version of Divide-the-Dollar Game [46]. 

Assume that the players can only choose between the multiples 
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of 0.01. Thus, each player has 100 pure strategies and there are 

totally 106 pure-strategy payoff profiles.  

The algorithm to compute the ESP and the Pareto front was 

coded in Visual C++ and run on a PC with dual 2.66GHz Intel 

CPU and 3.25GB RAM. It took approximately 0.023 second to 

compute the ESP and 17 seconds to compute the Pareto front. 

The intersection of the axis of symmetry and the hull of feasible 

payoff profiles is computed to be (0.55, 0.61, 0.57), which is 

close to the theoretically solution (√3/3, √3/3, √3/3). This 

payoff profile is not an ESP and thus this game has no ESP. The 

computed Pareto front contains 7,535 payoff profiles, as shown 

in Fig. 9.  

 

 
 
Figure 9 The computed Pareto front forms a part of unit sphere in the first 

quadrant. 

 

We also run a simulation to show that the payoff profile 

(√3/3, √3/3, √3/3) is a stable state for evolving players. In 

the simulation, three evolving players play against each other in 

an infinitely repeated game. Each evolving player starts with a 

random choice in the first round and then adjusts the choices in 

such a way: if a change has led to an increased payoff, keep 

changing the choices in this direction. Otherwise change the 

choices in the opposite direction. Payoffs of three players in 

1,000 rounds are shown in Fig. 10. It shows that the evolving 

players tend to make identical choices even if they are different 

at the beginning of the game. 

 

 
 

Figure 10 Payoffs of three evolving players in 1,000 interactions. 

 

Many games do not have an ESP. The evolutionary dynamic 

of these games may be complex and it is not likely to converge 

to a stable state unless some restrictions are imposed. Generally, 

a game without ESP contains multiple NE and none of those 

NE is dominant. In an IPD game, for example, the NE payoff 

profiles form a convex polygon as shown in Fig. 4. The Pareto 

front (points on CB and BD) denotes a set of level-k 

equilibrium, which dominates those NE that are not Pareto 

optimum. How the players choose between multiple NE, which 

is probably the main reason for chaos and unpredictability in 

evolutionary game dynamics, is still an open question.  

 

VI. CONCLUSION 

Stability analysis based on the concept of ESS is flawed in 

that it is difficult to find an expression of possible strategies in a 

repeated game and that ESS is too strict to exist in most 

repeated games. We propose a new stability analysis of 

repeated games and evolutionary games based on a subset of 

NE, which we call them the level-k equilibrium. Evolutionarily 

stable states can be computed in the payoff space rather than in 

the strategy space so that there is no need to search and compare 

strategies in a complicated space.  

Computing a NE of repeated games is difficult because 

computing the minimax profile is NP-hard. The possible payoff 

profiles in an n-player repeated game form an n-D convex 

polyhedron in the payoff space. We prove that some Pareto 

optimums of the hull of the polyhedron, the level-k equilibria, 

are NE payoff profiles. Computing the minimax profile is not 

necessary in computing the level-k equilibria, which means that 

finding specific subset of NE is tractable. 

A strategy profile determines a unique payoff profile, and 

not vice versa. A payoff profile probably corresponds to a set of 

strategy profiles. For example, the players in IPD could 

implement mutual cooperation by adopting the strategies such 

as always cooperate, tit-for-tat, and numerous other strategies. 

Given a payoff profile, there must be at least one strategy 

profile for the players to adopt in order to receive the given 

payoffs. 

The concept of ESP is defined in the payoff space and thus it 

can be easily computed. Generally, the strategy space of a 

repeated game is much more complicated than the payoff space 

when reactive strategies are taken into consideration. Given an 

ESP, there must be at least one corresponding pure strategy 

profile. 

The level-k equilibria can be considered as refinement of NE 

of repeated games. In a level-k equilibrium not only does any 

individual player not have incentive to unilaterally change their 

strategies but also a group of k players has no incentive to 

deviate from it collectively. A level-k equilibrium is not 

necessarily a NE of the stage game because its corresponding 

strategies are reactive strategies which may not exist in 

one-shot games. 

The existence of level-k equilibria may help to explain some 

phenomena in evolution that has not been well explained. 

Experiments have shown that cooperation can emerge and 

persist in multiple levels in the population [41, 42], and 

intermediate choices lead to less mutual cooperation [43]. The 
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level-k equilibrium suggests that cooperation in a local group 

can also be evolutionarily stable. With more intermediate 

choices, the set of level-k equilibrium increases and there are 

more possible evolutionarily stable states, with which the rate 

of cooperation is very likely to decrease because mutual 

cooperation in the whole population is only one of those stable 

states. 

We also propose an algorithm to compute the ESP and the 

Pareto front of n-player symmetric games. The problem of 

computing the ESP can be simplified significantly because the 

convex hulls of feasible payoff profiles are symmetric for 

symmetric games. We simply need to compute the intersection 

point of the Pareto front and the main diagonal, which point 

denotes the possible ESP of the game.  

This research helps to explain why the processes of 

evolution are diverse in some games. In those games where 

there is no ESP, IPD for example, the evolutionary dynamic 

could be complex and the results of evolution are hard to 

predict. We have shown that any feasible payoff profile is 

possible for evolving players in IPD simulations. The existence 

of reactive strategies suggests that individual players could 

coordinate their actions even if there is no communication 

among them, which provides another explanation for collective 

behaviors in evolution.  

Choosing between multiple NE is still an unsolved problem 

in game theory. It is essentially a decision making under 

uncertainty because the subjective preferences of players are 

involved. Fuzzy logic seems to be a promising tool to solve this 

problem by using linguistic preference and fuzzy rules to 

prioritize payoff profiles [44, 45]. This will be the focus of our 

future work. 
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