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Abstract 

Serotonin has been implicated in the control of satiety for almost four decades. Historically, 

the insight that the appetite suppressant effect of fenfluramine is linked to serotonin has 

stimulated interest in and research into the role of this neurotransmitter in satiety. Various 

rodent models, including transgenic models, have been developed to identify the involved 5-

HT receptor subtypes. This approach also required the availability of receptor ligands of 

different selectivity, and behavioural techniques had to be developed simultaneously which 

allow differentiating between unspecific pharmacological effects of these ligands and ‘true’ 

satiation and satiety. Currently, 5-HT1B, 5-HT2C and 5-HT6 receptors have been identified 

to mediate serotonergic satiety in different ways. The recently approved anti-obesity drug 

lorcaserin is a 5-HT2C receptor agonist. In brain, both hypothalamic (arcuate nucleus, 

paraventricular nucleus) and extrahypothalamic sites (parabrachial nucleus, nucleus of the 

solitary tract) have been identified to mediate the serotonergic control of satiety. Serotonin 

interacts within the hypothalamus with endogenous orexigenic (Neuropeptide Y/Agouti 

related protein) and anorectic (α-melanocyte stimulating hormone) peptides. In the nucleus 

of the solitary tract serotonin integrates peripheral satiety signals. Here, the 5-HT3, but 

possibly also the 5-HT2C receptor play a role. It has been found that 5-HT acts in concert 

with such peripheral signals as cholecystokinin and leptin. Despite the recent advances of 

our knowledge, many of the complex interactions between 5-HT and other satiety factors are 

not fully understood yet. Further progress in research will also advance the development of 

new serotonergic anti-obesity drugs. 
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1. Introduction 

What are the behavioural and physiological mechanisms that promote satiety? How is 

satiety defined?  Satiety can be seen as a behavioural state which arises from food 

consumption and suppresses the initiation of eating for a particular period of time [1]. This 

description alone suggests a high degree of complexity as peripheral post-ingestive and 

post-absorptive signals need to be relayed to the brain where they are integrated with other 

signals to produce (or not) the behavioural state called satiety. The state of satiety is brought 

about a process called satiation, where sensory, cognitive and early post-ingestive 

mechanisms bring feeding to a halt and thus stopping a meal. Promoting satiation alone 

must not necessarily lead to reduced total food intake as the frequency of meals could be 

increased subsequently. Many peripheral and brain mechanisms have been identified that 

are involved in the expression satiety and it has been suggested that serotonin accelerates 

satiation and prolongs satiety [2]. In the following, we will review the role of serotonin in 

satiety in more detail1.   The reader will see that, despite immense progress made during the 

last years, the field is still far from being resolved. 

As serotonin (5-Hydroxytryptamine; 5-HT) is a phylogenetically old neurotransmitter, various 

functions had time to evolve in different phyla, but maybe also in different species. 5-HT 

receptors exist in animal cells for millions of years and they are as old as adrenoreceptors 

ore some peptide receptors, possibly even older [5, 6]. Even in invertebrates such as 

molluscs (Aplysia californica) and annelids (Hirudo medicinalis), 5-HT might functionally be 

related to food intake [7]. 5-HT is involved in feeding even in the honeybee where it has 

separate effects in the gut and in the insect brain [8]. In general, however, 5-HT seems 

rather to be involved in appetitive behaviours in invertebrates whereas it has more of a 

satiating effect in vertebrates [9]. In general, 5-HT neurons seem to be more extensively 

distributed throughout the body in lower animals than in higher animals including mammals 

where 5-HT neurones decrease in relative size and are much more clustered, sending axons 

from these to specific brain areas [10].  

 

 

                                                             
1
 Although the distinction between satiation and satiety is widely, but not unanimously [3], accepted, we used 

these terms synonymously. This is for simplification only. The role of serotonin in the structural aspects of 

feeding behaviour has been reviewed before [4].  As discussed in this review, a reduced food intake is not 

identical with satiety, but in most cases authors report experimental findings as if changes in food intake stand 

for changes in satiety. 
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2. Brain 5-HT and satiety 

The multitude of 5-HT receptor families and 5-HT receptor subtypes in mammals (Barnes 

[11-13] and the complex serotonergic innervation of the mammalian brain [14] can possibly 

explain why 5-HT is involved in so many behaviours [15]. Evidence for an involvement of 

serotonin in food intake in men accumulated primarily during the 1960s. Thus appetite 

stimulating properties of the antihistaminergic/antiserotonergic drug cyproheptadine in 

humans and animals have been reported in the 1960s [16, 17]. During the same decade, 

fenfluramine (Ponderax) has been introduced as an anti-obesity drug, demonstrating 

significant weight loss in obese patients [18]. Fenfluramine is an amphetamine analogue and 

amphetamines’ weight reducing effects are known since the 1930s [19-21]. In contrast to the 

original amphetamines, fenfluramine had no addictive properties allowing its usage as an 

appetite suppressant on a wider scale. Brain lesions and pharmacological experiments using 

5-HT antagonists [22-26] revealed that the hypophagic effect of fenfluramine is indeed based 

on its serotonergic properties. The brain serotonergic system originates from raphe nuclei in 

the brainstem [14]. Lesions of these nuclei induce hyperphagia [27] and interfere with the 

anorectic effect of fenfluramine [28]. The latter finding demonstrates that fenfluramine 

requires an intact brain serotonergic system to exert its anorectic effect. Later microdialysis 

experiments, showing a fenfluramine-induced increase in hypothalamic 5-HT-release, could 

confirm a predominantly central site of action [29, 30]. 

In 1977, John Blundell [31] summarised the then existing evidence for 5-HT being involved 

in feeding. As a general rule, increased availability of 5-HT or a direct activation of 5-HT 

receptors interfered with food intake whereas reduced availability of the transmitter or 

receptor blockade could induce feeding. Considering an eminent role for brain 5-HT in the 

control of satiety, one would expect an impact of brain 5-HT synthesis and metabolism on 

food intake and satiety. Because 5-HT cannot enter the blood brain barrier, the brain needs 

to synthesize its own 5-HT. The dietary amino acid tryptophan represents the precursor 

molecule for 5-HT. While entering the brain, tryptophan competes with large neutral amino 

acids (LNAA) over the transporter at the blood brain barrier. In fact, it is the tryptophan/LNAA 

ratio which determines the amount of tryptophan that is available to the brain. Therefore, a 

protein rich diet, providing abundant amino acids would lower the tryptophan/LNAA ratio, 

less tryptophan can enter the brain, and as a result 5-HT synthesis would decrease. In 

contrast, carbohydrates promote the release of insulin which facilitates the uptake of LNAA 

into peripheral tissues, thus improving the tryptophan/LNAA ratio, facilitating tryptophan 

entry and 5-HT synthesis [32]. In vivo microdialysis has shown that food intake increases 

hypothalamic 5-HT release [33-35], but a closer investigation into the contribution of 
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individual macronutrients to this release revealed that the 5-HT increase is actually due to 

carbohydrates whereas protein has an opposite effect [36]. Administration of the 5-HT 

precursor amino acid tryptophan itself also reduces food intake [37]. The first step in 5-HT 

synthesis is the hydroxylation of tryptophan by tryptophan hydroxylase (Tph) forming 5-

hydroxytryptophan (5-HTP). There are two isoforms of the enzyme; Tph1 which is 

predominantly expressed in the periphery, whereas Tph2 is predominantly expressed in the 

brain [38]. A Tph2 knockout in mice leads to retarded growth and lower body weight in early 

postnatal development [39, 40]. An independent study found decreased food intake and 

bone mass in these mice [41] and the effects on body weight could possibly be gender 

dependent [42]. The lack of brain 5-HT in conjunction with reduced food intake in Tph2 

knockout mice seems to be at odds with the concept of 5-HT as satiety factor in the brain, 

but as this is a constitutional knockout, further research into developmental and aberrations 

and compensatory effects is required. The upregulation of uncoupling protein 1 (Ucp1) and 

increased catecholamine levels [41] in Tph2 knockout mice suggest that metabolic effects 

including a stimulated thermogenesis contribute to the phenotype. In contrast to these 

genetic studies, irreversible pharmacological inhibition of tryptophan hydroxylase by p-

chlorophenylalanine (pCPA) followed by depletion of brain 5-HT, increases food intake [43]. 

Peripheral administration of 5-hydroxytryptophan (5-HTP), the intermediate product in 5-HT 

synthesis, reduces food intake [44]. In a final step of 5-HT synthesis, the enzymatic 

decarboxylation of 5-HTP generates 5-HT. The hypophagic effect of 5-HTP could not be 

inhibited with a peripherally acting inhibitor of the enzyme, suggesting that the anorectic 

effect of 5-HTP involves brain mechanisms [45]. Hunger impacts on brain 5-HT synthesis as 

food deprivation leads to increased brain tryptophan and synthesis and turnover of 5-HT [46, 

47]. The major way of terminating the action of synaptic 5-HT is reuptake into the nerve 

terminal by a specific 5-HT transporter (5-HTT) mechanism. Pharmacological inhibition of 

this transporter protein would increase the synaptic availability of 5-HT and inhibit appetite 

and promote satiety as demonstrated for the uptake inhibitor and releaser fenfluramine [48]. 

Indeed, selective 5-HT reuptake inhibitors (SSRI) increase synaptic 5-HT and reduce food 

intake [49] in a behaviourally specific manner [50, 51]. However, genetic manipulation of the 

5-HTT in mice brings about contrasting effects. Although the absence of the 5-HTT 

expectedly increases basal extracellular 5-HT [52], these mice show normal food 

consumption. However, they develop late-onset obesity, possibly due to reduced locomotor 

activity and hence diminished energy expenditure [53].  Mice overexpressing 5-HTT have 

lower 5-HT concentrations in various brain regions including the hypothalamus. The 

potassium stimulated increase in 5-HT was less in these transgenic mice compared with 

wild-type mice [54]. These mice are smaller and lighter than their wild-type littermates, but 
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showed no difference in food intake [55]. In a direct comparison, obesity in 5-HHT knockouts 

and reduced body weight in mice overexpressing 5-HTT were confirmed [56]. Obesity in 5-

HTT knockouts and reduced body weight in 5-HTT overexpressing mice are unexpected 

findings, considering the pharmacological effects of SSRI on feeding. The contribution of 

compensatory, possibly peripheral mechanism [57], as discussed for Tph2 knockout mice, 

cannot be ruled out. Indeed, when fenfluramine was administered to 5-HTT knockout mice, 

they showed a similar behavioural satiety response and the same reduction in food intake as 

their wild-type littermates, but knockouts were more prone to unspecific (i.e. other than 

satiating) effects of d-fenfluramine [55].  

3. 5-HT receptors and feeding 

The increasing availability of selective serotonergic agonists and antagonists was a 

prerequisite to identify the 5-HT receptors which are involved in the control of food intake. 

One difficulty with an experimental pharmacological approach to satiety is that many 

pharmacological manipulations can change food intake without actually influencing appetite 

or satiety. Animals may stop feeding due to locomotor effects of drugs, drug induced 

nausea, malaise, but also due to stereotypies or sedation. Since animals cannot report ‘true’ 

satiety, behavioural parameters had to be identified which are indicative of a ‘normal’ feeding 

behaviour in rodents, covering the behavioural sequence from initiating food intake through 

satiation to satiety and resting. This behavioural satiety sequence (BSS) is an important tool 

to interpret drug effects on food intake [58-60]. Drugs that promote satiety will facilitate the 

transition from eating to other behaviours, in particular resting, but will maintain the normal 

structure of the BSS. By contrast, appetite stimulating drugs or fasting will delay this 

transition [61, 62]. Behaviourally specific promotion of satiety can be distinguished from 

unspecific reduction of food intake using this method, as unspecific drug effects appear as 

disruption of the normal behavioural profile. 

Fenfluramine is a 5-HT releaser and re-uptake inhibitor thus increasing the postsynaptic 

availability of this neurotransmitter. Investigations into fenfluramine and satiety used initially 

the racemate dl-fenfluramine, whereas recently the more selective d-fenfluramine [63] is 

being used. As the effect of d-fenfluramine was thought to be based on the increased 

availability of postsynaptic 5-HT, it was initially a surprising finding that inhibition of brain 5-

HT synthesis with pCPA did not interfere with the hypophagic action of d-fenfluramine. 

Furthermore, low doses of fenfluramine do not impact on 5-HT release but already induce 

hypophagia [29, 64]. In addition, d-fenfluramine maintains its hypophagic efficacy even 

following inhibition of 5-HT release [65]. The d-fenfluramine metabolite d-norfenfluramine 
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binds to the 5-HT2C receptor and also reduces food intake. This led to the conclusion that 

direct 5-HT2C receptor activation contributes to the hypophagic effects of d-fenfluramine [66-

68]. Both dl-fenfluramine and d-fenfluramine accelerate the BSS in the majority of studies 

conducted in mice or rats [59, 69-73]. By contrast, two studies found a disruption of the BSS 

[74, 75], although this is probably due to differences in methodology [59].  

The hypophagic effect of fenfluramine requires signalling from different 5-HT receptors. The 

identification of these receptors advanced our knowledge how serotonergic systems mediate 

satiety. Initial experiments already demonstrated that 5-HT1A/1B blockade counteracted the 

fenfluramine-induced meal size. By contrast, antagonism of the fenfluramine-reduced eating 

rate was achieved by ritanserin, a 5-HT2A/2C antagonist. These findings suggested that 

fenfluramine-induced eating rate and meal size are controlled by different receptor-subtypes 

[76].  

Early pharmacological investigations into the involvement of 5-HT in satiety used 

compounds that differ in their affinity to 5-HT receptor subtypes. These included, among 

others, the 5-HT2C/1B agonist m-chlorophenylpiperazine (mCPP), now a standard molecule 

for investigating the mechanisms of 5-HT induced satiety. However, newer compounds, 

although less widely available than mCPP, have a greater selectivity for the 5-HT2C 

receptor. Others molecules that have been used in dissecting the serotonergic mechanisms 

of satiety are the 5-HT1A/1B agonist RU-24969, the 5-HT 1B/2C agonist 1-(3-

trifluoromethylphenyl)piperazine (TFMPP) or the 5-HT2A/2C agonist 2,5-dimethoxy-4-

iodoamphetamine [77]. Several studies demonstrated hypophagic effects of 

intrahypothalamic administration of mCPP, TFMPP, and DOI [77-79]. However, DOI had an 

interruptive effect on feeding and the BSS, mainly by inducing hypoactivity, ruling out the 5-

HT-2A receptor as physiological mediator of satiety [51, 80]. The fenfluramine metabolite 

mCPP reduced the feeding rate, but not the duration of feeding [51]. Acceleration of the BSS 

by mCPP has been reported both for rats and mice [72, 73, 80], but not in a recent rat study 

[81]. Activation of the 5-HT2C receptor in mice, using the selective agonist VER2379, 

accelerated behavioural satiety, but induced also a reduction of non-food reinforced 

appetitive responding [82].  Being complementary to, and in combination with 

pharmacological approaches, transgenic techniques provided further evidence for the 

involvement of 5-HT1B and 5-HT2C receptors in physiological satiety. A 5-HT2C receptor 

knockout was accompanied by hyperphagia leading to hyperglycaemia, insulin resistance 

and late-onset obesity [83, 84]. The 5-HT2C receptor knockout caused a secondary and 

age-dependent reduction in the expression of beta 3 receptors in white adipose tissue, 

further enhancing obesity [85]. In many rodent models of obesity, including transgenic 
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models [86], metabolic dysregulations are leading to obesity. In 5-HT2C knockout mice, 

there seems to be a strong behavioural component (hyperphagia) to exist that contributes to 

the development of obesity. Heisler [87] report that the mCPP failed to suppress food intake 

in 5-HT2C knockout mice and the hypophagic effect of fenfluramine is attenuated, 

demonstrating a role for the 5-HT2C receptor in mediating d-fenfluramine-induced satiety 

[71]. The 5-HT2 knockout model has been suggested as an in vivo screening model for 5-

HT2C receptor ligands [88]. 

The 5-HT1A/1B agonist RU-24969 reduced the time eating, but not the eating rate. Although 

this compound has affinity for both the 5-HT1A and the 5-HT1B receptor, the latter mediates 

the hypophagic effect [89, 90]. However, conflicting data regarding the effects of the RU-

24969 on the BSS have been reported [51, 91-93]. Using the more selective compound 5-

HT1B agonist CP-94,253, the hypophagic effect as based on a reduction of meal size, could 

be confirmed. This more selective 5-HT1B agonist retained the structure of the BSS, 

suggesting an involvement of the 5-HT1B receptor in satiety [91-93]. In 5-HT1B receptor 

knock-out mice [94] basal food intake and the feeding response to food deprivation remained 

unchanged [95]. In contrast, absolute food intake in these mice was increased when intake 

measures were not related to body weight. As a consequence, 5-HT1B receptor deletion led 

to increased body weight, but leptin levels remained unchanged and despite the increased 

body weight these mice were not deemed obese [96]. In line with the aforementioned 

pharmacological findings, both fenfluramine and the 5-HT1A/B agonist RU-24969 lost their 

hypophagic effects in these mice, further supporting the role of 5-HT1B receptor in satiety 

[73, 95]. Lee [97] studied the effect of the selective 5-HT1B agonist CP-94,253 in 5-HT1B 

knockout mice, where the satiating effect of the agonist was absent or reduced. In wild-type 

mice, the agonist reduced food intake, but not when pre-treated with the selective 5-HT1B 

antagonist SB224289. The antagonist itself stimulated food intake, possibly by disinhibition 

of satiety. In line with other reports, these findings provide further evidence that the 5-HT1B 

receptor is involved in the mediation of tonic satiety. 

The majority of experimental studies suggest a role for both the 5-HT1B and the 5-HT2C 

receptor in mediating endogenous satiety, but the functional relationship between both 

receptor subtypes has been studied only more recently by Dalton [98] in 5-HT2C knockout 

mice. In wild-type mice, both the 5-HT2C/1B agonist mCPP and the selective 5-HT1B 

agonist CP-94,253 advanced post-prandial behavioural satiety, whereas mCPP was 

ineffective in the 5-HT2C knockout mice. However, the 5-HT1B agonist was more effective in 

5-HT2C knockouts than in wild-type mice, suggesting a compensatory interaction of both 

receptors in the mediation of satiety. Analysing the pharmacological effects of 5-HT agonists 
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and antagonists on the structure of feeding behaviour led to the conclusion that the 

stimulation of 5-HT2C receptors inhibits the rate of eating and that 5-HT1B receptors 

mediate the duration of feeding. The serotonergic control of feeding would be fully 

expressed, if both receptors are activated [4, 99]. 

Non-selective 5-HT2 agonists reduce food intake, but not in a behavioural specific manner 

[51, 80, 100], making the 5-HT2A and 5-HT2B receptor less likely candidates for 

serotonergic satiety [4]. Although there is broad evidence that antagonists at 5-HT1B and 5-

HT2C receptors can induce feeding, this has not been found in all studies. It is likely that 

baseline level of food intake impact on the effects of 5-HT1/2 antagonists on feeding [4, 77]. 

5-HT3 receptors are widely distributed both in the brain and in the periphery of the body. In 

the brain, a particular high density of 5-HT3 receptors has been found in the brain stem. The 

5-HT3 receptor is pharmacologically an exception among the family of 5-HT receptors, as it 

is a ligand gated ion channel. In preclinical studies 5-HT3 antagonists induce anxiolysis, 

improve cognition and mitigate drug withdrawal [101]. 5-HT3 antagonists like odansetron are 

standard antiemetic drugs and reduce secretion and motility in the gut via central and/or 

peripheral action [101]. Compared to 5-HT1B and 5-HT2C receptors, relatively little evidence 

exists that 5-HT3 receptors are involved in the serotonergic mediation of satiety. Systemic 

serotonergic activity has been shown to induce an anorectic response due to eating an 

amino acid imbalanced diet since activation of 5-HT3 receptors is required to mediate the 

response [102]. Other studies provide a complex pattern, as the 5-HT3 antagonist 

odansetron increased the intake of sweetened mash, but reduced sucrose intake [103]. Van 

der Hoek and Cooper [104] revealed a behaviourally specific reduction of palatable food 

consumption in non-deprived rats following peripheral administration of the selective 5-HT3 

antagonist odansetron. However, odansetron did not alter sucrose or chow intake in food 

deprived rats in a later study, but blunted the anorectic response to a duodenal lipid infusion 

[105]. The findings of both studies are not necessarily contradictory, as one could assume in 

both situations a disinhibition of satiety, rather than a satiating effect per se. As odansetron 

does not readily cross the blood brain barrier [106], one would assume that these effects on 

satiety are predominantly peripheral effects. However, antagonism of 5-HT3 receptors in the 

nucleus of the solitary tract (NTS) of the brainstem stimulate food intake, indicating also a 

central site of action [107]. In contrast to these findings in rats, however, no change in food 

intake has been found in 5-HT3A receptor knockout mice. As there is relatively little 

evidence for an independent role of 5-HT3 receptors in satiety [108], the prevailing interest in 

5-HT3 receptor antagonists is still the reduction of nausea and vomiting during 

chemotherapy. 
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The 5-HT6 receptor is almost exclusively expressed in the brain, although it has also been 

found in peripheral tissues of various species. The widely expression in the brain includes 

the hypothalamus, although the quantification of the expression depends on species and 

detection method [109]. Initial experiments did not provide any evidence for the involvement 

of the 5-HT6 receptor in satiety [110]. Studies using either intracerebroventricular injections 

of 5-HT6 antisense oligonucleotides or intraperitoneal administration of the 5-HT6 receptor 

antagonist Ro 04-6790 found decreased feeding behaviour and body weight gain 

[111],[112]. The 5-HT6 partial agonist E-6837 induced hypophagia in a rat model of diet-

induced-obesity (DIO) [113], and mice carrying a non-functional 5-HT6 receptor do not 

become obese when exposed to a high fat diet [114]. In the latter study, however, there was 

no change of habitual feeding on a normal diet in 5-HT6 receptor knockout mice. The 

interpretation of these findings should be seen with some caution, as the central distribution 

of this receptor is different in mice compared to rats and humans [115]. Whereas 5-HT2C 

and 5-HT1B receptor activation induces satiety, it requires inactivation of the 5-HT6 receptor 

to reduce food intake, suggesting that different or additional pathways are involved. It has 

been hypothesised that 5-HT6 receptors act at GABAergic interneurons in the 

hypothalamus. These GABAergic neurones would synapse at pro-opiomelanocortin (POMC) 

neurones which release the anorectic peptide α-melanocyte-stimulating hormone (α–MSH). 

Antagonists at 5-HT6 receptors could interfere with the GABAergic inhibition and thus 

indirectly stimulate α–MSH, leading to increased satiety [109]. In a mapping study, using 

anorectic doses of the 5-HT6 receptor antagonist SB-399855, Garfield [116] detected 

increased c-fos immunoreactivity in the hypothalamic paraventricular nucleus (PVN) (but not 

in the arcuate nucleus) and the nucleus of the solitary tract (NTS) of the brain stem. This 

finding would also exclude a hypothalamic effect similar to 5-HT2C and 5-HT1B agonists 

which both have a direct effect in the arcuate nucleus. However, an indirect GABA-mediated 

effect as suggested by Woolley et al.[109] would be a possibility. A further mechanism could 

be hypothesised that involves the NTS. The increased 5-HT6 receptor expression in the 

NTS, a target for peripheral satiety signals, would allow 5-HT6 antagonists to disinhibit 

peripheral satiety signals which terminate in the NTS [116].  

Relatively little is known about the 5-HT4 receptor in satiety, although it could possibly be 

involved in stress-induced eating behaviour [117] or reward processing in obese subjects as 

an imaging study suggests that 5-HT4 receptor activation occurs in reward circuits (nucleus 

accumbens and ventral pallidum). The intensity of signals coming from these two regions 
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correlated with the body mass index [118]. No evidence exists that that 5-HT5 and 5-HT 7 

receptors are involved in satiety. 

In contrast to the aforementioned 5-HT1B and 5-HT2C agonists and 5-HT6 antagonists, 5-

HT1A agonists do not promote satiety. By acting at somatodendritic autoreceptors in the 

raphe nuclei [11, 119-121] the prototypic 5-HT1A agonist 8-hydroxy-2-(di-n-

propylamino)tetralin (8-OH-DPAT) stimulates feeding in satiated rats. The underlying 

mechanism is agonism at somatodendritic autoreceptors located on 5-HT neurons in the 

dorsal raphe, thus inhibiting 5-HT release [122-128]. This has also been shown for other 

agonists at this receptor [77]. Although these effects are behaviourally specific [129], they 

follow a circadian pattern [125, 130] and have not been observed in food deprived rats 

where 5-HT1A agonists inhibit food intake upon re-feeding [123, 131, 132]. This anorectic 

effect of the 5-HT1A effect in food deprived rats is due to stereotypy and various 

accompanying signs of the classical 5-HT syndrome [51, 133]. However, when given locally 

into the paraventricular nucleus (PVN) of the hypothalamus, 8-OH-DPAT advanced the BBS 

[134], possibly by acting at postsynaptic receptors. 

By facilitating negative feedback, the 5-HT1A agonist 8-OH-DPAT attenuates 5-HT release 

also under in-vivo conditions, as measured by microdialysis, but varying across brain regions 

[135-137]. In the lateral hypothalamus, peripherally administered 8-OH-DPAT diminished 5-

HT release in rats fed ad libitum, but not in food deprived rats. These latter findings 

correspond to the aforementioned effects on food intake, confirming that the impact of 5-

HT1A receptor activation on food intake depends on the nutritional status [132, 138]. A 

knockout of this receptor leads to reduced food intake [41]. Very likely, the knockout will 

diminish or eliminate the negative somatodendritic feedback and thus increase 5-HT release 

that will induce hypophagia via postsynaptic 5-HT2C and 5-HT1B receptor activation, 

although no change in habitual feeding in 5-HT1A receptor knockout mice has been 

displayed in another study [139].  

 

4. Peripheral 5-HT and satiety  

The vast majority of the 5-HT in the body is found in the gastrointestinal (GI) tract where it is 

stored in enterochromaffin cells. Enterochromaffin cells function as sensory transduction 

elements in the gastrointestinal mucosa, responding to chemical and mechanical stimuli by 

releasing 5-HT and other potential mediators onto afferent nerve terminals to initiate GI 

reflexes and modulate visceral perception [140]. 5-HT will be released after food intake or 
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intraluminal distension or efferent vagal stimulation. Its primary targets are the mucosal 

projections of primary afferent neurons including the vagal nerve [141]. 5-HT4 agonists and 

5-HT3-antatgonists have been used and are being used in a variety of gastrointestinal 

disorders and chemotherapy-induced nausea [141-144].  

However, despite the abundance of 5-HT in the periphery in comparison to the brain, 

relatively little is known about the involvement of peripheral 5-HT in satiety. A possible 

explanation could be the fact that the role of brain 5-HT is well established and these 

mechanisms can be targeted more selectively if the involved receptor subtypes (i.e. 5-HT-2C 

or 5-HT-6) are only or predominantly expressed in the brain. Peripherally administered 5-HT 

cannot cross the blood brain barrier, but nevertheless induces hypophagia [145, 146]. 

Peripherally injected 5-HT advanced the BSS, and rats approached satiation quicker and in 

a behaviourally specific manner [147, 148]. Peripheral 5-HT requires the simultaneous action 

of gastrointestinal mechanism to elicit a complete behavioural profile of satiety as shown 

with sham feeding experiments [148]. Peripherally acting 5-HT1 agonists like 5-

carboxamidotryptamine (5-CT) and the 5-HT2 agonist α-methyl-5-hydroxytryptamine (5-α-

Me-5-HT) also induce hypophagia [149]. The involved 5-HT receptor subtypes need to be 

identified, as pharmacological studies ruled out 5-HT1A and 5-HT1B receptors [4, 99]. The 

sites where exactly peripheral acting 5-HT agonists impact on satiety still require 

identification, although for 5-HT2 agonists the pylorus is a candidate [150]. Tph1 deficient 

mice show normal brain, but low peripheral 5-HT levels [38]. Tph1 knockout showed higher 

food intake, but unchanged locomotor activity, and gained more body weight. The satiating 

effect of systemically administered 5-HT was increased in Tph1 knockout mice suggesting 

adaptive changes in peripheral 5-HT receptors. By contrast, systemic fenfluramine had 

similar effects both in knockouts and wild-type mice [151]. These data highlight the 

importance of peripheral 5-HT for the full expression of satiety, but also suggest that  

peripheral 5-HT depletion does not necessarily lead to a compensatory change in central 5-

HT2C or 5-HT1B mechanism of satiety as shown by the similar effects of fenfluramine in 

both genotypes.   

 

5. Brain mechanisms of serotonergic satiety 

The brain mechanisms involved in the control of feeding and satiety are complex, both with 

regard to the brain structures being involved, but also regarding the participating 

neurotransmitters and hormones. Serotonergic mechanisms of satiety have been identified 

in the hypothalamus but also in extrahypothalamic brain structures as for example in the 
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brain stem. Within the hypothalamus, research has been focused lately on the arcuate 

nucleus, the PVN and the lateral hypothalamic area (LHA) [152-155]. 

One of the strongest brain stimulators of food intake is Neuropeptide Y (NPY) [156]. NPY 

neurons of the hypothalamic arcuate nucleus project directly to the lateral hypothalamus 

where they activate both melanin concentrating hormone (MCH) and orexin neurons and this 

activation causes feeding, when the arcuate nucleus is stimulated. Projections from the 

arcuate NPY neurons to the PVN seem to mediate metabolic functions of NPY [157]. Both 5-

HT1B and 5-HT2C receptors are expressed in the arcuate nucleus [158-160], which receives 

input from raphe nucleus neurons [161-163]. Chronic systemic administration of dl-

fenfluramine decreased hypothalamic NPY expression, being consistent with the anorectic 

effects of fenfluramine [164]. NPY cell bodies also synthesise agouti-related protein (AgRP) 

that increases appetite and decreases metabolism. 5-HT1B agonists hyperpolarise these 

neurons via Gi-coupled 5-HT1B receptors [165].  

The selective 5-HT2C receptor agonist BVT.X reduces acute food intake in both genetic and 

diet-induced mice models of obesity following systemic administration. A 7-day infusion of 

the agonist via osmotic mini pumps significantly increased POMC mRNA and reduces body 

weight in these mice. However, mice lacking the melanocortin (MC) 4 receptor, did not show 

the 5-HT2C agonist-induced hypophagia [165]. This latter finding demonstrates that 

melanocortins acting on MC4 receptors are a requisite downstream pathway for 5-HT2C 

receptor agonists to exert effects on food intake [166]. However, a more recent study, 

likewise using MC4 knockout mice, but also MC3 knockout mice, found rather evidence that 

MC3 receptors are the more likely candidate [167]. This could be due to differences in study 

design, and therefore either receptor could impact on feeding, but under different feeding 

conditions. Further studies would be required to solve these discrepancies. Nevertheless, 

the role of downstream MC3/MC4 receptors is further supported by pharmacological studies 

in rats where MC3/MC4 receptor antagonism attenuates the hypophagic effect of d-

fenfluramine [159]. Hypophagia induced by MC3/MC4 receptor activation is not different 

between 5-HT2C knock out and wild-type mice, further suggesting that the serotonergic 

effects are upstream of MC3/MC4 receptors [159]. Heisler et al.[168] suggest a model for d-

fenfluramine mediated satiety (or 5-HT2C receptor mediated satiety) which includes the 

activation of POMC neurons in the arcuate nucleus via 5-HT2C receptors. POMC is a 

precursor for the anorectic protein α–MSH, and 5-HT also causes a direct release of α–MSH 

from hypothalamic slices [169]. Alpha-MSH is an endogenous MC receptor agonist. The 5-

HT2C receptor mRNA is co-expressed with up to 80% of α–MSH containing neurons in the 

arcuate nucleus and the 5-HT2C/1B agonist mCPP increases Fos-immunoreactivity in this 
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hypothalamic region [159]. Therefore the model further suggests that the 5-HT2C receptor 

mediated α–MSH release leads to a downstream activation of MC3/MC4 receptors [168]. 

There is recent evidence that 5-HT1B receptors inhibit the activity of NPY/AgRP neurons in 

the arcuate nucleus [170, 171]. In conclusion, it appears that both 5-HT2C and 5-HTB 

receptors are involved in arcuate control of feeding, where they act via different, but 

complementary mechanisms [170]. In the light of the discussion of possible 5-HT and leptin 

interactions in satiety it is important to mention that leptin and 5-HT are activating distinct 

POMC neurons in the arcuate nucleus [171], further supporting the view that there is no 

direct interaction between 5-HT and leptin at the neuronal level.  

An important hypothalamic structure in the control of feeding is the PVN where 5-HT and 

various agonists reduce food intake by decreased meal size and eating rate [4, 172]. This 

pattern is very similar to the effects observed following systemic administration of 5-HT 

agonists but different from effects as observed after selective stimulation of peripheral 

receptors [4]. The PVN receives input from the arcuate nucleus [173, 174] and also 

accommodates MC receptors [175-177]. Local administration of MC3/MC4 agonists into the 

PVN reduces food intake whereas antagonists administered into the PVN increase food 

intake [178-180]. Although injections of 5-HT1B agonists into the PVN reduce food intake, 

blockade of the PVN 5-HT1B receptors or lesions of this region did not inhibit the satiating 

effects of systemic d-fenfluramine [181, 182]. These and other findings suggest that 

activation of 5-HT1B receptors located in the PVN is sufficient but not necessary to induce 

satiety [4]. The selective 5-HT1B agonist CP-94,253 stimulated c-fos immunoreactivity in the 

PVN and the ventromedial nucleus (VMN) and in various other brain structures including 

hindbrain structures after satiating doses, suggesting the involvement of extrahypothalamic 

receptors in the 5-HT1B mediation of satiety [97]. 

NPY/AgRP and POMC neurons also project from the arcuate nucleus to the LHA where they 

control the synthesis of MCH and orexin which both stimulate food intake [183-185]. Orexin 

neurons are located specifically in the LHA and the LHA projects to almost all parts of the 

brain [186, 187], in particular to serotonergic raphe neurons [187-189]. In the LHA, 5‐HT1A 

receptor immunoreactivity was observed in MCH‐ and orexin‐containing neurons, suggesting 

that 5-HT, via postsynaptic 5‐HT1A receptors, affects the release of these orexigenic 

peptides [190]. The 5-HT2C agonist mCPP lost its hypophagic potency when both POMC 

and orexin, were silenced. Silencing either one only had no effect. Hence, a functional 

hypothalamic POMC and orexin activity is a prerequisite for 5-HT2C receptor mediated 

satiety [191]. 
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Another important appetite stimulant, released from the stomach is ghrelin [192]. As an 

important short-term hunger signal, ghrelin is involved in the initiation of a meal [154, 155, 

193, 194]. Ghrelin is also released in the brain, in particular in the arcuate nucleus [195, 

196]. Peripheral ghrelin targets the arcuate nucleus where ghrelin receptors are expressed 

on AgRP neurons [197]; raising the possibility that 5-HT could be a physiological counterpart 

of ghrelin or vice versa. Ghrelin mimics the effect of NPY in the PVN [196] and an injection of 

5-HT into the PVN inhibits the orexigenic effect of ghrelin, also administered into the PVN 

[198]. Recently, a novel heterodimer between the ghrelin receptor (GHS-R1A) and the 

unedited 5-HT2C receptor has been identified. Dimerization of GHS-R1A receptor with the 

unedited 5-HT2C receptor reduced the GHS-1RA receptor-mediated calcium influx [199].  

This finding not only provides further evidence for interactions between 5-HT ghrelin, but 

suggests that these interactions could contribute to the fine-tuning of appetite and satiety.

  

Whereas historically efforts focussed on revealing hypothalamic mechanisms of appetite and 

satiety, it became increasingly clear that numerous endocrine and neural factors are 

integrated into a complex network of many brain structures [152]. Among those brain 

structures hindbrain nuclei, and here the nucleus of the solitary tract (NTS) which is located 

in the medulla, play a dominant role. The NTS provides a target in particular for satiety 

signals of peripheral origin. The NTS receives afferent input from hypothalamic nuclei, blood 

born signals (leptin, ghrelin, glucose) and from the GI tract via the vagus (cholecystokinin; 

CCK, peptide YY; PYY and others) [153, 200]. Afferent projections from the rostral NTS 

reach the parabrachial nucleus at the junction of the midbrain and pons and at the 

hypothalamus, whereas the caudal NTS projects to vagal efferent neurons control 

parasympathetic gastrointestinal responses including insulin secretion and gastric emptying 

[153]. Decerebrate rats which lack the direct connection between the hindbrain and forebrain 

show a reduced feeding response to intra-oral infusion of 12.5% glucose following systemic 

administration of fenfluramine or mCPP [201-203]. As Decerebrate rats can only show 

behavioural responses controlled by brain stem circuits, these results show that caudal 

brainstem receptors are sufficient to produce anorectic effects after systemic administration 

of mCPP or fenfluramine. Administration of the 5-HT2C/2A antagonist metergoline 

completely blocked the anorectic effects of systemic mCPP in this rat model. This 

demonstrates that caudal brainstem 5-HT receptors (most likely 5-HT2C receptors) are not 

only sufficient, but also required to produce anorectic effects of mCPP [203]. 

Food intake (or experimental volume distension) leads to 5-HT secretion from gastric 

enterochromaffin cells. This effect is largely relayed by the vagus to the NTS and mediated 
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by 5-HT3 receptors which are expressed on peripheral dendritic terminals of vagal afferents 

innervating the stomach [107, 204-207]. High densities of 5-HT3 receptor binding sites within 

the central nervous system have also been found in the NTS [208, 209] and local 

administration of the 5-HT3 antagonist odansetron increased sucrose intake [107]. After 

intestinal anaphylaxis, increased c-fos staining was observed in the NTS, the parabrachial 

nucleus, and the hypothalamic PVN [210]. A systemic administration of the 5-HT3 antagonist 

odansetron attenuated this intestinal effect on brain c-fos expression, suggesting a functional 

connection of these structures and 5-HT in the efferent control of intestinal disturbances 

[210]. Caudal serotonergic neurons of the NTS control the excitability of the parabrachial 

nucleus and inhibit feeding [211]. The parabrachial nucleus is connected to the 

hypothalamus [212]. Ablation of hypothalamic AgRP neurons leads to aberrant activation of 

the parabrachial nucleus and starvation. The parabrachial nucleus has been identified, 

therefore, as a functional unit that integrates feeding related signals from several brain 

regions [211, 213] and could possibly provide a functional link between hypothalamic and 

hindbrain mechanisms of 5-HT mediated satiety. 5-HT1B receptor activation in the 

parabrachial nucleus reduces food intake [214] and the hypophagic effect of fenfluramine in 

the parabrachial nucleus requires 5-HTB receptor activation [215]. 

 

6. 5-HT interactions with CCK and leptin 

It is important to emphasize that 5-HT does not work in isolation from other satiety signals. 

Considering the neuroanatomy of the serotonergic system, the distribution of 5-HT receptors 

and the involvement of brain serotonin in much behaviour, it seems likely that 5-HT, although 

having an effect on satiety on its own, could potentially interact with other satiety 

mechanisms. Feeding (i.e. energy intake) is essential for survival and this can be secured by 

an adaptive control by several mechanisms which would allow the activation of 

compensatory responses in case a single mechanism is malfunctioning. Interactions of 

satiety mechanisms increase the flexibility and plasticity of the system and should allow 

adaptation to different requirements during development (e.g. growth, reproduction, age). In 

fact, the probably first candidate for such an interaction that has been investigated is CCK 

[216]. Back in 1973, Gibbs et al.[217] already suggested that CCK released from the small 

intestine during a meal contributes to termination of the meal and induces postprandial 

satiety. Exogenous CCK inhibits food intake in rats in a behaviourally specific manner. Loss 

of the CCK-1 receptor in rats due to a spontaneous mutation [218] leads to hyperphagia and 

subsequently to obesity [219], although obesity does not develop in CCK-1 receptor knock-
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out mice [220]. The prospect of 5-HT-CCK interactions in the control of satiety was primarily 

based on pharmacological data. For example, the non-selective 5-HT1/2 receptor antagonist 

metergoline not only attenuated the satiating effect of fenfluramine, but also that of 

exogenous CCK. However, neither fenfluramine- nor CCK- induced satiety were affected by 

only peripheral 5-HT antagonism with xylamidine [221, 222] at al. 1989). Evidence has been 

provided that 5-HT2C receptor activation would be required for CCK to induce satiety [223]. 

One could conclude from these results that (exogenous) CCK requires central 5-HT to 

induce satiety. Indeed, inhibition of brain 5-HT synthesis attenuates the satiating effect of 

CCK [224]. A pharmacologically induced attenuation of central 5-HT release by the 5-HT1A 

agonist 8-OH-DPAT also counteracts CCK-induced satiety [225, 226], although this has not 

been found by Ebenezer and Brooman[227]. Interestingly, antagonism of 5-HT1A receptors 

with WAY 100135 also attenuated CCK induced satiety, most likely by antagonism at 

postsynaptic 5-HT1A receptors, an effect that could possibly explained by an increased 5-HT 

release following CCK administration [226]. This hypothesis has been confirmed in a later 

microdialysis study in food deprived rats which demonstrated that exogenous CCK facilitates 

hypothalamic 5-HT release [35]. This would also be in keeping with earlier in vitro 

experiments demonstrating excitatory effects of CCK on serotonergic neurons in the dorsal 

raphe nucleus [228]. When CCK is administered peripherally to 5-HT2C receptor knockout-

mice it has no hypophagic effect, adding evidence to previous pharmacological studies 

demonstrating that this 5-HT receptor is involved in the mediation of CCK-induced satiety 

[229]. Together these indicate that CCK recruits central 5-HT to induce satiety.  

Cooper et al. [230] took the opposite approach and investigated if 5-HT induced satiety 

would require CCK activity. They and others [231] demonstrated that the CCK1-receptor 

antagonist devazepide blocked the satiating effect of systemic 5-HT or fenfluramine, 

whereas the CCK2-recptor antagonist L-365.260 was ineffective. Cooper and Dourish [216, 

232] concluded that the CCK1 receptor is involved in the anorectic effects of fenfluramine as 

it facilitates the satiating effect of CCK, resulting in an overall increased satiety. Other 

studies, however, did not find an attenuation of 5-HT or fenfluramine induced behavioural 

satiety by devazepide [233, 234]. Although devazepide did not impact on fenfluramine-

induced satiety in one of these studies, it notably attenuated fenfluramine-induced 

suppression of gastric emptying suggesting a peripheral interaction [234]. In a somewhat 

different approach Voigt et al. [235] used protease inhibitors to increase the concentration of 

endogenous CCK instead of blocking CCK receptors, and hence CCK activity, by 

antagonists. Meal-induced CCK release is limited by proteases, and inhibition of these 

proteases should therefore induce hypophagia [236]. Although the protease inhibitors and 
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fenfluramine reduced night time feeding, when given separately, no evidence for additive or 

synergistic effects was found when the compounds were administered in combination. 

In the lateral hypothalamus, however, neurons have been identified that respond both to 

iontophoretic 5-HT and CCK administration, and the response increases with a combined 

application of both satiety signals, suggesting that the effect of 5-HT and CCK can converge 

on the same neuron [237]. Both CCK [238] and 5-HT inhibit feeding when injected into the 

PVN, and lesioning the PVN impairs the hypophagic effect of peripherally administered CCK 

[239]. Synergistic effects of 5-HT and CCK in the PVN seem also to impact on the motivation 

to eat [240]. 

Although there is evidence to support the interactive model for 5-HT and CCK as proposed 

by Cooper and Dourish [216], more of the data are in favour of CCK requiring 5-HT to 

mediate satiety rather than 5-HT requiring CCK, although the latter cannot be excluded yet. 

More recently, further evidence for 5-HT-CCK interactions emerged from studies 

investigating the involvement of the 5-HT3 receptor. Compared to 5-HT1, 5-HT2 and 5H6 

receptors, relatively little data was in favour of 5-HT3 receptors being specifically involved in 

satiety. This did not encourage investigations of potential interactions between 5-HT3 

receptors and the CCK system [241]. The first evidence for this arose from a rat study on 

hypophagia as consequence of eating an amino acid imbalanced diet. This hypophagic 

response is remediated by the 5-HT3 antagonist tropisetron. The effect of tropisetron was 

blunted by the CCK1 receptor antagonist devazepide, suggesting a possible interaction 

between CCK and 5-HT in anorexia due to aminoprivic feeding [102]. Inducing satiety by 

intraduodenal fat infusion could only fully be blocked when the CCK-1 antagonist devazepide 

and the 5-HT3 antagonist tropisetron were administered together [242]. Such interactions 

between CCK and 5-HT3 antagonists have later been shown for intake of sucrose solution 

and also of a solid diet [206, 243, 244]. In these experiments, CCK and 5-HT synergistically 

reduced food intake in a supra-additive manner, suggesting that CCK and 5-HT together 

bring about a stronger satiety signal than each system alone [245]. Data from the same 

group shows that the effects of the 5-HT3 antagonist depends on gastric signals, as gastric 

distension is required and the CCK antagonist, in contrast to CCK itself, is ineffective in 

sham-fed rats [206]. The involvement of hindbrain 5-HT3 receptors in CCK-induced satiation 

has been demonstrated [107]. These studies, using ‘classical approaches’ add to the 

proposed model of interdependent  CCK and 5-HT mediated satiety [216], but also 

emphasise the need not to limit the study of serotonin-mediated satiety to the central 

nervous system [241]. 
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Despite early assumptions of a role of adipose tissue in control of feeding [246] and the 

existence of circulating satiety factors [247], only the cloning of the Ob-gene (Ob stands for 

obesity) [248] could explain why mice with a deficiency of this gene developed severe 

obesity. The Ob-gene codes for a protein that has been later called leptin (Greek; leptos = 

thin). Leptin is produced in adipose tissue and blood concentrations of leptin are high in 

obese individuals. Leptin crosses the blood brain barrier via a transport mechanism linked to 

the leptin receptor [249]. Null-mutation of the Ob-gene causes severe obesity in mice (ob/ob 

mice) as does the mutation of the leptin receptor (db/db mice) [250, 251]. Exogenous leptin 

reduces body weight in ob/ob-mice down to the level of wild-type control mice [252-255]. By 

contrast, leptin administration had no effect in db/db mice. The hypothalamic actions of 

peripheral leptin are dependent on other hypothalamic signalling systems of hunger and 

satiety. Leptin inhibits hunger signals like NPY and AgRP in the hypothalamic arcuate 

nucleus but also stimulates POMC which leads to the formation of the satiety signal α-MSH. 

Projections from the arcuate nucleus regulate food intake via MCH and orexins. Synergistic 

effects between leptin and CCK in the control of food intake have been described [183-185]. 

The role of 5-HT-leptin interactions in the control of food intake appears to be less clear 

though. Halford and Blundell [256] found little evidence for a direct link between leptin and 

5HT in appetite control and have therefore suggested that both leptin and 5-HT represent 

separate pathways in the control of food intake. The authors emphasised the concept that 

the effects of leptin are rather long lasting (tonic) whereas 5-HT is part of a network for short 

acting satiety signals (episodic). The relative independence of leptin and 5-HT is supported 

by findings that 5-HT2C knockout mice are hyperphagic but their response to exogenous 

leptin remains unchanged, although these mice, once being obese, become partially leptin 

resistant [84]. However, a later pharmacological study using the 5-HT2C receptor antagonist 

SB 242084, provided evidence for the involvement of 5-HT2C receptors in the mediation of 

leptin-induced anorexia [257, 258]. Knockout of 5-HT2C receptors in ob/ob-mice further 

exacerbates obesity [259].  

Peripheral administration of the 5-HT precursor 5-HTP increases serum leptin in mice [260, 

261] although it needs to be determined if the involvement of 5-HT in leptin-induced 

hypophagia is a direct effect because a further study suggested that hyperleptinemia 

following systemic injection of 5-HTP is elicited by 5-HT formed in the peripheral system 

[262]. However, immunohistochemical evidence suggests an inverse relationship between 5-

HT and leptin in the dorsal raphe and the hypothalamus. Pharmacological depletion of 5-HT 

synthesis and release led to increased leptin immunoreactivity in this brain region [263]. An 

impact on feeding behaviour has not been investigated in this study though. Nevertheless 
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one could speculate that the central depletion of 5-HT would reduce (serotonergic) satiety 

and this could be functionally compensated by increased leptin uptake into the brain. Such 

an interpretation would require experimental verification as it would be at odds with findings 

in 5-HTT deficient mice with increased 5-HT in various brain regions where reduced food 

intake was paralleled by increased leptin levels [264], although the change in leptin 

concentrations could be a secondary and independent effect.   

Whereas all these studies investigated into the impact of serotonergic manipulations on 

leptin, mostly in the context of food intake, other studies took the reverse approach and 

looked into serotonergic mechanisms following manipulation of leptin. This approach has 

some limitations, mainly in that suitable pharmacological antagonists of the leptin receptor 

have not been widely tested with regard to satiety [265]. Therefore this aspect of putative 

interactions has been largely studied in leptin deficient mice. In ob/ob mice, leptin infusion 

via osmotic mini pumps reduced food intake and body weight, and increased hypothalamic 

and brain stem 5-HT concentrations, but not 5-HT concentration in the frontal cortex. 

Interestingly, this was not observed in lean mice, suggesting enhanced leptin sensitivity in 

ob/ob mice [110]. A recent study by Schellekens [266] analysed the impact of leptin 

deficiency on 5-HT receptors being involved in the control food intake. The authors found 

increased hypothalamic 5-HT1A receptor expression as well as increased hippocampal 5-

HT1A, 5-HT1B, and 5-HT6 receptor mRNA expression in obese mice compared to lean 

control mice. In addition they found decreased hypothalamic and hippocampal 5-HT-

turnover, a complementary finding to the earlier observed stimulatory effect of leptin on brain 

5-HT turnover [267]. 

Both leptin and endogenous 5-HT inhibit NPY [170, 183] which could be a common endpoint 

of their actions. The midbrain raphe projects to the hypothalamic arcuate nucleus where both 

NPY and POMC neurons are thought to be involved in the serotonergic control of satiety 

[168, 268]. Cells in the raphe of female pigtailed macaque express 5-HT transporter mRNA, 

which also serves as a marker of serotonergic neurons, and leptin receptor mRNA, 

suggesting that leptin may act on serotonergic cells to mediate some of its effects on 

ingestive behaviour and metabolism [269]. 8-OH-DPAT-induced stimulation of 5-HT1A 

receptors in nucleus raphe pallidus inhibits leptin-induced increases in brown adipose tissue 

energy expenditure [270]. It has been suggested that serotonergic neurons of the dorsal 

raphe can uptake leptin following its intracerebroventricular administration [271]. The 

physiological relevance of this finding needs to be determined, though, as pharmacological 

studies into the hypophagic effects of centrally administered leptin gave inconsistent results 

[272-276]. Leptin receptor immunoreactivity has also been identified in ascending 
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serotonergic neurons [277]. Decreased 5-HT transporter mRNA in neurons of the dorsal 

raphe nucleus in ob/ob mouse [278] seems to be in line with a rather direct 5-HT-leptin 

connection. In obese Zucker rats with a mutation in the leptin receptor [279-281] there is 

hyperexcitability of raphe neurons by leptin in an early developmental stage [282]. In normal 

rats, intracerebroventricular leptin aggravates the feeding-induced release of 5-HT in the LH 

[283].  

The role of the dorsal raphe in 5-HT interactions has investigated by [41]. Using transgenic 

techniques they eliminated leptin receptors from serotonergic neurons in the dorsal raphe. 

This led to increased food intake, body fat, and body weight. This would be in line with most 

of the studies assuming a stimulatory effect of leptin on 5-HT, or even a recruitment of 

central 5-HT to induce satiety. However, [41] proposed that 5-HT is largely an orexigenic 

signal and that leptin-induced hypophagia is mediated by suppressing of activity of 5-HT 

neurons. Therefore, a lack of inhibition would increase extracellular 5-HT (and therefore 

appetite) and this effect could be blocked by the 5-HT1A antagonist LY426965. Because this 

antagonist deviates pharmacologically from other 5-HT1A antagonists, non-selective effects 

cannot be fully ruled out without further pharmacological studies [284]. Most importantly, 

however, there is no evidence so far that LY426965 reduced food intake in a behaviourally 

specific manner. 5-HT1A receptor pharmacology of appetite is complex, as shown with 

agonists, and net effects on feeding are qualitatively dose dependent and need to take into 

account effects on both autoreceptors and postsynaptic receptors. Finally, considering 5-HT 

as an orexigenic factor in mammals would be at odds with preclinical and clinical data. 

Regardless of the interpretation of the previous studies [41, 285] and further studies [257, 

258, 267], other studies do not provide evidence for direct 5-HT-leptin interactions. In an 

extensive study, using several mouse lines Lam et al. [286] tried to resolve these 

discrepancies and aimed to clarify if serotonergic neurons are directly involved in the 

metabolic effects of leptin. The main outcomes of this study were that, albeit some leptin 

receptor neurons lie close to 5-HT neurons in the dorsal raphe nucleus, 5-HT neurons do not 

express these receptors. While leptin hyperpolarizes some non-5-HT dorsal raphe neurons, 

leptin does not alter the activity of dorsal raphe 5-HT neurons. Furthermore, 5-HT depletion 

did not impair the anorectic effects of leptin. The serotonin transporter-cre allele (Sert(cre)) is 

expressed in 5-HT (and developmentally in some non-5-HT) neurons. While Sert(cre) 

promotes leptin receptor excision in a few leptin receptor neurons in the hypothalamus, it is 

not active in dorsal raphe receptor neurons, and neuron-specific Sert(cre)-mediated leptin 

receptor inactivation in mice does not alter body weight or induce adiposity. Thus, leptin 

does not directly influence 5-HT neurons and does not modulate important appetite-related 
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determinants via 5-HT neuron function [286]. Because this study could not confirm the 

previous reports by Yadav [41], and because species differences (primates in [269]) cannot 

be excluded, further research is required to investigate possible interactions in other brain 

regions and in the periphery. These studies should integrate models of diet induced obesity 

at different stages of obesity as possible interactions between leptin and 5-HT may change 

during development. Even if it remains controversial if 5-HT interacts with leptin at the 

neuronal level [287], evidence has been provided that 5-HT and leptin act in concert, 

possibly via a functional synergism at the interface between episodic and tonic satiety. 

 

7. 5-HT interactions with other gastrointestinal pe ptides 

Compared to CCK and leptin, other anorectic peptides of primarily peripheral origin have 

been studies in less detail with regard to possible interactions with 5-HT. Nevertheless 

several of these gastrointestinal peptides mediate satiety [288], and are potential candidates 

for future anti-obesity drugs [289, 290].   

Among these gastrointestinal peptides, the hormone insulin is not only involved in the 

regulation of glucose metabolism, but has also been shown to act as a satiety signal [291, 

292].   Although the former is physiologically more significant, central injections of insulin 

produced hypophagia [293]. Targeted mutation of insulin receptor production the brain led to 

obesity in mice, further suggesting a role of brain insulin in the control of feeding [294]. In 

microdialysis experiments, stimulation of 5-HT release caused activation of insulin in the 

PVN without affecting insulinemia or glycaemia [295], whereas serum insulin was reduced 

after administration of the sub-hypophagic doses of   the 5-HT2C agonist mCPP [296]. This 

effect was mediated via downstream MC-4 receptors and suggests that pharmacological 

targeting of 5-HT2C receptors may enhance glucose tolerance independently of alterations 

in body weight [296]. 

If other peripherally released satiety factors like peptide YY3-36 (PYY) [297] recruit brain 

serotonin remains to be investigated, but the behavioural specificity and the hypophagic 

effect of PYY itself remains a matter of discussion [298]. Glucagon like Peptide-1 (GLP-1) is 

released in response to a meal from the small intestine [299] and reduces food-intake both in 

animals and humans [289, 300for review]. As a central site of action is possible [301-303], it 

is of interest that both GLP-1 and the GLP agonist exendin-4 stimulate 5-HT release from 

hypothalamic synaptosomes [304]. However, an icv injection of either one reduced 

hypothalamic 5-HT level. The primary metabolite of GLP-1, GLP-1 (9-39), had an 
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antagonistic effect though, as it blocked the effect of GLP-1 on 5-HT release [305]. Similar to 

the observed loss of CCK-induced satiety, the hypophagic effect of GLP-1 was lost in 5-

HT2C receptor knockout mice [229, 306]. It cannot be excluded though, that mechanisms 

downstream to the 5-HT2C receptor, rather than the 5-HT2C receptor itself, are required to 

mediate the satiating effect of peripheral GLP-1. The MC4 receptor seems to be a candidate 

here [306].  

C-fos expression pattern suggest that and GLP-1 and CCK use partially independent 

mechanisms to exert their satiating effects, as, in contrast to CCK, the NTS is probably not 

required for GLP-1-induced satiation  [229]. This interpretation is supported by the finding 

that the 5-HT2C agonist mCPP does no activate GLP-1 neurons in the NTS [307]. It remains 

to be investigated, if mCPP or other 5-HT agonists activate central GLP-1 neurons at all, as 

this would be a prerequisite for true interactions between GLP-1 and 5-HT. Due to the short 

half-life of GLP-1 itself, GLP-1 receptor agonists have been developed which are, due to 

their longer half-life, pharmacologically more feasible to suppress feeding [300, 308, 309]   . 

Whereas one of them, exendin-4, influences serotonergic neurotransmission [304, 305], 

another one, liguride, does not seem to require functional 5-HT2C receptors to supress food 

intake [306].  A recent study [300], however questioned the behavioural specify of exendin-4-

induced anorexia. Taken together, an unambiguous conclusion regarding interactions 

between GLP-1 and 5-HT in the control of feeding cannot be drawn yet. 

 

8. Changes in the brain satiety in different nutrit ional states 

So far the impact of serotonergic manipulations, either pharmacologically or by using 

transgenic techniques, on feeding and satiety has been discussed. Due to the evidence that 

brain 5-HT mechanisms are involved in the control of feeding, satiation and satiety, one 

would expect that these brain systems would undergo changes themselves in situations 

where overeating or malnutrition occur. In the following we summarise evidence for that 

without attempting to be comprehensive. Instead we provide data from experimental studies 

in both genetic models of obesity and models of diet-induced obesity (DIO). 

A genetic Zucker rat model of obesity is the obese Zucker rat where brain 5-HT metabolism 

shows significant abnormalities. However, data differs in detail across studies, as age, 

gender and brain region impact on 5-HT metabolism. Reduced tryptophan content but 

unchanged 5-HT content in various brain regions have been have been reported [310]. An 

increased 5-HT metabolism, as indicated by the 5-HIAA/5-HT ratio has been found in cortex, 
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hypothalamus and further regions [311]. Orosco et al. [312] investigated into the age 

dependency of changes in brain 5-HT and concluded that these changes are secondary to 

the development of obesity in female Zucker rats. The authors demonstrated that 5-HT 

levels in the medial hypothalamus of female lean and obese Zucker rats, revealed by 

chromatography, are not different. However, a decrease in hypothalamic 5-HT turnover has 

been seen in male obese Zucker rats at three and six month, but not in ten month of age 

[313]. Indeed, in vivo microdialysis showed a lower basal 5-HT release [314], but a, 

compared to lean controls, increased serotonergic response to a meal [315]. The latter effect 

declines with age [316] which would also be in line with ex vivo 5-HT measures [313]. A 

lower hypothalamic baseline concentration, although not being found in some studies, could 

be explained with an increased control via raphe somatodendritic 5-HT1A autoreceptors, 

although the physiological significance of intrinsically hyperexcitable dorsal raphe neurons in 

Zucker rats needs to be established [282]. Interestingly, the 5-HT1A agonist induced 

hypophagia in obese, but not in lean Zucker rats, where it expectedly stimulated feeding 

[313]. The aggravated hypothalamic 5-HT release in response to a meal in obese Zucker 

rats has been interpreted as a reduced postsynaptic sensitivity to satiety signals [315, 317]. 

Considering these changes in brain 5-HT metabolism it appears somewhat surprising though 

that the hypophagic effects of fenfluramine, the SSRI fluoxetine, and the 5-HT1B/2C agonist 

TFMPP and 5-HT2A/2C agonists were similar in lean and obese Zucker rats [318-322]. 

However, despite the lack of evidence for postsynaptic 5-HT1B or 2C receptors in obese 

Zucker rats, the hypophagic effect of 8-OH-DPAT in obese Zucker rats suggests such a pre- 

or postsynaptic plasticity, although the localisation of this effect would need to be identified. 

Changes in in the excitability of serotonergic raphe neurons in obese Zucker rats occur as 

early as between postnatal day 14 and 25 [282]. In addition to presynaptic feedback via 

autoreceptors, postsynaptic feedback in the control of 5-HT neurons has been suggested 

[323]. Such a postsynaptic feedback could be responsive to changes in 5-HT availability in 

projection areas as reported in obese Zucker rats. However, it needs to be considered that 

5-HT acts in concert with other neurotransmitters and hormones, and these interactions are 

possibly changed as well. Although the primary reason for obesity in Zucker rats is a 

dysfunctional leptin receptor [69, 279-281], a dysregulation of the brain serotonergic satiety 

system has been demonstrated. This dysregulation, although developmentally secondary in 

nature [324], gives an example that 5-HT could possibly contribute to the obese phenotype 

and stabilise it. 

Despite sometimes conflicting data, transgenic models, in particular in conjunction with 

pharmacological approaches, provide a unique opportunity to study the role of 5-HT in 
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satiety on a mechanistic and cellular level. Such genetic defects, however, do not account 

for the obesity epidemic in humans. Rodent models of diet-induced-obesity are taking into 

account the contribution of environmental factors, e.g. nutritional factors, and their 

interactions with a given genetic background.  Considering the overwhelming evidence for a 

role of 5-HT in satiety, we should also expect modifications of 5-HT functioning in dietary 

obese subjects.  

A diet-induced-obesity model [325] has been established by exposure of outbred Sprague-

Dawley rats to high caloric/high fat diets, where part of the rats become obese (DIO-prone) 

the other part not (obesity resistant rats; DR-prone rats). When fed on chow, both DIO- and 

DR-prone showed lower brain 5-HT turnover during the last hour of the light phase, when 

animals become active and begin foraging for food, as compared to the first hour of the light 

phase. However, unlike DR-prone rats, DIO-prone rats did not show a significant time-

dependent difference in 5-HT turnover in either the arcuate nucleus or the PVN, two 

hypothalamic brain regions essentially involved in the control of feeding. Upon a 48 hour 

fast, 5-HT turnover decreased in various hypothalamic and extrahypothalamic brain 

structures similarly in both cohorts of rats. However, fasted DIO-prone rats showed a much 

greater reduction in the ventromedial nucleus turnover than fasted DR-prone rats. After 

feeding an obesogenic diet, DIO rats became obese and the alteration in 5-HT mechanisms 

disappeared. Whereas the initial abnormalities could possibly predispose the rats to develop 

obesity upon exposure to a hyperenergetic diet, the normalisation observed in obese DIO-

prone rats could possibly contribute to the persistence of obesity [326]. Park et al. [327] fed 

rats a palatable obesogenic diet for 7 weeks and demonstrated regionally specific changes 

in binding to at 5-HT1A, 5-HT1B and 5-HT2A receptors being overall consistent with reduced 

5-HT release and decreased activity of the 5-HT neurons. The authors suggest that the 

increased binding may contribute to increased appetite in rats presented with highly 

palatable diet. In vivo hypothalamic 5-HT release to a meal is already attenuated after one 

week of feeding a high-fat diet, thus already in a pre-obese state. Continuing feeding for 

another five weeks led to total abolishment of meal-stimulated hypothalamic 5-HT release 

[328]. Dietary changes in hypothalamic functioning can obviously occur before the actual 

onset of obesity.  

Alterations in brain 5-HT should also be expected in experimental situations where 

malnutrition occurs. Tumour bearing rats are used as model of cancer anorexia. These rats 

show a reduced food intake and upon offering food, and their in-vivo 5-HT release in the 

VMN of the hypothalamus rose and peaked significantly earlier in tumour bearing rats than in 

controls. This would be indicative of an earlier occurrence of satiety in these rats. After 
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surgical removal of the tumour, 24 h food intake had increased to the level of controls and  

VMN microdialysis showed that 5-HT was normal at baseline, as well as during and after 

eating [329, 330].  

 

9. Serotonin and the pharmacotherapy of obesity 

Over the last four decades or so a number of brain mechanisms have been identified that 

are involved in the control of food intake and satiety [331]. Regarding the recent obesity 

epidemic, attempts have been made to identify some of these mechanisms as targets for 

anti-obesity drugs [332-337]. The development of anti-obesity drugs is a complex process, 

last not least due to interactions between satiety systems, the plasticity of satiety systems 

and the resulting lack of an ‘easy’ target. The clinical use of anti-obesity drugs and the recent 

trends in the development of anti-obesity drugs has been subject of many reviews [332, 336-

338] which give also consideration to serotonergic anti-obesity drugs. There are many drugs 

in different stages of clinical testing, and obviously not all of them recruit the brain 5-HT 

system for their action. Considering the structural diversity of satiety mechanisms, it is 

noteworthy that except from the peripherally acting lipase inhibitor orlistat all the other 

compounds have a, at least primarily, central site of actions. This includes d-fenfluramine 

and sibutramine; both were withdrawn due to cardio-vascular side effects [337]. A likely 

cause of fenfluramine-induced valvulopathy is activation of 5-HT2B receptors on heart 

valves by its metabolite norfenfluramine [339, 340]. Sibutramine is a 5-HT and noradrenaline 

re-uptake inhibitor, very similar to some antidepressant drugs. The potential cardiovascular 

risk of this compound is probably largely related to its adrenergic properties. The anti-obesity 

effects of sibutramine, however, are due to its effect on the serotonergic system, but alpha- 

and beta-adrenoreceptors are also involved [341, 342]. Assuming that only a modest weight 

loss will be achieved in many patients following a long period of taking the drug, safety 

becomes the most important issue for anti-obesity drugs. One consequence for optimisation 

of drug development would therefore be to increase pharmacological selectivity and thus 

potentially minimise side effects. Regarding 5-HT, one possible way out would be to target 5-

HT receptors involved in the regulation of satiety that are predominantly expressed in the 

brain. The 5-HT1B receptor is a less likely target, as this receptor is also located on vascular 

tissues [343], hence causing potentially vascular side effects. Based on experimental and 

human studies, the 5-HT2C receptor has been identified as a possible target for anti-obesity 

drugs [338]. Indeed, the 5-HT2C agonist lorcaserin (APD356) has been identified in rodents 

and humans to reduce food intake [344, 345]. Lorcaserin has relatively few side effects (but 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

27 

 

could be carcinogenic in rats) and has been approved in 2012 by the FDA for long term 

treatment of obesity [60, 346].   

In the light of multiple actions of 5-HT2C ligands in the brain [347] it is somewhat surprising 

that relatively little experimental data is available which could highlight potential behavioural 

side effects in humans. Published evidence for behavioural specificity is missing also for 

lorcaserin [348], although this is also true for many other compounds still undergoing clinical 

testing [298]. In this context it may be worth considering that translational medicine of 

disease/obesity between phase 1 and phase 2 of clinical trials could provide early inside in 

efficacy and safety in humans [349]. Such a translational approach using the 5-HT2C/1B 

agonist mCPP has recently been exemplified in humans [350]. 

As shown throughout this review, among 5-HT receptor subtypes, the 5-HT2C receptor is 

predominantly involved in mediating satiety. This receptor undergoes mRNA editing that 

alters the amino-acid coding potential of the predicted second intracellular loop of the 

receptor and can lead to a 10-15-fold reduction in the efficacy of the interaction between 

receptors and their G proteins [351, 352]. The extent of editing does not only depend on the 

medication but also the pathophysiology of the disease [353]. In ob/ob mice, an increase in 

full-length 5-HT2C receptor expression, depending on time of day, as well as differences in 

5-HT2C receptor editing were found, independent of changes in total 5-HT2C receptor 

mRNA expression [266]. These findings should potentially be considered when experimental 

data are applied to obese patients, but also when experimental studies using different 

models of obesity are compared. Finally this could possibly open up a way to a more 

customised pharmacotherapy.  

Another approach to 5-HT2C receptor pharmacology in the context of obesity could arise 

from the dimerization of this G-protein coupled receptor as demonstrated with the ghrelin 

receptor [199, 354]. Although this concept of warrants further research, dimerization of the 5-

HT2C receptor increases the pharmacological diversity of this receptor and thus the 

development of new drugs.   

Among the other 5-HT receptor subtypes, 5-HT6 antagonists are undergoing clinical testing 

at present. 5-HT6 receptor antagonists are well tolerated but, despite their satiating effects in 

rodents, are largely tested towards other indications which include dementia [335].  

Considering the multiplicity of satiety mechanisms, one could envisage the combination of 

drugs in a way that they could act in concert to promote satiety, or using single molecules 

that are targeting different mechanisms. The latter was initially assumed for sibutramine 
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where increased sympathetic activity was hoped to increase energy expenditure. However, 

the increased noradrenergic activity had also the potential to cause cardiovascular damage. 

Fenfluramine has been combined with amphetamine analogue phentermine in the past and 

the recently approved combination of the antiepileptic topiramate and phentermine (Qsymia, 

FDA approved in 2012) is a product of this strategy. Further combinations are being clinically 

tested [336]. Recent experimental data, however, suggests that this approach does not 

immediately lead to the expected results. Whereas sibutramine, for example, advanced the 

BSS, thus indicating a satiating effect [355], the combination of sibutramine and the opioid 

antagonist naloxone showed rather infra-additive effects [355]. Combining fenfluramine with 

rimonabant had additive effects on food intake [356], whereas the combination of mCPP and 

naltrexone did not provide any support for a clinically useful combination [81]. In conclusion, 

these findings show that each potential combination requires individual testing. A move from 

a single-target approach to tackling complex neuronal mechanisms of satiety seems to be 

required [357]. 

Another approach to tackle obesity through manipulation of the serotonergic system would 

be to influence the motivation to eat [77, 348], maybe in addition to satiety or even 

independently. In addition to its satiety promoting effects, fenfluramine also reduces the 

motivation to feed [358]. Experimental evidence exists that 5-HT2C agonists do not only 

inhibit food intake, e.g. the consummatory component of feeding behaviour, but also the 

preceding appetitive phase, which is not yet food related [82, 359]. Combining the 5-

HT2C/1B agonist mCPP with the CB1 antagonist/partial agonist rimonabant synergistically 

reduced motivated feeding behaviour in an operant paradigm in mice [360]. Testing mCPP in 

humans provides clear evidence that this 5-HT2C/1B agonist not only promotes satiation 

and satiety, but also suppresses appetite [350]. 

Most of the data so far have been implicitly related to a role of 5-HT in the homeostatic 

control of satiety. However, there is also a hedonic aspect to feeding and hedonic feeding 

will possibly involve dopaminergic mechanisms of reward [152, 361-364]. A functional link 

between hypothalamic energy-control mechanisms and the motivational aspect of feeding 

has been demonstrated by Helm et al. [240]. Injection of either CCK or 5-HT into the PVN 

limits dopamine release in the nucleus accumbens and synergistically activates 

acetylcholine release in the accumbens. Highly palatable foods stimulate dopamine release 

in the nucleus accumbens [365]. The combined actions of 5-HT and CCK in the PVN may 

limit the size of a meal by shifting the animal’s motivational state from approach to avoidance 

of the food, the latter expressed by either increased accumbal acetylcholine, which controls 

dopamine release, or decreased accumbal dopamine [240]. An involvement of the 5-HT2C 
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in brain mechanisms of reward has been suggested [366]. This should be further explored in 

the light of the recent obesity epidemic, as the 5-HT2C receptor could possibly provide a link 

between homeostatic and non-homeostatic (hedonic) eating [165]. Berthoud synthesised 

ideas on the regulation of feeding and satiety and pointed out that food intake follows both 

homeostatic and (‘hedonic’) mechanisms. Both are not independent, and while non-

homeostatic eating is frequently attributed to the neurotransmitter dopamine, 5-HT is largely 

seen as a neurotransmitter within the homeostatic system, interactions between 5-HT and 

dopamine are being discussed, and 5-HT2C receptor agonists generally inhibit reward-

related behaviours [366, 367]. 

5-HT has been characterised not only as a satiety signal but also as a developmental signal 

[368, 369]. The impact of the nutritional environment during early development is a well-

established fact [370-374]. 5-HT could possibly have a twofold role here, as 5-HT synthesis 

depends on tryptophan of nutritional origin, but then the 5-HT satiety system controls feeding 

itself. Intrauterine undernutrition leads to resistance to the hypophagic effect of 

intracerebroventricular 5-HT and dysregulations of hypothalamic 5-HT1B receptor, 5-HT2C 

receptor and 5-HTT protein expression. Adult offspring of such undernourished rats 

developed obesity despite normal habitual food intake suggesting the involvement of further 

satiety and metabolic mechanisms [375]. Nutritional programming by overnutrition has also 

been demonstrated after feeding a Western-style diet to lactating dams. Offspring from these 

rats showed a delayed BSS and a reduced hypothalamic 5-HT turnover although a direct 

causal relationship between the two has not been demonstrated in this study [376]. 

 

10. Serotonin and satiety – What is next? 

Despite the vast amount of data on the involvement of serotonin in the control of food intake, 

serotonergic mechanisms are sometimes somewhat neglected when brain mechanisms of 

satiety are being reviewed [377-379]. This could provoke the question about the importance 

of the serotonergic system in in satiety in comparison to other neural and endocrine factors. 

However, this is rather a rhetorical question, as, based on our current knowledge and 

understanding, it is very unlikely that a particular mechanism could be singled out that rules 

the “satiety system.”  In this context, the fact that a live without (brain) serotonin is possible is 

more likely to stimulate further research than giving a definite answer [380].  It does, 

however, suggest that brain serotonin, at least with regard to satiety, might have a 

modulating function. One could speculate that such a modulating function is required to 

allow adaptations to both internal and external changes. Two lines of research are being 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

30 

 

suggested that could possibly advance our understanding of the role of serotonin and 

satiety. 

Firstly, although the 5-HT receptors that are involved in satiety have been identified, their 

role in hedonic feeding needs further exploration.  5-HT 2C agonists are still a candidate 

here and also for the development of anti-obesity drugs. This has been reviewed before, but 

the future of these compounds depends on their side effects, in particular on the question if 

theses side effects are related to their agonist properties at the 5-HT2C receptor. A new and 

largely unexplored approach to target the 5-HT2C receptor has been reported for tackling 

drug addiction [381]. To minimise side effects, it has been suggested to interfere 

pharmacologically with intracellular receptor dephosphorylation.   5-HT2C receptor activation 

causes intracellular receptor phosphorylation which prevents desensitisation and enhances 

resensitisation [382]. Thus an inhibition of dephosphorylation would be functionally similar to 

extracellular receptor activation. However, it remains to be determined, if such an approach 

can be used to reduce food intake, and most importantly, if this could lead to the 

development of new classes of anti- obesity drugs. In addition, direct intracellular effects in 

the context of insulin secretion have been demonstrated [383], suggesting that intracellular 

5-HT functions in various microenvironments act in concert with the known receptor-

mediated signalling. If such an intracellular “protein serotonylation” [383, 384] is involved in 

brain mechanisms of satiety remains to be investigated though. Together with the 

aforementioned approach to make pharmacological use of receptor dimerization [199], one 

could expect an increasingly diverse approach to interact with 5-HT2C receptors to tackle 

obesity. 

Secondly, as much of the research being reviewed here is driven, either directly or indirectly, 

by the recent obesity epidemic, it is important to acknowledge further developments in this 

area. Evidence has accumulated over the last decades   that the nutritional environment 

during early developmental periods has a significant impact on physiology and 

pathophysiology in adult age [372, 373, 385, 386]. In this context, the aforementioned role of 

5-HT in neural development leads to the question how the developing serotonergic system 

interacts with the early nutritional environment.   Placental 5-HT pathways from maternal 

tryptophan contribute to the fetal programming of the brain. Later in in development, there 

will be a switch to an endogenous brain source of 5-HT [387]. However, as in any case the 

availability of the 5-HT precursor tryptophan depends on dietary supply [388], an impact of 

the early nutritional environment on brain development can be expected [389]. There is 

emerging experimental evidence for a concept of early nutritional programming of 

hypothalamic function [373]. Caloric undernutrition during late gestation led to increased 5-
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HT1A receptor expression in in the VMH and LHA at postnatal day [390].The 5-HT1A 

receptor has been implicated in neural development [369], and in rodents the hypothalamic 

satiety system matures postnatally. Projections from the arcuate nucleus, which plays a role 

in the serotonergic control of feeding, develop during the second week after birth [391]. The 

hypothalamus remains largely immature until postnatal day 21 [373].  Together these 

findings give rise to speculations that the brain 5-HT satiety system could be nutritionally 

programmed. Preliminary evidence for such an assumption comes from experimental 

studies demonstrating that perinatal protein deficiency attenuates the hypophagic effect of 

fenfluramine in the offspring [389]. Longitudinal and mechanistic studies should help to 

identify the critical pre- and postnatal time points when nutritional challenges impact first on 

brain 5-HT development. Such knowledge could contribute to generate an optimal nutritional 

environment during early developmental stages. Such an approach would help to develop 

timed strategies to reduce the risk for eating disorders or obesity in later life as it has already 

been suggested for psychiatric disorders [392, 393]. 

 

11. Conclusions 

In summary, over the last four decades 5-HT has been identified as an important signal for 

satiation and satiety, possibly in concert with other satiety signals. Brain mechanisms of 5-

HT-induced satiety are being identified, showing an emerging understanding as to which 

structures are involved and how brain neurotransmitter functioning relates to these 

structures. The present review could only touch these aspects, but highlighted the 5-HT 

receptor subtypes that are predominantly involved in 5-HT mediated satiety and, therefore, 

provide targets for further developments of more selective appetite suppressant drugs. The 

complex interactions between 5-HT and other endogenous mediators of satiety making 5-HT 

not an ‘easy target’ for the development of anti-obesity drugs, as those interactions enable 

flexible responses and the initiation of compensatory mechanism to respond to nutritional 

challenges. Looking at a picture that comprises not only homeostatic aspects of feeding, but 

also accounts for hedonic aspects and developmental aspects of the 5-HT system does not 

only illustrates the complexity of the topic, but also provides opportunity how to tackle 

associated health issues.  
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