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A B S T R A C T

Differentiation of cancer cells entails the reversion of phenotype from malignant to the original. The conversion
to cell type characteristic for another tissue is named transdifferentiation. Differentiation/transdifferentiation of
malignant cells in high grade tumor mass could serve as a nonaggressive approach that potentially limits tumor
progression and augments chemosensitivity. While this therapeutic strategy is already being used for treatment
of hematological cancers, its feasibility for solid malignancies is still debated. We will presently discuss the
natural compounds that show these properties, with focus on anthraquinones from Aloe vera, Senna, Rheum sp.
and hop derived prenylflavonoids.

1. Introduction

Numerous literature data has correlated the application of chemo or
radiotherapy with progression of advanced cancers. The repopulation
of surviving tumor cells upon radiation and chemotherapy is thought to
represent the cause of treatment failure (Huang et al., 2011). Recently,
Karragianis et al. showed that neoadjuvant chemotherapy elevated the
number of breast cancer metastasis (Karagiannis et al., 2017). Re-
gardless of whether anti-cancer treatments are specific or non-selective,
the main mechanism of their action is shrinkage of tumor mass through
cell death induction. If so, why then standard care treatments are not
capable of permanently limiting advanced cancer progression by simply
killing the malignant cells? One possibility could be that the fact that
the role of apoptotic cell death in cancer treatment is more complex
than a simple dying process. In order to keep the tissue homeostasis,
apoptotic cells deliver numerous signals to organize their removal,
prevent further tissue damage but also for their own replacement
(Chekeni et al., 2010; Lauber et al., 2003; Gude et al., 2008;
Ravichandran, 2011). These signals influence behaviour of other cells
in surrounding tissues and organs. Pattern of signals include exchange
of membrane potential partly by externalization of phosphatydylserine

(PS), release of exocytic vesicles, production of reactive oxygen species,
anti-inflammatory peptides and numerous molecules which act as
mediators of different processes. As suggested by Ravichandran (2011)
and Ryoo and Bergmann (2012), these signals can be scattered into
“find me”, “eat me”, “keep out inflammation” (Ravichandran, 2011;
Ryoo and Bergmann, 2012). The list can be extended with signal named
as “be loyal” to tissue in order to compensate the lost and retain tissue
homeostasis. While “find me”, “eat me”, “keep out inflammation” re-
presents connected cascades of events leading to apoptotic cell clear-
ance, the “be loyal” signal is evoked in initial phase of apoptosis prior to
or even independently of completion of the apoptotic process (Fan and
Bergmann, 2008). Several examples exist indicating that compensatory
proliferation might play a role in the conventional therapeutic failures
in advanced cancers (reviewed in Zimmerman et al., 2013). The better
understanding of the background of the tumor expansion as the con-
sequence of aggressive treatment requires the proper comprehension of
the relation occurring between cell death and proliferation in tumor
tissue. Communication between apoptotic and neighbouring cells is
defined by their phenotype and differentiation level. The term malig-
nant phenotype is often identified as genetic abnormal cell with sus-
tained proliferative capacity. However, several data prove that

https://doi.org/10.1016/j.biotechadv.2018.04.001
Received 7 December 2017; Received in revised form 22 March 2018; Accepted 10 April 2018

⁎ Corresponding author at: Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia, 97, Catania, Italy.
E-mail address: ferdinic@unict.it (F. Nicoletti).

Biotechnology Advances xxx (xxxx) xxx–xxx

0734-9750/ © 2018 Published by Elsevier Inc.

Please cite this article as: Mijatović, S., Biotechnology Advances (2018), https://doi.org/10.1016/j.biotechadv.2018.04.001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Repository of Archived Publications - Institute for Biological Research Sinisa...

https://core.ac.uk/display/162652384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/07349750
https://www.elsevier.com/locate/biotechadv
https://doi.org/10.1016/j.biotechadv.2018.04.001
https://doi.org/10.1016/j.biotechadv.2018.04.001
mailto:ferdinic@unict.it
https://doi.org/10.1016/j.biotechadv.2018.04.001


malignant transformation can follow the opposed route to embry-
ogenesis. In fact, transformed cells undergo the process of dediffer-
entiation passing through different stages that at the end point are fi-
nalized by the establishment of the pluripotent phenotype (Gabbert
et al., 1985; Volinia et al., 2014). For example, in advanced tumor mass,
blastomera like polynuclear giant cells can be observed (Niu et al.,
2017). In parallel, apoptotic cells precede the mitogen signal to stem
cells, but not cells already functionally committed (Kurtova et al.,
2015). Stem cells are unspecified cells able to renew themselves and
develop into more specialized cell types with defined function. Cancer
stem cells are a small population of tumor cells that share the same
features of stem cells and represent the source of all other phenotypes in
heterogeneous tumor mass. Cancer stem cells are less responsive or
fully unresponsive to conventional therapies due to their ability to be in
a state of dormancy allowing them to escape drugs' mediated toxicity
that targets primarily proliferative neoplastic cells. Accordingly, it has
been proposed that better tailored chemotherapeutic protocols should
first aim at the killing of proliferating cells and subsequently differ-
entiate or eliminate the cancer stem cell (Massard et al., 2006). How-
ever, this hypothesis takes into little account cell-cell communication
specifically occurring inside the tumor mass. Since the presence of low
differentiated cells is one of the main features of advanced cancers,
induction of apoptosis under these circumstances may turn into pow-
erful signal for proliferation. Trigger for this might be the death not
only of bulk tumor cells but also vascular endothelial or stromal cells
(Shekhani et al., 2013). In any case, through the activation of effector
caspases, apoptotic cell can deliver the mitogen signal to the neighbour
cells (Fan and Bergmann, 2008; Jäger and Fearnhead, 2012). Caspase 3
is crucial for the delivery of proliferative signal and the degree of its
expression in several cancer types represents an unfavourable prog-
nostic marker (Huang et al., 2011; Hu et al., 2014). These data are in
apparent conflict with the notion that caspase-3 deficiency leads to
apoptosis resistance. Nonetheless, inhibition of caspases sensitized lung
and breast cancers to radiotherapy in vivo (Moretti et al., 2009). It is
known that caspase activation is primarily mediated by binding of
prostaglandin E2 (PGE2) to their receptors on the responder cells
(Huang et al., 2011; Kuhrer et al., 1986) and it is also known that low or
non-differentiated cells described as “stem” express those receptors on
their membrane. Ligation of PGE2 to its receptor results in delivering of
proliferative signal and subsequent division in the neighbouring cells
(Ichim and Tait, 2016) (Fig. 1A). The consequential repopulation may
stimulate the process of tissue regeneration in different physiological,
but also pathological conditions, such as chronic inflammation. As al-
ready stated by Virchow in 1860, the tumor appears like “a wound that
never heals”. This loop can be further amplified by other mediators
produced by the apoptotic cells that in addition to direct caspase 3
dependent proliferative signal delivered to neighbouring pluripotent
cell, can convey proangiogenic factors and recruit immune cells that
may favour tumor progression through release of multiple mitogenic
molecules (Scheme 1B) (Fogarty and Bergmann, 2017). As a con-
sequence, dying cells can promote further dedifferentiation, which in
some circumstances may lead to the presence of giant cells as a terminal
process of phenotype regression (Niu et al., 2017). Moreover, in re-
sponse to apoptotic mediators, epithelial-mesenchymal transition
(EMT) can be triggered (Chaudhry et al., 2014). Subsequently in par-
allel with transition of epithelial to mesenchymal morphology ac-
quirement of stem like properties has been observed (Singh and
Settleman, 2010). For example, EMT promotes cancer stem phenotype
in thyroid cancer leading to tumor progression (Lan et al., 2013).

If the above physio-pharmacological hypothesis is correct how can
one improve efficiency of killing based treatments? One attractive al-
ternative or complementary approach in cancer treatment that has
emerged during the last decades is the induction of differentiation of
tumor cells. Differentiation based therapies are strategies that lead to
maturation of low differentiated cancer cells rendering them less ag-
gressive and more sensitive to conventional treatments (Dela Cruz and

Matushansky, 2012). It has been shown that despite genetic alterations,
malignant cells forced by microenvironmental factors can regain
normal phenotype upon transplantation in blastocysts and become a
part of regular embryonic development (Illmensee, 1978). “Differ-
entiation based therapy” represents a mainstream direction in re-
generative medicine. Protocols on reprogramming or generation of in-
duced pluripotent cells as a source of progenitors for further
reprogramming are primarily focused on genetic manipulations. How-
ever, that has not eliminated the most important point of concern that is
teratomagenesis (Cieślar-Pobuda et al., 2017). Transdifferentiation as a
process of gaining of different phenotype escaping pluripotency may
represent a harmless alternative. However, unpredictable micro-
environmental influence on stability of transdifferentiated phenotype
may persist. The concept of differentiation/transdifferentiation based
therapies in regenerative medicine differs from that used for cancer
treatment since the goal for this latter is the acquirement of a pheno-
type characterized by the loss of proliferative potential. In contrast to
the approach in regenerative medicine, it is not necessary that in cancer
tissue these “differentiated” cells re-establish their function. Most often
the fate of such cells is the state of senescence and sponta theirneous
involution. Even with recently described controversial role of cellular
senescence in response to cancer therapy, in the context of proliferative
response as a net effect of the interplay between apoptotic and non/low
differentiated subpopulation, induction of quiescent phenotype can be
promising (Schosserer et al., 2017).

Here we reviewed the potential of plant-derived compounds as
differentiation inducers, with the focus on anthraquinones from Aloe
vera, Senna, Rheum sp. and hop derived prenylflavonoids. Previously,
we stated that several plant-derived and synthetic compounds promote
the differentiation and/or transdifferentiation of advanced cancers like
glioblastoma or melanoma.

2. Induction of differentiation as approach for cancer treatment

Differentiation therapy for cancer can be defined as a pharmacolo-
gical intervention directed toward the maturation of tumor cells and
loss of the cancer phenotype. On the contrary, traditional che-
motherapy aims at the induction of necrosis or apoptosis in cancer cells.
As a general note, differentiation agents should be less toxic than
chemotherapy. As pointed out by Cruz and Matushansky, cancer dif-
ferentiation can occur as: cancer-directed differentiation, in which the
initial oncogenic pathway is not corrected; cancer-reverted differ-
entiation, aimed at correcting the oncogenic defects in order to restore
the normal cellular differentiation; or cancer-diverted differentiation
(transdifferentiation), in which tumor cells are redirected to alternative
differentiation pathways (2010). By doing so, tumor cells can differ-
entiate toward a different lineage in which the differentiation pathway
is not blocked (Cruz and Matushansky, 2012). The prototypical ex-
ample of differentiation-based therapy is usage of retinoic acid in the
treatment of acute promyelocytic leukemia (APML). All trans-retinoic
acid dampens the PML/RARα (promyelocytic leukemia/retinoic acid
receptor α) fusion protein, responsible for the blockade of myeloid cells
maturation at the promyelocytic stage. It has been reported that 95.8%
of APML patients who received both all trans-retinoic acid (ATRA) and
chemotherapy, underwent remission without showing bone marrow
hypoplasia (Huang et al., 1988). Although most of the studies on dif-
ferentiation therapy focus on hematological tumors, more attention is
recently being paid to the potential role of differentiation therapy in
solid tumors. Up to now, no compound has proved to have a differ-
entiation-inducing effect equivalent to that observed for ATRA in the
setting of APL. This is probably due to the fact that the pathogenesis of
APL relies on a single karyotype defect that may be easier to correct as
compared to multiple defects (Cruz and Matushansky, 2012). On the
contrary, most solid tumors are heterogeneous aberrant tissues and
consequently, a single-targeted pharmacological intervention is likely
to be inadequate to promote their differentiation. In addition, the
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outcome of differentiation based therapy depends on intercellular
communication between cells at different maturation stages, as well as
other mediators like cytokines, chemokines, and reactive oxygen/ni-
trogen species (ROS/RNS) in tumor microenvironment. Accordingly,
some agents may only promote differentiation in certain type of the
cells and under certain biological conditions. Therefore, depending on
the stage of the cell cycle the same agent can induce apoptosis, differ-
entiation/transdifferentiation or senescence (Bulatović et al., 2014;
Mijatovic et al., 2005a). The net effect of the drug treatment can be
defined by the dosage, modality of delivering or regimen. Recently, it
has been shown that a slow releasing formulation of etoposide con-
jugated with dextran, that mimicks metronomic therapy, changes the
mode of action of the drug from apoptotic toward differentiation-re-
lated compound (De Nicola et al., 2017). Drugs or treatment protocols
whose mechanism of action is not solely based on cell killing but rather
includes change of cell phenotype toward more mature one, may pre-
vent unwanted side-effects of proliferative responses. Increasing evi-
dence indicates that induction of differentiation of solid tumor- derived
cell lines is possible in vitro. However, clinical data are still sporadic.
One of the first examples has been seen in in few patients with high

grade lyposarcoma treated with the peroxisome proliferator-activated
receptor-γ (PPARγ) ligand, troglitazone. This treatment decreased the
proliferative potential of malignant cells leading to intensive accumu-
lation of lipids inside cytoplasm, thus indicating that the treatment had
induced a process of cellular maturation (Demetri et al., 1999). Also,
the antitumor drug from Caribbean tunicate Ecteinascidia turbinata,
trabectedin, changed the structure of tumor tissue in patients with
myxoid liposarcomas, reducing their potential to divide and promoting
subsequent shrinkage of the tumor mass (Grosso et al., 2007). This
produced a long lasting effect in 17 out of 23 patients. In one additional
case, the administration of histone deacetilase inhibitor, depsipeptide,
to patients with recurrent non-medullary thyroid cancer, has re-
constructed radiotherapy sensitivity (Sherman et al., 2009).

3. Plant-derived compounds as chemotherapeutics

Several plant-derived compounds are currently used as first and
second line chemotherapeutics in cancer, e.g. paclitaxel, vincristine,
etoposide and irinotecan. These drugs are characterized by different
mechanisms of action, that include interaction with microtubules

Fig. 1. Induction of apoptosis stimulates tumor repopulation. A). Tumor is a mass of heterogeneous cellular populations at different stages of differentiation and
phenotypes. All actors might have the same ancestor and possess phenotypical plasticity. Induction of cell death in tumor mass will trigger the proliferation of cancer
stem cells regarding to caspase 3 mediated synthesis of PGE2. B) Apoptotic cells stimulated tumor repopulation in long-lasting manner through: production of
vascular endothelial growth factor (VEGF) promoting angiogenesis and stimulating AIP; production of extracellular ROS and inversion of PS leading to the re-
cruitment of protumor immune cells which became main source of tumor mitogens; promoting further dedifferentiation; promoting EMT.
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(Vinca alkaloids and taxanes), inhibition of topoisomerases (camp-
tothecins and epipodophyllotoxins), and cell cycle interference (re-
viewed in Nobili et al., 2009).

Taxanes, that include paclitaxel and docetaxel, are a class of di-
terpens that exerts anticancer activity by promoting the stabilization of
microtubules and the prevention from depolymerisation. Paclitaxel,
originally extracted from the plant Taxus brevifolia, is now obtained by a
semisynthetic process, as docetaxel, starting from the 10-deace-
tylbaccatin III of the tree, Taxus baccata. Paclitaxel and docetaxel are
poorly water-soluble and, therefore, they need to be administered in
formulations that include polyoxyethylated nonionic surfactants, that
may cause several adverse effects. Taxanes bind to the beta subunits of
tubulin within the microtubular lumen, differently from colchicine and
vinblastine, that instead interact with the microtubules at the interface
between the α- and β-tubulin dimers and surrounding the GTP binding
site, respectively. Paclitaxel is more effective at the G2-M phase, by
targeting the mitotic spindle, while docetaxel exert its maximum cy-
totoxic effect during the S phase of the cell cycle, affecting centrosome
organization. Paclitaxel and docetaxel are highly effective against a
wide variety of tumors, including solid (breast, ovarian and non-small
cell lung cancer) and hematological cancers. In order to overcome the
problems in drug delivery and resistance to taxans, novel molecules and
formulations have been developed. Among them, cabazitaxel has been
approved in 2010 by FDA for the treatment of hormone-refractory
prostate cancer, while Paclitaxel poliglumex and EndoTAG+paclitaxel
represent formulations that do not involve cremophor, and that are
being currently tested in various types of cancer (Muggia and
Kudlowitz, 2014; Stanton et al., 2011).

Differently from taxans, vinca alkaloids, that are isolated from the
plant Catharanthus roseus (a.k.a. Vinca rosea), bind to alpha-tubulin,
blocking its polymerization with beta-tubulin, and disrupting the as-
sembly of the mitotic spindle. At the ends of each microtubule, there are
16 to 17 high-affinity binding sites for vinca alkaloids. Vinca alkaloids
share a dimeric chemical structure composed of two multi-ringed units,
a terpene indole alkaloid (catharanthine), and the monoterpenoid in-
dole alkaloid, vindoline. Vincristine, vinblastine and vindesine re-
present the first vinca alkaloids with proved anti-cancer action, while
Vinorelbine represent the first second-generation vinca alkaloid.
Vincristine is used in lymphomas, pediatric tumors, neuroblastoma, and
rhabdomyosarcoma, as well as in CLL, sarcomas, and small-cell lung
carcinoma, as combination therapy. Vinblastine is used in combination
with cisplatin, and bleomycin (PVB regimen) in testicular carcinoma or
in combination with doxorubicin, bleomycin, and dacarbazine (ABVD
regimen) for the treatment of lymphomas. Vinorelbine has been ap-
proved for the treatment of unresectable non-small-cell lung cancer,
and can be used in metastatic breast cancer. Vindesine has been used in
ALL, melanoma, solid tumors of the childhood and metastatic renal,
breast, esophageal and colorectal cancer. Vinflunine, the first fluori-
nated vinca alkaloid derivative, has been approved as second-line
therapy for cell carcinoma of the urothelium (reviewed by Moudi et al.,
2013).

Among plant-derived compounds, camptothecins and epipodo-
phyllotoxins, have been found to inhibit a specialized class of nuclear
enzymes, known as topoisomerases. Catalytic functions of topoisome-
rases include transient cleavage of DNA strands, DNA revolving and
ligation of cut strands. Topoisomerases are classified as type I and II.
Type I topoisomerases cleave single DNA strand, while type II cleave
both strands. The semisynthetic camptothecins, irinotecan and topo-
tecan, analogues of the camptothecins extracted from Camptotheca
acuminate, act as topoisomerase I inhibitors, therefore preventing su-
percoiled DNA to relax and to allow gene expression or repair, while the
plant-derived epipodophyllotoxins (etoposide and teniposide) act as
inhibitors of topoisomerase II, a nuclear enzyme that promotes chro-
mosome disentanglement. Camptothecins share a pentacyclic ring
structure, with a pyrrolo[3,4-β]-quinoline moiety, conjugated pyridone
moiety and one chiral center at position 20 within the lactone ring. In

association to 5-fluorouracil, irinotecan is currently used for the treat-
ment of metastatic colorectal tumors. Topotecan is indicated in second-
line therapy against advanced ovarian carcinoma. Besides irinotecan
and topotecan, other synthetic camptotechin are currently under de-
velopment, such as lurtotecan, karenitecin and gimatecan (Nobili et al.,
2009). The epipodophyllotoxins, etoposide and teniposide, derivatives
of podophyllotoxins extracted from the root of the plant, Podophyllum
peltatum, form a ternary complex with topoisomerase II and DNA, thus
preventing the resealing of the DNA break. Hence, the topoisomerase II-
DNA intermediate cannot be reversed, leading to cell death. Teniposide
and etoposide are both 4-dimethyl-epipodophyllotoxins that differ only
for the substitution of a methyl group with a thenylidene ring. The
clinical indications for etoposide are lung cancer, choriocarcinoma,
ovarian and testis cancers, lymphoma and acute myeloid leukemia.
Teniposide is approved for brain tumors, lymphomas and bladder
cancer (Nobili et al., 2009).

Other plant-derived molecules have been approved for use as anti-
cancer chemotherapeutics or are under investigation, on the basis of
their ability to affect cell cycle progression. Notably, homo-
harringtonine, an alkaloid isolated from the tree Cephalotaxus harring-
tonia, inhibits protein synthesis by acting on the ribosomes of cancer
cells, thus blocking the progression of cells from G1 to S phase and from
G2 to M phase. Homoharringtonine is now approved for the treatment
for patients with chronic myeloid leukemia, resistant to tyrosine kinase
inhibitors (Zhou et al., 1995). Flavopiridol, a semisynthetic flavone
derived from rohitukine, an alkaloid isolated from Dysoxylum bi-
nectariferum, is the first potent inhibitor of cyclin-dependent kinases to
enter clinical trial and is currently being tested for the treatment of
acute myeloid leukemia (Shapiro, 2004), and for advanced solid tu-
mors, in association to docetaxel (ClinicalTrials.gov identifier:
NCT00331682), cisplatin (ClinicalTrials.gov identifier: NCT00083122)
and vorinostat (ClinicalTrials.gov identifier: NCT00324480).

4. Naturally occurring compounds as differentiation inducing
agents for hematological tumors

A number of molecules that promote the differentiation of leukemia
cell have been described (Table 1). Gupta et al. showed that securine
promotes cell differentiation in vitro in several AML cell lines and pri-
mary cancer cells. Securine treatment was found to induce myelomo-
nocytic differentiation and monocytic differentiation in HL60 cells, as
determined by the upregulation of CD11b and CD14, respectively.
Microarray analysis showed that securine modulates the expression of
several genes, such as c-myc and CEBP/β, underlying AML pathogen-
esis. Along the same lines, the authors showed that securine treatment
increases by ~7-fold the expression of CD11b in THP1 cells (Gupta
et al., 2011).

The isosteroidal alkaloid verticinone from the bulbs of Fritillaria
usuriensis Maxim, used traditionally for its anti-inflammatory properties
(Wu et al., 2010), was shown to induce CD11b upregulation in mye-
loblastic leukemia HL60 cells, indicating a differentiation toward the
granulocyte phenotype.

The isoquinoline alkaloid berberine, extracted from the plant
Berberis vulgaris L., administered to mice bearing the WEHI-3 leukemia
cells, was able to significantly reduce the percentage of cells expressing
the CD11b and Mac-3 surface markers and to promote B-cell differ-
entiation, as determined by the induction of CD19 expression (Yu et al.,
2007).

The flavonoid wogonine from Scutellaria baicalensis Georgi has been
reported to significantly increase the expression of CD11b, but not
CD14, in U937 cells, suggesting its ability to promote myeloid differ-
entiation (Baumann et al., 2008; Zhang et al., 2008). Also, wogonine
promoted erythroid differentiation in CML cells K562 cells, as de-
termined by the increased expression of glycophorin A and CD71 and
by the induction GATA-1, a transcription factor involved in mega-
kariocytes and erythrocytes development (Yang et al., 2014a, 2014b).
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Erythroid differentiation of K562 cells has been also shown to be
induced by aclacinomycin A from Streptomyces galilaeus and doxor-
ubicin from Streptomyces peucetius (Morceau et al., 1996; Trentesaux
et al., 1993). Among plant-derived compounds that have been found to
induce erithroid differentiation in vitro in K562 cells, upon upregulation
of GATA-1, the benzophenanthridine alkaloid, fagaronine, from the
plant Zanthoxylum zanthoxyloide, and apigetrin, extracted from dande-
lion coffee, should also be mentioned (Tsolmon et al., 2011; Dupont
et al., 2005).

Iriyama and collaborators have investigated the effects of ATRA and
valproic acid (VPA) on the human acute promyelocytic leukemia cell
line, NB4, bearing the t(15;17) translocation. VPA is a derivative of the
valeric acid extracted from Valeriana officinalis L., which has been de-
scribed to exert multiple biological effects, including inhibition of his-
tone deacetylase, protein kinase C and WNT activity, as well as the
activation the peroxisome proliferator-activated receptors and of the
ERK-AP1 pathway (Iriyama et al., 2014). Both ATRA and VPA were
able to induce differentiation of the NB4 cells and their effect was
improved when administered concomitantly. The restoration of the
granulocytic phenotype was associated to an increase in the levels of
the transcription factors, C/EBP(β, ε) and PU1.

5. Natural compounds as differentiation inducing agents for solid
tumors

Cell lines where a phenotypic transformation can be triggered in-
clude melanoma, pancreatic cancer, glioma, lung cancer, retino-
blastoma, breast cancer, colon cancer, pheochromocytoma, lipo-
sarcoma and neuroblastoma (Guzhova et al., 2001; Ebert and Salcman,

1994; Vaudry et al., 2002; Fassina et al., 1997; Hartmann et al., 1997;
El-Metwally and Adrian, 1999; Levy et al., 2003; Gaschott and Stein,
2003; Bartolini et al., 2004; Athanasiadis et al., 1995; Chang and Szabo,
2000; Demetri et al., 1999) (Table 1).

It has been demonstrated that numerous synthetic and naturally
occurring compounds are able to prompt the differentiation of various
malignant cells (Fig. 2) (Bulatović et al., 2014; Maksimovic-Ivanic
et al., 2017; Maksimovic-Ivanic et al., 2009; Mijatovic et al., 2005a,b;
Radovic et al., 2012). Diterpene extracted from Coleus forskohlii, known
as forskolin, differentiate somatic cell hybrid NG108-15 neuro-
blastoma/glioma cells through upregulation of cAMP (Ammer and
Schulz, 1997; Brodsky et al., 1998; Kim et al., 2004; Takanaga et al.,
2004). In rat astrocytoma cells, C6 cells, forskolin enhanced the pre-
sence of GFAP regarding to maintaining of cyclin D1 at low expression
level. The treatment of C6 cells with plant-derived compounds isolated
from Bupleurum species, triterpenoid compounds, saicosaponins, or
anthraquinone, aloe emodin, induced their commitment to astrocytic
lineage (Mijatovic et al., 2005a,b; Tsai et al., 2002). As regards the
impressive plasticity of gliomas, in addition to their possible astrocyte
commitment, it should be mentioned that in certain conditions C6 cells
can be conducted toward oligodendrocytes or neurons. It is possible to
promote neural differentiation of C6 cells using commercial cytostatic
drug taxol, isolated from Taxus brevifolia, which resulted in mixed
phenotype appearance where some of the cells bearing oligoden-
drocytic, neuronal and astrocytic markers (Chao et al., 2015). Since
glioma and melanoma cells are derived from the same neuroectodermal
origin, the agents found to be efficient in the differentiation of gliomas
were also found to be effective inducers of melanoma maturation.
Treatment with saicosaponins differentiates B16 melanoma cells

Table 1
Pro-differentiative properties of plant-derived compounds.

Cell line(s) Compound(s) Effect(s) References

Hematological cancer
Human HL-60, THP-1 and OCI-AML3

leukemic cell lines
Securinine 15 μM Securinine induced potent nitroblue tetrazolium (NBT) activity, increased

CD11b and CD14 expression
Gupta et al., 2011

In HL60, securine treatment regulated the expression of genes involved in
AML differentiation, such as c-myc and c-myb which are downregulated and
CEBP/β, CEBP/δ, egr-1, mafB, fos, and jun that are upregulated

Mouse WEHI-3 leukemia cells injected
i.v. in BALB/c mice

Berberine 200mg/kg Berberine reduced the proportion of cells expression Mac-3 and CD11b and
increased the number of CD19+ cells

Yu et al., 2007

Human NB4 promyelocytic leukemia
cells

Wogonin 50 μM Wogonine increased nitroblue tetrazolium (NBT) activity, increased CD11b
and CD14 expression

Zhang et al., 2008

Human erythroleukemic K562 cells Wogonin 20–80 μM Wogonin dose-dependently increased glycophorin A, CD71 and γ-globin
expression, as well as the expression of the transcription factors, GATA-1 and
FOG-1

Yang et al., 2014a,b

Human chronic leukemia cell line K562 Apigetrin 75 μM Apigetrin induced glycophorin A expression and fetal hemoglobin synthesis Tsolmon et al., 2011
Human erythroleukemic cell line K562 Fagaronine Fagaronine increased the expression such as γ- and α-globin, PBGD, and the

expression of the transcription factors, GATA-1 and NF-E2
Dupont et al., 2005

Solid cancer
Rat glioma cell line C6 Aloe emodin 20 μM Aloe emodin promoted the maturation process toward the astrocytic lineage

by increasing the expression of GFAP. Aloe emodin reduced the reactivity of
C6 cells to the oligodendrocyte-specific O1 marker

Mijatovic et al., 2005a,
2005b

Mouse B16–F10 melanoma cells Aloe emodin 10 μM Aloe emodin induced transglutaminase 2 activity and increases the
intracellular protoporphyrin IX content. Also, Aloe emodin induced
melanogenesis and dendrite formation

Tabolacci et al., 2010

Mouse B16 melanoma cells Aloe emodin 40 μM Aloe emodin increased the expression of melanin and tyrosinase activity Radovic et al., 2012
Human colorectal cancer cells, SW480

and SW620
Emodin 50 μM Emodin induced alkaline phosphatase activity in SW620 cells and increased E-

cadherin expression in both cell lines
Pooja and Karunagaran,
2014

Human breast adenocarcinoma, MDA-
MB453 cells

Emodin 40 μM Emodin induced the production of lipid droplets Zhang et al., 1995

Mouse melanoma B16 cells Isoxanthohumol 23 μM Isoxanthohumol increased tyrosinase activity Krajnović et al., 2016
Primary and metastatic human

melanoma cells
Mezerein Mezerein increasedn mda-6 expression Jiang et al., 1995

Rat C6 glioma cell line Taxol 100 nM Taxol increased the percentages of nestin, βIII-tubulin, GFAP, and CNPase-
positive cells

Chao et al., 2015

Rat C6 glioma cell line Saikosaponins 0.1 to
100 μg/mL

Saikosaponin a increased enzymatic activities of glutamine synthetase (GS)
and 2′,3′-cyclic nucleotide 3′-phosphohydrolase (CNP). Saikosaponin d only
increased of GS activity

Tsai et al., 2002

Mouse B16 melanoma cells Saikosaponin b2 5 μM Saikosaponin b2 increased expression tyrosinase Zong et al., 1998
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toward melanocytes in vitro (Zong et al., 1998). This effect can be
prevented by PKC activator phorbol ester, indicating the essential role
of abrogated PKC function in observed effect. Forskolin induced dif-
ferentiation of UISO-Mel-6 cells through increased expression of mi-
crophtalmia transcription factor, since it is known that this plant-de-
rived compound is an alpha-melanocyte stimulating hormone agonist
(Lekmine and Salti, 2008). Similarly, the antileukemic drug, mezerein,
a diterpene ester present in the juice of Daphne mezereum, caused the
maturation of melanoma phenotype, characterized by altered mor-
phology, and upregulation of melanogenesis (Jiang et al., 1995). Un-
fortunately, cell differentiation triggered by many experimental agents
results in transitory changes in phenotype, dependent on the presence
of the therapeutic in the culture. In vitro and in vivo data have also
shown that VPA is able to promote differentiation in the neuroblastoma
cell lines, UKF-NB-2 and UKF-NB-3, as determined by upregulation of
the neural cell adhesion molecule, NCAM, and elongation of neuronal
processes (Blaheta and Cinatl Jr, 2002). In addition to highly invasive
forms of tumors such as glioma, glioblastoma and melanoma, there is a
long list of different malignant pathologies prone to differentiation
since they are characterized as anaplastic. Thus, it has been reported
that the histone deacetylase inhibitor, trichostatin A, induces significant
changes in the morphology of the small cell lung carcinoma cell line,
DMS53, which acquires a flattened round shape with neuritis-like
processes that suggests a neural differentiation (Platta et al., 2007).
Also, treatment with another histone deacetylase inhibitor, vorinostat,
determined major morphological changes in MCF7 breast cancer cells,
indicative for epithelial mammary differentiation (Munster et al.,
2001). Other examples of differentiation–inducing agents come from
Rephaeli and collaborators, who have observed that administration of
AN-7, a prodrug of butyric acid, to mice bearing the 22Rv1 prostate
tumor, increases the expression of PSA by 15-fold in the cancer cells as
compared to the control, suggesting cellular differentiation (Rephaeli
et al., 2005). Finally, in an in vivo model of chondrosarcoma, depsi-
peptide (FK228) treatment was associated to an increase in alkaline
phosphatase expression and a decrease in glycosaminoglycans produc-
tion, suggesting an on-going differentiation process toward a chon-
drocytic-like phenotype (Sakimura et al., 2007). One more example
comes from the observation that the differentiation of nasopharyngeal
carcinoma cells is disrupted due to a downregulated expression of IkB
kinase α (IKKα). IKKα is an ubiquitous helix-loop-helix kinase involved
in the activation of the nuclear factor-kB (NF-kB) transcription factor,
but it also controls the differentiation of keratinocytes by an indirect
regulation of Myc. Indeed, IKKα - KO mice are characterized by un-
differentiated and thickened epidermis, with keratinocytes lacking the
physiological differentiation markers (Liu et al., 2008). Further

investigations revealed that the methylation of the H3K27 histone at
the IKKα promoter is responsible for the downregulation of IKKα and
that retinoic acid is able to restore the normal H3K27 methylation
pattern, thus increasing the differentiation of nasopharyngeal carci-
noma cells (Yan et al., 2014).

6. Hydroxianthraquinones from Aloe vera as differentiation
inducing agent for solid tumors

Aloe emodin and emodin are antraquinones extracted from leaves,
roots or barks of numerous plants used in Chinese traditional medicine
(Fig. 3) (Dong et al., 2016; Srinivas et al., 2007). Aloe emodin (AE) and
emodin (EO), own pleiotropic biological activities like antimicrobial,
laxative, diuretic, vasodilator, immunosuppressive, anti-inflammatory
and antitumor (Shrimali et al., 2013). The effectiveness of these com-
pounds in such a variety of different pathologies is suggestive of their
influence on several signaling pathways involved in proliferation, dif-
ferentiation or death (Shrimali et al., 2013; Liu et al., 2015). It was
shown that both EO and AE induced apoptosis, autophagic cell death or
cell cycle arrest in numerous tumor cell lines in vitro (Lin et al., 2016;
Liu et al., 2015; Chang et al., 2011; Chun-Guang et al., 2010; Radovic
et al., 2012; Harhaji et al., 2007; Mijatovic et al., 2005a; Mijatovic
et al., 2004; Mijatovic et al., 2005b). However, in vivo data are modest,
probably due to poor solubility, stability and rapid inactivation by
CytP450 (Chen et al., 2015; Teng et al., 2012; Mueller et al., 1998).
Also, the capability to interact with DNA resulted in genotoxicity in vitro
(Srinivas et al., 2007). On the other hand, genotoxicity was not ob-
served in healthy animals exposed to high dose of AE (Heidemann et al.,
1996). Pecere et al. published in 2000 that Aloe emodin induced re-
gression of neuroectodermal tumors in xenograft model without acute
and chronic toxicity (Pecere et al., 2000). Further research revealed
that AE strongly changed the morphology of cancer cells. Morpholo-
gical transformation due to the treatment was accompanied with ele-
vated GFAP expression. This effect coincides with the ERK1/2

Fig. 2. Differentiation of cancer cells using experimental therapeutics of plant-derived origin *incomplete differentiation.

Fig. 3. Chemical structure.
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inhibition. The importance of down regulated expression of ERK1/2 in
enhanced GFAP quantity was proved by simulating it with specific in-
hibitor PD98059 (Mijatovic et al., 2005a). However, the abrogation of
ERK1/2 is not the general consequence of AE treatment, since in other
cell types the same compound up-regulated its activity (Mijatovic et al.,
2005b; Radovic et al., 2012). Cultivation of B16 melanoma cells in the
presence of AE led to proliferative potential waste while the mor-
phology of treated cells was characterized by appearances of dendritic-
like prolongation and flattening of the cell body. The morphological
changes were simultaneous with strong potentiation of tyrosinase ac-
tivity, as well as melanin production, indicating that cells acquired the
phenotype resembling mature melanocytes. Upregulation of p53, cyclin
D and ERK1/2 expression reflected AE influence at intracellular level.
The most important observation is that differentiation of B16 cells
under AE is persistent as the so-treated cells lost tumorigenic potential
in syngeneic mouse model (Radovic et al., 2012). Tabalocci et al.
showed that AE was efficient in similar manner in metastatic clone of
B16-F10 cells changing their metastatic properties such as cell adhesion
and aggregation (Tabolacci et al., 2010). Apart from mentioned ex-
amples of glioma and melanoma differentiation it is found that these
anthraquinones are able to differentiate other types of tumors, like
breast, colon and cervical cancer (Pooja and Karunagaran, 2014; Luo
et al., 2014; Guo et al., 2007; Zhang et al., 1995).

7. Hop derived penylflavonoids as differentiation inducing agents
for solid tumors

Prenylflavonoids belongs to a class of compounds, known as flavo-
noids. These molecules are broadly distributed in the world of herbs.
Prenylflavonoides are phytoestrogens and antioxidants, but in last few
decades their antitumor potential has been frequently explored (Rossi
et al., 2014; Gerhäuser, 2005). Since they are used as beer ingredients,
their biological activity is deeply studied. A hop, the basic constituent

for beer preparation, is a rich source of prenylflavonoids: xanthohumol
(XN), isoxanthohumol (IXN) and 8-prenylnaringenin (8-PN)
(Gerhäuser, 2005). Besides, the plant Sophora flavescens, used in tradi-
tional Chinese medicine, is also abundant in IXN (Jin et al., 2010). All
hop-derived prenylflavonoids are proved phytoestrogens, antioxidants,
antiinfective, antiinflammatory, antiangiogenic and anticancer agents
(Rossi et al., 2014; Gerhäuser, 2005; Żołnierczyk et al., 2015). The list
of the cell lines sensitive to those compounds is long and includes dif-
ferent tumor types like breast, melanoma, ovarian, colon, and prostate
(Rossi et al., 2014; Gerhäuser, 2005; Żołnierczyk et al., 2015; Krajnović
et al., 2016; Negrão et al., 2013; Tronina et al., 2013; Allsopp et al.,
2013; Serwe et al., 2012; Yang et al., 2007; Delmulle et al., 2008). So
far, few groups showed the favourable effect of XN in vivo in different
models in prostate, leukemia, breast, and T cell lymphoma models
(Monteiro et al., 2008; Venè et al., 2012; Benelli et al., 2012). As far as
we know, IXN (Fig. 3) has been shown to suppress the melanoma
growth in subcutaneous model in C57Bl/6 mice concomitantly to sub-
toxic dose of paclitaxel (Krajnović et al., 2016). In some experimental
settings, those compounds induced blockade in cell cycle progression
while in other circumstances apoptotic cell death appears as the con-
sequence of the treatment. This effect is probably secondary to the re-
duced expression of antiapoptotic proteins like BCL2, BCLXL, survivin,
xIAP, cIAP which can further influence sensitivity of malignant cells to
chemotherapy (Gerhäuser, 2005; Żołnierczyk et al., 2015;
Kunnimalaiyaan et al., 2015a; Kunnimalaiyaan et al., 2015b). Also,
caspase independent cell death resembling autophagic cell death can be
behind their activity (Delmulle et al., 2008; Krajnović et al., 2016).
Down regulation of inflammatory and angiogenic mediators makes
these compounds a powerful tool against tumor progression and me-
tastasis (Negrão et al., 2013; Serwe et al., 2012). XN and IXN are in-
hibitors of efflux transporters like MDR proteins and also CYP450s,
influencing the efficacy of applied therapy. Potential of XN and IXN to
differentiate colon cancer cells was showed in HT29 and SW620

Fig. 4. Signaling pathways in the route of differentiation: potential targets of herbal compounds.
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(Żołnierczyk et al., 2015; Allsopp et al., 2013). Concordantly, we re-
ported that IXN decreased proliferative potential of B16 mouse mela-
noma and A375 human melanoma that belongs to the resistant iNOS
positive melanoma (Krajnović et al., 2016). Both type of melanoma
cells exposed to IXN acquired different morphology as compared to
their precursor cells, in term of size and shape. However, the enhanced
tyrosinase activity, enzyme crucial to the synthesis of melanin, was not
accompanied with elevated melanin content, indicating an aberrant
differentiation into melanocyte lineage in B16 cells. This was attributed
to ROS scavenging potential of the drug. Accordingly, numerous data
confirmed the importance of ROS in completing melanin synthesis,
which can be prevented by endogenous or exogenous antioxidants.
Altogether, these properties qualify this group of compounds as po-
tential therapeutics for aggressive malignancies. It has also been ob-
served that IXN treatment is able to suppress the phosphorylation of
p70 S6 kinase and its target, S6 protein, were suppressed. Given the role
of p70 S6 kinase in protein synthesis, rearrangement of cytoskeleton,
cell survival and proliferation, this is probably connected with the
differentiation inducing property of the IXN (Pearce et al., 2010)
(Fig. 4).

8. Naturally occurring compounds in STEM cell differentiation

The tumor has the features of multicellular unit composed of diverse
cells, endowed with functional autonomy. Concerning continuous dy-
namic in phenotype changes, cancer can be described as a disease of
reprogramming and differentiation (Huang et al., 2015). Since differ-
entiated cells can dedifferentiate into cancer stem cells or cancer stem-
like cells, the vice versa is also possible. That establishes the platform for
cancer treatment, considering that tumor is not a group of random non-
orchestrated cells but rather multicellular entity which functions at
highly organised level even with disrupted morphology. It is well de-
scribed that therapeutic failure in advanced malignancies is connected
with the presence of stem cells that, owing to dormant state, don't re-
spond in similar way as proliferating bulk cells (Massard et al., 2006).
However, as we have previously mentioned, the death of cells induced
by chemo- or radiotherapy in the neighbouring or bystander cells
triggers their proliferation, making the frame for tumor progression
(Fogarty and Bergmann, 2017). To prevent the undesirable effect of
killing based therapy, induction of differentiation can be alternatively
or complementarily considered. Synergistic effects of differentiating
agents and chemotherapeutic agents have been described through this
review. In recent years, a lot of examples in literature describing the
potential of naturally occurring compounds to conduct cancer stem
cells toward more differentiated phenotype appeared (Murakami and
Tashiro, 2015). We will mention just few of them. Studies on glio-
blastoma multiforme (GBM) and breast cancer have demonstrated the
ability of ATRA to induce the differentiation of cancer stem cells. In
particular, treatment with 10 μM ATRA of GBM neurospheres reduced
the percentage of cell expressing the neuronal stem cell marker, nestin,
and increased the number of cells expressing the astrocytic marker,
GFAP, and the neural marker, TUJ1 (Karsy et al., 2010). Also, Yan et al.
(2016) found that treatment of MCF7/C6 breast cancer cells with 10 μM
ATRA for 72 h was associated to a significant reduction in CD44+/
CD24−/low and NANOG-positive cells, while concomitantly increasing
the expression of the maturation markers, syndecan 3 and involucrin. It
has been found that emodin inhibited self-renewal of glioma stem cells
in vitro as well as maintenance of stemness through suppression of one
of the main signals for stem-persistence, Notch. Additionally, nonpho-
sphorylated β-catenin, as well as phosphorylated STAT-3, was also af-
fected. Anti-stem feature of emodin is probably connected with its
ability to promote proteasome degradation of EGF receptor (Kim et al.,
2015). A similar effect was observed in gallbladder carcinoma stem like
population where emodin suppressed ATP- binding cassette protein,
ABCBG2 and eliminated sphere formation through ROS related me-
chanism (Li et al., 2013). Through the same mechanism, emodin

downregulated Wnt signals in colon cancer cells, resulting in down-
stream matrix metalloproteinases 2 and 9 expressions (Pooja and
Karunagaran, 2014). Aloe emodin also exerted antimetastatic proper-
ties by downregulating cancer stem phenotype and inhibiting EMT, e.g.
in HER-2-overexpressed breast cancer xenograft model (Ma et al.,
2016). Another biological active substance isolated from hop, xanto-
humol, can influence stemness in chemotherapy resistant MCF-7/ADR
cells. Reduced stemness was manifested through decreased colony
formation, migration, sphere formation, as well as abrogated expression
of stemness related biomarkers (Liu et al., 2016). In hepatocellular
carcinoma treatment with this compound resulted in Notch signaling
pathway inhibition, evidenced by declined expression of Notch 1 and
HES1 proteins (Kunnimalaiyaan et al., 2015a). Similarly, IXN was
found to block the transdifferentiation of cancer stem cells toward
vascular conduits in vitro and in vivo (Shekhani et al., 2013). On the
other hand, highly aggressive, amelanotic A375 cells showed depriva-
tion of stem markers upon the same treatment (Krajnović et al., 2016).
Downregulation of Wnt/β catenin and Notch 1 signaling pathway,
critical regulators of melanocyte lineage development, as well of the
differentiation marker Oct-3/4, indicated that morphological changes
triggered by IXN, correlate with their lower invasive potential. The
same pattern was noticed for hepatocellular, pancreatic and ovarian
cancers, where XN inhibited Notch 1 signaling (Kunnimalaiyaan et al.,
2015a; Kunnimalaiyaan et al., 2015b; Drenzek et al., 2011).

9. Signaling pathways in differentiation process triggered by
naturally occurring compounds

Taking all the above into account, it emerges that naturally occur-
ring compounds can trigger differentiation process. Conversely to mo-
lecular targeted therapies, where the exact target is single and well
defined, it is usually hard to predict complexity of intracellular response
to naturally occurring compounds. Namely, the activity of different
signaling pathways is simultaneously changed, and it is not clear what
the direct result of the treatment is and what is the consequence.
However, complexity of signals affected by the treatment with naturally
occurring compounds surmounts the limits of molecular targeted
therapies. Several data confirms that plant-derived compounds down-
regulate signals involved in stem phenotype maintenance, but can also
promote maturation through modulation of signals triggered by mi-
croenvironmental factors upon their ligation to membrane receptors
(Murakami and Tashiro, 2015; Jin et al., 2017). The appearance of
signaling pathways involved in stem phenotype maintenance coincides
with the development and establishment of multicellularity. Wnt/β
catenin, Notch and Hedgehog/Gli pathways are essential for tissue
development and homeostasis but their activity is also tightly related
with cancer stem phenotype (Jin et al., 2017). Moreover, members of
mentioned signaling network are often overexpressed in cancers and
responsible for therapy resistance. For example, Wnt/β catenin is im-
portant for EMT but is also a key mediator of proliferative response of
pluripotent cells to apoptotic signal in the surroundings (Ryoo and
Bergmann, 2012). Hedgehog signaling possesses a pivotal role in tumor
initiation, metastasis and cancer stem cells renewal (Gupta et al., 2010).
Notch signals are of great importance for cross talk between cancer
stem cells and cells in the neighbourhood leading to tumor progression
through CST renewal and tumor vascularisation (Wang et al., 2012).
JAK/STAT pathway activated through growth factors and cytokines is
responsible for keeping of adult tissue homeostasis and tumorigenesis
(Chen, 2012). Mutations in this signaling pathway leading to con-
stitutive activation in ligand independent manner have been reported in
hepatocellular, prostate, hematological and other cancers (Jin et al.,
2017). Abnormal or constitutive activation of NF-kB promoted cancer
progression, dissemination and vascularisation. This transcriptional
factor is also in charge for the development of tumor promoting M2
phenotype of macrophages (Hagemann et al., 2008). Finally, important
members in cancer intracellular signaling network are the PI3K/Akt
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and MAP kinase pathways (Lee et al., 2006). Single compound like IXN
(Krajnović et al., 2016) can trigger multiple targets within the cell like
p70 S6 kinase, S6 protein, Wnt, Notch 1 and Oct3/4. On the other hand,
molecular signature in response to therapeutics is defined not just by
the type of tumor but also vary inside of the same group. For example,
we showed that AE oppositely regulated ERK1/2 in glioma and mela-
noma, but also its influence on ERK1/2 activity can be extremely dis-
similar even between melanoma cell lines at different maturity stage
(Mijatovic et al., 2005a; Radovic et al., 2012). The essential advantage
of naturally occurring compounds in comparison to synthetic small
molecules created is their plasticity and potential to accommodate to
cell specificities. Despite diverse intracellular responses at the level of
signaling molecules, the outcome of the treatment is almost always
desirable one- establishment of nonproliferative and less aggressive
phenotype. Abundance of biological active compounds in nature is
fascinating, so scientific discipline such as nutrigenomic will offer the
short-cut for selection of substances with differentiating potential.
Nutrigenomic appointed nutrition-gene connections looking at the gene
expression affected by phytochemicals as well as molecular mediators
between nutrients and cellular response (Braicu et al., 2017;
Lundstrom, 2013). According to this, it will be possible to predict and
select naturally occurring compounds able to decrease stemness in
cancer tissue and promote maturation of tumors cells toward non-
proliferative/less aggressive form.

10. Conclusion and future direction

Natural compounds and plant extracts, in particular, have been for
centuries used as therapeutic agents, and are still object of extensive
research for their manifold properties and mechanisms of action, that
make them promising molecules for novel cancer treatment strategies.
To this regard, it is relevant the ability of a number of molecules to
induce cancer cell differentiation. Although differentiation based stra-
tegies find their place in regenerative medicine apart from cancer, the
concept of their application is basically different. While in regenerative
medicine, the goal is to obtain functional and stable phenotype, in
cancer both aspects are irrelevant. Differentiation therapy in cancer
should aim at a nonproliferative cell preventing undesirable compen-
satory proliferation that follows chemotherapy treatment in advanced
malignancy. The properties of several molecules to induce maturation
of hematopoietic cells have been deeply investigated, but increasing
data are available for solid tumors. These molecules hold promise as
potential alternatives to traditional anti-tumoral chemotherapies. It is
likely that favourable effects of therapy-induced differentiation will be
observed for cancer types that have underlying dominant genetic dri-
vers. Therefore, the characterization of the causes underlying the de-
velopment of pluripotent phenotype in advanced cancers would re-
present the baseline for the design of specific molecules able to trigger
differentiation toward less or nonproliferative functionally-committed
lineage, without the necessity of active phenotype reestablishment. The
reversion of the malignant phenotype to a more benign, or at least,
lower grade, may significantly influence patients prognosis and turn a
potential fatal disease into a chronic, and more amenable to manage-
ment, one. The success of a differentiation therapy may not necessarily
consist in the elimination of all tumor cells and in their complete dif-
ferentiation to a mature phenotype, but in minor changes of their pa-
thological status, i.e. from high to low grade.

Moreover, integrative approaches where differentiation inducing
agents from plants are applied concomitantly with subtoxic doses of
conventional chemotherapy or radiation will improve the efficacy of
standard protocols together with a decrease in general toxicity. Exact
identification of molecular targets of differentiation based agents might
trace novel strategies in healing of cancer as well as to predict com-
bined treatments that could be promising.

It should also be pointed out that, although cancer cells may un-
dergo differentiation, it is not clear whether terminal cell cycle arrest

and stable differentiation can be achieved. The possibility of reversion
and de-differentiation, along with the selection of differentiation-re-
sistant cells poses a major problem and should be addressed by the
identification of the mechanisms through which cancer cells escape
differentiation.

Plant-derived molecules can be used as lead compounds and their
therapeutic effects improved by chemical modifications of their mole-
cular structures. As for many other drugs currently in clinical use,
semisynthetic processes of novel drugs, from lead compounds, can
produce chemical analogues with improved pharmacological activity
and lower side effects. Genome-wide Association Studies (GWAS),
computational chemistry and bioinformatics, coupled to high-
throughput screening methodologies, may allow the identification of
molecules with both cell-targeted and favourable toxicity profiles.

Finally, the properties of some molecules to promote cellular dif-
ferentiation, can be exploited for cancer chemoprevention, in subjects
at a high risk of developing malignancies, before cancer is clinically
detectable or when precursor lesions of cancer are identified.
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