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Whether sexual selection generally promotes or impedes population persistence remains an open question. Intralocus sexual

conflict (IaSC) can render sexual selection in males detrimental to the population by increasing the frequency of alleles with pos-

itive effects on male reproductive success but negative effects on female fecundity. Recent modeling based on fitness landscape

theory, however, indicates that the relative impact of IaSC may be reduced in maladapted populations and that sexual selection

therefore might promote adaptation when it is most needed. Here, we test this prediction using bean beetles that had undergone

80 generations of experimental evolution on two alternative host plants. We isolated and assessed the effect of maladaptation

on sex-specific strengths of selection and IaSC by cross-rearing the two experimental evolution regimes on the alternative hosts

and estimating within-population genetic (co)variance for fitness in males and females. Two key predictions were upheld: males

generally experienced stronger selection compared to females and maladaptation increased selection in females. However, mal-

adaptation consistently decreased male-bias in the strength of selection and IaSC was not reduced in maladapted populations.

These findings imply that sexual selection can be disrupted in stressful environmental conditions, thus reducing one of the potential

benefits of sexual reproduction in maladapted populations.

KEY WORDS: Adaptation, environmental change, fitness landscape, genetic variance, sexual conflict, sexual selection.

Predicting the fate of populations exposed to changing environ-

mental conditions is a major contemporary challenge facing bi-

ologists (Chevin et al. 2010; Hoffmann and Sgrò 2011; Garcia-

Gonzalez et al. 2012; Walters et al. 2012). Among the many factors

that can contribute to evolutionary rescue, the role of sexual se-

lection is hotly debated (reviewed by: Candolin and Heuschele

2008; Whitlock and Agrawal 2009; Miller and Svensson 2014).

Theory predicts that sexual selection can provide population-

level benefits if it weeds out males of low genetic quality, and

by doing so, removes mutations with generally deleterious ef-

∗These authors shared first-authorship.

fects from the population (Zahavi 1975; Rowe and Houle 1996;

Lorch et al. 2003; Tomkins and Radwan 2004). Consequently,

sexual selection could increase the rate of adaptation at a low

demographic cost (Manning 1984; Agrawal 2001; Siller 2001),

because females–whose reproductive rate ultimately limits popu-

lation growth–would experience weaker selection and not suffer

the costs of adaptation (sensu Haldane 1957).

Sexual selection is generally expected to be stronger in males

than in females in polygamous species (Bateman 1948; Robert

1972; Clutton-Brock and Parker 1992; Andersson 1994; Arnqvist

and Rowe 2005; Janicke et al. 2016), suggesting that this benefit of

sexual selection could indeed be significant in natural populations.
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However, the necessary assumption that sexual selection in males

is aligned with natural selection has been challenged by a num-

ber of recent studies. These show that sexual selection often can

cause the evolutionary interests of males and females to diverge

to a point where selection in males favors alleles that are detri-

mental when expressed in females (reviewed in: Bonduriansky

and Chenoweth 2009; Rice and Gavrilets 2014). Such Intralocus

Sexual Conflict (IaSC: Chippindale and Rice 2001) may effec-

tively cancel out, or even reverse, any potential population-level

benefits of sexual selection.

This negative impact could be further magnified by sexual

selection for male strategies that directly inflict physical harm

on females during mating interactions (Arnqvist and Rowe 2005;

Rankin et al. 2011; Takahashi et al. 2014; Chenoweth et al. 2015;

Berger et al. 2016). These diverse effects of sexual selection are

reflected in the many idiosyncratic results reported in experimen-

tal evolution studies that typically investigate the net outcome of

all these components (Whitlock and Agrawal 2009). In this ar-

ticle, we suggest that deeper insights into the impact of mating

system variation on rates of adaptation can be gained by study-

ing these components in isolation. Our approach is motivated by

recent theoretical (Connallon and Clark 2012, 2014; Connallon

2015) and empirical (Long et al. 2012; Plesnar-Bielak et al. 2012;

Berger et al. 2014, but see: Delcourt 2009; Punzalan et al. 2014)

evidence suggesting that the relative impediment on adaptation

imposed by IaSC may be reduced in environments to which the

populations are not adapted. This theory predicts that selection

in the sexes should align, and IaSC should be reduced, if envi-

ronmental change causes a similar displacement of male and fe-

male phenotypes from their new phenotypic optima (Lande 1980;

Connallon and Clark 2014). In Figure 1 we illustrate how this

displacement from the fitness peak is expected to elevate and re-

distribute the standing genetic variation for fitness in maladapted

populations, increasing the potential for sexual selection in males

to aid adaptation from standing genetic variation.

We tested these predictions by estimating and comparing

three quantities across populations of bean beetle that were exper-

imentally manipulated to be well-adapted or maladapted to their

environment. First, we assessed the upper limit for the strength of

selection in each sex by estimating the mean standardized vari-

ance in fitness, I, known as “the opportunity for selection” (Crow

1958):

I = Vω

ω̄2
(1)

where Vω is the variance in fitness and ω̄ mean fitness. I’s

additive genetic component IA (Houle 1992) predicts the re-

sponse to selection of fitness itself (Fisher 1930; Price 1972).

Sex-specific estimates of I and its subsequent partitioning into

genetic and environmental components therefore represent an

empirically tractable means to explore the relative strength of,

and response to, selection in males and females (Shuster and

Wade 2003; Krakauer and Webster 2011). Thus, we compared

whether (i) I was generally greater in males than in females (as

often predicted for polygamous species), (ii) I was greater in mal-

adapted compared to well-adapted populations (as predicted by a

simple Gaussian fitness landscape; Fig. 1), and (iii) the relative

strength of selection in the sexes (IM/IF) was contingent upon the

level of maladaptation.

Second, the intensity of IaSC in a given population can be

quantified by the intersexual genetic correlation (rMF) for fitness:

r MF = COV (M,F)√
IAM ∗IAF

(2)

where IAM and IAF are the genetic variances in relative fitness in

males and females, respectively, and COV(M,F) is the intersexual

genetic covariance. A positive rMF indicates that a genotype with

high male fitness also shows high female fitness and that most

of the genetic variation in the population has sexually concordant

fitness effects. On the other hand, a negative rMF is the hallmark

of pronounced IaSC and indicates that a genotype encoding high

male fitness yields females with low fitness (and vice versa).

Hence, we tested if the rMF for fitness was more positive (or less

negative) in maladapted compared to well-adapted populations

(Fig. 1).

Finally, under the assumption that males do not provide

parental care and contribute nothing more to females than un-

limited numbers of sperm, population fitness will be limited by

female fecundity. By further assuming a constant “environment”

and negligible density regulation, (i.e., neglecting the second term

in Fisher’s theorem (Fisher 1930)), we can predict the rate of in-

crease in population fitness using the Robertson-Price identity

(Robertson 1966; Price 1970):

RWpop= 1

2
[IAF +COV(M, F)] (3)

where the covariance term accounts for the genetic response in

relative fitness of females due to selection on shared allelic vari-

ation in males. This can be compared to the case for an asexual

population where all individuals are females and the increase in

population fitness is predicted simply by the genetic variance in

relative fitness, IAF. Thus, sexual selection in males will increase

population fitness more than selection in females when COV

(M,F) > IAF .

To estimate these quantities across well-adapted and mal-

adapted populations, we used replicated experimentally evolved

populations of the bean beetle Acanthoscelides obtectus (see

Fig. 2 for a graphical depiction of the experimental design). The

populations used have been adapting for more than 80 genera-

tions to either of two different host plants; Phaseouls vulgaris
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Figure 1. The effects of intralocus sexual conflict (IaSC) and population maladaptation on the rMF for fitness.

In (A), males and females have distinct phenotypic optima for Trait 1 and selection acts in opposing directions in the sexes. Additive

genetic variation for Trait 1 generates sexually antagonistic genetic variance in fitness (SA Variance) and the rMF for fitness is negative.

When trait expression is perfectly correlated between the sexes (i.e., a given genotype is expressed as the exact same phenotype in both

sexes), conflict is maximal (A.1). However, by the evolution of increased sexual dimorphism in Trait 1, the intensity of sexual conflict can

be reduced (A.2).

In (B), males and females share the same phenotypic optimum for Trait 2. As a result, additive genetic variation for Trait 2 has equal

fitness consequences in males and females (sexually concordant, SC variance), contributing to a positive rMF. An environmental change,

causing a similar displacement of the sexes away from their new phenotypic optimum for Trait 2, will align selection in the sexes and

increase the amount of SC variance (compare B.1 and B.2). Thus, the population-level benefit of sexual selection in males is predicted to

scale inversely with how well the population is adapted to its environment.

In (C), the multivariate case including both traits is presented. Four extreme scenarios resulting in different intersexual genetic correlations

and (co)variances are depicted, depending on the amount of IaSC (A.1 to A.2) and level of maladaptation (B.1 to B.2). For a given level of

IaSC, environmental maladaptation will make the rMF more positive by increasing sexually concordant genetic variation. Conversely, for

a given level of environmental adaptation, increasing IaSC will make the rMF more negative by increasing sexually antagonistic genetic

variation.

(white bean) or Cicer arietinum (chickpea), henceforth referred

to as the P and C evolution regime. Previous studies on effects of

environmental stress on IaSC are inconclusive, finding significant

reductions in IaSC (Long et al. 2012; Berger et al. 2014) as well

as nonsignificant changes in IaSC (Delcourt et al. 2009; Punzalan

et al. 2014; Holman and Jacomb 2017). However, these results are

difficult to interpret, not only due to the inherently low statistical

power of quantitative genetic experiments, but also because none

of these studies controlled for the possibility that the amount of

genetic (co)variation in fitness may differ across environments,

irrespective of the level of adaptation to the environment (Hoff-

mann and Merilä 1999; Agrawal and Whitlock 2010). Here, in an

attempt to remedy this predicament, we compare the sex-specific

genetic variation for fitness in the two evolution regimes when

cross-reared on the alternative hosts. This reciprocal experimental

design rendered the benign host treatment of one evolution regime

stressful to the other (Fig. 2), allowing us to isolate the effects of

population maladaptation on genetic (co)variances and IaSC.

EVOLUTION 2018 3
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Figure 2. Experimental design including evolution regimes, host treatment and fitness assays.

Methods
STUDY POPULATION

The bean beetle Acanthoscelides obtectus is a pest of seed stor-

ages and uses the common bean (P. vulgaris, henceforth: the

P-host) as a preferred host but can also develop on other host

plants (Savković et al. 2016), including chickpea (Cicer ariet-

inum, henceforth: the C-host). The development from egg to adult

occurs inside the bean within approximatively 30 days. Adult bee-

tles are facultatively aphagous; when they emerge out of the beans

they are mature within a few hours and are able to mate and re-

produce successfully without requiring water or other resources.

Males usually chase females and attempt mounting; male aggres-

siveness and female choice are two factors that influence mating

success (Stojković et al. 2014). The laboratory environment is

in many aspects reflecting the seed storage environment that is

colonized by natural populations of this species. Indeed, the pop-

ulations used in this study originate from a founder population

established from three grain storages in the region of Belgrade

(Serbia) in 1983, and have been maintained on the P-host without

adult food and water supply under the laboratory conditions of

30°C and 30–40% RH ever since (see Stojković et al. 2014, 2016).

EVOLUTION REGIMES AND ISOFEMALE LINES

Each evolution regime was replicated four times, using a founding

population size of N = 1000 individuals for each replicate, eight

years prior to the start of the experiments. The eight populations

were maintained for 80 generations on their respective host inside

climate chambers at 30°C and 30–40% RH, at a population size

of 300 adults (further details can be found in and Savković et al.

2016). Importantly, previous studies have confirmed substantial

local adaptation of these evolution regimes to their respective

hosts; life histories are significantly diverged and estimates of

fitness and population growth rates are highest for the P-regime

when the two regimes are reared on the P-host, but highest for the

C-regime when reared on the C-host (Savković et al. 2016). This

local adaptation is also accompanied by differences in mating

behaviors and the composition of cuticular hydrocarbons used in

chemical communication during mating interactions (Stojković

et al. 2014).

Three generations prior to the start of the quantitative

genetic experiment, 50 isofemale lines were created from each

of the eight populations by mating a single virgin female to a

single virgin male. Out of these original lines, the 10 lines with

what seemed to be lowest productivity were discarded before

20 lines of the remaining 40 per population (80 per evolution

regime) were randomly selected to be used in the quantitative

genetic breeding design (see Fig. 2). The lines were maintained

at a population size of 50 individuals (excluding the individuals

used in the assays) throughout the experiment. The isofemale

line method allows the capture of genetic variation of the original

population, while offering a means to rear genetic strains across
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different environments in a replicated manner (David et al. 2005).

Additive genetic variance is then estimated as twice the variance

between isofemale lines (Hoffman and Parsons 1988), although

this estimate is likely to include also some dominance and

epistasis, which makes it broad-sense genetic variance (David

et al. 2005). We note that our estimates of female LRS (Fig.

S1) are very similar to previously published estimates of female

fecundity in the outbred replicate populations (Savković et al.

2016), suggesting that inbreeding depression among the lines

used in our experiment cannot have contributed to our results.

In addition, five generations prior to the quantitative genetic

experiment, a reference population from each regime (henceforth,

the C and P reference) was created by mixing more than 3000

individuals from the four replicate populations. The reference

populations were maintained at a population size of approximately

1000 individuals on 600 grams of their respective host seed.

EXPERIMENTAL DESIGN

A graphical depiction of the experimental design can be found in

Figure 2. Two generations before the start of the experiment, isofe-

male lines and the two reference populations were split into two

copies that were moved to either the C- or P-host and maintained

there for the rest of the experiment. Hence, P- and C-populations

were assayed on both hosts. To estimate genetic (co)variances,

males and females of each isofemale line and host treatment

were assayed for their adult reproductive success (see detailed

description below) by competing and mating them with same-

and opposite sex individuals deriving from the reference popula-

tion of the same origin. For each isofemale line, we performed

at least 10 replicate assays on each host and for each sex. To

acquire a sufficient sample size, the experiment was carried out

during three consecutive generations. In total, 7212 assays were

performed, evenly distributed across the two sexes and the four

evolution regime × host treatment combinations.

ASSAYS OF ADULT LIFETIME REPRODUCTIVE

SUCCESS

All beetles were virgin and 0–24 h old when used in the assays.

An assay was set up by placing a focal male or female from an

isofemale line inside a petri dish measuring 90 mm in diame-

ter, together with two reference individuals of the opposite sex

and a reference competitor of the same sex. The same-sex com-

petitor was sterilized with gamma radiation (100Gy) prior to its

introduction in the assay. The radiation causes lifelong sterility,

which ensures that all adult offspring emerging from an assay

can be attributed to the focal individual (confirmed in A. ob-

tectus by a pilot experiment). Sterilized males compete actively

for mating opportunities and their sperm should be able to fer-

tilize eggs (while the resulting zygote is nonviable), such that

both pre- and postcopulatory sexual selection was included in

the male assays (as demonstrated repeatedly in the close rela-

tive Callosobruchus maculatus: e.g., Eady 1991; Maklakov and

Arnqvist 2009; Grieshop et al. 2016; Martinossi-Allibert et al.

2017). Sterilized females are able to compete with the focal fe-

males over egg laying substrate (i.e., seeds) and potential mating

opportunities (personal observations). Thus, even though males

typically have a higher propensity to mate and will compete more

over fertilization than females in this polygamous species, our

design itself did not bias the opportunity for sexual selection in

male and female assays. We note that the rearing density in our

assays (four individuals in 90 mm petri dishes) is likely to be

somewhat lower and sets a lower limit to the maximum number

of mating partners compared to the standard culturing condi-

tions (300 beetles in 1 liter bottles), but otherwise includes the

same abiotic conditions. The four individuals were left in the

petri dish with ad libitum supply of common beans or chickpeas

(depending on host treatment) to mate and lay eggs for their en-

tire lifetime at standard temperature and humidity inside climate

chambers. Once all resulting offspring had emerged, the petri dish

was frozen at –20°C for at least two days before the offspring were

counted.

Statistical Analysis
MEAN LRS ACROSS HOSTS AND EVOLUTION

REGIMES

To confirm that the alternative host represented a more stressful

environment relative to the native host for each evolution regime,

we analyzed differences in mean LRS across the male and fe-

male assays. In contrast to previous studies showing evidence of

local adaptation in these populations (Savković et al. 2016), our

estimates of LRS contain a component of soft selection in form

of intraspecific competition, which could obscure the signal of

local adaptation. This component of soft selection is likely to be

pronounced in male assays because focal males compete with

conspecific reference males, masking superior male performance

on the native host. Hence, differences in mean LRS in the male as-

says are likely driven by differences in fecundity of the reference

females. Our analyses used maximum likelihood estimates from

linear-mixed effects models implemented in the lme4 package

(Bates et al. 2011) for R (R Core Team 2013). The absolute num-

ber of offspring produced in the assays was analyzed in a general

linear-mixed effects model assuming a Poisson distribution. The

fixed effects of the model were sex, evolution regime, and host

treatment, as well as their interactions. Population identity crossed

by host treatment and sex, and date of the assay, were added as

random effects. We also added a host- and sex-specific individual

(observation)—level effect to correct for overdispersion of the

data.
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VARIANCES IN RELATIVE FITNESS, COVARIANCES,

AND CORRELATIONS

We estimated sex- and environment-specific opportunities for

selection (I) and genetic (co)variances in LRS in mixed ef-

fects models using both ML estimation in the lme4 package

and Bayesian estimation utilizing Markov Chain Monte Carlo

(MCMC) simulations implemented in the MCMCglmm pack-

age (Hadfield 2010) for R. Separate models were run for each

experimental evolution regime (i.e., for C and P- regimes sepa-

rately). The response variable was relative fitness (LRSi / LRS),

calculated separately for each combination of sex, evolution

regime, and host treatment, assuming normally distributed data.

First, using ML estimation, we tested for differences between

the replicate populations in sex- and host-specific genetic archi-

tecture by comparing the log-likelihood of models estimating

these (co)variances globally across populations, or per popula-

tion. We found that populations were not different and therefore

continued by pooling populations in subsequent analyses (see

Results). Similarly, we also used ML estimation to test for sig-

nificant sex- and environment specificity in genetic architecture

comparing models with and without these effects incorporated

(Table S3).

ML and Bayesian models had the same specification and

built except that the MCMCglmm package allowed increased

flexibility in specifying the structure of the residual variances.

This was important as estimating sex- and host-specific opportu-

nities for selection was central to our study. Moreover, the MCMC

resampling allowed us to calculate 95% credible intervals for all

comparisons and estimates based on the posterior distributions.

As standardizing the data by the mean prior to running statistical

analysis could lead to the underestimation of confidence intervals

for variance estimates, we also analyzed nonmean-standardized

data and found no difference in the results that we describe in this

study. Isofemale line (co)variance was partitioned by sex and host

treatment and a full variance-covariance matrix was estimated for

the isofemale line effect with MCMCglmm using the “us” struc-

ture and an unbiased parameter expanded prior for the covariance

matrices (Hadfield 2012). Residual variance was estimated per

sex, evolution regime, and host treatment using the “idh” struc-

ture. In addition, we included date as a random effect. The main

effect of population and its interactions with sex and host treat-

ment was added as a fixed effect, certifying that population dif-

ferences did not contribute to our estimates of within-population

genetic (co)variance and allowing mean LRS to vary between

populations and across the different treatments. MCMCglmm es-

timates were also used to calculate log-ratios of variances (phe-

notypic and genetic) across host treatments and sexes, for each

evolution regime. This allowed us to compare the change in se-

lection imposed by a change of host across sexes and evolution

regimes.

Results
RESPONSE TO EXPERIMENTAL EVOLUTION

The interaction between evolution regime and host treatment sig-

nificantly affected LRS (χ2 = 15.8, df = 1, P < 0.001), confirming

that populations had on average higher LRS if assayed on their

native host (Fig. S1). This result was consistent across male and

female assays (all interactions including sex: P > 0.74). Indeed,

relative to when reared on their respective native hosts, fitness on

the novel host decreased by 24% in the P-regime and 21% in the

C-regime, averaged across sexes. There were also overall differ-

ences between sexes and evolution regimes in mean LRS. The

C-regime had overall higher LRS than the P-regime, and females

had higher LRS than males, on both hosts (Fig. S1). This was

unexpected and we elaborate on this result in the discussion. The

full summary of statistics is available in Table S2.

THE OPPORTUNITY FOR SELECTION, SEX-SPECIFIC

GENETIC VARIANCES, AND THE LEVEL OF

ADAPTATION

We first tested whether the four replicate populations within

each evolution regime displayed significant differences in their

sex- and host-specific genetic architecture. We did not find any

such evidence (comparing models with estimation of sex- and

environment-specific genetic (co)variance done globally or per

populations; C-regime: χ2 = 4.57, df = 12, P = 0.97, P-regime:

χ2 = 8.20, df = 12, P = 0.77). Admittedly, the power of these

analyses was very low. However, population estimates of sex-

and host-specific genetic variances and opportunities for selec-

tion were very consistent (Figs. S4 and S5), justifying pooling the

populations in subsequent analyses.

Overall, significant sex-specific genetic variance in LRS was

found in all evolution regime by assay environment combinations

(Table S3). Males had significantly higher genetic and phenotypic

variances across all combinations of evolution regimes and treat-

ments (Fig. 3, Tables S6 and S7), suggesting that the strength of

selection generally was greater in males compared to females. In

females, there was more variance in fitness on the C-host com-

pared to the P-host. However, this difference was greater for the

P-regime (Fig. S8, Table S9). Thus, the increase in variance on

the C-host was higher when populations were maladapted, consis-

tent with predictions from the applied Gaussian fitness landscape

(Fig. 1). Males however, showed the opposite response, with only

the well-adapted C-regime having increased variance on the C-

host. As a consequence of these sex-specific responses, the male

bias in the opportunity for selection (quantified as the log-ratio

of IM/IF) was significantly reduced in maladapted populations

(PMCMC < 0.001, Fig. 4), suggesting that sexual selection was

weakened under host stress. Log-ratios of genetic variances be-

haved in a similar way (Table S9 and S10).
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Figure 3. Genetic variance in relative LRS (IA) for each sex, evolution regime and host treatment. Error bars represent 95% credible

intervals from the Bayesian posterior distributions. Bars for well-adapted populations are delineated by dashed lines, and color represents

the host treatment.

Figure 4. The opportunity for selection in the sexes in well-

adapted and maladapted populations.

The relative difference in the opportunity for selection is quanti-

fied by a log-ratio of male over female variance in LRS (log[IM / IF]).

A log-ratio of zero indicates no sex-difference in the opportunity

for selection. Values above zero indicate greater opportunity for

selection in males. The results imply that maladaptation consis-

tently reduced the male-bias in the strength of selection.

rMFs And The Level Of Adaptation

Contrary to predictions, the rMF did not become more posi-

tive when populations were exposed to a novel host (Fig. 5).

Limited statistical power may be an issue here, although we con-

firm that significant levels of sex-specific genetic variation were

detected in all four host treatment/evolution regime combinations

(all P-values < 0.022, Table S3). Moreover, we detected signifi-

cant cross-host correlations in females from the C-regime (Fig. 5,

left panel) and in males from the P-regime (Fig. 5, right panel).

Moreover, the rMF estimated across (well-adapted) C-populations

raised on the C-host was positive and closest to achieving statisti-

cal significance of all four estimated rMFs, opposite to theoretical

predictions.

RELATIVE MAGNITUDE OF FEMALE GENETIC

VARIANCE AND INTERSEXUAL GENETIC

COVARIANCE FOR FITNESS

To assess the potential for selection on males to promote adap-

tation in females, we compared female genetic variance to the

intersexual genetic covariance in LRS (eq. (3)). Intersexual ge-

netic covariances were never significantly larger than female ge-

netic variances (Fig. 6). In well-adapted populations, intersexual

genetic covariances and female genetic variances were of similar

magnitude. Moreover, in maladapted populations, female genetic

variances even tended to be higher than intersexual genetic co-

variances (Fig. 6). This again was opposite to our predictions and

suggests that the efficacy of sexual selection was reduced under

environmental stress.
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Figure 5. rMFs and cross-environment genetic correlations for LRS.

rMFs are given for host C (filled diamonds) and host P (open diamonds). Diamonds depicting rMFs of adapted populations (i.e., when the

host treatment matches the evolution regime) are designated by a dashed outline. Cross-host genetic correlations are depicted for males

(triangles) and females (circles). Error bars represent a 95% credible intervals based on the Bayesian posterior distributions.

Figure 6. Female genetic variance compared to intersexual genetic covariance in relative LRS.

Genetic variances for female LRS are presented (circles), along with corresponding intersexual genetic covariances (diamonds) for each

combination of evolution regime and host treatment. Symbols with dashed outlines indicate estimates in adapted populations (i.e.,

when the host treatment matches the evolution environment). Error bars represent a 95% credible intervals from the Bayesian posterior

distributions.

Discussion
Sexual selection may promote adaptation by purging generally

deleterious alleles through strong selection in males (Manning

1984; Agrawal 2001; Siller 2001), but sexual selection can also

result in IaSC, rendering selection in one sex detrimental to the

other (Bonduriansky and Chenoweth 2009; Cox and Calsbeek

2009). The negative impact of IaSC, however, is expected to be

reduced in maladapted populations (Long et al. 2012; Berger

et al. 2014; Connallon and Clark 2014, 2015; Connallon and Hall

2016). Here, we assessed these predictions in populations of bean

beetles that had been experimentally manipulated to be either

well-adapted or maladapted to their environment. We partitioned

the effects of sexual selection on population fitness by quantifying
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(i) sex-bias in the strengths of selection, and (ii) the general align-

ment of selection in the sexes. As predicted, we found that the

opportunity for selection (I) and its genetic component (IA) was

generally greater in males as compared to females. However, en-

vironmental stress affected variation in reproductive success very

differently in the sexes, resulting in a general reduction of the

male-bias in selection in maladapted populations. Moreover, we

found no evidence suggesting that the alignment of selection be-

tween the sexes increased (and IaSC decreased) in maladapted

populations. Below we discuss these results in more detail and

further elaborate on the assumptions and application of fitness

landscape theory, used here and previously, to predict adaptation

in sexually reproducing populations.

Females consistently exhibited greater I and IA when assayed

on the C-host relative to the P-host, regardless of the evolution

regime, which demonstrates a strong host-specific effect. How-

ever, the use of a reciprocal experimental design allowed us to

disentangle and partition the effects of host and level of adap-

tation, and as predicted, maladaptation resulted in a relatively

higher I and IA in females. This result is consistent with predic-

tions from a simple Gaussian fitness landscape. We further note

that, while the overall higher variance in fitness on the C-host was

not an explicit prediction from the Gaussian fitness landscape,

this result suggests that the two host environments differed in

the strength of phenotypic selection on females. Such dynamics

can readily be incorporated in more complex models by relax-

ing the common assumption that the shape of the fitness surface

(and hence the strength of stabilizing selection) remains constant

across environments (reviewed in: Agrawal and Whitlock 2010).

Males, on the other hand, did not show patterns consistent

with predictions; P-regime males showed no difference in I across

hosts, and C-regime males showed greater I and IA on their na-

tive C-host. Strikingly, these sex-specific responses to host stress

resulted in the general male-bias in selection being significantly

reduced in maladapted populations. The unexpected responses in

males may ultimately be rooted in that, contrary to fitness compo-

nents under hard selection such as female fecundity, sexual selec-

tion is frequency dependent by nature. The fertilization success of

a given genotype is determined not only by abiotic environmental

conditions but also by the frequencies of other male genotypes

in the population (Ayala and Campbell 1974; Wolf et al. 2014).

If genotype-environment interactions redistribute and change the

relative frequencies of male breeding values for reproductive suc-

cess (e.g., Wolf et al. 2014), the simple fitness landscape model

presented in Figure 1 could thus be rendered inapplicable (Jones

et al. 2012; Calsbeek et al. 2013). Frequency dependent sexual

selection can, and has been, incorporated in more sophisticated

landscape models (e.g., Lande 1980; Wolf et al. 2014), but it re-

mains difficult to predict with certainty how such dynamics would

respond to a change in the abiotic environment. In the present

study, pre- and postcopulatory forms of male–male competition

and female choice would all be plausible sources of frequency-

dependent selection in males.

Additionally, an overall difference in the prevalence of fe-

male mate choice across environments may be partly responsible

for the reduced strength of selection in males in maladapted popu-

lations, as suggested by previous empirical observations (Chaine

and Lyon 2008; Gosden and Svensson 2008). For example, if

male signals vary unpredictably with the environment, female

choice for “good genes” may be disrupted in novel environments

(Holman and Kokko 2014). As a consequence, both the direction

and magnitude of sexual selection in males could change (Can-

dolin and Heuschele 2008; Ingleby et al. 2010; Kolluru 2014).

Another possibility is that female choice itself is condition depen-

dent (Hunt et al. 2005; Cotton et al. 2006), resulting in reduced

female choosiness and relaxed intersexual selection on males in

maladapted populations. The bean beetle populations used in the

present study have previously been assessed for mate preferences

across the two hosts in a similar experimental set-up as employed

here, and modifications of both female and male mating behav-

ior were observed during the host shifts (Stojković et al. 2014).

For example, males and females from the P-regime raised on the

(to them) stressful C-host were less discriminant in mate choice

(Stojković et al. 2014). This relaxation of precopulatory female

choice may thus partly explain the observed weaker selection in

maladapted P-regime males.

All rMFs were low but positive, indicating that selection in

one sex should, if anything, bring net benefits to the other. How-

ever, only one estimate was close to being significantly different

from zero; that for the C-regime reared on the C-host, that is, in

well-adapted populations. This was opposite to our expectation

that rMFs should be less positive in adapted populations (Long

et al. 2012; Berger et al. 2014; Connallon and Clark 2014a;

Connallon and Hall 2016). The prediction that environmental

stress should reduce IaSC by aligning selection in the sexes relies

on the assumption that the environmental change displaces males

and females from their respective phenotypic optima in similar

fashion (e.g., Lande 1980). While it seems likely that substantial

environmental shifts will enforce sexually concordant selection

on traits underlying local adaptation, picking up such effects in

quantitative genetic designs relies on there being enough standing

variation to leave a detectable signal on genetic covariances (see

Fig. 1). We did, however, expect to find such a signal based on the

previous work on these lines, showing that a range of life history

(Savković et al. 2016), behavioral (Stojković et al. 2014), and

chemical (Savković et al. 2012) traits are differentiated between

the evolution regimes, implying a polygenic basis of local

adaptation. Another possible explanation for the discrepancy

between predictions and data is that the forces of sexually

antagonistic selection also may be affected by environmental
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change, as previously demonstrated in the closely related seed

beetle C. maculatus (Berger et al. 2014). In fact, loci under

sexually antagonistic selection could play an underappreciated

role in adaptation to novel environments as they are predicted to

contain high levels of polymorphism in functional phenotypes

such as life-history traits (Bonduriansky and Chenoweth 2009;

Berger et al. 2016; Radwan et al. 2016). Such scenarios have been

treated implicitly in applications of fitness landscapes describing

sex-specific selection (e.g., Connallon and Clark 2014; Connallon

and Hall 2016). While these models generally predict that the

alignment between male and female selection should decrease

(and IaSC increase) over evolutionary time in the environment

as the population approaches its new fitness peak (Lande 1980;

Connallon and Clark 2014a,b), it is more difficult to predict how

this alignment compares across environments when these vary in

the prevalence of sex-specific selection. Indeed, this was a major

motivation for the use of a reciprocal design that allowed us to sep-

arate the effect of evolutionary history and (mal)adaptation from

environment-specific effects. Yet, our experiment did not detect

any signal on rMFs from either the host environment or the level of

maladaptation.

We further tested the potential for selection on males to purge

the fitness load on females by estimating the intersexual genetic

covariances for LRS and comparing these to the variance in LRS

measured in females. Although the genetic variance for LRS was

greater in males, intersexual genetic covariances were never sig-

nificantly greater than the genetic variance in females. Unsurpris-

ingly given the previous discussion, the intersexual genetic covari-

ances did not scale predictably with the level of (mal)adaptation.

In fact, the intersexual genetic covariance instead tended to be

greater than the female genetic variance in well-adapted popula-

tions. These findings echo the previously discussed discrepancies

between the sexes in the effect of maladaptation on IA, underlin-

ing that the net efficacy of sexual selection in purging mutation

load on female fecundity seemed to be reduced in maladapted

populations.

Our approximations of fitness variance utilizing measures

of LRS do not account for the missing fraction of focal adults

that were raised on the respective hosts but did not survive to

be included in the assays of LRS. High juvenile mortality can

reduce phenotypic variation in the surviving population, limiting

the opportunity for sexual selection in adults. Indeed, the studied

host-shifts are known to be associated with potentially substan-

tial reductions in juvenile survival of A. obtectus (Savković et al.

2016). This effect of juvenile survival is perhaps an underappre-

ciated factor determining the opportunity for sexual selection in

stressful environments and can generally act to limit the purg-

ing of mutation load via sexual selection on males (Whitlock

and Agrawal 2009; Martinossi-Allibert et al. 2017). Such an af-

fect could have reduced the opportunity for adult selection in

maladapted population in our experiment but it cannot have caused

the observed sex-specific responses to host environment (unless

juvenile survival itself is strongly sex and host specific).

A somewhat unexpected result in our study was the overall

higher mean LRS of the C-regime (Fig. S1). Evolution on the C-

host involves relaxed host discrimination during oviposition and

increased fecundity (via increased body size) in C-regime females

on both host plants. This also translates to increased fecundity on

the P-host (Savković et al. 2016). P-regime females, on the other

hand, lay fewer eggs in general, which may reflect a different

life-history strategy under greater intraspecific larval competition

on the P-host (Savković et al. 2016). Our assays provided host

seeds ad libitum, which may have reduced larval competition and

mortality relative to rearing conditions during experimental evo-

lution. This in turn may have resulted in similar LRS of the C- and

P-regime when assayed on the P-host. Additionally, our estimates

of mean LRS will to some extent reflect soft selection as they

contained an element of intraspecific adult competition between

the focal individuals and the conspecific references. This element

of the assays could have further obscured the signal of local adap-

tation between regimes. Nevertheless, the >20% drop in mean

LRS on the novel host, which was evident in both regimes in our

reciprocal design, reflects well the previous results showing evi-

dence for local adaptation in form of crossing reaction norms for

fitness components under hard selection in these lines (Savković

et al. 2016).

Another unexpected result was that mean LRS in female as-

says was greater than that of male assays (Figure S1). Mean LRS

in male assays must reflect the mean fecundity of the reference

females they mate with. Hence, if reference females were of lower

condition compared to focal females, this could have contributed

to the sex-difference in mean LRS. Such a situation may have

resulted from the somewhat higher larval rearing densities of the

reference cultures compared to focal-rearing conditions, in com-

bination with an overall greater resource requirement of the larger

bodied females relative to their conspecific males. Another fac-

tor contributing to the sex-difference in mean LRS could be the

consequences of using irradiated male competitors in the male

assays. The seminal fluid of A. obtectus (as well as other seed

beetles) contains gonadotropins that are potent female fecundity

stimulants (Huignard 1983). Irradiation adversely affects these

male accessory gland proteins in some fruit flies (Abraham et al.

2012) and it is possible that this also happened in our experiment.

Given multiple mating by all individuals in the assays, this means

that focal females in the female assays only mated with fertile

(unirradiated) males and got on average one equivalent of male

provided gonadotropins, while reference females in the male as-

says got on average less than one male equivalent by also mating

with the irradiated male. This would have depressed mean female

(and hence also mean male) LRS in the male assays.
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Our study suggests that the effect of host maladaptation is

to increase the strength of selection in female bean beetles, in

line with predictions from a simple Gaussian fitness landscape.

However, contrary to our expectations, the strength of selection

on males did not increase in general, and IaSC was not reduced,

under host stress. In sum, this resulted in an apparent reduction

of the benefits of sexual selection in maladapted populations.

Results from previous experimental evolution studies have been

idiosyncratic regarding the role of sexual selection in adaptation

(reviewed in: Whitlock and Agrawal 2009). This has led to the

understanding that the net outcome of sexual selection is to a large

extent determined by the prevalence of both intra- and interlocus

sexual conflict (Arnqvist and Rowe 2005; Rice and Gavrilets

2014). Our study adds to the growing knowledge provided by

these previous studies by presenting evidence suggesting that the

efficacy of sexual selection can be reduced in maladapted pop-

ulations, possibly even without changes in the extent of sexual

conflict. The demonstrated sex-specific responses in the strength

of selection may, if general, have hitherto underappreciated effects

on the rate of adaptation in changing environments.
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S6. MCMCglmm estimates and 95% confidence intervals for genetic and phenotypic variance in LRS, as well as broad sense heritabilities for each sex,
host treatment and evolution regime combinations.
S7. P-values for pairwise comparisons of MCMCglmm estimates of genetic and phenotypic variance in LRS.
S8. Log-ratio comparing the opportunity for selection across host treatment for each sex and evolution regime (C host over P host).
S9. Log-ratios of genetic and phenotypic variance in LRS comparing Host C/Host P.
S10. Log-ratios of genetic and phenotypic variance in LRS comparing Male/Female.
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