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Abstract

Reptiles and birds (Sauropsida) are a diverse group of organisms that have persisted for more 

than a quarter of a billion years. The methods used in determining sex are remarkably varied 

and so provide innumerable opportunities in comparative analyses, over both short and very 

long evolutionary timescales. I exploit this phylogenetic depth in addressing several questions 

about sex chromosomes that have broader relevance to understanding the special evolutionary 

forces that act on these unique genomic regions.

Sex chromosomes arise from an ordinary pair of autosomes by the acquisition of a sex

determining gene. This gives rise to radical differences in the chromosome pair on which the 

gene(s) responsible for sex determination lie. In snakes, the progressive stages of sex 

chromosome differentiation can be observed from the homomorphic ZW of pythons to the 

highly differentiated W chromosome of elapids. I show that W chromosome differentiation is 

accompanied by an increasingly complex suite of repetitive DNA, the distribution of which 

coincides with the femaie-specific region of the W chromosome. Cross-species hybridisation of 

chicken W chromosome paint demonstrates that repetitive sequences are shared between the 

sex chromosomes of birds and derived snakes, despite independent origins.

To investigate this further, I constructed a low coverage cytogenetic map of the tuatara, 

Sphenodon punctatus, and built a preliminary integrated map for the tropical clawed toad, 

Xenopus tropicalis. These maps do not support ancestral synteny of bird and snake sex 

chromosomes, but finer scale mapping may reveal an as yet undetected association. I used 

published comparative maps to establish for the first time that synteny of snake Z-linked genes 

has been conserved for at least 166 million years. Antiquity of sex chromosomes and large 

differences between homologs are thought to be prerequisite features in the evolution of 

global dosage compensation mechanisms. I examined relative expression levels of seven 

putative Z-linked genes in male and female Eastern brown snakes, Pseudonaja textilis, but 

found no evidence for such mechanisms in snakes. If dosage compensation does occur, it is 

likely gene and tissue specific, as in birds.

Reconciling the modes of reptile sex determination with their distribution over the phylogeny 

makes plain the conclusion that transitions have occurred and new sex chromosomes have 

evolved many times over. To examine the pace of these transitions, I contributed to a 

cytogenetic study of amphibolurine agamids. Known as dragon lizards, these species represent 

a uniquely Australian radiation that exhibit both temperature-dependent sex determination 

(TSD) and genotypic sex determination (GSD). Hybridisation of a sex chromosome marker
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isolated from Pogona vitticeps to metaphase spreads from closely related taxa reveals that sex 

chromosomes have evolved at least twice and that transitions between TSD and GSD have 

occurred over the last ~25 million years.

In the course of this work, I was closely involved in the development of a new method for 

establishing tissue cultures from Australian lizards, with which chromosome preparations can 

be made. The method uses small, non-invasive biopsies that can be collected in the field 

without the need to sacrifice animals. Such a technique is particularly useful in initiating cell 

lines from vulnerable or endangered species as it provides a virtually unlimited source of 

material for cytogenetic, evolutionary and genomic studies. I also contributed to a literature 

review of the phylogenetic distribution of GSD and TSD in lizards. This review emphasises the 

evolutionary lability of sex determination in squamates and suggests a close relationship 

between ZW sex chromosome systems and TSD.
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ONE-  Introduction

Sex and the multitude of ways in which it is determined throughout the natural world have 

been subjects of philosophical enquiry for millennia (Mittwoch 2000). The dichotomous 

outcome of sex determination -  male or female -  belies a complex evolutionary history and an 

enormous variety in the mechanisms different organisms employ. In some animals this decision 

is made after fertilisation by environmental cues, such as ambient temperature at a critical 

period in embryonic development (Bull 1983). In some species, sex is decided at fertilisation by 

heritable factors. Sex chromosomes were first described more than a century ago (McClung 

1901) and are now known to have evolved independently in all manner of animals and even 

some plants (Solari 1994; Ainsworth 2000). These cues provide the initial signal (viz. the 

primary sex determinant) to a complex regulatory network of genes and hormones that 

ultimately -  and reliably -  produces either male or female offspring.

Long before the discovery of primary sex determining genes, biologists recognised that in many 

species, sex is under the control of discrete factors inherited in a Mendelian fashion. Only two 

days short of a year since Mendel first presented his seminal work to the Natural Sciences 

Society of Brünn (and thirty-five years before its English translation in 1901) it seems this was 

appreciated by Darwin. In clarifying the "non-blending of varieties", he wrote in a letter to 

Wallace, dated 6 February 1866:

I crossed the painted lady and purple sweet peas, which are very different coloured 
varieties, and got even out of the same pod both varieties, perfect, but none 
intermediate...Though these cases are in appearance so wonderful, I do not know that 
they are really more so than every female in the world producing distinct male and 
female offspring. (Darwin 1866)

In most mammals and medaka fish, a single gene on the Y chromosome (SRYand DMY, 

respectively) exerts a dominant effect so that its presence directs sexual differentiation down 

the male pathway (Sinclair et al. 1990; Matsuda et ai. 2002). In birds, it appears that the same 

developmental fate is sealed not by presence or absence of a gene but by the number of 

copies (dosage) of the sex-linked DMRT1 (Smith et al. 2009). Candidate genes have been 

identified in some other taxa but their role as the primary sex determinant awaits 

confirmation. In reptiles with temperature-dependent sex determination (TSD) sex is decided 

by one or two heritable thermal thresholds, one side of which produces males and the other 

females. In some lizards, parthenogenesis is not uncommon but usually arises in hybrids 

(Kearney et al. 2009); in facultative cases, sex is determined by the particular meiotic 

aberration involved. This short summary provides a largely complete sketch of our current 

understanding of primary sex determination in vertebrates.
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Reptiles and birds (Sauropsida) are hugely diverse and account for more than three-quarters of 

all living terrestrial vertebrates (Figure 1). They are an incredibly successful group, having 

persisted for more than a quarter of a billion years and today occupy all regions of the globe. 

Importantly, the methods they employ in determining sex are remarkably varied, rival the 

diversity found in fish and eclipse that in mammals. Some employ a single pair of 

chromosomes that may or may not be differentiated, others use multiple chromosomes; some 

use temperature and in others, temperature overrides chromosomes. In many squamate 

families, in some genera and even within one species, more than one mode of sex 

determination operates. Such variety provides countless opportunities in adding to our 

understanding of sex determination.

Figure 1. Reptiles comprise an incredibly diverse group. Including birds, they account for 
approximately three quarters of all land vertebrates and are found throughout all tropical and 
temperate regions of the world. They inhabit all continents and flourish in all manner of 
environments. Some, such as the green sea turtle (top left), inhabit marine environments; 
some have taken to gliding across rainforest canopies, like Draco (top centre) from Southeast 
Asia. Most inhabit the world's arid regions, like Diporiphora (bottom left) from inland Australia. 
Reptiles epitomise the variety in sex determination mechanisms. Many use temperature to 
determine sex, such as the tuatara (bottom right) and many others use chromosomes. 
Parthenogenesis is not uncommon: in some species it occurs sporadically, as in the Komodo 
dragon (bottom centre), yet others produce clonal, all-female populations that reproduce 
asexually. With the sequencing of the Anolis (top right) genome and the availability of BAC 
libraries from several species, reptiles have truly entered the 'genomic era'.

Reptiles have had a venerable history in the study of sex determination. Ohno's (1967) apposite 

theory of sex chromosome differentiation was developed in large part by observations he 

made on the sex chromosomes of snakes. Repetitive DNA sequences with analogues in the
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heterogametic sex of plants and innumerable animals were originally isolated from snakes 

(Singh et al. 1976; Epplen et al. 1982). This same class of repeats (known as Bkm, for the snake 

from which it was first characterised, the banded krait, Bungarus fosciatus) even enjoyed a 

fleeting stint as a candidate universal primary sex determinant (Singh & Jones 1982; Chandra 

1984). Their unique phylogenetic position and the variation outlined above makes reptiles 

particularly useful in studies of the evolution of sex chromosomes and dosage compensation 

(Modi & Crews 2005). With the availability of large insert genomic libraries from several 

species, sequencing of the chicken, zebra finch and Anolis genomes (and the possibility of 

many more), reptiles have truly entered the 'genomic era'. The stage is set for a renewed focus 

on reptiles and the contributions they can make to our understanding of genome biology.

This chapter provides an overview of tetrapod diversity and relationships with an emphasis on 

reptiles. Next, the evolutionary processes involved in the origin of sex chromosomes and their 

differentiation are reviewed. Recently, several comparative maps of reptilian sex chromosomes 

have become available, shedding light on the evolutionary history of amniote sex 

chromosomes. These studies are reviewed and evidence for the common ancestry of sex 

chromosomes among amniotes is examined. Finally, I provide an outline of the manuscripts 

and published articles that make up the body of this thesis.

Tetrapod phylogeny and diversity

Studies in comparative biology require at their foundation a robust phylogeny with which 

contrasts of form and function can be made. Understanding the common history of any trait is 

essential to understanding its origins. To that end, a brief discussion of tetrapod relationships is 

warranted. Emphasis is significantly biased towards groups germane to this thesis. Relevant 

species' affinities are highlighted and only extant taxa are reviewed. Most Orders and Families 

of modern tetrapods are considered monophyletic. Many of their interrelationships remain 

unclear, however, because rapid radiations obscure phylogenetic signals among higher taxa. 

Recent molecular and paleontological evidence has added considerably to our understanding, 

albeit sometimes at odds with traditional arrangements (Hugall et al. 2007). Some of the more 

controversial group affinities are discussed. The relationships and divergence dates of the 

major groups are presented in Figure 3A (see the figure caption, page 7, for sources and a 

caveat on divergence estimates).

Amphibians

Early tetrapods (land vertebrates) arose from lobe-finned fish (Sarcopterygii) during the 

Silurian-Devonian, some 430 -  405 million years ago (MYA) (Benton 1990; Müller & Reisz 2005; 

Hedges et al. 2006). Aquatic relatives of these early antecedents are the freshwater lungfish
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and marine coelacanths. The first amphibians enjoyed a terrestrial environment without other 

vertebrates for some 50-70MY. Modern amphibians (Lissamphibia; about 6,200 species) 

include the Gymnophiona (caecilians), which diverged from Caudata (salamanders, e.g. 

Ambystoma) and Anura (frogs, e.g. Xenopus) about 330MYA. Frogs and salamanders are 

generally considered each other's closest relative and diverged some 300MYA.

Amniotes

The origin of amniote egg signalled a major evolutionary advance, allowing for the first time 

reproduction to take place independently of an aquatic environment. This ultimately led to the 

permanent colonisation of land by vertebrates, some 360-390MYA. Extant amniotes include 

the Sauropsida (tuatara, squamates, turtles, crocodiles and birds) and the Synapsida 

(monotreme, marsupial and placental mammals). Affinities of amniote groups have long been 

based on the fenestration of the temporal lobe of the skull (Osborn 1903). Figure 2 depicts this 

schematically. Mammals (synapsids) are characterised by a single temporal opening whilst all 

remaining amniotes, with the exception of turtles, have two (diapsids). In birds and squamates 

the fenestrae are highly modified so that they bear only a superficial resemblance to the 

ancestral condition.

Figure 2. Temporal fenestration of amniote skulls. Exemplars of the (A) anapsid, (B) synapsid 
and (C) diapsid condition. In extant taxa these generalities are often not apparent and 
fenestrae are highly modified (figure after Zardoya & Meyer 2001).

Mammals

Synapsida arose early on in amniote evolution and have their origins on the Pangaean 

supercontinent, in the mid to late Carboniferous (324-310MYA). Extant mammals (Mammalia; 

about 4,500 species) arose more than 140 million years later, in the mid Jurassic, 166MYA 

(Bininda-Emonds et al. 2007). Platypus and echidnas are the only living members of 

Prototheria, and retain a number of pleisomorphic characters with sauropsids, such as a cloaca, 

oviparity, some skeletal features, and syntenic blocks of genes on sex chromosomes.

Metatheria (marsupials) and Eutheria (placentals) diverged from a common ancestor 148MYA. 

Note that these dates are considerably younger than some previous fossil and molecular data 

have suggested.
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Tuatara & squamates

Lizards, snakes, amphisbaenians and tuatara comprise the extant Lepidosauria, a diverse group 

with more than 8,500 named species. Tuatara, Sphenodon, is the sole representative of a once 

widespread lineage, Rhyncocephalia, which diverged from early sauropsids 270MYA. The 

relationships of squamates are not clear and are still hotly debated; however recent studies 

using nuclear DNA sequence have provided some resolution (Townsend et al. 2004; Vidal & 

Hedges 2005). Geckoes are among the earliest lizards, having separated some 197MYA, while 

Scinciformata (skinks and their allies) arose 188MYA. Laterata (amphisbaenians and whiptails) 

diverged from the remaining squamates (Toxicofera) about 179MYA. This last group includes 

iguanid lizards, such as the Australian dragons (amphibolurine agamids) and snakes.

Snakes (Serpentes) account for about 30% of extant squamates, and are generally considered 

to form a monophyletic group. Fossils and molecular data indicate a Gondwanan origin in the 

Jurassic. A highly derived and simplified body plan coupled with accelerated rates of molecular 

evolution have conspired to complicate the evolutionary relationships of snakes. Hypotheses 

on their affinities with other squamates have produced a voluminous literature that does not 

bear review here. Within Serpentes, many recent phylogenetic analyses have proposed 

relationships that are quite different from traditional arrangements (and this literature is duly 

multifarious). Scolecophidea (blindsnakes, literally 'worm snake') are fossorial ant and termite 

specialists numbering about 370 extant species. They are generally considered to be members 

of the most basal snake lineage with late Jurassic origins (150MYA). Alethinophidia (the 'true' 

snakes; about 2,700 species) have traditionally been arranged according their ability to 

produce venom and its delivery apparatus: pythons, boas and allies representing the most 

primitive condition, the rear-fanged colubrids intermediate and highly venomous vipers and 

elapids with their specialised front fangs the most derived.

A profusion of molecular studies suggests that this view is overly simplistic (Vidal & Hedges 

2009 and references therein). A detailed review is beyond the scope of this discussion, 

however some pertinent groupings are consistently obtained. Henophidia (pythons, boas and 

their allies) diverged 103MYA and remain basal to the Caenophidia ('new' snakes), but pipe 

snakes and dwarf boas have earlier origins ("Amerophidia"). Vipers appear to have arisen much 

earlier in the radiation of snakes than previously thought, perhaps 54MYA. Colubridae as 

traditionally defined is paraphyletic, and most authors now restrict the name to include just 

five subfamilies (Lawson et al. 2005; Vidal et al. 2007). Among them is Colubrinae, which 

includes ratsnakes e.g. Elaphe quadrivirgata, and treesnakes such as Dendrelaphis punctulata. 

Elapids, including the Australian species Notechis scutatus and Pseudonaja textilis, diverged 

from the group including colubrids 46MYA.
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Turtles

The position of Testudines (turtles) in the amniote phylogeny has been the subject of debate 

for well over one hundred years. Such is the derived state of turtles, with their numerous 

peculiar adaptations and rapid cladogenesis (Shaffer et al. 1997), that their relationships 

remain uncertain to this day. Testudines has traditionally been considered the sister taxon of 

diapsids (Sauria) as the only extant member of Anapsida (including several other extinct 

lineages possessing a single temporal fenestration). Timing of embryonic organogenesis 

suggests a basal position within sauropsids (Werneburg & Sänchez-Villagra 2009). Others have 

proposed that they are basal to all amniotes (Gaffney 1980); however, more recent analytical 

methods, molecular and paleontological evidence have seriously challenged (debunked) this 

hypothesis. Cladistic analysis of morphological characters suggests affinities with the 

Sauropterygia, extinct marine reptiles whose extant relatives are lepidosaurs (squamates and 

tuatara) (Debraga & Rieppel 1997). Analyses of protein, mitochondrial and nuclear DNA 

sequences suggest that turtles are most closely related to archosaurs (birds and crocodiles) 

(Caspers et al. 1996; Cao et al. 2000; Iwabe et al. 2005; Hugall et al. 2007). Furthermore, 

combined analyses of 118 vertebrate gene families support this view (Cotton & Page 2002). 

Developmental, morphological and molecular data then, suggest that the anapsid condition of 

turtles is derived, a view that is accepted here.

Extant turtles (~320 species) are divided into two widely accepted groups. The side-necked 

turtles (Pleurodira) have a typically Gondwanan distribution; today they are found in Australia, 

Africa and South America. This group includes the Australian Eastern long neck, Chelodina 

longicollis. Turtles that bend their neck vertically (Cryptodira) have a worldwide distribution 

and include softshell, box, marine and land turtles. Included in this group is the Chinese 

softshell, Pelodiscus sinensis. The two groups have their origins in the late Triassic about 207 

MYA.

Crocodiles and birds

Archosauria includes all living birds (more than 9,500 species), crocodilians and their extinct 

relatives, such as dinosaurs. Early archosaurs are well represented in the fossil record, and the 

bird-crocodile divergence is frequently used to calibrate molecular clocks at 245MYA (e.g. Rest 

et al. 2003; Hugall et al. 2007); however, 'independent' (some calibration points are shared) 

molecular estimates vary by more than ±40 million years.

Three main groups of living birds (Neornithes) are recognised, although the antiquity of each 

and within-group relationships are still hotly debated (Ericson et al. 2006; Brown et al. 2007; 

Hackett et al. 2008). Paleognathae includes ratites (ostrich, emu, kiwis, rheas and allies) and
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tinamous from Central and South America. This earliest lineage diverged in the Cretaceous, 

120MYA. Neognathae is comprised of Galloanserae (waterfowl and game fowl, including the 

chicken, Gallus gallus) and Neoaves (all other birds; about 95% of all species). Estimates of the 

Galloanserae-Neoaves split vary widely, but most suggest a mid-Cretaceous origin 105MYA.

Crocodile-like animals first appeared in the Mesozoic and reached their greatest diversity in the 

Cretaceous. Their tendency to inhabit riparian environments has led a substantial fossil record. 

Extant crocodilians (Crocodylia) are rather less speciose: about 23 species are found 

throughout the tropics and subtropics. Alligatoridae (alligators and caimans) and Crocodylidae 

(crocodiles and allies) first appear in the late Cretaceous, while Gavialidae (the piscivorous 

Indian and false gharials) arose somewhat later. Paleontological and molecular divergence 

dates are widely discordant: estimates range from 150-50MYA for the Alligatoridae- 

Crocodylidae split, and 70-30MYA for Crocodylidae-Gavialidae.

Figure 3 (following page). Phylogeny of tetrapods and amniote sex chromosome homologies.
(A) A consensus tree of tetrapod relationships, indicating the distribution of sex determination 
modes and sex chromosome systems. Branch lengths are proportional, with divergence dates 
from http://timetree.org (Hedges et al. 2006), Hedges and Kumar et al. (2009) and authors 
therein, or as cited otherwise in the text. "Timetree" dates are weighted means of published 
molecular estimates or determined by expert review (Hedges & Kumar 2009). There is 
considerable controversy about the approach of Hedges et al. (e.g. Graur & Martin 2004) and 
their dates are used here provisionally. Only representative taxa are shown to give some 
indication of the depth of divergence in the major groups. The uncertain placement of turtles 
(Testudines) is indicated by a dotted line. Alternative topologies place turtles sister to 
lepidosaurs or closer to birds than crocodiles. They are traditionally placed basally with respect 
to sauropsids. MYA: millions of years ago; XY: male heterogamety; ZW: female heterogamety; 
TSD: temperature-dependent sex determination.
(B) Generalised representation of chromosome and linkage group homologies of the chicken Z 
chromosome (green); the turtle Pelodiscus sinensis Z chromosome (magenta); the snake 
Elaphe quadri\/irgata Z chromosome (yellow & cyan); and the human X chromosome (biue & 
red). There is little evidence of an ancestral syntenic association of snake, bird and mammal sex 
chromosomes, but the Pelodiscus Z almost certainly derives from the same ancestral 
chromosome that gave rise to the gecko and bird Z and platypus X5. Finer scale gene mapping 
in reptiles and amphibians may reveal as yet undetected ancestral chromosomal associations. 
Mapping and painting data are from http://ensembl.org; Shetty et al. 1999; Matsuda et al. 
2005; Matsubara et al. 2006; Mikkelsen et al. 2007; Smith & Voss 2007; Kawai et al. 2007,
2009; Uno et al. 2008; Ezaz et al. 2009; Srikulnath et al. 2009a, b; Kawagoshi et al. 2009; 
Chapter 4: O'Meally et al. 2010. Xenopus linkage group data are courtesy of Amy Sater 
(University of Houston) with assistence from Hardip Patel (ANU). LG: linkage group; p: 
unidentified microchromosome.

http://timetree.org
http://ensembl.org
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Sex chromosome evolution in Amniotes
Vertebrates have a bewildering array of sex determination methods, ranging from 

environmental sex determination (ESD) to genotypic sex determination (GSD) (Bull 1983; Solari 

1994; Sarre et al. 2004). While traditionally thought of as mutually exclusive and fundamentally 

different mechanisms (Bull 1983; Valenzuela et al. 2003), there is strong evidence that the two 

systems are intimately linked by common evolutionary processes (Sarre et al. 2004; Quinn et al. 

2007; Radder et al. 2008; Georges et al. 2010; Chapter 6: Ezaz et al. 2010). Reconciling the 

modes of vertebrate sex determination with their distribution over the phylogeny makes plain 

the conclusion that transitions between GSD and ESD have occurred many times over. This is as 

true for higher taxa (Bull 1983; Chapter 6: Ezaz et al. 2010) as it is at lower taxonomic ranks 

(Chapter 7; Ezaz et al. 2009). GSD occurs when sex is determined by a constitutional difference 

in the genotype of males and females. This seemingly innocuous distinction gives rise to radical 

differences in the chromosome pair on which the gene(s) responsible for sex determination lie. 

Sex chromosomes spend different amounts of (evolutionary) time in males and females which 

results in very different evolutionary trajectories. In this section I present an overview of the 

natural history of sex chromosomes: how they arise, the special evolutionary forces that shape 

them and consider the possibility of amniote sex chromosomes sharing a common ancestry.

Differentiation of sex chromosomes

In many species with genotypic sex determination, no chromosomes are easily identifiable as 

the sex pair because they are cytologically homomorphic. In mammals (and some turtles, 

lizards, frogs and fish), males possess heteromorphic sex chromosomes, where one 

chromosome is highly degenerated, heterochromatic and gene poor. In this case, they are 

known as X and Y (XX female: XY male). In all snakes and birds (as well as some turtles, lizards, 

frogs and fish), the female produces gametes with different sex chromosomes. In this case, the 

chromosomes are known as Z and W, and the W is similarly depauperate in genes (ZW female: 

ZZ male). The distinction here is nomenclatural: orthology (or lack thereof) is not inferred by 

the notation and transitions between XY and ZW systems do occur (Ezaz et al. 2006; Uno et al. 

2008). Similar evolutionary forces act in both systems and for the following discussion, Y/W and 

X/Z are used interchangeably.

GSD comes about by the acquisition of a sex-determining allele at a locus on an ordinary pair 

of autosomes (Muller 1914, 1918). Differentiated sex chromosomes are thought to arise 

because of sexually antagonistic alleles (those which are advantageous to only one sex) at loci 

closely linked to the sex-determining region (Fisher 1931; Bull 1983; Rice 1987b). Selection 

favours their restriction to one sex by local suppression of recombination which may 

subsequently spread along most or all of the chromosome (Nei 1969; Charlesworth &
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Charlesworth 1980; Bull 1983; Rice 1996). A similar outcome can be effected without 

suppressed recombination by the evolution of regulatory mechanisms that ensure sex-limited 

expression of sexually antagonistic alleles; however there are very few examples (Rice 1987b).

In the absence of recombination, the nascent Y is inherited clonally and genic decay ensues by 

the synergistic action of selective processes including 'Muller's ratchet' (Charlesworth 1978), 

genetic hitchhiking (Rice 1987a), background selection (Charlesworth 1996), as well as drift and 

mutational overload (Rice 1996). The contribution of each is difficult to dissect experimentally; 

however Muller's ratchet probably operates more strongly in nascent sex chromosomes and 

genetic hitchhiking can have profound effects when only a few essential loci remain on the Y 

(Charlesworth 1996; Hughes et al. 2010).

It is generally agreed that suppression of recombination is the requisite first step in sex 

chromosome differentiation (Charlesworth et al. 2005), though the mechanism by which this 

occurs is not well understood. Ohno (1967) reckoned it could be initiated by chromosomal 

rearrangements such as pericentric inversions; these can occur on the nascent X or Y with 

equal effect (Charlesworth & Hart! 1978). In Drosophila at least, there is genetic variation for 

site-specific recombination on which selection can act (see Rice 1987b).Others have postulated 

that asynchronous replication of the sex pair is sufficient to reduce crossing-over (Ray- 

Chaudhuri et al. 1971). Gorelick (2003) suggests that differential methylation of the sex 

determining region on the nascent Y can initiate suppressed recombination and canalise its 

degeneration. Detailed examination of evolutionarily recent sex chromosome systems, such as 

those presumed in some flies, fish, frogs and dragons, are essential to understanding the initial 

stages of differentiation (e.g. Bachtrog et al. 2008; Charlesworth 2004; Yoshimoto et al. 2008; 

Chapter 7: Ezaz et al. 2009).

Several studies examining divergence between gametologs (relic genes on Y or W 

chromosomes and their X- or Z-borne partners) in humans, mice, cats, cows, birds and plants 

suggest some common features of reduced recombination (Lahn & Page 1999; Sandstedt & 

Tucker 2004; Pearks Wilkerson et al. 2008; Van Laere et al. 2008; Nam & Ellegren 2008; Bergero 

et al. 2007). In both XY and ZW systems, restriction of recombination proceeds in a gradual, 

stepwise fashion and imparts a signature of discrete evolutionary strata along the length of the 

chromosome, the origins of which can be dated (although see Hughes et al. 2010, and the 

discussion on page 14). In some systems, recombination suppression has preceded 

intrachromosomal rearrangements of the X or Z that subsequently led to a disruption of the 

ancestral gene order (Sandstedt & Tucker 2004; Nam & Ellegren 2008). In humans, it appears 

that recombination suppression has occurred in concert with large intrachromosomal 

inversions of the Y chromosome (Lemaitre et al. 2009). Where ancestral gene order is
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preserved, progressively older strata are located further from the pseudoautosomal region (a 

region of the sex chromosomes present in some taxa where meiotic paring and recombination 

still occur).

The addition of autosomal segments to sex chromosomes leaves similarly characteristic 

evolutionary signals and provides a mechanism to buffer the degenerative effects of clonal 

inheritance on heteromorphic chromosomes (Graves 1995, 2006). Comparative mapping and 

chromosome painting in therian mammals, for example, has revealed that the human X is 

composed of an ancient 'conserved' and a recently 'added' region (Wilcox et al. 1996; Graves 

1998; Glas et al. 1999). The X ancient region is common to all therian mammals, while the 

added region is autosomal in marsupials. Further evidence of this comes from chicken and 

other basal vertebrate lineages, in which the two segments map to two or more different 

autosomes (Figure 3B). In humans, the Y chromosome is composed almost entirely of the 

added region, and the ancient region has largely been lost due to the degenerative processes 

so far described (Waters et al. 2001). Autosomal additions that by chance contribute sexually 

antagonistic genes may be favoured by selection, further enhancing the genetic isolation of the 

neo-sex chromosomes and accelerating the degeneration of the neo-Y (Rice 1996;

Charlesworth et al. 2005). Additional evidence of neo-Y formation comes from the many 

diverse taxa that possess multiple sex chromosome systems, which must arise because of 

partial or complete autosomal fusions with sex chromosomes (Bull 1983).

Evolution of dosage compensation

Highly degraded sex chromosomes pose a problem for the species in which they occur. In the 

homogametic sex, X-borne genes are present in two copies or doses, as is the case for 

autosomal loci. Where wholesale genic decay has occurred on the Y chromosome, sex-linked 

genes are present in only one dose. Autosomal anuploidy usually has dire developmental if not 

lethal consequences in most organisms, but this is not so for sex chromosomes. In many 

species, compensatory mechanisms have evolved to restore the balance between sex-linked 

genes and autosomes. Mechanisms have also evolved that ensure transcriptional equality 

between sexes.

Dosage compensation mechanisms are best characterised in taxa with male heterogamety, 

namely Drosophila, nematodes and mammals. They exemplify three different solutions to the 

same problem. In male (XY) Drosophila, transcription of the single X is up-regulated so that its 

dose is equivalent to autosomes, and that in females (XX) where both Xs are transcribed (Marin 

et al. 2000). This is achieved through a male-specific riboprotein complex that binds the X 

chromosome, alters chromatin structure and effectively doubles its transcription (Straub &
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Becker 2007). In worms and mammals (man and mouse at least), X chromosomes are up- 

regulated approximately two-fold by an unknown mechanism, so that transcription is 

equivalent to autosomal loci in XO or XY males (Gupta et al. 2006; Nguyen & Disteche 2006). 

Without some countermeasure, this would leave females (XX) effectively (transcriptionally) 

tetraploid for X-linked loci. In hermaphrodite (XX) worms a complex of eight proteins (DCC) 

modifies X chromatin so that transcription from each is reduced approximately two-fold 

(Meyer 2005). In female therian mammals, one X is silenced (paternal or random X 

inactivation) so that transcriptional equality between the hyperactive X and autosomes is 

restored (Lyon 1961; Sharman 1971). Interestingly, X inactivation is not complete, suggesting 

that some dosage differences are tolerable in females (Carrel & Willard 2005; Heard & Disteche 

2006).

Chromosome wide ('global') dosage compensation mechanisms have long been thought a 

necessary evolutionary response to (or even involved in) sex chromosome differentiation and 

gene loss (e.g. Charlesworth 1978,1996; Rice 1987a, Marin et al. 2000; Engelstadter 2008). It 

would seem intuitive then, that the problems caused by a gene-poor Y are equally grave for a 

gene-poor W chromosome. Recent data from birds, silkworms and snakes, in which female 

heterogamety is the norm, suggest that this is not the case (Itoh et al. 2007; Ellegren et al.

2007; Zha et al. 2009; Chapter 2).

The absence of a global dosage compensation system in birds has been suspected for some 

time. They have no equivalent of the Barr body; the Z chromosomes replicate synchronously in 

males and both are transcribed (Cock 1964; Schmid et al. 1989; Kuroda et al. 2001; Kuroiwa et 

al. 2002). Early allozyme and later qPCR data on the activity/expression of Z-linked genes 

suggested that some loci were compensated, and others not (Kuroiwa et al. 2002; McQueen et 

al. 2001; Baverstock et al. 1982). The same is true of silkworms, and for many other 

Lepidoptera (Suzuki et al. 1998,1999; Koike et al. 2003; Traut et al. 2007). These early results 

have now been convincingly confirmed by broad scale microarray studies that measured global 

expression ratios of males:females (Itoh et al. 2007; Ellegren et al. 2007; Zha et al. 2009). In 

chicken, zebra finch and silkworms, the vast majority of genes on the Z chromosome are not 

subject to dosage compensation in males. Some genes are specifically up-regulated in males, 

and local or gene-specific down-regulation also occurs (Melamed & Arnold 2007; Melamed et 

al. 2009; Zha et al. 2009). This probably comes about by augmenting existing regulatory 

networks and in chickens at least, compensated loci are associated with CpG islands and CR1 

transposable elements (Mank & Ellegren 2008; Melamed & Arnold 2009; Zha et al. 2009). In 

female chickens, the expression ratio of Z-linked to autosomal genes ranges from 0.7 in brain to
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0.9 in heart, suggesting that some dosage compensation occurs between sex-chromosomes 

and autosomes (Itoh et al. 2007).

Among amniotes, chromosome-wide dosage compensation is only known in therian mammals, 

but the mechanisms involved differ between placentals and marsupials (Heard & Disteche 

2006; Deakin et al. 2009). In both groups, however, the inactive X is condensed and late 

replicating in female somatic cells. Monotremes, like birds, undergo partial dosage 

compensation, but not all X chromosomes replicate asynchronously in females (Deakin et al. 

2008; Ho et al. 2009). Early studies of snake Z chromosomes suggest they replicate 

synchronously in males (Bianchi et al. 1969). In Chapter 2, 1 provide preliminary evidence that 

dosage compensation is gene and tissue specific in snakes. So it seems that some form of 

dosage compensation occurs in all amniote lineages with relatively old, differentiated sex 

chromosomes, but it is oniy global in therian mammals. This cannot be due to the age of the 

sex chromosomes. The snake ZW originated 100-166MYA (Chapter 3); the bird ZW at least 

120MYA; the platypus 5X5Y later than 166MYA and the therian XY 148MYA, with later 

modifications in eutherians (Figure3A B). Nor can it be due to the size or number of genes on 

the sex chromosomes: in therian mammals, the X makes up only 3-5% of the haploid genome; 

the five platypus X chromosomes account for about 15%; and the Z chromosomes of both 

snakes and birds about 7-10% (Be^ak et al. 1964; Ohno 1967; Bianchi et al. 1969; Graves 1987; 

Deakin et al. 2008).

In chickens and silkworms, compensated genes have different functions from those that are 

not, suggesting that dosage compensation has evolved for individual genes according to 

selective pressures on each (Melamed & Arnold 2007; Zha et al. 2009; Mank & Ellegren 2008). 

Overall, Z-linked genes are over-expressed in males and many of these may have male specific 

functions. DMRT1 is a notable case in chickens as dose is thought to determine sex (Smith et al. 

2009); the same is true for many Z-linked genes in silkworms (Zha et al. 2009). If the selective 

advantage of over-expression to males outweighs the disadvantage to females (given seme 

Z:autosomal compensation occurs), there will be no selective pressure to evolve a global 

hyper-transcription and subsequent down regulation system as found in mammals and 

nematodes (Naurin et al. 2010). Because Y/Z/X/W chromosomes spend different amounts of 

evolutionary time in males (respectively 100/67/33/0%), higher male mutation rates and 

sexual selection may lead to faster gene loss from the Y chromosome and greater selective 

pressure to evolve global dosage compensation (Naurin et al. 2010). Others have suggested 

that mammalian X inactivation has evolved because of maternal-paternal antagonism, and that 

a role in dosage compensation is secondary (e.g. Haig 2006). Non-model species such as
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platypus and snakes are well placed to test these and other novel hypotheses on the evolution 

of dosage compensation.

Repeat accumulation on degenerate sex chromosomes

In the absence of recombination, sex-specific chromosomes are subject to massive 

amplification of repetitive sequences. The most notable of these are simple, highly repetitive 

satellite sequences, often found in tandem arrays or in large palindromic structures that arise 

by ectopic recombination and gene conversion (known as 'ampliconic' repeats); and 

retrotransposons (reviewed in Charlesworth et al. 1994). Studies in Drosophila suggest that 

retrotransposons are likely responsible for the characteristic accumulation of heterochromatin 

on the degenerated sex chromosome (Steinemann & Steinemann 1998). Heterochromatin may 

act as a cellular defence against retrotransposon invasion, mediated by RNA-interference based 

silencing and associated with genetic inertness and late replication of the Y chromosome 

(Steinemann & Steinemann 2005; Steinemann et al. 1993). Differential condensation of the X 

and Y chromosomes may also be adaptive as it prevents crossing-over that could result in 

potentially lethal recombination products (McKee & Handel 1993).

Most sex chromosome repeats tend to be amplified in a species-specific manner, even in 

closely related taxa. This suggests rapid repeat amplification and molecular differentiation 

occur repeatedly after divergence from a common ancestor. Recent sequencing of the maie- 

specific euchromatic region of the Y chromosome (MSY) in human and chimpanzee has 

provided a detailed picture of the remarkable changes that have occurred since their 

divergence 6MYA (Skaletsky et al. 2003; Hughes et al. 2010). The MSY of both species has 

undergone significant rearrangement, such that the structure in a common ancestor cannot be 

inferred. The rate of gene loss (and transpositional gain) differs markedly, chimps having lost 

one third of the distinct genes or gene families and half the protein coding transcription sites 

with respect to humans. Hughes et al. (2010, p538) assert this is "more comparable to the 

difference in autosomal gene content in chicken and human, at 310 million years of 

separation". Ampliconic repeats are also represented differentially in the human and 

chimpanzee MSY. The chimp MSY has several unique palindromic structures and greater 

numbers of those that are common to humans. Overall, these repeats account for roughly 

equal proportions of the MSY in humans (53%) and chimps (57%) but in absolute terms, are 

44% larger in chimpanzees. In each species, more than 30% of MSY sequences have no 

homologous counterpart in the other. Of the sequences can be aligned, identity is comparable 

to autosomal loci (98.3% vs 98.8% at autosomal loci). This may explain the gradual changes 

suggested by gametolog analyses (Lahn & Page 1999; Lemaitre et al. 2009) compared to the 

dynamic changes revealed by full sequence analysis (Hughes et al. 2010).



15

Some repeats have a broader taxonomic distribution and can be used to infer the ancestral 

organisation of sex chromosomes. Lineage specific amplification suggests stochastic processes 

play an important role. ZMB-related repeats occur along the length of the W chromosome in 

the zebra finch and homologous sequences are autosomal or Z-linked (Itoh et al. 2008). 

Southern blot surveys of other birds show that these repeats are found across Neognathae, but 

are only sex-specific in closely related songbirds (Passeriformes). This suggests that ZMB was 

present before the radiation of neognathous birds, but was amplified only on the W of zebra 

finch and its close allies. Similar repeats have been isolated from other birds, such as P2000-17 

from the lesser black gull (Griffiths & Holland 1990); Apal family repeats were originally 

isolated from galliform birds, but are amplified on the W of all neognathous birds (Yamada et 

al. 2006).

A third class of sex chromosome repeats has an even wider taxonomic distribution, and occurs 

in the heterogametic sex of both plants and animals (Jones & Singh 1981; Singh et al. 1981; 

Arnemann et al. 1986; Schäfer et al. 1986; Nanda et al. 1990, 1991; Parasnis et al. 1999). The 

banded krait minor-satellite (Bkm) was first isolated from snakes and consists of tandem arrays 

of GATA and GACA sequences (Singh et al. 1976; Epplen et al. 1982). Bkm is often, but not 

always associated with heterochromatin both in autosomes and degenerate sex chromosomes 

(Jones & Singh 1985; Nanda et al. 1991). In snakes, its frequency in the genome corresponds 

with the degree of ZW differentiation (Jones & Singh 1985; Chapter 3). While a common origin 

of Bkm repeats has been assumed (e.g. Epplen et al. 1983), the simple sequence and tandem 

structure is prone to amplification by slipped-strand mispairing and similar replicative errors, so 

independent origins are equally likely (Epplen 1988). Proteins that specifically bind Bkm have 

been isolated from the gonads of snakes, silkworms, mice and man (Singh et al. 1994; 

Priyadarshini et al. 2003). A role in regulating the decondensation and transcriptional activation 

of Y or W heterochromatin has been suggested but is yet to be demonstrated (Singh et al. 

1994).

Sex chromosome degeneration has a phylogenetic pattern

Snakes provided Ohno (1967) with the material on which he based his theory of how sex 

chromosomes differentiate from autosomal pairs. He and his co-workers supposed the 

progressive stages in sex chromosome degeneration could be observed among the 

representative families of snakes (Begak et al. 1964) (Figure 4).
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Figure 4. W chromosome degeneration has a distinct phylogenetic pattern. This pattern was 
first recognised in the various families of snakes by Be$ak et al. (1964) and later in birds by other 
workers. Pythons and paleognathes have virtually homomorphic sex chromosomes, while more 
derived lineages including elapid snakes and neognathous birds, such as the chicken, possess 
highly differentiated sex chromosomes. A similar pattern has been reported in invertebrates, fish 
and mammals. Light blue represents the W chromosome and dark blue the Z.

Pythons and boas represent the extant members of the most basal snake lineage whose 

cytology has been examined extensively (blind snakes, Scolecophidia, remain largely 

uncharacterised). With the exception of one species, pythons and boas possess homomorphic 

sex chromosomes that are cytologically indistinguishable (Mengden & Stock 1980; Olmo & 

Signorino 2005). Members of the Colubridae (a mostly non-venomous and morphologically 

'intermediate' group; see discussion page 5) are characterised by sex chromosomes that are 

often similar in size but differ in centromere position or the extent of heterochromatin.

Members of the Elapidae and Viperidae (independently derived snake lineages that are often 

highly venomous) possess markedly dimorphic sex chromosomes which may differ greatly in 

size, centromere position and heterochromatin. In some elapids at least, the appearance of the 

heteromorphic chromosome can differ substantially between even closely related species 

(Mengden 1982), suggesting rapid change after speciation.

Comparative maps of snake sex chromosomes have shown that this trend is reflected in the 

genic content of the snake W chromosome (Matsubara et al. 2006). In Python molurus, eleven 

genes and their relative order on the W chromosome correspond exactly to those on the Z 

chromosome, although the W is possibly smaller in size. The W chromosome of the colubrid 

Elaphe quadrivirgata is about 25% smaller than the Z and it bears only three of the eleven Z 

genes mapped. The crotaline viper Protobothrops (syn. Trimeresurus) flavoviridis possesses the
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most extreme differentiation of the sex pair: none of the eleven Z genes maps to the W 

chromosome. The order of gene loss and a conserved ZW telomeric repeat indicate that 

degeneration of the W chromosome proceeded from the short arm.

The same progressive stages of W chromosome degeneration have been described in 

palaeognathous birds and between palaeognathous and neognathous birds (Takagi et al. 1972; 

Graves & Shetty 2001; Tsuda et al. 2007). Within Paleognathae, ratites possess a near 

homomorphic ZW pair but tinamous (the sister group of ratites) have a ZW pair that differs in 

gene content and the extent of repeat accumulation. The Z and W of neognathous birds are 

usually highly differentiated (there are some notable exceptions, e.g. de Oliveira et al. 2005). 

Analysis of gametologs indicates that degeneration of tinamou W chromosomes and those of 

neognathous birds occurred independently (since the Paleognathae-Neognathae split), but in 

parallel (de Kloet & de Kloet 2003; Tsuda et al. 2007; Mank & Ellegren 2007). Analogous 

phylogenetic patterns of sex chromosome degeneration have been described in mammals 

(Graves 2006) and fish (Kirpichnikov 1981, cited in Rice 1996). In some extreme cases, 

degeneration may proceed to such an extent that it ultimately leads to the total loss of Y or W 

chromosomes (reviewed in Graves 2002, 2006).

Conversely, the great unanswered question about sex chromosome degeneration is why some 

presumably old Ws or Ys don't do it. Two models have been proposed, both of which assume a 

primary role for Muller's ratchet in sex chromosome decay. In some (perhaps most) plants, 

genes that are expressed in the diploid adult stage are equally active in the relatively long- 

lived, haploid gametophytes, and therefore subject to selection (Charlesworth 1978; Gorelick 

2005). This renders such plants immune to Muller's ratchet as any deleterious alleles will be 

lost, rather than being sheltered by non-deleterious alleles on a homologous chromosome. 

Occasional sex reversal could also render Muller's ratchet ineffective if recombination between 

XY or ZW pairs occurs in sex-reversed individuals (Perrin 2009). Rearrangements and sequence 

heterology between the X and Y are common in taxa with highly differentiated sex 

chromosomes, preventing recombination in sex-reversed individuals. This is not so in 

amphibians and reptiles in which structurally differentiated sex chromosomes are uncommon 

and occasional sex reversal occurs, even under natural conditions. This model could be 

particularly applicable to basal snakes and ratites, although sex reversed individuals have not 

yet been reported (no simple molecular test of sex exists for snakes). Interestingly, many 

pythons brood their eggs and some generate warmth by shivering (Harlow & Grigg 1984; 

Mierop &. Barnard 1978). Most adaptive explanations of this behaviour cite increased offspring 

survival as a result of paternal care. A corollary could be the buffering of a thermosensitive sex
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determination system prone to genotypic sex-reversal. Anecdotal reports suggest sex 

determination may be thermosensitive in pythons but it has not been tested empirically.

The evolutionary history of amniote sex chromosomes

There is no doubt that sex chromosomes have evolved independently many times in amniotes, 

given their haphazard distribution across the phylogeny (Solari 1994; Ezaz et al. 2006; Organ & 

Janes 2008; Chapter 6\ Ezaz et al. 2010; Chapter 7: Ezaz et al 2009). Indeed, the apparent lack 

of homology between the sex chromosomes of amniotes is frequently taken as evidence of 

their independent origins from different ancestral autosomes (Nanda et al. 2002; Matsubara et 

al. 2006; Graves 2008). An alternative -  but compatible -  view is that the sex chromosomes of 

major groups were ancestrally syntenic, and arose by independent rearrangements in some 

lineages.

Smith and Voss (2007) find support for this model in the large chromosomes of the tiger 

salamander, Ambystoma tigrinum. They mapped a limited number of chicken Z and 2 and 

human X orthologs to the same chromosome (linkage group 2) in the salamander, which last 

shared a common ancestor with amniotes some 360-390MYA (Figure 3A, B). This implies that 

the sex chromosomes of snakes, birds, monotremes and therian mammals all derive from the 

same ancestral autosome, albeit with sex under the control of a different gene (or genes) in 

each case. Smith and Voss find further support for this scenario by comparing amniotes with 

teleost outgroups. Chapter 3 reports results showing that the chicken W shares repetitive 

sequences with the snake W, despite 275 million years of independent evolution (Figure 3A). It 

is noteworthy also, that the chicken Z chromosome shares homology with four of the five 

platypus X chromosomes (Veyrunes et al. 2008).

Two recent studies have used in silico approaches in reconstructing the ancestral vertebrate 

karyotype. Neither came to this same conclusion; however, nor did they address the question 

of ancestral synteny of amniote sex chromosomes explicitly (Kohn et al. 2006; Nakatani et al. 

2007). An integrated linkage, physical and sequence map for the tropical clawed toad, Xenopus 

tropicalis, is nearing completion, and has been made available to interested researchers (A. 

Sater, U Houston pers. comm.). This map provides an independent test of the conclusions of 

Smith and Voss (2007).

Early workers hypothesised the homology of bird and snake Z chromosomes because they are 

morphologically quite similar (Begak et al. 1964). Not only are the Z chromosomes of each 

often metacentric (alternate centromere positions are now known); they are similar in 

absolute size, accounting for about 10% of the haploid genome; and in relative size, being the



fourth or fifth largest chromosome in most snakes and birds. However, recent mapping data 

show clearly that the snake and bird Z chromosomes are not homologous (Figure 5).
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Figure 5. Comparative map of the snake Elaphe quadriwirgata and chicken sex chromosomes.
The snake Z is composed of genes found on chicken chromosomes 2 (yellow) and 27 {cyan).
The chicken Z {green) is equivalent the short arm (and a small region of the long arm, not 
shown) of chromosome 2 in the snake. Mapping data are after Matsuda et al. (2005), 
Matsubara et al. (2006) and Kawai et al (2007).

The snake Z is homologous to the short arm of chicken chromosome 2 and chromosome 27 

(Matsuda et al. 2005; Matsubara et al. 2006; Kawai et al. 2007), and to chromosome 6p in the 

agamid lizards Pogona vitticeps and Leiolepis reevesii (Ezaz et al. 2009; Srikulnath et al. 2009b; 

Figure 3B). This suggests that the synteny of snake Z genes has been conserved for 166 million 

years. The snake Z must have arisen by the fusion of ancestral segments (represented by 

chicken chromosomes 2 and 27) between 166-275MYA because these regions are always found 

on separate chromosomes in other amniotes and on linkage group (LG) 2 and LG10 in Xenopus. 

Neither the low coverage map of the tuatara {Chapter 4: O'Meally et al 2010) nor the 

preliminary Xenopus map demonstrates ancestral synteny of snake and bird Z-linked genes as 

they each correspond to different chromosomes or linkage groups (Figure 3B; Chapter 3).

Comparative mapping of sex linked genes in birds and mammals also dispelled early notions of 

homology between the bird Z and human X (Fridolfsson et al. 1998; Graves & Shetty 2001; 

Nanda et al. 2002). The chicken Z corresponds to regions of human chromosomes 5, 9 and 18 

and opossum chromosomes 3 and 6 (Figure 3B). The opossum X and the human X conserved 

region correspond to chicken chromosome 4. The added region of the human X corresponds to 

chicken chromosome 1. The chromosomal segments representing Z and X are not syntenic in 

any other amniote so far examined.
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Clearly an amniote outgroup (amphibian or fish) is required to determine if these regions were 

syntenic in an amniote ancestor. Teleost fish such as Danio, Fugu and Oryzias could fit the bill 

but they are not ideal for two reasons: the teleost genome duplication complicates detection 

of orthologs (Taylor et al. 2001) and, probably because of the duplication, their genomes are 

rearranged and synteny is poorly conserved (Nakatani et al. 2007). The preliminary Xenopus 

map lends no support to the conclusions of Smith and Voss (2007). The chicken Z chromosome 

is homologous to Xenopus LG1; the snake Z is homologous to LG2 and LG10 and the human X is 

homologous to LG6 and chromosome 10 (=LG5) (Figure 3B).

In some cases Xenopus linkage groups share more orthologs between amniote sex 

chromosomes than would be expected by chance (that is, given an even distribution of 

orthologs along a chromosome; see Chapter 3 for a more detailed analysis). This may indicate 

the presence of as yet undetected ancestral syntenies, but finer scale mapping and analyses 

are required. The 'pre-duplication' genomes of the dogfish, lamprey and sea urchin, when fully 

assembled and mapped will help resolve these competing hypotheses.

There may still be a case for a common origin of amniote sex chromosomes, albeit with a 

different focus. The chicken Z represents a unique ancestral vertebrate chromosome. Synteny 

of the genes it bears has been maintained to a greater or lesser extent in all extant tetrapods 

(Figure 3B). Using novel computational methods, Nakatani et al (2007) were able to reconstruct 

hypothetical karyotypes for the pre-duplicated genome of the ancestral vertebrate; after one 

round of genome duplication in the ancestral gnathostome; and after two rounds in the 

ancestral amniote. Remarkably, synteny of the ancestral vertebrate chromosome 'A' is 

conserved in the gnathostome chromosome 'A0'; the amniote chromosomes '3' and '26'; and 

ultimately chicken chromosomes Z and 17; spanning a period of time in excess of 500 million 

years.

This same ancestral chromosome also has an unusual tendency to become (remain?) a sex 

chromosome. The Z chromosome of the chicken is shared by all birds, although there are some 

lineage specific rearrangements. In the bizarre platypus sex chromosome system of five X and 

five Y chromosomes, the same syntenic block is represented, mostly by the second largest X 

chromosome (Veyrunes et al. 2008). Gene mapping in the basal squamate Gekko hokouensis 

(Hokou gecko) also reveals conserved synteny and gene order in the Z and slightly degenerated 

W with the chicken Z chromosome (Kawai et al. 2009).

The Z chromosome of the Chinese softshell turtle, Pelodiscus sinensis, shares synteny of 5 

genes with chicken chromosome 15, suggesting origins in a different autosomal pair of 

chromosomes than the chicken Z (Kawagoshi et al. 2009). The chicken Z chromosome is
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homologous to chromosome 6 in this species; though the gene order is different (Matsuda et 

al. 2005). Chicken 15 and Z share no synteny in the hypothetical ancestral amniote karyotype of 

Nakatani et al. (2007), but they do in the hypothetical tetrapod and vertebrate karyotypes 

proposed by Kohn et al (2006). In opossum and Xenopus these 5 genes (and most within their 

bounds) are syntenic with regions that are orthologous to chicken Z (Figure 3B). This is strong 

evidence for a common evolutionary origin of the turtle and bird (and gecko and platypus) sex 

chromosomes in the tetrapod ancestor.
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Chapter summary and aims

This thesis presents the results of my research in the format of a number of manuscripts and 

publications. The appendix lists oral presentations and reproductions of posters given at local 

and international conferences. Broadly, the objective of this thesis was to examine the 

mechanisms of sex chromosome evolution in reptiles using Australian snakes and lizards as 

model groups. In particular, the aims were:

Aim 1: To investigate the status o f dosage compensation in snakes

Chapter Two describes a preliminary study on dosage compensation in a derived 

Australian elapid snake whose W chromosome is a degenerated relic of the Z.

Aim 2: To characterise the molecular aspects o f sex chromosome degeneration in snakes 

Chapter Three discusses the evolution of sex chromosome differentiation in snakes 

including evidence of repetitive sequences shared by the apparently non-homologous 

sex chromosomes of birds.

Aim 3: To investigate the synteny o f amniote sex-linked genes in basal reptile lineages 

Chapter Four presents the first cytogenetic map of the tuatara and discusses the 

dynamics of genome organisation and evolution in this unique and archaic reptile. (In 

press)

Aim 4: To develop a straightforward method fo r making chromosome preparations for 

cytogenetic studies in reptiles

Chapter Five describes a new method for establishing tissue cultures from Australian 

lizards that obviates the need for sacrificing animals. (Published)

Aim 5: To determine what, i f  any, factors predispose changes in mechanisms and modes o f sex 

determination

Chapter Six reviews the literature on sex chromosome evolution lizards, emphasising 

their lability and suggests a close relationship between ZW sex chromosome systems 

and temperature-dependent sex determination. (In press)

Aim 6: To investigate the tempo o f sex chromosome turnover and modal changes in sex 

determination systems

Chapter Seven presents work on the sex chromosomes of Australian agamid lizards in 

which sex determining mechanisms have evolved independently at least twice over the 

last 25 million years. (Published)

The results of these studies and future research avenues are summarised in Chapter Eight.
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Abstract

Many female snakes have differentiated ZW sex chromosomes, in which the W chromosome is 

heterochromatic, rich in repetitive sequences and depauperate of genes. This leads to a dosage 

imbalance between the genes on sex chromosomes and autosomes and between the sexes. In 

Drosophila, C. elegans and mammals, global compensatory mechanisms have evolved to 

restore such imbalances. To date, no studies have explicitly examined the dosage 

compensation status of sex-linked genes in snakes. Here, we show that the W chromosome of 

the Eastern brown snake, Pseudonaja textilis (Serpentes: Elapidae), is almost entirely female- 

specific and rich in repetitive sequences. We used RT-qPCR to determine relative expression of 

seven putative Z-linked genes in males and females. Equivalent male and female expression in 

liver but male biased expression in brain and spleen suggests that dosage compensation is 

tissue specific, and some genes appear to be specifically regulated. Although differences 

between male and female expression are generally not statistically significant, there is a strong 

trend towards higher expression in males, suggesting that no general mechanism for dosage 

compensation exists in snakes.
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Introduction

Differentiated sex chromosomes are common in many animals and some plants (Solari 1994; 

Ainsworth 2000). They spend different amounts of evolutionary time in males and females 

because of their role in sex determination and consequent inheritance patterns. In species with 

male heterogamety, such as mammals and fruit flies, males have different sex chromosomes 

(XY: male & XX: female). In species with female heterogamety, such as snakes, birds and moths, 

females have a distinct sex pair (ZZ: male & ZW: female). Despite independent evolutionary 

origins, there are some striking similarities between different sex chromosome systems. The Z 

and X are usually large and gene rich and are often specialized in gene content (Reinke et al. 

2000; Rogers et al. 2003; Lercher et al. 2003; Storchovä & Divina 2006). The sex-specific 

chromosomes, Y and W, are often heterochromatic, highly repetitive and depauperate of 

genes, leading to different doses of sex-linked genes in males and females (Marin et al. 2000). 

At autosomal loci, such a situation usually has dire developmental if not lethal consequences 

(e.g. Lindsley et al. 1972), but this is not so for sex chromosomes.

Many species have evolved systems to restore the dosage balance between genes on sex 

chromosomes and autosomes, and between the sexes. In Drosophila, transcription of the 

single X in males is upregulated by a male-specific riboprotein complex, so that the dose of X- 

linked genes is on par with autosomal loci in both sexes (Straub & Becker 2007). In mammals 

and nematode worms, all X chromosomes are hyper-transcribed so that in males, transcription 

from the single X is equivalent to that of autosomes (Nguyen & Disteche 2006; Gupta et al. 

2006; Lin et al. 2007). In female nematodes, both X chromosomes are downregulated to equal 

autosomal levels of transcription (Meyer 2005). In female therian mammals, one X 

chromosome is transcriptionally silenced (known as X-inactivation) to achieve the same 

outcome (Heard & Disteche 2006; Deakin et al. 2009). These systems operate chromosome

wide and result in balanced expression of autosomal and X-linked genes; and expression ratios 

of X-linked genes in males and females (M:F) approximately equal to 1.

In other species, dosage compensation appears to occur on a gene-by-gene basis, if at all. At 

several X-linked loci in female platypus, two alleles are transcribed in 50% of cells but only one 

is transcribed in the remainder, indicating that transcriptional silencing is incomplete and 

stochastic (Deakin et al. 2008). M:F expression ratios are less than 0.7 at four of ten X-specific 

loci, implying no global upregulation. In male chickens, both Z chromosomes are 

transcriptionally active (Kuroda et al. 2001; Kuroiwa et al. 2002). Only a minority of Z-linked 

genes are equally expressed in males and females (Itoh et al. 2007). For all Z-linked genes, 

average M:F expression ratios range from 1.2 in liver to 1.7 in fetal brain, suggesting that no
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general mechanism exists to balance dosage inequalities between the sexes (Itoh et al. 2007; 

Mank & Ellegren 2009). In female chickens, Z-linked genes are transcribed at 0.7-0.9 times the 

average level of autosomal loci, but in males the range is 0.9-1.1 (Itoh et al. 2007). Chromatin 

at the Z-linked 460Kb MHM locus is hypomethylated and hyperacetylated only in female 

chickens with the same histone modification present on the single, upregulated X in male 

Drosophila (Bisoni et al. 2005; Teranishi et al. 2001). MHM  may mediate Z-autosome balance in 

females by initiating higher transcription from the single Z (Graves 2003; Bisoni et al. 2005; 

Melamed & Arnold 2007). In silkworms, the average M:F expression of Z linked genes ranges 

from 1.3-1.5 in the soma to 11.5 in gonads (Zha et al. 2009). Male biased expression in birds 

and silkworms probably reflects not only the dosage difference, but also the bias in male- 

specific functions of Z-linked genes (Scnoiz et ai. 2006; Storchovä & Divina 2006; Zha et al. 

2009).

Dosage compensation has not been examined explicitly in any species of snake. All have female 

heterogamety but the Z and W chromosomes are not always morphologically distinguishable. 

Basal lineages such as boas generally possess a cytologically identical ZW pair, colubrid W 

chromosomes are characterized by simple inversions and heterochromatin accumulation, while 

vipers and elapids have a highly rearranged, heterochromatic and gene poor W chromosome 

(Begak et al. 1964; Mengden 1981; Matsubara et al. 2006). The gene content of the Z 

chromosome is conserved across species, and it makes up 8-10% of the haploid genome (Be?ak 

et al. 1964; Mengden 1982; Matsubara et al. 2006). Early studies by Bianchi et al. (1969) 

showed no evidence of asynchrony in replication of the Z chromosomes in male boas, colubrids 

or vipers. The only evidence of dosage compensation comes from two species of natricine 

colubrids, in which enzymatic activity of the sex-linked gene FH is equal in liver extracts from 

males and females (King & Lawson 1996). Here we examine the relative expression of seven 

putative Z-linked genes in the Australian Eastern brown snake, Pseudonaja textilis, whose W 

chromosome is largely female specific, heterochromatic and presumably gene poor. We find no 

evidence of a general dosage compensation mechanism, but it appears that regulation may be 

gene and tissue specific.

Materials & Methods

Animals and sample collection

We included in this study four female and three male adult Australian Eastern brown snakes, 

Pseudonaja textilis (Serpentes: Elapidae). We chose this species because it is commonly 

encountered and the W chromosome is known to be highly differentiated and heterochromatic 

(Mengden 1981; Skinner et al. 2005). Animals were collected opportunistically during summer
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months of 2007-2009. Specimens were sacrificed by intraperitoneal injection of sodium 

pentobarbital and were dissected quickly after death. Sex was identified post mortem by 

internal examination of the gonads. Brain, liver and spleen samples were snap frozen in liquid 

nitrogen and stored at -80°C for later use. We also included an additional liver sample from a 

female museum specimen (Australian Museum, Sydney EBU4989).

Metaphase chromosome preparation

Chromosomes were prepared from short-term culture of peripheral blood leukocytes or from 

fibroblast culture according to standard techniques (Ezaz et al. 2009, 2005). Cultures were 

incubated at 28°C for 3 -  4 days in 5% C02. Chromosomes were harvested 2 hours after adding 

colcemid (75ng/mL) by treating with hypotonic solution (KCI, 0.075mM) and fixed in 

methanokacetic acid (3:1) according to standard protocols. The cell suspension was dropped 

on to slides and air-dried. Slides were kept frozen at -80°C for later use.

Probe preparation and FISH

We used comparative genomic hybridization (CGH) to reveal the female specific region of the 

W chromosome. Male and female probes were prepared from genomic DNA following the 

protocol of Ezaz et al. (2005) except that no competitor DNA was used. DNA was extracted 

using a standard phenol-chloroform procedure (Sambrook & Russell 2001). DNA concentration 

was measured on a NanoDrop and labeled by nick translation with Orange-dUTP (Abbott 

Molecular) for female DNA and with Green-dUTP for male DNA. An equal amount of each was 

used in hybridization experiments. We used synthetic oligonucleotide probes to examine the 

distribution of Bkm-like sequences on the W chromosome. The oligos (GATA)4 and (GACA)7 

(Epplen 1988) were conjugated with Cyanine 5 (Geneworks, Adelaide) and resuspended to 

lpg/pL in H20. Hybridization and microscopy were carried out as previously described (Chapter 

4: O'Meally et al. 2010).

RNA extraction, primer design and quantitative RT-PCR

Total RNA was extracted from 22 tissue samples using the GenElute Miniprep Kit (Sigma 

Aldrich) and DNase treated according to the manufacturer's protocol. First-strand cDNA was 

synthesized by oligo (dT) priming using Superscript III (Invitrogen). Primers for seven putative 

snake Z-linked genes and a putative autosomal housekeeping gene, GAPDH, (Matsubara et al. 

2006) were designed by first identifying conserved exonic sequences using Uprobe (Sullivan et 

al. 2008). RT-PCR was performed using Promega GoTaq Master Mix with initial denaturation at 

94°C for 1 min, 35 cycles of 94°C for 20 sec, annealing at temperatures given in Table 1 for 20 

sec, extension at 72°C for lmin, and final extension for 10 min. These amplified products were 

sequenced using ABI BigDye chemistry at the AGRF in Brisbane (see Table 1), also allowing us
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to test for biallelic expression in liver of one male (ID# Pt0208-1). From these sequences, 

species-specific qPCR primers were designed that flank at least one intron, amplify products 

ranging from 98-136pb, and have similar CG content and melting temperatures (Table 1).

Quantitative RT-PCR was performed using QuantiTect SYBR Green PCR kit (Qiagen) according to 

the manufacturer's instructions. Amplification and detection was carried out on a Rotorgene 

3000 cycler (Corbett Research). Cycling conditions consisted of an initial hold cycle of 95°C for 

20 min; 45 cycles of 94°C for 15 sec; annealing at 55°C for 15 sec; and extension and data 

acquisition at 72°C for 20 sec. Melting curves were constructed from 45°C-95°C to confirm the 

purity of the PCR products. Relative expression of each gene was determined by normalization 

to GAPDH expression using the comparative quantification module of Rotor-Gene6 software 

package (Corbett Research). We tested the null hypothesis that there was no difference 

between male and female relative expression levels using a two-tailed t-test with unequal 

variances (Welch's t) for each gene and for each tissue.

Results

Comparative Genomic Hybridization and Bkm mapping

We used comparative genomic hybridization (CGH) to reveal the sex specific region of the W 

chromosome in a female P. textilis (Fig 1A). The sex chromosomes are the fourth largest pair 

and the W is large and submetacentric (Mengden 1981; Skinner et al. 2005). Female specific 

sequences are found along of the length of the W chromosome, but are concentrated on the 

subcentromeric region of the short arm. Only the centromere and small telomeric regions are 

not marked by the probe. We also used ß/on-derived probes to examine the accumulation of 

this simple repeat (Fig IB, C). The W chromosome shows accumulation of Bkm related 

sequences along its length but the greatest density is found on the distal short arm. Although 

we did not attempt to map any genes in this species, the high density of repeats suggests that 

the W chromosome is highly degraded and gene poor.

Biallelic and relative expression levels of putative Z-linked genes

We sequenced products of the first round RT-PCR, both to develop species-specific qPCR 

primers and to investigate biallelic expression from the Z chromosomes of one male. The 

sequence totals about 3.6kb over seven Z-linked loci. In all, we found one single nucleotide 

polymorphism (SNP) at base pair 231 of 608 (3rd codon position) in the amplified MYST2 

fragment, indicating both alleles were actively transcribed in the liver of this individual (Fig 2).

The putative autosomal housekeeping gene GAPDH was used to normalize expression levels of 

seven putative Z-linked genes in brain, liver and spleen. In brain, all genes were expressed at
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mean levels greater than GAPDH with the exception TAX1BP1 in males and WAC in both sexes 

(Table 2). With the exception of CTNNB1 and KLF6, all genes were expressed at relatively low 

levels in liver. In spleen, RAB5A in females and TAX1BP1 and WAC in both sexes were expressed 

at levels lower than GAPDH. Relative expression levels less than half that of GAPDH are 

considered here to be below accurate detection limits. Of the genes that are within accurate 

detection limits, none of the mean expression levels differs significantly between males and 

females except for CTNNB1 in spleen (156.67 in male, 96.95 in female; p=0.06, Welch's t).

Ratios of male to female expression (M:F) suggest a female bias only for KLF6 in liver (0.62). In 

brain, all genes are expressed at higher levels in males (1.24-2.28) as is the case for spleen 

(1.38-2.28). In liver, expression is equal in both sexes (0.97-1.07). Between individuals, 

expression ievels were highly variable for most genes in brain and spleen. Lower overall 

expression in liver corresponds with lower inter-individual variation (Figure 3).

Discussion

Dosage compensation mechanisms are thought to evolve because of gene loss on degenerating 

sex chromosomes (Marin et al. 2000). Such mechanisms should be unnecessary in basal 

lineages of snakes, as their sex chromosomes are largely homomorphic, each possessing a 

similar compliment of genes. In derived snake lineages, such as elapids, a selective advantage 

to dosage compensation is expected because their W chromosomes are highly 

heterochromatic and presumably gene poor. We used CGH to reveal the female-specific region 

of the W chromosome in P. textilis, which occupies most of its length (Figure 1A). Bkm 

sequences are known to accumulate in the heterochromatic region of snake W chromosomes 

(Jones & Singh 1985) and their co-occurrence with the female specific probe on the short arm 

suggests that suppression of recombination was initiated in this region, as for other snakes 

(Matsubara et al. 2006). Although we have not mapped any genes to the sex chromosomes of 

P. textilis, the degenerated W chromosome and highly conserved synteny of the snake Z 

(Matsubara et al. 2006; Srikulnath et al. 2009; Chapter 3) make this a good candidate in which 

to examine dosage compensation.

Asynchrony in replication of homogametic sex chromosomes is associated with transcriptional 

inactivation of one homolog in mammals. X-inactivation serves to restore the balance of 

hyperactivated X chromosomes between the sexes. The inactive X is late replicating and visible 

in somatic cells as the heterochromatic Barr body. These are features not so far described in 

birds or other reptiles (Cock 1964; Schmid et al. 1989; Bianchi et al. 1969). We surveyed seven 

putative Z-linked genes (~3.6kb of sequence) in one wild caught male and found a single SNP in 

the transcript of MYST2. If, by analogy to X-inactivation, male snakes inactivate one Z
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chromosome, this might indicate random inactivation as in therian mammals and some 

Orthoptera (Rao & Padmaja 1992), or escape from inactivation (Carrel & Willard 2005). 

However, biallelic expression from this locus, the absence of sex chromatin in males and 

synchrony in Z chromosome replication strongly suggest that inactivation of one sex homolog 

does not occur in snakes.

In this preliminary study, we measured relative expression in males and females against a 

single autosomal control gene, GAPDH. Thus, we can calculate expression ratios between the 

sexes, but not between sex chromosomes and autosomes. In the heterogametic sex of 

Drosophila, C. elegans, chickens, primates and rodents, some form of dosage compensation 

equalizes autosomal expression relative to sex-linked genes in somatic tissues (Gupta et al. 

2006; Nguyen & Disteche 2006; Straub & Becker 2007; Lin et al. 2007; Itoh et al. 2007). In some 

species, such as Drosophila, the sex-specific mechanism operates globally, but is poorly 

understood in nematodes and mammals. In chickens, Z-autosome balance is less effective; it 

probably occurs on a gene-by-gene basis, but the MHM locus may also play a more global role 

(Melamed & Arnold 2007). The situation in snakes is likely similar; however, more data from 

autosomal loci are required to address this question.

A previous study of two colubrid snakes suggested dosage compensation might operate 

because of equal enzymatic activity of the Z-linked FH in liver extracts of males and females 

(King &. Lawson 1996). Although we did not measure expression at this locus, our expression 

data for three genes in liver suggest that M:F expression ratios are generally equal in this tissue 

(0.97-1.07). Liver also shows relatively low M:F bias in whole-chromosome microarray studies 

of chicken (1.24) and zebra finch (1.19), species where dosage compensation between sexes is 

known to be poor (Itoh et al. 2007). Such small biases would be difficult to detect in standard 

allozyme experiments, so the findings of King and Lawson (1996) may not be strong evidence 

for dosage compensation in snakes.

In P. textilis, all genes show a bias towards male expression in brain (1.24-2.28) and spleen 

(1.38-2.28), with the exception of KLF6 (spleen M:F=0.62). Krupel-like factor 6 is a well- 

conserved transcription activator and a tumor suppressor gene in humans and mice (Maglott 

et al. 2005). A sex-specific role in the spleen of female snakes would be speculative and higher 

female expression may just reflect the low sample size (male-female average expression does 

not differ significantly; p=0.3, Welch's t). One gene, TUBG1, has a M:F expression ratio of 1.24 

in brain, which suggests it may be specifically regulated. Although differences between males 

and females are not statistically significant, male biased expression for the remainder of genes 

in both tissue types suggests that, as for birds and moths, there is no global mechanism for
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dosage compensation between the sexes in snakes (Arnold et al. 2008; Zha et al. 2009). Equal 

expression between males and females in liver corresponds with lower overall expression of 

the genes examined therein, but it may also reflect tissue-specific regulation to balance 

expression between males and females. Larger sample sizes and normalization against different 

housekeeping genes will establish the veracity of these observations.

Like other ZW taxa such as birds and moths, it seems snakes lack a global mechanism to 

compensate for gene dosage between the sexes (Traut et al. 2007; Arnold et al. 2008; Zha et al. 

2009). Snake sex chromosomes are 105-166 million years old [Chapter 3) and the Z accounts 

for about 10% of the haploid genome, so there should be sufficient evolutionary time and 

pressure for chromosome-wide mechanisms to develop (Marin et al. 2000), but they 

apparently have not. Several authors have suggested that the evolution of dosage 

compensation is mediated by specialized gene content on sex chromosomes and that sexual 

selection plays an important role (e.g. Naurin et al. 2010; Mank 2009). Homologous syntenic 

blocks are well conserved throughout Sauropsida (Matsuda et al. 2005; Srikulnath et al. 2009), 

so changes in the gene content of the snake Z can be inferred over evolutionary time. For 

example, it would be of interest to see if genes with female-specific functions are 

underrepresented on the snake Z, as is the case in birds (Storchovä & Divina 2006), and if 

female-specific regulatory changes or autosomal translocations of such genes are coincident 

with W chromosome degradation. These and other analyses will remain intractable, however, 

until non-mammalian species are better represented in public genome projects.
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Table 1 . RT-PCR and RT-qPCR primers used in this study. We initially designed primers for seven 
snake Z-linked genes and an autosomal control GAPDH (Matsubara et al. 2006; Srikulnath et al. 
2009) by identifying conserved exonic sequences across vertebrates using Uprobe (Sullivan et 
al. 2008). After sequencing these products, we designed a second set of nested primers 
suitable for use in qPCR that are specific to Pseudonoja textilis. The columns list the forward 
and reverse sequences, the annealing temperature (Ta) for each primer pair; the product size 
obtained and Genbank accession numbers. * For GAPDH, the same primer pair was used for 
quantitative PCR as for the initial round RT-PCR.________________________________________

F o rw a rd  S e q u e n c e R everse S e q u e n c e Ta P ro d u c t G e n b a n k

( 5 ' - 3 ' ) ( 5 ' - 3 ' ) °C Size A ccess io n

First ro u n d  PCR p r im e rs

C T N N B 1  l a  2 b C C TG G TTC G A TAC TG A C CTG TA CCC ATAG G A A  A C T CAG C TT G G T 5 1 1 4 0 X X 1 2 3 4 5 6

KLF6  l a 2 b A G G C A A C TG G G T A G G G TG C A A A A A G C C TTA C A G A TG TTC A TG G G 5 5 2 7 8 X X 1 2 3 4 5 6

M Y S T 2  2 a 3 b TTG G C C G C TA TG A AC TG G A TA C CCT C TTT G G CTAT CC ATT CAT C 5 2 6 0 8 X X 1 2 3 4 5 6

TU B G 1 TG G C C A A C C A C A C C A A TC A A T C AAC AC A A A TTA  AG A  AG G G C A A C T  G 5 1 4 1 7 X X 1 2 3 4 5 6

R A B 5A  2 a 3 b AG CTG C TTTTC TA  ACCC A A A C T G T TG TG TG G G T TC A G TA A G G T C 5 1 4 2 9 X X 1 2 3 4 5 6

T A X I BP 1 l a  2 b TG A A G G A A A C TC TG A C A TG C TG C TA A C C TTTTG  C TC TG TTTG C A 5 0 1 8 4 X X 1 2 3 4 5 6

W A C  l a 2 b TACACAT G G C TT CCCAT G G C TT C C A TC A A A CC A G TG G TTC A TC C 5 5 1 4 6 1 X X 1 2 3 4 5 6

G A P D H  l a 2 b * G G C A C T G T  CA A G  G CTG AG A ACG T G G A G TC C A C TG G T G T C TT CAC 5 1 1 1 9 X X 1 2 3 4 5 6

N e s te d  qPCR P rim e rs

C TN N B 1 TG C A TTG TG A TTG G C C TG TA G G A  AAC TC  AG CTTG G TTA G TG TG 5 5 9 8 X X 1 2 3 4 5 6

KLF6 G A C C TC G A A G C C TC TTA G C C C TG TG A C A G G TG C TTC TC C A 5 5 1 0 5 X X 1 2 3 4 5 6

M Y S T 2 CCTCTC rC A G A C T TG G G A C T G C TG TC TC TTG G C TG A TC TC 5 5 1 1 9 X X 1 2 3 4 5 6

TU B G 1 TCTG  AG CCCTCCAACC A A C A C A A G G G C TT CTCTG TG  G CTTACCT C A 5 5 1 2 0 X X 1 2 3 4 5 6

R A B 5A TG G TC A A G A A C G G TA C C A C A T G C T TG C C T C T G G A G TT  CTT 5 5 1 3 6 X X 1 2 3 4 5 6

T A X I BP 1 AC A  A A G  G CTG G A C TT CTTG A G T T TC A A C TTG A TC TC TG A G TTG C A TT 5 5 1 1 6 X X 1 2 3 4 5 6

W A C TG A TTTG G A C C A G G A G A TG G A G TC A A C G TC TC A G C A G C C T 5 5 1 0 6 X X 1 2 3 4 5 6
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Table 2. Average relative expression levels of putative Z-linked genes in Pseudonajo textilis. 
Values are normalized against GAPDH expression and were determined for four females and 
three males using total RNA extracts of brain, liver and spleen, with an additional liver sample 
from one female. Mean values for male expression are significantly different from female 
expression only for WAC in brain (**, p=0.03; Welch's t) and CTNNB1 in spleen (*, p=0.06). 
Ratios of male to female (M:F) expression approximately equal to 1 indicate a compensated 
locus, while ratios greater than 1.4 are consistent with no dosage compensation. Ratios less 
than 1 indicate female biased expression. Mean values below 0.5 and their M:F ratio (shown in 
blue) are below accurate detection limits.

CTNNB1 KLF6 MYST2 TUBG1 RAB5A TAX1BP1 WAC
Brain Male 132.33 48.00 4.87 2.92 2.97 0.05 0.81

Female 93.85 27.75 3.48 2.36 1.68 1.03 0.35
M:F 1.41 1.73 1.40 1.24 1.77 0.05 **2.28

Liver Male 6.70 1.57 0.23 0.72 0.17 0.03 0.06
Female 6.88 1.46 0.32 0.72 0.17 0.01 0.05
M:F 0.97 1.07 0.73 1.00 0.97 3.39 1.39

Spleen Male 156.67 41.73 3.83 293.83 2.53 0.10 0.75
Female 96.95 67.70 2.78 128.94 0.90 0.03 0.47
M:F *1.62 0.62 1.38 2.28 2.81 3.26 1.60
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Figure 1. (A) Comparative genomic hybridization of male and female genomic DNA on female 
metaphase chromosomes of Pseudonoja textilis. Female-specific sequences make up the 
majority of the W chromosome. (B) Hybridization of (GATA)7 and (C) (GACA)4 Bkm probes to 
female metaphase chromosomes. Bkm sequences map along the length of the W chromosome 
but are concentrated on the short arm. The W chromosome is highly heterochromatic and the 
high repeat content suggests it is depauperate of genes. The scale bar represents 10pm.
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Allele 1 A T T T A C T F I t  C C a  a  a G 
Allele2 A T  f  T A C T [ c J T  C C A A A G

Figure2. Biallelic expression from the putative Z-linked gene MYST2 in a wild caught male 
Pseudonaja textilis. Expression of both alleles suggests that one Z chromosome is not 
transcriptionally silenced, in contrast to the inactive X chromosome in female therian 
mammals.
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Figure 3. Relative expression levels of seven putative Z-linked genes in brain, liver and spleen 
from four female and three male Pseudonaja textilis (and an additional liver sample from one 
female). Red dots indicate individual observed expression levels normalized against expression 
of the autosomal gene GAPDH. Blue dots indicate the mean value with 95% confidence 
intervals indicated in blue.
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Non-homologous sex chromosomes of birds and snakes 
share repetitive sequences
Denis O'Meally

Abstract

Snake sex chromosomes provided Ohno (1967) with the material on which he based his theory 

of how sex chromosomes differentiate from autosomal pairs. Like birds, snakes have a ZZ 

male:ZW female sex chromosome system, in which the snake Z is a macrochromosome much 

the same size as the bird Z. However, the gene content shows clearly that the snake and bird Z 

chromosomes are completely non-homologous. The molecular aspect of W chromosome 

degeneration in snakes remains largely unexplored. Using comparative genomic hybridization, 

we identified the female-specific region of the W chromosome in representative species of 

Australian snakes. In the basal python Liasis fuscus, no sex-specific region can be identified, but 

the W of the colubrid Dendrelaphis punctulata shows a large domain on the short arm that 

consists of female-specific repeats. The large W of Notechis scutatus is composed almost 

entirely of repetitive sequences, including Bkm and 18S rDNA related elements. FISH mapping 

of both simple and complex probes shows patterns of repeat amplification concordant with the 

size of the female-specific region in each species examined. Mapping of intronic sequences of 

genes that are sex-linked in both birds (DMRT1) and snakes (CTNNB1) reveals massive 

amplification in discrete domains on the W chromosome of the elapid Notechis scutatus. Using 

chicken W chromosome paint, we demonstrate that repetitive sequences are shared between 

the sex chromosomes of birds and derived snakes. This could be explained by an ancestral but 

as yet undetected syntenic association of bird and snake sex chromosomes. We also establish 

that synteny of snake Z-linked genes has been conserved for at least 166 million years; and that 

the snake Z consists of two conserved blocks derived from the same ancestral vertebrate
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chromosome.
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Introduction

Sex chromosomes come about by the acquisition of a sex-determining allele at a locus on an 

ordinary pair of autosomes (Muller 1914,1918). Differentiated sex chromosomes arise because 

of sexually antagonistic alleles (which are advantageous to only one sex) at loci closely linked to 

the sex-determining region (Fisher 1931; Bull 1983; Rice 1987). Selection favors their restriction 

to one sex by suppression of recombination, which may subsequently spread along most or all 

of the chromosome (Nei 1969; Charlesworth & Charlesworth 1980; Bull 1983; Rice 1996). In 

the absence of recombination, retrotransposons invade sex chromosomes and tandem 

repetitive sequences are amplified in the non-recombining region (Charlesworth et al. 1994). 

Heterochromatin also accumulates, perhaps as a cellular defense against unchecked 

retrotransposition (Steinemann & Steinemann 2005).

Most sex chromosome repeats are species-specific and highly variable, even between closely 

related taxa. This suggests rapid amplification and molecular differentiation occur repeatedly 

after divergence from a common ancestor. Recent sequencing of the male-specific euchromatic 

region of the Y chromosome (MSY) in human and chimpanzee provides a striking example of 

the changes that have occurred since their divergence 6 million years ago (MYA) (Skaletsky et 

al. 2003; Hughes et al. 2010). The MSY of both species has undergone significant 

rearrangement, such that the structure in a common ancestor cannot be inferred. The chimp 

MSY has several unique palindromic structures and greater numbers of those that are common 

to humans. In each species, more than 30% of MSY sequences have no homologous 

counterpart in the other.

Some sex-chromosome repeats have a broader taxonomic distribution whose lineage specific 

amplification suggests stochastic processes play an important role, e.g. the P2000-17, ApaI and 

ZMB repeat families isolated from bird W chromosomes (Griffiths & Holland 1990; Yamada et 

al. 2006; Itoh et al. 2008). Nucleolus organizer regions (NORs) consist of tandem arrays of 18S, 

5.8S and 28S rDNA (Shaw & Jordan 1995). When NORs are located on sex chromosomes, their 

repetitive nature can lead to massive amplification, as on the W of the Chinese soft shell turtle, 

Pelodiscus sinensis (Kawai et al. 2007). The banded krait minor-satellite (Bkm) was first isolated 

from snakes and consists of tandem arrays of GATA and GACA sequences (Singh et al. 1976; 

Epplen et al. 1982). ß/cm-related repeats have since been isolated from the heterogametic sex 

of plants and many animals (Jones & Singh 1981; Singh et al. 1981; Arnemann et al. 1986; 

Schäfer et al. 1986; Nanda et al. 1990,1991; Parasnis et al. 1999). In snakes, the frequency of 

Bkm repeats in the genome corresponds with the degree of ZW differentiation (Jones & Singh 

1985).
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Snake sex chromosomes provided Ohno (1967) with the material on which he based his theory 

of how sex chromosomes differentiate from autosomal pairs. Ohno supposed the progressive 

stages in sex chromosome degeneration could be observed among the representative families 

of snakes. More basal lineages such as pythons and boas (Henophidia) possess homomorphic 

sex chromosomes that are cytologically indistinguishable. Colubrid snakes are characterized by 

sex chromosomes that are often similar in size but differ in centromere position or the extent 

of heterochromatin. Elapidae and Viperidae generally possess markedly dimorphic sex 

chromosomes, which may differ greatly in size, centromere position and heterochromatin. A 

similar phylogenetic pattern has been described in many other taxa, including mammals 

(Graves 2006), fish (Kirpichnikov, 1981; cited in Rice, 1996), and birds (Graves & Shetty 2001; 

Tsuda et ai. 2007; Mank & Ellegren 2007).

Like birds, snakes possess a ZZ male/ZW female sex chromosome system, in which the snake Z 

is a macrochromosome much the same size as the bird Z, representing 8-10% of the haploid 

genome (Bianchi et al. 1969). Such are the similarities in gross morphology that early workers 

hypothesized that the Z chromosomes of birds and snakes were homologous (Be^ak et al. 

1964). However, recent mapping data show that this is not so (Matsubara et al. 2006; Kawai et 

al. 2007). The chicken Z is equivalent to chromosome 2p in snakes. The snake Z is homologous 

to the short arm of chicken chromosome 2 and to chromosome 27. Synteny of eleven Z-linked 

genes mapped in Elaphe quadrivirgata (Colubridae) is conserved in Python molurus 

(Pythonidae) and Protobothrops flavoviridis (Viperidae), indicating that the snake Z is 

conserved across all species (Matsubara et al. 2006).

Here we examine the molecular aspects of sex chromosome degeneration in snakes. We 

identify the female-specific region of the W chromosome in representative snake species and 

show that an increasingly complex suit of repeats accompanies the evolution of W 

chromosome heteromorphy. With few exceptions, most sex-specific repeats reported to date 

are restricted to closely related taxa. However, we demonstrate that the W chromosome of 

derived snakes shares sequences with the sex chromosomes of chickens, despite 275MV of 

independent evolution. This could be explained by an ancestral but as yet undetected syntenic 

association of bird and snake sex chromosomes. Alternately, such unusual similarity perhaps 

indicates functional homology of the repeats, and suggests that convergent degeneration is a 

general property of sex chromosome evolution.
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Materials & Methods

Animals

We included in this study representative and common species of Australian snakes. We chose 

the water python Liasisfuscus (Pythonidae); the green tree snake, Dendrelaphis punctulata 

(Colubridae); and the common tiger snake, Notechis scutatus (Elapidae). The sex chromosomes 

of these species show, respectively, various degrees of structural differentiation, ranging from 

homomorphic to strongly heteromorphic (Shine & Bull 1977; Mengden & Stock 1980; Mengden 

1982). For the python samples, we were unable to obtain DNA from a male L. fuscus and 

instead used material from the closely related congener L olivaceus. Numbers and collection 

localities are given in Table 1. We also used female chicken metaphase spreads available in our 

laboratory as hybridization controls for most probes.

Metaphase chromosome preparation

Chromosomes were prepared from short-term culture of peripheral blood leukocytes or from 

fibroblast culture according to standard techniques (Ezaz et al. 2009a, 2005). Cultures were 

incubated at 30°C for 3 -  4 days in 5% C02. Fibroblast cultures were established according to 

the protocol of (Ezaz et al. 2009) or were available in our lab. Chromosomes were harvested 2 

hours after adding colcemid (75ng/mL) by treating with hypotonic solution (KCI, 0.075mM) and 

fixed in methanoliacetic acid (3:1) according to standard protocols. The cell suspension was 

dropped on to slides and air-dried. Slides were kept frozen at -80°C for later use.

Probe preparation and FISH

For comparative genomic hybridization (CGH), we prepared male and female probes from 

genomic DNA following the protocol of Ezaz et al. (2005) except that no competitor DNA was 

used. DNA was extracted using a standard phenol-chloroform procedure (Sambrook & Russell 

2001). DNA concentration was measured on a NanoDrop and labeled by nick translation with 

Orange-dUTP (Abbott Molecular) for female DNA and with Green-dUTP for male DNA. An equal 

amount of each was used in hybridization experiments.

The chicken W chromosome paint was supplied by Farmachrom (Kent, UK) as primary DOP-PCR 

product (Griffin et al. 1999). We made subsequent amplifications directly incorporating 

Orange-dUTP in the products by DOP-PCR. Briefly, the reactions were carried out with 200pM 

of 6MW primer (5'-CCG ACT CGA GNN NNN NAT GTG G-3') (Telenius et al. 1992), lOpL of 5X 

buffer with MgCI2, 20mM dNTPs and 1U of GoTaq polymerase (Promega) in 50pL. The reaction 

mixture was cycled at 94°C for 2 min, 35 cycles of 94°C for 30 s, 62°C for 1 min and 72°C for 5 

min and a final extension at 72°C for 10 min.
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We used synthetic oligonucleotide probes to examine the distribution of Bkm-like sequences 

on snake sex chromosomes. The oligos (GATA)4 and (GACA)7 (Epplen 1988) were conjugated 

with Cyanine 3 or Cyanine 5 (Geneworks, Adelaide, Australia) and resuspended to lpg/pL in 

H20.

To map 18S rDNA in Notechis scutatus, we used a BAC clone (AGI 329J14) from the tammar 

wallaby containing 18S rDNA (Haines 2005). The clone was grown in a 15mL overnight culture 

and BAC DNA extracted using the Promega Wizard Plus SV Miniprep DNA Purification System 

according to the manufacturer's protocol (with volumes scaled up).

Homologous probes for DMRT1 (intron 1) and CTNNB1 (terminal intron) were prepared by long 

range PCR for hybridization to N. scutatus chromosomes. Genomic DNA from both males and 

females was prepared as above and used as template for the reaction. Primers were designed 

to anneal to the exons flanking the intron of interest (DMIF & DMIR for DMRT1 intron 1 and 

CTNNB1F & CTNNB1R for the terminal intron of CTNNB1, see Table 2 for sequences). 

Amplifications were carried out using the TaKaRa LA PCR kit (Takara Bio Inc, Japan) according to 

the manufacturer's protocol and recommended cycling conditions. Positive bands were 

isolated and subject to a second round of PCR to ensure only single products were used for 

subsequent analyses. For hybridization, we used amplicons derived from a female specimen (ID 

# 130964).

To map the terminal intron of DMRT1 we used a lambda phage clone isolated from a female N. 

scutatus genomic library screened for DMRT1 (Stiglec 2007). The clone was purified after 

overnight culture in XU-blue MRA (P2) E. coli (Stratagene) according to standard protocols 

(Sambrook & Russell 2001). PCR was performed to test for the presence of the conserved 

intronic and intergenic regions described in Brunner et al. (2001) according to the protocol 

therein.

For intronic PCR products and the BAC and phage clone, purified DNA was labeled by nick 

translation with Orange-dUTP. For all hybridizations, 200-500ng of labeled DNA and 1 pg boiled 

gDNA (not used for CGH and Bkm hybridizations) were co-precipitated and resuspended in 

hybridization buffer (50% m / m deionized formamide, 10% w/v dextran sulphate, 2X SSC, IX 

Denhardt's solution and 40 mmol/L sodium phosphate). Hybridization, slide preparation, 

image capture and analysis followed the protocol of O'Meally et al. (2010).

Sequencing of introns

The first intron of DMRT1 and the terminal intron of CTNNB1 were amplified by PCR as above, 

including a secondary amplification of isolated bands. Amplicons were cloned in to TOP10
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vector using the TOPO-XL PCR cloning kit (Invitrogen) according to the manufacturer's protocol. 

Positive clones were identified by restriction analysis. Sequence was obtained using a primer 

walking strategy. The primers M13 Forward (-20) and M13 Reverse (Invitrogen) were used to 

obtain initial sequence, from which subsequent primers (Table 2) were designed. Sequencing 

was carried out using Big Dye chemistry (Applied Biosystems) at the Australian Genome 

Research Facility (Brisbane). The repetitive content of the introns was examined using 

RepeatMasker (Smit et al. 1996) and by searching Genbank nr by BLAST (Altschul et al. 1990).

Synteny analyses

To determine if the synteny of genes found on the sex chromosomes of snakes is a recent 

event, we examined the arrangement of these regions in chicken, human, Xenopus and 

zebrafish. We used the same approach to test for ancestral synteny of genes on the Z 

chromosomes of snakes and chicken. Using the Ensembl BioMart interface (version 56) 

(http://www.ensembl.org), we obtained the positions of 15777 orthologs with known locations 

from chicken (WASHU 2.1, May 2006) and zebrafish (Zv8, Dec 2009); 21389 genes from human 

(GRCh37, Feb 2009) and zebrafish; and 14643 genes from chicken and human. We also made 

use of the preliminary Xenopus tropicalis integrated linkage map (Sater et al., in prep; JGI 4.1, 

Aug 2005). We were able to assign scaffolds bearing Ensembl Xenoptvs-human orthologs (7841 

genes), Xenopivs-chicken (6158 genes) and Xenopus-zebrafish (9927 genes) to Xenopus linkage 

groups. We inferred ancestral synteny of human chromosomes by counting Ensembl Xenopus- 

human orthologs on each linkage group across all human chromosomes. If the observed 

number was more than three times the expected number (given an even distribution along a 

chromosome), we took this as evidence of an ancestral syntenic association of one or more 

human chromosomes. This procedure was repeated for comparisons between all other 

species. These data are presented in Supplementary Tables 1-6.

Results

Comparative Genomic Hybridization

We used comparative genomic hybridization (CGH) to reveal the sex specific region of the W 

chromosome in a female of representative python, colubrid and elapid snakes (Fig ld -f). In 

female L.fuscus, we observed no sex specific signal on any chromosome. In Dendrelaphis 

punctulatus (Colubridae), the sex chromosomes are submetacentric and the fourth largest pair 

(Mengden 1982). CGH clearly identified the W chromosome as heavily biased with female- 

specific sequences along its length, though the distal long arm consistently produced a more 

intense signal (Fig le). In Notechis scutatus, the sex chromosomes are the fourth largest pair 

and the W is large and acrocentric (Shine & Bull 1977; Mengden 1981). Female-specific

http://www.ensembl.org
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sequences are found along most of the length of the W chromosome. The distal long arm of 

the W stains more intensely with DAPI and is not marked by the CGH probe (Fig If).

Chicken W chromosome paint and Bkm sequences

To investigate the extent to which bird sex chromosome repeats are amplified on the sex 

chromosomes of snakes, we used chicken W chromosome paint on representative snake 

species (Fig la-c). We also used ß/on-derived probes to examine the accumulation of this 

simple repeat on snake sex chromosomes (Fig 2a-f). FISH mapping of both simple and complex 

probes show patterns of repeat amplification concordant with the size of the female-specific 

region. In L fuscus, no chromosomes were marked by these probes, indicating that neither the 

sequences found on the chicken W chromosome nor the Bkm repeat are amplified in this 

python. In D. punctulatus the distal region of the long arm showed noticeable accumulation of 

both classes of sequences, however the hybridization pattern and signal intensity differ 

between probes. In N. scutatus, the W chromosome shows heavy accumulation of Bkm related 

sequences along the length of the region identified as female-specific by CGH. The chicken W 

chromosome paint also marked this region but the signal was punctate and less intense. In the 

chicken, the W chromosome paint hybridized to all but the subtelomeric region of the short 

arm of the W, however no signal was observed with either Bkm probe (data not shown).

18S rDNA and intronic sequences on the W chromosome of Notechis scutatus

We hybridized an 18S rDNA probe from the tammar wallaby to the metaphase chromosomes 

of male and female N. scutatus (Fig 3d,e). A single active NOR on chromosome 1 has previously 

been identified by silver staining (Mengden 1981). 18S rDNA maps to the same secondary 

constriction in both males and females. In females, however, the W chromosome shows 

massive amplification of 18S rDNA sequences along the length of the female-specific region. 

Hybridization of the two PCR-derived intron probes shows similar amplification on the W. The 

DMRT1 intron 1 probe does not mark chromosome 2, where this gene is expected to map; 

instead, it shows an intense signal along the female-specific region of the W (Fig 3a). The 

CTNNB1 terminal intron probe shows a similar amplification on the W, but no signal on the Z 

chromosome, where the gene is located in all snakes so far examined (Fig 3c). The short arm of 

chromosome 6 has a large distal heterochromatic region (Mengden 1982) that is also marked 

by this probe. The phage-derived DMRT-related probe marked subtelomeric regions on Zp and 

Wq (Fig 3b). Hybridization on the W chromosome corresponds with the terminal DAPI-bright 

heterochromatic region. Again, we observed no signal on chromosome 2. PCR confirmed the 

presence of the conserved intronic region "A" in the probe (Brunner et al., 2001; data not 

shown) and Stiglec (2007) amplified sequences from exons 3 and 4. We use the term 'DMRT-
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related' for the repeats identified with this probe. None of the intronic probes described 

hybridized to chicken metaphase chromosomes (data not shown).

We sequenced the cloned 5.4kb DMRT1 and 1.2kb CTNNB1 introns using a primer walking 

strategy in an attempt to characterize the repetitive elements contained therein (Genbank 

accession numbers HM559261 and HM559262 respectively). Dotplots reveal no significant 

tandem duplications (not shown). Searching for repeats using RepeatMasker 

(http://repeatmasker.org) failed to identify any repetitive element in either intron; however, 

DMRT1 intron 1 contains some extended mononucleotide stretches. We searched the GenBank 

non-redundant (nr) database by restricting the query to Serpentes (snakes). DMRT1 intron 1 

revealed homology to intronic sequences of MYH2 and a number of venom genes (85-96% 

identity over 45-134bp) and flanking sequences of microsatellites. No such pattern was 

observed for the terminal intron of CTNNB1, however, when querying all of the non-redundant 

database, short regions of homology were found with chicken BAC clone CH261-55013 (82% 

identity over 45 bases) and human BAC clone RP11-281015 (70% identity over 75 bases).

These clones map to the chicken Zp (20.72Mb) and human 5q35.3, respectively (UCSC Genome 

browser http://genome.ucsc.edu).

Analyses of ancestral syntenies

We investigated the possibility of an ancestral association of chicken (GGA) and snake Z 

chromosomes by examining the location of orthologs in humans (HSA), Xenopus tropicalis 

(XTR) and zebrafish (DRE) (see Supplementary Tables 1-6). First, we looked for ancestral 

synteny of orthologs from GGA2 and GGA27 to determine the antiquity of the snake Z 

chromosome. GGA2 shares regions of orthology with HSA7, 8, 18 and Y and GGA27 is 

equivalent to HSA17; in Xenopus, GGA2=XTR2 and GGA27=XTR10; in zebrafish, GGA2=DRE2,

16, 19 and 24 and GGA27=DRE3, 11 and 12. In each species, none of the chromosomes 

orthologous to GGA2 is common with those orthologous to GGA27, suggesting that the snake Z 

arose more recently than did the tetrapod or amniote ancestor. To look for ancestral synteny of 

chicken and snake Z chromosomes, we examined the location of GGAZ orthologs in humans, 

Xenopus and zebrafish and compared their locations to GGA2 and GGA27 orthologs, as already 

identified. In humans, GGAZ=HSA5, 9,18; in Xenopus, GGAZ=XTR2; in zebrafish, GGAZ=DRE5, 8, 

10, 21. Genes on the snake Z (GGA2) and GGAZ are syntenic in HSA18 only, but synteny of 

these genes in a tetrapod ancestor is not supported.

http://repeatmasker.org
http://genome.ucsc.edu
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Discussion

Repeat accumulation on snake W chromosomes

We mapped the distribution of a number of repetitive DNA sequences on the W chromosomes 

of snakes whose W chromosomes differ in the degree of differentiation. The pattern of repeat 

accumulation shows that W chromosome differentiation is accompanied by an increasingly 

complex suite of repetitive DNA, the distribution of which coincides with the female-specific 

region of the W chromosome. In the water python, L. fuscus, we found no evidence of any 

amplified sequences on the W chromosome (Figs la, d & 2a, d). This is consistent with previous 

G and C banding studies that identified no cytological differences between the chromosomes 

of males and females in this species (Mengden & Stock 1980; Mengden 1982). CGH should be 

sensitive enough to detect differential segments as small as 2-3Mb (Schoumans et al. 2004).

Our failure in identifying the female-specific region of the python W may be due to differential 

amplification of repeats common to both sexes. It could also be explained by the use of male 

DNA from the congener L. olivaceous; however, we should still have identified female-specific 

regions using this probe, if present. Sex chromosomes in both species are yet to be 

demonstrated cytologically, but are presumed to be the fourth largest pair, as in many other 

snakes (Mengden & Stock 1980).

In the colubrid and elapid species included in this study, differentiated sex chromosomes have 

previously been characterized by standard cytogenetic techniques (Shine & Bull 1977;

Mengden 1981, 1982). In D. punctulatus the W chromosome differs from the Z in centromere 

position (the short arm is slightly shorter), and C banding reveals it to be largely 

heterochromatic (Mengden 1982). We show that female-specific sequences are found along its 

length, but concentrated on the distal region of the long arm (Fig le). This same distal region is 

heavily marked by Bkm probes and the chicken W chromosome paint. In N. scutatus, a similar 

pattern is observed; however, the majority of the W chromosome bears female-specific 

sequences, 8km, DMRT1-releated, C77VA/ßl-reiated and 18S-reiated repeats and chicken W 

chromosome sequences. A different hybridization pattern for each probe suggests that each 

class of repeats is unique.

Bkm is often, but not always associated with heterochromatin both in autosomes and 

degenerated sex chromosomes (Jones & Singh 1985; Nanda et al. 1991). Our data are in 

agreement with previous studies in which Southern hybridization was used to demonstrate a 

positive relationship with the degree of Bkm accumulation and W chromosome degeneration 

(Jones & Singh 1985). While a common origin of Bkm repeats has been assumed (e.g. Epplen et 

al. 1983), the simple sequence and tandem structure is prone to amplification by slipped-
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Strand mispairing and similar replicative errors, so independent origins are equally likely 

(Epplen 1988). Proteins that specifically bind Bkm have been isolated from the gonads of 

snakes, silkworms, mice and man (Singh et al. 1994; Priyadarshini et al. 2003). A role in 

regulating the decondensation and transcriptional activation of Y or W heterochromatin has 

been suggested but remains to be demonstrated (Singh et al. 1994). The absence of this repeat 

in large domains on the sex chromosomes of pythons argues against a conserved, functional 

role for Bkm.

Searching RepeatMasker with sequence from the first intron of DMRT1 and the terminal intron 

of CTNNB1 did not reveal any known repetitive element. Sequence similarity with introns of 

other, unrelated genes suggests that they may contain extinct and now degenerate 

transposable elements. We suggest that the hybridization signal occurs because the probes 

recognize transposable elements that have been greatly amplified on the degenerated W 

chromosome of N. scutatus. In addition to a W chromosome signal, the CTNNBl-re\ateö repeat 

is amplified in a region of heterochromatin on chromosome 6 (Fig 3c). The DMRT-related 

phage clone contains repeats common to both the Z and W chromosome, though the size of 

the domain occupied by these repeats is larger on the W chromosome (Fig 3b). This explains 

why the subtelomeric region of the W chromosome long arm was unmarked by the CGH probe 

(Fig If). Its distribution is coincident with a heterochromatic region identified by C banding 

(Mengden 1982). The co-location of heterochromatin and putative transposable elements 

supports a recent suggestion that heterochromatin accumulates as a cellular defense against 

unchecked activity of retrotransposons (Steinemann & Steinemann 2005).

The nucleolus organizer region (NOR) is located on chromosome 1 of N. scutatus, as for most 

elapid snakes (Mengden 1982). Silver staining shows that this is the only active NOR, at least in 

somatic tissues (Mengden 1981). We confirmed its autosomal location using FISH but found 

that 18S-related repeats are also amplified on the W chromosome (Fig 3d-e). This is also the 

case for the \N chromosomes of the colubrids E. quadrivirgata and Boiga irregularis (O'Mealiy, 

unpub data). In the crotalid viper Agkistrodon contortrix, active NORs have been mapped to 

the Z chromosome, but a female was not examined (Porter et al. 1991). In the turtle Pelodiscus 

sinensis, active NORs have been mapped to both sex chromosomes (Kawai et al. 2007). In 

females of this species, the W chromosome is marked almost entirely by an 18S+28S rDNA FISH 

probe, and silver staining shows that ribosomal proteins accumulate in a ladder-like fashion 

along its length. We suggest that the repetitive nature of the NOR lends itself to amplification 

on the sex chromosomes of these species. There may also be functional significance for sex- 

linked NORs. During oogenesis in some amphibians, transcription of ribosomal DNA is elevated 

to produce the large number of ribosomes required for early embryo development (Gall 1968;
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Roger et al. 2002). To our knowledge, no investigation of the activity of NORs has been made 

during reptile oogenesis, but W-specific amplification of this locus may facilitate elevated 

ribosome production. It would be interesting to investigate the activity of W-linked ribosomal 

sequences during oogenesis in these species.

Evolution of snake sex chromosomes

Comparative mapping of sex-linked genes in three species of snakes indicates that W 

chromosome differentiation has proceeded from the short arm (Matsubara et al. 2006). The 

conserved Bam HI repeat, isolated from E. quadrivirgata, maps to the short arm of the Z and W 

in Python molurus and Protobothrops flavoviridis. In E. quadrivirgata, this repeat is found on 

the short arm of the W but the long arm of the Z chromosome, suggesting the centromere has 

been repositioned. The order of gene loss on the degenerated W chromosome of E. 

quadrivirgata and Protobothrops flavoviridis extends from this conserved repeat (Matsubara et 

al. 2006). In the elapid Pseudonaja textilis, the short arm of the W also bears the greatest 

density of repeats (Chapter 2). Our mapping in the colubrid D. punctulata suggests the 

centromere has been repositioned, as repeats and heterochromatin are located on the long 

arm of the W chromosome. In the elapid N. scutatus, DMRT-related repeats map to the short 

arm of the Z and the long arm of the W. This implies that the W chromosome has undergone 

considerable rearrangement, including centromere repositioning and expansion of repetitive 

content. The large size of the W chromosome may indicate a recent addition of repetitive DNA 

following rearrangement, as this is thought to occur shortly after recombination is suppressed 

(Parker 1990; Charlesworth et al. 2005). In a wide survey of elapid karyology, Mengden (1982) 

noted that the W chromosome is the most variable element in the snake genome, even 

between closely related taxa. This suggests that W chromosome differentiation occurs 

repeatedly after speciation, and contrasts with the gradual accumulation of differences 

suggested for some other taxa (Lahn & Page 1999; Nicolas et al. 2005).

While the W chromosome is highly variable, the snake Z chromosome is remarkably well 

conserved, even between snakes and some agamid lizards. In Pogona vitticeps, six genes that 

map to chromosome 6p are located on Zp in E. quadrivirgata and chicken 2p (Ezaz et al. 

2009b). On chromosome 6 in Leiolepis reevesii reevesii, synteny of four snake Z genes is 

conserved; one maps to GGA27 and three to GGA2 (Srikulnath et al. 2009). Because these 

genes are autosomal in agamid lizards, a sex-determining role for this ancestral chromosome 

likely came about after early snakes diverged from other Toxicofera, but before pythons arose 

(105MYA). The snake Z could have operated as a sex chromosome in a common ancestor but 

lost that role in agamids, although wider taxonomic sampling is required to test this. In any 

case, synteny of these genes has been conserved since the divergence of snakes and agamids
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from a common ancestor, about 166 million years ago (Hedges et al. 2006). In all other 

amniotes and tetrapod outgroups, genes from GGA2 and 27 do not share synteny, suggesting 

that the snake Z originated later than did a common amniote ancestor. Interestingly, it appears 

that GGA2 and 27 derive from the same ancestral vertebrate chromosome 'E' suggested by 

Nakatani et al. (2007), prior to two rounds of genome duplication. This situation is analogous to 

the conserved and added regions of the eutherian X chromosome (Graves 1998; Glas et al. 

1999), which in large part derive from the ancestral vertebrate chromosome 'F' (Nakatani et al. 

2007). Perhaps this ancestral homology predisposed their subsequent fusion in ancestral 

amniotes.

Implications of sex-chromosome repeats shared between snakes and birds

Hybridization of chicken W chromosome paint to the W chromosome of derived snakes 

suggests sequences are shared, despite 275 million years of independent evolution. This could 

be explained by ancestral synteny of amniote sex chromosomes, as recently suggested by 

Smith & Voss (2007). We examined the location of orthologs from GGAZ and those from GGA2 

and 27 (as a proxy for snake Z genes) in amniotes and tetrapod outgroups, but found no 

evidence of large-scale synteny conservation. Of the 236 chicken-human orthologs on HSA18, 

176 map to GGA2 (22 would be expected given an even distribution over all chromosomes) and 

48 map to GGAZ (11 expected); 12 are found on other chicken chromosomes. None of the 176 

GGA2 orthologs has yet been mapped in snakes, so this should not be considered strong 

evidence for an ancestral association of chicken and snake Z chromosomes. The synteny of 

HSA18 genes may have arisen independently in the mammalian lineage and so represent a 

derived rather than an ancestral state; this scenario is implied by the ancestral amniote 

karyotype suggested by Nakatani et al. (2007). In tuatara, orthologs from snake, bird and 

mammalian sex chromosomes map to different autosomes (although the map coverage is 

light), as is the case in Xenopus (Chapter 4: O'Meally et al. 2010; Supplementary Tables).

Another possibility is that these repeats have arisen on snake and chicken W chromosomes by 

convergence. The chicken W chromosome is largely composed of three repeat families, named 

for the restriction enzymes with which they were isolated. The XhoI and EcoRI families consist 

of 0.6-0.7kb unit containing 21bp tandem repeats organized around different W chromomeres; 

together they account for 65% of W chromosome DNA and are thought o be involved in 

heterochromatin assembly (Tone et al. 1984; Kodama et al. 1987; Saitoh & Mizuno 1992; Suka 

et al. 1993; Solovei et al. 1998). The Sspl family consists of a 0.5kb unit with a terminal 120 bp 

tandem repeat that is GA rich, and accounts for about 10% of W chromosome DNA (Itoh & 

Mizuno 2002). Southern blot experiments across Galliformes and Neoaves show that these 

three repeat families are restricted to the genus Gallus and absent from the genomes of other



59

birds (Tone et al. 1984; Itoh & Mizuno 2002). This suggests that no more than 20-25% (about 

10Mb) of the Gallus W is homologous w ith other birds, and that the snake W repeat must have 

an analog in this sequence. We attempted to replicate the W paint hybridization pattern using 

the largest (CH261-114G22; 167.4kb) mapped chicken W BAC clone from the sequenced 

euchromatic region, but w ithout success. Southern hybridizations of chicken W paint on male 

and female genomic DNA from snakes also failed to produce a female specific band that could 

be isolated. W ithout having characterized the repeat by sequence analysis, it is d ifficult to 

speculate on its origins and possible functional roles. In the absence of ancestral sex 

chromosome synteny, we suggest the repetitive content must be due to convergent 

degeneration. Given the large evolutionary distance between birds and snakes, this is likely a 

general property o f sex chromosome differentiation.
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Table 1. Material examined. Collection localities are within Australia. aThe male examined was 
from the closely related congener Liosis olivaceus (ID# Lo0308-4).bThese samples derive from 
a sibling pair, hatched from the same egg clutch.______________________________________
Familly Species Number of individuals 

examined (F/M)
Collection locality

Pythonidae Liosis fuscus 2/l a Daly River, NT
Colubridae Dendrelaphis punctulatus l / l b Fogg Dam, NT
Elapidae Notechis scutatus 4/3 Goulburn, NSW

Table 2. Oligonucleotide primers used for PCR and sequencing of DMRT1 intron 1 and the 
terminal intron of CTNNB1. See text for product sizes and reaction conditions. Sequencing 
primers are indicated by a numerical suffix._____________
Primer name Sequence (5'-* 3')
DMI1F AGCAGGCAGGAACTGTTAGCGTTG
DMI1R TGCATGTGGAGAGATTGCCAGTGT
DMHF-1 CGATAACTAAAGGGAAAAACAAGTC
DMI1F-2 G GTTT GTG CT G GTTT G CTTT
DMI1F-3 TCCCAGAATTGAGCTAACATGA
DMI1F-100 TT G CTTAC ATT G C A AC AG C A
DMI1F-101 GGGATGATGGGTGTTGAAGT
DMI1R-1 GATCCCAGCTCTTCCTCTT
DM11R-2 AATGCTTTTCCAATGCAACG
DMI1R-3 C AATC A ACTATTGTATG GG AG C A
DMI1R-4 TCCTAACCTTGCTGGAGTGAC
DMI1R-100 CAGGCAGATCTTTCCTGAGC
DMI1R-101 TGCAGACTCTGATGCCTTTG
CTNNB1F ACTGAACCAATGGCTTGGAA
CTNNB1R ACC AGTT G CCTTTTAT CCC A
CTNNB1F-3 GTGGCAAAGGAAATCCTGAA
CTNNB1R-1 CTCTG CCC AG C A A ATC ATG
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Figure 1. Hybridization of chicken W chromosome paint (upper images) and comparative 
genomic hybridization (lower images) of male (green) and female (red) genomic DNA to female 
metaphase spreads of (a,d) Liosis fuscus, (b,e) Dendrelophis punctulata and (c,f) Notechis 
scutatus. Arrows indicate the W chromosome and the scale bar represents 10pm.
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Figure 2. Hybridization of ß/cm-related oligonucleotide probes to female metaphase spreads of 
(a,d) Liasis fuscus, (b,e) Dendrelaphis punctulata and (c,f) Notechis scutatus. The probe is 
(GATA)4 in upper images and (GACA)7 in lower images. Arrows indicate the W chromosome 
and the scale bar represents 10pm.
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Figure 3. Hybridization of homologous probes containing (a) intron 1 of DMRT1, and the 
terminal introns of (b) DMRT1, and (c) CTNNB1 from Notechis scutatus on female metaphase 
chromosomes. (d,e) Heterologous 18S rDNA probe hybridized to N. scutotus male and female 
metaphase chromosomes respectively. The scale bar represents 10pm.
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Supplementary Tables

Supplementary Tables S1-S6. Oxford grids showing the number of orthologs that map to the 

chromosomes (or linkage group) of one species (columns) and those of another species (rows). 

Table SI shows comparisons between human (HSA) and chicken (GGA), Table S2 between 

human and Xenopus (XTR), Table S3 between human and zebrafish (DRE). Table S4 shows 

comparisons between chicken and Xenopus, Table S5 between chicken and zebrafish; and table 

S6 between Xenopus and zebrafish. Given an even distribution along a chromosome (or linkage 

group), the expected number of genes (£) for each cell can be calculated as the product of the 

row total and column total, divided by the total number of orthologs for the table (given at the 

lower right of each table). Cells are colored to indicate the extent to which the observed 

number of genes (O) deviates from the expected value: blue where 0  < E indicating no 

ancestral association; green O < 2 x E indicating a weak association; yellow 0  < 3 x E indicating 

an intermediate association; and red O > 3 x E indicating a strong ancestral association. Where 

a chromosome from one species (columns) has intermediate or strong associations with more 

than one chromosome from the other species (rows) in a table, ancestral synteny of these 

genes can be inferred. For example, in Table SI, the chicken Z (695 human orthologs) shows 

strong ancestral associations with human 5 (317 orthologs); human 9 (276 orthologs) and 

human 18 (48 orthologs); 54 orthologs of chicken Z genes are distributed on other human 

chromosomes, but no more than would be expected given an even distribution along all 

chromosomes. Further support for such associations can be gained by examining the 

corresponding regions in Xenopus and zebrafish.

Note that in tables comparing chicken (SI, 4 & 5), chromosomes 29 -  32 are omitted as no 

genes have been mapped to these chromosomes in the current (WASHU 2.1, May 2006) 

chicken assembly. In Table S2, the human Y is omitted as no Xenopus-human Y orthologs have 

been mapped in Xenopus. In Table S4, the chicken W is omitted as no Xenopus-chicken W 

orthologs have been mapped in Xenopus.
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Abstract

Tuatara, Sphenodon punctatus, is the last survivor of the distinctive reptilian order 

Rhynchocephalia and is a species of extraordinary zoological interest, yet only recently have 

genomic analyses been undertaken. The karyotype consists of 28 macrochromosomes and 8 

microchromosomes. A BAC library constructed for this species has allowed the first 

characterization of the tuatara genome. Sequence analysis of 11 fully sequenced BAC clones 

(~0.03% coverage) increased the estimate of genome wide GC composition to 47.8%, the 

highest reported for any vertebrate. Our physical mapping data demonstrate discrete 

accumulation of repetitive elements in large blocks on some chromosomes, particularly the 

microchromosomes. We suggest that the large size of the genome (S.upg/haploid) is due to the 

accumulation of repetitive sequences. The microchromosomes of tuatara are rich in repetitive 

sequences, and the observation of one animal that lacked a microchromosome pair suggests 

that at least this microchromosome is unnecessary for survival. We used BACs bearing 

orthologues of known genes to construct a low coverage cytogenetic map containing twenty- 

one markers. We identified a region on chromosome 4 of tuatara that shares homology 

with 7Mb of chicken chromosome 2, and therefore the orthologous region of the snake Z 

chromosome. We identified a region on tuatara chromosome 3 that is orthologous to the 

chicken Z, and a region on chromosome 9 orthologous to the mammalian X. Since the tuatara 

determines sex by temperature and has no sex chromosomes, this implies that different 

tuatara autosome regions are homologous with the sex chromosomes of mammals, birds and 

snakes. We have identified anchor BAC clones that can be used reliably to mark chromosomes 

3-7, 10 and 13, some of which are difficult to distinguish based on morphology alone. FISH 

mapping of 18S rDNA confirms the presence of a single NOR located on the long arm of 

chromosome 7, as previously identified by silver staining. Further work to construct a dense 

physical map will lead to a better understanding of the dynamics of genome evolution and 

organization in this isolated species.
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Introduction

Tuatara have been described as the most distinctive surviving reptile in the world (Daugherty 

et al., 1990) and a species of extraordinary zoological interest (Groombridge, 1982). Molecular 

cytogenetic characterization and a gene map for the species would therefore be of great value 

for bringing this species into the genomic era. Tuatara are the only living representatives of 

the reptilian order Rhynchocephalia (also known as Sphenodontia), which diverged from other 

reptilian orders approximately 270 million years ago (Hugall et al., 2007). Rynchocephalids are 

regarded as the sister group of the squamates, based on morphological and genetic analyses 

(Rest et al., 2003; Hugall et al., 2007). They were globally widespread until the late Cretaceous 

(65-80 million years ago) but now survive only on some off-shore islands of New Zealand. Until 

recently, two allopatric species of tuatara were recognized: Sphenodon punctatus and 

Sphenodon guntheri, (Daugherty et al., 1990). However, recent genetic analyses by Hay et al. 

(2009) indicate that tuatara should be regarded as a single species (Sphenodon punctatus), 

with three distinct genetic/geographic groups.

In addition to their unique phylogenetic placement, several aspects of tuatara biology have the 

potential to inform studies of genome evolution and development. Tuatara are extremely long 

lived, probably surviving over 100 years (Dawbin, 1982; Castanet et al., 1988) and have a long 

generation time (sexual maturity at 14 years, mean generation interval 50 years; Cree et al., 

1992; Allendorf and Luikart, 2006). Females reproduce only every four years on average (Cree 

et al., 1992), and a long period of egg incubation occurs prior to hatching (11-16 months in the 

wild). Tuatara have temperature dependent sex determination (TSD), and are one of the few 

species to exhibit a female-to-male pattern of TSD, where males are produced at high 

temperatures (Mitchell et al., 2006). No sex specific differences in chromosomes or DNA 

have been found (Norris et al., 2004; Mitchell et al., 2006). Tuatara also have unusual thermal 

biology, remaining active at extremely low temperatures (~5°C), and exhibiting the lowest 

optimal body temperature range of any reptile (16-21°C; Werner and Whitaker, 1978; 

Thompson and Daugherty, 1998; Besson, 2009). In accordance with this, they have a low 

metabolic rate (Thompson and Daugherty, 1998) and one of the largest reptilian genomes, with 

a C-value of 5.0 (Olmo, 2003,1981; Vinogradov and Anatskaya, 2006).

Like most sauropsids, the tuatara karyotype is composed of macrochromosomes and 

microchromosomes. A complete karyotype of tuatara (2n=36, 28M & 8m) was first determined 

by Wylie et al. (1968), although earlier attempts had been made (Keenan, 1932; Hogben, 

1921). Norris et al. (2004) provided the first comprehensive analysis of Sphenodon karyology,
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including morphological descriptions of each chromosome, C-banding and silver staining of the 

nucleolus organizer (AgNOR). They examined 89 animals from across the range and reported 

no karyological differences between populations or between sexes. One animal from 

Ruamahua-iti Island possessed a peculiar chromosome 3, with additional material on the long 

arm of one member of the pair in all cells examined. To date, no other chromosomal aberration 

has been reported in this species.

On the basis of gross morphology of the macrochromosomes, Norris et al. (2004) 

suggested that the tuatara shares more similarity in karyology with turtles than with 

squamates. However, chromosome painting and gene mapping studies are much better able to 

reveal chromosomal homologies, and recent studies have shed light on the origin and 

evolution of sex chromosomes in particular (Graves, 2008). Chromosome painting has shown 

the chicken Z to be entirely homologous with chromosome 5 in Chelodina longicollis, an 

Australian turtle (Graves and Shetty, 2001). Chicken Z genes show homology to chromosome 

6q in the Chinese soft-shelled turtle, Pelodiscus sinensis, and to chromosome 3 in the crocodile 

Crocodylus siamensis, (Kawai et al., 2007). Among squamates, chicken Z is equivalent to 

chromosome 2p of snakes (Matsubara et al., 2006) and 2p of two agamid lizards (Srikulnath et 

al., 2009a; Ezaz et al., 2009). Perhaps most remarkably, synteny, and even order, of six Z-borne 

genes in chicken and the gecko Gekko hokouensis Z chromosome is conserved (Kawai et al., 

2009). The Z chromosomes of other reptiles are not as well characterized; however, the snake Z 

shares homology with chicken 2p and agamid 6p, and the turtle Z with chicken chromosome 15 

(Matsubara et al., 2006; Ezaz et al., 2009; Srikulnath et al., 2009a; Kawagoshi et al., 2009).

Given its unique phylogenetic position between archosaurs and squamates, tuatara is well 

placed to elucidate the mode of karyotype evolution among sauropsids.

The tuatara genome has received relatively little attention to date. Genetic studies have 

focused largely on the isolation of mitochondrial markers for phylogenetic and 

phylogeographical studies (Rest et al., 2003; Hay et al., 2003) and characterization of neutrai 

(microsatellite) and adaptive (MHC) genetic markers for population analyses (Aitken et al., 

2001; Miller et al., 2005, 2006; MacAvoy et al., 2007). Although more than 1,500 papers have 

been published on topics ranging from physiology to phylogeny of the tuatara, only four deal 

specifically with karyology and three with genomic organization. However, interest in tuatara 

genomics is increasing and the availability of a tuatara BAC library has recently enabled the 

first investigations of its nuclear genome (Wang et al., 2006; Shedlock, 2006; Organ et al., 

2008). Here we present the first physical map of the chromosomes of tuatara and report our 

observations on genome evolution in this interesting and enigmatic reptile.
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Materials and Methods

Animals, blood culture and chromosome preparation

Blood samples were collected from animals held captive at Taronga Zoo, Sydney (RFID implant 

numbers 6306A5 and F75DAE). Both specimens were female and originated from Stephens Is, 

New Zealand but were hatched in captivity in 1986 (M. Thompson, pers. comm.).

Chromosomes were prepared from short-term culture of peripheral blood leukocytes. Up to 

lmL of blood was collected by caudal venipuncture into heparinized tubes. The tubes were 

centrifuged at 260 x g for 5 minutes and the buffy coat collected. Cultures were established in 

2mL of Dulbecco's Modified Eagle's Medium (DMEM, GIBCO) supplemented with 10% (v/v) 

fetal bovine serum (JRH Biosciences), lmg/mL L-glutamine (Sigma), 100 U/mL penicillin 

(Multicell), lOOmg/mL streptomycin (Multicell) and 3% phytohaemagglutinin M (PHA M;

Sigma). Cultures were incubated at 26°C for 6 -  7 days (Norris et al., 2004; Wylie et ai., 1968) in

5% CO2. Chromosomes were harvested 2 hours after adding colcemid (75ng/mL) by treating

with hypotonic solution (KCI, 0.075mM) and fixation in methanokacetic acid (3:1) according to 

standard protocols. The cell suspension was dropped on to slides and air dried. Slides were 

kept frozen at -80°C.

Probe selection, preparation and fluorescence in situ hybridization (FISH)

We mapped clones from a tuatara BAC library (Wang et al., 2006) made available commercially 

(SymBio Corp, Menlo Park, California). We chose clones that had been fully sequenced by 

the NIH Intramural Sequencing Center (www.nisc.nih.gov) as part of the NISC Comparative 

Sequencing Initiative. We also scanned the NCBI trace archives of paired BAC ends (Wang et al., 

2006) for orthologues of genes found on chicken chromosomes Z and 2. The gene content of 

BAC clones was determined using BLAST after masking the query sequence using 

RepeatMasker (Smit et al., 2009). CG content was estimated as by Shedlock et al. (2007). We 

mapped the clones identified by Wang et al. (2006) as those containing DMRT1. To map 18S 

rDNA, we used a BAC clone containing this locus from the tammar wallaby (Haines, 2005).

Some ambiguous assignments were clarified by comparing them with BACs of known location 

(H. Miller, unpub. data). Details can be found in Table 1.

Clones were grown in 15mL overnight cultures and BAC DNA extracted using the Promega 

Wizard Plus SV Miniprep DNA Purification System according to the manufacturer's protocol 

(with volumes scaled up). DNA concentration was measured on a NanoDrop (Thermo Scientific) 

and labeled by nick translation incorporating either Orange or Green-dUTP (Abbott Molecular). 

Labeled BAC DNA (200-500ng) and boiled genomic DNA (lpg) were co-precipitated and

http://www.nisc.nih.gov
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resuspended in hybridization buffer (50% v/v deionized formamide, 10% w/v dextran 

sulphate, 2X SSC, IX Denhardt's solution and 40mM sodium phosphate). Probes were added 

to slides under cover slips and sealed with rubber cement. DNA was denatured by heating 

the slide to 68.5°C for five mins on a heat block and hybridized overnight at B7°C in a 

humidified chamber. Cover slips were removed by soaking for 5 mins in 2X SSC. The slides 

were washed once in 0.4X SSC/0.3% IGEPAL CA-630 (Sigma) at 60°C for 2 mins, once in 2X 

SSC/0.1% IGEPAL at room temperature for 1 min, then dehydrated through an ethanol series 

(1 min in each of a 70%, 90% and 100% solution), air dried, stained with DAPI (50pg/mL DAPI 

solution in 2X SSC) for 45 sec at room temperature and mounted with Vectashield (Vector 

Laboratories). Vernier co-ordinates of each metaphase were recorded and images of 3-10 cells 

were captured using a Zeiss Axioplan2 epifluorescence microscope and images were analyzed 

using IPLab imaging software (Scanalytics Inc). Ambiguous chromosomal assignments were 

resolved by simultaneously hybridizing differentially labeled probes to a slide.

Telomere PNA probe

Telomeres were visualized following the protocol of Lansdorp et al. (1996) with some 

modifications. Briefly, lOpL of hybridization mixture containing 70% formamide, 0.3pg/mL Cy3- 

(CCCTAA)3 peptide nucleic acid (PNA) probe (Biosynthesis, Inc, Texas) and IX Denhardt's 

solution in lOmM Tris pH 7.2 were added to the slide under a cover slip and sealed with rubber 

cement. The DNA was denatured by heating for 3 min at 80°C. After hybridization for 2 h at 

37°C in a humidified chamber, the slides were washed at room temperature with 70% 

formamide/1% BSA/10mM Tris pH 7.2 (2 x 15 min) and then with 0.1M Tris/0.15M NaCI, pH 7.5 

containing 0.08% Tween-20 (3x5 min). The slides were then dehydrated through an ethanol 

series, air dried, stained with DAPI and image capture and analysis was performed as described 

above.

Chromomycin A3 (CMA3) Staining

For CMA3 staining, we used a modified CMA3/'methyi green method (Babu and Verma, 1995). 

300pL of a solution containing CMA3 (0.5mg/mL) and 5mM MgCI2 in 0.5X Mcllvaine's buffer (pH 

7.0) was added to slides under a cover slip and incubated at room temperature for lh. After 

brief rinsing in water, the slides were placed in a Coplin jar containing a freshly prepared 

solution of methyl green (100pM) in 0.1M Tris (pH 7.0) for 10 minutes. The slides were rinsed 

again in water, mounted as above and stored at 4°C for 1 week before image capture and 

analysis.
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Silver staining (Ag-NOR)

Ag-NOR staining was carried out using the method of Howell and Black (1980). Briefly, 2 drops 

of a 2% gelatin/1% formic acid solution and 4 drops of a 50% AgN03 solution were added to a 

slide under a cover slip. The slide was incubated on a heat block at 70°C until the appearance 

of a golden brown color, then washed in distilled water and mounted as above. Images were 

captured under bright field microscopy.

Results

We chose 27 clones that contained orthologues of known genes, based on earlier full BAC 

sequencing, BAC end sequencing or library screening (Table 1, Fig 1). At least 21 genes were 

represented. We used fluorescence in situ hybridization (FISH) to assign these BACs 

unambiguously to eleven tuatara chromosomes (Fig 1). The tuatara karyotype contains sixteen 

pairs of macrochromosomes and four of microchromosomes. Some tuatara chromosomes are 

difficult to distinguish by size and morphology, particularly chromosome pairs 9 and 10, as well 

as 13 and 14 (Norris et al., 2004). We assigned BAC clones 47506 to chromosome 9 and 531J19 

to chromosome 13. The BACs we assigned to these chromosomes are useful as anchor markers 

because they produce single, clear signals that unambiguously identify the chromosomes. 

Similarly diagnostic clones for chromosomes 3-7 are identified in Table 1. Chromosomes 1-2,

8, 10-12 and 14 remain without anchor BACs, but can be distinguished by size and 

morphology. The four microchromosomes (15-18) can be distinguished by size and the 

hybridization pattern of two clones (515D6 and 437J19; Fig 2C).

Some fully sequenced BAC clones contain an unusually large number of unique repetitive 

elements amounting to ~90/Mb (Shedlock, 2006). We found that several BACs containing such 

repetitive elements hybridized to multiple chromosomes (Tablel, Fig 2B, C & Fig 3D). For 

instance, the BAC clone 448111 hybridizes to chromosomes 4, 6 and 13, in large domains which 

may represent up to 3% of the total chromosome length (TCL) (Fig 3D). Similarly, clone 437A11 

hybridizes to 13q and to all four microchromosomes (~1%TCL). All clones identified by Wang 

et al. (2006) as containing DMRT1 (Table 1) hybridize to both tuatara chromosomes 16 and 18 

in a diffuse pattern, suggestive of a high repeat content in these chromosomes (~1%TCL). The 

smallest microchromosome, 18, appears to consist predominately of repeats contained in 

clone 437A11 and those associated with DMRT1.

Using an 18S rDNA FISH probe, we were able to co-locate the silver stained NOR and 18S rDNA 

hybridization signal, confirming the presence of a single active NOR on the distal end of the 

long arm of chromosome 7. In addition, in all cells examined, whether by AgNOR staining or by
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FISH, one homolog consistently stained more heavily or gave a greater hybridization signal (Fig 

3B). The PNA telomere probe produced clear and unambiguous hybridization signals 

identifying telomeres on each chromatid of all chromosomes (Fig 3C). No interstitial 

hybridization signals were observed on any chromosome. No general trend in arm length and 

signal intensity was apparent, but the microchromosomes appear to have disproportionately 

long telomeres.

To investigate the distribution of GC-rich sequences, we used CMA3 methyl green staining (Fig 

3A). No discernable bands were visible on any chromosomes, but more intense staining was 

invariably observed on the NOR. The microchromosomes also stained more heavily, indicative 

of a higher GC content in those elements. Using draft assemblies of fully sequenced BAC 

clones (Table 1; ~0.03% genome coverage) we estimated the genome wide GC content to be 

47.76% (SD=0.63).

Of the two animals examined in this study, one animal (#6306A5) possessed a karyotype 

consistently deficient in one pair of microchromosomes (Fig 2). To investigate this further we 

took a second blood sample six months later and made new chromosome preparations. The 

PNA telomere probe (Fig 2A) revealed no intrachromosomal telomere sequence that could 

denote a fusion. Based on chromosome size and two-color hybridization with clones 437A11 

and 515D6, each microchromosome pair is distinguishable. We identified the missing element 

as chromosome 17 by comparing the abnormal karyotype (Fig 2B) with that of a normal animal 

(Fig 2C).

Discussion

BAC-anchored cytogenetic map and chromosome homology

Even with this light coverage map, we were able to identify regions of conserved synteny 

between tuatara and other reptiles, as well as some rearrangements between tuatara and 

other species. The distal long arm of tuatara chromosome 4 corresponds to a 7Mb gene dense 

region of chicken chromosome 2, and is bounded by genes that are found on the snake Z 

chromosome (Matsubara et al., 2006). The synteny of this region appears to be conserved in all 

vertebrates but is interrupted in eutherian mammals between GATAD1 (human 7q21) and 

ARHGAP21 (human 10pl2). Synteny and even the order of genes found on 

macrochromosomes are highly conserved among sauropsids. Genes spanning the length of the 

snake Z map to a contiguous block of chicken 2p and chromosome 6 of the butterfly lizard 

(Srikulnath et al., 2009b). Although no genes that have been located on the snake Z are
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present on our map, it is likely that tuatara chromosome 4 is equivalent to the snake Z 

chromosome, which, in all snakes examined to date, is the fourth or fifth largest pair.

Tuatara 5q shares homology with a 4.7Mb region of chicken chromosome 5. Synteny of this 

block is conserved in all sequenced tetrapods with the exception of eutherian mammals (GPHN 

is on human 14q23 and RTF1 on human 15ql4). Two genes, GRM8 and SND1, which in humans 

lie within 1.6Mb on chromosome 7, are respectively located medially and distally on the long 

arm of chromosome 7 in tuatara. Of the two genes contained in clone 460J16 in tuatara, SND1 

is absent from the chicken assembly but RSRC1 lies on chicken chromosome 9 and human 3, 

suggesting that tuatara chromosome 7 arose by fusion of ancestral chromosomes. Fission of 

ancestral chromosomes could also explain this composition, though it would require a greater 

number of rearrangements. PHF6 and HPRT1 (contained in the same BAC clone) map to 

chromosome 9 in tuatara, indicating homology with a 46Kb region of chicken chromosome 4 

and a 127Kb region of the human X.

The genes ACOl and DMRT1 are located on the Z chromosome in chicken, but in tuatara the 

BAC clones corresponding to these genes map to chromosomes 3,16 and 18 (Table 1). In all 

vertebrates studied to date, DMRTgenes are arranged DMRT1-DMRT3-DMRT2: a region 

spanning 94Kb in zebra finch and up to 271Kb in opossum. To obtain tuatara clones containing 

DMRT1, Wang et ai. (2006) screened the BAC library using conserved intronic and intergenic 

regions from DMRT1 and DM domain sequences of DMRT2. They assembled ten BACs into a 

300Kb contig from which they were able to amplify the non-coding probe sequences, but failed 

to amplify the DM domain of any gene. This suggested to the authors that they had not 

identified DMRT1 but had instead found a duplicated cassette of the non-coding regions. 

Hybridization of each of the ten contiguous BAC clones to two chromosomes in a diffuse 

pattern strongly supports this suggestion, and our mapping of DMRT1 to chromosomes 16 and 

18 should be considered provisional.

Repeat content and GC composition

Our physical mapping data demonstrate discrete accumulation of repetitive elements in large 

domains on some chromosomes, particularly the microchromosomes. Three of the clones we 

mapped (437A11, 448111, 515D6) account for approximately 5% of the total chromosome 

(genome) length (Figs 2C, 3D). Tuatara has a large genome (5.0pg/haploid; Olmo, 1981) 

with more than twice the number of repeat types per megabase than Anolis; indeed, more 

than twenty times the zebra finch (Shedlock, 2006), yet the gene structure (exon and intron 

length) is much the same as for birds and other reptiles (Organ et al., 2008). Genome survey
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sequencing of 89 BAC ends (~121Kb; Wang et al., 2006) and analyses of 11 fully sequenced 

BACs (1.6Mb; Table 1; Shedlock, 2006) suggest that retroelements make up about 5-6% of the 

tuatara genome. By comparison, transposable elements make up about 9% of the minimal 

chicken genome and 40-50% in humans (ICGS Consortium, 2004; Lander et al., 2001). A figure 

of 6% for tuatara must therefore be a gross underestimate of the true value, due to the low 

proportion (~0.03%) of the genome sampled and the poor representation of reptile repeats in 

databases used by RepeatMasker (Chapus and Edwards, 2009). The tuatara's large genome, 

then, is almost certainly due to accumulation of repetitive DNA.

We used CMA3-methyl green staining to visualize GC isochore structure on tuatara 

chromosomes. Previous attempts using G-banding have not been successful (Norris et al.,

2004; and in our laboratory). Notably, all microchromosomes and the NOR on the long arm of 

chromosome 7 were densely stained by CMA3. This suggests that the microchromosomes have 

a higher GC content than the rest of the genome, as is the case in chicken and soft-shelled 

turtle (Auer et al., 1987; ICGS Consortium, 2004; Kuraku et al., 2006). A high GC content on the 

microchromosomes implies an increased recombination rate (Marsolier-Kergoai and Yeramian, 

2009; Fang et al., 2008) and also correlates with increased gene density (Costantini et al., 2006, 

2007). The lack of isochore structures on the macrochromosomes reveals a fairly 

homogeneous GC distribution on these chromosomes in tuatara, as is the case for many other 

reptiles, fish and amphibians (Bernardi, 2000; Hughes et al., 2002). The nucleolus organizer 

region, containing 18S rDNA, is GC rich in all animals (Varriale et al., 2008) so it was not 

surprising to see dense staining of CMA3 in this region. Despite a homogenous GC 

distribution, the tuatara genome is composed of 47.76% GC (SD=0.63), the highest known for 

any vertebrate (Table 2, Costantini et al., 2009; Olmo, 2008). This estimate of GC content is 

based on our analysis of 11 fully sequenced BAC clones representing only about 0.03% of the 

genome, so it may be an unrepresentative sample and may change as more in-depth sequence 

data become available for tuatara.

Telomeres

Telomere length has been found to be negatively correlated w ith age in snakes 

(Bronikowski, 2008), turtles (Hatase et al., 2008), alligators (Scott et al., 2006), birds 

(Haussmann and Vleck, 2002; Haussmann et al., 2003), humans (Tsuji et al., 2002) and in many 

other taxa, so as a species that is thought to live for over 100 years (Dawbin, 1982; Castanet et 

al., 1988) tuatara present a good model for examining telomere length and senescence. 

Indeed, by comparison with other vertebrates, tuatara appear to have relatively long 

telomeres (H. Bender pers. comm.). Quantitative methods such as QFISH (Zijlmans et al., 1997;
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Slijepcevic, 2001) or qPCR (Cawthon, 2002; O'Donovan et al., 2009) are needed to confirm this 

observation. Long telomeres have been found in many long-lived vertebrates, including turtles 

(Hatase et al., 2008), birds and some mammals (Haussmann et al., 2003). Some studies have 

suggested a positive correlation between telomere length and total chromosome or arm length 

(Wise et al., 2009; Sridevi et al., 2002; Zijlmans et al., 1997); however, our results do not 

support this observation. In tuatara, the size of microchromosomal telomeres is equivalent to 

or longer than those of the macrochromosomes (Figs 2A, 3C). Expansion of the telomeric 

sequences may be due to the repetitive content of the microchromosomes.

Interstitial telomeric repeat sequences associated with constitutive heterochromatin (as 

revealed by banding techniques) may be indicative of ancestral chromosomal rearrangements 

in some vertebrates (Meyne et al., 1990; Ruiz-Herrera et al., 2008). Vague C-banding, no 

demonstrable G-bands (Norris et al., 2004) and the absence of interstitial telomeric signals in 

all chromosomes suggest that the tuatara has a relatively stable and evolutionarily derived 

karyotype (Meyne et al., 1990; Nanda et al., 2002; Ruiz-Herrera et al., 2008). Having no obvious 

interstitial telomeric sequences also makes this species amenable to a rapid and reliable qPCR 

test for telomere length (Nakagawa et al., 2004). Determining the age of tuatara once they 

reach adulthood is currently problematic, and a lack of long-term (i.e. >50 year) longitudinal 

studies of marked animals means that many aspects of tuatara life history (such as maximum 

longevity, the age structure of populations and at what age they cease to be reproductively 

active) are unknown. Conservation management of tuatara would therefore benefit greatly 

from such an assay if a relationship between age and telomere length could be demonstrated.

An abnormal karyotype and tuatara microchromosomes

Our study identified a female with an abnormal karyotype that was consistently lacking in one 

pair of microchromosomes. The hybridization pattern of two BAC clones (437A11 and 515D6) 

differs between the odd animal and an animal possessing a normal chromosome 

complement only at chromosome 17, suggesting loss rather than fusion with another 

chromosome. If the disappearance of the chromosome had resulted from fusion with another 

pair, interstitial telomeric signals might have been observed, but they were not. This loss of a 

microchromosome is a particularly striking finding because the animal still survives and is 

apparently healthy at 23 years of age (although the affect on its reproductive capacity remains 

unknown). Chromosome 17 represents about 1-1.5% of the genome (Norris et al., 2004) but 

presumably it carries largely repetitive sequences and contains no genes that are essential for 

survival. The higher GC composition of microchromosomes may be due to the frequency of
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CRl-like LINE repeats and a greater recombination rate, rather than higher gene density in 

these chromosomes.

Although fewer, the four microchromosomes of tuatara are similar in many respects to those of 

birds and other reptiles. Our mapping data indicate a high repeat content on all 

microchromosomes, particularly chromosomes 17 and 18, explaining the viability of one 

animal which lacks chromosome 17. The microchromosomes of birds and turtles are also 

repeat rich (Stefos and Arrighi, 1974; Matzke et al., 1990; Fillon et al., 1998; Yamada et al.,

2005) despite their abundance of genes (McQueen et al., 1998; Burt, 2002; Kuraku et al.,

2006) . The size of tuatara microchromosomes relative to the rest of the genome (smallest 0.9%

- largest 2%; Norris et al., 2004) is comparable to the range found in chicken (smallest 0.4% - 

largest 2%; Bloom et al., 1993). In absolute terms, however, the microchromosomes of tuatara 

are very much larger, with a size range of 43Mb-113Mb (lpg=978Mb; Dolezel et al., 2003), 

compared to just 7Mb-23Mb in chicken (Bloom et al., 1993). The gene content of these large 

tuatara microchromosomes remains unknown, and we were unable to examine replication 

timing explicitly. Squamates and archosaurs (with the exception of crocodiiians) usually 

possess a large complement of microchromosomes. The reduction of microchromosomes in 

the tuatara karyotype probably proceeded by fusion events, as proposed for crocodiiians and 

many birds (Burt, 2002; de Oliveira et al., 2005; Nie et al., 2009).

Conclusion

Tuatara has frequently been referred to as a 'living fossil' because it bears some skeletal 

features mistakenly interpreted as primitive (they are in fact derived) (Whiteside 1986; Mo et 

al., 2009). It appears that many features of its genome are evolutionarily derived as well. These 

include the large genome size (Thomson and Muraszko, 1978; Burt, 2002), a high GC content 

(Wang et al., 2006), absence of interstitial telomeres (Meyne et al., 1990) and a small number 

of microchromosomes (Norris et al., 2004). Our study presents a preliminary overview of 

genome evolution and organization in tuatara. A gene dense cytogenetic map covering all the 

chromosomes will elucidate the extent to which lineage specific chromosomal rearrangements 

have occurred, and which are retained. Such a map is also essential should a tuatara genome 

project be undertaken (Lewin et al., 2009). Even low coverage sequencing can be of great utility 

(Green, 2007) and the tuatara's large genome may harbor countless novel genes and regulatory 

elements (Peterson et al., 2009).

Our low-coverage cytogenetic map identified a region on chromosome 4 that shares homology 

with chicken chromosome 2, and therefore the orthologous region of the snake Z
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chromosome. We identified a region on chromosome 3 that is orthologous to the chicken Z, 

and a region on chromosome 9 homologous to the mammalian X. A cytogenetic map of higher 

resolution would be of great benefit in understanding the evolution of amniote sex 

chromosomes from autosomal pairs. Similarly, knowledge of the genic content o f the 

microchromosomes will lead to a greater understanding of the ir evolution; our observation of 

one animal that lacked a pair suggests that not all microchromosomes are necessary for 

survival. Sequence analysis o f a small genome sample increased the estimate of genome wide 

GC composition to 47.8%, the highest reported among vertebrates to  date. This is an 

interesting observation as high GC content has often been considered an adaptive response to 

high body temperature (Bernardi, 2000; Olmo, 2003), but tuatara has the lowest active body 

tem perature o f any am niote. The tuatara's large genome is doubtless due to  accumulation 

of repetitive sequences. Such sequences are key agents of regulatory innovation, chromosome 

rearrangements and evolutionary change (Sharp et al., 2006; Jurka et al., 2007). Perhaps this 

species' generous endowment of repetitive DNA has played a role in its continued survival over 

the last 60MY, despite dramatic changes in geology, climate and population size (Cooper and 

Cooper, 1995; Landis et al., 2008; Jones et al., 2009).
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Tables and Figures

Table 1. Details of BAC libraries and clones mapped. The genic content of fully or end 
sequenced clones was determined by BLAST after having masked the sequence for vertebrate 
retroelements, DNA transposons, simple repeats and low complexity motifs using 
RepeatMasker. Clones that uniquely identify chromosomes (anchor BACs) are indicated by an 
asterisk. The 10 clones thought to contain DMRT1 were mapped both in pools (simultaneously) 
and individually with the same hybridization pattern obtained.

Library ID Reference Clone ID
Sequence
accession

Representative
loci

Chromosomal
location

AGI, Macropus eugenii (tammar wallaby)
Haines, 2005

329J14* 18S rRNA 7q
VMRC12, Sphenodon punctatus (tuatara)

Wang et al., 2006
69A1* gnl |ti 1908600346 ACOl 3p
515D6;162F5; 289C19; 557122;
497H14; 82P24; 150B6; 269F20; DMRT1 16; 18
81B4; 58N13

NISC Comparative Sequencing Initiative
40N7 AC154075 T 3q
224G8 AC155214 ARHGAP21 4q
239M1 AC153105 PPP1R9A; PON2 4q
311J16 AC153757 GATAD1;ANKIB1 4q
16014* AC154160 GPHN 5q
462H11 AC154989 RTF1; NDUFAF1 5q
178H23 AC155213 NOTCH1 6q
436B16* AC155215 INPP5E; NOTCH1 6q
356P22 AC154074 GRM8 7q
460J16 AC153758 RSRC1; SND1 7q
47506* AC161716 PHF6; HPRT1 9p

H. Miller (unpublished data)
44B3* MHC-related 4q
531J19* MHC-related 13q
437A11 MHC-related 13q;15-18
448111 MHC-related 4q;6p;13q
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Table2. Genome-wide GC composition of representative amniotes. The tuatara has the highest 
GC content of any vertebrate reported to date. Data are from this study, Shedlock et al. (2007) 
and Warren et al. (2008).
Species %GC
Human 39.9
Platypus 45.5
Chicken 40.2
Alligator 42.5
Turtle 43.6
Anolis 41.5
Tuatara 47.8
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Figure 1 . Tuatara-chicken comparative gene map. Fully sequenced BAC clones were mapped by 
FISH to metaphase chromosomes and their gene content determined by BLAST, or by library 
screens. Colors indicate homology to chicken chromosomes. Clone numbers are indicated in 
black where no genic data were available. Gene symbols are those recommended by the HUGO 
Gene Nomenclature Committee. Gene symbols joined by a dashed line indicate loci found in 
the same BAC clone but whose order on the chromosome is unknown.
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Figure 2. (A) Karyotype of animal #6306A5, lacking the third largest pair of microchromosomes 
(chromosome 17). The telomeric probe reveals only four signals for each chromosome, 
indicating that the loss of this pair is not the result of a fusion event. (B) Using differentially 
labeled BAC clones (515D6 in red and 437A11 in green) that hybridize to all 
microchromosomes, we were able to determine that the 17th pair was missing by comparison 
with the karyotype of an animal with a full chromosomal complement (C).
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Figure 3. (A) Chromomycin A3 and methyl green staining of tuatara metaphase chromosomes. 
Arrows indicate the position of the NOR on chromosome 7, which is more heavily stained. 
Staining of the microchromosomes is also marginally more intense. (B) FISH mapping of 18S 
rDNA to chromosome 7 (arrowheads) is concordant with AgNOR staining (inset). (C) Telomeres 
are clearly visible on each chromosome and no interstitial signals were found, suggesting no 
recent rearrangements. (D) Some clones (eg 448111) hybridize in a pattern consistent with 
discrete accumulation of repetitive sequences in large domains on multiple chromosomes. The 
scale bar represents 10pM.
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Abstract Primary cell lines were established from 
cultures of tail and toe clips of five species of Australian 
dragon lizards: Tympanocryptispinguicolla, Tympano- 
cryptis sp., Ctenophorus fordi, Amphibolous norrisi 
and Pogona vitticeps. The start of exponential cell 
growth ranged from 1 to 5 weeks. Cultures from all 
specimens had fibroblastic morphology. Cell lines were 
propagated continuously up to ten passages, cryopre- 
served and recovered successfully. We found no 
reduction in cell viability after short term (<6 months) 
storage at —80 °C. Mitotic metaphase chromosomes 
were harvested from these cell lines and used in 
differential staining, banding and fluorescent in situ 
hybridisation. Cell lines maintained normal diploidy in 
all species. This study reports a simple non-invasive 
method for establishing primary cell lines from Aus
tralian dragon lizards without sacrifice. The method is 
likely to be applicable to a range of species. Such cell 
lines provide a virtually unlimited source of material for 
cytogenetic, evolutionary and genomic studies.
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Introduction

Australian dragon lizards (Agamidae) are an ideal 
group in which to study sex chromosome evolution 
because of their recent radiation from an Asian 
ancestor (~ 2 5  million years ago; Hugall et al. 2008) 
and because there appears to have been multiple 
transitions between genotypic and temperature- 
dependent sex determination (Ezaz et al. 2009; 
Harlow 2004; Sarre et al. 2004). There are about 70 
species in 13 genera (Cogger 2000). Although 
karyotypes have been described for many species, 
about 60% remain unexplored (Olmo 2005). In our 
laboratory, we routinely establish short term blood 
culture and primary fibroblast cell lines from internal 
connective tissue for larger species of agamid. From 
these we harvest chromosomes and interphase nuclei, 
and extract nucleic acids (DNA, RNA) for molecular 
and cytogenetic studies. However, some species 
cannot be sacrificed as they are listed as endangered 
or vulnerable under the Environment Protection and 
Biodiversity Conservation Act 1999 (Australia). 
Many species are too small to obtain sufficient 
volumes for blood culture and would otherwise 
require invasive or post mortem sampling.

Explant culture is a routine procedure for estab
lishing fibroblast-like cell lines from various organs,

*£) Springer
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and it has been optimised in various animals and used 
in a wide variety of biological experiments (Freshney 
2006; Masters and Stacey 2007). Cell lines estab
lished from explant culture provide an almost 
unlimited source of chromosomes, interphase nuclei, 
DNA, RNA and other biomolecules, which can then 
be used in a wide variety of genomic and evolution
ary studies. However, use of internal organs as 
explant for the establishment of primary fibroblast 
cell lines requires euthanizing animals, an option that 
is often not available in endangered and threatened 
species. An alternative approach to obtaining meta
phase chromosomes is to set up short term blood 
culture but that too can be difficult in small species 
where the collection of sufficient blood necessary to 
establish successful cultures is problematic or when 
bleeding may lead to infection and stress to animals. 
A non-invasive approach would clearly be of value in 
such cases.

Culture of tail and epidermal explants has been 
reported in one iizard (Anolis carolinensis Simpson 
and Cox 1967); and a turtle (Chelonia mydas Mansell 
et al. 1989); while caudal fin explant has been used to 
establish primary cell lines in channel catfish (Zhang 
et al. 1998). However, the majority of reported 
studies used either embryonic tissues or various 
organs collected post mortem (see Mansell et al. 1989 
and references therein).

In the current study, we developed a non-invasive 
technique to establish primary fibroblast cell lines 
from explant culture of tail and toe clips, and 
optimised culture conditions and cryopreservation 
of these cells lines. We characterized the cell lines by 
harvesting metaphase chromosomes and subsequent 
cytogenetic analysis.

Methods

Animals

Wild animals were collected from various locations 
across Australia. Mallee dragons (Ctenophorus fordi) 
were collected from Yathong Nature Reserve (32°S 
145°E), Norris’ dragons (Amphibolurus norrisi) were 
collected from Big Desert National Park (35°S 
141 °E), grassland earless dragons (Tympanocryptis 
pinguicolla) were collected from Canberra (35°S 
149°E), and Tympanocryptis sp. (species not

determined) were collected from Corella Creek 
Station (19 21°S x 136 02°E) and central bearded 
dragons (Pogona vitticeps) were collected from 
Murray-Sunset National Park (34°S 141°E).

Reagents and culture medium

Washing Buffer (WB); 1 x PBS (calcium-magnesium 
free, pH 7.2-7.4 with phenol red). Collection Medium 
(CME): prepared inside a laminar hood by supple
menting plain DMEM (Gibco) with 1 mg/mL 
kanamycin (Sigma), 40 pg/mL chloramphenicol 
(Sigma), 60 pg/mL penicillin (Gibco), 100 pg/mL 
streptomycin (Gibco). This mix was sterilized by 
passing through a 0.2 pm filter (Millipore GP). 
Subsequently, amphotericin B (Sigma) and tetracy
cline chloride (Sigma) were added to a final 
concentration of 20-100 pg/mL, respectively. We 
have found collection medium can be stored in 50 mL 
aliquots for up to 6 months at —20 °C. Culture 
Medium with Antibiotics (CMA): Amniomax C-100 
(basal medium and supplement, Gibco), 100 U/mL 
penicillin G, sodium salt (Gibco), and 100 pg/mL 
streptomycin sulfate (Gibco). Trypsin Solution (TS): 
0.1% w/v in lx  PBS, 0.1% w/v tetrasodium EDTA 
(Sigma). Freezing Medium (FM): 20% foetal bovine 
serum (Invitrogen) and 10% DMSO (Sigma) in plain 
DMEM. Hypotonic Solution (HS): 0.075 mM KC1. 
Fixative (FIX): 3 parts methanol, 1 part acetic acid.

Tissue collection

The surfaces of the tail tips and toes of adult dragon 
lizards were sterilized by wiping with gauze soaked 
in 70% ethanol. Approximately 5-10 mm of the tail 
tip was collected from each specimen using a sterile 
scalpel blade (4. norrisi, one male, one female; C. 
fordi, three females, T. pinguicolla, one male, 
Tympanocryptis sp. one male and P. vitticeps, one 
female). Three millimetres of the fourth toe of the 
hind foot were collected from a single male A. norrisi 
specimen. Tail and toe clips were immediately 
transferred to 5 mL of CME and incubated at room 
temperature (~25 °C) for 12-24 h.

Cultures

All explants for cultures were set up in an aseptic 
environment inside a laminar hood using sterilised

Springe:
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equipment. Individual tissue pieces were placed onto 
a Petri dish and washed twice with 1 x WB. These 
were then transferred to a new Petri dish containing 
two drops plain DMEM and minced with scalpel 
blades. Culture flasks were prepared by scratching the 
inner surface with a scalpel blade (to assist in 
attachment of explants) and coated with 2 mL of 
plain DMEM, which aids later spreading of the 
medium without dislodging explants. Minced tissue 
pieces were transferred using a Pasteur pipette to a 
T25 culture flask and left to dry upright, with the lid 
open, for 30-60 min inside the hood after which 
5 mL of CMA were added. Flasks were then 
transferred to a humidified incubator at 28 °C with 
5% C 02.

Splitting and freezing cultures

Cells were passaged once high density cell growth 
around primary explants was observed. Each flask 
was rinsed once with 3 mL 1 x WB. Then, following 
the addition of 1.5 mL of TS, the flask was incubated 
at RT for 1-2 min or until cells were dislodged from 
the flask surface (with gentle tapping and observation 
under a light microscope) and mixed gently with a 
Pasteur pipette to remove cell clumps. To collect the 
cells, 5 mL (~ 3  volumes of TS) of CMA was added 
to the flask and transferred to a 10 mL tube. The cell 
suspension was centrifuged at 250g in a swivel rotor 
centrifuge for 5 min and the supernatant discarded, 
leaving 100-200 pL behind. The resultant cell pellet 
was then resuspended in 2 mL of CMA and mixed 
gently by tapping and then transferred to a new flask 
containing 3 (for T25) or 8 (T75) mL of CMA. Flasks 
were incubated as described above.

For freezing, a cell pellet was obtained as above, 
but resuspended in 1.5 mL FM, transferred to a 
chilled cryovial (Nunc) with appropriate labelling 
and stored at —80 °C for at least 2 days. For long 
term archival storage, vials were transferred to a 
liquid N2 storage facility. We found cells were viable 
when stored at —80 °C for up to 6 months.

Chromosome preparations, differential staining, 
banding, FISH and microscopy

Metaphase chromosomes were harvested as described 
by Ezaz et al. (2005) with minor modifications. 
Specifically, cells were grown in culture until there

was a high proportion of dividing cells (~50%  with 
60-70% overall confluence). The dividing cells are 
normally rounded and appear as doublets. Cell 
divisions were blocked at metaphase by adding 
0.05 pg/mL of Colcemid (Roche) and incubated as 
described earlier for up to two hours, checking under 
a microscope every half an hour. When cells respond 
to colcemid (with high frequency of rounded cells), 
the medium was discarded, trypsinized, centrifuged 
and aspirated as described above. The pellet was 
resuspended gently and 1 mL HS added drop by drop. 
Another 2 mL of HS was then added slowly, mixed 
gently and incubated in a 37 °C water bath for 45- 
60 min. Several drops of freshly prepared chilled 
fixative were added and the cells centrifuged as 
before. The supernatant was removed except for 
1 mL in which the pellet was resuspended. The cells 
were fixed by slowly adding 1 mL FIX. Another 
1 mL of FIX was added and centrifuged as before. 
The cell pellet was washed three more times and 
finally FIX was added on the basis of the size of the 
pellet. The quality and mitotic index of the cell 
suspension was examined by dropping cells onto 
microscope slides and observing under a phase 
contrast microscope. Fixed cell suspensions were 
kept at —20 °C for long-term storage. Differential 
staining (DAPI, CA3, banding (C-banding), FISH 
with telomeric probe (TTAGGG)n and microscopy 
were performed as described by Ezaz et al. (2005).

Results and discussion

We have presented techniques to establish, propagate, 
maintain and archive primary fibroblastic cell lines 
from toe and tail clip explants of Australian dragon 
lizards, without the need to sacrifice animals.

Cells started to grow out from the explants within 
4-5 days and all primary explants yielded dividing 
cells. The time required for initiation of exponential 
cell growth (~  40-70% confluency) was variable, 
ranging from 1 to 5 weeks. In all species, explants 
produced primary cell lines with fibroblastic mor
phology (Fig. la). Cell lines were maintained and 
propagated through up to ten passages and cryopre- 
served successfully. After each passage, 70-80% 
confluency was reached within 1-3 days (Fig. la), 
after which cells were subcultured at at a 1:1 ratio. 
Cells were also subcultured at 1:3 and 1:4 ratios and
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Fig. 1 Examples showing 
fibroblast cells and 
chromosomes harvested 
from tail explants of 
Australian dragon lizards, 
a fibroblast cell line 
obtained from tail clip of 
T. pinguicollcr, b inverted 
DAPI stained chromosomes 
in T. pinguicolla; c merged 
images of CA3 and DAPI 
stained chromosomes in 
A. norrisr, d inverted DAPI 
stained images in C. fordr, 
e FISH of telomeric probe 
in P. vitticeps; f C-banded 
chromosomes of female 
P. vitticeps, arrow indicates 
C-banded W chromosomes.
Scale bar represents 10 pm

50-70% confluency was reached within 1-3 weeks. 
No substantial mortality was observed when subcul
tured at the lower innoculi. The medium was changed 
once a week but no significant mortality was 
observed when the medium was changed only after 
2 weeks. We found no reduction in cell viability after 
short term (<6 months) storage at —80 °C. We found 
no mortality in response to trypsin in any of our cell 
lines and no reduction of growth after recovery from 
cryopreservation.

To optimise culture conditions we varied the 
composition of the culture medium, incubation 
temperature and maceration versus enzymatic (col- 
lagenization) methods of primary cell isolation (data 
not shown). We compared explant cultures in 10% 
DMEM and 1:1 ratio of 10% DMEM and Amniomax 
to that of cultures with Amniomax only. We found 
optimum cell growth when cultured in Amniomax 
only. We incubated cultures at three temperatures: 
26, 28 and 30 °C. We observed optimum cell growth 
in cultures incubated at 28 °C. We have also 
compared collagenization of explants with the mac
eration technique described herein. We found high 
cell mortality as well as frequent bacterial and fungal 
infections when collagenization was used. We 
observed no fungal or bacterial infection when our 
maceration technique was used.

Metaphase chromosome preparations were 
obtained from all cell lines reported here (Fig. lb- 
f). The diploid chromosomes in Australian dragon 
lizards are highly conserved with the majority of

Cytotechnology (2008) 58:135-139

species (including the five species in this study) 
having a chromosome complement of 2n =  32 
comprising 10 macro-chromosomes and 12 micro
chromosomes (Witten 1983). Our cell lines main
tained normal chromosomal diploidy throughout the 
study. Chromosomes from all five species were used 
successfully in various cytogenetic analyses such as 
differential staining (DAPI, CA3, C-banding; 
Fig. 1 b—d), C-banding (Fig. If) and fluorescent in 
situ hybridisation (Fig. le). We found no differences 
in banding, staining or FISH pattern when chromo
somes were harvested from tail or toe clip fibroblasts 
when compared to those harvested from leukocytes or 
fibroblast cell lines originated form internal tissue 
culture. Of particular note are the chromosomes from 
T. pinguicolla, an endangered species and A. norrisi 
for which these preparations represent the first 
reported metaphase chromosomes and diploid chro
mosome numbers (2n =  32).

The protocol presented here is less labour inten
sive than traditional methods and could be easily 
adopted by any laboratory equipped for basic cell 
culture. Lizard toe and tail clips are routinely 
collected from wild animals in the course of ecolog
ical, evolutionary, taxonomic and conservation 
studies.

Establishing primary cell lines from external 
implants as we have demonstrated here, maximises 
the utility of samples that are often rare, expensive 
and difficult to collect, particularly in the case of 
endangered species. We have shown that primary cell
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lines can be established from a very small ( ~ 3  mm) 
tissue explant without laborious trypsin or collage- 
nase treatments. We are optimistic that this non-lethal 
technique can be used in other reptiles with appro
priate modifications and, therefore, will provide 
research materials not only in cytogenetic studies 
but a wide variety of biological research.
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Abstract

Reptiles epitomize the variability of reproductive and sex determining modes and mechanisms 

among amniotes. These modes include gonochorism (separate sexes) and parthenogenesis, 

oviparity, viviparity, and ovoviviparity, genotypic sex determination (GSD) with male (XX/XY) 

and female (ZZ/ZW) heterogamety and temperature dependent sex determination (TSD). 

Lizards (Order Squamata, Suborder Sauria) are particularly fascinating because the distribution 

of sex-determining mechanisms shows no clear phylogenetic segregation. This implies that 

there have been multiple transitions between TSD and GSD, and between XY and ZW sex 

chromosome systems. Approximately 1000 species of lizards have been karyotyped and among 

those, iess than 200 species have sex chromosomes, yet they display remarkable diversity in 

morphology and degree of degeneration. The high diversity of sex chromosomes as well as the 

presence of species with TSD, imply multiple and independent origins of sex chromosomes, 

and suggest that the mechanisms of sex determination are extremely labile in lizards. In this 

paper, we review the current state of knowledge of sex chromosomes in lizards and the 

distribution of sex determining mechanisms and sex chromosome forms within and among 

families. We establish for the first time an association between the occurrence of female 

heterogamety and TSD within lizard families, and propose mechanisms by which female 

heterogamety and TSD may have co-evoived. We suggest that lizard sex determination may be 

much more the result of an interplay between sex chromosomes and temperature than 

previously thought such that sex determination mode is influenced by the nature of the 

heterogamety and as well as temperature sensitivity and the stage of sex chromosome 

degeneration.
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Introduction

Sex chromosomes differ from autosomes in that the two members of the sex chromosome pair 

typically vary in morphology and gene content. They are highly specialized and appear to have 

evolved independently many times in vertebrates (for review see (Graves, 2008). Sex 

chromosomes are thought to evolve from an autosomal pair by the acquisition of a male or 

female-determining gene that defines a non-recombining region that is progressively extended, 

promoting degeneration of the sex-specific chromosome (Charlesworth, 1991; Muller, 1914; 

Ohno, 1967). This mode of sex determination is often referred to as chromosomal sex 

determination or genotypic sex determination (GSD).

GSD vertebrates typically have either a male heterogametic (XY male/XX female) or a female 

heterogametic (ZZ male/ZW female) sex chromosome system. The XX/XY sex chromosome 

system is conserved in therian mammals, and a ZZ/ZW pair is conserved within birds and 

within snakes (Graves, 2000; Matsuda et al., 2005; Ohno, 1967). The sex chromosome pair (X 

and Y, or Z and W) may differ only in a restricted region (even a single locus), as is expected 

given their autosomal origin, or can be highly differentiated as a result of progressive 

degeneration due to suppression of recombination. However, vertebrate XY and ZW sex 

chromosomes are not homologous, suggesting the independent evolution of sex chromosomes 

in different lineages from non-homologous ancestral autosomes (Fridolfsson et al., 1998;

Nanda et al., 2002; Nanda et al., 2000). In some lineages, notably birds and mammals, sex 

chromosomes and sex determination are very stable. For example, all mammals have GSD with 

male heterogamety and sex is determined in therian mammals by the presence of a master sex 

determining gene (e.g. SRY), on the Y chromosome (Sinclair et al., 1990). All birds also have 

GSD but with female heterogamety and sex, at least in chicken, is determined by dosage of the 

gene DMRT1 gene located on the Z chromosome (Smith et al., 2009).

Many reptiles have GSD but, unlike birds or mammals, sex can also be determined by 

incubation temperature (temperature-dependent sex determination or TSD) independent of 

specific genes or chromosomes (Bull, 1983; Charnier, 1966). In yet others, sex is determined by 

an interaction between environmental influences and genetic factors (Quinn et al., 2007; 

Radder et al., 2008). The widespread influence of temperature on sex determination may 

provide a viable state from which novel master sex genes and chromosomes in reptiles can 

evolve (Georges et al., 2009; Quinn, 2008) and influence directly the manner in which sex 

chromosomes are acquired and lost. The high diversity of sex determining mechanisms seen in



reptiles (e.g. XY, XXY, ZW, ZZW, TSD, genetic-environment interactions; Table, 1, Figure 1) is 

testament to the evolutionary lability of reptile sex determination.

I l l

There are close to 5000 lizard species (Uetz, 2009) and they exhibit an astonishing array of 

reproductive and sex determining modes including gonochorism (separate sexes) and 

parthenogenesis, oviparity, viviparity, and ovoviviparity, GSD and TSD, and male (XX/XY) and 

female (ZZ/ZW) heterogamety. They are particularly fascinating because the distribution of sex

determining mechanisms shows no clear phylogenetic segregation (Janzen and Phillips, 2006; 

Organ and Janes, 2008; Pokornä and Kratochvil, 2009) (Table 1, Figure 1).

Lizards with GSD display remarkable diversity in sex chromosome differentiation, ranging from 

cryptic or homomorphic to highly differentiated (Figure 2). Much of this variation occurs within 

families, often among closely related species and even within the various races or populations 

of the same species. For example, the gekkonid lizard, Gehyro purpurascens, displays two Z 

chromosome and six W chromosome morphs, primarily as the result of centromeric inversions 

(Moritz, 1984) (Figure 2). Variation in the morphology of sex chromosomes among closely- 

related taxa, or populations of the one taxon, indicate that morphological evolution of sex 

chromosomes, and perhaps also sex determining mechanisms in lizards may occur relatively 

easily in comparison to mammals and birds.

There are substantial gaps in our knowledge of the distribution and characteristics of sex 

chromosomes within and among lizard families. There are data from all member species in only 

two families, one of which is monotypic and the other bitypic (Rhineuridae and Annielidae 

respectively), and for many of these, only one animal has been examined, thereby excluding an 

examination for sex chromosomes (Table 1). In addition, many lizards have sex 

microchromosomes that are difficult to identify using standard banding and staining 

techniques. Modern cytogenetic techniques, such as comparative genomic hybridization (CGH) 

that are more sensitive than G and C banding have enabled the characterization of sex 

chromosomes across a much wider range of species. This includes the identification of sex 

chromosomes that were cryptic because they involve microchromosomes or because they 

have undergone little morphological differentiation (Ezaz et al., 2005; Kawai et al., 2007; Traut 

etal., 1999).

Here, we review the current state of knowledge of sex chromosomes in lizards and the 

distribution of sex determining mechanisms and sex chromosomal forms within and among 

families. We establish for the first time an association between the occurrence of female 

heterogamety and TSD within lizard families, and propose mechanisms by which female
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heterogamety and TSD may have co-evolved. We suggest that lizard sex determination may be 

much more the result of an interplay between sex chromosomes and temperature than 

previously thought such that sex determination mode is influenced by the nature of the 

heterogamety, temperature sensitivity and the stage of sex chromosome degeneration.

An astonishing variety of sex chromosomes in lizards

Karyotype information is available for at least one species from 29 of the 32 lizard families 

(Olmo and Signorino, 2005; Vidal and Hedges, 2009; Table 1). No species of Cadeidae, 

Lanthanotidae or Shinisauridae have been examined. Seven families (Iguanidae, Scincidae, 

Sphaerodactylidae, Pygopodidae, Dibamidae, Teiidae and Gymnophathalmidae) include species 

with male heterogamety (XX/XY) and six families (Bipedidae, Lacertidae, Varanidae, 

Chameleonidae, Agamidae and Phyllodactylidae) species with female heterogamety (ZZ/ZW). 

Only one family (Gekkonidae) includes species with both male and female heterogamety. No 

sex chromosomes have been detected in the remaining 15 families (Table 1).

At the level of species, approximately 913 have been karyotyped. Of these, sex chromosomes 

have been detected in only 181 species of which, about two thirds (115, 64%) have male 

heterogamety (XX/XY) and the remainder (66, 36%) female heterogamety (Table 1, Figure 1).

Although the majority of lizards with sex chromosomes have XY or ZW type systems, 

approximately 23% have multiple sex chromosomes (Figure 1). Multiple sex chromosome 

systems, thought to have evolved via autosome-sex chromosome fusions (King, 1977; Odierna 

et al., 2001; Olmo, 1986; Wright, 1973)(Leache and Sites, this issue), are common in XY, but not 

in ZW species. Only four (6%) of all female heterogametic species have multiple sex 

chromosomes systems (Z1Z1Z2Z2 male and Z {l2\N female, Table 1, Figure 1, Figure 2) and these 

are confined to the Family Lacertidae (3 species of Lacerta and one species of Podacris (Olmo 

and Signorino, 2005) (Table 1). In contrast 37 (32%) of the 115 species with XY sex 

chromosomes have multiple sex chromosomes (XiXiX2X2 female and XiX2Y male), most of 

which occur in Iguanidae (33/37, Table 1, Figure 2,).

In addition, both simple and multiple sex chromosomes have evolved within closely related 

species (e.g. Anolis) and even different populations of the same species have been found to 

include multiple and simple sex chromosomes systems. Intra-specific variation involving 

multiple XY sex chromosomes systems occurs in populations of Scincella lateralis (XY/XXY, 

Figure 2) (Wright, 1973) and Sceloporus clarkii (Leache and Sites, this issue), while multiple ZW 

systems occur in Lacerta vivipera (ZW/ZZW)(Odierna et al., 2001).
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A number of mechanisms have been proposed to explain the formation of heteromorphic sex 

chromosomes in lizards (Bickham, 1984; Cole et al., 1967; King, 1981; Olmo, 1986; Olmo et al., 

1987). Most of these are derived from observation through classical cytogenetic analysis 

(mainly differential staining and banding) and include centromeric inversion (peri or para), 

centric fusion, heterochromatinization followed by amplification of tandem repeats, 

heterochromatinization followed by degeneration, and autosome-sex chromosome 

translocation. Rather than degeneration, as seen in the sex chromosomes of mammals and 

most birds and some snakes, the sex-specific chromosomes (Y or W) in many lizards are larger 

than their homologues, usually as a result of the tandem amplification of repetitive elements. 

For example, in Varanidae, the W chromosome is substantially larger than the Z chromosome 

in ali four species with sex chromosomes, and is thought to have expanded by tandem 

amplification of heterochromatin (King, 1977; Figure 2).

Like birds, turtles and snakes, most lizards have a karyotype composed of macrochromosomes 

(ranging from 2n = 10-46) and microchromosomes (ranging from 2n = 0-26)(Olmo and 

Signorino, 2005). Microchromosomes have been found to be gene rich in birds with 2-3 times 

the number of genes than contained in macrochromosomes (Smith et al., 2000) and to have 

higher recombination rates (Rodionov et al., 1992). In addition, microchromosomes are GC, 

and CpG-rich and contain few repetitive elements (Hillier et al., 2004) and therefore, are likely 

to be important for generating genetic variation (Organ et al., 2008). In contrast, very little 

(primarily from classical cytogenetics) is known about the origin, evolution and genomics of 

microchromosomes in lizards (Olmo, 2008).

Importantly, in some species of lizards, sex chromosomes have been found to be 

microchromosomes (Bull, 1983; Ezaz et al., 2005; Ezaz et al., 2009a; Gorman, 1973; Gorman 

and Atkins, 1966). Sex microchromosomes have been found to be in most species of Iguanidae 

with multiple sex chromosomes, in all four species so far examined in Varanidae and four out 

of the five species examined in Agarnidae (Ezaz et al., 2005; Ezaz et al., 2009a; Gorman and 

Aitkins, 1968; Gorman and Atkins, 1966; King and King, 1975; King et al., 1982). The patterns of 

differentiation of these sex microchromosomes are highly variable within and among groups 

(Figure 2), and have evolved primarily via the accumulation and amplification of 

heterochromatin.

Sex microchromsomes appear to be highly labile in at least one family of lizards, with agamids 

exhibiting a substantial array of forms among closely related species. Four out of five agamid 

lizards whose sex chromosomes are known (Pogona vitticeps, P. barbata, Amphibolurus nobbi
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and Ctenophorus fordi) have ZW sex microchromosomes that are among the smallest in the 

complement (Ezaz et al.; 2005; Ezaz et al., 2009a; Quinn et al., 2009a). In this group, the W 

chromosomes are highly to moderately heterochromatic whereas, the Z chromosomes are 

euchromatic and can be detected only by mapping sex chromosome specific DNA sequences 

(Ezaz et al., 2005; Ezaz et al., 2009a) or by mapping sex chromosome specific BAC clones (Ezaz 

unpubl.). Both the Z and W chromosomes are DAPI faint in all four species, suggesting they 

comprise GC rich sequences. The C-banding pattern on the W chromosomes are also variable 

among the four dragon species, ranging from fully heterochromatic in P barbota and P. 

vitticeps, to highly heterochromatic in A. nobbi and dot-like in C. fordi (Ezaz et al., 2005; Ezaz et 

al., 2009a). These patterns of heterochromatic variability suggest various stages of sex 

chromosome differentiation within closely related species.

Cryptic or homomorphic sex chromosomes are often considered to be the norm in fish, 

amphibians and reptiles. While this may be true for fish and amphibians where GSD is the 

prevalent mode of sex determination, the frequency of homomorphic sex chromosomes in 

reptiles is under-reported because incubation experiments have been needed to distinguish 

GSD species with homomorphic sex chromosomes from TSD species that lack sex 

chromosomes. These data are available for relatively few lizard species (Table 1). Nevertheless, 

homomorphic sex chromosomes are certainly likely to be common in GSD lizards, as they are in 

fish and amphibians. High turnover of sex chromosomes, where new master sex determining 

genes arise on autosomes to regularly reset the progressive deterioration of the Y or W 

(Schartl, 2004; Volff et al., 2007), and generation of novel Y and W haplotypes by temperature 

induced sex reversal (Perrin, 2009), have been suggested as possible causes. Regular transitions 

between ZW dosage and XY dominance (or vice versa) involving the same master sex gene and 

associated chromosomes (Quinn, 2008) may also play a role.

The conclusion we draw from the studies reviewed above is that the lizard genome is dynamic 

at the level of sex chromosome organization. There is significant variation in the mode of sex 

determination and variation in the degree of heteromorphism with little regard for 

phylogenetic relationship or distance. Such variation occurs between families, species and even 

populations of the one species.

Multiple origins of sex chromosome in lizards

The extreme variation in sex determining mechanisms within lizards is not typical of all reptile 

groups. Sex chromosomes are conserved within several groups. For example, chromosome 4 is 

the Z chromosome in all snakes studied to date (Becak et al., 1963; Becak et al., 1964; Ohno,
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1967; Solari, 1993), whereas, chromosome pairs 4 or 5 are Z chromosomes in most birds 

(Ohno, 1967; Ohno et al., 1964; Solari, 1993; Suzuki, 1930). Chromosome painting attested to 

the homology of the Z chromosome, even between the most distantly related birds (Shetty et 

al., 1999), and the gene content of the bird Z chromosome is also conserved (Fridolfsson et al., 

1998; Stiglec et al., 2007). So is the gene content of the snake Z between three distantly related 

species (Python molurus, Elaphe quadrivirgata, Trimeresurus flavoviridis; Matsubara et al., 

2006). In each lineage, the W chromosome shows homology to the Z, but is degraded by 

different degrees (Bull, 1980; Bull, 1983; Ohno, 1967).

The similar sizes of the snake and bird Z chromosomes were initially thought to reflect ancient 

homology (Ohno, 1969). However, gene mapping showed that the bird and snake Z 

chromosomes are non-homologous; the bird Z is completely contained within the short arm of 

snake chromosome 2, and the snake Z corresponds to the bird chromosomes 2 and 27 

(Matsubara et al., 2006; Matsuda et al., 2005). Several recent studies using comparative gene 

mapping in snakes, a species of turtle (Pelodiscus sinensis), a species of gecko (Gekko 

hokouensis) and a species of dragon lizard (Pogona vitticeps) have shown that sex 

chromosomes, particularly ZW pairs, are not homologous between reptile groups (Ezaz et al., 

2009b; Kawagoshi et al., 2009; Kawai et al., 2009; Kawai et al., 2007; Matsubara et al., 2006; 

Matsuda et al., 2005). This is consistent with the idea that sex chromosomes evolved many 

times independently in reptiles (Figure 3).

Comparative mapping between snakes, birds, the gecko G. hokouensis and the agamid lizard P 

vitticeps confirms the independent origin of their sex chromosomes. Four genes (ATP5A1, GHR, 

DMRT1, CHD1) that are sex linked in the gecko G. hokouensis were found to be autosomal in 

the dragon lizard P. vitticeps (Ezaz et al., 2009b; Kawai et al., 2009). Similarly, five snake sex 

linked genes (WAC, KLF6, TAX1BP1, RAB5A and CTNNB1), lie on chromosome 6, and five 

chicken Z chromosome-borne genes are on chromosome 2 in P. vitticeps (Figure 3). Thus, the 

ZW pair of agamid iizard P. vitticeps is not homologous either to those of birds or snakes or the 

gecko G. hokouensis (Figure 3), (Ezaz et al., 2009b). This suggests independent origins of sex 

chromosomes not only between two lizard species, but also among species of lizards snakes 

and a turtle. The independent evolution of sex chromosomes is likely to be more common in 

lizards as more species are subjected to comparative study.

Lizards also show much variation within groups although, with only six functional sex linked 

genes, and four sex chromosome or sex-linked markers mapped or tested in only five species of 

lizards (Ezaz et al., 2009b; Quinn et al., 2009a; Quinn et al., 2009b), the degree of variation is
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debatable. W-specific markers from the Komodo dragon were found to be sex linked in the 

Australian varanid V. rosenbergi (W. Smith, pers. comm), suggesting the conservation of sex 

chromosome sequences within Varanidae. ZW-linked AFLP markers isolated from the dragon 

lizard, P. vitticeps were found by PCR analysis to be sex-linked in a closely related species, P. 

barbota. However, they were also found to be autosomal in several other species tested (Quinn 

et al., 2009b), suggesting the independent evolution of sex-chromosome specific sequences 

within Australian agamids. Also, in a preliminary study, a sex-linked AFLP marker isolated from 

Bassaina duperryei was found not to be sex-linked in a species of Tasmanain skink Novoscincus 

ocellatues (Ezaz unpub.), suggesting independent origin of sex specific sequences in skinks 

despite their morphologically conserved sex chromosomes (Donnellan, 1985; Hutchinson and 

Donnellan, 1992).

Another recent study on the comparative mapping of P. vitticeps sex chromosome specific 

marker has provided evidence for the rapid evolution of non-homologous ZW sex 

chromosomes within Australian dragon lizards (Ezaz et al., 2009a). Cross-species chromosome 

painting using a P. vitticeps sex chromosomal marker (Quinn et al., 2009b) revealed that the ZW 

sex microchromosomes of three Australian species (P. vitticeps, P. barbata and A. nobbi) were 

homologous, but that those of a fourth species, C. fordi, were not. This suggests at least two 

independent origins of ZW sex microchromosome systems in Australian agamids (Ezaz et al., 

2009a). No comparative data on the sex chromosomes in Iguanidae and Varanidae are 

available, so homology between the sex chromosomes of these three lizard groups is unknown.

These demonstrations of variation in lizard sex chromosomes, as well as the presence of 

species with temperature dependent sex determination, imply multiple and independent 

origins of sex chromosomes, and suggest that the mechanisms of sex determination are 

extremely labile in this group. This lability may indicate frequent transitions between modes 

(TSD and GSD) and mechanisms (XY and ZW) of sex determination in lizards through the 

evolution of novel sex chromosomes, perhaps via the acquisition of novei genes. The activation 

of unlinked sex determining genes on autosomes could also be a possible mechanism for the 

independent origin of sex chromosomes in different lizard lineages, as proposed for the 

evolution of non-homologous sex chromosomes in salmonid fishes (Woram et al., 2003).

An ancient reptile ZW pair?

Against this variation, the conservation of the ZW pair between birds and the gecko, G. 

hokouensis is remarkable, suggesting these two distantly-related taxa have conserved synteny 

of six functional genes over more than 285 MYA (Kawai et al., 2009; Rest et al., 2003). A
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parsimonious view of this finding is that chicken and gecko G. hokouensis retain the primitive 

condition of their common ancestor, with the remaining squamate clade (Vidal and Hedges, 

2009) having more recently derived states, albeit, independently derived (Ezaz et al., 2009b). 

However, in the context of the very great evolutionary lability of sex chromosomes in lizards, 

an alternate explanation presents itself. The master sex determining genes of chicken and 

gecko may well be different but by chance have come to reside on homologous chromosomal 

regions, either by the chance capture of sex determination by genes in a syntenic region 

common to the bird-gecko ancestor, or through translocation. Translocation is more likely to 

happen in lizards, because of the apparent lack of morphologically differentiated sex 

chromosomes which is likely to represent nascent sex chromosomes, and such nascent sex 

chromosomes are known to accumulate transposable elements and have been reported in a 

wide range of plants and animals (Adams MD, 2000; Charlesworth et al., 2005; Kejnovsky et al., 

2008; Matsunaga, 2009; Skaletsky et al., 2003).

Support for convergence in the chromosomal location of the master sex determining gene 

comes from the observation that it is unlikely that birds and gecko have the same master sex 

determining genes. The male determining gene DMRT1 in chicken is present only on the Z 

chromosome and sex is determined by dosage of the DMRT1 gene product, two copies 

produce males, whereas one copy produces females (Smith et al., 2009). In G. hokouensis, this 

gene is present in both Z and W chromosomes (Kawai et al., 2009), making it unlikely to be sex 

determining in this species unless a paralogue of DMRT1 is present and functions as a 

dominant master gene (as found in Xenopus leavis; DMW; Yoshimoto et al., 2008), which is 

likely to function as a suppressor of autosomal DMRT1 dosage. Moreover, closely related 

species of gecko have both XY and ZW sex chromosome systems as well as TSD, and possibly 

sex chromosome-temperature interactions (e.g. Gekko joponicus; Gamble, 2009; Tokunaga, 

1985), indicating rapid transitions between modes of sex chromosomes as well as modes of sex 

determination (for review see Gamble, 2009). The emergence of a novel sex determining gene 

in gecko in the 285 million years since their divergence from birds, and their chance residence 

on homologous chromosomes, would seem at least an equally plausible explanation for the 

homology of the sex chromosomes of these taxa, given the lability of sex chromosomes and 

mechanisms in other lizards. The matter is unlikely to be resolved until the genetic mechanisms 

of their sex determination become better known and without a comprehensive genomic 

analysis across the squamate phylogeny (e.g. geckos, skinks, varanids, lacertids, agamids).

Whatever the mechanism of sex determination in the gecko, the homology between the gecko 

and bird sex chromosomes suggests that a bird-like ZW could be ancestral for reptiles. The
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homology between the bird ZW and the XY complex of the platypus (Veyrunes et al., 2008) 

suggests that this homology might extend back to a common amniote ancestor that lived 310 

million years ago (Graves, 2008). Alternatively, if ZW is the ancestral state, some of the 

fundamental genetic machinery of a ZW-driven sex determination and differentiation network 

may have been retained to varying degrees in different reptile lineages, leading to a 

predisposition to evolve similar sex determining mechanisms. Thus similar sex chromosome 

systems may have independent origins, but are constrained in some way by their phylogenetic 

history.

An association between TSD and female heterogamety in lizards

In temperature dependent sex determination (TSD), maies and females are produced 

differentially according to the incubation temperatures experienced by the developing 

embryos. Although TSD was first described in an agamid lizard, Agama agama (Charnier, 1966), 

it is more frequent in non-squamate reptiles (in possibly all crocodilians, many turtles, tuatara) 

than lizards. Since Charnier's discovery, TSD has been identified unequivocally in 37 species 

from six families, most of which are from the Agamidae (13/37) and Gekkonidae (8/37, Sup 

Table 1, Figure 1) families. In addition, both GSD (4 species) and TSD (5 species, Sup Table 1) 

have been detected in the family Eublepharidae, although no sex chromosomes are known.

Evidence of TSD has been reported in another seven species from the families Lacertidae (one 

species), Scincidae (four species), Anguidae (one species) and Varanidae (one species) (see 

Harlow, 2004; Pokornä and Kratochvil, 2009). However, these data are equivocal mainly 

because of small sample size as well as the nature and design of the incubation experiments 

and sex identification techniques employed (see Harlow 2004, Pokorna and Kratochvil 2009), 

so we did not include those species as having TSD in this review.

The classical view of transitions between GSD and TSD has sex captured by a temperature 

sensitive element, the production of lethal or suboptimal YY or WW individuals, and the loss of 

these chromosomal elements from the genome through natural selection or drift (Bull, 1980; 

Bull, 1983). GSD arises from TSD through the capture of sex determination by novel genes 

which come to influence sex and the formation of sex chromosomes (Bull, 1980; Bull, 1983; 

Charlesworth, 1991). However, there is emerging evidence of interactions between GSD and 

TSD both in forms regarded as GSD (Bassiana duperreyi, Pogono vitticeps) (Quinn et al., 2007; 

Radder et al., 2008) and forms regarded as TSD (Amphibolurus muricatus and Agama 

impalearis have 50:50 sex ratios at intermediate temperatures,(El Mouden et al., 2001; Harlow
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and Taylor, 2000) and that sex determination should be regarded more as a continuum of 

states than a dichotomy of GSD and TSD (Sarre et al., 2004).

Mapping the distribution of TSD and GSD across the lizard phylogeny shows an almost 

haphazard distribution of the traits. However, one trend demands some attention: an 

association between the occurrence of TSD and the occurrence of female heterogamety within 

families (Figure 4). This suggests that ZW sex chromosomes evolved only in those families in 

which species with TSD occur. An exception is the Gekkonidae, which contains species with XY, 

ZW or TSD (Figure 4). Is this association an artifact, arising from limited data on the mode of 

sex determination in majority of the lizard lineages? Or does the pattern arise from 

fundamental underlying processes we do not yet fully understand?

An association might suggest that ZW systems are more prone to coming under thermal 

influence, or perhaps female heterogamety is in some way more compatible with selection for 

TSD when thermal tendencies first arise. Alternatively, it might mean that ZW systems are 

more compatible with the retention of an underlying genetic predisposition (cryptic sex-linked 

ZW chromosomes) in TSD species (Quinn 2008). It has also been suggested that ZW systems in 

lizards act via dosage mechanisms that are more likely to evolve TSD than those systems that 

act via male dominance (Quinn et al. 2007), and it is gene dosage systems that are more 

susceptible to temperature influence than dominant gene systems.

These questions arise from an apparent association between ZW systems and TSD in the lizard 

phylogeny but our knowledge of the mechanisms of sex determination in lizards, and in 

particular, the interaction between genotype and temperature in determining sex, is as yet too 

rudimentary to take the ideas beyond speculation. The fundamental differences to the 

molecular mechanisms of sex differentiation between female homogametic and female 

heterogametic system is not fully known. There is evidence that both dominant and dosage 

mechanisms can determine sex in ZW systems (e.g. DMRT1 dosage in birds, Smith et al. 2009; 

DMW dominance in Xenopus leavis, Yoshimoto et al. 2008), however, no XY dosage systems 

have been observed in any vertebrate. It is likely that among female heterogametic lizards, 

some will determine sex via dosage mechanisms as in birds, while others via dominant 

mechanisms, as in X. leavis. The dominance of a master sex determining gene could be 

achieved by regulation of one or more of the influential genes in the sex differentiation 

pathway, in the way SRY interacts with SOX3 or SOX9 as hypothesized previously in mammals 

(Graves, 1998). Alternatively, it could be achieved by inhibition of what was formerly a dosage 

system, in which the dosage is inhibited or knocked down by members of same gene family as
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is suspected in X. leavis (likely DMW inhibition of DMRT1). Thus, regardless of heterogamety, 

sex in many lizard clades may be determined by gene dosage or gene dosage captured by a 

"dominant" master sex gene and so generally predisposed to capture of the genetic pathway of 

sex differentiation by exogenous cues, such as temperature.

Further studies, particularly in gekkonid and agamid lizards, could reveal the nature of such co

evolution of ZW sex chromosomes and TSD. For example, Gekkonidae is the only family where 

XY, ZW and TSD exist (Gamble 2009). If XY and ZW sex chromosomes are found to be 

homologous (e.g. Rana rugosa, Ogata et al., 2003), and if closely related species or populations 

have TSD (e.g. Gekko japonicus, G. gecko, G. hokouensis) then identifying sex determining 

genes in these species and comparative analyses of gonad differentiation pathways in XY, ZW, 

TSD populations (species) of geckos would reveal the true nature of co-evolution of TSD and 

ZW sex chromosomes and mechanisms of transitions between modes. Evidence for a 

relationship between TSD and ZW can also be sought in species from Agamidae, particularly 

Australian dragon lizards, in which these features have been reliably identified (Harlow 2004, 

Ezaz et al. 2005, Quinn et al. 2007, 2009, Ezaz et al. 2009a,b) and genomics resources are 

already available.

Conclusions

Lizards occupy a key evolutionary position in the amniote phylogeny, so understanding the 

origin, evolution and mechanisms of sex determination and sex chromosomes will help us to 

better understand the origin and evolution of sex chromosomes in other vertebrates including 

mammals. In particular, such studies will resolve the debate about the ancestry of sex 

determination, TSD, or GSD, XY or ZW, but they will also unravel how GSD and TSD co-exist and 

how transitions between heterogamety occur.

Fewer than 200 species of lizards have identifiable sex chromosomes, yet they display 

remarkable diversity in morphology and extent of degeneration. The high diversity of sex 

chromosomes as well as the presence of species with TSD, imply multiple and independent 

origins of sex chromosomes, and suggest that the mechanisms of sex determination are 

extremely labile in lizards. This apparent lability is likely to have a significant role in rapid 

transitions among modes and mechanisms perhaps via female heterogamety and TSD. 

However, little is known about the genomics of sex chromosomes and their relationship with 

the plasticity of sex determination in lizards.
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How sex chromosomes and temperature interact to determine sex in many lizard species is not 

known, although theoretical models have been proposed (Bull 1983, Geroges et al. 2009,

Quinn 2008). Thermal influence on sex reversal in two lizard species with highly heteromorphic 

sex chromosomes (Radder et al. 2008, Quinn et al. 2007) is an indication of the propensity of 

sex determination to be sensitive to temperature among lizards. It is quite likely that sex 

chromosomes will be found in lizard species that have long been regarded as classical TSD 

species. Therefore, interactions between sex chromosomes and temperature may be more 

intrinsic in lizards than previously thought, and may depend on the extent of differentiation of 

sex chromosomes as well as heterogamety. The apparent co-occurrence of TSD and female 

heterogamety may provide such a clue and perhaps represent a transitional phase between 

alternate modes and mechanisms.

Therefore, lizard sex determination may be much more the result of an interplay between sex 

chromosomes and temperature than previously thought, such that the sex determination 

mode is influenced by the nature of the heterogamety, temperature sensitivity and the stage of 

sex chromosome degeneration. Future comparative genomic analysis of sex chromosomes 

among closely related lizard species would appear to be one of the most important steps to 

understanding the origin, evolution and transitions of sex chromosomes and sex 

determinations. Recent advances in molecular genetics, cytogenetics and sequencing 

technologies promise to advance our knowledge substantially in the near future.

Acknowledgements

We thank Ettore Olmo for the opportunity to contribute to this special issue. Many thanks to T. 

Gamble for discussion about sex chromosomes and sex determination in lizards and reptiles. 

This work is supported by the Australian Research Council Discovery Grant (DP0881196) 

awarded to S.S., A.G. and Scott V. Edwards.

References

Adams MD CS, Holt RA, Evans CA, Gocayne JD, Amanatides PG, et al: The genome sequence of 
drosophila melanogaster. Science 287:2185-2195 (2000).

Becak W, Becack ML, Nazareth HRS: Chromosomes of snakes in short term cultures of leucocytes. The 
American Naturalist 97:253-256 (1963).

Becak W, Becak ML, Nazareth HRS, Ohno S: Close karyological kinship between the reptilian suborder 
serpents and the class aves. Chromosoma 15:606-617 (1964).

Bickham JW: Patterns and modes of chromosomal evolution in reptiles, in Sharma AK, Sharma A (eds): 
Chromosomes in evolution of eukaryotic group, pp 13-40 (CRC Press, Boca Raton, Florida 1984).

Bull JJ: Sex determination in reptiles. Quart Rev Biol 55:3-21 (1980).
Bull JJ: Evolution of sex determining mechanisms. (Benjamin/Cummings, Menlo Park, California 1983).
Charlesworth B: The evolution of sex chromosomes. Science 251:1030-1033 (1991).
Charlesworth D, Charlesworth B, Marais G: Steps in the evolution of heteromorphic sex chromosomes.



122

Heredity 95:118-128 (2005).
Charnier M: [action of temperature on the sex ratio in the agama agama (agamidae, lacertilia) embryo],

C R Seances Soc Biol Fil 160:620-622 (1966).
Cole CJ, Lowe CH, Wright JW: Sex chromosomes in lizards. Science 155:1028-1029 (1967).
Donnellan SC: The evolution of sex chromosomes in scincid lizards: Scool of Biological Sciences, p 218 

(Macquarie University, 1985).
El Mouden EH, Znair M, Pieau C: Effects of incubation temperature on embryonic development and sex 

determination in the north african lizard, agama impalearis. Herpetol J 11:72-77 (2001).
Ezaz T, Moritz B, Waters PD, Graves JAM, Georges A, Sarre SD: The zw sex microchromosomes of an 

Australian dragon lizard share no homology with those of other reptiles or birds. Chromosome 
Res Accepted Sep 09 (2009b).

Ezaz T, Quinn AE, Miura I, Sarre SD, Georges A, Marshall Graves JA: The dragon lizard pogona vitticeps 
has zz/zw micro-sex chromosomes. Chromosome Res 13:763-776 (2005).

Ezaz T, Quinn AE, Sarre SD, O'Meally D, Georges A, Graves JA: Molecular marker suggests rapid changes 
of sex-determining mechanisms in australian dragon lizards. Chromosome Res 17:91-98 (2009a).

Fridolfsson AK, Cheng H, Copeland NG, Jenkins NA, Liu HC, Raudsepp T, et al.: Evolution of the avian sex 
chromosomes from an ancestral pair of autosomes. Proc Natl Acad Sei USA 95:8147-8152 
(1998).

Gamble T: A review of sex determining mechanisms in geckos (gekkota: Squamata). Sex Dev In press 
(2009).

Georges A, Ezaz T, Quinn AE, Sarre SD: Are reptiles predisposed to temperature-dependent sex 
determination? Sex Dev in press, accepted 10/06/09 (2009).

Gorman GC: The chromosomes of the reptilia, a cytotaxonomic interpretation., in Chiarelli AB, Capanna,
E (ed): Cytotaxonomy and vertebrate evolution, pp 349-424 (Academic Press, London, New York 
1973).

Gorman GC, Aitkins L: Confirmation of an x-y sex determining mechanism in lizards (anolis). Copeia 
1968:159-160 (1968).

Gorman GC, Atkins L: Chromosomal heteromorphism in some male lizards of the genus anolis. The 
American Naturalist 100:579-583 (1966).

Graves JA: Interactions between sry and sox genes in mammalian sex determination. Bioessays 20:264- 
269 (1998).

Graves JAM: Weird animal genomes and the evolution of vertebrate sex and sex chromosomes. Ann Rev 
Genet 42:565-586 (2008).

Graves JAM, and Shetty, S.: The evolution of sex chromosomes in higher vertebrates, in Clarke M (ed): 
Comparative genomics, pp 153-205 (Kluwer Academic Publishers, 2000).

Harlow P: Temperaturedependent sex determination in lizards, in Valenzuela N, Lance, V.A. (ed):
Temperaturedependent sex determination in vertebrates, pp 11-20 (Smithsonian Institution, 
Washington DC, 2004).

Harlow PS, Taylor JE: Reproductive ecology of the jacky dragon (amphibolurus muricatus): An agamid 
lizard with temperature dependent sex determination. Aust Ecol 25:640-652 (2000).

Hillier LW, Miller W, Birney E, Warren W, Hardison RC, Ponting CP, et al.: Sequence and comparative 
analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 
432:695-716(2004).

Hutchinson MN, Donnellan SC: Taxonomy and genetic variation in the australian lizards of the genus 
pseudemoia (scincidae: Lygosominae). Journal of Natural History 26:215 — 264 (1992).

Janzen FJ, Phillips PC: Exploring the evolution of environmental sex determination, especially in reptiles. J 
Evol Biol 19:1775-1784 (2006).

Kawagoshi T, Uno Y, Matsubara K, Matsuda Y, Nishida C: The zw micro-sex chromosomes of the Chinese 
soft-shelled turtle ( pelodiscus sinensis, trionychidae, testudines) have the same origin as chicken 
chromosome 15. Cytogenet Genome Res 125:125-131 (2009).

Kawai A, Ishijima J, Nishida C, Kosaka A, Ota H, Kohno S, et al.: The zw sex chromosomes of gekko
hokouensis (gekkonidae, squamata) represent highly conserved homology with those of avian 
species. Chromosoma 118:43-51 (2009).

Kawai A, Nishida-Umehara C, Ishijima J, Tsuda Y, Ota H, Matsuda Y: Different origins of bird and reptile 
sex chromosomes inferred from comparative mapping of chicken z-linked genes. Cytogenet 
Genome Res 117:92-102 (2007).

Kejnovsky E, Hobza R, Cermak T, Kubat Z, Vyskot B: The role of repetitive DNA in structure and evolution



123

of sex chromosomes in plants. Heredity 102:533-541 (2008).
King M: The evolution of sex chromosomes in lizards: In: Evolution and reproduction, pp 55-60 

(Australian Academy of Science, 1977).
King M: Chromosome change and speciation in lizards, in Atchley W, Woodruff D (eds): Essays on 

evolution and speciation, pp 262-285. (Camb. Univ. Press, 1981).
King M, King D: Chromosomal evolution in lizard genus varanus (reptilia). Aust J Biol Sei 28:89-108 

(1975).
King M, Mengden GA, King D: A pericentric-inversion polymorphism and a zz/zw sex-chromosome

system in varanus acanthurus boulenger analyzed by g- and c-banding and ag staining. Genetica 
58:39-45 (1982).

Matsubara K, Tarui H, Toriba M, Yamada K, Nishida-Umehara C, Agata K, et al.: Evidence for different
origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake 
sex chromosomes. Proc Natl Acad Sei U S A 103:18190-18195 (2006).

Matsuda Y, Nishida-Umehara C, Tarui H, Kuroiwa A, Yamada K, Isobe T, et al.: Highly conserved linkage 
homology between birds and turtles: Bird and turtle chromosomes are precise counterparts of 
each other. Chromosome Res 13:601-615 (2005).

Matsunaga S: Junk DNA promotes sex chromosome evolution. Heredity 102:525-526 (2009).
Moritz C: The evolution of a highly variable sex chromosome in gehyra purpurascens ( gekkonidae ). 

Chromosoma 90:111-119 (1984).
Muller HJ: A gene for the fourth chromosome of drosophila. J Exp Zool 17:325-336 (1914).
Nanda I, Haaf T, Schartl M, Schmid M, Burt DW: Comparative mapping of z-orthologous genes in

vertebrates: Implications for the evolution of avian sex chromosomes. Cytogenet Genome Res 
99:178-184(2002).

Nanda I, Zend-Ajusch E, Shan Z, Grutzner F, Schartl M, Burt DW, et al.: Conserved synteny between the 
chicken z sex chromosome and human chromosome 9 includes the male regulatory gene dmrtl:
A comparative (re)view on avian sex determination. Cytogenet Cell Genet 89:67-78 (2000).

Odierna G, Heulin B, Guillaume C, Vogrin N, Aprea G, Capriglione T, et al.: Evolutionary and
biogeographical implications of the karyological variations in the oviparous and viviparous forms 
of the lizard lacerta (zootoca) vivipara. Ecography 24:332-340 (2001).

Ogata M, Ohtani H, Igarashi T, Hasegawa Y, Ichikawa Y, Miura I: Change of the heterogametic sex from 
male to female in the frog. Genetics 164:613-620 (2003).

Ohno S: Sex chromosomes and sex-linked genes. (Springer-Verlag, Heidelberg 1967).
Ohno S: Evolution of sex chromosomes in mammals. Annu Rev Genet 3:495-524 (1969).
Ohno S, Stenius C, Christian LC, Becak W, Becak ML: Chromosomal uniformity in the avian subclass 

Carinatae. Chromosoma 15:280-288 (1964).
Olmo E: Animal cytogenetics 4, chordata 3, a. Reptilia. (Gebrüder Borntraeger, Berlin-Stuttgart 1986).
Olmo E: Trends in the evolution of reptilian chromosomes. Integrative and Comparative Biology 

doi:10.1093/icb/icn049:l-8 (2008).
Olmo E, Odierna G, Capriglione T: Evolution of sex-chromosomes in lacertid lizards. Chromosoma 96:33- 

38 (1987).
Olmo E, Signorino G: Chromorep: A reptile chromosomes database, 

(http://193.206.118.100/professori/chromorep.pdf, 2005).
Organ C, Janes DE: Sex chromosome evolution in sauropsids. Int Comp Biol 48:512-519 (2008).
Organ CL, Moreno RG, Edwards SV: Three tiers of genome evolution in reptiles. Integrative and 

Comparative Biology 48:494-504 (2008).
Perrin N: Sex reversal: A fountain of youth for sex chromosomes? Evolution (2009).
Pokornä M, Kratochvil L: Phylogeny of sex-determining mechanisms in squamate reptiles: Are sex 

chromosomes an evolutionary trap? Zool J Linn Soc 156:168-183 (2009).
Quinn AE: Evolution of sex-determing mechanisms in reptiles: Institute for Apllied Ecology, p 196 

(University of Canberra, Canberra 2008).
Quinn AE, Ezaz T, Sarre SD, Graves JM, Georges A: Extension, single-locus conversion and physical

mapping of sex chromosome sequences identify the z microchromosome and pseudo-autosomal 
region in a dragon lizard, pogona vitticeps. Heredity 10.1038/hdy.2009.133 (2009a).

Quinn AE, Georges A, Sarre SD, Guarino F, Ezaz T, Graves JA: Temperature sex reversal implies sex gene 
dosage in a reptile. Science 316:411 (2007).

Quinn AE, Radder RS, Sarre SD, Georges A, Ezaz T, Shine R: Isolation and development of a molecular sex 
marker for Bassiana duperreyi, a lizard with xx/xy sex chromosomes and temperature-induced sex

http://193.206.118.100/professori/chromorep.pdf


124

reversal. Mol Genet Genomics 281:665-672 (2009b).
Radder RS, Quinn AE, Georges A, Sarre SD, Shine R: Genetic evidence for co-occurrence of chromosomal 

and thermal sex-determining systems in a lizard. Biol Lett 4:176-178 (2008).
Rest JS, Ast JC, Austin CC, Waddell PJ, Tibbetts EA, Hay JM, et al.: Molecular systematics of primary

reptilian lineages and the tuatara mitochondrial genome. Mol Phylogenet Evol 29:289-297 (2003).
Rodionov A, Chelysheva LA, Solovei IV, I M: Chiasma distribution in the lampbrush chromosomes of the 

chicken gallus gallus domesticus: Hot spots of recombination and their possible role in proper 
disjunction of homologous chromosomes at the first meiotic division. Genetika 28:151-160 
(1992).

Sarre SD, Georges A, Quinn A: The ends of a continuum: Genetic and temperature-dependent sex 
determination in reptiles. Bioessays 26:639-645 (2004).

Schartl M: A comparative view on sex determination in medaka. Mech Dev 121:639-645 (2004).
Shetty S, Griffin DK, Graves JA: Comparative painting reveals strong chromosome homology over 80 

million years of bird evolution. Chromosome Res 7:289-295 (1999).
Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, et al.: A gene from the human sex

determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 
346:240-244 (1990).

Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG, et al.: The male-specific region 
of the human y chromosome is a mosaic of discrete sequence classes. Nature 423:825-837 
(2003).

Smith CA, Clifford V, Western PS, Wilcox SA, Bell KS, Sinclair AH: Cloning and expression of a daxl 
homologue in the chicken embryo. J Mol Endocrinol 24:23-32 (2000).

Smith CA, Roeszier KN, Ohnesorg T, Cummins DM, Farlie PG, Doran TJ, et al.: The avian z-linked gene 
d m rtl is required for male sex determination in the chicken. Nature 461:267-271 (2009).

Solars AJ: Sex chromosomes and sex determination in vertebrates. (CRC Press, Boca Raton, FL, 1993).
Stiglec R, Ezaz T, Graves JA: A new look at the evolution of avian sex chromosomes. Cytogenet Genome 

Res 117:103-109 (2007).
Suzuki K: On the chromosomes of the domestic fowl. Zool Mag (Japan) 42:358-359 (1930).
Tokunaga S: Temperature-dependent sex determination in gekko japonicus (gekkonidae, reptilia). Dev 

Growth Differ 27:117 -  120 (1985).
Traut W, Sahara K, Otto TD, Marec F: Molecular differentiation of sex chromosomes probed by 

comparative genomic hybridization. Chromosoma 108:173-180 (1999).
Uetz P: Embl reptile database, (EMBL: http://www.reptile-database.org, 2009).
Veyrunes F, Waters PD, Miethke P, Rens W, McMillan D, Alsop AE, et al.: Bird-like sex chromosomes of 

platypus imply recent origin of mammal sex chromosomes. Genome Res 18:965-973 (2008).
Vidal N, Hedges SB: The molecular evolutionary tree of lizards, snakes, and amphisbaenians. C R Biol 

332:129-139 (2009).
Volff JN, Nanda I, Schmid M, Schartl M: Governing sex determination in fish: Regulatory putsches and 

ephemeral dictators. Sex Dev 1:85-99 (2007).
Woram RA, Gharbi K, Sakamoto T, Hoyheim B, Holm LE, Naish K, et al.: Comparative genome analysis of 

the primary sex-determining locus in salmonid fishes. Genome Research 13:272-280 (2003).
Wright JW: Evolution of the xlx2y sex chromosome mechanism in the scincid lizard scincella laterale 

(say). Chromosoma 43:101-108 (1973).
Yoshimoto S, Okada E, Umemoto H, Tamura K, Uno Y, Nishida-Umehara C, et al.: A w-linked dm-domain 

gene, dm-w, participates in primary ovary development in xenopus laevis. Proc Natl Acad Sei U S A 
105:2469-2474(2008).

http://www.reptile-database.org


125

Tables and figures

Table 1. Current knowledge about the occurrence of sex chromosomes and TSD among lizard 
families. Data compiled from various sources including Olmo and Signorino 2005, Ezaz et al. 
2005 and 2009a., Yonenaga-Yassuda, 1999, 2005, Donnellan 1989, Zeng et al. 2009, Kawai et 
al. 2009, Andrews 2005, Harlow 2004, Pokorna and Kratochvil 2009, Gamble 2009. TSD: 
temperature dependent sex determination, NKD: number of species karyotyped, SCH: Species 
with sex chromosomes, TNS: total number of species, PKD: proportion karyotyped, PSC: 
proportion with sex chromosomes. See supplementary reference list for citations.

XY XXY z w ZZW  Cryptic TSD NKD SCH TNS PKD PSC

Amphisbaenidae 0 0 0 0 0 0 26 0 159 16 0
Trogonophidae 0 0 0 0 0 0 2 0 6 33 0
Bipedidae 0 0 1 0 0 0 3 1 3 100 33
Blanidae 0 0 0 0 0 0 2 0 4 50 0
Cadeidae 0 0 0 0 0 0 0 0 1 0 0
Rhineuridae 0 0 0 0 0 0 1 0 1 100 0
Lacertidae 0 0 39 4 0 0 104 43 225 46 41
Teiidae 2 0 0 0 0 0 62 2 83 75 3
Gymnophthalmidae 5 2 0 0 0 0 22 7 175 13 32
Anguidae 0 0 0 0 0 0 1 0 16 6 0
Annielidae 0 0 0 0 0 0 2 0 2 100 0
Dipioglossidae 0 0 0 0 0 0 6 0 50 12 0
Helodermatidae 0 0 0 0 0 0 1 0 2 50 0
Xenosauridae 0 0 0 0 0 0 1 0 6 17 0
Lanthanotidae 0 0 0 0 0 0 0 0 1 0 0
Varanidae 0 0 4 0 0 0 23 4 68 34 17
Shinisauridae 0 0 0 0 0 0 0 0 1 0 0
Iguanidae 36 33 0 0 0 0 249 69 700 36 28
Chamaeleonidae 0 0 1 0 1 50 1 178 28 2
Agamidae 0 0 5 0 9 13 93 5 380 24 5
Scincidae 30 1 0 0 0 0 118 31 1200 10 26
Xantusiidae 0 0 0 0 0 0 12 0 29 41 0
Gerrhosauridae 0 0 0 0 0 0 12 0 34 35 0
Cordylidae 0 0 0 0 0 0 11 0 55 20 0
Sphaerodactylidae 1 0 0 0 0 0 5 1 196 3 20
Gekkonidae 2 0 11 0 0 8 75 13 794 9 17
Phyllodactylidae 0 0 1 0 0 6 7 1 109 6 14
Eublepharidae 0 0 0 0 4 5 9 0 29 31 0
Diplodactylidae 0 0 0 0 0 5 4 0 25 16 0
Carphodactylidae 0 0 0 0 0 0 6 0 28 21 0
Pygopodidae 1 1 0 0 0 0 5 2 40 13 40
Dibamidae 1 0 0 0 0 0 1 1 21 5 100
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Figure 1. Schematic representation showing current status of occurrence and distributions of 
sex chromosome systems and sex determining modes among lizard families. Phylogeny is 
based on Vidal and Hedges (Vidal and Hedges, 2009). Numbers indicate total number of 
species (see Table 1 for detail). Data compiled from various sources (see supplementary 
reference list) including (Andrews, 2005; Donnellan, 1985; Ezaz et al., 2005; Ezaz et al., 2009a; 
Harlow, 2004; Kawai et al., 2009; Olmo and Signorino, 2005; Pokornä and Kratochvil, 2009; 
Yonenaga-Yassuda and Rodrigues, 1999; Yonenaga-Yassuda et al., 2005). PKD: proportions 
karyotyped, TSD: temperature dependent sex determination, PNE: proportions not examined.
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Figure 2. A snapshot of morphological diversity of sex chromosomes in lizard. Aco: Anolis 
conspersus (Gorman and Aitkins, 1968), Amo: Anolis monesis (Gorman and Stamm, 1975), Bdu: 
Bassiana duperreyi (Shine et al., 2002), Btr: Bipes tridactylus (Cole and Gans, 1987), Cen: 
Claireascincus entrecasteouxii (Hutchinson and Donnellan, 1992), Cle: Calyptomotus leiolepis 
(Yonenaga-Yassuda et al., 2005), Cli: Cnemidophorus littoralis (Peccinini-Seale et al., 2004), Cti: 
Cnemidophorus tigris (Cole et al., 1969), Din: Delma inornata (King, 1990), Dno: Dibamus 
novaeguineae (Cole and Gans, 1997), Gee: Gonatodes ceciliae (McBee et al., 1987), Gge: Gekko 
gecko (Solleder and Schmid, 1984), Gho: Gekko hokouensis (Kawai et al., 2009), Gpl: 
Gymnophthalmus pleei (Cole et al., 1990), Gpu: Gehyra purpurascens (Moritz, 1984), Lbu: Lialis 
burtonis (Gorman and Gress, 1970), Lvi: Locerta vivipera (Odierna et al., 2001), Mai: 
Micrablepharus ollicolus (Yonenaga-Yassuda and Rodrigues, 1999), Pla: Phyllodactylus lanei 
(King, 1981), Psi: Podarchis sicula (Odierna et al., 1993), Pvi: Pogona vitticeps (Ezaz et al., 2005), 
Pvl: Phrynocephalus vlangalii (Zeng et al., 1997), Scz: Saproscincus czechurai (Donnellan, 1991), 
5/a: Scincello lateralis (Wright, 1973), 5/a: Sceloporus lundelli (Cole, 1970), Sma: Sceloporus 
maculosus (Cole, 1971), Vca:Varanus acanthurus (King et al., 1982). For citations see 
Supplementary reference list.
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“ ■ Gallus gallus Z R 2Q(Chicken: ZZ/ZW) 0 0
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U
(Chinese softshell turtle: ZZ/ZW micro)
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Figure 3. Schematic representation showing the non-homology and multiple and independent 
origins of ZZ/ZW sex chromosome systems in reptiles based on reciprocal mapping of sex 
chromosomal genes from chicken, snakes and turtle. Data are summarized after (Ezaz et al., 
2009b; Ezaz et al., 2009a; Kawagoshi et al., 2009; Kawai et al., 2009; Kawai et al., 2007; 
Matsubara et al., 2006; Matsuda et al., 2005; Srikulnath et al., 2009), and 
http://www.ensembl.org/index.html. For citations see Supplementary reference list.

http://www.ensembl.org/index.html
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Figure 4. Phylogeny of reptiles (pruned phylogenetic tree modified after Vidal and Hedges, 
2009) showing apparent association between TSD (temperature dependent sex determination) 
and female heterogamety in lizards, suggesting frequent transitions between modes and 
mechanisms of sex determination in lizards via TSD and female heterogamety.
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Abstract Distribution of sex-determining mecha
nisms across Australian agamids shows no clear 
phylogenetic segregation, suggesting multiple transi
tions between temperature-dependent (TSD) and 
genotypic sex determination (GSD). These taxa thus 
present an excellent opportunity for studying the 
evolution of sex chromosomes, and evolutionary 
transitions between TSD and GSD. Here we report 
the hybridization of a 3 kb genomic sequence 
(PvZW3) that marks the Z and W microchromosomes 
of the Australian central bearded dragon (Pogona 
vitticeps) to chromosomes of 12 species of Australian 
agamids from eight genera using fluorescence in-situ 
hybridization (FISH). The probe hybridized to a 
single microchromosome pair in 11 of these species, 
but to the tip of the long arm of chromosome pair 2 in 
the twelfth (Physignathus lesueurii), indicating a
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micro-macro chromosome rearrangement. Three 
TSD species shared the marked microchromosome, 
implying that it is a conserved autosome in related 
species that determine sex by temperature. C-banding 
identified the marked microchromosome as the 
heterochromatic W chromosome in two of the three 
GSD species. However, in Ctenophorus fordi, the 
probe hybridized to a different microchromosome 
from that shown by C-banding to be the heterochro
matic W, suggesting an independent origin for the 
ZW chromosome pair in that species. Given the 
haphazard distribution of GSD and TSD in this group 
and the existence of at least two sets of sex micro
chromosomes in GSD species, we conclude that sex
determining mechanisms in this family have evolved 
independently, multiple times in a short evolutionary 
period.

Keywords GSD • TSD • reptile • sex 
microchromosomes • evolution • FISH • C-banding

Abbreviations
DAPI 4',6-diamidino-2-phenylindole 
dUTP 2'-deoxyuridine 5'-triphosphate 
ESD environmental sex determination 
FISH fluorescence in-situ hybridization 
GSD genotypic sex determination 
PCR polymerase chain reaction 
SSC standard saline citrate
TSD temperature sex determination 
v/v volume/volume
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Introduction

Sex can be determined by genetic factors (genotypic 
sex determination, GSD), environmental factors (en
vironmental sex determination, ESD) (Chamier 1966; 
Pieau 1971; Bull 1983), and in some cases, by an 
interaction between genotype and environment (Con
over and Kynard 1981; Quinn et al. 2007; Radder et 
al. 2008). In many vertebrates, a primary sex
determining gene on a specific chromosome pair 
(the sex chromosomes) provides the initial trigger for 
sex determination (Sinclair et al. 1990; Matsuda et al. 
2002), whereas in other vertebrates, sex determination 
depends on an environmental variable experienced 
during embryonic development, such as temperature, 
pH or salinity (Chamier 1966; Pieau 1971; Devlin 
and Nagahama 2002).

GSD vertebrates typically have either a male 
heterogametic (XY male/XX female) or a female 
heterogametic (ZZ male/ZW female) sex chromosom
al system. The sex homologues (X and Y, or Z and 
W) may be highly differentiated, or differ only in a 
restricted region (even a single locus), as is expected 
given their autosomal origin. The XX/XY sex 
chromosome pair is conserved in therian mammals, 
and a ZZ/ZW pair is conserved in birds. In contrast, 
many reptile, amphibian and fish lineages exhibit 
remarkable variation in the sex chromosome pair, and 
in the system of heterogamcty, sometimes even 
among closely related species or even populations 
(for review see Ezaz et al. 2006; Graves 2006). Most 
turtles, a minority of lizards, all crocodilians and the 
tuatara exhibit temperature-dependent sex determina
tion (TSD), in which incubation temperature during 
egg development determines sex. GSD appears to be 
exhibited by all snakes, most lizards and a minority of 
turtles (Modi and Crews 2005; Ezaz et al. 2006), 
involving either male or female heterogamety (Solari 
1994). Some lizards and snakes display more com
plex male or female heterogametic systems involving 
multiple sex chromosomes in varying evolutionary 
stages of differentiation.

Comparative mapping of sex chromosomal genes 
or sequences across phylogenetically distinct taxa by 
fluorescence in-situ hybridization can provide valu
able information on the origin and evolution of sex 
chromosomes and sex-determining mechanisms. Re
cently, orthologues of chicken Z genes were mapped

T. Ezaz et al.

to autosomes in three species of snakes and in the 
soft-shelled turtle Pelodiscus sinensis, indicating that 
the ZW sex chromosomes of birds are not homolo
gous with the ZW macrochromosome pair common to 
all snakes or with the ZW microchromosomes of this 
turtle (Matsubara et al. 2006; Kawai et al. 2007). 
However, Kawai et al. (2008) showed that in a ZW 
population of the gecko Gekko hokouensis, the Z 
chromosome shares six genes with the chicken Z, 
raising the possibility of a bird-like ZW system in an 
ancient reptile. It appears that different ancestral 
autosomes gave rise to the sex chromosomes of 
snakes and of Pelodiscus sinensis from the pair that 
became the bird and G. hokouensis ZW.

The only reports of lizard sex chromosome sequen
ces include the six genes mapped in a gecko by Kawai et 
al. (2008), an X-linked microsatellite in Australian 
skinks (Cooper et al. 1997; Stow et al. 2001), a W 
chromosome sequence from the Asian varan id Varanus 
komodoensis (Halverson and Spelman 2002), a Y 
chromosome sequence in the Australian skink 
Bassiana duperreyi (unpublished observations) and 
sequences common to the Z and W microchromo
somes of the Australian bearded dragon lizard, Pogona 
vitticeps (Agamidae) (Quinn et al. 2007). Substantial 
sex chromosome sequence data have already started to 
emerge from the genome sequencing project for the 
green anole lizard, Anolis carolinensis (http://www. 
broad.mit.edu/models/anole/).

Two groups (Janzcn and Krenz 2004; Organ and 
Janes 2008) have recently reconstructed the evolu
tionary history of TSD and GSD within the Reptilia 
by mapping the occurrence of these mechanisms onto 
the phylogeny. Both groups considered GSD to be the 
most parsimonious ancestral condition for squamate 
reptiles (lizards and snakes). However, this conclusion 
should be treated cautiously because GSD and TSD 
may be omnibus states that (a) obscure diversity in 
underlying mechanisms and so fail to separate 
convergence from homology; (b) are labile and 
therefore subject to frequent reversals that render 
parsimony a blunt instrument; and (c) include some 
questionable classifications of TSD versus GSD (see 
Harlow 2004). In the absence of robust data on sex
determining mechanisms from sufficient representa
tive taxa, a complementary approach to determining 
ancestry of sex-determining mechanisms is compara
tive mapping of sex chromosome sequences over a
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shorter evolutionary timescale within appropriate 
reptilian lineages.

Dragon lizards (family Agamidae) include both 
GSD and TSD taxa (Chamier 1966; Ganesh and 
Raman 1995; Harlow and Shine 1999; Harlow 2000, 
2004; Harlow and Taylor 2000; El Mouden et al. 
2001; Uller and Olsson 2006; Uller et al. 2006). 
Australian agamids (ca. 70 species; Cogger 2000) 
represent a recent radiation (~25 Mya) from an 
Asian ancestor (Hugall et al. 2008), and show a 
distribution of GSD and TSD mechanisms suggest
ing an evolutionary history involving multiple 
independent origins of one, and possibly both, of 
these mechanisms of sex determination. Both GSD 
and TSD species can occur within the same genus 
(Harlow 2000, 2004; Harlow and Taylor 2000; Uller 
and Olsson 2006, Uller et al. 2006), and in at least 
one species, the central bearded dragon (Pogona 
vitticeps), there is an interaction between genotype 
and egg incubation temperature in sex determination 
(Quinn et al. 2007).

Karyotypes are highly conserved among Australian 
agamids, with most species having 6 macrochromosome 
and 10 microchromosome pairs (Witten 1983). Female 
heterogamety has been established for Pogona vitticeps. 
A highly heterochromatic W microchromosome was 
identified by comparative genomic hybridization and C- 
banding (Ezaz et al. 2005). Previously, we reported the 
isolation and physical mapping by FISH of a novel 3 kb 
sequence (PvZW3; GenBank accession EU938136) 
common to the Z and W microchromosomes of Pogona 
vitticeps (Quinn et al. submitted). Sequence database 
search using BLAST did not reveal any significant 
similarity, but repeat masker identified a 185 bp chicken 
CRl-like repeat element.

In the present study, we identified ZZ/ZW sex 
microchromosome systems in three other GSD 
dragon species by C-banding. Physical mapping of 
PvZW3 in these species, followed by C-banding of 
the same slides, indicates that two other GSD 
species share the ZW chromosomes of P. vitticeps, 
but a different sex microchromosome pair occurs in 
another species. We also physically mapped PvZW3 
in another six GSD species with cryptic sex 
chromosomes and for three TSD species. Our 
findings suggest multiple origins of TSD and GSD, 
as well as independent evolution of sex chromo
somes in Australian agamids.

Materials and methods

Animals, sexing, cell culture, chromosome 
preparations

A total of 12 agamid species representing 8 genera were 
collected from various locations around Australia 
(Table 1). Six of these species have GSD, three have 
TSD, and in the remaining three species the sex
determining mechanism is uncertain. One male and 
one female were examined from each of the species 
except for Diporiphora bilineata and Tympanoayptis 
pinguicolla (one male only) and Chlamydosaurus 
kingii (one female only).

Animals were euthanized by intraperitoneal injec
tion of sodium pentobarbitone at a concentration of 
150 p.g/g body weight. Phenotypic sex was deter
mined on the basis of external morphology, hemipene 
eversion (Harlow 1996), and by internal examination 
of gonadal morphology. Fibroblastic cultures were 
established from macerated explants of eye, pericar
dium or tail tip tissue. For larger animals, 0.2-1 ml 
whole blood was collected by caudal venepuncture 
and subjected to short-term lymphocyte culture. Cell 
culture and chromosome preparations were performed 
as described in Ezaz et al. (2005).

C-banding

To identify heterochromatic sex chromosomes, C- 
banding was examined in nine of the 12 species. Three 
species were not subjected to C-banding because only 
one sex was available (Table 1). The procedure was 
performed following the protocol described in Ezaz 
et al. 2005.

Probe preparation and fluorescence in-situ 
hybridization (FISH) followed by C-banding

The novel 3 kb sex chromosome-borne probe, 
PvZW3, derived from Pogona vitticeps was ampli
fied from female genomic DNA by PCR as 
described in Quinn et al. (submitted). The PCR 
product was purified using a QIAquick kit (Qiagen, 
Valencia, CA, USA) according to the manufacturer’s 
protocol. Purified probe was labelled by incorporating 
SpectrumRed-labelled dUTP (Abbott Molecular, 
Abbott Park, IL, USA) by nick translation and
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Table 1 List of species examined and their modes of sex determination

Species Collection Sex Experiments References for SD
aread determination

C- FISH FISH/ Number of
banding C-banding animals 

used (m+f)

Amphibolous nobbi Vic GSD, ZZ/ZW • • 2+2 Harlow (2001), Current study
Diporiphora bilineata NT GSD 1+0 Harlow (2001)
Pogona barbata NSW GSD, ZZ/ZW • • 2+2 Harlow (2001), Current study
Tympanocnptis pinguicolla ACT Unknown 1+0
Chlamydosaurus kingii NT TSD 0+1 Harlow and Shine (1999), 

Harlow (2001)
Amphibolous norrisii Vic GSD • 2+3 Harlow (2001)
Amphibolous muricatus ACT TSD • 2+3 Harlow (2001)
Lophognathus longirostris SA Unknown • 1 + 1
Ctenophorus fordi NSW GSD, ZZ/ZW • • 3+3 Harlow (2000), Uller and 

Olsson (2006), Current study
Ctenophorus pictus NSW GSD * • 3+3 Harlow (2000), Uller 

et al (2006)
Ctenophorus nuchalis NSW Unknown • • 2+2
Physignathus lesueurii ACT TSD • • 2+2 Harlow (2001)

aACT, Australian Capital Territory; NSW, New South Wales; NT, Northern Territory; SA, South Australia; Vic, Victoria.

precipitated as described in Ezaz et al. 2005. The 
probe was resuspended in hybridization buffer (lx 
Denhardt’s solution, 50% v/v deionized formamide, 
10% v/v dextran sulfate, 2x SSC, 40 mM sodium 
phosphate buffer pH 7.0), denatured, and hybridized 
onto denatured metaphase chromosomes overnight at 
37°C. The slides were washed once in 0.4x SSC/0.3% 
IGEPAL (CA630) (Sigma-Aldrich, St Louis, MO, 
USA) at 60°C for 2-3 min, then once in 2x SSC/0.1% 
IGEPAL at room temperature for 1-2 min. Slides were 
dehydrated through an ethanol series (1 min each in 
each of a 70%, 90% and 100% solution), air dried, 
stained with DAPI (50 pg/ml DAPI solution in 2x SSC) 
for 30-45 s at room temperature) and mounted with 
Vectashield (Vector Laboratories, Burlingame, CA, 
USA). Vernier co-ordinates of each metaphase were 
recorded and images of 3-10 cells were captured. At 
least 20-30 cells were analysed microscopically for 
each individual. Slide analysis and imaging were 
performed as described in Ezaz et al. 2005.

To test whether PvZW3 hybridizes to the sex 
chromosomes of other GSD species, we performed 
FISH followed by C-banding on the same slide (Quinn 
et al. submitted) for one female of the three species 
Pogona barbata, Amphibolums nobbi and Ctenophorus 
fordi, in which heteromorphic W chromosomes can be

identified by C-banding. Briefly, the coverslips from the 
slides subjected to FISH were removed by soaking in 
2x SSC followed by two 5 min washes in 2x SSC at 
room temperature. Slides were then dehydrated through 
an ethanol series (3 min in each of a 70%, 90% and 
100% solution), air dried and subjected to C-banding as 
described in Ezaz et al. 2005. Slides were analysed 
under bright-field microscopy to reveal the concordance 
or discordance of PvZW3 probe localization and C- 
banded W chromosomes.

Results

The chromosomes of nine species of Australian 
agamid lizards were subjected to C-banding to 
identify heterochromatic sex chromosomes. Twelve 
species were probed with the sex-chromosomal 
fragment isolated from Pogona vitticeps (Table 1).

C banding

C-banding identified highly heteromorphic micro
chromosomes in females of Pogona barbata , 
Amphibolous nobbi and Ctenophorus fordi as well 
as Pogona vitticeps. Each of these species had a
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hctcrochromatic microchromosome in females that 
was absent from the chromosome complement of 
males, and so was identified as a W chromosome.
This establishes a ZZ/ZW microchromosomal system 
in these species, similar to that found for Pogona 
vitticeps (Fig. 1). As for Pogona vittiepes, the Z 
chromosome has no heterochromatin that can be 
identified by C-banding. The other six species that 
were investigated in this study showed no sex-specific 
C-bands (data not shown).

Hybridization of Pogona vitticeps sex chromosomal 
probe

The sex chromosomal probe PvZW3 hybridized to a 
single pair of microchromosomes in 11 species 
studied. The sole exception was Physignathus 
lesueurii, in which a bright and dispersed hybridiza
tion signal was observed on the distal end of the long 
arm of chromosome 2 in both sexes (Fig. 2).

95

To determine whether this probe identified the sex 
chromosomes in other species, we performed sequen
tial FISH and C-banding in females of Pogona 
barbata, A. nobbi and Ctenophorus fordi (Fig. 2). In 
Pogona barbata and A. nobbi, the FISH probe 
marked a single microchromosome pair, one member 
of which was identified as the W by C-banding (the 
other being Z). However, the hybridization of PvZW3 
in Ctenophorus fordi was to a microchromosome pair 
other than the C-banded W, indicating an autosomal 
location for the probe. As C-banding identifies only 
the hctcrochromatic W, we cannot identify the Z in 
this species (Fig. 2).

Discussion

We examined C-banding in nine Australian agamid 
species in an attempt to identify sex chromosomes 
and examine their homology. For six of these species
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we could not detect sex-specific C-bands, but we 
identified a highly heterochromatic sex microchromo
some in Pogona barbata, A. nobbi and C. fordi, 
revealing female heterogamety in these species. This 
follows our identification of a W microchromosome 
in P. vitticeps (Ezaz et al. 2005) and a report of ZW 
macrochromosomes in the Asian agamid Phrynoce- 
phalus vlangalii (Zeng et al. 1997). Male heterogam
ety has not yet been reported in agamids; thus it is
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^  Fig. 2 Phylogeny o f dragon lizard species included in this 
experiment showing physical mapping o f PvZW3 probe in 13 
species and subsequent FISH and C-banding in four species 
(pruned phylogenetic tree modified after Hugall et al. 2008). 
Where PvZW3 hybridization is concordant with C-bandcd 
microchromosomes, the branch is indicated by blue; red 
indicates a discordant microchromosomal location; and yellow 
indicates PvZW3 hybridized to a macrochromosome. Arrows 
indicate C- banded W chromosomes; red hybridization signals 
represent location o f PvZW3; SDU, sex determination un
known. Images were captured, analysed, pseudo-coloured and 
merged (including C-bands in merged C-FISH images) using 
IPlab (Scanalytics Inc., Virginia, USA)

possible that in members of the Agamidae that have 
GSD, female heterogamety is a conserved mecha
nism, as in birds and snakes (Ohno 1967; Solari 
1994). The size of the Z and W chromosomes and the 
C-banding pattern in these species provide no clues as 
to whether the sex chromosomes are ancient or 
evolutionarily recent, but accumulation of repetitive 
sequences implies at least initial differentiation (Ohno 
1967; Bull 1983; Charlesworth 1991; Graves 2006). 
Deletion events are likely to have been involved in 
differentiation of the W chromosome. However, the 
current techniques, particularly on such small sex 
chromosomes cannot detect such deletions.

The molecular probe PvZW3, derived from the sex 
microchromosome pair of Pogona vitticeps, hybrid
ized to both members of a microchromosome pair in 
11 of 12 species examined. Two of these species, 
Amphibolurus muricatus and Chlamydosaurus kingii, 
exhibit TSD, suggesting that they have homologucs 
of the P vitticeps sex chromosomes that do not 
participate in sex determination. In the third TSD 
species Physignathus lesueurii, the probe hybridized 
to the tips of the long arm of a macrochromosomal 
pair, indicating that there has been a chromosomal 
rearrangement within the Australian agamid lineage 
involving the PvZW3 sequence. Unlike most of the 
Australian agamids, which have a diploid chromo
some complement 2n-32 (12 macro and 20 micro), 
Physignathus lesueurii has a diploid chromosome 
number of 2n=34 (12 macro and 22 micro) (Witten 
1983), indicating that rearrangements between macro- 
and microchromosomes have occurred. Subsequent 
C-banding identified the microchromosome pair with 
the PvZW3 hybridization signal as the heterochro
matic W microchromosome and the putative Z 
microchromosome in Pogona barbata and A. nobbi, 
implying that the Z and W chromosomes of these two 
species are homologous to those of Pogona vitticeps.
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Perhaps our most important finding is that the 
PvZW3 probe hybridized to a microchromosome pair 
in Ctenophorus fordi, which did not include the 
heterochromatic W microchromosome identified by 
subsequent C-banding. This suggests that the ZZ/ZW 
mechanism of sex determination in C. fordi involves a 
microchromosome pair that is different from the ZW 
microchromosomes o f Pogona vitticeps, Pogona 
barbata and A. nobbi. Either an original ZW system, 
still present in the Pogona-A. nobbi clade, was 
usurped by a neo-sex-determining gene on a different 
microchromosome pair in the Ctenophorus fordi 
lineage, or the reverse occurred. Identifying the sex 
chromosomes in outgroups to these species could 
distinguish these alternatives. Switches in the sex 
chromosome pair could also have occurred via an 
intermediate TSD state in the absence o f sex 
chromosomes. The novel pair o f sex chromosomes 
could have arisen when an allele on an autosomal pair 
acquired a female-determining function, defining a 
new W chromosome. Such multiple and independent 
evolution of novel sex chromosomes is quite remark
able given the apparently short time frame spanning 
the radiation of the Australian agamids from an Asian 
ancestor (~25 million years; Hugall et al. 2008), but is 
not unique; for instance multiple and independent 
origin of female heterogamety has recently been 
described in two closely related species of medaka 
fishes (Takehana et al. 2008).

An alternative explanation is that the ZW sex 
chromosome pair is conserved within the Australian 
agamids, but the PvZW3 sequence has been separated 
from the sex-determining locus by a rearrangement in C. 
fordi. Resolution of the alternatives could be resolved 
by comparative chromosome painting or gene mapping.

Agamid lizards exemplify the types o f shifts between 
TSD and GSD that have been proposed generally for 
reptiles, and our data suggest that shifts from one ZW 
system to a different ZW system may also have occurred 
within this short time frame. Such a transition has 
apparently occurred between birds and snakes, which 
show non-homologous ZW pairs. Further molecular 
and cytogenetic investigation of the Australian agamid 
lizards could reveal much about the molecular mecha
nisms accompanying such changes.
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E I G H T -  Synopsis and future work

In the preceding chapters, I used non-model reptiles to address several questions about the 

evolutionary forces that act on sex chromosomes. These genomic regions are of particular 

interest to biologists not only because of their role in sex determination, but their special 

inheritance patterns provide a unique insight to the way evolution shapes genome biology and 

organisation in all species.

Dosage compensation

I have shown that despite being well conserved and of considerable age, the sex chromosomes 

of snakes probably do not undergo global dosage compensation. This challenges previous 

notions that compensatory mechanisms are essential in coping with dosage imbalances 

brought about by a degraded, gene-poor sex chromosome (Charlesworth 1978; Marin et al. 

2000). It also appears that Ohno's Law as regards the conserved gene content of sex 

chromosomes applies in snakes as well as birds and therian mammals (Ohno 1967); although, 

perhaps for reasons other than the maintenance of global dosage compensation mechanisms. 

To bolster this conclusion, further work is required. The extent to which the snake Z is 

conserved across species could be easily determined by making a snake Z chromosome paint. 

The same could also be achieved by gene mapping, for example in the Australian Eastern 

brown snake examined here, however this approach is labour intensive. The garter snake, 

Thamnophis sirtalis, would be an ideal model in which to study snake dosage compensation 

because it has differentiated sex chromosomes, a BAC library is available, it is favoured for 

whole genome sequencing and is amenable to captive rearing, so sufficient samples could be 

obtained easily. Importantly, pedigrees of captive populations would enable the detection of 

maternal or paternal biases in allele expression and so illuminate sex-specific transcriptional 

regulation mechanisms.

Sex chromosome degeneration

Ohno's (1967) insightful theory of how sex chromosomes differentiate from autosomal pairs 

was conceived in large part through observations made of snakes (Begak et al. 1964). More 

than 40 years later, snakes have been all but forgotten by those interested in sex determination 

and sex chromosome evolution. The observation of shared sequences on the sex chromosomes 

of birds and snakes and greater diversity of repetitive DNA in derived snakes suggests that they 

may yet provide many more insights into the processes that shape sex chromosome 

differentiation. In many snakes, it appears that W degeneration occurs rapidly and repeatedly 

after speciation, in contrast to the pace suggested for other taxa (e.g. Lahn & Page 1999).
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Gametolog analysis would be of great interest from a comparative perspective, because 

evolutionary strata have been suggested for birds and mammals, but have not been examined 

in snakes where the phylogenetic aspect of differentiation is well characterised. Similarly, 

different evolutionary rates are known from sex chromosome homologs in birds and mammals, 

but have not been measured in snakes. Recent mapping of genes to the snake Z and W 

chromosomes by Matsubara et al. (2006) makes these and many other questions now 

tractable.

Origins of sex chromosomes

Comparative mapping of genes and sex-linked sequences across reptiles has provided a 

detailed picture of the sometimes conserved and often dynamic nature of changes in sex 

determination mechanisms. Variability in sex determining mechanisms is exemplified by 

lizards, particularly among Agamids. Mapping sex-linked sequences from Pogona vitticeps 

across related species indicates rapid transitions between TSD and GSD and even the evolution 

of novel sex chromosomes. The sex chromosomes of P. vitticeps may even bear some 

homology to the chicken Z (Ezaz et al. unpub data). The unusual conservation of a sex 

determining role for the chicken Z in all birds, monotremes, a gecko and a turtle suggests that 

among amniotes (with the exception of lizards), only snakes and therian mammals have 

evolved novel sex chromosomes. Mapping genes in more basal snake lineages could push the 

age of the snake Z back even further than 105 million years. Far from being a living fossil, the 

tuatara's genome appears to be highly rearranged and attests to the derived state of this 

species, though more detailed mapping is still required. A fully integrated map of the Xenopus 

genome is nearing completion and will be extremely useful in unravelling the evolutionary 

history of amniote sex chromosomes.

Sex determining genes

With the exception of therian mammals, birds and two species offish, primary sex determining 

genes remain unknown for most vertebrates; none is known from any reptile. The conserved 

sex chromosome system of snakes makes them the logical choice in which to search for a 

reptilian equivalent of SRY, DMRT1 or DMY. Having established that the snake Z chromosome is 

equivalent in large part to chicken chromosome 2, the search for targets is narrowed 

considerably. Sex chromosome anuploidy in snakes, as in birds, is largely unknown so a 

dominant W or dosage of a Z borne gene could be equally likely. Sporadic parthenogenesis has 

been reported in a handful of species and depending on the particular meiotic aberration both 

males and females are produced (Lampert 2008). In the only reported case of facultative 

triploidy in snakes, an adult cottonmouth viper, Agkistrodon piscivorous, had no male
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intromittent organs and gonads were underdeveloped, but the karyotype was not determined 

(Tiersch & Figiel 1991). The only known snake to reproduce by true parthenogenesis, 

Ramphotyphlops braminus, belongs to the basal Scolecophidia (Wynn et al. 1987; Ota et al. 

1991). All are triploid females and the presence of a single chromosome with a unique 

secondary constriction in every animal could be a W sex chromosome (Fig 1). Perhaps, like the 

Y chromosome of mammals, it bears a dominant gene that directs sexual development down 

the female pathway.
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Fig 1. Karyotype of the brahminy or flowerpot snake, Ramphotyphlops braminus 
(Scolecophidia), adapted from Ota et al (1991). This species has a cosmopolitan distribution 
and is the only known snake to show true parthenogenesis. A triploid karyotype suggests its 
all-female population arose by hybridisation. One small chromosome (arrowhead) possesses a 
secondary constriction that may indicate a dominant W.

A plea for sequence

There is a considerable bias in current genome sequencing projects towards mammals despite 

the biological diversity and phylogenetic depth within Sauropsida. To date, more than 36 

mammals have been or are being sequenced, yet only three non-mammalian amniotes have 

public genome projects. The chicken and zebra finch are sequenced at depth, with reasonable 

mapping efforts being undertaken in parallel. The genome of the Anolis lizard, however, 

remains in 'completed draft' form, w ithout a physical or linkage map. Lamentably, physically 

anchoring sequence scaffolds to chromosomes appears to be an afterthought in many 

otherwise well conceived genome projects (Lewin et al. 2009). Definitive insights into the 

evolution of sex chromosomes and genome organisation per se, will remain elusive until 

greater efforts are made to sequence and map the genomes of non-mammal amniotes.
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GENOMIC ORGANISATION OF THE MHC IN AN ARCHAIC REPTILE, 
TUATARA (RHYNCHOCEPHALIA)
Hilary Miller' Denis O Meally* Tariq Ezaz2 Scott Edwards
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Introduction Isolation of MHC-contaming BAC clones
Mayor Histocompatibility Complex (MHC) genes are a central 
component of the vertebrate mmune system

MHC genes usually extst m a single 
genome region The mammalian 
MHC is much larger and rearranged 
compared with the bird MHC 

Reptiles occupy a key evolutionary 
position tor understand*^ how these 
drfterences evolved

Our study aims to investigate MHC 
organization in tuatara in particular 

How large a  the tuatara MHC0 s rs :s : r r .y —
Are MHC genes contained in one contiguous regno0

■ Is MHC organisation m reptiles more stmdar to mammals or birxis0

Tuatara (Sphenodon punctatus)
Found only on offshore islands of New Zealand m 32 natural 
populations

Sole extant species of Order Rhynchocephaha

The tuatara BAC library1 VMRC-12 was screened with probes amplified 
from tuatara MHC class I. class II DAB and dass II DBB cONA dones

71 dones were isolated and confirmed by Southern blotting to hybridize 
to one or more of these probes High resolution agarose gel 
fingerprinting was used determine how these dones overlap Eleven 
contigs made up of 2-9 dones each were produced

PCR was used confirm MHC gene content of each done Four dones 
contain both dass I classical and dass II DAB genes (see Figure 4)

Table 1 Summary of genes found on BAC clones isolated in this study
MarVe' Ho sequence

variants
Class i classical 2
Class i-reiatair
Class n DAB 12
Class ii 066 1

No dones No «dsnduai

10
7
0

Chromosome mapping of MHC BACs
Genome 1 4x larger than human1 highest known GC content of 
vertebrates1

11 BAC dones were mapped to chromosomes usrng fluorescent m situ 
hybridisation (Figure 3)

Summary
A core' MHC region containing classical dass l dass II DAB and 
class II DBB genes is located on chromosome I3q 

Additional dass II genes are on chromosome 6 and two 
microchromosomes and dass I related genes are on chromosome 4p

cONA library screening and analysis of MHC variation suggest 
tuatara have 2 classical dass I too4 at least 6 classical dass II 
loo (DAB), and one nondassical dass II locus (DB8)'

These results suggest a rearranged MHC compared with other 
vertebrates studied to date with a possible duplicated regon on 
chromosomeö

Intergemc and mtron distances withm the tuatara MHC are extremely 
large suggesting the tuatara MHC *  much larger than that of birds 
Prehmmary sequence data indicates that 531J19 contains a single 
MHC dass I gene spanmng approximately 40kb. and at least one 
class ll gene spanning >10kb 

Future work:

• Sequence dones from withn the core MHC regKXi

• Identify and map BAC dones containing Class III region and other 
MHC associated genes such as PSMB8 TAPt RING3
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Sex chromosome repeats
0

Insights from snakes and birds
Denis O’M e a lb  Tang Ezaz . Stephen D. S a rre  . A rth u r Georges . Jennifer A. M arshall Graves1

(1) Comparative Genomics Group. Research School of Biological Sciences. Australian National University (2) Institute for Applied Ecology. University of Canberra

Introduction
Snake sex chromosomes provided Susumo Ohno (1) with 

the material on which he based his theory of how sex 

chromosomes differentiate from autosomal pairs. Like 

birds, snakes have a I I  male ZW female sex chromosome 

system, in which the snake 2 is a macrochromosome much 

lie  as the bird Z (Fig A). However, the gene 

content shows dearty that t 

chromosomes are completely non-homologous snake 

Z -b ird  Zp. and the bird Z-snake 2p (Fig B). This suggests 

that a major rearrangement occurred in a common ancestor 

220-285 MYA (2. 3. Fig C) Among snakes, the basal 

pythons possess a near homomorphic sex pair, the 

colubnds less so and those of the most derived elapids and 

viperids exhibit the greatest degree of dimorphism (Fig A).

CCH (GATA), (GACA) Gg-W
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Results & Discussion
The results are summarised schematically in Fig D. Using comparative genomic hybridisation we have identified 
the female specific region of the W In representative species of a variety of Australian snakes. We examined the distribution of 
repetitive DNA on the sex chromosomes of these species using fluorescent in situ hybridisation (FISH). We have used a variety of 
simple (Bkm, IBS rONA) and complex (introns, chicken W paint) probes (Fig E). Many show a pattern of repeat amplification concordant 
with the size o f the femaie specific region. In the basal pythons, no sex specific repeats can be identified, but the W of representative 
elapid snakes is composed almost entirely o f repetitive sequences We have found that two introns of DMRTI. an autosomal gene in 
snakes (but that is 2 -borne in chicken), show varying degrees of amplification on the W of derived snakes. Similarly, the mtron of 
l< o te n ln l, a snake Z gene, is amplified on the W of the derived elapids. A surprisingly simitar pattern is observed when the chicken 
W chromosome is used as a FISH probe. Differential hybridisation patterns among probes and limited sequence data indicate that the 
repeats are each unique. The snake Z chromosome Is. with the exception of minor rearrangements, conserved among all taxa and is 
homologous to chicken 2 and 27 (2. Fig B) One possible explanation for repeats common to avian and snake sex chromosomes is an 
ancestral syntemc association We tested this by examining known onhoiogues of chicken Z. 2 and 27 in zebraftsh (Figs F A G). We 
found no association of chicken Z and 2 genes but found evidence of chicken 2 and 2 7 lynteny (-  snake Z) that must have been present 
in their common ancestor, some 450m>a (Fig G).

DMRTI , DMRTI . ß Catl .  , .
In t r o n l  In t io n A  ' I n t r o n l

nmmr

S f  8

Conclusions
Our results show accumulation of similar repeats on degenerating sex 

chromosomes, perhaps indicating functional homology of these sequences 

between snake and bird chromosomes We suggest that, m the absence of 

common ancestry of sex chromosomes, similarity of the repetitive content 

is due to convergent degeneration. Given the large evolutionary distances 

between the taxa under consideration (ca. 28SMa. Fig C) we suggest this is ■  

likely a general property of sex chromosome evolution.

References
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Molecular marker suggests frequent changes in sex
determining mechanisms of Australian dragon lizards
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Introduction
Sex in vertebrates is determined either by genes on sex chromosomes (Genotypic Sex Determination, GSD) or by the influence o f temperature on the 
developing embryo (Temperature-dependent Sex Determination, TSD). Species w ith GSD have either male heterogamety (XY males, XX females) or 
female heterogamety (ZW females, ZZ males). In dragon lizards (Agamidae) both GSD and TSD systems are found, and in some species both systems 
interact to  determine sex. The close evolutionary relationship o f Australian dragon lizards (ca. 25mya, Hugall et at 2008) and their rapid radiation makes 
them an ideal group in which to  study transitions between GSD and TSD. Karyotypes are highly conserved w ith in  the group but sex chromosomes are 
indistinguishable by standard cytological staining techniques in GSD species. We have previously identified the sex chromosomes o f one species, 
Pogona vitticeps, by CGH and C-banding (Ezaz et at 2005) and isolated sex-linked sequences by AFLP analysis (Quinn et at 2007).

Methods
A novel 3kb DNA fragment ("PvZW3") from the sex chromosomes of the central bearded 
dragon, Pogona vitticeps. was isolated by AFLP (Quinn et at 2007) and subsequent genome 
walking procedures. Cloned PCR products were labelled by nick translation incorporating 
fluorescently tagged dUTP. The probe was tested in P. vitticeps by fluorescent in situ 
hybridisation (FISH) onto metaphase chromosomes (Fig 1). We used the probe to screen both 
GSD and TSD dragons by FISH (Fig 2). One female from four species was subsequently 
C-banded to confirm hybridisation to sex chromosomes (Fig 2).

FISH FISH-C

Amphibolurus nobbi 

GSD I

HHHHH

fjSm

■  Diporiphora bilineata 

SDU y

»  Pogona barbata 

GSD

Figur« 1. Metaphase chromosomes of dragon lizards hybridised with a 3kb sex chromosome marker. In P 
vitticeps, differential hybridisation to the Z and W micro-chromosomes of the female is evident In P. lesueurii the 
hybridisation signal localises to the distal end of 2q and no sex specific differences are obvious. In all other 
species examined hybridisation was only observed on a pair o f microchromosomes, as for P vitticeps (see Fig 2).

Results & Discussion
Hybridisation o f a 3kb sex chromosome probe on a single pair o f chromosomes in each 
species examined indicates that sex chromosome sequences are conserved, implying 
homologous chromosomes between GSD and TSD dragons. Our findings revealed that 
w ith the exception o f two species, the same microchromosome pair is retained in GSD 
and TSD dragons, suggesting it is sex specific in GSD species (Fig 2). In C. fordii, PvZW3 
hybridisation is discordant w ith W chromosome C-banding, suggesting that in this 
species a novel sex microchromosome pair has evolved. The macrochromosomal 
location o f PvZW3 in the more basal P. lesueurii suggests a chromosomal rearrangement 
(Fig 1). We will establish the ancestral arrangement by investigating outgroup species, 
particularly basal Asian fauna. Sex chromosome homology w ill be corroborated by FISH 
with specific sex chromosome paints. Our findings suggest that both the mode o f sex 
determination and the sex chromosomes are in state of flux, providing evidence of 
multiple evolutionary transitions. With the increasing availability o f genomic resources 
Australian dragon lizards are well placed to provide unique insights into the evolution of 
sex determination mechanisms.
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Amphibolurus norrisi
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Amphibolurus muricatus
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Lophognathus longimsths

Ctenophorusfordi
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(tenophorus pictus 

GSD I

(tenophorus nuchalis 

SDU I

Physignathus lesueurii 

TSD m
Figure 2. Phylogeny of dragon lizard species included in this study showing 
physical mapping of PvZW3 in thirteen species and subsequent FISH and 
C banding in four species (pruned tree modified after Hugall ef al 2008). Where 
PvZW3 hybridisation is concordant with C-banded microchromosomes, the 
branch is indicated by indicates a discordant microchromosomal
location; and indicates PvZW3 hybridised to a macrochromosome.
Arrows indicate pseudocoloured C-banded W chromosomes; red hybridisation 
signals represent the location of PvZW3. Sex determination (TSD or GSD) after 
Harlow (2004) and unpublished data (T. Ezaz ef of): SDU - sex determination 
unknown. Images were captured, analysed. pseudo<oloured and merged 
(including C-bands in merged C-FISH images) using IPtab (Scanalytics, USA).
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Introduction
Sex in vertebrates is determ ined either by genes on sex chromosomes (Genotypic Sex Determination, GSD) or by the influence o f temperature on the 
developing embryo (Temperature-dependent Sex Determination, TSD). Species w ith GSD have either male heterogamety (XY males, XX females) or 
female heterogamety (ZW females, 12 males). In dragon lizards (Agamidae) both GSD and TSD systems are found, and in some species both systems 
interact to  determine sex. The close evolutionary relationship o f Australian dragon lizards (ca. 25mya, Hugall et al 2008) and their rapid radiation makes 
them  an ideal group in which to  study transitions between GSD and TSD. Karyotypes are highly conserved w ith in  the group but sex chromosomes are 
indistinguishable by standard cytological staining techniques in GSD species. We have previously identified the sex chromosomes o f one species, 
Pogona vitticeps, by CGH and C-banding (Ezaz et a l 2005) and isolated sex-linked sequences by AFLP analysis (Quinn ef al 2007).

Methods
A novel 3kb DNA fragment from the sex chromosomes of the central bearded dragon, 
Pogona vitticeps, was isolated by AFLP (Quinn et al 2007) and subsequent genome walking 
procedures. Cloned PCR products were labelled by nick translation incorporating 
fluorescently tagged dUTP. The probe was tested in P. vitticeps by fluorescent in situ 
hybridisation (FISH) onto metaphase chromosomes (Fig 1). One female slide was 
subsequently C-banded to confirm hybridisation to sex chromosomes. We used the probe 
to screen both GSD and TSD dragons by FISH (Fig 2).

F igu r«  1. Metaphase chrom osom es of dragon lizards hybrid ised w ith  a 3kb sex chrom osom e marker. In P 
vrffrceps, differen tia l hybrid isation to  th e  Z and W m icro chromosom es o f th e  female is evident. In  P. lesueuriithe  
hybrid isa tion  signal localises to  the  dista l end o f 2q and no sex-specifk differences are obvious. In all other 
species exam ined hybrid isation was on ly  observed on a pair o f m icrochrom osomes, as for P. vritfceps (see Fig 2).

Results & Discussion
Hybridisation of a 3kb sex chromosome probe on a single pair of 
chromosomes in each species examined indicates that sex chromosome 
sequences are conserved, im plying hom ologous chromosomes between 
GSD and TSD dragons. Our findings revealed that the same 
microchromosome pair is retained in GSD and TSD dragons, suggesting it is 
sex specific in GSD species (Fig 2). Its macrochromosomal location in the 
more basal P. lesueurii suggests a chromosomal rearrangement (Figl). We 
w ill establish the ancestral arrangement by investigating more species, 
particularly basal Asian fauna. Sex chromosome hom ology w ill be 
corroborated by FISH w ith  specific sex chromosome paints. This in trigu ing 
find ing suggests that among Australian agamids, the labile mode o f sex 
determ ination is overlaid on a relatively stable chromosomal landscape.

w....
TSO

Figure 1. M o l«  ular dadogram of Australian agamids and allies, showing the hybridisation pattern 
of a 3kb sex chromosome probe on species examined in this study (modified after Hugall er al 
2008). Sex determination (TSO or GSD) after Harlow (2004) and unpublished data (T. Ezaz et of)
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Tuatara DMRT1
duplication or separation?
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Introduction
Tuatara - an ancient lineage
Tuatara, Sphenodon sp., are the  last rem ain ing representatives o f a once 
w idespread rep tilian  lineage. The o n ly  tw o  extan t species (S. punctatus 
and S. guntheri) are now  con fined  to  several o ff-shore islands o f New 
Zealand. They possess a n um be r o f pecu liarities o f b iology, in c lud ing  the  
lowest active  body  tem pera ture  o f any reptile, the  presence o f a vestigia l 
parieta l eye, a b ird -like  e gg -to o th  and a 13 m o n th  incuba tion  period, 
am ong  m any others. M odern  tuatara  have changed lit t le  in body  form  
fro m  the ir 225MY o ld  ancestors, and are fit t in g ly  know n as 'liv ing  fossils'.

DMRT1 is a uniquely conserved gene
DMRTI (Doublesex- and m ab3-related transcrip tion  fac to r 1) is conserved 
th ro u g h o u t m etazoans and is im p lica te d  in  sex d e te rm in a tio n  and 
d if fe re n tia tio n  in  a m u ltitu d e  o f species, fro m  Drosophila to  m ice. In 
hum ans it  is a utosom al and  d e le tio n  o f one  copy results in  XY sex 
reversal. In birds, it is th e  best cand idate  fo r a Z borne  p rim ary  sex 
de te rm inan t. It is a m em ber o f the  DM dom ain  gene fam ily  and in all 
anim als exam ined to  date, the  o rder o f the  firs t th ree  genes in  the  fam ily  
is preserved (Fig 3).

DMRTI A 8 c OMRT3 DMRT2

I  exon [ iniron j  conserved, non-coding

Rg J. DMRTI contains a novei zinc finger domain (DM domain) and exhibits sex specific expression in 
vertebrates and invertebrates, it h  always found in a contiguous block with two other members of the 
gene family, DMRT2 and DMRT3. Interspersed are conserved, non-coding regions with putative 
regulatory roles.

Sex chromosome homology
Recent gene  m a p p in g  s tud ies have show n  th a t sex chrom osom es 
evolved m any tim es am ong vertebrates. H om o logy can be in ferred even 
in  anim als w ith o u t sex chrom osom es, such as tuatara, by investigating 
gene  content. We are using BACs, degenerate  primers, c loned mRNAs 
and  ch rom osom e p a in ts  to  in ves tig a te  ch rom osom e h o m o lo g y  in 
representative  reptiles and birds.

Humans '.<T »• * *

Fig 1. Though once widespread, tuatara are now restricted to several off-shore New Zealand islands. Two 
closely related species have been described, S. punctatus shown in red and S. guntheri in yHlow. Open 
circles indicate translocated populations. Rg 2. S. punctatus from Stephen s Island

Mapping tuatara DMRT1
BACs c o n ta in ing  DMRTI m ap to  tw o  pairs o f m icrochom osom es in 
tua tara . Chrom osom e p a in tin g  reveals th a t th ree  d iffe re n t pairs o f 
m acrochrom osom es share hom ology  w ith  the  Chicken Z.

Lizards

Amniote proto
sex chromosomes

Tuatara

Turtles

Rg 4a. We mapped previously published1, commercially supplied BAC clones (SymBio Corp.. CafcforniaJ 
containing one or more genes of the tuatara DMRT family to tuatara metaphase chromosomes Rg 4b. in a 
separate experiment, commercially available chicken Z chromosome paint (Farmachrom. Canterbury UK) 
was hybridised to tuatara metaphase chromosomes under low stringency conditions. Pairs of chromosomes 
are indicated by coloured circles. The chkken Z paint may represent repetitive elements as no attempt was 
made to suppress hybridisation of such sequences.

Fig 5. Several recent mapping^1'4 and painting5 studies have demonstrated the relationships among 
reptilian sex chromosomes or their counterparts In species where sex is determined by temperature. 
Notably, the arrangement in tuatara remains unknown. In addition to chromosome paints, we are 
mapping DMRT I, A7R5A 1,6HR. CDM. DMRT l. RPS6. ACOf In representative reptiles using FISH. Divergence 
dates after Rest et al6.

1 W*ng«t«l (2006)2 97341-944
2 Mar soda et ai «2009) Chrom Rn 13*01 -609
3 Mattubara H »I (2006) PNAS 101 I SI 90 18195
4 Xawa etal (2007 Cytogener Genome ««11742-102 
3 Graves 6 Sherry (20011J fjp  2bof 290*49-462
6 Rest et ai (200J1 Mo/Phyth* »289-297

Was the ancestral tuatara tetraploid? Have members of the DMRTfamily been separated in tuatara or 
has the entire block been duplicated onto another chromosome?
Either s ituation  w ou ld  be un ique  to  tuatara  am ong all am niotes stud ied to  date. D e te rm in ing  the  genom ic 

^  co n te x t o f DMRTI w ill answer the  question  o f w he ther d up lica tion  o f th is im p o rta n t gene has occurred in 
r ,  tuatara  o r if i t  has been separated fro m  its o the rw ise  u b iqu itous  partners.

f iq  4b
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Are sequences conserved between the n  i  i  i 
sex chromosomes of birds snd snskes?
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Sex determination among vertebrates is highly variable and different mechanisms have evolved independently many times (Fig 1). HJ. Müller (variously) first 
proposed that sex chromosomes evolve from a recombining pair of autosomes, and the heteromorphic member degrades due to the gain o f a sex-specific allele, loss 
of gene function, accumulation of heterochromatin and finally suppression of recombination. S. Ohno supposed he could observe such degeneration (in gross 
morphology) over evolutionary time amongst the families of snakes. In this group of reptiles, the ancient botds possess near homomorphic gonosomes, the colubrids 
less so, and those of the most derived elapids and viperids exhibit the greatest degree o f dimorphism. In birds, where female heterogamety is similarly ubiquitous, a 
pattem of W degeneration over evolutionary time is also observed (Rg 2). A recent gene mapping study (Matsubara et al 2006) however, established that the avian Z 
chromosome shares large regions of homology with Chromosome 2 of snakes, contradicting the hypothesis of common ancestry of snake and bird sex chromosomes 
(Begak et al 1964). We used comparative chromosome painting to investigate the relationship of snake and bird sex chromosomes.

rs o  TSO TSO TSO ISO
XT XT XT XT XT
zw zw zw zw zw zw

Fig 1. Vertebrate datagram, indicating the detnbuüon of sex determination and sex chromosome systems, with 
approximate divergence times. Beds and snakes shared a common ancestor some 285mva TSO * temperature 
depetaanr se» determination XY. ZW -  Genet* dependent sex determination, with mate and femate heterogamety 
respectively

Aims
To:

• Investigate homology of bird and snake sex chromosomes using cross-species 
chromosome painting (ZooFISH)

• Characterise the genic and repetitive content of the snake W chromosome

• Investigate similarities in the degeneration o f bird and snake W chromosomes

n r-
Fig 2. Degeneration of W chromosomes n  snakes and bads In anoent lineages sex chromosomes are near 
nomomniphx: In derived Im ages »he W chmmoinme lends towards degenerantm and is morphologra0y tatmgctthabte 
from the Z chromosome

ZooFISH
• Individual chromosomes wen? isolated by How cytometry or microdissection
• me labelled chromosome probes with a ffaorochrome by nick translation, DOP-PCR or 

other whole genome amplification techniques
• Probes were hybridised to denatured metaphase chromosomes, revealing regions o f 

homology
•  me screened a variety o f  b ird and snake spreads with a chicken Z  and m  specific paints
► Chicken Z does not hybridise to snake chromosomes 
I  We found no hybridisation of chicken W among ancient lineages, 
but H hybridises to both the derived bird and snakes

Painting 
Bkm repeat
• Sanded krait minor satellite is a sex specific repeat first isolated from the banded krait. 

Bungarus fasciatus
• Has been found in the heterogametic sex o f  many vertebrate species, including humans 

(by Southern blot analysis)
•  me screened representabves o f  divergent bird and snake families with (GATA)y and  

(GACA),-Cy3 labelled probe
> We found no hybridisation among birds
► Among snakes, Bkm accumulation is correlated with W chromosome 
degeneration

Fig 4. Metaphase chromosomes of a rant, (On), two neognathes (Gg, Pe). a bo«) (If), a cofubnd (Eq) and an 
etapK) (Ns) hybridised w«h Bkm probes. There is a total absence of hybndrtation among the beds and anoent 
boids. and a trend towards increasing accumulation m the degenerated W of the cokjbnd and etapid snakes. The
distribution of Bkm on the W chromosome of the derived snakes differs from that of the GgW paint. suggesting that 
they constitute two cfcsbnct classes of repeats

Fig 3. Metaphase chromosomes of a ratte (Dramatis novaetnMandoe, On), two neognathes (Gaäus gatus, Gg; 
Piatycemjs ntepans, he), a bo«d {Lasts fuscus, if), a cofubnd {Etaphe QuactMttata, Eq) and an etapid snake 
(AWethtJ scutMus, Ns) bybndBed with chicken W chromosome paint We found hybridisation on a single smal 
microchromosome of the crimson rosette (he), presumably indicating the highly degraded W Interesdngfy no 
hytxxksaUon was found on either emu (On) or water python (if), whose sex chromosomes are homomorphic. The 
GgW pant hybnekses to a large region of the cotubnd (Eq) W and to a lesser degree wth the degenerate, 
acrocentric W of the etepd (Ns). No hybnsation was found when the GgZ paint was used on snakes.

Common ancestry or__________________
convergent degeneration?
• Our results show accumulation of similar repeats on degenerating 

chromosomes, suggesting functional homology between snake and bird sex 
chromosome degradation

•Chicken W chromosome appears to have a novel class of repeats, distinct from 
Bkm

• Lack of chicken Z hybridisation on snake chromosomes does not favour the 
common ancestry of avian and reptilian sex chromosomes

What_______________________________
next?
•Characterise the sequence of chicken W repeats by either

•Southern blot analysis of snake genomic DNA, using the chicken W paint as 
probe

•Screening a chicken BAC library with snake W paints and subsequent 
physical mapping

•Comparative sequence analysis of chicken Z and W chromosomes using the 
chicken genome assembly.

Wp me gratatu (d K. Matsubara for prowhng lapane-tr rat inM chromosomal matenai and H Temper lor product** aI the paAn
chromosome pants Several pas members of the C&G laboratory haw contrtouted enormous* * the produett* a# cat Wl. DOM ft supported 
by an ANU PhO Vholantop and *  part by an ABC Osrowry (am* Ohno, S. (1967)

Beta* W. M et al (I9W) Owomcaoms 1*5) 606 
Matsubara. *. at al. (2006) AtHilOX«) 1*190 

•* rftromuaxne» and V. Ant«* pme« Be*%v Sponge*


