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Abstract—Covert wireless communication aims to hide the very
existence of wireless transmissions in order to guarantee a strong
security in wireless networks. In this work, we examine the
possibility and achievable performance of covert communication
in amplify-and-forward one-way relay networks. Specifically, the
relay is greedy and opportunistically transmits its own informa-
tion to the destination covertly on top of forwarding the source’s
message, while the source tries to detect this covert transmission
to discover the illegitimate usage of the resource (e.g., power,
spectrum) allocated only for the purpose of forwarding the
source’s information. We propose two strategies for the relay to
transmit its covert information, namely rate-control and power-
control the transmission schemes, for which the source’s detection
limits are analysed in terms of detection error probability and the
achievable effective covert rates from the relay to destination are
derived. Our examination determines the conditions under which
the rate-control transmission scheme outperforms the power-
control transmission scheme, and vice versa, which enables the
relay to achieve the maximum effective covert rate. Our analysis
indicates that the relay has to forward the source’s message
to shield its covert transmission and the effective covert rate
increases with its forwarding ability (e.g., its maximum transmit
power).

Index Terms—Physical layer security, covert communication,
wireless relay networks, detection, transmission schemes.
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I. INTRODUCTION

A. Background and Related Works

Security and privacy are critical in existing and future wire-

less networks since a large amount of confidential information

(e.g., credit card information, physiological information for

e-health) is transferred over the open wireless medium [2]–

[4]. Traditional security techniques offer protection against

eavesdropping through encryption, guaranteeing the integrity

of messages over the air [5], [6]. However, it has been shown

in the recent years that even the most robust encryption tech-

niques can be defeated by a determined adversary. Physical-

layer security, on the other hand, exploits the dynamic charac-

teristics of the wireless medium to minimize the information

obtained by eavesdroppers [7]–[11]. However, it does not

provide protection against the detection of a transmission in

the first place, which can offer an even stronger level of

security, as the transmission of encrypted transmission can

spark suspicion in the first place and invite further probing

by skeptical eavesdroppers. On the contrary, apart from pro-

tecting the content of communication, covert communication

aims to enable a wireless transmission between two users

while guaranteeing a negligible detection probability of this

transmission at a warden and thus achieving privacy of the

transmitter. Meanwhile, this strong security (i.e., hiding the

wireless transmission) is desired in many application scenarios

of wireless communications, such as covert military oper-

ations, location tracking in vehicular ad hoc networks and

intercommunication of sensor networks or Internet of Things

(IoT). Due to the broadcast nature of wireless channels, the

security and privacy of wireless communications has been an

ever-increasing concern, which now is the biggest barrier to the

wide-spread adoption of sensor networks or IoT technologies

[12]. In sensor networks or IoT, multiple hidden transmit-

ters or receivers, which may be surrounded or monitored

by wardens/cybercriminals, are trying to exchange critical

information through multi-hop wireless transmissions. Each

transmission should be kept covert to enable the end-to-end

covert communication in order to guarantee the ‘invisibility’

of the transmitters. As such, the hiding of communication

termed covert communication or low probability of detection

communication, which aims to shield the very existence of

wireless transmissions against a warden to achieve security,

has recently drawn significant research interests and is emerg-

ing as a cutting-edge technique in the context of wireless

communication security [13]–[15].

Although spread-spectrum techniques are widely used to

achieve covertness in military applications of wireless commu-
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nications [16], many fundamental problems have not been well

addressed. This leads to the fact that the probability that the

spread-spectrum techniques fail to hide wireless transmissions

is unknown, significantly limiting its application. The funda-

mental limit of covert communication has been studied under

various channel conditions, such as additive white Gaussian

noise (AWGN) channels [17], binary symmetric channels [18],

discrete memoryless channels [19], and multiple input multi-

ple output (MIMO) AWGN channels [20]. It is proved that

O(
√
n) bits of information can be transmitted to a legitimate

receiver reliably and covertly in n channel uses as n → ∞.

This means that the associated covert rate is zero due to

limn→∞ O(
√
n)/n → 0. Following these pioneering works

on covert communication, a positive rate has been proved to

be achievable when the warden has uncertainty on his receiver

noise power [21], [22], or an uniformed jammer comes in to

help [23]. Most recently, [24] has examined the impact of

noise uncertainty on covert communication. In addition, the

effect of the imperfect channel state information (CSI) and

finite blocklength (i.e., finite n) on covert communication has

been investigated in [25] and [26], respectively.

B. Motivation and Our Contributions

The ultimate goal of covert wireless communication is to

establish shadow wireless networks [14], in which each hop

transmission should be kept covert to enable the end-to-end

covert communication, in order to guarantee the “invisibility”

of the transmitters. Following the previous works that only

focused on covert transmissions in point-to-point communi-

cation scenarios, in this work, for the first time, we consider

covert communications in the context of amplify-and-forward

one-way relay networks. This is motivated by the scenario

where the relay (R) tries to transmit its own information to

the destination (D) on top of forwarding the information from

the source (S) to D. Specifically, for example, in some relay

networks (possible application scenarios of sensor networks

or IoT) the communication resources (e.g., spectrum, power)

can be managed or owned by S, where S may not allow

R to transmit its own information on top of forwarding S’s

messages to D. This is due to the fact that R’s additional trans-

mission may cause interference within the specific spectrum

owned/managed by S and also consume more transmit power,

which is possibly wirelessly transferred from S (owned by

S) and should be only used for forwarding S’s information.

Therefore, this additional transmission of R should be kept

covert from S.

We note that conceptually the covert transmission from R

to D is similar to steganography, in which covert information

is transmitted by hiding in innocuous objects [27]. These

innocuous objects are utilized as “cover text” to carry the

covert information. In our work, the innocuous objects are the

forwarding transmissions from R to D. The main difference

between our work and steganography is that in our work the

covert information is shielded by the forwarding transmissions

from R to D at the physical layer, while in steganography the

covert information is hidden and transmitted by encoding or

modifying some contents (e.g., shared videos or images) at

the application layer (as discussed in Section III of [14]).

In the literature, covert communications with positive trans-

mission rate are achieved in the context of point-to-point

systems by considering different uncertainty sources, such as

random received noise power [22], random jamming signals

[23], and imperfect CSI [25]. In the considered relay networks,

as mentioned above the uncertainty is inherently embedded in

the forwarding strategies of the S’s information from R to

D, where the covert transmission with a positive rate from

R to D does not require any extra uncertainty sources. The

performance of the considered covert communication in relay

networks and the covert communication in other point-to-

point communication systems highly depends on the amount of

uncertainty appeared in the system model. As such, it is hard to

compare the achieved covert rate limits or warden’s detection

limits directly, since the uncertainty sources are different and

it is hard to quantify the corresponding amount of uncertainty

in the same manner.

Our main contributions are summarized below.

• We examine the possibility and achievable performance

of covert communications in one-way relay networks.

Specifically, we propose two strategies for R to transmit

the covert information to D, namely the rate-control and

power-control transmission schemes, in which the trans-

mission rate and transmit power of the covert message

are fixed and to be optimized regardless of the channel

quality from R to D, respectively. We also identify the

necessary conditions that the covert transmission from

R to D can possibly occur without being detected by S

with probability one and clarify how R hides its covert

transmission in forwarding S’s message to D in these two

schemes.

• We derive the detection limits at S in terms of the

prior probability of null hypothesis 1 − ω, the prior

probability of alternative hypothesis ω, the false alarm

rate α and miss detection rate β are in closed-from

expressions for the proposed two transmission schemes.

Then, we determine the optimal detection threshold at

S, which minimizes the detection error probability ξ =
(1 − ω)α + ωβ and obtain the associated minimum

detection error probability ξ∗. Our analysis leads to many

useful insights. For example, we analytically prove that

ξ∗ increases with R’s maximum transmit power, which

indicates that boosting the forwarding ability of R also

increases its capacity to perform covert transmissions.

This demonstrates a tradeoff between the achievable

effective covert rate and R’s ability to aid the transmission

from S to D.

• We analyze the effective covert rates achieved by these

two schemes subject to the covert constraint ξ∗ ≥
min(1 − ω, ω) − ǫ, where ǫ ∈ [0, 1] is predetermined

to specify the covert constraint. Our analysis indicates

that the achievable effective covert rate approaches zero

as the transmission rate from S to D approaches zero,

which demonstrates that covert transmission from R to

D is only feasible with the legitimate transmission from

S to D as the shield. Our examination shows that the

rate-control transmission scheme outperforms the power-
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Fig. 1. Covert communication in one-way relay networks.

control transmission scheme under some specific con-

ditions, and vise versa. Our examination enables R to

switch between these two schemes in order to achieve a

higher effective covert rate.

The rest of this paper is organized as follows. Section II

details our system model and adopted assumptions. Section III

and IV present the rate-control and power-control transmission

schemes, respectively. Thorough analysis on the performance

of these two transmission are provided in these two sections

as well. Section V provides numerical results to confirm our

analysis and provide useful insights on the impact of some

parameters. Section VI draws conclusions.

Notation: Scalar variables are denoted by italic symbols.

Vectors is denoted by lower-case boldface symbols. Given a

complex number, | · | denotes the modulus. Given a complex

vector, (·)† denotes the conjugate transpose. E[·] denotes

expectation operation.

II. SYSTEM MODEL

A. Considered Scenario and Adopted Assumptions

As shown in Fig. 1, in this work we consider a one-way

relay network, in which S transmits information to D with

the aid of R, since a direct link from S to D is not available.

As mentioned in the introduction, S allocates some resource

to R in order to seek its help to relay the message to D.

However, in some scenarios R may intend to use this resource

to transmit its own message to D as well, which is forbidden

by S and thus should be kept covert from S. As such, in

the considered system model S is also the warden to detect

whether R transmits its own information to D when it is aiding

the transmission from S to D.

We assume the wireless channels within our system model

are subject to independent quasi-static Rayleigh fading with

equal block length and the channel coefficients are indepen-

dent and identically distributed (i.i.d.) circularly symmetric

complex Gaussian random variables with zero-mean and unit-

variance. We also assume that each node is equipped with a

single antenna. The channel from S to R is denoted by hsr

and the channel from R to D is denoted by hrd. We assume

R knows both hsr and hrd perfectly, while S only knows

hsr and D only knows hrd. Considering channel reciprocity,

we assume the channel from R to S (denoted by hrs) is the

same as hsr and thus it is perfectly known by S. We further

assume that R operates in the half-duplex mode and thus the

transmission from S to D occurs in two phases: phase 1 (S

transmits to R) and phase 2 (R transmits to D).

B. Transmission from Source to Relay (Phase 1)

In phase 1, the received signal at R is given by

yr[i] =
√

Pshsrxb[i] + nr[i], (1)

where Ps is the fixed transmit power of S, xb is the transmitted

signal by S satisfying E[xb[i]x
†
b[i]] = 1, i = 1, 2, . . . , n is the

index of each channel use (n is the total number of channel

uses in each phase), and nr[i] is the AWGN at relay with σ2
r as

its variance, i.e., nr[i] ∼ CN (0, σ2
r). In the literature, multiple

approaches have been developed to estimate the noise variance

at a receiver. In general, these approaches can be divided

into two major categories: data-aided (DA) approaches and

non-data-aided (NDA) approaches [28]. The DA approaches

assume that transmitted symbols are known at the receiver

and maximum-likelihood estimation can be used to estimate

the noise variance. For the NDA approaches, transmit symbols

are unknown at the receiver and the noise variance is based on

the statistics of the received signals. In this work, we consider

that R operates in the AF mode and thus R will forward a

linearly amplified version of the received signal to D in phase

2. As such, the forwarded (transmitted) signal by R is given

by

xr[i] = Gyr[i] = G(
√

Pshsrxb[i] + nr[i]), (2)

which is a linear scaled version of the received signal by a

scalar G. In order to guarantee the power constraint at R, the

value of G is chosen such that E[xr[i]x
†
r[i]] = 1, which leads

to G = 1/
√

Ps|hsr|2 + σ2
r .

In this work, we also consider that the transmission rate

from S to D is predetermined, which is denoted by Rsd. We

also consider a maximum power constraint at R, i.e., Pr ≤
Pmax
r . As such, although R knows both hsr and hrd perfectly,

transmission outage from S to D still incurs when Cmax
sd <

Rsd, where Cmax
sd is the channel capacity from S to D for

Pr = Pmax
r . Then, the transmission outage probability is given

by δ = P [Cmax
sd < Rsd], which has been derived in a closed-

form expression [29]. We assume that all the nodes in the

network do not transmit signals when the outage occurs. In

practice, the pair of Rsd and δ determines the specific aid

(i.e., the value of Pmax
r ) required by S from R, which relates

to the amount of resource allocated to R by S as a payback.

In this work, we assume both Rsd and δ are predetermined,

which leads to a predetermined Pmax
r .

C. Transmission Strategies at Relay (Phase 2)

In this subsection, we detail the transmission strategies of R

when it does and does not transmit its own information to D.

We also determine the condition that R can transmit its own

message to D without being detected by S with probability

one, in which the probability to guarantee this condition is

also derived.
1) Relay’s Transmission without the Covert Message: In the

case when the relay does not transmit its own message (i.e.,

covert message) to D, it only transmits xr to D. Accordingly,

the received signal at D is given by

yd[i] =
√

P 0
r hrdxr[i] + nd[i]

=
√

P 0
r Ghrd

√

Pshsrxb[i] +
√

P 0
r Ghrdnr[i] + nd[i], (3)



4

where P 0
r is the transmit power of xr at R in this case and

nd[i] is the AWGN at D with σ2
d as its variance, i.e., nd[i] ∼

CN (0, σ2
d). Accordingly, the signal-to-noise ratio (SNR) at the

destination for xb, which has been derived in a closed-form

expression in [30], is given by

γd =
Ps|hsr|2P 0

r |hrd|2G2

P 0
r |hrd|2G2σ2

r + σ2
d

=
γ1γ2

γ1 + γ2 + 1
, (4)

where γ1 , (Ps|hsr|2)/σ2
r , γ2 , (P 0

r |hrd|2)/σ2
d, and the

scalar G is defined earlier as G = 1/
√

Ps|hsr|2 + σ2
r .

For a predetermined Rsd, R does not have to adopt the

maximum transmit power for each channel realization in order

to guarantee a specific transmission outage probability. When

the transmission outage occurs (i.e., Cmax
sd < Rsd occurs), R

will not transmit (i.e., P 0
r = 0). When Cmax

sd ≥ Rsd, R only

has to ensure Csd = Rsd, where Csd = 1/2 log2(1+γd). Then,

following (4) the transmit power of R when Cmax
sd ≥ Rsd is

given by P 0
r = µσ2

d/|hrd|2, where

µ ,
(Ps|hsr|2 + σ2

r )(2
2Rsd − 1)

[Ps|hsr|2 − σ2
r (2

2Rsd − 1)]
. (5)

We note that (5) indicates that R does not use its maximum

transmit power Pmax
r to forward S’s information when it does

not transmit covert information to D. This is due to the fact that

the transmission from S to D is of a fixed rate Rsd and a larger

transmit power that leads to Csd > Rsd (not Csd = Rsd) does

not bring in extra benefit to this transmission from S to D. As

such, in order to save energy R only sets its transmit power

as per (5) to guarantee Csd = Rsd. Noting γd < γ1, we have

1/2 log2(1 + γ1) > Rsd when Csd = Rsd. As such, µ given

in (5) is nonnegative. Following (4), we note that C∗
sd ≥ Rsd

requires |hrd|2 ≥ µσ2
d/P

max
r . As such, the transmit power of

R without a covert message is given by

P 0
r =







µσ2
d

|hrd|2
, |hrd|2 ≥ µσ2

d

Pmax
r

,

0, |hrd|2 <
µσ2

d

Pmax
r

.
(6)

As per (6), we note that relay will forward message when

|hrd|2 ≥ µσ2
d/P

max
r is met. We denote this necessary condi-

tion as B. As such, R will forward xb to D and S will perform

detection whenever condition B is met. Considering quasi-

static Rayleigh fading, the cumulative distribution function

(cdf) of |hrd|2 is given by F|hrd|2(x) = 1 − e−x and thus

the probability that B is guaranteed is given by

PB = exp

{

− µσ2
d

Pmax
r

}

. (7)

2) Relay’s Transmission with the Covert Message: In the

case when R transmits the covert message to D on top of

forwarding xb, the received signal at D is given by

yd[i] =
√

P 1
r Ghrd

√

Pshsrxb[i] +
√

P∆hrdxc[i]+
√

P 1
r Ghrdnr[i] + nd[i], (8)

where P 1
r is R’s transmit power of xb in this case and P∆

is R’s transmit power of the covert message xc satisfying

E[xc[i]x
†
c[i]] = 1. We note that the covert transmission from

R to D should not affect the transmission from S to D.

Otherwise, S can easily observe this covert transmission. As

such, here we assume D always first decodes xb with xc

as interference. Following (8), the signal-to-interference-plus-

noise ratio (SINR) for xb is given by

γd =
Ps|hsr|2P 1

r |hrd|2G2

P 1
r |hrd|2G2σ2

r + P∆|hrd|2 + σ2
d

=
γ1γ3

γ3 + (γ1 + 1) (γ3P∆/P 1
r + 1)

, (9)

where γ3 , (P 1
r |hrd|2)/σ2

d. We will determine P 1
r based on

different transmission strategies of the covert message from R

to D.

D. Decoding of the Covert Message

As discussed above, the covert transmission from R to D

should not affect the transmission from S to D and thus

we have to guarantee the successful decoding of xb even

when xc is treated as interference to xb. We also note that

this covert transmission cannot happen when the transmission

outage from S to D occurs. This is, for example, due to the

fact that when the transmission outage occurs R will request

a retransmission from S, which enables S to detect R’s covert

transmission with probability one if the covert transmission

happened. Therefore, the covert transmission from R to D

only occur when the successful transmission from S to D is

guaranteed (i.e., when xb is successfully decoded at D). As

such, when the covert message is transmitted by R, successive

interference cancellation (SIC) that allows a receiver to decode

different signals that arrive simultaneously is implemented at

D. Taking advantage of SIC, D decodes the stronger signal

(i.e., xb) first, subtracts it from the combined signal yd given

in (8), and finally decodes the weaker one (i.e., xc) from the

residue. We also note that D cannot jointly decode xb and xc

due to the fact that the codebooks used for encoding xb and

xc are different in order to guarantee that the codebook for

xc is unknown while the codebook for xb is known to the S.

Hence, the effective received signal used to decode the covert

message xc is given by

ỹd[i] =
√

P∆hrdxc[i] +
√

P 1
r hrdGnr[i] + nd[i]. (10)

Then, following (10) the SINR for xc is

γ∆ =
P∆|hrd|2

P 1
r |hrd|2G2σ2

r + σ2
d

. (11)

E. Binary Detection at Source and the Covert Constraint

In this subsection, we present the optimal detection strategy

adopted by S (i.e., Source).

In phase 2 when R transmits to D, S will detect whether

R transmits the covert message xc on top of forwarding S’s

message xb to D. R does not transmit xc in the null hypothesis
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H0 while it does in the alternative hypothesis H1. Then, the

received signal at S in phase 2 is given by

ys[i] =

{ √

P 0
r hrsxr [i]+ns[i], H0,√

P 1
r hrsxr [i]+

√
P∆hrsxc[i]+ns[i], H1,

=







√
P 0

r hrs√
Ps|hsr|2+σ2

r

(
√
Pshsrxb[i]+nr[i])+ns[i], H0,

√
P 1

r hrs√
Ps|hsr|2+σ2

r

(
√
Pshsrxb[i]+

nr[i])+
√
P∆hrsxc[i]+ns[i], H1.

(12)

Noting that xb[i] is known by S, hence, S can cancel the

corresponding component from its received signal ys[i], due

to the fact the infinite blocklength is considered in this work

and S can exactly estimate the scale factor of xb[i]. Then, the

effective received signal used for detection at S is given by

ỹs[i]=







√
P 0

r hrs√
Ps|hsr|2+σ2

r

nr[i]+ns[i], H0,
√

P 1
r hrs√

Ps|hsr|2+σ2
r

nr[i]+
√
P∆hrsxc[i]+ns[i], H1.

(13)

Following (13), the probability density functions of the obser-

vations ỹs under H0 and H1 are, respectively, given by

f(ỹs

∣
∣H0) =

n∏

i=1

f(ỹs[i]
∣
∣H0)

=
1

(
2πσ2

H0

)n
2
exp

{

− 1

2σ2
H0

n∑

i=1

|ỹs[i]|2
}

, (14)

f(ỹs

∣
∣H1) =

n∏

i=1

f(ỹs[i]
∣
∣H1)

=
1

(
2πσ2

H1

)n
2
exp

{

− 1

2σ2
H1

n∑

i=1

|ỹs[i]|2
}

, (15)

where σ2
H0

, P 0
r |hrs|2σ2

r/(Ps|hsr|2+σ2
r)+σ2

s and σ2
H1

,
P 1
r |hrs|2σ2

r/(Ps|hsr|2+σ2
r)+P∆|hrs|2+σ2

s . Following (14) and

(15), based on the Fisher-Neyman factorization theorem [31],

we note that the term T (n) =
∑n

i=1 |ỹs[i]|2 is the sufficient

test statistic for the detector at S. As such, the detector at S

for an arbitrary threshold is given by

1

n
T (n)

D1

≷
D0

τ, (16)

where τ is the threshold for (1/n)T (n), which will be deter-

mined later, D1 and D0 are the binary decisions that infer

whether R transmits covert message or not, respectively. We

will examine how S sets the optimal value of τ in order to min-

imize the detection error probability in the following sections

for considered different transmission strategies. Considering

infinite blocklength, i.e., n → ∞, we have

lim
n→∞

1

n
T (n)=

{

P 0
r |hrs|2φ+ σ2

s , H0,

P 1
r |hrs|2φ+ P∆|hrs|2+σ2

s , H1,
(17)

where φ , σ2
r/(Ps|hsr|2 + σ2

r ).

The detection performance of S is normally measured by

its detection error probability, which is defined as

ξ , (1− ω)α+ ωβ, (18)

where ω = P(H1) is the probability that R transmits a covert

message, 1 − ω = P(H0) is the probability that R does not

transmit a covert message, α = P(D1|H0) is S’s false alarm

rate, and β = P(D0|H1) is S’s miss detection rate.

In practice, it is hard to know ξ at R since the threshold

τ adopted by S is unknown. In this work, we consider the

worst-case scenario where τ is optimized at S to minimize

ξ. As such, the covert constraint considered in this work is

ξ∗ ≥ min{1− ω, ω} − ǫ, where ξ∗ is the minimum detection

error probability achieved at S.

III. RATE-CONTROL TRANSMISSION SCHEME

In this section, we consider the rate-control transmission

scheme, in which R transmits a covert message to D with

a constant rate when some specific realizations of |hrd|2 are

guaranteed. To this end, R varies its transmit power as per

hrd such that P∆|hrd|2 is fixed as Q. Specifically, we first

determine R’s transmit power in H1 and then analyze the

detection error probability at S, based on which we also derive

S’s optimal detection threshold. Furthermore, we derive the

effective covert rate achieved by the rate-control transmission

scheme.

A. Transmit Power at Relay under H1

Following (9) and defining Q = P∆|hrd|2, in order to

guarantee Csd = Rsd under H1, P 1
r is given as

P 1
r =

µ(Q+ σ2
d)

|hrd|2
, (19)

which requires C∗
sd ≥ Rsd that leads to |hrd|2 ≥ (µσ2

d +
µQ+Q)/Pmax

r . We note that P 1
r is the transmit power of the

relay to forward the signal from S to D. In practical scenario,

R can set the value of P 1
r as per the system parameters hsr,

hrd, Ps, σ2
r , σ2

d , Rsd, and Q. The values of these system

parameters are known by R. Specifically, hsr can hrd can be

obtained through channel estimations. The values of σ2
r and

σ2
d can be achieved through a priori measurements collected

from the environment, where σ2
d is fed back from D to R.

The value of Rsd is predetermined by the QoS requirement

of the communication from S to D, while the value of Q is a

design parameter to determine at R. Considering the maximum

power constraint at R (i.e., P 1
r +P∆ ≤ Pmax

r under this case),

R has to give up the transmission of the covert message (i.e.,

P∆ = 0) when P 1
r > Pmax

r −P∆ and sets P 1
r the same as P 0

r

given in (6). This is due to the fact that S knows hrs and it

can detect with probability one when the total transmit power

of R is greater than Pmax
r . Then, the transmit power of xr

under H1 for the rate-control transmission scheme is given by

P 1
r =







µ(Q+σ2
d)

|hrd|2
, |hrd|2 ≥ µσ2

d+µQ+Q
Pmax

r
,

µσ2
d

|hrd|2
,

µσ2
d

Pmax
r

≤ |hrd|2 <
µσ2

d+µQ+Q
Pmax

r
,

0, |hrd|2 <
µσ2

d

Pmax
r

.

(20)
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As per (20), when R cannot support the transmission from

S to D (i.e., when |hrd|2 < µσ2
d/P

max
r ), R or D will send

the retransmission request to S and R should not forward xb,

since this forwarding will definitely fail. In the meantime, S is

aware of that the received energy comes from the R’s covert

transmission if R has transmitted the covert message during

this period. Due to that the CSI of all the channels is available

to R, R knows exactly when the transmission outage from R

to D occurs and thus R will not transmit covert information

to D when this outage occurs. In summary, S cannot detect

R’s covert transmission with probability one only when the

condition |hrd|2 ≥ (µσ2
d +µQ+Q)/Pmax

r is guaranteed. We

denote this necessary condition for covert communication as

C. Considering quasi-static Rayleigh fading, the cumulative

distribution function (cdf) of |hrd|2 is given by F|hrd|2(x) =
1− e−x and thus the probability that C is guaranteed is given

by

PC = exp

{

−µσ2
d + µQ+Q

Pmax
r

}

. (21)

We note that PC is a monotonically decreasing function of

Q, which indicates that the probability that R will transmit a

covert message decreases as Q increases.

In this work, we consider quasi-static Rayleigh fading

channels where the channels remain constant within each

transmission period and vary independently from one period

to another. We would like to clarify that R could possibly

transmit a covert message to D without being detected during

a retransmission from S to D (i.e., new transmission period)

when the condition C is met.

B. Detection Error Probability at Source

In this subsection, we derive S’s false alarm rate, i.e., α,

and miss detection rate, i.e., β.

Theorem 1: When the condition B is guaranteed, for a given

τ , the false alarm and miss detection rates at S are derived as

α =







1, τ < σ2
s ,

1− P−1
B κ1(τ), σ2

s ≤ τ ≤ ρ1,
0, τ > ρ1,

(22)

β =







0, τ < σ2
s ,

P−1
B κ2(τ), σ2

s ≤ τ ≤ ρ2,
1, τ > ρ2,

(23)

where

ρ1 , Pmax
r |hrs|2φ+ σ2

s , (24)

ρ2 , Pmax
r |hrs|2

(

φ+
(φµ + 1)Q

µσ2
d

)

+ σ2
s ,

κ1(τ) , exp

{

−φµσ2
d|hrs|2

τ − σ2
s

}

,

κ2(τ) , exp

{

−
(
φµσ2

d + (φµ+ 1)Q
)
|hrs|2

τ − σ2
s

}

.

Proof: Considering the maximum power constraint at R

under H0 (i.e., P 0
r ≤ Pmax

r ) and following (6), (16), and (17),

the false alarm rate under the condition B is given by

α = P
[

µσ2
d

|hrd|2
|hrs|2φ+ σ2

s ≥ τ
∣
∣B

]

=







1, τ < σ2
s ,

P
[

µσ2
d

Pmax
r

≤ |hrd|2 ≤ µσ2
d|hrs|

2φ
τ−σ2

s

]

P−1
B , σ2

s ≤ τ ≤ ρ1,

0, τ > ρ1.
(25)

Then, substituting F|hrd|2(x) = 1 − e−x into the above

equation (hrs is perfectly known by S and thus it is not a

random variable here) we achieve the desired result in (22).

Considering the maximum power constraint at R under H1

(i.e., P 1
r + P∆ ≤ Pmax

r ) and following (16), (17), and (20),

the miss detection rate under the condition B is given by

β = P
[
µ(Q+ σ2

d)|hrs|2φ
|hrd|2

+
Q|hrs|2
|hrd|2

+ σ2
s < τ

∣
∣B

]

=







0, τ < σ2
s ,

P
[

|hrd|2≥ (φµ(σ2
d+Q)+Q)|hrs|

2

τ−σ2
s

]

P−1
B , σ2

s ≤ τ ≤ ρ2,

1, τ > ρ2.
(26)

Then, substituting F|hrd|2(x) = 1− e−x into (26) we achieve

the desired result in (23).

We note that the false alarm and miss detection rates given

in Theorem 1 are functions of the threshold τ and we next

examine how S sets the value of τ to minimize its detection

error probability in the following subsection.

C. Optimization of the Detection Threshold at Source

In this subsection, we derive the optimal value of the detec-

tion threshold τ that minimizes the detection error probability

ξ for the rate-control transmission scheme.

Theorem 2: The optimal threshold that minimizes ξ for the

rate-control transmission scheme is given by

τ∗ =

{
ρ1, τ‡ ≤ σ2

s ,
min

{
τ‡, ρ1

}
, τ‡ > σ2

s ,
(27)

where

τ‡ ,
(φµ+ 1)Q|hrs|2

ln
(

ω1

1−ω1

(

1 + (φµ+1)Q
φµσ2

d

)) + σ2
s , (28)

ω1 ,
1

2
exp

{

− (µ+ 1)Q

Pmax
r

}

. (29)

Proof: As discussed before, S will perform detection

whenever condition B is met and R can transmit covert

message when condition C is guaranteed. In our work, we

assume that R will transmit a covert message with probability

50% when C is true. As per (7) and (21), the probability

P(H1) is given by

P(H1) =
1

2
P
[
C
∣
∣B
]
= ω1. (30)
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Then, P(H0) is given by

P(H0) = 1− P(H1) = 1− ω1. (31)

Since ρ2 > ρ1 as given in Theorem 1, following (22) and

(23), we have the detection error probability at S as

ξ =







1− ω1, τ ≤ σ2
s ,

1−ω1−P−1
B [(1−ω1)κ1(τ)−

ω1κ2(τ)], σ2
s < τ ≤ ρ1,

ω1P−1
B κ2(τ), ρ1 ≤ τ < ρ2,

ω1, τ ≥ ρ2.

(32)

We first note that ξ = 1 − ω1 or ω1 are the worst case

for S and thus S does not set τ ≤ σ2
s or τ > ρ2. Following

(32), we derive the first derivative of ξ with respect to τ when

ρ1 ≤ τ < ρ2 as

∂(ξ)

∂τ
=

ω1P−1
B

(
φµ

(
σ2
d +Q

)
+Q

)
|hrs|2

(τ − σ2
s)

2
κ2(τ) > 0. (33)

This demonstrates that ξ is an increasing function of τ when

ρ1 ≤ τ < ρ2. Thus, S will set ρ1 as the threshold to minimize

ξ if ρ1 ≤ τ < ρ2. We next derive the first derivative of ξ with

respect to τ for σ2
s < τ ≤ ρ1 as

∂(ξ)

∂τ
=

P−1
B |hrs|2

(τ − σ2
s )

2

[

ω1

(
φµ

(
σ2
d +Q

)
+Q

)
κ2(τ)−

(1− ω1)φµσ
2
dκ1(τ)

]

=
ω1P−1

B

(
φµ

(
σ2
d +Q

)
+Q

)
|hrs|2κ2(τ)

(τ − σ2
s)

2
×

{

1− (1− ω1)φµσ
2
d

ω1 (φµ(σ2
d +Q) +Q)

exp

{
(φµ+ 1)Q|hrs|2

τ − σ2
s

}}

.

(34)

We note that ω1P−1
B

(
φµ

(
σ2
d +Q

)
+Q

)
|hrs|2κ2(τ)/(τ −

σ2
s )

2 > 0 due to σ2
s < τ and κ2(τ) > 0 as given in Theorem 1.

As such, without the constraint τ ≤ ρ1, the value of τ that

ensures ∂(ξ)/∂τ = 0 in (34) is given by τ‡. We note that

∂(ξ)/∂τ < 0, for τ < τ‡, and ∂(ξ)/∂τ > 0, for τ > τ‡. This

is due to the term exp{(φµ+ 1)Q|hrs|2/(τ − σ2
s )} in (34)

is monotonically decreasing with respect to τ . This indicates

that τ‡ minimizes ξ without the constraint τ ≤ ρ1. We also

note that ξ given in (32) is a not a continuous function of

τ following Theorem 1 when τ‡ ≤ σ2
s . This is due to that

1 − ω1 − P−1
B [(1 − ω1)κ1(τ) − ω1κ2(τ)] is monotonically

increasing with respect to τ when τ‡ ≤ σ2
s . We note that

ξ is also monotonically increasing with respect to τ for

ρ1 ≤ τ < ρ2, thus will lead to ω1 ≥ 1 − ω1. As such, if

τ‡ ≤ σ2
s , the optimal threshold is τ∗ = ρ1.. If τ‡ > σ2

s ,

following (33) and noting ξ is a continuous function of τ , we

can conclude that the optimal threshold is τ∗ = min
{
τ‡, ρ1

}
.

This completes the proof of Theorem 2.

Following Theorem 2, we obtain the minimum detection

error probability at S in the following corollary.

Corollary 1: The minimum value of ξ at S is

ξ∗ =







(1− ω1)

{

1− exp
(

µσ2
d

Pmax
r

)

×
(

1− φµσ2
d

φµσ2
d
+(φµ+1)Q

)

×
(

ω1

1−ω1

(

1 + (φµ+1)Q
φµσ2

d

))−
φµσ2

d
(φµ+1)Q

}

, τ∗ = τ‡,

ω1 exp
{

− (φµ+1)Q
φPmax

r

}

, τ∗ = ρ1.

(35)

Proof: Substituting τ∗ into (32), we obtain the minimum

value of ξ as ξ∗ = 1− ω1 − P−1
B [(1− ω1)κ1(τ) − ω1κ2(τ)],

which completes the proof of Corollary 1.

Based on Theorem 1, Theorem 2, and Corollary 1, we draw

the following useful insights.

Remark 1: We conclude that detection error probability ξ∗

tends to 0 when R’s additional covert power Q approaches

infinity. This follows from (27) for τ∗ = ρ1, since when Q →
∞ we have τ‡ < σ2

s as per (28) and thus τ∗ = ρ1.

Remark 2: When the maximum power constraint Pmax
r

approaches infinity, the minimum detection error probability

ξ∗ approaches a fixed value given by

lim
Pmax

b
→∞

ξ∗ =
1

2

{

1−
(

1− φµσ2
d

φµσ2
d + (φµ+ 1)Q

)

︸ ︷︷ ︸

f1(Q)

×

(

1 +
(φµ+ 1)Q

φµσ2
d

)−
φµσ2

d
(φµ+1)Q

︸ ︷︷ ︸

f2(Q)

}

. (36)

The result in (36) follows from (27) for τ∗ = τ‡, since

when Pmax
r → ∞ we have ρ1 → ∞ as per (24) and thus

ρ1 > τ‡ (then τ∗ = τ‡). Following (36), we can conclude

that ξ∗ monotonically decreases with Q when Pmax
r → ∞.

In order to prove this conclusion, we next prove that f2(Q)
in (36) monotonically increases with Q, since f1(Q) in

(36) is a monotonically increasing function of Q. Defining

(φµ+ 1)Q/µσ2
d = x, following (35) we have f2(Q) = f2(x),

where

f2(x) = (1 + x)−1/x. (37)

In order to determine the monotonicity of f2(x) with respect

to x, we derive its first derivative as

∂f2(x)

∂x
= exp

{

− ln(1 + x)

x

}
(1 + x) ln(1 + x)− x

x2(1 + x)
. (38)

We note that whether ∂f2(x)/∂x > 0 or ∂f2(x)/∂x < 0
depends on g(x) , (1+ x) ln(1 + x)− x. As such, we derive

the first derivative of g(x) with respect to x as

∂g(x)

∂x
= ln(1 + x). (39)

Noting that x ≥ 0 and ∂g(x)/∂x ≥ 0, we conclude that

g(x) monotonically decreases with x. Then, we have g(x) ≥
g(0) = 0 and thus ∂f2(x)/∂x ≥ 0. This leads to that f2(Q)
monotonically increases with Q and thus ξ∗ monotonically
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decreases with Q for τ∗ = τ‡.

When Pmax
r → ∞, ω1 approaches 1/2 as per (29) and ξ∗ =

ω1 − ǫ can be written as

(

1− φµσ2
d

φµσ2
d + (φµ+ 1)Q

)

︸ ︷︷ ︸

f1(Q)

(

1 +
(φµ+ 1)Q

φµσ2
d

)−
φµσ2

d
(φµ+1)Q

︸ ︷︷ ︸

f2(Q)

= 2ǫ. (40)

Defining y = φµσ2
d/((φµ+ 1)Q) and following the expres-

sion of f2(Q) in (40), we have

lim
y→0

f2(Q) = lim
y→0

(
y

y + 1

)y

= 00 = 1. (41)

As per (40), for y → 0 the approximated close-form expres-

sion of Qǫ is given by

Qǫ =
φµσ2

d

(φµ+ 1)

(
1

1− 2ǫ
− 1

)

. (42)

Remark 3: We have that the minimum detection error

probability ξ∗ tends to 0 when the data transmission rate Rsd

approaches 0 or infinity. As Rsd → 0, as per (5) we have

µ → 0 and thus τ‡ → σ2
s (then optimal threshold τ∗ is equal

to τ‡) following (28). Then, from (35) for τ∗ = τ‡ we can see

that ξ∗ → 0 as µ → 0. As Rsd → ∞, following (5) again we

note that µ will be negative and thus the transmission from S

to D fails, which leads to ξ∗ → 0 as discussed in Section III-A.

This result means that there exists an optimal value of Rsd that

maximizes ξ∗ and thus maximizes the effective covert rate for

given other system parameters. We will numerically examine

the impact of Rsd on covert communications in Section V.

D. Optimization of Effective Covert Rate

In this section, we examine the effective covert rate achieved

in the considered system subject to a covert constraint.

1) Effective Covert Rate: From (11), the SINR of xc at D

in the rate-control transmission scheme is given as

γ∆ =
P∆|hrd|2

P 1
r |hrd|2G2σ2

r + σ2
d

=
Q

µ(Q+σ2
d
)

η|hsr|2+1 + σ2
d

, (43)

where η , Ps/σ
2
r . Then, the covert rate achieved by R is

R∆ = log2(1+γ∆). As such, we can see that the covert rate is

fixed when Q is fixed as per (43). We next derive the effective

covert rate, i.e., the covert rate averaged over all realizations

of |hrd|2, in the following theorem.

Theorem 3: The achievable effective covert rate Rc by R in

the rate-control transmission scheme is derived as a function

of Q given by

Rc = R∆PC = log2



1 +
Q

µ(Q+σ2
d
)

η|hsr|2+1 + σ2
d



×

exp

{

−µσ2
d + µQ+Q

Pmax
r

}

. (44)

Based on Theorem 3, we note that Rc is not an increasing

function of Q and thus R∆, since as Q increases R∆ increases

as per (44) while PC decreases following (21). This indicates

that there may exists an optimal value of Q that maximizes

the effective covert rate, which motivates our following opti-

mization of Q in the considered system model.

2) Maximization of Rc with the Covert Constraint: As per

(30) and (31), note that ω1 ≤ 1/2, the covert constraint is

given by

ξ∗ ≥ min {1− ω, ω} − ǫ = ω1 − ǫ. (45)

Following Theorem 2, the optimal value of Q that maxi-

mizes Rc subject to the covert constraint ξ∗ ≥ ω1 − ǫ can be

obtained through numerical search, which is given by

Q∗ =argmax
Q

Rc, (46)

s.t. ξ∗ ≥ ω1 − ǫ.

We note that the optimization problem (46) is of one dimen-

sion, which can be solved by efficient numerical search. The

maximum value of Rc is then achieved by substituting Q∗ into

(44), which is denoted by R∗
c .

IV. POWER-CONTROL TRANSMISSION SCHEME

In this section, we consider the power-control transmission

scheme, in which R transmits a covert message to D with

a constant transmit power if possible. Specifically, we first

determine R’s transmit power in H1 and then analyze the

detection error probability at S, based on which we also derive

S’s optimal detection threshold. Furthermore, we derive the ef-

fective covert rate achieved by the power-control transmission

scheme.

A. Transmit Power at Relay

Following (9), when Csd = Rsd we have

P 1
r = µP∆ +

µσ2
d

|hrd|2
. (47)

We note that Csd = Rsd requires C∗
sd ≥ Rsd and thus

|hrd|2 ≥ µσ2
d/[P

max
r − (µ+ 1)P∆]. Considering the maxi-

mum power constraint at R (i.e., P 1
r + P∆ ≤ Pmax

r under

this case), R has to give up the transmission of the covert

message (i.e., P∆ = 0) when P 1
r > Pmax

r − P∆ and sets

P 1
r the same as P 0

r given in (6). This is due to the fact that

S knows hrs and it can detect the covert transmission with

probability one when the total transmit power of R is greater

than Pmax
r . Then, the transmit power of xr under H1 for the

power-control transmission scheme is given by

P 1
r =







µP∆ +
µσ2

d

|hrd|2
, |hrd|2 ≥ µσ2

d

Pmax
r −(µ+1)P∆

,
µσ2

d

|hrd|2
,

µσ2
d

Pmax
r

≤ |hrd|2 <
µσ2

d

Pmax
r −(µ+1)P∆

,

0, |hrd|2 <
µσ2

d

Pmax
r

.

(48)

As per (48), we note that R also does not transmit a covert

message when it cannot support the transmission from S to D

(i.e., when |hrd|2 < µσ2
d/P

max
r ). This is due to the fact that a
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transmission outage occurs when |hrd|2 < µσ2
d/P

max
r and R

or D would request a retransmission from S, which enables S

to detect R’s covert transmission with probability one if this

covert transmission happened, since R cannot and thus does

not forward S’s information to D when |hrd|2 < µσ2
d/P

max
r .

In summary, R could possibly transmit a covert message

without being detected only when the condition |hrd|2 ≥
µσ2

d/[P
max
r − (µ+ 1)P∆] is guaranteed. We again denote this

necessary condition for covert communication as C. Noting

F|hrd|2(x) = 1 − e−x, the probability that C is guaranteed is

given by

PC = exp

{

− µσ2
d

Pmax
r − (µ+ 1)P∆

}

. (49)

We note that PC is a monotonically decreasing function of

P∆, which indicates that the probability that R can transmit a

covert message (without being detected with probability one)

decreases as P∆ increases. Following (47) and noting P 1
r +

P∆ ≤ Pmax
r , we have Pmax

r > (µ+ 1)P∆.

B. Detection Error Probability at Source

In this subsection, we derive S’s false alarm rate, i.e., α =
P(D1|H0), and miss detection rate, i.e., β = P(D0|H1).

Theorem 4: When the condition B is guaranteed, for a given

τ , the false alarm and miss detection rates at S are derived as

α =







1, τ < σ2
s ,

1− P−1
B κ1(τ), σ2

s ≤ τ ≤ ρ1,
0, τ > ρ1,

(50)

β =







0, τ < ρ3,
P−1
B κ3(τ), ρ3 ≤ τ ≤ ρ4,

1, τ > ρ4,
(51)

where

ρ3 , (φµ+ 1)P∆|hrs|2 + σ2
s ,

ρ4 , (Pmax
r φ+ (φµ+ 1)P∆) |hrs|2 + σ2

s ,

κ3(τ) , exp

{

−φµσ2
d|hrs|2

τ − ρ3

}

,

and ρ1 and κ1(τ) are defined in (24).

Proof: Considering the maximum power constraint at R

under H0 (i.e., P 0
r ≤ Pmax

r ) and following (6), (16), and (17),

the false alarm rate under the condition B is given by

α = P
[

µσ2
d

|hrd|2
|hrs|2φ+ σ2

s ≥ τ
∣
∣B

]

=







1, τ < σ2
s ,

P
[

µσ2
d

Pmax
r

≤|hrd|2≤ µσ2
d|hrs|

2φ
τ−σ2

s

]

P−1
B , σ2

s ≤ τ ≤ ρ1,

0, τ > ρ1.
(52)

Then, substituting F|hrd|2(x) = 1 − e−x into the above

equation we achieve the desired result in (50).

We first clarify that we have ρ3 < ρ4. Then, considering the

maximum power constraint at R under H1 (i.e., P 1
r + P∆ ≤

Pmax
r ) and following, (16), (17), and (48), the miss detection

rate under the condition B is given by

β = P
[(

µP∆ +
µσ2

d

|hrd|2
)

|hrs|2φ+ P∆|hrs|2 + σ2
s < τ

∣
∣B

]

=







0, τ < ρ3,

P
[

|hrd|2≥ φµσ2
d|hrs|

2

τ−(φµ+1)P∆|hrs|2−σ2
s

]

P−1
B , ρ3 ≤ τ ≤ ρ4,

1, τ > ρ4.
(53)

Then, substituting F|hrd|2(x) = 1 − e−x into the above

equation we achieve the desired result in (51).

We note that the false alarm and miss detection rates given

in Theorem 4 are functions of the threshold τ and we examine

how S sets the value of τ to minimize its detection error

probability in the following subsection.

C. Optimization of the Detection Threshold at Source

In this subsection, we first derive a constraint (i.e., an upper

bound) on P∆ to ensure a non-zero detection error probability

at S. Then, under this constraint we derive the lower and upper

bounds on the optimal value of τ that minimizes the detection

error probability ξ for the power-control transmission scheme.

Theorem 5: R’s transmit power of the covert message P∆

should satisfy

P∆ ≤ Pu
∆ ,

φPmax
r

φµ+ 1
(54)

in order to guarantee ξ > 0 and when (54) is guaranteed the

optimal τ at S that minimizes ξ should satisfy ρ3 ≤ τ∗ ≤ ρ1.

Proof: As discussed before, S will perform detection

whenever condition B is met. In our work, we assume that

R will transmit a covert message with probability 50% when

C is guaranteed. As per (7) and (49), the probability P(H1)
is given by

P(H1) =
1

2
P(C

∣
∣B) = ω2, (55)

where

ω2 ,
1

2
exp

{

− µ(µ+ 1)σ2
dP∆

(Pmax
r (Pmax

r − (µ+ 1)P∆))

}

. (56)

Then, P(H0) is given by

P(H0) = 1− P(H1) = 1− ω2. (57)

When ρ1 < ρ3 that requires P∆ > φPmax
r /(φµ+ 1) as per

Theorem 4, following (50) and (51), we have

ξ =







1− ω2, τ ≤ σ2
s ,

(1− ω2)
(
1− P−1

B κ1(τ)
)
, σ2

s < τ < ρ1,
0, ρ1 ≤ τ ≤ ρ3,
ω2P−1

B κ3(τ), ρ3 < τ < ρ4,
ω2, τ ≥ ρ4.

(58)

This indicates that S can simply set τ ∈ [ρ1, ρ3] to ensure

ξ = 0 when P∆ > φPmax
r /(φµ + 1), i.e., S can detect the

covert transmission with probability one. As such, P∆ should

satisfy (54) in order to guarantee ξ > 0.
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We next prove ρ3 ≤ τ∗ ≤ ρ1. When P∆ ≤ φPmax
r /(φµ +

1), i.e., ρ3 < ρ1, following (50) and (51), we have

ξ =







1− ω2, τ ≤ σ2
s ,

(1− ω2)
(
1− P−1

B κ1(τ)
)
, σ2

s < τ ≤ ρ3,
1− ω2 − P−1

B ×
[(1− ω2)κ1(τ) − ω2κ3(τ)] , ρ3 < τ < ρ1,
ω2P−1

B κ3(τ), ρ1 ≤ τ < ρ4,
ω2, τ ≥ ρ4.

(59)

Obviously, S will not set τ ≤ σ2
s or τ ≥ ρ4, since ξ = 1−ω1

or ω1 are the worst case for S.

For σ2
s < τ ≤ ρ3, we derive the first derivative of ξ with

respect to τ as

∂(ξ)

∂τ
= − (1− ω2)P−1

B φµσ2
d|hrs|2

(τ − σ2
s )

2
κ1(τ) < 0. (60)

This demonstrates that ξ is a decreasing function of τ when

σ2
s < τ ≤ ρ3. For ρ1 ≤ τ < ρ4, we derive the first derivative

of ξ with respect to τ as

∂(ξ)

∂τ
=

ω2P−1
B φµσ2

d|hrs|2
(τ − ρ3)2

κ3(τ) > 0. (61)

This proves that ξ is an increasing function of τ when

ρ1 ≤ τ < ρ4. Noting that ξ is a continuous function of τ and

considering (60) and (61), we can conclude that τ∗ should

satisfy ρ3 ≤ τ∗ ≤ ρ1, no mater what is the value of ξ for

ρ3 < τ < ρ1.

The lower and upper bounds on τ∗ given in Theorem 5

significantly facilitate the numerical search for τ∗ at S. Then,

following Theorem 5 and (59), τ∗ can be obtained through

τ∗ = argmin
ρ3≤τ≤ρ1

{
1− ω2 − P−1

B [(1− ω2)κ1(τ) − ω2κ3(τ)]
}
.

(62)

Substituting τ∗ into (59), we can obtain the minimum detec-

tion error probability ξ∗ for the power-control transmission

scheme.

D. Optimization of Effective Covert Rate

In this section, we examine the effective covert rate achieved

by the power-control transmission scheme subject to the covert

constraint.
1) Effective Covert Rate: Following (11), the SINR at

destination for covert communication is given as

γ∆ =
P∆|hrd|2

P 1
r |hrd|2G2σ2

r + σ2
d

=
P∆(η|hsr|2 + 1)|hrd|2

µP∆|hrd|2 + (η|hsr|2 + µ+ 1)σ2
d

. (63)

Then, the covert rate achieved by R is R∆ = log2(1+γ∆). We

next derive the effective covert rate, i.e., averaged R∆ over all

realizations of |hrd|2, in the following theorem.

Theorem 6: The achievable effective covert rate Rc by R

with the power-control transmission scheme is derived as a

function of P∆ given by

Rc =
1

ln 2
exp

{

− µσ2
d

Pmax
r − (µ+ 1)P∆

}

×
[

ln

(
β1

β2

)

+ e
β2
α2 Ei

(

−β2

α2

)

− e
β1
α1 Ei

(

−β1

α1

)]

, (64)

where

β1 , [η|hsr|2 + µ+ 1](Pmax
r − P∆)σ

2
d,

β2 ,

{
η|hsr|2 + µ+ 1

[Pmax
r − (µ+ 1)P∆]−1

+ µ2P∆

}

σ2
d,

α1 , P∆

[
η|hsr |2 + (µ+ 1)

]
[Pmax

r − (µ+ 1)P∆] ,

α2 , µP∆[P
max
r − (µ+ 1)P∆],

and the exponential integral function Ei(·) is given by

Ei(x) = −
∫ ∞

−x

e−t

t
dt, [x < 0]. (65)

Proof: A positive covert rate is only achievable under the

condition C and thus Rc is given by

Rc =

∫ ∞

µσ2
d

Pmax
r −(µ+1)P∆

R∆f(|hrd|2)d|hrd|2

a
=

1

ln 2
exp

{

− µσ2
d

Pmax
r − (µ+ 1)P∆

}

×
∫ ∞

0

ln

(
β1 + α1x

β2 + α2x

)

e−xdx, (66)

where
a
= is achieved by setting x = |hrd|2 −

µσ2
d/[P

max
r − (µ+ 1)P∆]. We then solve the integral in (66)

with the aid of [32, Eq. (4.337.1)]

∫ ∞

0

e−νx ln(θ + x)dx =
1

ν

[
ln θ + eνθEi(−θν)

]
, (67)

and achieve the result given in (64).

Based on Theorem 6, we note that Rc is not an increasing

function of P∆, since as P∆ increases R∆ increases but

PC (i.e., the probability that the condition C is guaranteed)

decreases. This motivates our following optimization of P∆

in order to maximize the effective covert rate subject to the

covert constraint.

2) Maximization of Rc with the Covert Constraint: As per

(55) and (57), note that ω2 ≤ 1/2, the covert constraint is

given by

ξ∗ ≥ min {1− ω, ω} − ǫ = ω2 − ǫ. (68)

Following Theorem 5 the optimal value of P∆ that maxi-

mizes Rc subject to this constraint can be obtained through

P ∗
∆ = argmax

0≤P∆≤Pu
∆

Rc (69)

s.t. ξ∗ ≥ ω2 − ǫ.

We note that this is a two-dimensional optimization problem

that can be solved by efficient numerical searches. Specifically,

for each given P∆, ξ∗ should be obtained based on (62) where

τ∗ is also numerically searched. We note that the numerical

search of P ∗
∆ and τ∗ is efficient since their lower and upper

bounds are explicitly given. The maximum value of Rc is

denoted by R∗
c .
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Fig. 2. (a) ξ∗ versus Pmax
r with different value of σ2

d
for the rate-

control transmission scheme, where Ps = 10 dB, σ2
r = 0 dB, Rsd =

1 bits per channel use, |hsr|2 = |hrs|2 = 1, and Q = 0.1. (b) ξ∗ versus
Rsd with different value of σ2

d
for the rate-control transmission scheme, where

Ps = Pmax
r = 10 dB, σ2

r = 0 dB, |hsr|2 = |hrs|2 = 1, and Q = 0.1.

V. NUMERICAL RESULTS

In this section, we first present numerical results to verify

our analysis on the performance of covert communications

in relay networks. Then, we provide a thorough performance

comparison between the rate-control and power-control trans-

mission schemes. Based on our examination, we draw many

useful insights with regard to the impact of some system

parameters (e.g., Pmax
r , Rsd, and ǫ ) on covert communications

in wireless relay networks.

A. Rate-Control Transmission Scheme

In Fig. 2 (a), we plot the minimum detection error prob-

ability ξ∗ versus R’s maximum transmit power Pmax
r and

observe that ξ∗ increases with Pmax
r . This shows that the

covert transmission becomes easier as the desired performance

of the normal transmission increases, since the transmission

outage probability decreases with Pmax
r for a fixed Rsd. We

also observe ξ∗ approach to a specific value as Pmax
r → ∞,

which is discussed in Remark 2. This observation demonstrates

that the covert transmission can still be possibly detected by

S even without the maximum power constraint at R. In Fig. 2

(b), we plot ξ∗ versus the transmission rate from S to D (i.e.,

Rsd). We first observe that ξ∗ is not a monotonic function

of Rsd and ξ∗ → 0 as Rsd → 0 or Rsd → ∞. This

observation indicates that there may exist an optimal value

of Rsd that maximizes ξ∗. In Fig. 2, we finally observe that

ξ∗ is a monotonic increasing function of σ2
d .

B. Power-Control Transmission Scheme

In Fig. 3 (a), we plot the minimum detection error prob-

ability ξ∗ versus R’s maximum transmit power Pmax
r and

observe that ξ∗ increases with Pmax
r . This shows that the

0 5 10 15 20
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Fig. 3. (a) ξ∗ versus Pmax
r with different value of σ2

d
for the power-

control transmission scheme, where Ps = 10 dB, σ2
r = 0 dB, Rsd =

1 bits per channel use, |hsr|2 = |hrs|2 = 1, and P∆ = −10 dB. (b)
ξ∗ versus Rsd with different value of σ2

d
for the power-control transmission

scheme, where Ps = Pmax
r = 10 dB, σ2

r = 0 dB, |hsr|2 = |hrs|2 = 1,
and P∆ = −10 dB.

covert transmission becomes easier as the desired performance

of the normal transmission increases, since the transmission

outage probability decreases with Pmax
r for a fixed Rsd.

We also observe ξ∗ does not approach 1/2 (but a specific

value that is lower than 1/2) as Pmax
r → ∞, which is the

same as the result discussed in Remark 2 for the rate-control

transmission scheme. This observation demonstrates that the

covert transmission can still be possibly detected by S even

without the maximum power constraint at R. Fig. 3 (b), we

plot ξ∗ versus the transmission rate from S to D (i.e., Rsd). We

first observe that ξ∗ is not a monotonic function of Rsd and

ξ∗ → 0 as Rsd → 0 or Rsd → ∞. This observation indicates

that there may exist an optimal value of Rsd that maximizes

ξ∗. In Fig. 3, we finally observe that ξ∗ is not a monotonic

function of σ2
d.

C. Performance Comparisons between the Rate-Control and

Power-Control Transmission Schemes

Fig. 4 illustrates R∗
c versus Pmax

r with different values of Ps

for the rate-control and power-control transmission schemes

using (46) and (69), respectively. In this figure, we first observe

that for both schemes R∗
c monotonically increases as Pmax

r in-

creases, which demonstrates that the covert message becomes

easier to be transmitted when more power is available at R.

we also observe that R∗
c is not a monotonic function of Ps. In

Fig. 4, it illustrates that the power-control transmission scheme

outperforms the rate-control transmission scheme when Pmax
r

is in the low regime. However, when Pmax
r is larger than some

specific values (e.g., when Pmax
r ≥ 13 dB), the performance

of rate-control transmission scheme is better than that of the

power-control transmission scheme. This is mainly due to

the fact that the transmit power constraints are not limits of
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Fig. 4. R∗

c versus Pmax
r under different value of Ps, where σ2

r = σ2

d
= 0 dB,

ǫ = 0.1, Rsd = 1 bits per channel use, and |hsr|2 = 1.
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Fig. 5. R∗

c versus Ps under different value of Pmax
r , where σ2

r = σ2

d
= 0 dB,

ǫ = 0.1, and Rsd = 1.5 bits per channel use.

the covert transmission when Pmax
r is large, and thus under

this case selecting a proper covert transmission rate (in the

rate-control transmission scheme) can gain more benefit. We

note that this observation demonstrates the significance of our

work, since with our analysis R can easily determine which

transmission is better under the specific system settings.

In Fig. 5, we plot the averaged maximum effective covert

rate, i.e., R∗
c , which is achieved by averaging R∗

c over |hsr|2,

versus S’s transmit power Ps with different values of R’s

maximum transmit power Pmax
r . In this figure, we first observe

that R∗
c is zero when Ps is effectively small (e.g., due to the

fact that S is far from R and D). This is due to the fact that

when Ps is sufficient small, the normal transmission from

S to D with the fixed rate Rsd may not be supported and

R does not forward S’s information to D. Meanwhile, the

covert transmission from R to D cannot be achieved due to

the lack of the shield from the normal transmission. We also

observe that R∗
c → 0 when Ps → ∞. This is due to the

fact that φ given in (17) decreases (and thus P 0
r |hrs|2φ and

P 1
r |hrs|2φ decrease) with Ps, which leads to a lower detection

error probability at S as per (35) and (62) (i.e., it becomes

easier for S to detect the covert transmission). In Fig. 5, we

further observe that the achieved R∗
c decreases significantly

as Pmax
r decreases (e.g., when R is with less transmit power

than S), which demonstrates that it is the power constraint at R

that mainly limits the performance of the covert transmission.

Based on this observation, we can predict that R∗
c → 0 when

Pmax
r → 0. This is due to the fact that as Pmax

r → 0 R

cannot support the normal transmission from S to D, not to

mention the covert transmission from itself to D (due to the

lack of the shield). Finally, we observe that the power-control

transmission scheme outperforms the rate-control transmission

scheme when Ps or Pmax
r is low. This observation is consistent

with that found in Fig. 4.

VI. CONCLUSION

This work examined covert communication in one-way

relay networks over quasi-static Rayleigh fading channels, in

which R opportunistically transmits its own information to

the destination covertly on top of forwarding S’s message

in AF mode, while S tries to detect this covert transmission.

Specifically, we proposed the rate-control and power-control

transmission schemes for R to convey covert information to

D. We analyzed S’s detection limits of the covert transmission

from R to D in terms of the detection error probability

and determined the achievable effective covert rates subject

to ξ∗ ≥ min{1 − ω, ω} − ǫ for these two schemes. Our

examination showed that the rate-control transmission scheme

outperforms the power-control transmission scheme under

some specific conditions, and otherwise the power-control

transmission scheme outperforms the rate-control transmis-

sion scheme. As such, our conducted analysis enabled R to

switch between these two strategies to achieve the maximum

covert rate. Our investigation also demonstrated that covert

communication in the considered relay networks is feasible

and the effective covert rate achieved by R increases with its

forwarding ability.
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