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Abstract

In this paper we introduce the hyperbolic k-Pell functions and new classes
of quaternions associated with this type of functions are presented. In addi-
tion, the Binet formulas, generating functions and some properties of these
functions and quaternions sequences are studied.
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1. Introduction and background

Fibonacci sequence is one of the sequences of positive integers that has been studied
over several years. Such sequence is associated with the well-known golden ratio
and there exist several relations of this sequence with different scientific areas with
many applications. Both Fibonacci and Lucas sequences are examples of sequences
which have been studied by many scientists. One can get more detailed information
on these sequences from the research works [2, 13] among others.

The Pell numbers are defined by Pn+1 = 2Pn + Pn−1, n ≥ 1, with initial
conditions given by P0 = 0, P1 = 1. This sequence is associated with the silver
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ratio δ = 1 +
√
2 which has been investigated by several authors and some of its

basic properties have been stated in several papers (see, for example, the study
of Horadam in [14] and Koshy in [15]). One generalization of the Pell sequence is
the k-Pell sequence for any positive real number k. The k-Pell sequence {Pk,n}n is
recursively defined by

Pk,0 = 0, Pk,1 = 1, Pk,n+1 = 2Pk,n + kPk,n−1, n ≥ 1. (1.1)

The Binet-style formulae for this sequences is given by

Pk,n =
(r1)

n − (r2)
n

r1 − r2
, (1.2)

where r1 = 1 +
√
1 + k and r2 = 1 −

√
1 + k are the roots of the characteristic

equation
r2 − 2r − k = 0 (1.3)

associated with the above recurrence relation (1.1). Note that r1 + r2 = 2, r1r2 =
−k and r1 − r2 = 2

√
1 + k. For more details about this sequence see, for example,

[7, 8, 9].
The subject of quaternions sequences has been a focus of great research. Now we

find in the literature so many different types of sequences of quaternions: Fibonacci
quaternions, Lucas quaternions, k-Fibonacci and k-Lucas Generalized quaternions,
Pell quaternions, Pell-Lucas quaternions, Modified Pell quaternions, Jacobsthal
quaternions, etc., and their generalizations. One can see several recent research
papers on this subject from, for example, [1, 3, 4, 5, 6, 16, 17, 22].

It is well-known that a quaternion is defined by

q = q0 + q1i1 + q2i2 + q3i3,

where q0, q1, q2, q3 ∈ R and i1, i2 and i3 are complex operators such that

i21 = i22 = i23 = i1i2i3 = −1,
i1i2 = −i2i1 = i3,

i2i3 = −i3i2 = i1,

i3i1 = −i1i3 = i2.

(1.4)

The conjugate of q is the quaternion

q∗ = q0 − q1i1 − q2i2 − q3i3
and the norm of q is

‖q‖ = √qq∗ =
√
q20 + q21 + q22 + q23 .

The quaternion was formally introduced by Hamilton in 1843 and some back-
ground about this type of hypercomplex numbers can be found for example in
[10].
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In [21], the authors introduced the Pell quaternions as

Rn = Pn + Pn+1i1 + Pn+2i2 + Pn+3i3,

where Rn is the nth Pell quaternion and i1, i2, i3 satisfy the rules (1.4). Following
this idea, now we introduced the k-Pell quaternions as follows:

Definition 1.1. For any positive real number k, the nth k-Pell quaternion is
defined as

Rk,n = Pk,n + Pk,n+1i1 + Pk,n+2i2 + Pk,n+3i3,

where i1, i2, i3 satisfy the rules (1.4).

The classical hyperbolic functions are defined by

coshx =
ex + e−x

2

and

sinhx =
ex − e−x

2
.

Stakhov and Rozin in [19] defined the symmetrical hyperbolic functions and,
in particular, they gave all details of symmetrical hyperbolic Fibonacci and sym-
metrical hyperbolic Lucas functions. Also in [20] the authors have introduced the
hyperbolic Fibonacci functions and the hyperbolic Lucas functions. Several re-
search papers on this subject can be found in the literature, see, for example, the
works [23, 11, 12, 18], among others.

In the light of all these concepts and information stated before, in this paper
we introduce the hyperbolic k-Pell functions and new classes of quaternions asso-
ciated with this type of functions are presented. In addition, the Binet formulas,
generating functions and some properties of these quaternions are studied.

2. The hyperbolic k-Pell functions

In this section we introduce the hyperbolic k-Pell functions and some properties of
these type of functions are studied.

The hyperbolic Pell functions are defined by

sP (x) =
δx − δ−x
δ + δ−1

and

cP (x) =
δx + δ−x

δ + δ−1
,

where δ = 1 +
√
2 is the silver ratio. For more information about this type of

functions, see the works [11, 12].
Now, these equalities can naturally be introduced for the case of k-Pell sequence.

Based on an analogy between Binet’s formula (1.2) and the classical hyperbolic
functions we define the hyperbolic k-Pell functions as follows:
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Definition 2.1. For any positive real number k and any real number x, the hy-
perbolic k-Pell functions are defined as

sPk(x) =
(r1)

x − (r1)
−x

r1 + k(r1)−1
, (2.1)

and

cPk(x) =
(r1)

x + (r1)
−x

r1 + k(r1)−1
, (2.2)

since r1+k(r1)−1 = 2
√
1 + k, for n ≥ 2, where r1 = 1+

√
1 + k is the positive root

of the characteristic equation (1.3) associated with the above recurrence relation
(1.1).

Note that for the particular case of k = 1 we obtain the hyperbolic Pell func-
tions. Next we present the main properties of these functions in a similar way in
which similar properties of the Pell hyperbolic functions are usually presented.

Theorem 2.2 (Pythagorean theorem). Let sPk(x) and cPk(x) be two functions of
hyperbolic k-Pell functions. For x ∈ R and k any positive real number,

(cPk(x))
2 − (sPk(x))

2
=

1

1 + k
.

Proof. From the definition of the hyperbolic k-Pell functions (2.1) and (2.2), we
have

(cPk(x))
2 − (sPk(x))

2
=

(
(r1)

x + (r1)
−x

r1 + k(r1)−1

)2

−
(
(r1)

x − (r1)
−x

r1 + k(r1)−1

)2

=
(r1)

2x
+ 2 (r1)

x
(r1)

−x
+ (r1)

−2x − (r1)
2x

+ 2 (r1)
x
(r1)

−x − (r1)
−2x

(
r1 + k (r1)

−1
)2

=
4

(
r1 + k (r1)

−1
)2 =

4
(
2
√
1 + k

)2

and the result follows.

Theorem 2.3 (Sum and Difference). Let sPk(x) and cPk(x) be the hyperbolic
k-Pell functions. For x, y ∈ R and k any positive real number,

1. cPk(x+ y) =
√
1 + k (cPk(x)cPk(y) + sPk(x)sPk(y)) ;

2. cPk(x− y) =
√
1 + k (cPk(x)cPk(y)− sPk(x)sPk(y)) ;

3. sPk(x+ y) =
√
1 + k (sPk(x)cPk(y) + cPk(x)sPk(y)) ;

4. sPk(x− y) =
√
1 + k (sPk(x)cPk(y)− cPk(x)sPk(y)) .
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Proof. From the definition of the hyperbolic k-Pell functions (2.1) and (2.2), we
have

cPk(x)cPk(y) + sPk(x)sPk(y) =

(
(r1)

x + (r1)
−x

r1 + k(r1)−1

)(
(r1)

y + (r1)
−y

r1 + k(r1)−1

)

+

(
(r1)

x − (r1)
−x

r1 + k(r1)−1

)(
(r1)

y − (r1)
−y

r1 + k(r1)−1

)

=
2 (r1)

x+y
+ 2 (r1)

−x−y
(
r1 + k (r1)

−1
)2

=
2

r1 + k (r1)
−1

(
(r1)

x+y
+ (r1)

−x−y

r1 + k (r1)
−1

)

=
1√
1 + k

cPk(x+ y)

as required. The proofs of the other equalities are similar.

By setting x = y in these sums equations, we have the following corollary.

Corollary 2.4 (Double argument). Let sPk(x) and cPk(x) be the hyperbolic k-Pell
functions. For x ∈ R and k any positive real number,

1. cPk(2x) =
√
1 + k

(
(cPk(x))

2
+ (sPk(x))

2
)
;

2. sPk(2x) =
√
1 + k (2sPk(x)cPk(x)) .

From Pythagorean theorem and the equalities of double argument we have the
following results:

Corollary 2.5 (Half argument). Let sPk(x) and cPk(x) be the hyperbolic k-Pell
functions. For x ∈ R and k any positive real number,

1. (cPk(x))
2
= 1

2
√
1+k

(
cPk(2x) +

1√
1+k

)
;

2. (sPk(x))
2
= 1

2
√
1+k

(
cPk(2x)− 1√

1+k

)
.

Proof. For the proof of the first identity we use the double argument for the hy-
perbolic cosine of k-Pell function and the equation of Pythagorean theorem. Hence
we have:

cPk(2x) =
√
1 + k

(
(cPk(x))

2
+ (sPk(x))

2
)

=
√
1 + k

(
(cPk(x))

2
)
+
√
1 + k

(
(sPk(x))

2
)

=
√
1 + k

(
(cPk(x))

2
)
+
√
1 + k

(
(cPk(x))

2 − 1

1 + k

)
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= 2
√
1 + k (cPk(x))

2 −
√
1 + k

1 + k
,

and the identity required easily follows.
About the second identity we use first the Pythagorean theorem and after we

finish the proof with the use of the previous statement in this Corollary. Hence we
have:

(sPk(x))
2
= (cPk(x))

2 − 1

1 + k

=
1

2
√
1 + k

(
cPk(2x) +

1√
1 + k

)
− 1

1 + k

=
1

2
√
1 + k

cPk(2x) +
1

2(1 + k)
− 1

1 + k
,

and the result follows.

3. The hyperbolic k-Pell quaternions sequences

This section aims to set out the definition of the hyperbolic k-Pell quaternions
sequences and some elementary results involving it.

First of all, we define the hyperbolic k-Pell sine and the hyperbolic k-Pell cosine
quaternions.

Definition 3.1. The hyperbolic k-Pell sine and the hyperbolic k-Pell cosine quater-
nions are defined, respectively, by the relations

sPk(x)q = sPk(x) + sPk(x+ 1)i1 + sPk(x+ 2)i2 + sPk(x+ 3)i3 (3.1)

and

cPk(x)q = cPk(x) + cPk(x+ 1)i1 + cPk(x+ 2)i2 + cPk(x+ 3)i3, (3.2)

where x is any real number and sPk(x), cPk(x) are the hyperbolic k-Pell functions
stated in Definition 2.1.

The next result shows some correlations between these type of quaternions.

Theorem 3.2. For any x ∈ R, we have

1. sPk(x+ 1)q =
(
r1 − (r1)

−1
)
cPk(x)q + sPk(x− 1)q;

2. cPk(x+ 1)q =
(
r1 − (r1)

−1
)
sPk(x)q + cPk(x− 1)q;

3. sPk(x+ 2)q =
(
(r1)

2
+ (r1)

−2
)
sPk(x)q − sPk(x− 2)q;

4. cPk(x+ 2)q =
(
(r1)

2
+ (r1)

−2
)
cPk(x)q − cPk(x− 2)q;
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Proof. For the first formula we use identities (2.1), (2.2), (3.1) and (3.2). Therefore
by the use of the identity (3.1), we have that

sPk(x+ 1)q − sPk(x− 1)q

= (sPk(x+ 1)− sPk(x− 1)) + (sPk(x+ 2)− sPk(x)) i1

+ (sPk(x+ 3)− sPk(x+ 1)) i2 + (sPk(x+ 4)− sPk(x+ 2)) i3.

Now using the identities (2.1) and (2.2),

sPk(x+ 1)q − sPk(x− 1)q

=
(
r1 − (r1)

−1
)
cPk(x) +

(
r1 − (r1)

−1
)
cPk(x+ 1)i1

+
(
r1 − (r1)

−1
)
cPk(x+ 2)i2 +

(
r1 − (r1)

−1
)
cPk(x+ 3)i3.

Finaly the use of the identity (3.2) gives the result required.
The second formula can be proved in a similar way. The third formula is proved

by the use of the identities (2.1) and (3.1) and similarly we can show the last identity
of this theorem using (2.2) and (3.2).

In the next result it is presented the norm of these quaternions.

Theorem 3.3. For any x ∈ R, we have

1. ‖sPk(x)q‖2 =
((r1)2+1)((r1)4+1)((r1+k(r1)

−1)sPk(2x)+(r1)
−2x(1+(r1)

−6))−8
(r1+k(r1)−1)2

;

2. ‖cPk(x)q‖2 =
((r1)2+1)((r1)4+1)((r1+k(r1)

−1)cPk(2x)+(r1)
−2x((r1)−6−1))+8

(r1+k(r1)−1)2
.

Proof. We prove the first formula using the definition of the norm of a quaternion
and the identity (2.1). We have

‖sPk(x)q‖2

= (sPk(x))
2
+ (sPk(x+ 1))

2
+ (sPk(x+ 2))

2
+ (sPk(x+ 3))

2

=
1

(r1 + k(r1)−1)
2

(
(r1)

2x

(
(r1)

8 − 1

(r1)
2 − 1

)
+ (r1)

−2x
(
(r1)

−8 − 1

(r1)
−2 − 1

)
− 8

)

=
1

(r1 + k(r1)−1)
2

((
(r1)

2
+ 1
)(

(r1)
4
+ 1
)(

(r1)
2x

+ (r1)
−6

(r1)
−2x
)
− 8
)

and the result follows.
The proof of the second identity is similar by the use, once more, of the definition

of the norm of a quaternion and identity (2.2).

Now we introduce a new sequences of quaternions, namely the hyperbolic k-Pell
quaternions sequences.
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For any positive real number k and n a non negative integer, the hyperbolic
k-Pell quaternions sequences can be divided into two types of sequences: the hyper-
bolic k-Pell sine quaternions denoted by {sPk(x+n)q}∞n=0 and the hyperbolic k-Pell
cosine quaternions denoted by {cPk(x + n)q}∞n=0. Having regard to the identities
(3.1) and (3.2) we have

sPk(x+ n)q = sPk(x+ n)q +
3∑

s=1

sPk(x+ n+ s)qis (3.3)

and

cPk(x+ n)q = cPk(x+ n)q +

3∑

s=1

cPk(x+ n+ s)qis (3.4)

for the nth term of the hyperbolic k-Pell sine and cosine quaternions sequences
respectively. Such sequences are defined recurrently by

sPk(x+ n+ 4)q =
(
(r1)

2
+ (r1)

−2
)
sPk(x+ n+ 2)q − sPk(x+ n)q (3.5)

with initial conditions given by sPk(x)q and sPk(x+ 1)q, and

cPk(x+ n+ 4)q =
(
(r1)

2
+ (r1)

−2
)
cPk(x+ n+ 2)q − cPk(x+ n)q (3.6)

with initial conditions given by cPk(x)q and cPk(x+ 1)q, respectively.

4. Generating functions and Binet formulas of these
quaternions sequences

Next we shall give the generating functions for the hyperbolic k-Pell quaternions
sequences and also we give the Binet-style formulae for these quaternions sequences.

Next, we shall give the generating function for the hyperbolic k-Pell quater-
nions sequences. We shall write this quaternion sequence as a power series, where
each term of the sequence correspond to coefficients of the series. Let us consider
the sequences {sPk(x + n)q}∞n=0 and {cPk(x + n)q}∞n=0 of hyperbolic k-Pell sine
quaternions and hyperbolic k-Pell cosine quaternions, respectively. We define the
respective generating functions as

gs(x, t) =

∞∑

n=0

sPk(x+ n)qtn (4.1)

and

gc(x, t) =
∞∑

n=0

cPk(x+ n)qtn (4.2)

A new expression of the generating function of these kind of quaternions is given
in the following result.
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Theorem 4.1. The generating functions for the hyperbolic k-Pell quaternions se-
quences are

gs(x, t) =
sPk(x)q + sPk(x+ 1)qt− sPk(x− 2)qt2 − sPk(x− 1)qt3

1−
(
(r1)

2
+ (r1)

−2
)
t2 + t4

(4.3)

and

gc(x, t) =
cPk(x)q + cPk(x+ 1)qt− cPk(x− 2)qt2 − cPk(x− 1)qt3

1−
(
(r1)

2
+ (r1)

−2
)
t2 + t4

(4.4)

Proof. Using (4.1) we have

gs(x, t) = sPk(x)q + sPk(x+ 1)qt+ sPk(x+ 2)qt2 + · · ·+ sPk(x+ n)qtn + · · ·

Multiplying both sides of previous identity by −
(
(r1)

2
+ (r1)

−2
)
t2 and t4, and

consider
(
1−

(
(r1)

2
+ (r1)

−2
)
t2 + t4

)
gs(x, t), we obtain the result required take

into account the third identity of Theorem 3.2.
A similar way can be used for the proof of (4.4) by taking into account the last

identity of Theorem 3.2 when we use
(
1−

(
(r1)

2
+ (r1)

−2
)
t2 + t4

)
gc(x, t).

The following result gives us the Binet-style formula for the hyperbolic k-Pell
quaternions sequences

Theorem 4.2 (The Binet-style formulae). For the hyperbolic k-Pell sine and the
hyperbolic k-Pell cosine quaternions, the binet formulae are given, respectively, by

sPk(x+ n)q =
A (r1)

x+n −B (r1)
−x−n

r1 + k(r1)−1
(4.5)

and

cPk(x+ n)q =
A (r1)

x+n
+B (r1)

−x−n

r1 + k(r1)−1
, (4.6)

where A = 1+ r1i1+(r1)
2
i2+(r1)

3
i3 and B = 1+(r1)

−1
i1+(r1)

−2
i2+(r1)

−3
i3.

Proof. For the first formula we use identity (3.1) and equation (2.1). Therefore

sPk(x+ n)q

= sPk(x+ n) + sPk(x+ n+ 1)i1 + sPk(x+ n+ 2)i2 + sPk(x+ n+ 3)i3

=
1

r1 + k(r1)−1
(r1)

x+n
(
1 + r1i1 + (r1)

2
i2 + (r1)

3
i3

)

− 1

r1 + k(r1)−1
(r1)

−x−n
(
1 + (r1)

−1
i1 + (r1)

−2
i2 + (r1)

−3
i3

)
,

as required.
The second Binet’s formula can be similarly proved with the use of identity

(3.2) and equation (2.2).
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5. More identities involving these sequences

In this section we state some identities related with these type of quaternions
sequences. Such identities can be show by the use of Binet’s formula of each
sequence.

Theorem 5.1 (Catalan’s Identity). For n and r, nonnegative integer numbers,
such that r ≤ n, and for k a positive real number, the Catalan identities

sPk(x+ n+ r)qsPk(x+ n− r)q − (sPk(x+ n)q)
2

for the hyperbolic k-Pell sine quaternions and

cPk(x+ n+ r)qcPk(x+ n− r)q − (cPk(x+ n)q)
2

for the hyperbolic k-Pell cosine quaternions are given by

1

4(1 + k)

(
AB

(
1− (r1)

2r
)
+BA

(
1− (r1)

−2r
))

(5.1)

and
1

4(1 + k)

(
−AB

(
1− (r1)

2r
)
−BA

(
1− (r1)

−2r
))

, (5.2)

respectively, where A and B are the quaternions defined in Theorem 4.2.

Proof. Using the Binet formula of sPk(x+ n)q stated in Theorem 4.2 and the fact
that r1 + k (r1)

−1
= r1 − r2 = 2

√
1 + k, we obtain that

sPk(x+ n+ r)qsPk(x+ n− r)q − (sPk(x+ n)q)
2

=
−AB (r1)

2r −BA (r1)
−2r

+AB +BA
(
r1 + k (r1)

−1
)2

=
AB

(
1− (r1)

2r
)
+BA

(
1− (r1)

−2r
)

(
2
√
1 + k

)2

and the result follows.
With a similar reasoning we prove the other Catalan Identity for the hyperbolic

k-Pell cosine quaternions.

In particular case of r = 1 in Catalan’s Identity, we obtain the Cassini’s Identity
for both quaternions sequences which is presented in the following Corollary.

Corollary 5.2 (Cassini’s Identity). For any natural number n and for k a positive
real number, the Cassini Identities

sPk(x+ n+ 1)qsPk(x+ n− 1)q − (sPk(x+ n)q)
2
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for the hyperbolic k-Pell sine quaternions and

cPk(x+ n+ 1)qcPk(x+ n− 1)q − (cPk(x+ n)q)
2

for the hyperbolic k-Pell cosine quaternions are given by

1

4(1 + k)

(
AB

(
1− (r1)

2
)
+BA

(
1− (r1)

−2
))

and
1

4(1 + k)

(
−AB

(
1− (r1)

2
)
−BA

(
1− (r1)

−2
))

,

respectively, where A and B are the quaternions defined in Theorem 4.2.

Once more the next identity is easily proved by the use of the Binet formula of
each sequence. In fact we have:

Theorem 5.3 (d’Ocagne’s Identity). For n a nonnegative integer number and m
any natural number, if m > n, the d’Ocagne Identities

sPk(x+m)qsPk(x+ n+ 1)q − sPk(x+m+ 1)qsPk(x+ n)

for the hyperbolic k-Pell sine quaternions and

cPk(x+m)qcPk(x+ n+ 1)q − cPk(x+m+ 1)qcPk(x+ n)

for the hyperbolic k-Pell cosine quaternions are given by
(
r1 − (r1)

−1
)(

AB (r1)
m−n −BA (r1)

−(m−n)
)

4(1 + k)

and (
r1 − (r1)

−1
)(
−AB (r1)

m−n
+BA (r1)

−(m−n)
)

4(1 + k)

respectively, where A and B are the quaternions defined in Theorem 4.2.

Finally, note that the all three identities for the hyperbolic k-Pell cosine quater-
nions sequences are symmetrical of the identities of the the hyperbolic k-Pell sine
quaternions sequences.

Conclusions

In this paper, we have introduced the hyperbolic k-Pell functions and new classes
of quaternions associated with this type of functions are presented, namely, the
sequences of hyperbolic k-Pell sine and cosine quaternions defined by a recurrence
relation. Some properties involving these sequences, Binet formulas, generating
functions and some identities were studied. In the future, we intend to continue
the study of these sequences and it is our aim to study the generating matrices and
some combinatorial identities.
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