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Abstract

Radar remote sensing can play a critical role in operational monitoring of natural and 

anthropogenic disasters. Despite its all-weather capabilities, and its high performance in 

mapping, and monitoring of change, the application of radar remote sensing in operational 

monitoring activities has been limited. This has largely been due to: (1) the historically high 

costs associated with obtaining radar data; (2) slow data processing, and delivery procedures; and 

(3) the limited temporal sampling that was provided by spaceborne radar-based satellites. Recent 

advances in the capabilities of spaceborne Synthetic Aperture Radar (SAR) sensors have 

developed an environment that now allows for SAR to make significant contributions to disaster 

monitoring. New SAR processing strategies that can take full advantage of these new sensor 

capabilities are currently being developed.

Hence, with this PhD dissertation, I  aim to: (i) investigate unsupervised change detection 

techniques that can reliably extract signatures from  time series o f  SAR images, and provide the 

necessary flexibility fo r  application to a variety o f  natural, and anthropogenic hazard situations; 

(ii) investigate effective methods to reduce the effects o f  speckle and other noise on change 

detection performance; (iii) automate change detection algorithms using probabilistic Bayesian 

inferencing; and (iv) ensure that the developed technology is applicable to current, and future  

SAR sensors to maximize temporal sampling o f  a hazardous event. This is achieved by 

developing new algorithms that rely on image amplitude information only, the sole image 

parameter that is available fo r  every single SAR acquisition.

The motivation and implementation of the change detection concept are described in detail in 

Chapter 3. In the same chapter, I demonstrated the technique’s performance using synthetic data 

as well as a real-data application to map wildfire progression. I applied Radiometric Terrain
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Correction (RTC) to the data to increase the sampling frequency, while the developed multiscale- 

driven approach reliably identified changes embedded in largely stationary background scenes. 

With this technique, I was able to identify the extent of burn scars with high accuracy.

I further applied the application of the change detection technology to oil spill mapping. The 

analysis highlights that the approach described in Chapter 3 can be applied to this drastically 

different change detection problem with only little modification. While the core of the change 

detection technique remained unchanged, I made modifications to the pre-processing step to 

enable change detection from scenes of continuously varying background. I introduced the 

Lipschitz regularity (LR) transformation as a technique to normalize the typically dynamic ocean 

surface, facilitating high performance oil spill detection independent of environmental conditions 

during image acquisition. For instance, I showed that LR processing reduces the sensitivity of 

change detection performance to variations in surface winds, which is a known limitation in oil 

spill detection from SAR.

Finally, I applied the change detection technique to aufeis flood mapping along the 

Sagavanirktok River. Due to the complex nature of aufeis flooded areas, I substituted the 

resolution-preserving speckle filter used in Chapter 3 with curvelet filters. In addition to validating 

the performance of the change detection results, I also provide evidence of the wealth of 

information that can be extracted about aufeis flooding events once a time series of change 

detection information was extracted from SAR imagery.

A summary of the developed change detection techniques is conducted and suggested future 

work is presented in Chapter 6.
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Chapter 1 Introduction

The focus of this dissertation is to develop an amplitude-based change detection technique 

that is applicable to any incoming Synthetic Aperture Radar (SAR) dataset, while preserving the 

geometric details in an image, and is easily transferable for monitoring, and mapping the extent 

of disasters of different types, including flooding, oil spills, wildfires, and more. For purposes of 

this dissertation, we define disasters as extreme events that occur on the Earth’s surface, and that 

threaten human life or health, cause environmental damage, and/or incur significant economic 

harm. We also consider disasters that result from natural causes or anthropogenic activities.

For the past decade, the impact of disasters on the global environment has increased, causing 

global economic damage (Gelsdorf, 2011). It is therefore necessary to monitor disasters, and 

provide near real-time information about their development, and progression (Lillesand et al., 

2014). In order to manage disasters efficiently, a disaster management flowchart made up of two 

stages is often followed (Figure 1.1) (Bello and Aina, 2014). The first stage consists of disaster 

prevention and preparedness, which takes place before a disaster occurs. Disaster prevention 

involves infrastructure improvement and disaster assessments, while disaster preparedness 

involves community outreach, emergency response plans, as well as training and exercises (Bello 

and Aina, 2014). The second stage consists of disaster response, rehabilitation, and recovery, 

which takes place after a disaster has occurred. Disaster response includes evacuation, property 

preservation, emergency relief, and lifesaving, while disaster rehabilitation and recovery 

involves debris management, health services support, and economic recovery (Bello and Aina, 

2014). The work presented in this dissertation mostly is in support of this second stage of 

disaster management.
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Data acquired from spaceborne sensors have undergone numerous developments (e.g. increase in 

spatial, spectral, radiometric, and temporal resolution) to the extent where they provide key 

observations required to understand, monitor, and gain insight on disasters from the local to the 

global scale. Nowadays, the availability of satellite images covering a crisis situation have 

increased substantially due to high temporal resolution compared to what we used to have years 

ago. Data derived from satellite images have been used over the past decade by decision makers 

during natural disasters for disaster preparedness, and warning (McEntire, 2014). A wide range 

of optical and microwave sensors have proven useful in monitoring a disaster. Both of these 

sensor types are sensitive to different changes in an area of interest as a result of their different 

imaging characteristics (Dekker, 1998).

Passive optical sensors measure the amount of reflected or emitted light energy in the visual, 

near-infrared, and infrared part of the spectrum, and can be used to characterize the Earth surface 

and its change. Popular optical sensors and sensor systems used in disaster management include 

the medium-resolution United States Geological Survey (USGS) Land Remote-Sensing Satellite 

(LandSAT), Systeme Pour l'Observation de la Terre (SPOT), and European Space Agency 

(ESA) Sentinel-2 systems, as well as the high-resolution sensors from Digital Globe, which 

include IKONOS, Quickbird, and Worldview. Optical satellite imagery has successfully been 

used to monitor a range of natural disasters (Ahtonen et al., 2004; Brakenridge and Anderson, 

2006; Lillesand et al., 2014; Van der Sande et al., 2003). Optical sensors are often preferred for 

mapping natural disasters when available, because of their easy interpretability (Martinis, 2010). 

However, they are limited due their sensitivity to cloud cover, and their dependence on solar 

illumination, making them less suitable for use in rapid monitoring (Tello Alonso, 2011).
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SAR data have increasingly been preferred to optical sensor data for monitoring disasters ( 

Lillesand et al., 2014; McEntire, 2014; Tello Alonso, 2011). In 1978, the first civilian SAR, 

Seasat, sensor was launched by the National Aeronautics and Space Administration (Barrick and 

Swift, 1980). Seasat successfully demonstrated the capabilities of SAR for providing weather- 

and solar illumination-independent images of the Earth surface over its three-month operational 

phase and generated extensive interest in SAR as an effective tool for Earth observation (Walter, 

1990). Therefore, several SAR missions were prepared and launched in the subsequent years, 

including the ESA Environmental Remote Sensing (ERS) satellites, ERS-1 and -2, the 

Environmental Satellite (Envisat), and the Canadian-launched and Canadian Space Agency 

(CSA) operated Radar Satellite (RADARSAT). More recently, a range of SAR-based satellites 

with high-resolution capabilities (between 3 m to 18 m spatial resolution, and between 10 to 24 

days’ temporal resolution) were developed, and launched successfully. Examples includes the 

Advanced Land Observation Satellite (ALOS) Phased-Array L-band SAR (PALSAR) by JAXA, 

RADARSAT-2 by CSA, TerraSAR-X by the German Aerospace Center, as well as Sentinel-1A 

and B by ESA.

In contrast to passive optical systems, SAR sensors offer various advantages related to the 

active nature of the sensor, and to the use of microwave frequencies. They are characterized by 

all-weather acquisition capabilities, and can operate regardless of smoke or cloud cover, or solar 

illumination. Moreover, modern SAR sensors provide high spatial resolution data across large 

swaths (e.g. 100 km by 150 km), rivalling the capabilities of passive optical sensors. However, 

the interpretation of SAR images for monitoring applications is often not an easy task. For 

example, SAR images are mostly acquired at oblique angles giving rise to geometric distortions 

that make the interpretation of SAR images less straightforward (Ajadi et al., 2016; Dekker,
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1998). Also, SAR data is subject to speckle noise, giving the images a grainy complexion, and 

making the extraction of information from SAR images more difficult (Lillesand et al., 2014).

In remote sensing applications, SAR images have been very useful for change detection 

studies (Chen et al., 2012; Wulder et al., 2006). Change detection is described as the process of 

classifying differences that occurred in the state of an object between two images acquired over 

the same geographical area but at different acquisition dates (Lu et al., 2004; Singh, 1989).

In the past, researchers have made various contributions to the development of methods that 

identify changes in multi-temporal SAR data. These methods are usually classified into two 

groups: bi-temporal change detection, and image time series change detection, as stated in Cui 

and Datcu (2012). Change detection can be performed in two ways, namely unsupervised 

(Bruzzone and Prieto, 2000), and supervised (Huo et al., 2010). In unsupervised change 

detection, a change map is generated by comparing objects in two images with a similarity 

metric. The change map then undergoes thresholding to classify each pixel into changed, and 

unchanged classes (Bruzzone and Prieto, 2000; Otsu, 1975). In supervised change detection, 

training samples are selected from the available dataset, and are used to train a classifier, which 

is then used to classify an image into changed, and unchanged classes (Huo et al., 2010).

With the increasing availability of multiple SAR sensors, and multi-temporal SAR remote 

sensing datasets, this thesis develops an unsupervised automatic change detection technique that 

is highly flexible in monitoring disasters. The technique uses a pre-processing step to increase 

the sampling frequency, and correct for terrain undulations. A resolution-preserving speckle filter 

was used to preserve the geometric details in the image whilst suppressing the noise. A multi-scale 

framework was used to decompose an image into different resolution levels. The different 

resolution levels allow the algorithm to analyze an image with different signal to noise ratios. To
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automate the classification operations required in the multi-scale change detection approach, a 

probabilistic Bayesian inferencing, with expectation maximization (EM) algorithm, was 

employed. Finally, measurement level fusion was used to fuse the probability maps generated 

from each decomposed image. It is worth stating that, for different change detection situations, 

the core of the change detection technique stays the same but the pre-processing step is modified.

In this dissertation, the motivation, concept, and details of the proposed change detection 

method are extensively described. To demonstrate its flexibility, and performance, the proposed 

technique is applied to three different disaster scenarios that pose different challenges to change 

detection techniques. These analyze hazard applications include fire scar mapping, oil spill 

detection, and flood tracking. It will be shown that the change detection approach can be applied 

to all of these diverse situations with only slight adaptions to the workflow.

Fire scar mapping is important for monitoring the hazards associated with wildfire 

progression, determining ecological impacts of a burn, assessing the effects of fires on natural 

resources, and studying the variability in fire regimes over time (Joyce et al., 2009). The specific 

challenges associated with fire scar mapping from SAR imagery include the development of a 

robust method that can reliably delineate fire scars across a range of diverse landscapes; the 

complex scattering response of SAR; and the high level of speckle noise contained.

Oil spill detection is important in giving an early warning of oil pollution that could lead to 

environmental hazards (Brekke and Solberg, 2005). Detecting oil spills early can help decision 

makers manage the pollution event properly (Krohling and Campanharo, 2011). Identifying oil 

spills reliably using SAR images is challenging due to the inhomogeneous properties of the sea 

surface, making it difficult to discriminate between oil spills, low-wind areas, and look-alikes.
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We have developed a technique to mitigate this issue by applying Lipschitz Regularity (Tello et 

al., 2007) to the data, and adding it to the change detection algorithm.

With the increase in global warming, flood tracking is of great importance (Hirabayashi et 

al., 2013). Locating, and tracking floods helps to assess the risk it poses on infrastructure and 

human life. Flood tracking also helps civil protection officials in effective, and accurate decision 

making in prioritizing aid efforts (Pulvirenti et al., 2011). The challenges associated with flood 

mapping include the development of a method that is easily transferable to different geographical 

conditions, free of prior assumptions, and accomplished automatically without setting manual 

thresholds.

This dissertation is structured as follows: Chapter 2 provides an overview of the basics of 

SAR with a focus on system geometry, and data acquisition principles. System, and object 

properties influencing SAR backscatter are also discussed. A summary of the interactions of 

microwave signals with water surface, and freshwater ice is also given. In Chapter 3 the 

motivation, concepts, and implementation details of the developed change detection concept are 

extensively described along with an application of the developed technique to fire scar mapping 

highlighting its performance, and capabilities for these hazard events. Chapter 4 presents an 

application of the developed data analysis concept to the mapping of oil spills. Adaptions to the 

change detection workflow that were implemented to address challenges associated with the 

dynamic nature of ocean surfaces are described. To evaluate the performance of the developed 

technique extensive cross-comparisons with other state-of-the-art techniques are presented. 

Chapter 5 showcases an application of the change detection concept to the mapping of aufeis 

floods on the North Slope of Alaska. In addition to showing the performance of the method, this 

chapter also shows the amount of information that can be extracted from SAR data to study the
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nature, and progression of this flood event. Chapter 6 gives a concluding evaluation of the 

proposed methods and summarizes a set of suggested future investigations. The manuscripts 

presented in this dissertation was written and revised by Olaniyi Ajadi with contributions from 

all coauthors. All authors have read and approved the final manuscripts.
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Figure 1.1. Disaster management workflow (Bello and Aina, 2014).
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Chapter 2 Characteristic of Radar Imagery

This Chapter is intended to provide the reference material needed for the subsequent 

Chapters and is not written as a complete reference of all fundamentals of radar and SAR remote 

sensing. First, a brief summary of the SAR data acquisition concept is provided. Subsequently, 

geometric distortions typically encountered in SAR images as well as the radiometric properties 

of SAR acquisitions are explained. Finally, factors influencing SAR backscatter and the 

interaction of SAR transmitted signal with different surfaces are shown. It is worth mentioning 

that, for the sake of this dissertation, InSAR and polarimetric properties will not be discussed 

because they are less relevant as reference material for the research presented in this dissertation.

2.1. Properties and Basic Principles of Radar Imaging Systems

2.1.1. Basics of Data Acquisition

Imaging radar systems typically operate in a side-looking geometry, and sense an area of 

interest by transmitting pulses of microwave energy at the rate of the pulse repetition frequency 

(PRF). Radar echoes backscattered from the illuminated area are recorded by the radar receiver 

(Bamler and Schattler, 1993). When a radar sensor moves along its orbital path, the ground area 

it illuminates is called the antenna footprint, S, and the strip being imaged is called the swath 

(Bamler and Schattler, 1993). The look angle, 0$, is the angle from nadir to the sensor line of 

site, while the incidence angle, 0%, is the angle between the line of sight and the normal to the 

local reference surface (Woodhouse, 2005). From Figure 2.1, the sensor’s direction of travel is 

the along track or azimuth direction, and the two-way travel time of the microwave pulses is 

measured in range or the across track direction (Woodhouse, 2005). According to Bamler and
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Schattler (1993), imaging radar systems provide a two-dimensional representation of the Earth’s 

surface and are operated in a number of radar band wavelengths (Table 1).

2.1.2. Range Resolution

A radar system is described by its resolution in range (across-track) and azimuth (along-track) 

direction. In range direction, from the near-range to the far-range edge of the swath, echoes from 

the ground arrive progressively later, and objects at different ranges can be distinguished if their 

range separation is larger than half the transmitted pulse length. Hence, the range resolution is 

defined by

The projection of rsr on the ground is the ground range resolution, (rgr). Hence, rgr varies 

inversely with the sine of the incidence angle, 0%, and increases as the slant range distance 

increases (Raney, 1998):

however, because the short pulse also results in a low signal-to-noise ratio (SNR) at the receiver. 

In other words, the resolution gain made by shortening the pulse duration reduces the amount of 

transmitted signal power, and, hence, degrades the SNR compared to that achievable with longer 

pulse durations. Maximizing resolution is therefore achieved by replacing short bursts at a 

constant frequency with a frequency-coded signal pulse (a so-called chirp), compressed into the 

equivalent short pulse using a matched filtering approach (Woodhouse, 2005). This process is

(2.1)

rgr sin0%
(2.2)

To achieve a higher resolution, the pulse duration must be short enough so that travel times 

of the backscatter signal differ from one another by at least -. This can be hard to achieve,
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known as range compression. In modern radar systems, the range resolution achieved by a 

chirped pulse is therefore inversely related to the bandwidth of the pulse, Wp, such that:

r' r =  2Wp (2 .3)

Following Equation 2.3, high range resolution, and high SNR are usually achieved in 

modern radars because they are transmitting longer linear frequency modulated (chirped) pulses 

of high bandwidth instead of narrow pulses. The implementation of a range compression step is 

therefore standard on imaging radar systems, and it results in the formation of a high-resolution 

image.

2.1.3. Azimuth Resolution

As the radar system transmits a sequence of short microwave pulses, an area on the ground 

is illuminated that is often referred to as the antenna footprint, S. In the along-track (azimuth) 

direction, the size of this footprint is generally defined by the relationship between the 

wavelength, A, of the system, and the side length of the antenna, L (defining the antenna’s

beamwidth through =  > ) along this direction, as well as by the distance of the radar sensor from

the ground, D. As the ground is scanned, the ability to separate two adjacent targets in the along- 

track direction is referred to as the azimuth resolution.

For real aperture radars (RARs), the azimuth resolution depends on the width of the antenna 

footprint in azimuth direction, and is limited by the side length of the antenna in the azimuth 

direction. To achieve high resolution in the along-track direction with RAR systems, a large 

antenna has to be used. As the antenna beam spreads out with increasing distance between the 

object on the ground, and the sensor, the azimuth resolution for RARs is given as (Woodhouse, 

2005):
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DA
Yar,RAR = ^  (2 .4)

In Equation 2.4, the azimuth resolution (rarRAR) degrades linearly as the distance of the 

radar sensor from the ground, D, increases. For example, an antenna with a length of 3.2 km, a 

distance of 310 km to a ground target, and a microwave sensor with a wavelength of 3.1 cm will 

achieve an azimuth resolution of about 3 m.

High resolution can also be attained with short antennas by using the Synthetic Aperture 

Radar (SAR) approach. High azimuth resolution with SAR systems is achieved by coherently 

recording the scattered signal echoes from a small antenna over the distance of the sensor’s flight 

path, then combining them to synthesize the effect of a very long antenna (Woodhouse, 2005). 

The azimuth resolution for a SAR is giving as:

L
ra,SAR = 2  (2 .5)

2.2. Geometric Distortions in SAR Images

In side-looking viewing geometries, sensor-facing slopes appear foreshortened such that a 

symmetric mountain would appear as if  “leaning” towards the sensor. The geometric background 

of foreshortening is shown in the first panel of Figure 2.2a, showing that the slope between 

points A, and B will get foreshortened into the image area A'B'. The amount of foreshortening 

depends both on the system’s look angle, 0$, and on the slope angle, a, and reaches its maximum 

if, 0$ ^  a. In areas where 0$ < a  (e.g., in areas of steep slopes combined with steep incidence 

angles), foreshortening turns into layover (see center panel of Figure 2.2b). In layover situations,

the tops of mountains are imaged ahead of their base (see projections of points B and C in Figure

2.2b), and backscatter from mountain slopes will overlay with image information at closer, and 

further image ranges (see green, red, and gray areas in Figure 2.2b). Both foreshortening, and
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layover can be reduced if the look angle, 0$, is increased, however, larger 0$ will produce more 

image shadow (Figure 2.2c). Hence, topography-related image distortions cannot be entirely 

removed, and image acquisitions from more than one vantage point may be necessary to jointly 

minimize all three imaging effects.

2.3. Speckle effect on SAR Images

In the SAR imaging process, the total backscattered signal from a distributed target is the 

coherent sum of all N  randomly distributed individual scatterers contained within an image 

resolution cell (Woodhouse, 2005). Speckle is found in all coherent imaging systems as a result 

of interference among the coherent echoes of these N  randomly individual scatterers 

(Woodhouse, 2005). Speckle in a SAR image increases with signal intensity. It affects the image 

spatial details, reduces radiometric resolution, and hinders automatic processing (Figure 2.3). To 

reduce the noise-like effect of speckle, speckle filters are often used during processing (Ajadi et 

al., 2016).

2.4. Radar Equation and Radar Cross Section

The goal of every imaging radar system is to enable high-resolution imaging of the surface 

while maintaining sufficient SNR of the recorded data. To illustrate the challenges behind this 

goal, it is worth calculating how much return energy Pr can be expected if a signal of power pt 

and wavelength A is transmitted to the ground at distance R using an antenna of area A.

To calculate the amount of energy that is hitting a target at distance R, we consider a signal 

of power pt that is transmitted through an antenna of size A. The antenna is focusing the 

transmitted power into a narrow range of spatial angles achieving a (unitless) so-called “antenna 

gain” G corresponding to
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4n.A
G = — . (2.b)

The transmitted energy p t . G disperses spherically as it travels down to the ground according 

to TurV such that the power density that hits a ground target corresponds to

p2 = £r¥. (2 7 )

Only a part of the incoming power Pg  is scattered back into the direction of the radar and 

received by the antenna. The fraction of the incoming power that is backscattered toward the 

sensor is defined by the object’s radar cross section a  such that the backscatter power

S
corresponds to Pg . <j. After traveling back to sensor and dispersing along its way (again by 4urV),

the signal is received back by the antenna such that the received power Pr  can be calculated 

using

p g  p t .G GX2  p t .G G2 X2

P r = A 4 n .R 2 ° =  A 4 n 2 .R T ° =  4n 4 n 2 .R T °  = Pt  4 n Y .R T °  ( 2 ' 8

Equation (2.8) is called the radar equation and links the backscattered power received at the 

sensor to the transmit power, the imaging geometry, the radar antenna, and the properties of the 

surface.

The amount of scattering and the value of a  depends on various parameters. The system 

specific parameters encompass the frequency and polarization while the object specific 

properties include roughness and dielectric properties.

2.4.1. System Properties Influencing SAR Backscatter

According to Lillesand et al. (2014), the frequency of the signal determines the penetration 

depth of the object imaged. Penetration depth tends to be longer with longer wavelengths. When 

analyzing surface structures, X- and C-band are preferred because of their high frequency
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characteristics, and the lower capacity for these wavelengths to penetrate into the subsurface. 

However, when analyzing structures below the surface with little to no moisture content, L-band 

is preferred because of the low frequency characteristics of L-band systems, and their associated 

surface penetration capabilities (Lillesand et al., 2014). Regardless of frequency, radar pulses can 

be transmitted, and received in different polarization. Most modern SAR systems can transmit 

radar pulses that oscillate either in a horizontal (H) or a vertical (V) plane (relative to the 

orientation of the antenna). Similarly, backscattered signals can be received in horizontal, and 

vertical polarizations, resulting in signals that are observed in like-polarized (HH, VV), and 

cross-polarized (HV, VH) combinations. As different polarizations interact differently with 

structures on the Earth surface, the mode of polarization also gives an insight about an object.

For example, using like-polarization, the signal can be weakened when depolarization occurs. 

However, this is the opposite when cross-polarization is used.

Finally, the radar’s incidence angle is another important factor affecting the backscatter 

characteristics of a SAR. The incidence angle affects how the roughness of an object appears in 

an image and controls the geometric properties of SAR data. A very rough surface, that scatters 

signal in all directions, will have little dependence on incidence angle, while the backscatter of a 

moderately rough surface will decrease with increasing incidence angle. A smooth surface on the 

other hand can have a backscatter brighter than a rough surface at small incidence angles.

2.4.2. Object Properties Influencing SAR Backscatter

For a given wavelength, the amount of backscatter received at the sensor depends, in large 

part, on the surface roughness, and the dielectric properties of the object.

Surface roughness: Surface roughness is an important factor influencing backscatter signal. 

In Ulaby et al. (1982), surface roughness decided the angular distribution of surface scattering.
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When a surface is smooth (Figure 2.4a), energy is scattered away from the monostatic sensor 

(specular reflection) and the smooth surface boundary is known as a specular reflector (Lillesand 

et al., 2014). In addition, the incidence angle, 0%, is the same as the reflection angle, 0r . The 

specular reflection causes smooth surfaces to appear dark in a SAR image (low signal return). 

When the roughness of a surface starts to increase, the coherent component decreases and the 

fraction of diffuse scattering increases (Ulaby et al., 1982). This increase in roughness scatters 

the incidence energy in all directions and a certain amount is transmitted back to the sensor 

(Figure 2.4b). Moreover, when the surface appears to be very rough, the incidence energy is 

scattered equally in all directions (Figure 2.4c).

It is worth noting that the roughness of a surface appearing in an image does not only 

depend on the geometric properties but also on the local incidence angle and the wavelength of 

the transmitted signal. According to Woodhouse, (2005), the relationship between these 

parameters is given by Rayleigh criterion, which states that a surface is rough when the 

following condition holds:

°rms > o COS a (2.9)o COS o$oca$

Also, a more conservative condition for roughness is expressed by the Fraunhofer criterion

as:

°rms > 32 COc a (2 .W)32 COS o$oca$

where, 6$oca$, is the local incidence angle, and, arms, is the root mean square of the surface

variations. A surface will appear smooth when A increases and a surface will appear rough when

the phase difference (AO) of two reflected waves is greater than -  radians, and -  radians for2 8

Rayleigh criterion, and Fraunhofer criterion, respectively.
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Dielectric properties: Dielectric properties control whether microwave signals will scatter 

at the surface or whether (parts of) the signal will penetrate into the medium. They also 

determine how much of the penetrating energy is transmitted into deeper layers and how much is 

being absorbed (Raney, 1998). Hence, the dielectric properties govern large parts of the 

microwave interactions with objects and determine how much backscattered signal can be 

expected at the sensor. According to Raney, (1998), the relative dielectric constant, s, which 

describes a material response to the electric field of an electromagnetic signal, consists of a real, 

s', and an imaginary, s " , part. Both, s ' , and, s " , depend on the signal wavelength, and the 

moisture content of the target. The permittivity of the material is largely defined by the real part 

of the dielectric constant, s', while the imaginary part, s'', determines losses of signal power 

through absorption (Ulaby et al., 1982). For example, an object such as metal has a high 

dielectric constant. A vacuum has a dielectric constant of 1.0, while most natural materials have 

real dielectric constant between 2 and 10, and imaginary dielectric constant between 0.01 and 0.1 

(Ulaby et al., 1982).

2.4.3. Interaction between Microwave Signals and Water Surfaces

In this section, the interaction of SAR signals with waterbodies such as ocean surfaces or 

rivers is explained. Understanding the interactions of SAR with water surfaces is important to 

prepare the reader for the research performed in Chapter 4 of this dissertation, where the 

interaction is mostly governed by surface roughness. Due to the ocean’s high dielectric constant, 

there is little to no penetration into the water, but there is scattering at the water surface. When 

the ocean surface appears smooth (at the radar’s microwave wavelength), then specular 

reflection is dominant, and low signal power is returned back to the sensor. Hence, smooth water 

bodies generally appear dark in SAR images. The radar backscatter of the water surface
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increases as a consequence of friction between the air and the ocean surface. Wind causes 

friction to set up an oscillation on the ocean surface, leading to small surface perturbations 

(ripples) ranging from mm to cm (capillary waves) as well as longer waves with spatial scales 

between m, and km (gravity waves) on the ocean surface (Lewis et al., 1998). As a result of this, 

the ocean surface is usually modelled as a combination of these successive waveforms and the 

range of these waveforms is known as wave spectrum. These successive waveforms also act as a 

Bragg surface which is responsible for the backscatter energy detected by SAR. The radar 

backscatter is primarily determined by the Bragg scattering. The Bragg scattering is a coherent 

scattering mechanism, which scatters the waves in a number of different direction and not just 

the specular direction (Woodhouse, 2005). The relationship between the wave spectrum and 

wind is not simple, but as the wind speed increases, the roughness of the ocean surface increases 

as well and higher backscatter signal is achieved (Lillesand et al., 2014; Tello et al., 2007; 

Woodhouse, 2005).

2.4.4. Interactions between Microwave Signals and Freshwater Ice

Understanding the interaction of transmitted SAR signals and ice is important to help the 

reader grasp the research performed and discussions on the results generated in Chapter 5 of this 

dissertation. As stated earlier, water in its liquid state has a high dielectric constant, and, hence, 

does not allow microwave signals to penetrate. However, when water is in solid state (ice), the 

dielectric constant reduces (s' = 3), and penetration depth increases. For example, for pure ice, 

a C-band can have a penetration of about 10 m ( Meissner and Wentz, 2004; Onstott, 1992; 

Woodhouse, 2005).

The formation of ice is important, as scattering can occur from the upper surface of an ice 

layer, from within the ice layer, or from the boundary between the ice layer, and the underlying
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surface (Woodhouse, 2005). This process can be best described from examining shallow river 

aufeis in the North Slope of Alaska that is gradually freezing over (See Figure 5.12). Ideally, 

when water in its liquid state starts to cool, it becomes thick, and it sinks to the bottom ( Jeffries 

et al.,1994; Woodhouse, 2005). However, in Northern Alaska, where the atmospheric 

temperature is cold, water at above freezing temperatures is less dense, and the ice on the surface 

tends to have two smooth boundaries. The first boundary is formed at the bottom of the ice cover 

with the liquid water surface and the second boundary is at the top of the ice cover with 

surrounding air (Jeffries et al.,1994). The boundary between the ice and the liquid water will 

result in specular reflection because it appears as smooth. As the liquid water continues to freeze 

over, progressing all the way to the bottom of the lake, the boundary changes from a smooth 

surface to a rough surface due to the interaction between ice and soil. As a result of the ice 

growth progress, radar backscatter varies.
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Figure 2.1. Observation geometry of a side-looking airborne radar (SLAR) imager generation of 

an image is facilitated by the forward motion of the airborne platform. Courtesy: FJ Meyer, 

UAF.
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Figure 2.2. Geometric effects of SAR images with their dependence on acquisition geometry. A) 

Foreshortening; B) Layover; and C) shadow effects. Courtesy: FJ Meyer, UAF.
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Figure 2.3. Example of Speckle noise in a SAR image

28



Figure 2.4. Surface roughness and incidence angle define the scattered field. Radar reflection of 

a) smooth, b) moderately roughened and c) strongly roughened surfaces (Woodhouse, 2005).
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Table 2.1. Wavelength bands of imaging radar systems.

Band P UHF L S C X Ku Ka Q
Wavelength 0.75 - 

100 m
70.6 - 
49.18 cm

24 -
21.74 cm

11.1 - 
7.69 cm

5.6 - 
5.43 cm

3.2 - 
3.19 cm

1.8
cm

1.5
cm

0.75
cm
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Chapter 3 Change Detection in Synthetic Aperture Radar Images Using a Multiscale-

Driven Approach 1

3.1. Abstract

Despite the significant progress that was achieved throughout the recent years, to this day, 

automatic change detection and classification from synthetic aperture radar (SAR) images 

remains a difficult task. This is, in large part, due to (a) the high level of speckle noise that is 

inherent to SAR data; (b) the complex scattering response of SAR even for rather homogeneous 

targets; (c) the low temporal sampling that is often achieved with SAR systems, since sequential 

images do not always have the same radar geometry (incident angle, orbit path, etc.); and (d) 

the typically limited performance of SAR in delineating the exact boundary of changed regions. 

With this paper, we present a promising change detection method that utilizes SAR images and 

provides solutions for these previously mentioned difficulties. We will show that the presented 

approach enables automatic and high-performance change detection across a wide range of 

spatial scales (resolution levels). The developed method follows a three-step approach of (i) 

initial pre-processing; (ii) data enhancement/filtering; and (iii) wavelet-based, multi-scale change 

detection. The stand-alone property of our approach is the high flexibility in applying the change 

detection approach to a wide range of change detection problems. The performance of the 

developed approach is demonstrated using synthetic data as well as a real-data application to 

wildfire progression near Fairbanks, Alaska.

1 Ajadi, O.A.; Meyer, F.J.; Webley, P.W. Change detection in synthetic aperture radar images 

using a multiscale-driven approach. Remote Sensing 2016, 8, 482.
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3.2. Introduction and Background

Multi-temporal images acquired by optical (Bruzzone and Prieto, 2000) or radar remote 

sensing sensors (Tello Alonso et al., 2011) are routinely applied to the detection of changes on 

the Earth’s surface. As both of these two sensor types have their own imaging and sensitivity 

characteristics, their performance in change detection varies with the properties of the changing 

surface features (Dekker, 1998). In recent years, synthetic aperture radar (SAR) data have gained 

increasing importance in change detection applications, because SAR is an active sensor, 

operating without regard to weather, smoke, cloud cover, or daylight (Meyer et al., 2014). So 

SAR has shown to be a valuable data source for the detection of changes related to river ice 

breakup (Floyd et al., 2014), earthquake damage (Yun et al., 2012), oil spill detection (Tello et 

al., 2007), flood (D'Addabbo et al., 2016), and forest growth assessment (Siegert and Hoffmann, 

2000).

In this paper, we are interested in developing an unsupervised change detection method from 

series of SAR images. Despite extensive research that was dedicated to this topic throughout the 

last decade (Tello et al., 2007), automation and robust change detection from a series of SAR 

images remains difficult for the following reasons: (A) Due to the complicated nature of the 

surface backscatter response in SAR data, most SAR-based change detection methods require 

repeated acquisitions from near-identical vantage points. These repeated acquisitions provide a 

static background against which surface change can be identified with reasonable performance 

(Loew and Mauser, 2007). This requirement severely limits the temporal sampling that can be 

achieved with modern SAR sensors with revisit times in the order of tens of days, and strongly 

limits the relevance of the method for many dynamic phenomena; (B) The multiplicative speckle 

statistic associated with SAR images limits the change detection performance because it renders
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the identification of a suitable detection threshold difficult and it adds noise to the detection 

result; (C) The lack of automatic and adaptive techniques for the definition of change detection 

thresholds has hindered the development of a fully automatic change detection approach. Finally; 

(D) the lack of accuracy in delineating the boundary of changed regions has limited the 

performance of SAR data for applications that require high location accuracy of change 

information.

Most of the recently proposed SAR-based change detection techniques utilize the concept of 

ratio or difference images for suppressing background information and enhancing change 

information. Published methods differ in their approach to extracting a final binary change 

detection map from the image ratio or difference data. In Bruzzone and Prieto, (2000), two 

automatic unsupervised approaches based on Bayesian inferencing were proposed for the 

analysis of the difference image data. The first approach aims to select an adaptive decision 

threshold to minimize the overall change detection error, using the assumption that the pixels of 

the change map are spatially independent and that the gray value probability density function 

(PDF) of the difference image map is composed of two Gaussian distributions representing a 

change and a no-change class. This approach was further extended in Bazi et al. (2007) and Celik 

(2010) by adding an expectation-maximization (EM) algorithm to estimate the statistical parameters 

of the two Gaussian components. The second approach in Bruzzone and Prieto, (2000), which 

utilizes a Markov random field (MRF) model, is taking into account contextual information when 

analyzing the change map.

In Kasetkasem and Varshney, (2002), an MRF is used to model noiseless images for an 

optimal change image using the maximum a posteriori probability computation and the 

simulated annealing (SA) algorithm. The SA algorithm generates a random sequence of change
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images, such that a new configuration is established, which depends only on the previous change 

image and observed images by using the Gibbs sampling procedure (Kasetkasem and Varshney, 

2002).

A computationally efficient approach for unsupervised change detection is proposed in Celik 

(2009b). The approach initially starts by generating an h x h non-overlapping image block from 

the difference image. Eigenvector space is created using Principal Component Analysis (PCA) 

on the h x h non-overlapping image blocks. In addition, a feature vector space over the entire 

difference image is created by projecting overlapping h x h data blocks around each pixel onto 

eigenvector space. Furthermore, a k-means algorithm is employed to cluster the feature vector 

space into two clusters and assigns each pixel in the final change detection map to the cluster that 

minimizes the Euclidean distance between the pixel’s feature vector and the mean feature vector 

of clusters (Celik, 2009b).

Several recent publications have utilized wavelet techniques for change detection from SAR. 

Analyzing an image in the wavelet domain helps to reduce the problems caused by the speckle 

noise. Wavelet domain analysis has been applied to unsupervised change detection for SAR 

images (Bovolo and Bruzzone, 2005; Celik, 2009a; Celik and Ma, 2010, 2011). In Bovolo and 

Bruzzone, (2005), a two-dimensional discrete stationary wavelet transform (2D-SWT) was 

applied to decompose SAR ratio images into different scale-dependent images, each of which is 

characterized by a tradeoff between speckle noise suppression and preservation of image details. 

The undecimated discrete wavelet transform (UDWT) was proposed by Celik, (2009a) to 

decompose the difference image. For each pixel in the difference image, a feature vector is 

extracted by locally sampling the data from the multiresolution representation of the difference 

image (Celik, 2009a). The final change detection map is obtained using a binary k-means
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algorithm to cluster the multi-scale feature vectors, while obtaining two disjoint classes: change 

and no-change. Individual decompositions of each input image using the dual-tree complex 

wavelet transform (DT-CWT) are used in Celik and Ma, (2010). Each input image is 

decomposed into a single low-pass band and six directionally-oriented high-pass bands at each 

level of decomposition. The DT-CWT coefficient difference resulting from the comparison of 

the six high-pass bands of each input image determines classification of either change or no­

change classes, creating a binary change detection map for each band. These detection maps are 

then merged into a final change detection map using inter-scale and intra-scale fusion. The 

number of decomposition scales (levels) for this method must be determined in advance. This 

method boasts high performance and robust results, but has a high computational cost. In Celik 

and Ma, (2011), a region-based active contour model with UDWT was applied to a SAR 

difference image for segmenting the difference image into change and no-change classes. More 

recently, Schmitt et al. (2010) used a curvelet-based change detection algorithm to automatically 

extract changes from SAR difference images.

Even though these papers have provided a solution to a subset of the limitations highlighted 

above, not all the limitations are solved in a single paper. The work done by Bazi et al. (2007); 

Bruzzone and Prieto, (2000); and Celik, (2010) does not provide an effective way to select the 

number of scales needed for the EM algorithm in order to avoid over- or under-estimation of the 

classification. Also, the noise filtering methods employed do not preserve the detailed outline of 

a change feature. The disadvantages of the method in Kasetkasem and Varshney, (2002) are its 

high computational complexity and reduced performance in the presence of speckle noise. 

Although the method in Celik, (2009b) achieves a good result with low computational cost, the 

performance of the employed PCA algorithm decreases when the data is highly nonlinear. While
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Bovolo and Bruzzone, (2005); Celik, (2009a); Celik and Ma, (2010), (2011); and Schmitt et al. 

(2010) provided promising results in a heterogeneous image, the various methods have several 

disadvantages. They do not consider image acquisitions from multiple geometry, are not fully 

preserving the outline of the changed regions, and require manual selection of detection 

thresholds.

To improve upon previous work, we developed a change detection approach that is 

automatic, more robust in detecting surface change across a range of spatial scales, and 

efficiently preserves the boundaries of change regions. In response to the previously identified 

limitation (A), we utilize modern methods for radiometric terrain correction (RTC) (Gens and 

Logan, 2003; Loew and Mauser, 2007; Small, 2011) to mitigate radiometric differences between 

SAR images acquired from different geometries (e.g., from neighboring tracks). We show in this 

paper that the application of RTC technology allows combining multi-geometry SAR data into 

joint change detection procedures with little reduction in performance. Thus, we show that the 

addition of RTC results in improved temporal sampling with change detection information and in 

an increased relevance of SAR for monitoring dynamic phenomena.

To reduce the effects of speckle on image classification (limitation (B)), we integrate several 

recent image processing developments in our approach: We use modern non-local filtering methods 

(Darbon et al., 2008) to effectively suppress noise while preserving most relevant image details. 

Similarly, we perform a multi-scale decomposition of the input images to generate image instances 

with varying resolutions and signal-to-noise ratios. We use a 2D-SWT in our approach to conduct 

this decomposition.

To fully automate the classification operations required in the multi-scale change detection 

approach (limitation (C)), we model the probability density function of the change map at each
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resolution level as a sum of two or more Gaussian distributions (similar to Bazi et al., 2007).

We developed an automatic method to identify the number of Gaussian processes that make up 

our data and then use probabilistic Bayesian inferencing with EM algorithm and mathematical 

morphology to optimally separate these processes.

Finally, to accurately delineate the boundary of the changed region (limitation (D)), we 

utilize measurement level fusion techniques. These techniques used the posterior probability of 

each class at each multi-scale image to compose a final change detection map. Here we tested 

five different techniques including (i) product rule fusion; (ii) sum rule fusion; (iii) max rule 

fusion; (iv) min rule fusion; and (v) majority voting rule fusion.

These individual methods are combined in a multi-step change detection approach 

consisting of a pre-processing step, a data enhancement and filtering step, and the application of 

the multi-scale change detection algorithm. The details of the proposed approach are described in 

Section 3.3. A performance assessment using a synthetic dataset and an application to wildfire 

mapping is shown in Sections 3.4 and 3.5, respectively. A summary of the presented work is 

shown in Section 3.6.

3.3. Change Detection Methodology

The work presented here is motivated by the challenges associated with change detection 

and the desire to develop an improved algorithm for unsupervised change detection in SAR 

images that can provide change information at high temporal sampling rates. We aim at using 

information at different resolution levels to obtain high accuracy change detection maps in both 

heterogeneous and homogeneous regions, contributing to a change detection method that is 

applicable to a wide range of change situations. To achieve this goal, a multi-step processing 

workflow was developed that is presented in Figure 3.1. The overall contribution of our
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methodology has two components. First, we developed a set of new techniques that are utilized 

within our change detection workflow to streamline processing and improve detection 

performance. As part of these techniques we (1) developed an efficient way to improve 

classification performance by combining EM algorithms with mathematical morphology—this is 

a novel contribution to this field of research; (2) we integrated a low computational complexity 

way to achieve high accuracy in preserving the boundary of changed regions using measurement 

level fusion techniques; and (3) we combine modern non-local filtering and 2D-SWT to provide 

robustness against noise. The second contribution comes from a novel way of combining our 

own technology with other published processing procedures to arrive at a new, efficient and 

highly flexible change detection workflow that can be applied to a wide range of change 

detection problems.

It is worth mentioning that the automatic process of our approach requires some parameters 

to be set beforehand. The parameters that need to be set include (i) the neighborhood size of the 

filtering step; (ii) the number of multi-scale decomposition levels; (iii) the structuring element of 

the morphological filter; and, finally, (iv) the maximum number of allowed change classes. 

Please note that while we identified optimal settings for these parameters, we found that the 

performance of our algorithm does not critically depend on the exact choice for these variables. 

This is true for the following reasons: (i) as non-local means filtering is conducted very early in 

the workflow, the impact of changes in the neighborhood size is mitigated by subsequent 

processing steps such as multi-scale decomposition and the application of mathematical 

morphology. Hence, we found that varying the neighborhood size from its optimal value 

changed system performance only slowly; (ii) in empirical tests it was found that using six 

decomposition levels was a good compromise between processing speed and classification
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accuracy. Adding additional levels (beyond six) did not result in significant performance 

improvement but added computational cost. Reducing the number of layers leads to a slow 

decrease of change detection performance, yet this reduction of performance does not become 

significant unless the number of bands drops below four; (iii) from an analysis of a broad range 

of data from different change detection projects we found (1) that a 20 x 20 pixel-sized 

structuring element of the morphological filter led to the most consistent results; and (2) that 

change detection performance changed slowly with deviation from the 20 pixel setting. Hence, 

while 20 pixels was found to be optimal, the exact choice of the window size is not critical for 

change detection success; finally, (iv) the maximum number of allowable change classes is a 

very uncritical variable as it merely sets an upper bound for a subsequent algorithm that 

automatically determines the number of distinguishable classes in a data set (see Section 3.3.3.3). 

By presetting this variable to 20 classes we ensure that almost all real life change detection 

scenarios are captured. There is no need to change this variable unless unusually complex change 

detection situations with more than 20 radiometrically distinguishable change features are 

expected

3.3.1. SAR Data Pre-Processing

The ultimate goal of the pre-processing step is to perform image normalization, i.e., to 

suppress all image signals other than surface change that may introduce radiometric differences 

between the acquisitions used in the change detection analysis. Such signals are largely related to 

(i) seasonal growth or (ii) topographic effects such as terrain undulation that arise if  images were 

not acquired from near-identical vantage points. In order to enable a joint change detection 

analysis of SAR amplitude images acquired from different observation geometries, we attempt to
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mitigate relative geometric and radiometric distortions. In a calibrated SAR image, the radar 

cross-section (RCS) of a pixel can be modeled as (Meyer et al., 2014):

o  = o \ e i' ) * A a{ei') (3 .1)

where Aa is the (incidence angle-dependent) surface area covered by a pixel, d% is the local 

incidence angle, and o°  is the normalized RCS. According to (1), images acquired from different 

geometries will differ due to the look angle dependence of both a 0 and A a .

In areas that are dominated by rough surface scattering and for moderate differences A9i of 

observation geometries, we can often assume that A a 0(A9j) «  AA1(A9i) (Meyer et al., 2014). 

Under these conditions, the geometric dependence of a  can largely be removed by correcting for 

AA1 (A9i) . This correction is called radiometric terrain correction (Small, 2011), which is 

completed by the following steps:

• In the first step, geometric image distortions related to the non-nadir image geometry are 

removed by applying a “geometric terrain correction” step (Loew and Mauser, 2007) using a 

digital elevation model (DEM).

• Secondly, to remove radiometric differences between images, we use radiometric terrain 

normalization (Loew and Mauser, 2007). This normalization also utilizes a DEM to 

estimate, pixel by pixel, and compensate A ^ 9 j ^ , for the radiometric distortions.

In areas dominated by rough surface scattering, the application of RTC allows for combining 

SAR data acquired from moderately different incidence angles into joint change detection 

procedures with little reduction in performance. Hence, it can lead to significant improvements 

in the temporal sampling with change detection data.
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An example of the effect of geometric and radiometric terrain correction is shown in Figure

3.2. Figure 3.2a shows an original ALOS PALSAR image over the Tanana Flats region in Alaska 

while the image after geometric and radiometric terrain correction is presented in Figure 3.2b. 

The normalized data is now largely free of geometric influences, reducing differences between 

images acquired from different geometries and enhancing the performance of change detection 

from multi-geometry data.

It is worth mentioning that the RTC utilized in our approach is most effective when dealing 

with natural environments that are dominated by rough surface scattering. For these target types, 

the surface scattering properties change slowly with incidence angle and differences in measured 

radar brightness are dominated by geometric effects. However, RTC will be less useful for areas 

dominated by targets with very oriented scattering characteristics (e.g., urban environments). For 

these regions, RTC correction may not lead to significant reduction of radiometric differences 

between images from different incidence angles. Furthermore, limitations exist for regions with 

complex small-scale topography, if  this topography is not sufficiently captured in the available 

DEM.

3.3.2. Data Enhancement

3.3.2.1. Logarithmic Scaling and Ratio Image Formation

To suppress image background structure and improve the detectability of potential surface 

changes from SAR data, a ratio image is formed between a newly acquired image X, and a 

reference image XR. Using ratio images in change detection was first suggested by Dekker,

(1998) and has since been the basis of many change detection methods (Bazi et al., 2005; Celik, 

2010; Coppin et al., 2004). The reference image XR and image X, are selected such that the
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effects of seasonal variations as well as spurious changes of surface reflectivity on the change 

detection product are minimized. Before ratio image formation, all data are geometrically and 

radiometrically calibrated following the approach in Section 3.3.1. The resulting ratio image can 

then be modeled as (Dekker, 1998):

Oir = xTir (3.2)

where Oir is the observed intensity ratio, x  is a multiplicative speckle contribution, and Tir is the 

underlying true intensity ratio. The observed intensity ratio image has the disadvantage that the 

multiplicative noise is difficult to remove. Therefore, a logarithmic scaling is applied to Oir, resulting 

in:

X'LR = 10 log(x ) + 10log(Tir) (3.3)

The application of logarithmic scaling and ratio image formation helps to transform our data

into a near normal distribution which closely resembles a Gaussian distribution. To suppress the

now-additive noise in the log-scaled ratio image (X 'LR), we applied a fast non-local means 

filtering procedure.

3.3.2.2. Fast Non-Local Means Filtering Approach

As we are interested in developing a flexible change detection method that can be applied to 

a wide range of change situations, we are interested in preserving the original image resolution 

when filtering the data. Non-local means filters are ideal for this task as they identify similar 

image patches in a dataset and use those patches to optimally suppress noise without sacrificing 

image resolution. The non-local means concept was first published in Buades et al. (2005). The 

algorithm uses redundant information to reduce noise, and restores the original noise-free image 

by performing a weighted average of pixel values, considering the spatial and intensity
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similarities between pixels (Darbon et al., 2008). Given the log-ratio image X'LR (see Section 

3.3.2), we interpret its noisy content over a discrete regular grid, Q.

X'lr = {X'lr ( x , y K x , y ) e n }  (3.4)

The restored image content XLR(x i, y i') at pixel (x i,yi )  is then computed as a weighted 

average of all of the pixels in the image, according to:

XLR(Xi,Xj)= ^  w {i, ^ X ' lr {xj ,yj )  (3 5)
(xjy^ea

The weight w (i , j )  measures the similarities between two pixels (x i, y i) and (<Xj,yj') and is 

given by:

1 s(i,j)
H i J )  = (3.6)

where h controls the amount of filtering, D(i) is the normalization constant, and s ( i , j )  is the 

weighted Euclidean distance (gray-value distance) of two neighborhood pixels (P% and Pj)  that 

are of equal size. According to Buades et al. (2005), the similarity between two neighborhood 

pixels (Pĵ  and Pj)  is based on the similarity of their intensity gray level. Neighborhoods having 

similar gray-level pixels will have larger weights in the average. To compute the similarity of the 

intensity gray level, we estimated s ( i , j )  as follows:

< i , D =  \\Pi-PjWl  (37)

The standard deviation of the Gaussian kernel is denoted as a. To ensure that the averaging 

in Equations (3.5) -  (3.7) is more robust, we set the neighborhood size for weight computation to

5 x 5 pixels and the size of the searching region to 13 x 13 pixels. We referred to Q as the
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searching window. The optimal neighborhood sizes were determined in empirical tests. These 

tests also showed that the choice of neighborhood size does not critically affect the filtering 

performance. We implemented the modern non-local filtering methods to effectively suppress 

the noise while preserving most relevant details in the image.

3.3.3. Change Detection Approach

The workflow of our change detection approach is shown in the lower frame of the sketch in 

Figure 3.1 and includes three key elements. In an initial step, a multi-scale decomposition of the 

input ratio images is conducted using a 2D-SWT and resulting in K image instances. Secondly, a 

multi-scale classification is performed at each of the K levels, resulting in K classification results 

per pixel. In our approach, the classifications are performed automatically and adaptively using 

an EM algorithm with mathematical morphology. Finally, in a third step, we conduct a 

measurement level fusion of the classification results to enhance the performance of our change 

detection.

3.3.3.1. Multi-Scale Decomposition

As previously mentioned, often our ability to detect change in SAR images is limited by 

substantial noise in full resolution SAR data. Here, we utilize multi-scale decomposition of our 

input images to generate image instances with varying resolutions and signal-to-noise ratios, and 

also to further reduce residual noise that remains after an initial non-local means filtering 

algorithm (Section 3.3.2) was applied.

Multi-scale decomposition is an elegant way to optimize noise reduction while preserving 

the desired geometric detail (Tello Alonso et al., 2011). In our approach, 2D-SWTs are used to 

decompose the log-ratio images (Wang et al., 2003). Figure 3.3 shows that in our implementation
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of the wavelet decomposition we apply a set of high-pass and low-pass filters first to the rows 

and then to the columns of an input image at resolution level k — 1, resulting in four 

decomposition images at resolution level k. The four decomposition images include (1) a lower 

resolution image X?R and (2) three high-frequency detail images (A??, XRR, and XRR,1), where the 

superscripts LL, LH, HL, HH indicate in which order low-pass (L) and high-pass (H) filters were 

applied.

We chose the discrete stationary wavelet transform (SWT)  over the discrete wavelet 

transform (DWT), as the S W T  is computationally more efficient, shift invariant, and un­

decimated (SWT  adjusts the filters (up-sampling) at each level by padding them with zero in 

order to preserve the image size). To gain a greater flexibility in the construction of wavelet 

bases, we select a wavelet decomposition filter from the biorthogonal wavelet family. The 

biorthogonal wavelet was selected because of its symmetric capabilities, which is often desirable 

since it exhibits the property of linear phase, which is needed for image reconstruction. Another 

reason for using the biorthogonal wavelet was that, rather than having one wavelet and one 

scaling function, biorthogonal wavelets have two different wavelet functions and two scaling 

functions that may produce different multiresolution analyses. In addition, the biorthogonal 

wavelet has good compact support, smoothness and good localization. We choose the fifth-order 

filter, which has a filter length of 12. The fifth-order filter was selected to avoid distortions along 

the image boundary. Using SWT,  the log-ratio image XLR is recursively decomposed into six 

resolution levels. Empirical analysis suggested six to be the optimum level for multi-scale 

decomposition.

To reduce computation time, we focused only on the lower resolution images X?? per 

decomposition level. Discarding the detail images is allowed as the information contents at a
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certain resolution level are recovered at a higher level. Hence, the exclusion of the detail images 

does not affect the change detection approach. The final multi-scale decomposition XMS image 

stack then contains the lower resolution images at each level, as below:

3.3.3.2. Classification by Expectation-Maximization (EM) Algorithm with Mathematical

After the multi-scale decomposition, each decomposed image is inserted into a mathematical 

morphology framework. Mathematical morphology defines a family of morphological filters, 

which are nonlinear operators that aim at emphasizing spatial structures in a gray-level image. 

For more details on mathematical morphology the reader is referred to (Soille, 2013). 

Morphological filters are defined by a structuring element (5), which is based on a moving 

window of a given size and shape centered on a pixel XLR( i , j ) . In image processing, erosion 

<s(XLR(i, j )}  and dilation d(X LR(i, j)}  are the basic operators used, and are defined as follows

(3.8)

Morphology

(Soille, 2013):

®(Xlr& D )  = min{XLR(i,j) , x j  V xs e S ( i , j ) (3.9)

^ (XLRtiJ ) )  = max{XLR(.i,j),xs] V x s e  S ( i , j ) (3.10)

The two morphological filters used are opening (®[XLR(i, j)})  and closing (<c(XLR(iJ )} ) ,

and they are the concatenation of erosion and dilation. They are defined as follows:

(3.11)
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c(XLR(i, j)) = ® (<&(XLR(i,j))) (3.12)

The effect of opening on a gray-level image tends to suppress regions that are brighter than 

the surroundings while closing suppresses regions that are darker than the surroundings. In order 

to preserve the spatial structures of our original image, opening by reconstruction followed with 

closing by reconstruction was applied. The sequence of first doing opening by reconstruction 

followed by closing by reconstruction is particularly designed to reduce noise in detection masks 

without incurring loss of details in mask outlines (Soille, 2013). Hence, it is relevant for 

achieving boundary preservation. The method requires an original image and a marker (m k) 

image. If the marker image is obtained after erosion has been initially applied to the original

image ( m k = e { X L d , n )  ) , and the original image is reconstructed by a series of iterative 

dilations of m k, then the resulting filter is opening by reconstruction (®r (m k) ) :

<  ( ^ iX L R & j ) ) )  = min{mi ,XLR(i , j )} (3.13)

Moreover, closing by reconstruction (c r (m k))  initially applies dilation to the original 

image, then reconstructs the original image by applying a series of iterative erosion. The 

resulting filter is:

4  ( ^ l r ( U ) ) )  =  max{mi ,XLR(i , j )} (3.14)

Both filtering processes stop when ®£ =  ®£_1 and  =  c£_1 . It is worth mentioning that 

in this paper, we used a fixed square shape S( i , j )  with a size of 20 x 20 pixels. From an analysis 

of a broad range of data from different change detection projects, we found ( 1) that most 

consistent results were achieved with a 20 pixel window; and (2) that change detection 

performance changed slowly with deviation from the 20 pixel setting. Hence, while 20 pixels
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was found to be optimal, the exact choice of the window size is not critical for change detection 

success. The new multi-scale decomposition XMD stack now contains morphological filtered 

images at each level in XMS, as below:

%md = {x ' d- ■, %Md .............. ,%Md S} (315)

The importance of opening and closing by reconstruction is that it filters out darker and 

brighter elements smaller than S ( i , j ) , while preserving the original boundaries of structures in 

our image. Note that morphological filtering leads to a quantization of the gray-value space such 

that each image in XMD can be normalized into the gray-value range of [0, 255] without loss of 

information. At the kth level in XMD, a lossless normalization is applied, leading to a float value 

between 0 and 255, such that:

X ' d mm(xMD)

m a x  ( x ' D — min(xMD)^

‘ ~ M D ----- \ “ M DJ  n r -

%md = / . ■ f  " \ \  (3.16)

After the mathematical morphology step, we calculate the posterior probability of one “no­

change” and potentially several “change” classes at every one of the K resolution levels, 

resulting in K posterior probabilities per pixel. The various classes are assumed to be a mixture 

of Gaussian density distributions. While an approximation, assuming Gaussian characteristics for 

SAR log-ratio data is not uncommon. Previous research (Dekker, 1998) has found that the 

statistical distribution of log-ratio data is near normal and closely resembles a Gaussian 

distribution. Hence, our assumption of Gaussian characteristics is only weakly affecting the 

performance of our change detection approach. Still, we are currently assessing the benefits of 

using non-Gaussian descriptions in these processing steps and, depending on the results of this 

study, may modify our approach in the future. To automate the calculation of the posterior
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probabilities, we employ an EM approach. The importance of integrating mathematical 

morphology into our EM algorithm framework is to suppress the effect of background clutter 

that may constitute false positives after applying the EM algorithm.

The EM algorithm focuses on discrimination between the posterior probability of one no­

change (a>u) and potentially several change classes (wc). For each level in XMD, we model the 

probability density function p(XMD) of the normalized image series XMD as a mixture of N  

density distributions. This mixture contains the probability density functions, denoted 

p(XMD\o>c) and p(XMD \u>u'), and the prior probability, P(o>c) and P(a>u). At the kth level in XMD, 

the probability density function (PDF) is modeled as:

N -  1

P ( X ' d) = ^ ( p (Xmd\w? )P ( w? ) )  + P(XMd \Vu)P(Uu) (317)
n = 1

The first summand in Equation (3.17) (£ N -  l p ( X ' D\wn)P(wn))  represents the mixture of 

N — 1 change PDFs described by their respective likelihood p ( X ' D\wn) and prior probabilities 

P(wn ) , while the second summand describes the PDF of a single no-change class. It is worth 

noting that all PDFs in Equation (3.17) are assumed to be of Gaussian nature, such that the mean 

and variance are sufficient to define the density function associated with the change 

classes u>c, and mean and variance a'^u can be used to describe the density function related 

with the no-change classes a>u . The parameters in Equation (3.17) are estimated using an EM 

algorithm. Given X ' D is the kth level image in XMD, we inferred which class (w% = 

f a ,  o>u)) each pixel in X ' d belongs to, using 6 s =  {p^c, o 7c, pUu&uu)  which is our current 

(best) estimate for the full distribution, and 6  as our improved estimate. The expectation step at 

the s th  iteration is calculated by the conditional expectation:
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Q (6 \6 s) = E[ln P((Di,XMlD\6\XMlD,6s) ] = Y J P {ui\x MlD'6s) ln  P (v uXMd \6)  (3.18)

The maximization step maximizes Q(6 |6 s) to acquire the next estimate:

6 (s ± S) =  argm axQ (6 |6 s) (3 19)

The iterations cease when the absolute differences between the previous and current 

variables are below a tolerance value (£). In our paper, we empirically set the tolerance value £ to 

10-6 Once the iterations cease, the final optimal 6 (s ± S) is used to calculate the posterior 

probability using Bayes’ formula. The EM algorithm is applied separately to all K levels of the 

multi-scale decomposition series, XMD, resulting in a stack of posterior probability maps PPMD = 

[PP0, ... ■ PPk, ... ■, PPK -  S} of depth K where each map contains the posterior probability of 

change and no-change classes, respectively. Our EM algorithm is illustrated as follows:

3.3.3.3. Selection of Number of Change Classes

In order to execute the expectation maximization algorithm from Section 3.3.3, the number 

of change classes that are present in an image has to be known. Selection of classes is a difficult 

task, and care should be taken to avoid over- or under-classifying the data. Various methods have 

been proposed for selecting the number of classes (N)  to best fit the data, and examples include 

the penalty method (Zhu and Bamler, 2010), the cross-validation method (Pham, 2001) and the 

minimum description length approach (Bischof et al., 1999). In our paper, we developed a 

selection approach that identifies the number of required classes (V) using a sum of square error 

(SSE) approach. The SSE approach utilized the measured data PDF, which is the statistical 

distribution of the highest decomposition level image, and the estimated PDF, which is the 

statistical distribution estimated after applying the EM algorithm to the highest decomposition
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level image. The highest decomposition level image was used because at this level, most of the 

noise in the image was filtered out. This approach seeks to minimize the sum of the square of the 

differences between the measured data PDF and the estimated PDF, as follows:

NN

SSE = Y J (m a —f n ) 2 (3 20)
i = 2

where NN  is the overall number of classes, m ii is the original measured PDF and f ii is the 

estimated PDF. An example of the dependence of SSE on the number of classes used in f ii is 

shown in Figure 3.4. Initially, we start with two classes (one change and one no-change class) 

and calculate the SSE. For each extra class that is added into the procedure, its corresponding 

SSE is estimated. Plotting each class sequentially against its corresponding SSE leads to a 

continuous decrease of approximation error as NN gets larger.

The data from Section 3.5 is used in this example and SSE was carried out using a maximum 

of 20 classes, with each classes being added sequentially. The knee point on the curve in Figure 

3.4 suggests that 3 is a good candidate for N.

3.3.3.4. Measurement Level Fusion

We developed a measurement level fusion technique to accurately delineate the boundary of 

the changed region by using the posterior probability of each class at each multi-scale image to 

compose a final change detection map (M). We developed and tested five measurement level 

fusion methods that are briefly explained below:

1. Product rule fusion: This fusion method assumes conditionally statistical independence, and 

each pixel is assigned to the class that maximizes the posterior conditional probability, 

creating a change detection map. Each pixel is assigned to the class such that
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to;

K

argmax T~\{P(Ui\xMD(.i,j))}

(3.21)

UiEfac^u)} = 0

K
= argmax

Wi£{Wc,Mu}j = 0

2. Sum rule fusion: This method is very useful when there is a high level of noise leading to 

uncertainty in the classification process. This fusion method assumes each posterior 

probability map in XMD does not deviate much from its corresponding prior probabilities. 

Each pixel is assigned to the class such that

K
toi = argmax ^ { P P ^  (3.22)

UiEfac^u) i = 0

3. Max rule fusion: Approximating the sum in Equation (3.22) by the maximum of the 

posterior probability, we obtain

K
toi = argmax m a x { P P ^  (3.23)

aiEfac^u) i = 0

4. Min rule fusion: This method is derived by bounding the product of posterior probability. 

Each pixel is assigned to the class such that

K
= argmax m i n { P P ^  (3.24)

aiEfacau) i = 0

5. Majority voting rule fusion: This method assigns a class to the pixel that carries the highest 

number of votes. Each pixel in each posterior probability map (PPMD) is converted to binary,

i.e.,
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Aibn = <

K
l , i f  m a x { P P ^  

i = 0 
, 0, otherwise

(3.25)

toi = argmax y  A»n
aiE{ac,au} f= 0

The measurement level fusion with the lowest overall error, highest accuracy, and highest 

kappa coefficient is selected as the best fusion method and is used as our final change detection 

map. The next section shows how the best fusion method was selected.

3.4. Performance Assessment Using Synthetic Data

To assess the performance of the developed change detection approach under both 

controlled and uncontrolled conditions, we have conducted two types of validation studies, both 

of which are presented in this paper. In this section, we summarize change detection results on a 

synthetic dataset to evaluate the performance and limitations of the technique under controlled 

conditions. Subsequently, in the next section, we show an application of the developed change 

detection technique to wildfire mapping. An area in Alaska is chosen and the change detection 

results are compared to ground truth measurements for validation.

3.4.1. Description of Synthetic Dataset

A synthetic dataset of size 1152 x 1152 pixels was generated from two SAR images 

acquired over the same area but at different times, and “change patches” were artificially 

introduced into the second of these images. A post-event image was generated by adding 2 dB to 

the radar cross-section of certain locations to form the change patches. Our approach was tested 

on synthetic data, because with synthetic data, we can control every aspect of the data, and also
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evaluate the accuracy with absolute reliability. The purpose of analyzing the synthetic dataset 

was to assess, more accurately, the robustness of the proposed approach and also to select the 

best measurement level fusion.

It is worth mentioning that, with the exception of the border pixels, moderate changes in 

speckle noise do not significantly impact our classification result. This is due to the mitigating 

effects of the wavelet decomposition and due to the way decisions at different decomposition 

levels are merged in our approach. In homogeneous areas (e.g., within the change patches), the 

higher decomposition levels carry the majority of the weight in the classification of these areas. 

As most speckle noise is removed at these higher decomposition levels, the classification result 

within homogeneous areas is very robust to speckle noise. Only in heterogeneous areas (the 

boundary pixels of our simulated data), where lower decomposition levels contribute more to the 

final classification result, residual speckle noise may have a measurable effect on performance. 

As there are only very few boundary pixels and as we only applied a very moderate change of 

radar cross-section, we believe that neglecting the recalculation of speckle is a well-justified 

decision. Figure 3.5a shows the ratio image generated between the synthetic pre-event image and 

the post-event images, while Figure 3.5b depicts the ground truth change map. The faint change 

signatures in Figure 3.5a indicate that a challenging change detection situation was generated.

3.4.2. Performance Evaluation for Selecting Best Fusion Method

For selecting the best performing fusion method, quantitative measurements are derived 

from the binary change detection map obtained using the different measurement level fusion 

techniques. In generating the confusion matrix which shows the accuracy of our classification 

result, the following defined quantities are computed: (i) the false alarm (FA), which signifies 

the no-change pixels incorrectly classified as change. The false alarm rate (FAR) is computed in
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percentage as FAR = FA/N1x l 0 0 % ,  where NS is the total number of unchanged pixels in the 

ground truth change detection map; (ii) the missed alarm (MA),  which signifies the changed 

pixels incorrectly classified as no-change. The missed alarm rate (MAR)  is computed in 

percentage as MAR = M A /N 0x100%,  where N0 is the total number of changed pixels in the 

ground truth change detection map; (iii) the overall error (OE), which is the percentage ratio of 

incorrect classification made (addition of both the false alarm rate and missed alarm rate). Hence, 

OE = (FA + M A ) / (N S + N0) x 1 0 0 0%; (iv) the overall accuracy (OA), which is calculated by 

adding the number of pixels classified correctly and dividing it by the total number of pixels. 

Therefore OA = 1000% — OE; and (v) the kappa coefficient, which measures the agreement 

between classification pixels and ground truth pixels (Guide, 2008). A kappa value of 1 

represents perfect agreement while a value of 0 represents no agreement. Table 3.1 shows the 

quantitative performance of each of the measurement level fusion techniques. It can be seen that 

product rule fusion achieved the best performance with an overall accuracy of 98.97%o.

3.4.3. Comparison to Alternative Change Detection Methods

To evaluate the performance of our proposed algorithm relative to the state-of-the-art, we 

conducted an extensive qualitative (Figure 3.6) and quantitative (Table 3.2) comparison of the 

results of our change detection approach to results of other recently published change detection 

methods. The following alternative methods were used in the comparison: (a) Method A: our 

proposed approach is used without fast non-local means filtering; (b) Method B: our proposed 

approach is used without 2D-SWT and measurement level fusion—the approach utilized 

mathematical morphology and the EM algorithm for classification; (c) Method C: our proposed 

approach is used without morphological filtering; (d) Method D: our proposed approach is used 

without the EM algorithm—the approach employed the thresholding algorithm proposed by
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Otsu, (1975) and majority voting rule fusion for classification; (e) Method E: semi-supervised 

change detection, based on using a kernel-based abnormal detection into the wavelet 

decomposition of the SAR image (Mercier and Girard-Ardhuin, 2006); (f) Method F : image 

denoising using fast discrete curvelet transform via wrapping with the EM algorithm to produce 

the change detection map (AlZubi et al., 2011); (g) Method G: using UDWT to obtain a 

multiresolution representation of the log-ratio image, then identifying the number of reliable 

scales, and producing the final change detection map using fusion at feature level (FFL_ARS) on 

all reliable scales (Bovolo and Bruzzone, 2005); (h) Method H: implementing probabilistic 

Bayesian inferencing with the EM algorithm to perform unsupervised thresholding over the 

images generated by the dual-tree complex wavelet transform (DT-CWT) at various scales, and 

moreover, using intra- and inter-scale data fusion to produce the final change detection map 

(Celik, 2010); (i) Method I: obtaining a multiresolution representation of the log-ratio image 

using UDWT, then applying the Chan-Vese (region-based) active contour model to the 

multiresolution representation to give the final change detection map (Celik and Ma, 2011). 

Based on Table 3.2 and Figure 3.6, one can observe that the change detection result from Method 

G showed the lowest performance of all tested methods with an overall accuracy of 68.412% and 

a kappa coefficient of 0.162. The low performance of this approach is due to the effectiveness of 

the method employed to select the optimal resolution level (reliable scale). The result of Method 

G was computed by averaging the reliable scales for every pixel which led to the low 

performance. Thus, most reliable scales contain a large amount of both geometrical details and 

speckle components (lowest decomposition level) and a low amount of geometrical details and 

speckle components (highest decomposition level). The proposed method yields the best 

performance with an overall accuracy of 98.973% and a kappa coefficient of 0.906. It is worth
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mentioning that the aim of Methods A -D  is to show the importance of each element in our 

proposed approach (see gray shade area in Table 3.2).

3.5. Performance Analysis through Application to Wildfire Mapping

3.5.1. Description of Area

The study area for this real-data experiment is situated around the Tanana Flats region of 

Alaska, just east of the communities of Healy, Clear, Anderson and Nenana, and approximately 

26 miles southwest of Fairbanks, Alaska (Figure 3.7). The topography of the area is relatively 

flat and is comprised of low-vegetation tundra and taiga regions with an interspersed network of 

small streams. The forest vegetation of the area is diverse, containing white spruce, black spruce, 

aspen and birch. During the hot summer climate, this area is very prone to wildfires.

In Alaska, wildfires affect thousands of km2 each year (Wendler et al., 2011). The dry 

conditions, increased lightning strikes, and higher-than-normal temperatures cause atmospheric 

effects that impact the strength of wildfires (Wendler et al., 2011). The strongest occurrences of 

wildfires in Alaska happen in the mid-summer months, and occurrences vary annually. 

According to the Alaska interagency coordination center, the mapped fire in our study area is 

called the Survey Line fire, which started in the year 2001. This fire, caused by lightning, 

consumed an area of 796 km2, and lasted four months from 20 June to 14 October 2001. During 

the winter of the year 2002, the fire scar disappears and this is likely due to the freezing of the 

soils and the addition of a seasonal snow cover (see Section 3.5.5). By the beginning of the year 

2004, the trees in the fire scar area have regenerated.
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3.5.2. Description of SAR and Reference Data Used in this Study

We obtained eight, HH-polarized (horizontal transmit and horizontal receive polarization), 

Radarsat-1 images acquired between 2000 and 2004 over the area of interest. Only acquisitions 

between April and October of pre- and post-fire images were used to avoid seasonal effects in 

change detection. For ease of visual comparison, the acquisition is not shown successively 

according to the year but according to the pre- and post-fire images. Pre-fire images (images 

showing no fire scar) are displayed first, and are shown in Figure 3.8a-d, while the post-fire 

images (images showing fire scar) can be found in Figure 3.8e-h.

Each image has a size of 3584 x 5056 pixels, corresponding to an area of 44.8 x 63.2 square 

kilometers. The pixel spacing in each image is 12.5 x 12.5 m with a range resolution of 26.8 m and 

an azimuth resolution of 24.7 m. The eight Radarsat-1 images were used to generate seven 

different ratio images, and were used for the analysis of seven different detection scenarios 

(scenarios 1-7 in Table 3.3). Table 3.3 shows the seven independent scenarios that we 

investigated to analyze the performance of our approach. The image acquisitions highlighted in 

gray in Table 3.3 are the post-fire images, while the rest of the acquisitions are pre-fire images. 

Three of the analyzed scenarios are “negative tests” as they do not include fire activity and test 

our ability to correctly identify no-change scenarios. The four remaining scenarios include 

change signatures related to wildfires and allow us to quantify our ability to correctly detect fire 

perimeters. Table 3.4 shows the incidence angle of all the individual image acquisitions. The 

image acquisitions highlighted in gray in Table 3.4 are images with a different incidence angle. 

All the images were radiometrically corrected using the Alaska IFSAR DEM which has a 

resolution of 5 m. The images were calibrated and co-registered as well, with ASF MapReady 

software, then geocoded to latitude and longitude (Gens and Logan, 2003). Notice that the pre-
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and post-fire comparisons in scenarios 2 and 5 collated images with different incidence angles. 

These comparisons were included to test our approach’s ability to increase temporal resolution 

through the combination of images of varying geometry (see Section 3.3.1).

To validate achieved detection results, we used a fire area history map generated by the 

Alaska Fire Service as ground truth. The fire area history map was prepared using ground-based 

GPS, which, although effective, suffers from the limitation that everything inside the fire area 

history map is considered to be wildfire. We modified the fire area history map by using optical 

imagery to visually digitize areas that are not actually affected by wildfire. Other limitations the 

Alaska Fire Service faced include time and safety.

3.5.3. Description of Classification Processes

Based on several experiments, the performance of our approach was measured qualitatively 

and quantitatively by comparing detections to a fire area history map. To execute the 

classification process, ratio images (scenarios 1-7) previously shown in Table 3.3 were filtered 

and decomposed into six resolution levels. As previously described, 2D-SWT using the 

biorthogonal wavelets procedure was employed.

As an example of the decomposition process, Figure 3.9 shows the decomposed images for 

scenario 4. Looking at the highest resolution images in Figure 3.9 (top left panel of each sub­

Figure), we see how the contrast between background and change regions is initially low due to 

the significant noise in the data. This contrast is continuously improving with the increasing 

decomposition level. This is due to a continuous improvement of noise suppression through the 

K levels. At the same time, the loss of contrast and detail level can be observed for higher 

decomposition levels, which is particularly strong at the border between the background and 

changed area.
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For every of the decomposed K  resolution levels, we calculate the posterior probability of 

one “no-change”, one “negative change” and one “positive change” class, resulting in K  

posterior probabilities per pixel. Product rule fusion is then used to fuse the K classification 

results achieved per pixel and to produce the final classification map M. Table 3.5 shows the 

quantitative comparison of each fusion method to confirm our choice of product rule fusion as 

the best-performing method. It is evident that product rule fusion gave a better result with an 

overall accuracy of 99.932% and a kappa coefficient of 0.997. Figure 3.10 shows a qualitative 

comparison of the burned area detected by our algorithm to the available fire area information 

(red outlines in Figure 3.10) retrieved from the archives of the Alaska interagency coordination 

center.

A good match between the automatic detection and ground truth information can be 

observed. Particularly note (1) the “cleanness” of the detection result outside of the burn scar and 

(2) the close preservation of the burn scar boundary that was achieved. Both properties indicate 

our method’s ability to simultaneously achieve high performance noise suppression and outline 

preservation. Classification results for the remaining six scenarios are shown in Figure 3.11. 

These results show good performance for both the “negative” and the “positive” tests. As 

expected, no extended change was identified for the scenarios that did not span a forest fire.

Some change was identified along a stream that crosses the area. This change is likely real and 

due to changes of river flow patterns or water level variations. Even though three classes (see 

Section 3.3.3.3) were used for the classification in areas with negative change, none of the 

classes have a mean similar to that of a fire scar class. All “positive” tests reliably identify the 

burn scar and retrace its boundary. Figure 3.11b and d showed that the classification of fire scars 

was not inhibited by the varying geometry of the pre- and post-fire images. Thus, this approach
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is able to increase the temporal sampling of our image acquisitions. The benefit of radiometric 

normalization for combining data with different observation geometry is quantified by 

comparing scenario 5 with and without radiometric and geometric normalization. Employing 

radiometric and geometric normalization to scenario 5 gave an overall accuracy of 97.78% and a 

kappa coefficient of 0.924. When radiometric and geometric normalization is not employed we 

have an overall accuracy of 87.08% and a kappa coefficient of 0.585.

3.5.4. Comparison to Reference Change Detection Techniques

Change detection results obtained from different approaches for scenario 4 are analyzed 

quantitatively in Table 3.6 and qualitatively in Figure 3.12. Our proposed approach yields an 

overall accuracy of 99.932%, an overall error of 0.067%, and a kappa coefficient of 0.997. The 

performance of our approach without a fast non-local means filter gave a good result as well. 

However, the accuracy was reduced as a result of a false positive, causing the overall accuracy 

and kappa coefficient to drop to 98.402% and 0.946%, respectively. The performance decreased 

when wavelet transform was not utilized in our approach, giving an overall accuracy of 97.823% 

and a kappa coefficient of 0.927. Furthermore, without the application of the morphological filter 

the performance dropped, giving an overall accuracy of 97.963% and a kappa coefficient of

0.932. Also, in the absence of the EM algorithm in our approach, the accuracy dropped to 

97.550% and the kappa coefficient dropped to 0.916. Given the results of Methods A-D (see 

gray shade area in Table 3.6), it is evident that each individual processing step is important for 

the effectiveness of our approach. With regard to other published techniques, Method E gave a 

lower accuracy when compared with our approach, with an overall accuracy of 93.816% and a 

kappa coefficient of 0.808. The lower accuracy is likely due to the region of interest definition 

which leads to spectral confusion and resulted in several numbers of false positives and false
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negatives in the final change detection result. The curvelet method (Method F) effectively 

filtered the ratio image; however, it only relies on the EM algorithm to classify the fire scar. The 

method has an overall accuracy of 93.054% and a kappa coefficient of 0.745. According to 

Method G, no filtering was done, along with the absence of the EM algorithm. The thresholding 

of fire scars was done manually, and this reduced the effectiveness of the method. Method G has 

an overall accuracy of 94.986% and a kappa coefficient of 0.830. The degradation in the 

accuracy of the change detection result from Method H, with respect to the proposed approach, is 

mainly because of the DT-CWT used. The DT-CWT is fairly robust to speckle noise, and the 

down-sampling process used is not able to detect the changes whose spatial supports are lost 

through the multi-scale decomposition. Method H gave an overall accuracy of 89.078% and a 

kappa coefficient of 0.605. Method I showed a decent detection with an overall accuracy of 

96.587% and a kappa coefficient of 0.891. This is mainly due to the effective contour definition 

that partitions the ratio image into change and no-change.

It is worth mentioning that all the methods used for comparative analysis were sent through 

the identical pre-processing chain including SAR data pre-processing, ratio image formation and 

logarithmic scaling, fast non-local means filtering and mathematical morphology filtering. While 

the fire scars are correctly delineated in Methods E-I, minute changes (false positive) in the 

background landscape were detected and amplified. Attempts to reduce the number of false 

positives for these techniques led to a significant distortion of the fire-scar boundaries and 

reduced the reliability of the final change detection map. Thus, our proposed approach produced 

a more consistent and more robust result as indicated by the information in Figure 3.12 and 

Table 3.6.
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3.5.5. Electromagnetic Interpretation of Change Signatures

After change features are detected using the aforementioned approach, the history of the 

amplitude change can be analyzed to attempt a geophysical interpretation of the observed 

change. In this section, we show the kinds of analyses that can be conducted after a robust 

change detection approach were applied to a time series of SAR images.

In the presented wildfire scenarios, we observe (from the time-series of data that was 

analyzed) that the burn event led to a general increase of the average radar cross-section in the 

affected areas (Figure 3.13). An increase of about 4 dB relative to the pre-fire situation can be 

observed. This is likely due to an increase of double bounce scattering after the tree foliage was 

burned off, exposing the remaining tree stumps and branches for interaction with the microwave 

signals. Figure 3.13 also shows that the radar cross-section in the affected area slowly decreases 

starting about 1.5 years after the burn event. This slow return toward pre-fire image brightness is 

likely related to regrowth in the affected area.

It is worth mentioning that seasonal effects can be observed in the detection of the fire scar 

in our study area. While during the summer seasons the average radar brightness remained 

significantly above the pre-burn level throughout the time series, it can be observed that the 

average brightness value decrease during the winter periods, likely due to the freezing of the 

soils and the addition of a seasonal snow cover. After the winter periods, the average brightness 

value increases again near the radar cross-section of the previous summer. This is an interesting 

and significant observation as it indicates that, for this test site and dataset, fire scar detection 

will be less successful during winter.

To support our interpretation of the data, we plot a second time series in Figure 3.13 (red 

line) that shows the average radar cross-section of an area unaffected by fire in all pre- and post­
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fire images. The seasonal brightness variations can also be observed for this area, supporting the 

assertion of weather effects as the cause of the seasonal signal.

3.6. Conclusion

A flexible and automatic change detection method was presented that is effective at 

identifying change signatures from pairs of SAR images. The proposed approach removes 

radiometric differences between SAR images acquired from different geometries by utilizing 

radiometric terrain correction (RTC) which enables change detection from different image 

geometries and, hence, improves the temporal sampling of surface change that can be achieved 

from a given database. Suppressing background information and enhancing change information 

by performing log-ratio operations, our approach displayed high detection performance while 

preserving change signature details. The integration of modern non-local filtering and 2D-SWT 

techniques provided robustness against noise. The classification performance, increased by 

integrating an EM algorithm with mathematical morphology and preservation of the geometric 

details in the border regions, was shown when product rule fusion was employed. Moreover, our 

approach gave a very high overall accuracy. In addition to analyzing the performance of our 

approach on synthetic data, we used our algorithm to conduct change detection in an area 

affected by wildfires. From this change detection analysis, we found that a fire scar could be 

detected with high accuracy from the available data. In addition to accurately detecting the 

location and extent of the burn scar, an analysis of the image information within the detected scar 

revealed slow changes in image amplitudes over time, most likely related to the regrowth of 

forest within the burned area.
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Comparison of our approach to selected recent methods showed that (1) our approach 

performed with a high overall accuracy and high geometric preservation; (2) neglecting any of 

the steps in our approach will result in an inferior change detection capability.

The main drawbacks of the proposed approach are: (1) the assumption that the image is a 

mixture of Gaussian distribution; and (2) that the approach does not take full advantage of all the 

information present in the speckle. Future work will explore using Gamma distribution for fitting 

the EM algorithm rather than the assumed Gaussian distribution. Non-uniform geometric and 

radiometric properties for all the areas of change in the synthetic image will be pursued as well. 

Images with high varying geometry will be considered and analyzed. In addition, the 

development of the advanced approach for selecting the number of changed classes will be 

pursued.

3.7. Acknowledgments

The authors want to thank the Alaska Satellite Facility (ASF) for providing access to the 

Radarsat-1 data used in this study. We furthermore thank the Geographic Information Network 

of Alaska (GINA) for the provision of high resolution Digital Elevation Models (DEMs) and for 

providing computing support. Thanks to Maria Tello Alonso for many fruitful discussions. The 

work presented here was funded by the National Aeronautics and Space Administration (NASA) 

through Established Program to Stimulate Competitive Research (EPSCoR) program under grant 

#NNX11AQ27A.

3.8. Author Contributions

This research was written and revised by Olaniyi Ajadi with contributions from all 

coauthors. All authors have read and approved the final manuscript.

65



3.9. References

AlZubi, S., Islam, N., and Abbod, M., 2011, Multiresolution analysis using wavelet, ridgelet, and 

curvelet transforms for medical image segmentation: Journal of Biomedical Imaging, v. 2011, p.

4.

Bazi, Y., Bruzzone, L., and Melgani, F., 2005, An unsupervised approach based on the 

generalized Gaussian model to automatic change detection in multitemporal SAR images: IEEE 

Transactions on Geoscience and Remote Sensing, v. 43, no. 4, p. 874-887.

Bazi, Y., Bruzzone, L., and Melgani, F., 2007, Image thresholding based on the EM algorithm 

and the generalized Gaussian distribution: Pattern Recognition, v. 40, no. 2, p. 619-634.

Bischof, H., Leonardis, A., and Selb, A., 1999, MDL principle for robust vector quantisation: 

Pattern Analysis & Applications, v. 2, no. 1, p. 59-72.

Bovolo, F., and Bruzzone, L., 2005, A detail-preserving scale-driven approach to change 

detection in multitemporal SAR images: IEEE Transactions on Geoscience and Remote Sensing, 

v. 43, no. 12, p. 2963-2972.

Bruzzone, L., and Prieto, D. F., 2000, Automatic analysis of the difference image for 

unsupervised change detection: IEEE Transactions on Geoscience and Remote Sensing, v. 38, 

no. 3, p. 1171-1182.

66



Buades, A., Coll, B., and Morel, J.-M., 2005, A review of image denoising algorithms, with a 

new one: Multiscale Modeling & Simulation, v. 4, no. 2, p. 490-530.

Celik, T., 2009a, Multiscale change detection in multitemporal satellite images: Geoscience and 

Remote Sensing Letters, IEEE, v. 6, no. 4, p. 820-824.

Celik, T., 2009b, Unsupervised change detection in satellite images using principal component 

analysis and-means clustering: Geoscience and Remote Sensing Letters, IEEE, v. 6, no. 4, p. 

772-776.

Celik, T., 2010, A Bayesian approach to unsupervised multiscale change detection in synthetic 

aperture radar images: Signal Processing, v. 90, no. 5, p. 1471-1485.

Celik, T., and Ma, K.-K., 2010, Unsupervised change detection for satellite images using dual­

tree complex wavelet transform: IEEE Transactions on Geoscience and Remote Sensing, v. 48, 

no. 3, p. 1199-1210.

Celik, T., and Ma, K.-K., 2011, Multitemporal image change detection using undecimated 

discrete wavelet transform and active contours: IEEE Transactions on Geoscience and Remote 

Sensing, v. 49, no. 2, p. 706-716.

67



Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., and Lambin, E., 2004, Review 

ArticleDigital change detection methods in ecosystem monitoring: a review: International 

Journal of Remote Sensing, v. 25, no. 9, p. 1565-1596.

D'Addabbo, A., Refice, A., Pasquariello, G., Lovergine, F. P., Capolongo, D., and Manfreda, S., 

2016, A Bayesian Network for Flood Detection Combining SAR Imagery and Ancillary Data: 

IEEE Transactions on Geoscience and Remote Sensing, v. 54, no. 6, p. 3612-3625.

Darbon, J., Cunha, A., Chan, T. F., Osher, S., and Jensen, G. J., 2008, Fast nonlocal filtering 

applied to electron cryomicroscopy, in Proceedings Biomedical Imaging: From Nano to Macro, 

2008. ISBI 2008. 5th IEEE International Symposium, p. 1331-1334.

Dekker, R. J., 1998, Speckle filtering in satellite SAR change detection imagery: International 

Journal of Remote Sensing, v. 19, no. 6, p. 1133-1146.

Floyd, A. L., Prakash, A., Meyer, F. J., Gens, R., and Liljedahl, A., 2014, Using Synthetic 

Aperture Radar to Define Spring Breakup on the Kuparuk River, Northern Alaska: Arctic, p.

462-471.

Gens, R., and Logan, T., 2003, Alaska Satellite Facility Software Tools: Manual: Geophysical 

Institute, University of Alaska Fairbanks.

Guide, E. U. S., 2008, ENVI on-line software user’s manual: ITT Visual Information Solutions.

68



Kasetkasem, T., and Varshney, P. K., 2002, An image change detection algorithm based on 

Markov random field models: IEEE Transactions on Geoscience and Remote Sensing, v. 40, no. 

8, p. 1815-1823.

Loew, A., and Mauser, W., 2007, Generation of geometrically and radiometrically terrain 

corrected SAR image products: Remote Sensing of Environment, v. 106, no. 3, p. 337-349.

Mercier, G., and Girard-Ardhuin, F., 2006, Partially supervised oil-slick detection by SAR 

imagery using kernel expansion: IEEE Transactions on Geoscience and Remote Sensing, v. 44, 

no. 10, p. 2839-2846.

Meyer, F. J., McAlpin, D. B., Gong, W., Ajadi, O., Arko, S., Webley, P. W., and Dehn, J., 2014, 

Integrating SAR and derived products into operational volcano monitoring and decision support 

systems: Journal of Photogrammetry and Remote Sensing, no. 100, p. 106-117.

Otsu, N., 1975, A threshold selection method from gray-level histograms: Automatica, v. 11, no. 

285-296, p. 23-27.

Pham, D. L., 2001, Spatial models for fuzzy clustering: Computer Vision and Image 

Understanding, v. 84, no. 2, p. 285-297.

69



Schmitt, A., Wessel, B., and Roth, A., 2010, Curvelet-based change detection on SAR images for 

natural disaster mapping: Photogrammetrie-Fernerkundung-Geoinformation, v. 2010, no. 6, p.

463-474.

Siegert, F., and Hoffmann, A. A., 2000, The 1998 forest fires in East Kalimantan (Indonesia): A 

quantitative evaluation using high resolution, multitemporal ERS-2 SAR images and NOAA- 

AVHRR hotspot data: Remote Sensing of Environment, v. 72, no. 1, p. 64-77.

Small, D., 2011, Flattening gamma: Radiometric terrain correction for SAR imagery: IEEE 

Transactions on Geoscience and Remote Sensing, v. 49, no. 8, p. 3081-3093.

Soille, P., 2013, Morphological image analysis: principles and applications, Springer Science & 

Business Media.

Tello Alonso, M., Lopez-Martrnez, C., Mallorqm, J. J., and Salembier, P., 2011, Edge 

enhancement algorithm based on the wavelet transform for automatic edge detection in SAR 

images: IEEE Transactions on Geoscience and Remote Sensing, v. 49, no. 1, p. 222-235.

Tello, M., Lopez-Martinez, C., Mallorqui, J. J., Danisi, A., Di Martino, G., Iodice, A., Ruello,

G., and Riccio, D., 2007, Characterization of local regularity in SAR imagery by means of 

multiscale techniques: application to oil spill detection, in Proceedings Geoscience and Remote 

Sensing Symposium. IGARSS 2007. IEEE International, p. 5228-5231.

70



Wang, X., Istepanian, R. S., and Song, Y. H., 2003, Microarray image enhancement by denoising 

using stationary wavelet transform: IEEE Transactions on NanoBioscience, v. 2, no. 4, p. 184­

189.

Wendler, G., Conner, J., Moore, B., Shulski, M., and Stuefer, M., 2011, Climatology of Alaskan 

wildfires with special emphasis on the extreme year of 2004: Theoretical and Applied 

Climatology, v. 104, no. 3-4, p. 459-472.

Yun, S.-H., Fielding, E. J., Webb, F. H., and Simons, M., 2012, Damage proxy map from 

interferometric synthetic aperture radar coherence, Google Patents.

Zhu, X. X., and Bamler, R., 2010, Very high resolution spaceborne SAR tomography in urban 

environment: IEEE Transactions on Geoscience and Remote Sensing, v. 48, no. 12, p. 4296­

4308.

71



X, image 
(at time t,)

XR reference 
^image(at time

Ratio image formation

±
Logarithmic scaling

Fast non local filtering

2D-SWT (multi-scale decomposition 
to K  layers)

.  .  .

y O
a LR

1
X
a l r

r i

V K - 1 
a LR 

r ' r

Mathematical morphology

Bayesian thresholding of K  layers 
(expectation maximization)

I J J .
Measurement level fusion

•ence /  
ime tRy Pre-processing

and
data enhancement

Change
detection
approach

Final Change 
Detection Map

Figure 3.1. Workflow of the proposed approach. Here, X°R is the original log-ratio image, XlR is

the kth decomposed image, and X£R 1 is the highest decomposed level.K-l

72



Figure 3.2. Example of (a) image affected by radiometric and geometric distortions; (b) 

radiometric and geometric normalized image enabling change detection analysis from multiple 

geometries.
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Figure 3.3. Multi-scale decomposition of input log-ratio image X LR into a lower resolution and 

detail images; X[R is the lower resolution image and (X[r , X lR, X lR ) are the high frequency 

detail images, which captures horizontal, vertical and diagonal directions, respectively.
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Figure 3.4. Selection of classes used for final classification.
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Figure 3.5. (a) Ratio image calculated from pre- and post-event images; (b) ground truth change

map.
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Figure 3.6. Change detection map showing: (a) proposed approach without fast non-local means 

filter; (b) proposed approach without 2D-SWT; (c) proposed approach without morphological 

filtering; (d) proposed approach without EM algorithm; (e) SVM approach; (f) image denoising 

using fast discrete curvelet transform via wrapping with EM algorithm; (g) FFL_ARS approach; 

(h) DT-CWT with intra- and inter-scale data fusion approach; (i) UDWT with Chan-Vese active 

contour model approach.
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Figure 3.7. Study area for wildfire mapping.
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Figure 3.8. Pre-fire image acquired on: (a) 21 June 2000; (b) 6 June 2001; (c) 23 October 2002; 

(d) 13 April 2004. Post-fire image acquired on: (e) 3 August 2001; (f) 7 October 2001; (g) 22 

August 2002; (h) 6 June 2003. The triangular gray area in F denotes no data available.
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Figure 3.12. Change detection map showing: (a) proposed approach without fast non-local means 

filter; (b) proposed approach without 2D-SWT; (c) proposed approach without morphological 

filtering; (d) proposed approach without EM algorithm; (e) SVM approach; (f) image denoising 

using fast discrete curvelet transform via wrapping with EM algorithm; (g) FFL_ARS approach; 

(h) DT-CWT with intra- and inter-scale data fusion approach; (i) UDWT with Chan-Vese active 

contour model approach.
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Figure 3.13. Time series showing fire scar area plotted over time (black line) and an area not 

affected by fire plotted over time (red line). The gray line represents a fire scar that cannot be 

seen as a result of snow cover. The circle symbol on each line indicates an area with no fire, 

while the square symbol indicates a fire scar area. The gray shaded box area indicates winter 

months, and the dashed line denotes when the fire started.
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Table 3.1. Overall accuracy, overall error, kappa coefficient, false positive and false negative of

the measurement level fusion using Figure 3.5a.

Overall
Accuracy

(%)

Overall
Error
(%)

Kappa
Coefficient

False
Positive

(%)

False
Negative

(%)
Product rule fusion 98.973 1.035 0.906 0.361 11.532

Sum rule fusion 98.941 1.058 0.904 0.380 11.626
Max rule fusion 98.952 1.042 0.905 0.365 11.582
Min rule fusion 67.256 32.743 0.157 34.076 11.972

Majority voting rule 98.826 1.173 0.891 0.340 14.157fusion
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Table 3.2. Overall accuracy, overall error, kappa coefficient, false positive and false negative of

our proposed approach with alternative methods using Figure 3.5a.

Overall
Accuracy

(%)

Overall
Error
(%)

Kappa
Coefficient

False
Positive

(%)

False
Negative

(%)
Proposed
approach 98.973 1.035 0.906 0.361 11.532

Method A 98.038 1.961 0.844 1.843 3.806
Method B 98.024 1.975 0.827 1.127 15.201
Method C 98.352 1.648 0.836 0.109 25.622
Method D 98.647 1.353 0.878 0.694 9.942
Method E 93.583 6.416 0.575 5.708 17.453
Method F 94.763 5.236 0.594 3.741 28.547
Method G 68.412 31.587 0.162 32.773 13.101
Method H 94.527 5.473 0.519 2.953 44.750
Method I 95.549 4.450 0.659 3.409 20.678
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Table 3.3. Combination of image acquisitions used to generate the ratio images.

Image 1 (X1) Image 2 (X2) Scenarios Change Figure
21 June 2000 6 June 2001 scenario 1 Negative 3.11a
6 June 2001 23 October 2002 scenario 2 Negative 3.11b
6 June 2001 13 April 2004 scenario 3 Negative 3.11c
6 June 2001 3 August 2001 scenario 4 Positive 3.10
6 June 2001 7 October 2001 scenario 5 Positive 3.11d
6 June 2001 22 August 2002 scenario 6 Positive 3.11e
6 June 2001 6 June 2003 scenario 7 Positive 3.11f
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Table 3.4. Incidence angle of all the individual image acquisitions.

Image
Acquisitions Incidence Angle

21 June 2000 27.207°
6 June 2001 27.238°

23 October 2002 33.736°
13 April 2004 27.375°
3 August 2001 27.236°
7 October 2001 22.796°
22 August 2002 27.296°

6 June 2003 27.336°
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Table 3.5. Overall accuracy, overall error, kappa coefficient, false positive and false negative of

the measurement level fusion using scenario 4.

Overall
Accuracy

(% )

Overall
Error
(%)

Kappa
Coefficient

False
Positive

(%)

False
Negative

(%)
Product rule fusion 99.932 0.067 0.997 0.021 0.269

Sum rule fusion 98.991 1.008 0.967 0.653 2.543
Max rule fusion 97.609 2.390 0.924 2.476 2.020
Min rule fusion 98.273 1.726 0.944 1.815 1.342

Majority voting rule 
fusion 98.842 1.158 0.961 0.417 4.359
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Table 3.6. Overall accuracy, overall error, kappa coefficient, false positive and false negative of

our proposed approach with alternative methods using scenario 4.

Overall
Accuracy

(% )

Overall
Error
(%)

Kappa
Coefficient

False
Positive

(%)

False
Negative

(%)
Proposed
approach 99.932 0.067 0.997 0.021 0.269

Method A 98.402 1.597 0.946 0.172 7.761
Method B 97.823 2.176 0.927 0.797 8.144
Method C 97.963 2.036 0.932 0.713 7.754
Method D 97.550 2.450 0.916 0.248 11.972
Method E 93.816 6.183 0.808 5.526 9.021
Method F 93.054 6.945 0.745 1.105 32.206
Method G 94.986 5.013 0.830 3.964 4.659
Method H 89.078 10.921 0.605 3.959 41.035
Method I 96.587 3.412 0.891 2.887 5.681
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Chapter 4 Oil Spill Detection in Synthetic Aperture Radar Images using Lipschitz-

Regularity and Multiscale Techniques 1

4.1. Abstract

This research adapts an effective change detection approach originally applied to mapping 

fire scar from a stationary Synthetic Aperture Radar (SAR) scene to the problem of oil spills 

from SAR data. The method presented here combines several advanced image processing 

techniques to mitigate some of the common performance limitations of SAR-based oil spill 

detection. Principally among these limitations are: (1) the radar cross section of the areas 

affected by an oil spill strongly depends on wind and wave effects and is therefore highly 

variable; and (2) the radar cross section of oil covered water is often indistinguishable from other 

dark ocean features such as low wind areas, which leads to errors and uncertainties in oil spill 

detection. In this paper, we introduce a multi-image analysis, the Lipschitz regularity (LR), and 

wavelet transforms as a combined approach to mitigate these performance limitations. We show 

that the LR parameter is much less sensitive to variations of wind and waves in an oil spill SAR 

imagery, lending itself well for normalizing and suppressing ocean background using image ratio 

processing. Beyond its benefit for image normalization, we also show that the LR transform 

enhances contrast between oil-covered and oil-free ocean surfaces and therefore improves spill 

detection performance. We combine LR processing with a multi-scale technique based on the 

wavelet transform to additionally achieve high quality noise suppression without losing relevant 

image details. Bayesian thresholding based on expectation maximization techniques is used to 

achieve high levels of automation in oil spill detection. To describe the performance of this 

approach under controlled conditions, we applied our method to simulated SAR data of wind 

driven oceans with oil spills and low wind areas. We also applied our method to several real-
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world oil spill data, using a series of images from the Phased Array L-band Synthetic Aperture 

Radar (PALSAR), and from X-band TerraSAR-X sensors, acquired during the 2010 Deep Water 

Horizon spill in the Gulf of Mexico. From our analysis, we concluded that both LR and wavelet 

transforms have led to high oil spill detection performance even during unfavorable wind 

conditions.

1 Ajadi, O.A.; Meyer, F.J.; Marivi, T.; Giuseppe, R (2017), Application of Lipschitz Regularity 

and Multiscale Techniques for the Detection of Oil Spill in Synthetic Aperture Radar Imagery. 

Prepared for submission to IEEE Journal o f  Selected Topics in Applied Earth Observations and 

Remote Sensing 2017.

4.2. Introduction and Background

Marine pollution caused by oil spills -- the release of petroleum hydrocarbons -- poses a 

major threat to marine environments (Marghany, 2015). To minimize the effects caused by an oil 

spill, it is important to identify the source, extent, and progression of the spill. In recent years, 

researchers have focused their efforts on using satellite sensors to detect oil spills once they 

occur. Although various types of orbiting sensors have been used for this purpose, imaging with 

Synthetic Aperture Radar (SAR), multi-band optical cameras (Puestow et al., 2013), and infrared 

sensors (Yu et al., 2017) are the most common.

SAR data are gaining increasing importance as a critical tool to assist in monitoring oil 

spills, due to their day-and-night and all-weather imaging capabilities (Garcia-Pineda et al., 

2013). For example, ERS-1/2 SAR images were used to monitor oil spills in the Caspian Sea, 

eastward of Apsheron Peninsula in May of 1996 (Ivanov and Ermoshkin, 2004). The areal extent 

of the Prestige wreck in 2002 near the Spanish coast was mapped by ENVISAT Advanced SAR
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(ASAR) (Fortuny et al., 2004; Mercier and Girard-Ardhuin, 2006; Palenzuela et al., 2006). 

RADARSAT-1 was used for classifying and detecting oil slicks for the Nakhodka fuel oil spill in 

the Sea of Japan in 1997 (Hodgins et al., 1996) while RADARSAT-2 data were used for oil spill 

detection after the 2010 Deepwater Horizon Blowout in the Gulf of Mexico (Marghany, 2015). 

Additionally, Phased Array-type L-band Synthetic Aperture Radar (PALSAR) sensor data were 

employed for oil slick observation after the accident of the Solar 1 tanker, about 24 km off the 

southern coast of Lusaca Point, Guimaras Island of the Philippines in 2006 (Migliaccio et al.,

2009) while TerraSAR-X data were used for emergent oil spill monitoring after the Hebei Spirit 

oil spill incident that occurred on the west coast of the Korean Peninsula in 2007 (Kim et al.,

2010). In this paper, we will make use of PALSAR and TerraSAR-X data.

SAR backscattering from bodies of water is heavily determined by small surface waves 

called gravity-capillary waves, which induce surface roughness. The presence of oil dampens the 

gravity-capillary waves by reducing surface tension. This makes areas affected by the spill 

appear smoother than wind-roughened ocean not covered by oil. In a SAR image, these areas 

will be darker relative to wind-roughened clean ocean surfaces. Areas affected by oil are not the 

only dark patches in a SAR image, however. Similar darkened patches in a SAR image can be 

caused by grease ice, low wind conditions (< 2 m/s), rain cells, internal waves, upwelling and 

downwelling zones (Hovland et al., 1994). These patches (e.g. low wind areas) are known as 

look-alikes, and their similarity to oil spills is a major problem in SAR-based oil spill detection.

4.2.1. State-of-the-Art in Amplitude-Based Oil Spill Detection

Over the years, several approaches have been developed to discriminate oil spill and look- 

alikes from the ocean surface and they are described here. In Solberg et al. (1999) an 

unsupervised semiautomatic system for oil spill detection was developed by combining a

93



statistical model with a rule-based modification of prior probabilities, such that objects with a 

high probability of being oil slicks are automatically identified. In the work done by Nirchio et 

al. (2005), a supervised approach using multiple linear regression was used to identify oil spills 

and a supervised approach based on support vector machine (SVM) for oil spill classification 

was employed by Brekke and Solberg, (2008) while in Moctezuma and Parmiggiani, (2014) an 

unsupervised binary segmentation scheme based on the Markov random field theory was utilized 

for oil spill detection . In Mercier and Girard-Ardhuin, (2006), a semi-supervised oil-slick 

detection was presented by using a kernel-based abnormal detection into the wavelet 

decomposition of a SAR image while according to Marghany and Van Genderen, (2001), 

supervised texture algorithms were used for automatic detection of oil spills in a RADARSAT-1 

SAR image. Fractal geometry for texture analysis based on an unsupervised approach was 

employed in a multi-resolution algorithm (Benelli and Garzelli, 1999). Artificial supervised 

neural network (ANN) approaches to detect dark formations and to discriminate oil spills from 

look-alikes were introduced in Frate et al. (2000) and Topouzelis et al. (2007).

More recently, Shu et al. (2010) developed an automated dark-spot detection using SAR 

intensity imagery. The approach used spatial density feature to differentiate between dark spots 

and the background. Intensity threshold segmentation was applied first to differentiate potential 

dark-spot pixels from potential background pixels. The density of potential background pixels 

was then estimated using kernel density estimation to determine real dark-spot pixels. In the last 

step, an area threshold and a contrast threshold were employed to eliminate any remaining false 

targets. In Garcia-Pineda et al. (2013) a supervised Textural Classifier Neural Network 

Algorithm (TCNNA) to process SAR data to map oil spills was developed. Their algorithm 

processes wind model outputs (CMOD5) and SAR data using a combination of two neural
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networks. An oil spill segmentation method was presented by Ren et al. (2016) that coupled two 

smoothing modules at the label and the pixel levels to accurately characterize oil spill structures. 

The integration of their two smoothing modules was referred to as dual smoothing. At the label 

level, Ren et al. (2016) employed the rolling guidance filter, which smoothens the label cost 

volumes and hence alleviates the ambiguous segmentation that blurs the oil spills structure. At 

the pixel level, Ren et al. (2016) employed the cooperative model which smoothens the higher 

order pixel variations, and henceforth preserves the elongated strips of the oil spill. In Xu et al. 

(2016), a detection algorithm was developed which utilized a stochastic fully connected 

continuous conditional random field (SFCCRF) approach to model SAR imagery and perform 

soft- label inference. Xu et al. (2016) did not treat all the pixel in an image as being connected, 

but instead used the SFCCRF approach in a stochastic manner to determine the connectivity of 

two pixels based on their proximity in both image space and feature space. Moreover, Xu et al. 

(2016) used the SFCCRF approach to model SAR image and to perform soft-label inference, 

which led to an efficient dark-spot detection that can discriminate between dark spot and the 

background. Taravat and Oppelt, (2014) utilized a neural network model, which adopts the 

Weibull multiplicative filter to suppress speckle noise and thereby enhancing the contrast 

between the background and the targets. In addition, they used the multilayer perceptron (MLP) 

neural networks to segment the speckle suppressed SAR image. Singha et al. (2016) developed 

an oil spill processing chain which utilized coherent dual-polarimetric (copolarized channels, i.e., 

HH- VV) TerraSAR-X images. The method combined traditional and polarimetric features for 

object- based oil spill detection and look-alike discrimination. The extracted features are divided 

into training and validation dataset., which are used as input for a support vector machine-based 

classifier (Singha et al., 2016), while in Salberg et al. (2014), the structure of the compact
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polarimetry CL-mode data was used to derive a new feature that has the ability of suppressing 

look-alikes caused by low wind.

In Section 4.5.4, we will compare a few of the state-of-the-art amplitude based oil spill 

change detection approaches mentioned above with our adapted approach to evaluate its 

performance.

4.2.2. Requirement of Current Remote Sensing-Based Oil Spill Detection Techniques

While a range of SAR-based approaches have been developed in the past, in this paper, we 

are focusing our attention exclusively on techniques using SAR amplitude data and will not 

discuss techniques based on other forms of SAR data, e.g., polarimetric. This choice is motivated 

by our goal to develop a technique that can be applied broadly to every incoming SAR image to 

warrant oil spill tracking with high temporal resolution. This is difficult to achieve by techniques 

based on polarimetric information, as the required polarimetric information is only available for 

a fraction of all possible SAR images.

For many spill detection techniques that are using SAR amplitude data, the two most 

important characteristics driving the performance of oil spill detection are wind speed at the 

ocean surface and the nature of the slick. Based on analyses from previous researchers (such as 

Gade and Redondo, 1999; Garcia-Pineda et al., 2013; Girard-Ardhuin et al., 2005; Lu et al.,

2000; Solberg and Volden, 1997), optimal conditions for oil spill detection exist for wind speeds 

from 3 m/s to 10-14 m/s while the shape of a spill was found to be important when 

discriminating between oil spills and look-alikes (Topouzelis, 2008).

To reduce the sensitivity of oil spill detection to surface winds and improve detection 

performance at the low wind speed end, we have adapted an effective change detection approach 

that we have previously published in Ajadi et al. (2016), to present a combined Scale-space
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LIpschitz-based Change tracKing (SLICK) approach which consists of a normalization step, a 

data enhancement and filtering step, and the application of the multi-scale oil spill change 

detection technique. The properties of the adapted algorithm and their relationship to the task of 

oil spill detection are as follows:

1. Instead of the original amplitude data, we now utilize a local image structure parameter 

called Lipschitz Regularity (LR) in our adapted change detection approach (Tello et al., 2007). 

We will show that LR, which is derived from the original image data, is less dependent of 

surface wind speed and, hence, reduces the dependence of spill detection on local wind 

conditions. We will also demonstrate that LR improves the separation between oil-free and oil- 

covered image pixels, leading to an improved detection performance.

2. In contrast to most other techniques, we utilized the concept of multi-scale analysis 

(Ajadi et al., 2016) to the application of SAR-based oil spill detection. Previous research (Ajadi 

et al., 2016; Celik, 2010; Hou et al., 2014) has demonstrated the effectiveness of image ratioing 

for suppressing stationary image background and improving the detectability of an object of 

interest. As the radar cross section of the ocean background is typically not stable, we are 

utilizing the capabilities of the LR transform, which reduces the sensitivity of ocean backscatter 

to surface winds (Tello et al., 2007), to allow us to normalize the radiometric response of the 

ocean background and enhance the contrast between oil-covered and oil-free ocean surfaces.

To improve oil spill detection performance, we utilize modern techniques for the treatment 

of speckle, a multiplicative noise-like signal typically associated with SAR images. The process 

of removing the speckle noise was adapted from Ajadi et al. (2016) and involves the use of 

modern non-local filtering methods to effectively suppress noise whilst preserving most relevant
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image details, and removing the residual noise by performing a multi-scale decomposition to 

generate image instances with varying resolution and signal-to-noise ratio.

As an additional important feature, we improve the accuracy of the oil spill detection by 

introducing a reliable scale selection technique into our workflow. We analyze the reliability of 

each image pixel at different resolution level. A pixel is said to be reliable if it belongs to a 

homogeneous area. After identifying at which scale each image pixel is reliable, we model the 

probability density function (PDF) of the preprocessed data (LR-transform, image ratioing, and 

noise filtering) as a mixture of Gaussian distributions (one representing background and one 

representing the oil spill) and use Bayesian inferencing methods with expectation maximization 

(EM) for their automatic separation. After separation, we then fuse the decisions made at the 

various levels using an “optimal” scale selection approach (Bovolo and Bruzzone, 2005). In the 

paper, we provide details on our implemented method and briefly address the appropriateness of 

using a mixture of Gaussian distributions to represent the PDF of our preprocessed data.

The details of our adapted approach are described in Section 4.3. A performance assessment 

using a synthetic dataset and a real application to oil spill mapping is shown in Sections 4.4 and

4.5, respectively. A summary of the presented work is shown in Section 4.6.

4.3. Oil Spill Detection Methodology

The work presented here is motivated by the challenges associated with oil spill detection 

and the desire to produce an improved and near-automatic algorithm for unsupervised oil spill 

detection in SAR images. Our approach focuses on using LR’s to normalize and enhance the 

contrast between oil-covered and oil-free ocean surfaces. We also modified our change detection 

techniques, see Ajadi et al. (2016) for the originally published technique, for background 

suppression and are using information at different resolution levels to obtain high accuracy oil
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spill change detection maps in both heterogeneous and homogeneous regions. To achieve this 

goal, a LR estimation step (Figure 4.1) followed by a modified multi-image processing workflow 

are presented (Figure 4.2). The individual processing steps of our updated change detection 

approach are explained in the following sub-sections.

4.3.1. Normalizing Ocean Backscatter through Lipschitz-Regularity Estimation

Previous research has shown that texture transforms such as LR estimation are effective 

processes for normalizing ocean clutter and improving the detectability of objects on oceans 

(Tello et al., 2007). This statement is based on the finding that the local regularity of the ocean 

backscatter (in contrast to the backscatter itself) is less dependent on environmental conditions 

such as surface wind. Hence, calculation of the local regularity of a signal lends itself for clutter 

normalization. The LR is an effective measure of the local regularity of the intensity function 

associated with a SAR image. In the following section, we present an efficient method for 

calculating LR based on two-dimensional continuous wavelet transform (2D-CWT).

4.3.1.1. Two-Dimensional Continuous Wavelet Transform

The 2D-CWT has several advantages over other multi-scale time-frequency methods, 

because it provides high flexibility, and has been successfully used in the estimation and 

detection of abrupt changes in non-stationary environments (Hambaba, 2000). In this section, the 

2D-CWT is discussed to the extent needed in the context of LR estimation. Further details on 

2D-CWT can be found in Mallat, (1999).

The 2D-CWT can be defined as the projection of a complex signal in a function space, such 

that the functions are localized in both time and frequency (Tello et al., 2007). Given a function 

4>(t) which satisfies the condition:
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centered at t  = 0 and with unity power, the function 4>US(t)  can be expressed as:

1 f t  — u \
K s ( 0  =  ^  j  (4 .2)

where u  is the translation parameter, and s is the dilation parameter. The function ^ ( t )  in (4.1) is 

the mother wavelet, while the functions 4>US(t)  are the family of wavelets resulting from 

translations and dilations of the mother wavelet (Mallat, 1999). The CWT of a signal, / ( t ) , is 

defined as:

C m W d . t  =  0 (4.1)

w / ( u , s ) =  I  (4.3)

given /  G L2(M), where * signifies conjugate. Moreover, CWT can be viewed as filtering of 

/ ( t )  using the dilated band-pass filters whose impulse response is given by the wavelet 

functions. To estimate LR using 2D-CWT, the mother wavelet ^ ( t )  used in the decomposition 

must have more than two vanishing moments. One wavelet that satisfies this requirement is the 

Gaussian wavelet whose n th derivative has A-vanishing moments. We utilize the second 

derivative of a Gaussian wavelet (also known as a Mexican hat wavelet) in our approach. It is 

worth mentioning that the 2D-CWT is carried out in the Fourier space, and the Mexican hat 

mother wavelet is expressed as:

5 1N —4&o2n T f - a 2m2\
= ------ ■=.--------o>2e x p \ — -— I (4.4).

V3

where a  is a scale factor. In this paper, we employed a 2D-CWT. For more information on the 

2D-CWT, the reader is referred to Wang and Lu, (2010).
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The objective of estimating the LR is to provide an accurate estimate of the local regularity 

of a signal, which, in our case, reflects the local roughness of the observed SAR sea clutter (Tello 

et al., 2007). By definition (Tello et al., 2007), a function f  is pointwise Lipschitz a > 0 at point 

v, if  there exists a constant K > 0, and a polynomial pv of degree m  = [a\ such that Vt  G M,

\ f ( t ) - p v ( t ) \ < K \ t - v \ a (4.5).

If 0 < a < 1 then pv (t)  = f ( v ) and the Lipschitz condition becomes:

1 /(0  - / ( v ) l  <  K \ t - v \ a (4.6)

Assuming a wavelet ^  has N  vanishing moments, and if f  is uniformly Lipschitz a < N  

over [a, b], then there exists A > 0 such that V(u,  s )  G [a, b\ xM+,

log \w f(u ,s } \  < log A + +-2 j log  s (4.7)

The LR (a in Equation (4.7)) of the signal is related to the decay of the 2D-CWT amplitude 

across spatial scales. In this paper, we employed the Gradient Modulus Wavelet Projection 

(GMWP) method (Turiel et al., 2006) to estimate LR over the standard modulus maxima method 

because the GMWP method produces a dense representation of the image analyzed. Computing 

the GMWP involves the wavelet decomposition of the modulus of the gradient of the image 

analyzed (Turiel et al., 2006), or

l o g ( w \ V f ( u , s ) \ ) K a l o g S  (4.8)

where Vf(u ,  s ) is the gradient of function and w \V f(u ,  s ) | is its 2D-CWT. The measure of the 

LR a  can be interpreted as the maximum slope of the logarithmic transform of the wavelet 

coefficients at point u  across scales.

4.3.1.2. Estimation of Lipschitz Regularity Using 2D-CWT
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As stated in Section 4.3.1, the estimation of local regularity of the ocean backscatter (in 

contrast to the backscatter itself) is less dependent on surface wind. If LR a  is conceptually 

interpreted as the slope of the local image power spectrum (Figure 4.3), this is because variations 

of wind speed mostly modify the intercept of the power spectrum (see high wind (PHW) and low 

wind (PLW) power in Figure 4.3) while the presence of oil changes slope a. The importance of 

LR in our paper is demonstrated in Section 4.5.3, where Figure 4.13 shows its effectiveness for 

ocean background normalization. It is noticeable in Figure 4.13 that in the LR-transformed data, 

oil-covered ocean water is more emphasized against a now normalized ocean background. Also, 

examining the PDF’s in Figure 4.13, it is evident that in the LR space, the background and target 

PDF’s of ocean versus oil spill are more distinct from each other and therefore easier to separate. 

After the LR was calculated for all SAR images, the next step is to perform data enhancement 

(Figure 4.2).

4.3.2. Data Enhancement

4.3.2.1. Ratio Image Formation and Fast Non-Local Means Filtering Approach

As the ocean background is largely normalized after LR transformation, we can now apply 

logarithmic ratio image formation between a post-event (after an oil spill) LR image (X%) and a 

pre-event (before an oil spill) LR image (XR) to effectively suppress ocean background and 

enhance the visibility of oil spill features. The pre-event images can be selected at any day, time, 

and location provided the image is a free ocean surface without any oil spill. Selection at any 

day, time, and location does not affect our approach because of the continuous nature of the 

ocean surface, and because all the images had undergone LR transformation. The resulting 

logarithmic ratio image is modeled as (Ajadi et al., 2016):
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where X' LS is the log-scaled ratio image and x  is an additive speckle noise contribution. To 

perform a first-order suppression of the additive noise component, we apply a fast non-local 

mean filtering procedure that results in the filtered ratio image XLS. Fast non-local mean filters 

suppresses noise without degrading spatial resolution (Buades et al., 2005). Our implementation 

of the fast non-local mean filtering procedure follows the approach of Ajadi et al. (2016) and 

more details can be found therein. After estimating XLS, we are ready to apply our adapted multi­

scale oil spill change detection technique.

4.3.3. Oil Spill Change Detection Technique

The oil spill change detection approach is shown in the lower frame of the workflow in 

Figure 4.2 and includes four key elements. The first step consists of a multi-scale decomposition 

of the input ratio images using an UDWT, resulting in K image instances that are all analyzed for 

spill detection. To facilitate optimal change detection in every pixel, we decompose the input 

log-scaled ratio image into a multi-scale image pyramid, where each scale is characterized by a 

different tradeoff between speckle noise suppression and image details. To this end, the wavelet 

transform is expressed as a multi-scale differential operator utilizing a wavelet ^ ( t )  with n  

vanishing moments. The multi-scale representation of XLS is obtained by applying an UDWT to

create XMS = {X?js . ., X"s ............. , ^LS-1}. For more information on multi-scale decomposition,

the reader is referred to Mallat, (1999).

In a second step, a separate image classification is performed at each of the K levels of the 

multi-scale data, resulting in K classification results per pixel. In our approach, the classifications

X ’l S  =  10 log(x) +  101og (4.9)
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are performed automatically and adaptively using an Expectation-Maximization (EM) algorithm 

supported by mathematical morphology filtering following the approach of Ajadi et al. (2016). In 

a third step, we determine for every pixel, which of the multi-scale classification results can be 

considered reliable and therefore should be considered when determining the final classification 

result. As will be shown in Section 4.3.3.2, a decision on the reliability of a classification at a 

specific spatial scale can be made based on image context. Finally, in a fourth step, we conduct a 

scale-driven fusion of all “reliable” classification results to result in a final detection mask for a 

targeted spill event.

4.3.3.1. Classification by Expectation-Maximization (EM) with Mathematical

Morphology

Following our previous work in Ajadi et al. (2016), after the images have been decomposed 

into the multi-resolution set XMS, each decomposed image undergoes mathematical morphology 

processing to simplify a subsequent image classification. Please refer to Ajadi et al. (2016) for 

more information on the motivation behind applying mathematical morphology processing. 

Mathematical morphology defines a family of morphological filters, which are nonlinear 

operators, that aim at emphasizing spatial structures that are homogeneous in a gray level image 

(Ajadi et al., 2016). To retain the spatial structures in our image, we applied opening and closing 

by reconstruction, using a square shape structuring element of size 20. From an analysis of a 

broad range of data from different change detection projects we found (1) that a 20 x 20 pixel­

sized structuring element of the morphological filter led to the most consistent results; and (2) 

that the oil spill change detection performance changed slowly with deviation from the 20-pixel 

setting. We applied our mathematical morphology following the approach is Ajadi et al. (2016),
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and the new multi-scale decomposition XMD stack now contained morphological filtered images 

at each level in XMS, as below:

After the mathematical morphology step, we perform a separate image classification at each 

of the K resolution levels, resulting in K classification decisions per pixel. To automate the 

classification process, we employ an EM algorithm. According to Moon, (1996), the EM 

algorithm consists of two major steps: an expectation step followed by a maximization step. In 

our paper, the goal of the EM algorithm is to calculate the probability that a pixel belongs to a set 

of predefined classes, and every pixel is assigned to the class with the highest probability.

Assume an image y  is the k th level image in XMD, we infer the class (w$ = (o>c, wU))  that 

each pixel in y  belongs to, with o>c defining the oil spill class and wU corresponding to the ocean 

background. Using 0 s =  f a Uc, ° 2 C> ^uu,°'(2S) as our current (best) estimate for the full 

distribution, such that mean and variance are sufficient to define the density function 

associated with the oil spill areas’ u>c, and mean p.^u and variance o'^u can be used to describe 

the density function related with the ocean background’ a>U. Given 0  as our improved estimate, 

the expectation step at s th iteration is calculated by the conditional expectation:

(4.10).

Q (0 |0 S) =  E[In P ^ l, y \ 0 \ y , 0 s)]

£  P f a i \ y , 0 S)In P(^$ ,y \0 ) (4.11).

The maximization step maximizes Q (0 |0 S) to acquire the next estimate:

0 (s+1) =  a rg m ax Q (0 |0 S) (4.12).
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The iterations cease when the absolute differences between the previous and current 

variables are below a tolerance value (e). In this paper, we empirically set the tolerance value e to

calculate the posterior probability of the k th level image in XMD, using Bayes’ formula. The EM 

algorithm is applied separately to all K levels of the multi-scale decomposition series, XMD, 

resulting in a stack of posterior probability maps PPMD = {PP0, .... PP",. . . . ,  PPK~S} of depth K. 

Each pixel in each posterior probability map (PPMD) is assigned to the class with the highest 

probability resulting in the set of classification maps Abn = {A0, . ...Ak, ... . ,AK~S} of depth K 

using

For more details about the EM algorithm, the reader is referred to Moon, (1996).

4.3.3.2. Selection of Reliable Scale

To obtain a change map with high accuracy across an entire image and independent of local 

image structure, we select a subset of resolution scales from all K scales that we consider 

“reliable” for the classification of a certain image pixel. The selection of reliable scales considers 

whether the pixel being analyzed belongs to a homogeneous area or a border area between 

features with different gray value (Figure 4.4).

As image resolution is reduced toward higher decomposition levels, the image information 

near border regions becomes more biased due to the mixing of neighboring homogeneous areas 

with different properties that are occurring in these areas (see Figure 4.4). Hence, data below an

10-6. The higher the tolerance value, the faster the convergence and the lower the tolerance value, 

the slower the convergence. Once the iteration ceases, the final optimal 0 (S+1) is used to

r K
change, i f  m a x { P P 1} 

i = 0
(4.13)

vno — change, otherwise
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acceptable “reliable” resolution scale cannot be used to analyze border area pixels to avoid 

unreliable (biased) classification results.

To express whether a pixel belongs to a homogeneous or heterogeneous (border) area at a 

given scale k, we calculate a multi-scale local coefficient of variation (LCVk(i , j )  = 

a k (j-, j)/pk (.i,j)) and a global coefficient of variation (CVk = a k/ g k) (Bovolo and Bruzzone, 

2005), where g k (i , j ) and o k (i , j )  are the local mean and local standard deviation at resolution 

level k  and spatial position ( i , j) . A constant kernel of size 9 is utilized throughout all resolution 

levels. Low values of the LCV indicate homogeneous areas, while high values correspond to

border areas. In the homogeneous area, a pixel is said to be reliable for that resolution level if  the

following condition is satisfied:

LCVk( i , j ) <  CVk (4.14).

At each resolution level, every pixel (i, j )  that satisfies Equation (4.14) will be reliable and 

will have the form as shown below in Equation (4.15), with S%j being the lowest resolution level

that is considered reliable for pixel (i, j )  and XRlSJ being the set of images with reliable scale:

XR? = {XoS-’X g S .x R S J} (41S)-

4.3.3.3. Scale-Driven Fusion of all K Classification Results Per Image Pixel

In this step, we determine the final oil spill change detection (CD) map based on the set of K 

initial classification results as well as information about the reliable scale that was derived 

in Section 4.3.3.2. for each image pixel. To generate the CD map we employ fusion at the 

decision level by an “optimal” scale selection (Bovolo and Bruzzone, 2005). According to this 

approach, each pixel in CD is assigned to the class identified at the lowest reliable resolution
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level of this pixel. The reliable scale with the lowest resolution is used as at this scale most of the 

noise was removed and the signal-to-noise ratio was maximized, i.e.:

CD(i, j) G ^ i ^  A ^ f a j )  G w$,wi th l  = {c,u} (4.16).

4.4. Performance Assessment Using Simulated Oil Spill Data

4.4.1. SAR Simulation of Ocean Surface Covered with Oil Spill

To assess the robustness of our oil spill detection approach under controlled conditions, we 

took advantage of an existing SAR image simulation concept published in Franceschetti et al. 

(2002). We generated simulated SAR images representing two frequency bands (L-band and X- 

band). In both oil spill situations, the ocean surface was generated by using a multiscale model in 

the simulator that can be best described as the superposition of a swell and a roughness of the 

order of the incident wavelength. As the presence of oil on the ocean surface reduces the friction 

and surface tension between liquid surface and wind, we accounted for the oil influence by 

adopting the Marangoni theory, as a damping of the ocean spectrum. For more information about 

the mathematics behind the Marangoni theory, the reader is referred to Alpers and Huhnerfuss, 

(1988). The oil spill signature used in the SAR simulator was generated as a level curve of a 

fractional Brownian motion (fBm) process. Similar to Coscione et al. (2011), a realization of the 

fBm process was created using the Weiersrass-Mandelbrot (WM) function, which is a 

superposition of M sinusoidal tones, spaced by an irrational parameter v, as in:

M-l
z ( x , y )  = A ^  Cpv -Hps in \k Qv p(xcos l¥p + ysinWp) + &p] (4.17)

p=0

where H is the Hurst coefficient, k 0 is the wavenumber, A is the vertical overall height scaling 

factor, Cp, 0 p, Wp are amplitude, phase and direction coefficients respectively (Danisi et al.,
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2007). In addition, the WM function was also used to simulate the shapes of areas with low wind 

intensity with respect to the free ocean surface, generating an ambiguity problem. For more 

information about the SAR simulator, the reader is referred to Franceschetti et al. (2002).

In our paper, we consider two SAR simulations, relevant to L- and X-band operating 

frequencies. Both simulations contain three types of features: (1) regular wind driven ocean 

background; (2) an oil spill feature; and (3) a low-wind oil spill look-alike. Figure 4.5a shows the 

results of the L-band simulation, where a surface wind speed of 10 m/s was used to simulate the 

ocean surface response. Figure 4.5b depicts the simulated X-band data, which was also generated 

for a wind speed of 10 m/s. For both simulations, we considered an ocean swell of 300 m, with a 

height of 3 m. The wind direction is 30° with respect to azimuth, the sensor look angle is 450, and 

the sensor’s pulse repetition frequency (PRF) is 1736 Hz. In both cases, a spilled substance was 

simulated and highlighted on the image (Figure 4.5). The spilled substance corresponds to oleyl 

alcohol (OLA), where its dampening effect translates to a drastically reduced radar brightness in 

the spill area. Also, included in the simulation is a low-wind area (Figure 4.5). For this feature, a 

reduced wind speed of 2 m/s was used, also leading to a significant reduction in radar brightness. 

The simulations have an HH polarization, with a resolution of 5 m in azimuth, 18 m in ground 

range, and 13 m in slant range.

Following the outline approach in Section 4.3, LR was estimated for both the simulated L- 

band and X-band acquisitions (Figure 4.6) to perform background normalization and to optimize 

the contrast between oil spills and look-alikes. It can be observed from the LR-transformed 

images in Figure 4.6 that the LR pre-processing enhances the contrast between oil-covered areas, 

low wind look-alikes, and oil-free ocean surfaces. Qualitatively, look-alikes and oil spill features, 

whose signature was very similar in the amplitude data of Figure 4.5, are different from each
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other after LR transformation. Also, the ocean background is now normalized even between L- 

band and X-band observation frequencies.

4.4.2. Using Simulated Data to Evaluate Oil Spill Detection Performance on our Adapted 

and an Alternative Oil Spill Detection Approach

After estimating the post-event and pre-event LR images for the L-band and X-band 

acquisitions, ratio images were generated and filtered (according to Section 4.3.2). After 

filtering, we applied the processing steps discussed in Section 4.3.3 to arrive at our final oil spill 

change detection result.

To evaluate the performance of our modified method (see Section 4.3), we conducted a 

qualitative and quantitative comparison of our algorithm to the result of a dark-spot detection 

(DSD) approach with spatial density thresholding published in Shu et al. (2010). We chose this 

method as a reference because of its unsupervised nature, its amplitude-based concept, and its 

high degree of automation, making it a good match for our own algorithm.

To evaluate our method’s performance, we used the ground truth image for L-band and X- 

band acquisitions provided within the simulation process (Figure 4.7). Three performance 

measures were defined for use in performance assessment. These measures include: (i) the 

number of false alarms (FA), which assesses the number of background pixels incorrectly 

classified as oil spill. The false alarm rate (FAR)  is computed in percentage as (FAR) = 

FA/(FA + TN) x  100%, where TN is the number of background pixels correctly classified as 

background; (ii) the number of missed hits (MH),  which identifies the oil spill pixels incorrectly 

classified as ocean background. The missed hit rate (MHR)  is computed in percentage as 

(MHR) = MH/(M H + TP) x  100%, where TP is the number of oil spill pixels correctly 

classified as oil spill; and (iii) the kappa coefficient which measures the agreement between
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classification pixels and ground truth pixels. A kappa value of 1 represents perfect agreement 

while a value of 0 represents no agreement.

The classification results for both X-band and L-band data are shown in Figure 4.8 and 

Figure 4.9, respectively. Figures 4.8a and 4.9a correspond to the oil spill map produced by our 

algorithm while Figures 4.8b and 4.9b show the results of the reference techniques. The achieved 

classification performance according to FAR, MHR, and kappa coefficient parameters is shown 

in Table 4.1.

Based on Table 4.1, Figure 4.8, and Figure 4.9, the change detection result from the 

reference technique (DSD with spatial density thresholding) showed a lower performance for 

both the L-band and X-band acquisition compared to our method. The most striking difference is 

that the reference technique was unable to distinguish between the oil spill and the simulated 

low-wind lookalike. This is due to the fact that the reference method (Shu et al., 2010) is using 

the original radar brightness rather than the LR-transformed data as a basis for oil spill 

classification.

When applied to the L-band acquisition, the reference algorithm produced a false alarm rate 

of 1.79%, a missed hit rate of 1.31%, and a kappa coefficient of 0.76. At X-band, the reference 

technique gave a false alarm rate of 1.90%, a missed hit rate of 0.75%, and a kappa coefficient of 

0.59. In contrast, our method achieved a much smaller false alarm rate of 0.11% at L-band, while 

maintaining a small missed hit rate of 1.81%. Due to the reduction of false alarms, our 

algorithms achieved a much-improved kappa coefficient of 0.97. Similar results were achieved 

for X-band FAR= 0.22%, MHR=0.24%, and a kappa coefficient of 0.93.
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4.5.1. Description of Area

To evaluate the performance of our algorithm under real imaging conditions, we analyzed 

image data of the 2010 Deepwater Horizon spill in the Gulf of Mexico (Figure 4.10). The oil 

spill originated from the Macondo Well, which is located in the Mississippi Canyon Block 252, 

approximately 93 km southeast of the Mississippi River delta (28.74°N, 88.39°W) (McNutt et 

al., 2011). The oil spill originated from a series of explosions that occurred at a 33,000-ton 

offshore oil-drilling rig (Deepwater Horizon), on the morning of April 20, 2010. The explosions 

resulted in oil leaking from the Macondo Well at an estimated rate of 35,000 to 60,000 barrels 

per day, and lasting for almost three months (Marghany, 2014). By April 25, the oil slick had 

spread very fast, covering about 1,500 km2 of the ocean surface. During the three-month spill 

period, approximately 4.9 million barrels of oil were spilled.

4.5.2. Description of SAR Images Acquisitions

To analyze the performance of our approach when applied to X-band SAR data, we acquired 

four TerraSAR-X SAR images from the German Aerospace Center (DLR) through a PI proposal 

that was submitted by one of our team members. The image set includes one pre-event image 

acquired on April 25, 2010 (Figure 4.11a) and four post-event images acquired on April 25,

2010, April 30, 2010, May 1, 2010, and May 15, 2010, respectively (Figure 4.11b, Figure 4.11c, 

Figure 4.11d, and Figure 4.11e). In addition, three PALSAR images were available to us through 

the services of the Alaska Satellite Facility as the NASA Distributed Active Archive Center 

(DAAC) to also test the performance at L-band frequencies. Figure 4.11f is the PALSAR pre­

event image acquired on May 28, 2010, while Figure 4.11g and Figure 4.11h are the post event 

images acquired on May 28, 2010 and June 26, 2010 respectively. The pre-event images in both

4.5. Application to Oil Spill Detection in SAR Images
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X- and L-band show an oil free ocean surface and are used as reference in the change detection- 

based oil spill detection approach.

The TerraSAR-X images were acquired in VV polarization and in ScanSAR mode to 

maximize spatial coverage. The images were acquired with a pixel size of 8.25 m, and an 

incidence angle of 37.9°. The PALSAR images were acquired in Fine Beam Double Polarization 

(FBD) mode with a pixel size of 12.5 m, and an incidence angle of 38.7°. Only HH polarization 

was used for the PALSAR image analysis. Figure 4.11b (a post-event image) shows that there 

are two dark spots. Visually looking at the true color of a Moderate Resolution Imaging 

Spectroradiometer (MODIS) on NASA’s Aqua satellite, we concluded that the dark spot in the 

southwestern part of the image in Figure 4.11b is a true oil spill while the dark spot in the 

southeastern part is as a result of low wind speed. The rest of the post-event images contain only 

minimal low wind speed areas so that Figure 4.11b is used to demonstrate our ability to 

distinguish between oil covered and low-wind areas.

4.5.3. Experimental Methods and Analysis of Results

To normalize image background and enhance the contrast between oil-covered waters, look- 

alikes, and open ocean, we performed a texture transform for all SAR amplitude images by 

calculating LR using the GMWP presented in Section 4.3.1. Here, we used CWT with seven 

decomposition levels and a Mexican hat mother wavelet. We subset each image in Figure 4.11 

into tiles [3 x 3] and calculate LR separately for each tile. Figure 4.12 shows the LR-transformed 

data of Figure 4.11. As previously mentioned, the ocean background appears near-normalized in 

the LR domain, with consistent LR levels around 0.98. At the same time, oil covered ocean areas 

have distinctly higher LR values around 1.15.
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After texture transformation, the eight LR images were used to generate six different ratio 

images (four for TerraSAR-X and two for ALOS PALSAR), corresponding to six different area 

of interest (AOI) images (Table 4.2). To implement the classification process, each of the six 

ratio images (AOI 1-6) shown in Table 4.2 were filtered and decomposed into six resolution 

levels. The application of this wavelet transform leads to an increased improvement of the 

contrast between oil spills and other areas with every decomposition level. For example, in 

Figure 4.13 we qualitatively compare the characteristics of a PALSAR image in its original state, 

and after LR and wavelet transform has been applied. Figure 4.13a, depicts the original 

amplitude image while Figure 4.13b depicts its near-unimodal histogram distribution. Detecting 

oil spills from this image would result in many false alarms. In Figure 4.13c, an LR-transform 

has been applied resulting in an increase of contrast between open ocean and oil spill areas. This 

increase in contrast can be seen in Figure 4.13d as well, where the histogram shows a bimodal 

distribution. Figure 4.13e highlights the contrast that has increased further after both LR and 

wavelet computations were applied to the data. In addition to improving contrast, the wavelet 

operation also led to a significant reduction of noise, manifesting itself in narrower peaks in the 

image histogram in Figure 4.13f.

Another example showing the importance of LR and wavelet transform can be seen in a 

TerraSAR-X image, where the effect of low wind areas is noticeable. As shown in Figure 4.14, a 

multimodal histogram distribution occurs as the decomposition level increases, and this can help 

to separate oil spill from low wind and free ocean surface. The LR in this application is a way to 

enhance the contrast for dark spot detection but its main interest actually relies in that it 

discriminates between different textures and therefore allows dark spot classification into oil 

spills and look-alikes. It is important to note that, as the decomposition level increases, the
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geometric details of the oil spill boundary decrease. This, however, suggests the use of lower 

decomposition levels (higher resolution) to analyze the border region while using the remaining 

levels to analyze the homogeneous areas (see Section 4.3.3).

After classification of the individual decomposition level images and the selection of 

reliable scales, we used the approach presented in Section 4.3.3.3 to fuse the K classification 

results achieved per pixel and to produce the final oil spill change detection map (see Figure 

4.15b). To conduct a qualitative and quantitative evaluation of our approach, a ground truth map 

for AOI 1 was produced (Figure 4.15a). This ground truth map was generated via a manual 

digitization of the oil spill boundary in the original SAR image. The white areas in Figure 4.15a 

represent polluted by oil, while the black areas correspond to free ocean surface. Figure 4.15b 

shows the classification results for AOI 1 compared to the available ground truth information 

(white outlines in Figure 4.15b) to exemplify the classification performance of our approach. 

Even though the oil spill in AOI 1 was embedded in heterogeneous background, a good match 

between the near-automatic detection and the ground truth information is observed. In addition to 

this qualitative comparison, we conducted a quantitative analysis of the classification result of 

AOI 1. When comparing the change detection map of AOI 1 to the ground truth image, our 

approach yielded a false alarm rate of 0.07%, a missed hit rate of 5.56%, and a kappa coefficient 

of 0.96. Even though the original amplitude image (Figure 4.11b) is surrounded by 

heterogeneous background, very few false alarms were detected in the low wind areas. The 

minimal amount of missed hits can be seen in some areas where the boundaries of the oil spill 

are not clearly defined, and are smoothed by the wavelet transform. From both the qualitative 

and quantitative analysis, it is evident that our approach has identified the spill area, preserved 

the boundary of the spill, and was able to distinguish between true spills and low-wind look-
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alikes. From our result, we estimated that the oil spill covered a total area of 1060 km2 at the 

acquisition time of this image.

Classification results for the remaining five images are shown in Figure 4.16, indicating high 

classification performance also for these images. Qualitatively (visual) analyzing the case of AOI 

2 and AOI 3, the boundary between the oil spill and the free ocean surface is well-delineated and 

only a few missed hits can be identified (Figure 4.16b and Figure 4.16d). For these cases, the oil 

spills captured by these images were estimated to have covered an area of 2813 km2 and 2474 

km2, respectively. AOI 4 was a complex oil spill dealing with a spill signature embedded in 

heterogeneous background (Figure 4.16e). Despite this complexity, the classification result 

shows an excellent recovery of the oil spill area (Figure 4.16f), whose extent was estimated to be 

389 km2. In AOI 5, the oil spill region was cleanly extracted from a homogeneous background, 

and the spill area was estimated to be 272 km2 (Figure 4.16h). Also in AOI 6, a good match 

between our classification result and the oil spill boundary was achieved. The oil spill in AOI 6 

covered an area of 81 km2 (Figure 4.16j).

4.5.4. Comparison with other Oil Spill Change Detection Methods

4.5.4.1. Comparison of Detection Map to a few Selected Methods

As stated in Section 4.2.2, we are focusing our attention exclusively on techniques using 

SAR amplitude data and will not be comparing with techniques using polarimetric data. To 

evaluate the performance of our algorithm relative to a few selected methods in this area of 

research, we conducted an extensive qualitative and quantitative comparison of the results of 

SLICK to results of other published change detection methods. The following alternative 

methods were used in the comparison: (a) Method A: semi-supervised change detection (SSCD) 

based on using a kernel-based abnormal detection and the wavelet decomposition of the SAR
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image (Mercier and Girard-Ardhuin, 2006); (b) Method B: dark-spot detection (DSD) with 

spatial density thresholding (Shu et al., 2010); (c) Method C: Bundling tree-based ensemble 

classifier (Xu et al., 2014); and (d) Method D: Bagging tree-based ensemble classifier (Xu et al., 

2014). For this comparison, we used the data from AOI 1 due to its more complex setup, 

including oil spill and look-alikes (Figure 4.17 and Table 4.3).

To improve the comparability of detection results, each alternative method has undergone 

the data enhancement and filtering step of the SLICK approach including logarithmic scaling, 

ratio image formation, and fast non-local means filtering. Following the approach in Section 4.3, 

our approach (Figure 4.17a) yielded a false alarm rate of 0.07%, a missed hit rate of 5.56%, and 

a kappa coefficient of 0.96 for the data in AOI 1. Based on Figure 4.17b, one can observe a 

performance degradation in Method A when compared with our approach. While the false alarm 

rate was small, it led to a significantly inflated missed hit rate of 40.30%, and a reduced kappa 

coefficient of 0.66. The lower detection rate is due to the similarities in grey level pixels between 

the free ocean surface, low wind speed areas, and oil spill areas. This spectral confusion has led 

to several false alarms and missed hits in the final oil spill result. It is worth noting that Method 

A strongly depends on the selection of training areas and the kernel design used. We believe that 

Method A is likely to give a promising result in a homogeneous environment, while it’s more 

difficult to apply in more heterogeneous regions.

The oil spill change detection results from Method B are also inferior to our approach, 

mostly due to the difficulties of Method B with rejecting look-alikes. While computationally 

efficient, the application of intensity threshold segmentation which depends on the radiometric 

nature of the image resulted in high false alarms. This method generated a false alarm rate of 

8.16%, a missed hit rate of 5.63%, and a kappa coefficient of 0.83.
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Method C gave a reasonable result when compared to our approach. This is mainly due to 

the integration of a prediction function as an added predictor for building the classification trees. 

Due to its basis on amplitude information, some false alarms remain in the low-wind lookalike 

region. Method C achieved a false alarm rate of 4.16%, a missed hit rate of 11.23%, and a kappa 

coefficient of 0.85.

The tree-based ensemble technique used in Method C also gave a result similar to Method 

D. The method generated several trees by using random bootstrap samples of the dataset, and 

assigned a class membership based on majority voting among the trees. The method produced a 

false alarm rate of 4.17%, a missed hit rate of 11.23%, and a kappa coefficient of 0.85. Note that 

this method is the most computationally expensive of all tested approaches. This is due to the 

many random (bootstrap) samples of the dataset that is required by the technique.

4.5.4.2. Performance Estimation using ROC Curves and Statistical Comparison

We show the performance analysis by calculating full receiver operating characteristic 

(ROC) curves for each technique. The ROC curve is a two-dimensional plot in which a true 

positive rate is plotted against a false alarm rate as thresholds or other model parameters are 

varied. In constructing the ROC curves, predicted probabilities are used rather than a binary 

result. Using a binary result corresponds to a single point in an ROC space. After the 

construction of the ROC curves, we compare each change detection method not only by the 

shape of the ROC curves but also by the area under the ROC curve (AUC). AUC close to 100% 

depicts a high detection performance.

A qualitative analysis of the generated ROC curves (Figure 4.18) indicates that our method 

outperforms all other tested methods in detection performance. It’s true positive rate is growing 

faster for smaller false alarm rates and reaches higher true positive rates than all other methods.
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The results shown in Figure 18 imply that our method achieves a better overall performance, 

with an AUC of 99.4 %. Other change detection methods like Method A, B, C and D gave an 

AUC of 93.2%, 98.3%, 94.9%, 95.1% respectively.

4.5.4.3. Statistical Comparison of the Performance Matrix using Wilcoxon Signed Rank 

Test

Furthermore, in this paper, we are also interested in statistically determining if there are 

significant differences in terms of performance between the individual change detection 

methods. In estimating this, we divide the change detection result of each method into 64 

different tiles. For each of the 64 different tiles, we estimated overall accuracy that are then used 

as input data for the Wilcoxon signed rank test. We chose the Wilcoxon signed rank test because 

of its non-parametric nature and the non-Gaussian distribution of our data. We defined the null 

hypothesis, such that the differences in performance between each change detection method are 

not statistically significant from one another using a p-value of 0.05. A p-value greater than 0.05 

indicates that our null hypothesis should be accepted, while a p-value lower than 0.05 indicates 

that our null hypothesis should be rejected. The result of our comparison can be seen in Table IV 

and shows that our approach is statistically significant when compared with other methods, with 

a p-value less than 0.05. However, Method B, C and D with a p-value greater than 0.05 are not 

statistically significant from one another.

4.6. Conclusion

An approach for oil spill detection from SAR images based on multi-scale time-frequency 

theory was presented in this paper. The Scale-space LIpschitz-based Change tracKing (SLICK) 

approach, which includes a combination of a normalization step, a data enhancement and
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filtering step, and the application of the multi-scale oil spill change detection technique were 

adapted from Ajadi et al. (2016) for oil spill detection. A technique based on LR was presented 

first to normalize the reflectivity properties of ocean water and maximize the visibility of oil in 

water. The method of LR is robust, simple, and well-suited to an unsupervised change detection 

approach. Integration of modern non-local filtering and UDWT techniques gave a high 

robustness against noise. In addition, our oil spill change detection technique gave a good result 

when an EM algorithm with mathematical morphology are integrated, and preservation of the 

geometric details in the border regions was shown when fusion at the decision level by an 

“optimal” scale selection was employed. Analyzing the performance result of our approach using 

both an oil spill simulated and a real oil spill event dataset, we found out that our approach gave 

a very high detection rate. In all, this approach can be used to detect oil spills and discard false 

alarms produced by natural phenomena. Also, our approach outperformed several other selection 

methods, and it is useful in lieu of other solutions, where training of features can be time 

consuming and difficult.

The main drawback of the approach is the assumption that the image is a mixture of 

Gaussian distribution. Future work will explore using other look-alikes such as biogenic slicks in 

the presence of an oil spill. We would also like to apply our approach to detect oil spills in sea 

ice. Also, we will explore using Gamma distribution for fitting the EM algorithm rather than the 

assumed Gaussian distribution.
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Figure 4.1. Workflow for our LR estimation, where X N LR images are all the Lipschitz 

transformed SAR images, 2D-CWT is a two-dimensional continuous wavelet transform, and ‘W ’ 

are the wavelet coefficients.
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Figure 4.2. Workflow of our adapted approach. Here, UDWT is an undecimated discrete wavelet 

transform, X°R is the original log-ratio image, X lR is the k th decomposed image, X^j^1 is the 

lowest decomposed level, and k  is the level of decomposition.
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Figure 4.3. Plot showing the LR a  of the power spectrum of high wind (Phw) effect, low wind 

(Plw) effect, and areas affected by oil.
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Figure 4.4. Selection of reliable scale. White areas may represent areas of no-change, while gray 

areas may represent areas of change. Solid box indicates homogeneous regions, while the dashed 

box indicates a border region.
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Figure 4.5. Two examples of SAR simulations showing: (a) the L-band acquisition with a wind 

speed of 10 m/s in the clean ocean environment, a wind speed of 2 m/s in the look-alike 

environment and area affected by oil spill; and (b) X-band acquisition with a wind speed of 10 

m/s in the clean ocean environment, a wind speed of 2 m/s in the look-alike environment and 

area affected by oil spill. It is worth mentioning that even though there are intensity variations 

between the L-band and X-band acquisitions, they are normalized after LR (see Figure 4.6).
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Figure 4.6. Estimated LR for (a) L-band acquisition; and (b) X-band acquisition.
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Figure 4.7. Ground truth change map for (a) L-band; and (b) X-band acquisition. White area 

depicts area affected by surfactant material and black area shows free ocean surface.
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Figure 4.8. Oil spill classification map after applying (a) SLICK; and (b) DSD to the L-band 

acquisition.
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Figure 4.9. Oil spill classification map after applying (a) SLICK; and (b) DSD to the X-band 

acquisition.
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Figure 4.10. Location of the Deepwater Horizon where the red box indicates area of the SAR 

acquisitions.

139



Figure 4.11. TerraSAR-X images acquired on: (a) April 25, 2010; (b) April 25, 2010; (c) April 

30, 2010; (d) May 1, 2010; and (e) May 15, 2010. PASAR image acquired on: (f) May 28, 2010; 

(g) May 28, 2010; and (h) June 26, 2010.
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Figure 4.12. LR-transformation of TerraSAR-X images acquired on: (a) April 25, 2010; (b) April 

25, 2010; (c) April 30, 2010; (d) May 1, 2010; and (e) May 15, 2010. LR for PALSAR image 

acquired on: (f) May 28, 2010; (g) May 28, 2010; and (h) June 26, 2010.
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Figure 4.13. The PALSAR image is represented by a, and b shows its unimodal histogram 

distribution. The same image after LR has been applied with one level (lev. 1) of decomposition 

is depicted as c, and d denotes its bimodal histogram distribution. The same image after applying 

LR with five levels (lev. 5) of decomposition is denoted as e, and f  shows its multimodal 

histogram. As we transfer down decomposition levels (lev. 2 to lev. 4) the distribution 

transforms into the multimodal distribution.
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Figure 4.14. The TerraSAR-X image is represented by a, and b shows its unimodal histogram 

distribution. The same image after LR has been applied with one level (lev. 1) of decomposition 

is denoted as c, and d shows its bimodal histogram distribution. The same image after applying 

LR with five levels (lev. 5) of decomposition is denoted as e, and f  shows its multimodal 

histogram.
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Figure 4.15. a) Ground truth change map, where white area depicts oil spill affected area, while 

black area shows free ocean surface and b) the overlay of Change detection map resulting from 

fusion at the decision level applied to AOI 1 with ground truth image.

144



Figure 4.16. Images a, c, e, g and i show the original amplitude images, while image b, d, f, h, 

and j show each of their corresponding oil spill classification map after applying SLICK 

approach. The original amplitude images are repeated here for comparison.

145

N
«0

»9
So

8Z
 

M
u0

t0
So

8I
 

IM
«0

.W
o8

Z 
N

JM
M

Z
 

N
u0

<0
Z«

6Z
 

N
l«

0<
0t

o6
Z 

N
L0

.0
fo

8Z
 

M
»0

»0
a6

Z 
IM

«0
.0

Zo
6Z



88#20’ 0” W  88*0’0” W  88"20,0 " \ \  88n0’0 "W

88"20,0,'\V 88*0’0”W 8ff20’0”W  88n0’(TW

88°20’0”W 88°0’0”W 88°20’0”W 88°0’0”W

88°20’0”W 88°0’0”W 88°20’0”W 88°0,0,,\V

88°20’0”W 88°0’0”W

SS'̂ O’fFW 88,I0’0,,\V

Figure 4.17. Oil spill change detection maps showing (a) adapted approach, (b) reference method 

A; (c) reference method B; (d) reference method C; and (e) reference method D.
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Figure 4.18. The ROC curves of the adapted approach and alternative methods.
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Table 4.1. False alarm, missed hit, and kappa coefficient of our adapted approach versus DSD.

False Missed 
Alarm (%) Hit (%)

Kappa
Coefficient

L-band change Detection
Adapted approach 0.11 1.81 0.97

DSD 1.79 1.31 0.76
X-band change Detection

Adapted approach 0.22 0.24 0.93
DSD 1.90 0.75 0.59
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Table 4.2. Combination of image acquisitions used to generate the ratio images for oil spill 

change detection

Pre-event Post-event AOI Figure Sensor
25-Apr-2010 25-Apr-2010 AOI 1 4.15(b)
25-Apr-2010 30-Apr-2010 AOI 2 4.16(b)
25-Apr-2010 01-May-2010 AOI 3 4.16(d) TerraSAR-X
25-Apr-2010 15-May-2010 AOI 4 4.16(f)
28-May-2010 28-May-2010 AOI 5 4.16(h) PALSAR
28-May-2010 26-Jun-2010 AOI 6 416Ci)
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Table 4.3. False alarm, missed hit, and kappa coefficient of our adapted approach with different

approaches using AOI 1

False
Alarm

(%)

Missed
Hit
(%)

Kappa
Coefficient

Adapted approach 0.07 5.56 0.96
Method A 0.37 40.30 0.66
Method B 8.16 5.63 0.83
Method C 4.16 11.23 0.85
Method D 4.17 11.23 0.85
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Table 4.4. Comparison of each change detection method with one another using Wilcoxon 

Signed Rank Test and p-value of 0.05

Adapted
approach

Method
A

Method
B

Method
C

Method
D

Adapted approach 
Method A 
Method B 
Method C 
Method D

2.5e-10
3.4e-04
3.3 e-11
2.4 e-11

2.62e-03 
8.6 e-04 
1.0 e-03

2.3e-01 
2.1 e-01 5.6 e-01

e = e x p o n e n tia l
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Chapter 5 Detection of Aufeis-related Flood Areas in a Time Series of High Resolution 

Synthetic Aperture Radar Images using Curvelet Transform and Unsupervised

Classification 1

5.1. Abstract

Synthetic Aperture Radar (SAR) images have been recognized as a valuable data source for 

mapping ice and open water in cold regions. Compared to other sources, SAR’s weather and 

illumination independence and large area coverage at high spatial resolution support frequent and 

detailed observations. Accordingly, SAR’s has potential in supporting near real-time monitoring 

of natural hazards, such as a flood detection, if  combined with automatization in the image 

processing. We utilized a change detection approach based on wavelet analysis to map aufeis- 

related flooding on the Sagavanirktok River in northern Alaska. We here define aufeis flooding 

as the combination of ice and open water prior to the onset of snowmelt. The flood detection 

technique was applied to a time-series of multi-temporal SAR images and we included a tile 

based technique to increase the classification accuracy and to delineate smaller flooded areas.

We implemented the curvelet filtering method to preserve the full resolution of the original SAR 

data while reducing the influence of speckle on flood detection performance. Curvelet filters 

have a high degree of directionality and give a sparse representation of curved features. 

Furthermore, we estimated the expected value for each change class using an intensity 

thresholding technique to perform automatic classification using probabilistic Bayesian 

inferencing. Finally, we incorporated a time-series analysis technique in our workflow to 

understand the various type of aufeis-related change in our study area.

This paper provides near real-time monitoring by generating detailed flood parameters such 

as flood classification probabilities, flood-related backscatter changes, and flood extent. The
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generated flood maps show the spatial extent and day-to-day progression of the 2015 aufeis 

flooding event across a 1004 km2 area as determined from a series of seven TerraSAR-X 

datasets. Warm air temperatures appeared to have led to accelerated aufeis growth. The tool can 

help decision-makers obtain critical information on near-real time aufeis flood extent in order to 

reduce damages and provide effective emergency relief.

1 Ajadi, O.A.; Meyer, F.J.; Liljedahl A (2017), Detection of aufeis-related flood Areas in a Time 

Series of High Resolution Synthetic Aperture Radar Images using Curvelet Transform and 

Unsupervised Classification, Prepared for submission to IEEE Journal o f  Selected Topics in 

Applied Earth Observations and Remote Sensing 2017.

5.2. Introduction

During recent years, climate change and the increasing frequency of extreme weather events 

have been widely recognized as a serious environmental problem (National Academies of 

Sciences and Medicine, 2016). Changes in the climate have led to an increase in natural disaster 

such as flood, tsunami, and hurricane (Van Westen and Soeters, 2000). Near real-time 

monitoring and surveillance processes can help provide an overview of a disaster situation, 

increase response activities, and improve crisis management. Remote sensing is a powerful tool 

to aid near real time monitoring (Matgen et al., 2011) and especially in remote regions like the 

Arctic when on-the-ground monitoring is especially complicated due to limited infrastructure.

Spring flooding is a yearly phenomenon in the Arctic as more than half of the annual 

precipitation is released within a ~10-day period (Kane et al., 2012a). Snowmelt flooding can be 

further complicated by extensive build-up of ice, so called “river aufeis”, through the winter 

within the river channel itself. The term ‘‘aufeis’’ is of German origin and means ‘‘on or upon
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ice’’ (Grey and MacKay, 1979). Aufeis forms when groundwater seeps and freezes to the ground 

surface or when river water freezes to the riverbed, forming a mass of ice layers with different 

ages. Aufeis forms throughout the mid to late winter, but can persist through a portion of the 

summer (Yoshikawa et al., 2007). Flooding related to aufeis growth may occur in late-winter 

because the slow (weeks to months) but massive growth of the aufeis ice diverts the winter 

streamflow (and therefore more aufeis growth) far beyond the original river channel. Flooding 

related to aufeis growth can also be seen during the spring snowmelt event as the aufeis diverts 

snowmelt water outside the river channel (Prowse, 1995). In this paper forward, we refer to 

aufeis flooding or aufeis growth as winter river discharge freezing to the streambed and it 

includes both ice and any water flowing on top of the ice.

Aufeis flooding poses a serious threat to lives and infrastructure in the Arctic. The aufeis 

and its overflowing water often overwhelm culverts and stream channels and numerous cases 

have been cited where aufeis flooding encroaches on roadways, endangering traffic (Carey, 

1973). The secondary danger emerges in the spring when the ice-filled stream channels are 

unable to handle the snowmelt runoff, which increases the snowmelt flooding potential (Prowse, 

1995). For example in April of 2015, Alaska’s Governor issued a 15 million dollar disaster 

declaration for aufeis-related late winter and snowmelt flooding on Dalton Highway, North 

Slope (Brettschneider, 2015). Remote sensing can be a useful tool for near-real time mapping of 

aufeis growth and to inform disaster management.

Several remote sensing techniques have proven useful in mapping aufeis, including Landsat 

(Dean, 1984; Hall and Roswell, 1981; Harden et al., 1977) and Synthetic Aperture Radar, SAR 

(Benson et al., 1997; Yoshikawa et al., 2007) as frozen and thawed water results in different 

reflection and emittance of electromagnetic radiation. Satellite imagery and aerial photography
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have been used to quantify aufeis distribution, spring water temperature, discharge volume, 

relative age of spring formation, aufeis historical extent, and estimations of winter baseflow 

(Yoshikawa et al., 2007). The 24/7 capability and regular observation schedule of modern SAR 

sensors are ideal for near-real time monitoring (Martinis et al., 2009; Matgen et al., 2011; 

Pulvirenti et al., 2011a) and can therefore reveal a wealth of information about aufeis distribution 

and change. With the goal to map aufeis flooding in near-real time, we applied an unsupervised 

change detection to a multi-temporal SAR dataset. The approach has been effective in 

delineating regions of fire scar at 12.5 m resolution across 45 km domains at sub-daily 

frequencies (Ajadi et al., 2016).

5.3. Background

This section provides an overview of the state of the art regarding flood detection 

techniques. It should be noted that a comprehensive review of the enormous amount of published 

work will not be presented here, but this section will give an idea of the principal research 

approaches. In the last decade, SAR remote sensing techniques due to their increase in temporal 

resolution have become a promising tool for flood mapping.

In temperate regions, natural disasters have primarily been mapped using various 

approaches that utilized SAR images. SAR has been a sensitive sensor for aufeis detection and 

mapping in high latitudes (Jeffries et al., 1994), river ice breakup monitoring (Floyd et al., 2014), 

and for observing shallow lake thaw/freeze conditions (Jeffries et al., 1994). The Alaska Satellite 

Facility at the University of Alaska Fairbanks, provides SAR data to the National Weather 

Service for river breakup monitoring of the Koyukuk and Sagavanirktok Rivers, Northern 

Alaska.
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In order to reduce human interaction during aufeis SAR-based flood detection, an 

unsupervised change detection approach have always been employed. Unsupervised SAR-based 

flood detection methods have been published throughout the last decade on temperate regions 

and utilizing a binary single-polarization approach (Martinis et al., 2009; Matgen et al., 2011). 

For example, flood areas have been extracted using a split-based automatic thresholding 

approach (Martinis et al., 2009). Some authors claimed that the addition of spatial information to 

the pure spectral information derived from histogram thresholding is superior to pixel-based 

procedures (Martinis et al. (2009) Matgen et al. (2011)). However, this method depends upon 

contrasts between flooded and non-flooded regions, which may sometimes be lacking. Flooding 

has been identified via SAR by searching for areas with low backscatter values, which are 

associated with open water. Here, the extracted open water bodies are used as “seeds” in a 

region-growing, iterated, segmentation/classification approach (Giustarini et al., 2013). The 

method is limited because it is time consuming and it requires a reference image with the same 

imaging characteristics as the flood image, which may not be available during a crisis event. 

Flood extent has also been delineated automatically using active contour modeling (Mason et al., 

2007), which reduces the SAR speckle noise, but requires a prior knowledge of the image’s 

statistical properties. Further, it is imperfect when the initial contour is far from the object 

boundary. Another method is the fuzzy logic approach, which integrates theoretical knowledge 

about the radar return from inundated areas based on three electromagnetic scattering models by 

simple hydraulic considerations and contextual information (Pulvirenti et al., 2011b). Here the 

limitations are the manual procedure and the high computational demand.

Automated hybrid methodologies, which combine radiometric thresholding and region- 

growing of SAR images, offered comparable performance with the previously mentioned
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methods for the extraction of flood area, despite not requiring any ground truth data (Matgen et 

al., 2011). However, the hybrid approach is constrained to only bimodal distribution of 

backscatter values. More recently, Pradhan et al. (2016) generated a flood extent map using a 

Taguchi optimization technique, multiresolution segmentation, and rule-based classification. An 

object-oriented rule-based classification method was used to extract water bodies from 

TerraSAR-X data during the flooding, while Landsat imagery was utilized prior to the flood 

event. Water bodies from the Landsat imagery were then subtracted from the TerraSAR-X data 

and the remaining water represented the flooded area. The dependence of Landsat imagery 

makes this multi-facetted approach limited as Landsat imagery is complicated by clouds. Other 

fairly recent work done in flood detection includes automatic thresholding on feature maps using 

minimum-error procedure (Bazi et al., 2005; Moser and Serpico, 2006), fractal dimensioning of 

multi-temporal images (Huang et al., 2011), statistical active contouring (Horritt et al., 2001), 

histogram thresholding or clustering (Inglada and Mercier, 2007), the application of neural 

networks in a grid system (Kussul et al., 2008), and expectation-maximization algorithms (Byun 

et al., 2015). All published flood detection methods were applied to only open water and not 

aufeis flooding, which includes both open water, new or older ice, and snow. Monitoring and 

mapping the extent of aufeis flooding is therefore more complex than mapping solely open water 

areas.

5.4. Methodology for Flood Detection

In order to achieve an accurate flood detection result in near real-time, a flood detection 

approach should possess the following key features: (i) that the generation of the flood maps 

should be accomplished automatically without setting thresholds and include a high 

computational performance; (ii) the flood mapping approach should be highly predisposed

158



against noise; (iii) the approach should be easily transferable to different geographical conditions 

and should support various SAR frequencies with different resolution; (iv) the approach should 

be free of a priori assumptions; and (v) the approach should accurately delineate the boundary of 

flooded regions.

While adapting the approach published in Ajadi et al. (2016), we focused on ensuring the 

delineation of flood extent with high accuracy in both border and homogeneous regions. To 

achieve high accuracy, we followed the modified processing steps presented in Figure 5.1. In our 

modified approach, we included image tiling, curvelet filtering, intensity thresholding, and 

Bayesian inferencing to those already implemented in Ajadi et al. (2016). The newly included 

techniques are explained in details in the following subsections, while the previously published 

technique in Ajadi et al. (2016) is only briefly explained and the reader is referred to that 

publication for more details.

5.4.1. Standard Pre-processing

For each image acquired, standard pre-processing is performed to suppress all image signals 

other than surface change that may introduce radiometric differences between acquisitions. All 

images are radiometrically corrected using a SRTM DEM. The impact of including radiometric 

correction on the SAR data is not observable in our images, because our study area is flat. 

Radiometric terrain correction is most effective when dealing with natural environments that are 

dominated by rough surface scattering. However, to develop a technique that is transferrable to 

other geographical domains we ensured that this RTC step was included for all SAR data we 

analyzed. For these target types, the surface scattering properties change slowly with incidence 

angle, and differences in radar brightness are dominated by geometric effects. For more 

information about the pre-processing step, the reader is referred to Ajadi et al. (2016).
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5.4.2.1. Problem Formulation and Image Tiling

To increase the speed for mapping purposes, a tile-based approach is employed. Here, each 

coregistered SAR image is split into k  nonoverlapping subimages of user defined size. The tile- 

based approach is preferred because smaller flood areas are more easily detected, and have a 

lower rate of false positives with highly reduced computational complexity. To enhance the 

curvelet filtering step in Section 5.4.2.2, each k  subimages are logarithmically transformed 

(X"R), and its multiplicative noise is converted into additive noise. For more information about 

the logarithmic transformation, the reader is referred to Ajadi et al. (2016). To improve the 

detectability of flood-induced changes, and to suppress image background structure, the 

logarithmic transformation subimages from image X% (post-event image) and the logarithmic 

transformation subimages from image Xr (pre-event image) which are acquired over the same 

geographical areas at two different times (t  1 and t2 ) are used to generate k  ratio subimages.

Observing each k th ratio subimage (X"R), aufeis areas appear bright with an increased 

backscatter, while open water appears dark with a decreased backscatter due to specular 

reflection. For the purpose of flood detection, the histogram of each X"R was treated as a mixture 

of three classifications: positive change (a>pc) which are aufeis areas, negative change areas 

(o>nc) which are open water areas, and unchanged areas (o>un). Our analysis was only done on 

each X"R containing at least a bimodal distribution rather than a unimodal distribution.

Am = A L ................................................................................ (5.1)

where Abd are subimages with at least a bimodal distribution. To suppress the now-additive 

noise contained in each Abd subimage, we applied a curvelet transform filtering procedure.

5.4.2. Data Enhancement
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We took advantage of using a curvelet transform in denoising each Abd subimage. A 

curvelet transform was employed because it gives a sparse representation of curved features, and 

it preserves curved structures. It also has a very high degree of directionality and few coefficients 

are used when approximating its singularities. Curvelet was first introduced by Candes and 

Donoho (1999) and has been used by Starck et al. (2002) among others for image denoising. The 

curvelet is a multiscale transform with the magnitude of its coefficient depending on the linear 

feature indexed by location, orientation, and scale parameters. To perform curvelet filtering and 

to remove point-like noise, we inspect the data for objects having a curvelet coefficient larger 

than a minimum size determined automatically by noise standard deviation. Even though wavelet 

transform can also be used for filtering purposes, the curvelet transform is superior because of its 

sensitivity to linear features. In this paper, we assumed that a noisy sub-image in Abd is given by 

A»d(i , j )  = A " f i , j )  + o k . Where o k is the noise standard deviation in A»d(i,j'), and A " f i , j )  is 

the restored subimage after denoising with curvelet transform. The restored subimage (A"%) is 

estimated by applying thresholding to each curvelet coefficient in A»d at every scale using a.

The curvelet coefficients are estimated using the fast discrete curvelet transform and 

implementing the wrapping-based method as shown by Candes et al. (2006). Furthermore, a  was 

calculated using Median Absolute Deviation (MAD) of the high frequency (horizontal, vertical 

and diagonal) wavelet coefficients (mk) in A»d . The value of a  is estimated as follows:

m edian( \mk \)
° = — 0 6 7 4 5 —

5.4.2.2. Filtering by Curvelet Transform
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We employed hard thresholding because soft thresholding tends to create smoothness along

edges by removing some edge coefficients. The wrapping-based Fourier sample method with

hard thresholding implemented in this paper is summarized into five steps.

Step 1: Is the application of two dimensional fast Fourier Transform (2D FFT) to Al»d, which is

in the form of a Cartesian array A»d [m, n] to obtain Fourier coefficients.

**k n  n
A»dVn,n\,  — 2 ^ m , n  <2 (5-3)

where 0 < m < M , 0 < n < N ,  while M and N  are the dimension of the array.

Step 2 : For each scale (j) and angle (I), a product of ( f f t ( c u r v e l e t ) )  and ( f f t ( i m a g e ) )  is 

obtained to form a trapezoidal wedge.

W j / [ m , n ] - A ^ [ m , n ]  (5.4)

Step 3 : The product is now wrapped around the origin.

Af$[m,n] = wrap (Wj ^ A " ^  [m,n\  (5-5)

where j  = f l o o r  ( log2(min  (M, N)) — 4), while the range of m, n  and 6 are now 0 < m  <

2j , 0 < n  < 2j / 2, and — ^ < 9  <U  respectively.

Step 4a: Use the calculated a  from Equation (2) to perform hard thresholding on Aj ^ m ,  n\ for 

the coarse scales

f k  = (Afi[m,n],  
Tj’1 [  0,
f.k = i f  abs(Aj, i[m,n]) > 3 * a k
' ,l n otherwise

Step 4b : Use the calculated a  from Equation (2) to perform hard thresholding on Ak$\m , n \ for 

the fine scale

f k  = (Afi[m,n],  
Tj’1 [  0,

i f  a b s ^ A f j l m ^ ] )  > (3 * a k) + o h
fki = r i  „ '  Kj , $ .........  ( 5-7)otherwise
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Step 5 : Perform inverse fast discrete curvelet transform via wedge wrapping on f "  to get the 

denoised subimage A".i.

Applying the six steps highlighted above to all subimages in Abd will generate k  denoised 

subimages Ari = A .................. ,A%fS.

5.4.3. Wavelet-Based Flood Detection Algorithm

5.4.3.1. Multi-scale Analysis Combined with Opening by Reconstruction for Flood 

Detection

In this paper, given the k th denoised subimage in Ari, a multi-scale representation of A".i is 

obtained by applying two-dimensional discrete stationary wavelet transform (2D-SWT). The 

goal of the multi-scale representation is to achieve a different scale dependent image of varying 

resolution. The lowest resolution contains some residual noise and a high amount of geometric 

detail, while the highest resolution contains reduced noise interference, and reduced geometric 

content. The multiscale images of A are inserted into a mathematical morphology framework, 

where opening by reconstruction is employed, and the result is further normalized to a range of 0 

to 255. The multiscale decomposition stack of A"ri now contains morphological filtered images 

(XMD) at each resolution level, as below:

Xmd = {x ' d- ■ ,%Md  ,-XMd1} ( 5-8)

For more information about the implementation of the multi-scale representation, and the 

mathematical morphology the reader is referred to Ajadi et al. (2016).

5.4.3.2. Intensity Threshold Segmentation

To perform Bayesian inferencing (Section 5.4.3.3) for classification, an initial estimate 

(mean, prior, and standard deviation) of each class should be known. Because no prior

163



knowledge is available for the distribution of classes, we employed the intensity segmentation 

approach proposed by Otsu (1975) to compute the initial estimate for each class. The intensity 

segmentation approach uses histogram distributions to calculate the initial estimate needed to 

compute the likelihood that each pixel belongs to a certain class. The approach finds the 

threshold that minimizes the weighted within-class variance.

5.4.3.3. Probabilistic Bayesian Inferencing Flood Extent Approach

For each pixel in X ' D, our goal is to calculate the probability that a pixel belongs to a set of 

predefined classes given its measured backscatter value, and the pixel is given to the class with 

the highest probability. First, we assumed that the distribution of non-flooded unchanged 

backscatter (a>uc) and flooded (aufeis and open water) changed backscatter (a>c) in X ' D are a

mixture of three  density distributions:

2

P ( X ' d) = ^ j (p (X1mdIwC1)P(wC1))  + P(XlMDl^uc)P(^uc) (5-9)
n=l

Given the initial estimate of mean, prior, and standard deviation calculated from the 

previous section, we can further estimate the posterior probability of a pixel being flooded using 

Bayes’ theorem as follows:

,v i W  p (* M d (U )K )  * P M
P [Mi \XlMD(i,j ) )  = ---------------------  (5 - l0)
Uie{apc,anc,auc} ^  MD

where a>pc indicates positive backscatter change (aufeis areas), wnc represents negative 

backscatter change (open water areas), wuc denotes unchanged backscatter, p ( X lMD(i,j')ltei') and 

P(,Wi) denotes the likelihood and prior probability of a pixel respectively. For more information 

about the implementation of Bayes’ theorem, the user is referred to Ajadi et al. (2016).
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It is worth noting that the choice of employing probabilistic Bayesian inferences was to 

capture the overall variation of the flood extent, and to generate a flood detection approach with 

low computational performance.

5.4.3.4. Product Rule Fusion

After the Bayesian inference classification, the final change detection maps were generated 

by applying a product rule fusion, similar to the approach in Ajadi et al. (2016), to the posterior 

probabilities (PP) of each decomposed image in XMD at each spatial position. Each pixel is 

assigned to the class that maximizes the posterior conditional probability as follows:

•  •

= argmax y \ { P(MilXjM^ i , j ) )} = argmax FT[pp%] (5.11)
Mie{tepc,tenc,teuc} i_j teie{topC,Mnc,Muc} i_j

5.4.4. Application for High Resolution TerraSAR-X Data at the Sagavanirktok River

5.4.4.1. Study Area

To assess the effectiveness of the modified flood detection approach, we evaluated several 

TerraSAR-X datasets acquired during a period of flooding on the Sagavanirktok River, near 

Prudhoe Bay, Alaska in 2015 (Figure 2). On Alaska’s North Slope, the Sagavanirktok (“Sag”) 

River (14,900 km2) is the second largest watershed and it flows northward into the Beaufort Sea, 

Arctic Ocean. The headwaters of this ~270 km long river are located in the Brooks Range, where 

mountain peaks reach 2475 m. Over 50% of the watershed lies in the mountains (Kane et al., 

2014) and there is an abrupt decline in slope as the river reaches the foothills (Keller et al.,

1961). Annual air temperatures average -10.5 °C in the coastal plain to -7.7 °C in the foothills 

(Kane et al., 2014) with air temperatures during the nine months long winter reaching down to - 

40 °C. The annual precipitation ranges from 140 mm (coastal plain) to 340 mm (mountains)
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(Kane et al., 2014). Summer precipitation varies significantly with much greater amounts in the 

mountains and foothills regions, while end-of-winter snow accumulation is fairly uniform (Kane 

et al., 2012b). Annual peak flow may be snowmelt or rainfall generated (Kane et al., 2014). 

North Slope aufeis starts to develop in October and increases dramatically in late winter, while 

aufeis releases water during the summer months that is estimated to represent 30% of total 

annual groundwater discharge for the nearby Kuparuk River (Yoshikawa et al., 2007). Aufeis is 

relatively extensive in the headwaters of the Sag River where an area between 102 to 103 km2 

melts each summer (Benson et al., 1997). Large buildups of river aufeis are regularly observed 

near Franklin Bluffs within the Sagavanirktok River channel in late winter ((Toniolo et al., 

2017).

Meteorological variables such as daily air temperature were obtained to help interpret the 

overall formation of aufeis. The daily air temperature data were acquired from the National 

Oceanic and Atmospheric Administration (NOAA) Deadhorse 3 station, with station ID 

USW00026565, latitude 70°09'42.5"N and longitude 148°27'51.8"W (Figure 5.2). Additional 

information about the daily air temperature data is available at www.ncdc.noaa.gov.

5.4.4.2. SAR and Reference Data

The German space agency (DLR) maintained TerraSAR-X and acquired several images 

beginning in early April 2015 to early May 2015 (Table 5.1 and Figure 5.3). The images 

acquired are in strip map mode, with a single HH polarization. Using HH polarization is more 

promising for use in flood mapping than VV polarization or cross polarization because it is less 

sensitive to small scale roughness of waves on the water surface (Henry et al., 2006). The pixel 

spacing in each image is 1.25 m x 1.25 m with incidence angles ranging from 24° to 41°.
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Twelve different independent log-ratio images (observation periods 1-12 in Table 5.2) were 

generated from the seven TerraSAR-X images, and these log-ratio images were used to analyze 

both the progression of the flood event during the observation periods and the performance of 

our modified change detection approach. The first six log-ratio images with longer temporal 

intervals were generated using the earliest image acquisition as our pre-flood image and the 

remainder as post-flood images (observation periods 1-6 in Table 5.2). The last six log-ratio 

images, each with shorter temporal intervals, used the next earliest acquired image as a pre-flood 

image and the succeeding image as the post-flood image (observation periods 7-12 in Table 5.2).

5.4.5. Description of Approach

To increase detection speed and accuracy, each pre-event and post-event image was split 

into eight equal sub-images (k = 8). For each observation period, eight log-ratio sub-images 

were generated from the pre-event and post-event subimages. Each log-ratio subimage was 

filtered using a curvelet approach, with noise filtered out using hard thresholding, and s  

calculated at 0.3. Next, each of the eight, filtered, log-ratio sub images were decomposed into 

three resolution levels using a 2D-SWT with the bi-orthogonal wavelets family. For each of the 

three-resolution levels, we calculate the posterior probability of one “unchanged”, one "negative 

changed" and one “positive changed” class, resulting in three posterior probabilities per pixel. 

Finally, product rule fusion is used to merge the posterior probabilities of all the three-resolution 

levels to produce a single change map (M). The complete flood detection map (CD) for each 

observation period is generated by combining the corresponding eight change maps (M).

CD(i) = {M1 .......M k} (5.12)
i=1....12 k=1....8
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The modified flood detection approach produced no noise in delineating areas into aufeis 

and open water. The results of applying our modified flood detection approach to observation 

periods 1 - 6 with long temporal intervals (Table 5.2) is shown in Figure 5.4. Visually observing 

Figure 5.4a, an accumulation of aufeis on the western channel of the Sagavanirktok River is 

extending onto the Dalton Highway. As time passes (progression from Figure 5.4b to Figure 

5.4d), the accumulation of aufeis increases and open flood water emerges from the eastern 

channel of the Sagavanirktok River (Figure 5.4e and Figure 5.4f).

The growth in total flooded areas (both aufeis and open water) during the observation 

periods 1 - 6 ranges from 32.8±5 km2 (April 13-15) to 104.1+5 km2 (Apr 26-May 5) (Figure 5.5). 

The growth was gradual except for a large increase in late April-early May. The high spike in the 

flooded area seen in May was because of warm temperatures leading to more open water 

flooding.

The results of applying our modified flood detection approach to observation periods 7 - 12 

with short temporal intervals (Table 5.2) is shown in Figure 5.6. The short temporal interval 

results shown here help to better understand the often-rapid transition between the formation of 

open water and successive aufeis development (Figure 5.6). Qualitatively, when analyzing 

Figures 6a to 6f, a fluctuation in the distribution of aufeis to open water can be seen.

Based on results generated in Figure 5.6, the flooded area (both aufeis and open water) 

covered by observation periods 7 - 12 ranges from 32.8+5 km2 (April 13-15) to 47.4+5 km2 

(May 5-May 7) (Figure 5.7). According to results shown in Figure 5.7, the flooded areas (both 

aufeis and open water) over time have small variations with peak flooded area in May. The drop 

down in area on April 19 was because few areas changed between April 15 and April 19.

5.5. Results and Discussion
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For example, to show the fluctuation of aufeis and open water, a photo was acquired by 

UAF on May 15, 2015 along the Dalton highway, with a clear distribution of aufeis (Figure 

5.8a). By May 17, the entire area previously covered with aufeis has now been covered with 

open water (Figure 5.8b).

Comparing a plot of average daily air temperature (Figure 5.9) to aufeis and open water 

distribution in Figure 5.6a to Figure 5.6f we observed a relationship. For example, the decrease 

in temperature from April 13 to April 15, 2015 in Figure 5.9 was consistent with the formation of 

aufeis in Figure 5.6a due to freezing temperature. The increase in temperature from April 15 to 

April 19, 2015 (Figure 5.9) led to reduction in aufeis distribution (Figure 5.6b). This warmer 

temperature resulted in the emergence of open water. Furthermore, the increase in warmer 

temperature from April 19 to April 24, 2015 (Figure 5.9), steered the generation of more open 

water (Figure 5.6c), while the decreases in temperature seen from April 24 to April 26, 2015 

(Figure 5.9), resulted in a new distribution of aufeis as a result of the freezing temperatures 

(Figure 5.6d). From April 26 to May 5, 2015 there was an increase in air temperature (Figure 

5.9) which led to a new occurrence of open water as shown in Figure 5.6e. Finally, the slight 

temperature decrease from May 5 to May 7, 2015 seen in Figure 5.9, led to a new episode of 

aufeis as shown in Figure 5.6f.

To show the distribution of flow in areas of aufeis over time, we combined all the areas of 

aufeis in Figure 5.6 together and displayed it in Figure 5.10. It can be seen that the distribution of 

flow over time is moving from the western to the eastern channel of the Sagavanirktok River 

(Figure 5.10). Monitoring the direction of flow is essential to Alaska department of 

transportation, because knowing the direction will help to prioritize response efforts.

To appreciate the local fluctuation from aufeis to open water, the reader is referred to the
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southern part of the flooded maps in Figure 5.6. For this area, a mask identifying a region that 

has experienced several aufeis episodes over the observed time frame is shown (Figure 5.11).

The average backscatter of the masked area in each of our SAR acquisitions is shown in Figure 

5.12. A relationship is highlighted between the average change in backscatter intensity (Figure 

5.12) and daily average air temperature (Figure 5.9) when plotted together (Figure 5.13).

We speculate the steady increase in brightness from April 19 to April 26 is because of the 

gradual thickening of the aufeis area. Similar observations to strengthen our findings were also 

expressed by Jeffries et al. (1994) at Barrow Alaska.

5.5.1. Reliability of the Probabilistic Flood Map Approach

According to field work done by UAF (Toniolo et al., 2015) at the time, we noticed some 

additional areas of aufeis were detected in Figure 5.4e. These additional areas resulted from 

channels that were constructed to remove water from the road. They appear bright in the SAR 

images acquired in late April due to the piling of snow next to the narrow channels of water. In 

this paper, we do not have a ground truth mask to perform a quantitative analysis. However, we 

compared visually a flood map generated from the probabilistic flood map approach using the 

panchromatic band of a Landsat-8 image to a TerraSAR-X image. We choose the panchromatic 

band of Landsat-8 because of its 15m spatial resolution. For comparison, we used the dataset 

from observation period 10. We selected only observation period 10 as the Landsat-8 image at 

the same approximate date has minimal cloud cover. Flood maps generated from observation 

period 10 using TerraSAR-X and Landsat 8 are shown in Figure 5.14a and Figure 5.14b 

respectively. When qualitatively comparing TerraSAR-X and Landsat-8 classified results, the 

active SAR sensor showed little to no misclassification and this was mostly due to its high spatial 

resolution and its high capability in detecting surface roughness and water bodies. Using the
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TerraSAR-X data, shadow and layover did not have a significant influence as most of the area is 

flat. However, there were some misclassifications in the flood map generated by Landsat-8 due 

to: (a) the influence of the minimal cloud cover in the Landsat-8 scene; (b) the high spatial 

resolution of the Landsat-8 panchromatic band. It should be noted that the Landsat-8 image was 

acquired in the afternoon, while the TerraSAR-X image was acquired in the morning. The 

difference in the image time acquisition could also have affected the result. In all, the flood maps 

generated by our adapted approach in Figure 5.14a and Figure 5.14b showed similar distribution 

of aufeis and open water. These similarities to some extent show that our adapted approach can 

be used for efficiently mapping aufeis related flooding.

5.6. Conclusion

Flood maps are critical for the assessment of natural hazards and in monitoring flood 

distribution. The use of optical sensors is often limited during flooding because of local cloud 

cover. In this paper, we modified an effective change detection approach that was initially 

published in Ajadi et al. (2016) and applied it to the problem of aufeis flood mapping in the 

Arctic regions of Alaska. The inclusion of the tiling technique to the original Ajadi et al. (2016) 

method increased our modified algorithms likelihood of detecting small flooded areas, by 

limiting the chances of detecting false positives and decreasing the computational time. Because 

of our interest in preserving the geometric details of flooded areas, we filtered each SAR image 

using a curvelet filtering method that adapts to the noise characteristics to reduce the noise 

within the data while preserving edges in the image. The inclusion of a probabilistic Bayesian 

inference takes the image uncertainty into account, and uses the backscatter distribution to 

estimate the probability of each pixel belonging to a particular class. We showed the 

performance of our modified approach by processing a series of seven TerraSAR-X data
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covering the Sagavanirktok River flooding in northern Alaska in spring 2015. Using our 

modified approach, we mapped both the extent and progression of the Sagavanirktok River 

flooding event.

The reliability of the probabilistic flood map was assessed by (1) photos taken at Dalton 

highway showing distribution of aufeis with open water; (2) comparison of the expected changes 

with air temperature; and (3) comparing the distribution of aufeis and open water generated 

between TerraSAR-X imagery and Landsat 8 imagery. In all, the probabilistic flood map 

approach was able to delineate the flooded areas (both aufeis and open water) from the 

TerraSAR-X imagery and the Landsat-8 imagery.

Future work will explore integrating the probability maps generated from amplitude-based 

change detection with coherence maps generated from phase-based techniques to correctly 

delineate change features, especially in situations where the land cover ground conditions are 

complex. The integrated result will also be combined with field observations and hydrological 

models to further understand the high fluctuation of aufeis, and the estimation of discharge 

volume.
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Figure 5.1. Workflow of our SAR analysis. Here X NSAR  are all the SAR images, X t is the pre­

event image at time t t and X R is the post-event image at time t R. The multiscale decomposition 

X°R is the original log-ratio image, X lR is the k th decomposed image, x£R 1 is the lowest 

decomposed level, and k  is the level of decomposition. The first box contains the pre-processing 

step and data enhancement, while the second box contain the core of the flood detection (Ajadi et 

al., 2016).
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Figure 5.2. (a) Study area that encompass the path of the Sagavanirktok River. The red line is the 

Dalton Highway, and the blue line indicates the trans-Alaska Pipeline.
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Figure 5.3. TerraSAR-X images of the study area acquired on: (a) April 13; (b) April 15; (c) 

April 19; (d) April 24; (e) April 26; (f) May 05; and (g) May 07 of 2015. The black regions 

represent areas with no data from the overpass for the defined geographical region.
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Figure 5.4. Flood detection maps after applying our modified approach to (a) observation period 

1 (April 13-15); (b) observation period 2 (April 13-19); (c) observation period 3 (April 13-24); 

(d) observation period 4 (April 13-26); (e) observation period 5 (April 13-May 5); and (f) 

observation period 6 (April 13-May 7). See Table 5.2 for a description of the image pairs used 

for each observation. Note that observation period is the combination of pre- and post-event 

images used to generate a log-ratio image.
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Figure 5.5. Growth in flooded area (both aufeis and open water) during observation periods 1 

through 6 (Table 5.2). Error bar shows the uncertainty (±5) for each flooded area.
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Figure 5.6. Flood detection maps after applying our modified approach to (a) observation period 

7 (April 13-15); (b) observation period 8 (April 15-19); (c) observation period 9 (April 19-24); 

(d) observation period 10 (April 24-26); (e) observation period 11 (April 26-May 5); and (f) 

observation period 12 (May 5-7). See Table 5.2 for a description of the image pairs used for

each observation period.
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Error bar shows the uncertainty (±5) for each flooded area.

186



Figure 5.8. Photo taken on (a) May 15, 2015 and (b) May 17, 2015 at the Alyeska gate along the 

Dalton Highway. Images reprinted from (Toniolo et al., 2015). See Figure 5.2 for location.
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Figure 5.10. Combined visualization of aufeis distribution from early April until early May, 

2015.
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Figure 5.11. Example of a mask identifying a region that has experienced several aufeis episodes 

over the observed time frame.
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Table 5.1. Details of TerraSAR-X data acquired over the Dalton Highway and Sagavanirktok 

River.

Date Flight
Direction

Local
Standard

time

Incidence
Angle Polarization Look

Direction

April-13-2015 descending 08:42:06 35° HH Right
April-15-2015 descending 09:41:57 24° HH Left
April-19-2015 descending 08:33:32 41° HH Right
April-24-2015 descending 08:42:07 35° HH Right
April-26-2015 descending 09:41:59 24° HH Left
May-05-2015 descending 08:42:08 35° HH Right
May-07-2015 descending 09:42:01 24° HH Left

HH is Horizontal transmitted and Horizontal received polarization.
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Table 5.2. Combination of image acquisitions used to generate the ratio images.

Pre-event Image Post-event Image Observation # Flooded 
Area km2

Figure
showing
results

April-13-2015 April-15-2015 Observation 1

Long
Interval

32.8±5 Figure 5.4a
April-13-2015 April-19-2015 Observation 2 44.7±5 Figure 5.4b
April-13-2015 April-24-2015 Observation 3 49.9±5 Figure 5.4c
April-13-2015 April-26-2015 Observation 4 50.1+5 Figure 5.4d
April-13-2015 May-05-2015 Observation 5 104.1+5 Figure 5.4e
April-13-2015 May-07-2015 Observation 6 96.7+5 Figure 5.4f
April-13-2015 April-15-2015 Observation 7

Short
Interval

32.8+5 Figure 5.6a
April-15-2015 April-19-2015 Observation 8 17.8+5 Figure 5.6b
April-19-2015 April-24-2015 Observation 9 37.9+5 Figure 5.6c
April-24-2015 April-26-2015 Observation 10 38.8+5 Figure 5.6d
April-26-2015 May-05-2015 Observation 11 57.4+5 Figure 5.6e
May-05-2015 May-07-2015 Observation 12 47.4+5 Figure 5.6f
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Chapter 6 Conclusion and Future work

Recently, different organizations and governments have made the monitoring of natural and 

human-based disasters an important task (Mata-Lima et al., 2013). As a result, an awareness on 

the capability of satellite data as a tool for mapping disasters has been evolving among civil- 

protection and relief organizations. Over the years, spaceborne SAR sensors have shown 

numerous advantages, such as their ability to operate under different weather conditions and 

ability to cover large areas, over personnel on the ground or manned/unmanned flights to 

monitor disaster areas. In addition, due to the increasing number of spaceborne SAR sensors with 

short revisit times (e.g., Sentinel-1A and B), a vast collection of SAR data are now available for 

near real-time disaster detection and monitoring. Nonetheless, SAR data have remained difficult 

to analyze and hard to integrate into fully automatic operational services. A major obstacle in this 

regard is the practical difficulty of developing efficient, unsupervised change detection 

techniques.

Motivated by the need to improve current change detection technology, especially for SAR 

data applicable to disaster monitoring, this dissertation focused on the development of 

unsupervised change detection techniques to exploit time series of SAR datasets. The important 

characteristics of the developed techniques are: due to their focus on SAR amplitude information, 

they can be virtually applied to all SAR data; the sampling frequency of natural hazards is 

maximized by the inclusion of pre-processing steps such as RTC processing or Lipschitz 

Regularity transformation; the core of the techniques is designed to be highly adaptive and, hence, 

applicable to a broad range of environmental conditions or disciplines with little modification; 

change detection is achieved automatically with fully adaptive thresholding; and finally, through

6.1. Conclusions
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the integration of multi-scale techniques and modern resolution-preserving filtering technology, the 

resolution and geometric details in a SAR image are largely preserved while the signal-to-noise 

ratio of change detection is drastically improved.

In Chapter 3, an automatic change detection approach was presented that is optimized for 

detecting changes embedded in stationary background (e.g., forest fire burn areas; progressing 

lava flows, etc.). The approach is efficient in classifying change signatures from pairs of SAR 

images. Employing radiometric terrain correction (RTC) in the proposed approach facilitates the 

removal of radiometric differences between SAR images acquired from different geometries.

The removal of radiometric differences increases the temporal sampling of surface changes. The 

use of log-ratio operations resulted in effective suppression of background information, enhanced 

change information, enabled high detection performance, and preserved change signature details. 

The performance of speckle filtering was improved by the integration of modern, non-local 

means filtering, and two-dimensional stationary wavelet transform (2D-SWT) techniques. The 

non-local means algorithm provided a good alternative to traditional adaptive filters. It displayed 

a great ability to reduce the impact of speckle, while preserving the geometric structures in the 

image.

When combined with 2D-SWT, the residual noise was removed and the visibility of change 

in the image was greatly improved. The implementation of 2D-SWT which decomposed the 

image into different hierarchical levels helped to analyze and classify each pixel at different 

resolution levels, each characterized with a different tradeoff between spatial resolution and 

signal-to-noise. Furthermore, when mathematical morphology was integrated into the 

expectation maximization (EM) algorithm, the classification performance improved. The 

geometric details along the heterogeneous (border) regions were enhanced and accurately
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detected when product rule fusion was employed. Quantitative and qualitative analyses of the 

results in Chapter 3 showed that the proposed approach gave a high overall accuracy in both 

homogeneous and heterogeneous areas. In addition, the computational time for this approach was 

shown to be low, making it a highly desirable approach for near real-time monitoring. For 

example, we analyzed an image of size 3584 x 5056 pixels affected by wildfire and fire scar 

boundaries were detected with a 99.9% accuracy in 2.5 minutes using a mackintosh MacBook 

pro.

In Chapter 4, we adapted the change detection approach to perform effectively when applied 

to scenes of continuously varying background. This modification was necessary to enable the 

detection of oil spills on constantly changing ocean surfaces. The Scale-space LIpschitz-based 

Change tracKing (SLICK) approach was developed for oil spill detection from SAR images 

based on multi-scale, time-frequency theory. To preserve spatial resolution, normalize the 

reflectivity properties of ocean water, and maximize the visibility of oil in water, the approach 

estimates the local regularity of images through the evaluation of Lipschitz regularity (LR). The 

LR technique is calculated from the progression of wavelet coefficient across scales and is well- 

suited for an unsupervised change detection approach. Testing the SLICK approach on simulated 

and actual data resulted in a very high detection rate (kappa coefficient of 0.95 and above) with 

minimal false positives and false negatives. In all, this approach gave a better result when 

compared with several published alternatives. This approach showed its effectiveness in 

heterogeneous SAR images where the training of features can be difficult and time consuming.

Chapter 5 introduced a time series concept into the change detection approach. Due to the 

increase of satellite systems with high revisit frequencies, a large amount of SAR data are 

available for flood mapping activities. In this Chapter, the change detection approach from
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Chapter 3 was adapted to the problem of aufeis flood mapping. Using a pre-processing approach 

like that described in Chapter 3, curvelet filtering was added to address the changing geometric 

features occurring along the edges of the flooded area. Since the goal was to delineate flood 

areas in both heterogeneous and homogeneous areas, identifying flood edges is important. The 

inclusion of curvelet filtering removed noise, preserved edges, and facilitated flood area 

detection with high geometric precision. Applying the modified approach to TerraSAR-X data 

covering Sagavanirktok River flooding in northern Alaska during Spring 2015 generated several 

probabilistic flood maps. These maps were combined in the latter processing stages using 

measurement level fusion to generate final three class binary flood maps. It should be noted that 

this method does not assume that each class has the same prior probability. Moreover, the 

generation of time series flood maps gave an awareness of the complex nature of the 

Sagavanirktok River flooding.

These three-algorithms are well suited for operational applications because they are 

computationally efficient (generate change detection maps in less than 5 minutes), fully 

automatic, and do not require the use of any external datasets. In addition, they automatically 

adapt to different types of single-frequency, single-polarization SAR images.

6.2. Future work and Improvements

Even though our results from the three hazardous event types showed great potential when 

using the described change detection approach, in future work it would be desirable to improve 

the presented change detection approach such that neighboring pixels are analyzed together 

during classification rather than analyzing each pixel independently. Also, combination of 

multiple SAR sensors to increase temporal sampling should be considered. Different modality of 

SAR (coherence and incoherence information) should be considered as well, which in turn will
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increase the accuracy of the final change detection result. In terms of flood mapping, it will be 

desirable to integrate flood extent estimation (Figure 6.1) with a hydraulic model (Figure 6.2).

A potential extended workflow of a future automatic flood mapping system is shown in 

Figure 6.1. According to this workflow, an improved change detection approach would rely on 

three stages. The first stage would combine posterior probability flood maps generated from 

advanced image processing procedures such as i) Hidden Markov Random fields (HMRF)

(Zhang et al., 2001) and ii) Support vector machines (SVM) (Scholkopf and Smola, 2002) with 

results from iii) InSAR coherence analysis (Dellepiane et al., 2000). The HMRF approach could 

fully utilize the approach in Ajadi et al. (2016) as prior information and update its posterior 

probability using the contextual information of neighboring pixels.

In the second stage, the temporal behavior of flood phenomena would be examined. A 

probabilistic time-series that follows the evolution of the flooding event would be generated.

Joint probabilistic flood information generated from the first stage would now be used to 

estimate new probabilistic flood maps using a least squares solution (Berardino et al., 2002).

This approach would provide dense probabilistic flood time-series maps and increase the 

temporal sampling rate by using all the SAR acquisitions (e.g. TerraSAR-X and Sentinel-1). 

Classification maps would be generated such that, each pixel in each of the estimated 

probabilistic flood time-series maps is assigned to the class that maximizes the posterior 

conditional probability.

In the last stage, each classification map should be dilated using a region growing approach 

(Giustarini et al., 2013) and the slope map generated from a digital elevation model (DEM) could 

serve as the tolerance parameter. Finally, a decision tree classifier utilizing each of the newly
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generated classification maps and an altitude map generated from a DEM could be used to 

remove false positives in the final flood extent time-series.

6.2.1. Integration with Hydraulic Model

While this dissertation exclusively focused on remote sensing data analysis, an integration of 

remote sensing data processing with geophysical models should be attempted in the future, to 

take advantage of the many synergies that exist between these two fields. Modern hydraulic 

models can provide probabilistic flood forecasts that could be integrated into the remote sensing 

data analysis as a statistical prior. This would improve the treatment of false alarms and lead to 

an overall performance improvement for remote sensing-based flood mapping techniques. At the 

same time, remote sensing data analysis can also provide valuable boundary condition data for 

assimilation into hydraulic models. The following thoughts summarize concepts that can be 

employed to further data-model-integration:

As hydraulic models utilize and produce estimates of water volume, flood maps derived 

from remote sensing data have to be converted to volume information to facilitate data-model 

integration. Hence, flood depth maps need to be estimated for every initial flood extent layer by 

intersecting flood extent maps with an underlying DEM. Each flood extent boundary pixel would 

be converted into a point shapefile and a pixel value should be attached to each point shapefile 

using its location to extract the corresponding pixel value from a DEM. Using the network of 

point shapefiles, a Triangulated Irregular Network (TIN) should be created. Exploiting TIN 

interpolation, a flood water surface should be generated. Horizontal flood water surface should 

be assumed and flood depth representing water level estimation can then be calculated by 

subtracting a DEM from the flood water surface.
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The estimated water level should be used for hydraulic model calibration (improving the fit 

between model prediction and observations). Since flow direction is mainly parallel to the 

channel, the two-dimensional (2-D) flow related to riverbanks overtopping should be 

approximated with a one-dimensional (1-D) representation. In order to have an up-/downstream 

relationship, evenly distributed cross sections along the estimated water level should be 

generated from the upstream section and ending at the downstream section. To reduce estimation 

uncertainty, all the water level estimate at the left and right cross sections of the flood extent 

boundary should be hydraulically constrained. The constraint should be enforced such that, 

maximum water level estimate decreases downstream, while minimum water level estimate 

increases upstream. The Hec-RAS (Brunner, 2004) hydraulic model which requires knowledge 

of the boundary conditions and manning friction coefficients should be used for data-model 

calibration. The downstream boundary condition should be produced from the relationship 

between estimated water level and discharge (rating curve). The parameters of the manning 

friction coefficients (one for the channel bed and one for the floodplain) should be randomly 

generated by employing the Monte Carlo simulations (Schumann et al., 2007). To facilitate data- 

model calibration, the model output of every iteration should be compared with water level 

estimate using the root mean square error (rmse) and the model output with the lowest rmse 

should be selected.
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Figure 6.1. Proposed approach of future work for flood extent estimation. HMRF stands for 

hidden markov random field and SVM stands for support vector machine.
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S ta g e  4

Figure 6.2. Integration of water level with hydraulic model. TIN refers to as Triangulated 

Irregular Network.
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