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Abstract:

Purpose: We expand a previous discussion in this journal by proposing a new solution concept, based on
game theory, for profit allocation with the aim of  aligning incentives in collaborative supply chains.

Design/methodology/approach: Through the Gately’s notion of  propensity to disrupt, we minimize
the desire of  the nodes to leave the grand coalition in the search of  a self-enforcing allocation mechanism.

Findings: We discuss the benefits and limitations of  this solution in comparison with more established
alternatives (e.g. nucleolus and Shapley value). We show that it considers the bargaining power of  the
nodes, but it may not belong to the core.

Originality/value: Finding a fair and self-enforcing scheme for incentive alignment, and specifically profit
allocation, is essential to ensure the long-term sustainability of  collaborative supply chains.
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1. Introduction
In 2016, we (Ponte, Fernández, Rosillo, Parreño & García, 2016) investigated in this journal how game-theoretical
concepts and ideas suggest an appropriate framework to align incentives in supply chains through the design of  a
fair and self-enforcing mechanism for allocating the net profit derived from collaborative solutions. From this
perspective, we defined three conditions (efficiency, individual rationality, and coalition rationality) to be verified in
viable profit allocations, and proposed a mechanism for profit allocation based on the notion of  the nucleolus
(Schmeidler, 1969). This mechanism allocates the profit among the different supply chain partners by maximizing
the satisfaction of  the unhappiest coalition. We think that this solution concept fits very well with the essence of  the
incentive alignment problem in collaborative supply chains (see e.g. Simatupang & Sridharan, 2005). To illustrate our
proposal, we developed a numerical example based on the widely-used Beer Game scenario (Goodwin & Franklin,
1994). We showed that it clearly outperforms traditional methods for profit allocation, which despite their simplicity
are often used in practice (see e.g. Liu, Wu & Xu, 2010), in terms of  compensation fairness.

Recently, Mueller (2018) extended the discussion initiated by our previous paper from different perspectives. First,
they presented and discussed additional game-theoretic properties that can be useful for ensuring the robustness of
the profit allocation in collaborative supply chains. Second, they clarified the mathematical definition of  the
nucleolus through the concept of  lexicographic order of  a specific allocation. In this sense, the solution they
suggested not only maximizes the satisfaction of  the unhappiest coalition but, when several possible allocations
verify this aim, it also looks at (maximizing the satisfaction of) the second unhappiest coalition, the third one, and so
on. It should be noted that the computation of  this solution would require solving a sequence of  nested
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optimization problems. Finally, they presented a new solution concept for this problem, i.e. the Lorenz set (see e.g.
Hougaard, Peleg & Thorlund-Petersen, 2001), based on the concept of  Lorenz dominance (Bishop, Formby &
Smith, 1991), which looks at the concentration of  wealth in the coalition. Mueller (2018) employed the same
numerical example to illustrate their proposal and discussed the different solutions.

We truly appreciate the authors’ efforts in continuing the avenue that we opened in our prior work. Through the
previously highlighted lines of  contribution, we believe that they provide relevant insights into the analysis of  the
value of  game theory concepts in the field of  supply chain collaboration. In this new article we would like to
continue the discussion by proposing a new solution concept for the problem of  profit allocation in collaborative
supply chains. This is based on the Gately point (Gately, 1974; Straffin, 1993), which aims to minimize the maximum
propensity to deviate from the collaborative behavior in the supply chain. We present this new mechanism for
incentive alignment, discuss why it fits with the essence of  the profit allocation problem, and illustrate its application
to the same numerical example in the Beer Game scenario. Through the comparison with the previous benchmark
alternatives, we aim to gain insight into the usefulness and limitations of  the different solution concepts.

2. Characterization of  the Gately solution
Gately (1974) introduced the concept of  propensity to disrupt a coalition to explore the distribution of  the gains
among three partners in a problem concerning regional cooperation in planning investment in electric power.
Shortly after, this concept was extended to n-person games, see e.g. Littlechild and Vaidya (1976).

Consider a grand coalition of  n partners N={1,2,…,n}, where the value function v(N) expresses the joint gains
obtained by the coalition and v(C), where C⊆N, represents the joint gains obtained by a specific coalition C formed
by a subset of  the partners. For a given payoff  vector x=(x1,x2,…,xn), the partner i’s propensity to disrupt the grand
coalition pdi(x) is defined as the ratio of  how much the other nodes would lose if i abandons the coalition (the
numerator) to how much this partner would lose if  breaking away (the denominator). This idea is expressed by
Equation (1), see e.g. Straffin (1993).

pd i(x )=
{∑

k∈{N−i}
xk}−v (N−i)

xi−v (i)
                                                              (1)

We believe that this concept fits very well with the essence of  the incentive alignment problem within supply chain
collaboration. Note that a denominator lower than 0 reveals that the supply chain node i would increase its net profit
by abandoning the grand coalition and operating alone, while a numerator lower than 0 means that the rest of  the
nodes would increase their joint net profit if  the node i leaves the coalition. Any of  both alternatives would imply
that the payoff  vector x is not a viable coalition, as this allocation of  the net profit would not satisfy all the partners.
In addition, and in line with Shi, Wang, Zhang, Zhang and Zhang (2016), positive propensities to disrupt may be
interestingly interpreted as indicative of  the bargaining power of  the different supply chain nodes for a specific
payoff  vector x, and hence provides an idea of  the strength of  the motivation of  the different nodes for
abandoning the coalition N. The higher pdi(x), the less comfortable the node i will feel in the grand coalition. Note
that pdi(x)>> 1 would indicate that the participation of  this node in the coalition generates much more net profit
for the rest of  the nodes than for itself.

Underlying this concept, an interesting idea emerges as a solution mechanism for cooperative games: selecting the
payoff  vector that minimizes the maximum propensity to disrupt of  the different nodes. This is known as the Gately
point; see e.g. Dhamal, Vallam and Narahari (2017) and Tatarczak (2017) for recent studies using this concept.
Straffin (1993) highlights that an observation that holds in general for this solution concept is that “the way to
minimize the largest propensity to disrupt is to make all of  the propensities to disrupt equal”. This leads to a
relatively simple way to calculate the Gately point. Note that Equation (1), applying that (∑k∈{N-i})xk)=v(N)-xi, can be
transformed into Equation (2).

pd i(x )=
v (N )−x i−v (N−i)

x i−v (i)
=
v (n)−(v (N−i)+v (i))

x i−v (i)
−1                                          (2)
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Note that by trying to equalize the propensity to disrupt of  the different nodes, which quantifies the desire of  the
nodes to leave the grand coalition, the Gately solution not only looks at compensation fairness but also at self-
enforcement, which fits perfectly with the notion of  incentive alignment in collaborative supply chains defended by
Simatupang and Sridharan (2005).

From Equation (2), all the pdi(x), can be made equal by selecting xi-v(i) in proportion to v(N)-(v(N-i)+v(i)). Note that
assuming the superadditivity property holds in a supply chain context (see Ponte et al., 2016), v(N)-(v(N-i)+v(i))≥0,
which quantifies the net profit increase due to the participation of  node i in the collaborative solution. This leads to
Equation (3) for the Gately point.

x i
G=v (i)+

v (N )−(v (N−i)+v (i))

∑k∈N
[v (N )−(v (N−k )+v (k ))]

⋅(v (N )−∑ j∈N
v ( j))                                (3)

This implies that, in the Gately solution, each supply chain node captures a portion of  the surplus generated by
collaboration (in comparison with the different nodes acting alone) proportional to the contribution of  its
participation to increase the overall net profit of  the supply chain.

3. A numerical example based on the Beer Game scenario

In this article, we use the numerical example based on supply chain collaboration in the Beer Game scenario
developed by Ponte et al. (2016) and also used by Mueller (2018). The characteristic function of  this profit
allocation problem is provided in Table 1. We refer to the former article for more details on the net profit of  the
different coalitions in this numerical example.

no collaboration 2-node coalitions 3-node coalitions 4-node coalitions

v(1) = 100 v(12) = 400 v(123) = 800 v(1234) = 1,500

v(2) = 200 v(13) = 450 v(124) = 850

v(3) = 300 v(14) = 600 v(134) = 1,250

v(4) = 400 v(23) = 550 v(234) = 1,050

v(24) = 650

v(34) = 750

Table 1. Net profit for the different possible coalitions in the supply chain

In this section, we first obtain and discuss the Gately solution for this case study. Second, we compare this solution
against the benchmark alternatives proposed by Ponte et al. (2016) and Mueller (2018). From this perspective, we
analyze the differences between the different mechanisms for profit allocation in collaborative supply chains,
looking at their usefulness and limitations.

3.1. Gately solution for profit allocation

Applying Equation (3) leads to the following Gately solution for the problem we have posed. Note that we detail
the different terms to facilitate the conceptual understanding of  the profit allocation.

x1
G=100+

1,500−(1,050+100)
350+50+350+300

(1,500−1,000)=266.67 x3
G=300+

1,500−(850+300)
350+50+350+300

(1,500−1,000)=466.67

x2
G=200+

1,500−(1,250+200)
350+50+350+300

(1,500−1,000)=223.81 x4
G=400+

1,500−(800+400)
350+50+350+300

(1,500−1,000)=542.86

Applying Equation (1), it can be easily checked that this profit allocation xG=(266.67,223.81,466.67,542.86) generates
the same propensity to disrupt for the four supply chain nodes.
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pd1(x
G )=

(223.81+466.67+542.86)−1,050
266.67−100

=1.1 pd3(x
G)=

(266.67+223.81+542.86)−850
466.67−300

=1.1

pd 2(x
G )=

(266.67+466.67+542.86)−1,250
223.81−200

=1.1 pd 4(x
G)=

(266.67+223.81+466.67)−800
542.86−400

=1.1

3.2. Comparison of  the various methods for profit allocation

Ponte et al. (2016) compared the solution they proposed, which allocates the profit to maximize the satisfaction of
the unhappiest coalition, with two benchmark alternatives: the equal and the proportional distributions of  the
surplus. They showed that, while these benchmark solutions generate profit allocations that may leave some internal
coalitions unsatisfied (and hence are not sustainable in long term), their proposed solution satisfies all the possible
allocations. Mueller (2018) showed that this stable and fair solution can be improved by looking at the lexicographic
order of  the satisfaction vector according to the mathematical definition of  the nucleolus. They also presented
traditional game-theoretic solutions based on the Shapley value (Shapley, 1953) and the Lorenz set (Hougaard et al.,
2001). The former allocates the net profit according to the marginal contribution of  each node; however, they
showed that this solution does not belong to the core in this case study, and hence may not be practically viable. The
latter is interesting from the perspective that it minimizes the inequality of  the profit allocation in the collaborative
solution.

Following this line of  argument, we now evaluate the Gately solution against the nucleolus, Shapley and Lorenz
solutions. The net profit allocations according to these three game-theoretic mechanisms are synthetized in Table 2.

In order to compare the four solution mechanisms, we first use the game-theoretic notion of  excess (Schmeidler,
1969). This can be used to quantify the satisfaction of  the different possible coalitions in the supply chain; note that
satisfaction = - excess. In this sense, the satisfaction can be expressed as the difference between how much the nodes
of  the coalition C are earning in the grand coalition N and how much they would be earning by acting alone in the
coalition C. The satisfaction of  the various coalitions in the three solution mechanisms can be seen in Table 3. In
every case, we highlight (in bold) the result of  the most unsatisfied coalition.

The Shapley solution may be a fair mechanism from the perspective that it looks at the contribution of  each node to
the overall profit. Despite this, its implementation in practice may not be viable as a coalition of  nodes 1, 3, and 4
would generate more money that what these nodes obtain in the larger coalition. This means that, as pointed out by
Mueller (2018), this solution does not belong to the core. On the other hand, the Lorenz solution selects the
allocation within the core that minimizes the inequality. However, this is achieved by making equal to 0 the
satisfaction of  the unhappiest coalition. It implies that node 2 is capturing all the increase that this node is
contributing to the collaboration, which may not be acceptable for its supply chain partners (why would they be
interested in node 2 joining the grand coalition if  this does not have a positive impact on them?). On the contrary,
both the Gately and the nucleolus solutions generate a positive satisfaction for all the possible coalitions in this
specific case study. For this reason, both solution concepts can be interpreted as viable in this case study. As can be
expected (given that this is the goal of  the nucleolus allocation), the nucleolus allocation makes the unhappiest
coalition more satisfied. Nonetheless, note that the difference is relatively small (23.81 against 25).

Supply chain
node

Gately solution Nucleolus solution
(Mueller, 2018)

Shapley solution
 (Mueller, 2018)

Lorenz solution
(Mueller, 2018)

Factory (1) 266.67 291.67 262.50 416.67

Distributor (2) 223.81 225 254.17 250

Wholesaler (3) 466.67 441 445.83 416.67

Retailer (4) 542.86 541 537.50 416.67

Total 1,500 1,500 1,500 1,500

Table 2. Profit allocation according to the various game-theoretic mechanisms
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Coalition Gately solution Nucleolus solution Shapley solution Lorenz solution

1 166.67 191 162.5 316.67

2 23.81 25 54.17 50

3 166.67 141.67 145.83 116.67

4 142.85 141.67 137.5 16.67

1-2 90.48 116.67 116.67 266.67

1-3 283.33 283.33 258.33 383.33

1-4 209.52 233.33 200 233.33

2-3 140.48 116.67 150 116.67

2-4 116.67 116.67 141.67 16.67

3-4 259.52 233.33 233.33 83.33

1-2-3 157.14 158.33 162.5 283.33

1-2-4 183.33 208.33 204.17 233.3

1-3-4 26.19 25 -4.17 0

2-3-4 183.33 158.33 187.5 33.33

Table 3. Satisfaction of  the coalitions various game-theoretic mechanisms

Supply chain node Gately solution Nucleolus solution Shapley solution Lorenz solution

Factory (1) 1.1 0.83 1.15 0.11

Distributor (2) 1.1 1 -0.08 0

Wholesaler (3) 1.1 1.47 1.4 2

Retailer (4) 1.1 1.12 1.18 17

Table 4. Propensity to disrupt of  the coalitions various game-theoretic mechanisms

We can also compare the three solutions based on the concept of  propensity to disrupt that we have previously
defined. Table 4 present these results.

The problems of  the Shapley solution in this case study become evident through a propensity to disrupt (of  the
distributor) lower than 0. As we discussed before, this occurs as the participation of  this node in the grand coalition
decreases the joint net profit of  the other nodes. Meanwhile, the propensity to disrupt of  this node under the
Lorenz solution is 0, which reveals that its participation is generating no benefit in its supply chain partners. In line
with the previous analysis, both the Gately and the nucleolus concepts offer viable solutions in this case study. The
main difference is that while the Gately point generates the same propensity to disrupt for all the nodes, the
nucleolus generates different propensities. Note that in this case, some of  the propensities to disrupt are lower than 1
and other are higher than 1. It implies that while the participation of  the wholesaler (e.g.) in the grand coalition
generates a higher net profit to the factory than to itself, the participation of  the factory generates a higher net
profit to itself  than to the other nodes. From the perspective that it may be problematic in some practical contexts,
the Gately point suggests minimizing the maximum propensity to disrupt, which makes all them equal.

Finally we measure the Euclidean length of  the different allocations by Equation (4).

       ‖x‖=√∑k∈N
xk
2                                                                       (4)

As discussed by Mueller (2018), the indicator  provides information on the concentration of  wealth in the supply
chain. The lower this indicator, the less inequality. Table 5 presents these results. By its own definition, the Lorenz
solution minimizes the Euclidean length for those imputations within the core. Note that the Shapley solution,
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although it does not belong to the core, offers a higher length. Both the Gately and the nucleolus solutions provide a
similar performance in terms of  this criterion, although it should be mentioned that the nucleolus provides a better
performance according to this metric. It may be interpreted in the following manner: considering the bargaining
power of  the different nodes, according to the Gately solution, slightly increases the inequality in the supply chain.

Gately solution Nucleolus solution Shapley solution Lorenz solution

796.04 790.04 788.15 763.62

Table 5. Euclidean length of  the allocations of  the game-theoretic mechanisms

4. Concluding notes

This research aims to contribute to the discussion initiated by Ponte et al. (2016) and enriched by Mueller (2018) on
the value of  game-theoretic ideas for aligning incentives in collaborative supply chains. From this perspective, we
introduce a new solution concept based on Gately’s notion of  propensity to disrupt. Through a numerical case
study built on the four-node Beer Game scenario, we compare this solution concept against more established
mechanisms, like the Shapley value and the nucleolus. We discuss the strengths and weaknesses of  each alternative.

The main interest of  the solution we propose in this article is that it minimizes the desire of  the supply chain nodes
to leave the overall collaboration. This is especially interesting in a supply chain context, as it somewhat considers the
bargaining power of  the different echelons. Therefore, it accounts for both the fairness and the self-enforcing
properties of  the allocation of  the gains obtained from the collaboration. Another interesting advantage of  this
alternative is that its computation is relatively simple in comparison with other alternatives, which may make it more
applicable in practice in a dynamic manner.

Nonetheless, it is pertinent to underline a relevant drawback of  this alternative. While the nucleolus always belongs to
the core (as long as it is non-empty), the Gately solution may not belong to it in some scenarios (Straffin, 1993). It
did not happen in our case study, but it may occur in some cases, especially when the core is small and/or the
number of  nodes is high. Nevertheless, the same idea can be extended to consider the propensities to disrupt of  all
possible coalitions in the supply chain (and not only those of  the individual nodes) and minimizing the largest of
these (in the same manner as in the nucleolus) to ensure that the solution belongs to the core. This solution has
been labeled as the disruption nucleolus (see e.g. Massol & Tchung-Ming, 2010). Exploring the advantages and
limitations of  this alternative in a supply chain context can be pointed out as an interesting avenue for future
research.
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