Quantity discrimination in angelfish (Pterophyllum scalare):

A novel approach with food as the discriminant

Luis M. Gómez-Laplaza ${ }^{\text {a }}$, Eva Díaz-Sotelo ${ }^{\text {a }}$, Robert Gerlai ${ }^{\text {b }}$
${ }^{\text {a Department of Psychology, University of Oviedo, Oviedo, Spain }}$
${ }^{\mathrm{b}}$ Department of Psychology, University of Toronto Mississauga, Mississauga, Canada

Declarations of interest: none

Words: 11902 (including Table 1 and Figure captions)

* Correspondence: Luis M. Gómez-Laplaza, Department of Psychology, University of Oviedo, Plaza de Feijoo s/n, 33003 Oviedo, Spain.

E-mail: lmgomez@uniovi.es (L.M.Gómez-Laplaza)
Phone: +34 985103248 Fax: +34 985104144

The ability to distinguish between different quantities of items is fundamental in many ecological contexts, and it has been shown in different animal species. This ability may also be context specific. Quantity estimation in fish has mainly been analysed in the context of social behaviour, whereas a majority of studies conducted with species other than fish tested it in the context of foraging. Surprisingly, little is known about the capacity of fish to discriminate between food quantities, possibly because of difficulties in testing individual fish in a novel, and thus aversive, test environment. Here, we present a novel approach that allows us to test single angelfish (Pterophyllum scalare) while minimizing isolation related stress. In binary choice tests, sets composed of similarly-sized discrete food items differing in numerical size, were presented and the spontaneous (untrained) choice of angelfish was investigated. In all contrasts tested in three experiments, angelfish preferred the numerically larger to the smaller food set. The performance of the fish was ratio-dependent in the small but not in the large number range (>4 food items, contrasts that were investigated for the first time in fishes), and there was no significant difference in the magnitude of preference in the small versus the large values. However, overall results indicated that the response was ratiodependent, with an increase in accuracy as the numerical ratio between the constrasts increased. Furthermore, the same numerical ratios that were successfully discriminated with small quantities were also similarly discriminated with large quantities. Altogether, our results thus imply that angelfish utilize the Approximate Number System of quantity representation for the entire numerical range tested, and that their response attempts to maximize foraging success.

Keywords Angelfish, Food sets, Numerical cognition, Quantity discrimination

Quantity discrimination is a basic form of numerical competence. This ability allows individuals to choose between quantities that differ in the number of elements, and it has been shown in a range of animal species, including humans (e.g. see Lourenco, 2016; Vallortigara, 2015). Such capacity can provide fitness benefits in diverse ecological scenarios including inter-group conflicts (Bonanni, Natoli, Cafazzo, \& Valsecchi, 2011), parental investment (Lyon, 2003) or predation risk contexts (Hager \& Helfman, 1991). Most studies investigating quantity discrimination abilities have employed foraging situations, because in nature discrimination of the relative differences between food quantities available can directly affect survival rates. According to optimal foraging theory (Stephens \& Krebs, 1986), when animals are faced with alternative foraging options, they should choose the one that provides the greatest net energetic gain. Therefore, the ability to assess different quantities is helpful to select the food source that provides the best payoff.

Most studies on quantity discrimination dealing with foraging decisions have been carried out in mammals and birds and under controlled laboratory conditions. This approach has allowed investigators to assess potential cognitive mechanisms underlying the discrimination. A variety of research methods have been adopted to investigate numerical abilities of animal species (reviewed in Agrillo \& Bisazza, 2014), but a commonly adopted methodology to measure quantity discrimination involving foraging behaviour is the binary choice test. Under this paradigm, subjects have to select between two visible, simultaneously presented, numerically different sets of food items, which generally remain in view at the time of choice. This spontaneous quantity discrimination has been employed in studies with mammals (Baker, Morath, Rodzon, \& Jordan, 2012; Bánszegi, Urrutia, Szenczi, \& Hudson, 2016; Beran, Evans, \& Harris, 2008; Cox \& Montrose, 2016; Hanus \& Call, 2007; Miletto Petrazzini \& Wynne, 2016; Parrish, Evans, \& Beran, 2015) and birds (Bogale, Aoyama, \& Sugita, 2014; Garland, Low, \& Burns, 2012; Rugani, Vallortigara, \& Regolin, 2013), but it
has also been utilized in other animal species such as amphibians (Krusche, Uller, \& Dicke, 2010; Stancher, Rugani, Regolin, \& Vallortigara, 2015; Uller, Jaeger, Guidry, \& Martin, 2003) and reptiles (Miletto Petrazzini, Fraccaroli, Gariboldi, Agrillo, Bisazza, Bertolucci, \& Foà, 2017).

These studies have shown that animals are sensitive to quantitative differences in food sets, as most species studied were found to be able to discriminate between the item sets and showed significant preference for the larger quantity. Often, individuals are subjected to discrimination tests that involve small (≤ 4) and also large (>4) quantities of food items, and sometimes discrimination ability was found to be not uniform across these two number ranges. The results have suggested the existence of two distinct representational mechanisms: one to account for performance when numerically small sets are presented, and another when discrimination between numerically large sets was required. The latter system, named Approximate Number System (ANS), was found to be imprecise. It adheres to Weber's law in that discrimination depends on the ratio, and not the absolute numerical difference, between the number of elements of the sets compared. In contrast, the mechanism proposed to operate with small quantities, named Object File System (OFS), is precise. It does not depend on the ratios between the two quantities, but is limited to discrimination of elements in the small number range, i.e. maximum 3-4 elements (Feigenson, Dehaene, \& Spelke, 2004). Nevertheless, some evidence indicates the existence of only one system (the ANS) for the whole numerical range, as performance in some studies has been found to be dependent upon the numerical ratio in both the large and the small number range (Beran, 2004; Cantlon \& Brannon, 2006; Perdue, Talbot, Stone, \& Beran, 2012).

A growing number of studies have focused on the analysis of numerical cognition and quantitative abilities in fishes too (see Brown, 2015). Most of these studies have examined the discrimination between sets constituted by a different number of conspecifics, when the
sets (shoals) are placed in each of the opposite sides of a test aquarium (see Agrillo, Miletto Petrazzini, \& Bissazza, 2017). By transferring an individual test fish of a social species into a novel, and potentially dangerous environment (the test aquarium), it was expected that, if the subject was able to distinguish between quantities of conspecifics, it should join the larger shoal as this offers better protection, diluting the potential predation risk for a solitary fish. In several fish species, a natural ability to assess quantities of conspecifics has been demonstrated (Agrillo, Dadda, \& Serena, 2008a; Buckingham, Wong, \& Rosenthal, 2007; Piffer, Agrillo, \& Hyde, 2012; Potrich, Sovrano, Stancher, \& Vallortigara, 2015; Seguin \& Gerlai, 2017; Stancher, Sovrano, Potrich, \& Vallortigara, 2013; Thünken, Eigster, \& Frommen, 2014). As in other vertebrates, a controversy exists, however, over the representational mechanism(s) underlying discrimination in fishes. Some of the studies support the existence of two distinct mechanisms (Agrillo, Miletto Petrazzini, \& Bisazza, 2014; Agrillo, Piffer, Bisazza, \& Butterworth, 2012; Piffer et al., 2012), whereas other studies support the idea of a single mechanism operating over the entire numerical range (Mehlis, Thünken, Bakker, \& Frommen, 2015; Miletto Petrazzini \& Agrillo, 2016; Potrich et al., 2015).

In contrast with other animal species, however, only a very few studies in fish have used food as discriminative stimulus, and the focus on foraging behaviour in this type of test has only begun recently. Difficulties of testing an individual fish in a novel, potentially frightening environment, together with complications arising from presenting food in water, including odour cues, may account for the lack of food quantity discrimination studies in fish. In fact, in the only two studies published to date, each individual fish had to be acclimatized to the novel environment (the test aquarium) for a week, and smaller conspecifics were also introduced to reduce the potential effects of individual housing as well as to facilitate adaptation and response to the food stimulus (Luxon-Xiccato \& Dadda, 2017; Lucon-

Xiccato, Miletto Petrazzini, Agrillo, \& Bisazza, 2015). These studies, conducted with guppies (Poecilia reticulata), tested only a few contrasts of sets of similarly-sized food items. LuconXicatto et al. (2015) reported that the guppies were able to distinguish between different number of food items up to a 2:1 ratio (4 versus 1 and 4 versus 2 items), but not between smaller ratios (number of elements in the larger set divided by the number of elements in the smaller set). For example, they were unable to discriminate between 6 versus 4 sets of discrete food items (Lucon-Xiccato \& Dadda, 2017). However, no study has examined the abilities of fish to discriminate between food quantities in the large versus the small number range using multiple contrasts systematically varied.

The angelfish (Pterophyllum scalare) have been used in the analysis of quantity discrimination abilities. These fish have been shown to spontaneously discriminate shoals of conspecifics differing in numerical size when the contrasted shoals were in the large number range, when they were in the small number range and also when one of the contrasted shoals belonged to the large and the other to the small number range (Gómez-Laplaza \& Gerlai, 2011a, 2011b, 2015, 2016a, 2016b). Furthermore, in addition to being able to show significant preference for the larger shoal when both contrasted shoals were simultaneously visible, angelfish were also found to be able to remember where the larger shoal used to be shown, a result that demonstrated mental representation (memory) of different quantities of items in this small teleost (Gómez-Laplaza, Caicoya, \& Gerlai, 2017). However, quantity discrimination abilities of angelfish in contexts other than social has not been investigated, although two studies have used training procedures with food as reward (Agrillo, Miletto Petrazzini, Tagliapietra, \& Bisazza, 2012; Miletto Petrazzini, Agrillo, Izard, \& Bisazza, 2016). It is possible that natural selection shaped discrimination abilities for quantities of shoals and for quantities of food items differently. If performance is context specific (Miletto Petrazzini, Agrillo, Piffer, \& Bisazza, 2014), a different ecological context employed
experimentally may reveal different, previously unknown, numerical cognitive features of angelfish. The goal of the current study is to explore this possibility, and to investigate discrimination ability of angelfish when the items to be discriminated are food. In chicks, for example, the response was not found to be context-specific, i.e. preference for the numerically large quantity was found both when discriminating between numerically distinct social partners as well as between food quantities. The discrimination response to social attractors, however, was found to be better than that to food attractors (Rugani, Cavazzana, Vallortigara, \& Regolin, 2013).

In the present study, we investigated the spontaneous ability of angelfish to discriminate between food quantities using a two-choice discrimination task between sets composed of discrete homogeneously-sized food items differing only in numerical size. Initially, we employed the same procedure we previously utilized for the analysis of discrimination between shoals of conspecifics. This procedure required individual housing and testing of the subjects (which motivated them to choose conspecifics). The results of our pilot experiments showed, however, that the priority of the subjects after being individually transferred to the test aquarium was not foraging, but rather fear, associated with high activity and/or immobility (active or passive defense reactions). In fact, similar effects of short termindividual housing in angelfish on feeding behaviour have been reported (Gómez-Laplaza \& Morgan, 1993). Therefore, to avoid the behavioural consequences of individual housing in this shoaling (group forming) species, we developed a novel methodology by which subjects were individually tested while in a shoal. Using the novel method, we examined the ability of angelfish to discriminate between a range of food sets of different numerical size. The task consisted of fish having to discriminate and freely approach the zone close to the larger of two food sets simultaneously presented. In Experiment 1, we validated the new approach that allowed us to manipulate and measure the discriminability between stimulus pairs. Also, this
experiment served to verify the engagement of individuals in the task and screen for potential side bias. In Experiment 2, we investigated the response of angelfish when confronted with pairs of food sets in the small number range, and explored the potential limit of discriminability (i.e. 4 versus 3 food items) to compare it to that obtained with our previous studies using stimulus shoals. Finally, in Experiment 3 we tested discrimination between food sets in the large number range (≥ 4 items in each set), a numerical range surprisingly not studied before in fish. We also tested an additional contrast that crossed the boundary between large and small quantities (5 versus 2) in order to clarify whether one or two number representation systems may operate in the foraging context in angelfish. The failure to discriminate sets across the large-small boundary has often been interpreted as reflecting incompatibility between representational systems, thus supporting the idea of the existence of two distinct systems (e.g. Cordes \& Brannon, 2009; Piffer et al., 2012). The assumption underlying all these tests is that, if angelfish are able to discriminate between the two food quantities, they are expected to select the most advantageous option to maximize food intake, i.e. the larger quantity.

METHODS

Subjects and housing conditions

The experimental subjects used in the experiments were juvenile angelfish (3.0-3.3 cm standard length) obtained from local commercial suppliers. Only juveniles of this sexually monomorphic species were studied, so as to avoid possible confounding effects arising from territoriality or sexual/coursthip behaviour. The fish were housed in the laboratory in glass maintenance aquaria ($60 \times 30 \times 40 \mathrm{~cm}$, length x width x depth) in groups of 18-20 individuals
per aquarium, and were allowed a minimum of 2-week acclimation period prior to behavioural testing.

The maintenance aquaria were filled with dechlorinated tap water, kept at $26 \pm 1^{\circ} \mathrm{C}$ throughout the study using thermostat-controlled heaters. Each aquarium was illuminated by a 15-W white fluorescent light tube placed above the tank, and a 12:12 h light:dark cycle was maintained with lights on at 0830 hours. External filters continuously cleaned the aquaria, which had a $2-\mathrm{cm}$ deep gravel substratum. Except for the front, all exterior walls of the aquaria were lined with white cardboard. The fish were fed twice daily, at 1000 and at 1800 hours, on commercial food flakes (JBL GALA, JBL GmbH \& Co. KG, Neuhofen, Germany) presented on the water surface. All fish were returned to the supplier at the end of the study.

Experimental apparatus and stimuli

The experimental aquarium ($60 \times 30 \times 33 \mathrm{~cm}$, length x width x depth) was maintained under the same conditions as the maintenance aquaria. All exterior walls of the experimental aquarium were lined with white cardboard to prevent the fish being influenced by external visual stimuli. The aquarium was divided into three compartments along the short axis by inserting two transparent plastic partitions 25 cm from each lateral short side of the aquarium (see Fig. 1). In the center of each partition, a small rectangular guillotine window (6.5 width x 16 cm height) was opened to allow the fish to pass through from one compartment to the other. The guillotine windows were handled by the experimenter, and could be closed or opened by placing or removing (raising or lowering) a panel, of the same material as the partitions, that could cover the windows (see below). The central part of the smaller middle compartment constituted the starting box ($10 \times 10 \times 33 \mathrm{~cm}$ high $)$ from where the experimental fish were released for behavioural testing (Fig. 1).

The two lateral compartments of the experimental aquarium were alternated across subjects and were considered as the 'home compartment' and the 'testing compartment',
respectively, where stimuli were presented during testing. In the middle of the testing compartment, a transparent plastic divider ($10.5 \times 33 \mathrm{~cm}$ width x height) was placed to divide that end side into two equally-sized halves: the 'preference zones' ($10.5 \times 15 \mathrm{~cm}$, width x length; Fig. 1). At least three-quarters of the body length of the fish had to be within the boundary for the fish to be considered inside such zones.

In each of the preference zones the food stimuli were presented. These consisted of two sets of discrete food items of different numerical size (number of food pieces) simultaneously presented. The food sets remained visible during the test period. In order to avoid any potential chemical cue that could guide the subjects in the selection, during tests food quantities were presented outside the experimental tank (see below). Food items were pasted on a $5 \times 5 \mathrm{~cm}$ area at the terminal part of transparent plastic panels ($10 \times 35 \mathrm{~cm}$ height), 4 cm from the bottom end. The panels were inserted between the external part of the glass of the corresponding end wall of the aquarium and the white cardboard lining the wall. Thus, the stimuli were positioned flush against the exterior end wall in the testing compartment at a distance of 10 cm apart from each other. Food was provided in discrete items prepared by making a homogeneous mass with the flakes using some water. The mass was agglutinated, and uniform-sized $(0.4 \mathrm{~cm} \emptyset)$ circular pieces were obtained by means of a methacrylate mold sheet (0.1 cm thick) perforated with homogeneous holes ($0.4 \mathrm{~cm} \emptyset$) into which portions of the agglutinate were introduced to obtain food items with the shape and size uniform.

To avoid discrimination based on the overall configuration of the stimuli, for each quantity presented 12 different configuration patterns (spatial arrangement of the food items) were elaborated (see Appendix Fig. A1), in such a way that for any pair of contrasts fish were presented with a different stimulus configuration.

Procedure

As angelfish is a shoaling cichlid species that forms groups in the wild and also under laboratory conditions, as mentioned above, to minimize the consequences of social isolation, subjects were tested only when they voluntarily swam away from their shoal mates. First, all experimental angelfish underwent an acclimation phase to the procedure in the experimental aquarium. For this, the fish were placed to the aquarium in groups, i.e. with their shoal mates. Afterwards, during the testing phase, subjects continued to stay in their group, and a subject was tested only when it voluntarily entered the start box on the way to the test compartment where two sets of food items in panels showing different quantities of food were presented. Tests were performed in the same experimental aquarium as in the acclimation phase in order to minimize stress and ensure engagement with the task.

Acclimation phase

Shoals of 10 angelfish, randomly chosen, were transferred from their maintenance aquaria into the experimental aquarium 7 days before the start of the experiments. During this period, individuals could swim freely among the three compartments of the apparatus and familiarize themselves with passing through the small windows of the partitions, which was facilitated by the interaction with other fish. Likewise, during this period, instead of providing food flakes on the water surface, food was provided in the form as described above (i.e. in discrete items). Items were pasted onto the terminal part of transparent panels by adding a drop of water, which allowed the food pieces to remain pasted when the panels were lowered into the water long enough to be consumed by the fish. During the acclimation phase, one food item was pasted in the lower part of each of four transparent panels, which were introduced into the experimental aquarium, and distributed in such a way that two panels (i.e. two food items) were placed in one of the long walls of the aquarium (one panel in the middle of each of the two large lateral compartments) and leaning against the walls, and the other two panels were placed on the opposite long wall of the aquarium. In this way,
monopolization of food by more dominant foragers, i.e. potential competition over food among conspecifics, was reduced. Likewise, the distribution of the food items throughout the aquarium and their location in the long walls (instead of in the short wall as during actual choice tests) prevented angelfish from associating the food with one specific location in the aquarium.

Subjects were fed in two daily sessions (morning and afternoon) following the same schedule as in the maintenance aquaria. The amount of food available during a session was similar to that provided in the maintenance aquaria, and subjects were soon habituated to feed in this way. Notably, although in the wild many species prefer feeding in the water column, domesticated fish prefer the surface to feed (Reinhardt, Yamamoto, \& Nakano, 2001, quoted in El Balaa \& Blouin-Demers, 2011), and based upon the mouth structure and behaviour (slow swimming species) of angelfish, these fish likely forage in nature by picking up food items (small crustateans, worms, decaying organic matter) from solid surfaces. A habituation period during which experimental fish practiced how to feed near the gravel substratum was, therefore, successful and properly acclimatized the experimental fish to this new feeding method before the start of experiments.

Testing phase

Before starting each trial, an opaque white partition identical to the transparent partitions, including the guillotine window, was superimposed over one of the transparent partitions. The transparent partition to be covered by the opaque partition was counterbalanced between the two transparent partitions that delimited the lateral compartments, according to the schedule of each experiment. Thus, the position of the home compartment (that delimited by the opaque white partition) and the testing compartment (delimited by the transparent partition) were exchanged to avoid any lateral side bias. Consequently, the divider delimiting the preference zones was also exchanged. Thereafter, all

10 fish were gently guided to, and kept in, the compartment now delimited by the opaque partition (home compartment). As soon as the fish were in the corresponding home compartment, the opaque guillotine window was closed by the experimenter, thus blocking the view of the other side of the aquarium. Also, the transparent guillotine window that delimited the other compartment (the testing compartment) was closed. While all fish were in the home compartment, two different quantities of same-sized food items glued on the panels were simultaneously placed in the external side of each of the preference zones of the testing compartment. After a 3-min period, the opaque white guillotine window of the home compartment was raised by the experimenter to allow fish passing through it. We waited until one subject spontaneously swam through the window into the starting box (typically from a few seconds to a few minutes), and we immediately closed the opaque white guillotine window. That is, we limited the entrance of only one subject into the start box. The remaining subjects could not see what happened on the other side of the partition. After a period of 30 s in the start box, during which the subject could see the two sets of food items through the transparent partition, we gently raised the transparent guillotine window and the fish was released and allowed to freely enter the testing compartment to make the choice. As the transparent guillotine window was equidistant from the two sets of stimuli no location bias existed before the choice. Generally, subjects rapidly approached the preference zones to feed on one of the two food sets. The transparent guillotine window was closed to prevent fish from returning to the start compartment.

Tests took place in the morning at the usual feeding time (1000-1015 hours), thus subjects were not food-deprived, but they were sufficiently motivated to perform the task. A camera placed above the experimental aquarium recorded the behaviour and position of the subjects for 5 min . This recording period was chosen because fish, after approaching one of the food sets trying to eat the items (actually inaccessible to consume), generally swam to the
other preference zone to try to feed on the other set. After several unfruitful attempts to feed in one and the other set, often the fish stopped the attempts, and tried to return to the other compartments. Preliminar experiments revealed that after 5 min, the subjects rarely made new attempts to feed in the sets or to approach the preference zones, as they had learned that no food item was possible to consume.

To control for possible side preferences, we counterbalanced the left-right presentations (from the approaching subject's point of view) of the larger and smaller stimuli across fish and, as already mentioned, reversed the presentation of the sets between the two lateral sides of the aquarium by changing the overlapping opaque partition and placing it covering one or the other of the transparent partitions. We also randomized the order of presentation of each stimulus combination across subjects.

Each fish was tested only once for a single numerical contrast, and after having been tested, each subject was removed from the experimental aquarium and placed in another tank where it was fed. Likewise, the remaining fish of the shoal were fed in the usual way in the experimental aquarium, after raising the guillotine windows. Every second day, when two fish had been tested and removed, two new fish were transferred to the experimental aquarium to make sure that the size of the shoal in the experimental aquarium remained relatively constant.

In all experiments, all fish entered both preference zones at least once during the choice tests and, therefore, no fish was excluded from the statistical analyses.

Statistical Analysis

We recorded the first preference zone selected by the experimental angelfish, i.e., the first choice, measured the time spent (sec) in each preference zone, and calculated an index to quantify preference for one set over the other as follows: the time spent in the preference zone near the numerically larger food set was divided by the total time spent in both
preference zones. We also recorded the frequency of entries to the preference zones, as well as the latency to enter the preference zones.

In each experiment, the data were tested for normality (using the KolmogorovSmirnov one sample test) and for equality of variance (using Levene's test) before analysis. Data of latency to enter one or another preference zone were log transformed before the analyses to meet assumptions of parametric statistics.

The time spent in the preference zones was considered a measure of each test fish's preference for a particular food set, and a one sample t-test was employed to investigate whether the observed preference index was significantly ($P \leq 0.05$) different from chance (50\%). The Holm-Bonferroni sequential correction method was employed to correct for type I error resulting from multiple comparisons. A one-way ANOVA for independent samples was used to analyze the effect of the comparisons on preference. In case of a significant result, it was followed by a Tukey honestly significant difference (HSD) post hoc multiple comparison test. Binomial tests comparing the number of fish initially choosing the larger or smaller food set were used for each combination of stimuli, and frequency and latency scores were analyzed using paired t tests. All tests are two-tailed.

Ethical note

The experiments described here complied with the current law of the country (Spain) in which they were performed and were approved by the Ethics Committee of the University of Oviedo (permit ref.: 13-INV-2010). Essentially, the experiments involved behavioural observations with as little intervention by the observers as possible, and no invasive manipulation was performed on fish. The fish exhibited no signs of stress and remained healthy over the course of the experiments.

RESULTS

Experiment 1

The purpose of this Experiment was to determine whether the new approach is adequate to examine quantity discrimination using food as the discriminant in a binary choice test with angelfish, a shoaling species. To accomplish this, we examined the ability of angelfish to locate a food set composed of three food items vs no food set, i.e. 3 versus 0 discrimination. The side of the testing compartment where the stimulus set was presented was initially randomly chosen, after which the location of the food set and the no food set were systematically alternated across test fish. A total of 12 fish were tested.

In this control treatment, test fish reliably discriminated, and spent significantly more time in, the preference zone close to the 3 -food item set than in the zone close to the no food set. The mean proportion of time, i.e. the preference index was Mean $\pm \mathrm{SE}=0.9135 \pm$ $0.0256, N=12$, a significant preference above chance (one-sample t-test, $t_{11}=16.159, P<$ 0.001). Likewise, 12 out of 12 fish chose to enter first the preference zone adjacent to the food set (binomial test: $P<0.001$). These results indicated the viability of the novel methodology employed to test discrimination in angelfish. The strong preference for the side where the food was presented was also supported by the other behavioural parameters measured (see Table 1).

Experiment 2

In this Experiment we investigated whether angelfish were able to discriminate between two sets of equally-sized food items differing in the number of the items. The contrasts consisted of all possible binary combinations within the small number range (i.e. \leq 4 items). Thus, subjects were observed in their spontaneous preference between the following
six pairs of contrasts: 4 versus 1,3 versus 1,2 versus 1,4 versus 2,3 versus 2 , and 4 versus 3 . We observed 12 subjects in each contrast, i.e. a total of 72 fish were tested.

Results

When test fish were confronted with a choice between two food sets of different numerical size in the small number range, they exhibited a preference for the set containing the larger number of food items (Fig. 2). In most of the contrasts tested, angelfish spent significantly more time than expected by chance in the preference zone close to the larger quantity (one-sample t test, with Holm-Bonferroni correction: 4 versus $1, t_{11}=5.669, P=$ $0.003 ; 3$ versus $1, t_{11}=3.576, P=0.016 ; 2$ versus $1, t_{11}=2.931, P=0.028 ; 4$ versus $2, t_{11}=$ 3.021, $P=0.036$; and 3 versus $2, t_{11}=5.111, P=0.005$. However, preference was found not to be significant in the contrast 4 versus 3 , $\left(t_{11}=1.926, P=0.080\right)$. Angelfish also showed a significant preference for first entering the preference zone close to the larger set: at least 10 out of 12 fish exhibited this initial preference in most contrasts (binomial probability test: all $P<0.05$, Table 1). Interestingly, the exception was the contrast 4 versus 3 , in which the first choice of 8 out of 12 fish was the large food set, a number that was found not significantly different from chance ($P>0.05$). This contrast represented a ratio of 1.33:1 (number of items in the larger set divided by number of items in the small set) and was the lowest ratio tested in this experiment.

The latency to approach the larger food set was significantly lower than the latency to approach the smaller set in most contrasts (all $P \leq 0.031$, Table 1). However, in the contrast 4 vs 3 the difference was again not significant ($P=0.211$, Table 1). This result, together with those obtained when considering the preference index and also the first choice, indicates an unsuccessful discrimination of the 4 versus 3 contrast.

One-way ANOVA showed that the difference in the magnitude of the preference for the larger set among the six contrasts approached significance ($F_{5,66}=2.328, P=0.052$), and

Tukey HSD test indicated that the magnitude of the response was significantly greater when the ratio was $4: 1$ compared to when the ratio was $4: 3(P=0.023)$. This result supports the notion that ratio affected the discrimination, and as the ratio decreased, although a differential response remained, discrimination became more difficult for angelfish.

Angelfish visited both preference zones in all contrasts indicating that they actively explored the stimuli, and repeatedly assessed the most profitable set. Consequently, the number of entries in the preference zone close to the larger food set was generally significantly higher than the number of the entries to the smaller food set (all $P<0.034$, Table 1), indicating the persistence of trying to catch food from the large quantity (i.e. fish after having been unable to catch food from the larger set, gave up for a while, and subsequently returned to the larger set without entering the zone of fewer food items). The exception was the 2 versus 1 and the 4 versus 2 contrasts, where, although fish showed the above tendency, no significant differences were found in the frequency of visits to one or the other food set $(P>0.05)$.

Experiment 3

In Experiment 2 angelfish, with the exception of the 4 versus 3 contrast, were found to be able to discriminate between two food quantities when the item sets to be discriminated were within the small numerical range (1-4). In Experiment 3, we also examined the angelfish's choice between sets of food items of different numerical size, but now in the large number range. Five numerical contrasts were presented, including a contrast that crossed the boundary between the small and large number range, i.e. 5 versus 4,8 versus 6,9 versus 6,8 versus 4 , and 5 versus 2 . Some of these contrasts correspond to ratios employed in Experiment 2 and those employed before in a social context (e.g. Gómez-Laplaza \& Gerlai, 2011a, 2011b). Twelve subjects were observed in each contrast, with a total of 60 fish tested under the same protocol and dependent variables as described above.

Results

In all contrasts, fish showed a preference for the location where the larger food set was presented (Fig. 3). The preference was significantly above chance for contrasts whose ratios were 1.5:1 and greater $\left(t\right.$ test with Holm-Bonferroni correction: 9 versus 6, $t_{11}=3.084$, $P=0.05 ; 8$ versus $4, t_{11}=3.007, P=0.048 ; 5$ versus $\left.2, t_{11}=2.891, P=0.045\right)$. However, for ratios smaller than 1.5:1 preference, as in Experiment 2, did not reach the threshold of significance (8 versus $6, t_{11}=1.831, P=0.094 ; 5$ versus $4, t_{11}=2.183, P=0.052$). One-way ANOVA showed no significant difference in the magnitude of the preference between the five contrasts tested ($F_{4,55}=0.460, P=0.765$). Interestingly, a similar pattern of results was found in Experiment 2 and Experiment 3. Thus, the same ratios between the contrasted sets that were successfully discriminated in the small number range (i.e. equal or above 1.5:1, Experiment 2), were now also found to be discriminated within the large number range (compare Fig. 2 and Fig. 3).

Some differences relative to Experiment 2 emerged, however, when we analyzed the other behavioural parameters. For example, although the first choice for 8-9 out of 12 fish was the larger set, this number of fish was found not to differ from chance in any of the contrasts tested (binomial tests, all $P>0.05$, Table 1). Also, with the exception of the 8 versus 4 contrast (see Table 1), the latency to approach the larger food set was not significantly shorter compared to the latency to approach the smaller set. Nevertheless, the overall time taken to enter the preference zone near the larger food quantity was significantly shorter than the time taken to enter the zone with the smaller food quantity $\left(t_{59}=3.656, P=\right.$ $0.001)$.

Analysis of the frequency of visits to the preference zones also indicated that angelfish actively assessed the sets and appeared to enter the zone of the larger food quantity with higher frequency, although this was not significantly different from the number of
entries to the zone where the small food sets were located (all $P>0.05$, Table 1). However, considering all contrasts together, the overall frequency of entries in the larger set was, as in Experiment 2, significantly greater than the number of visits to the preference zone close to the smaller set $\left(t_{59}=2.015, P=0.048\right)$.

Comparison of results obtained in experiments 2 and 3

Comparison of all contrasts tested in Experiment 2 and 3 demonstrated that the magnitude of the preference was not significantly different among the 11 treatment groups (contrasts) $\left(F_{10,121}=1.410, P=0.184\right)$. Furthermore, comparison of the overall magnitude of the preference for the large food set in Experiment 2 versus in Experiment 3, also showed no significant difference in performance between these two experiments $\left(F_{1,130}=1.490, P=\right.$ 0.224). Nevertheless, for Experiment 2 and 3 together, linear regression analysis revealed that the magnitude of the preference for the large food set increased significantly with increasing ratio between the food sets contrasted, and as the ratio of the larger to the smaller food set approached one, discrimination (i.e. preference) became increasingly difficult ($F_{1,9}=11.347$, $P=0.008$; Fig. 4). This result is in accordance with Weber's law, and Pearson correlation coefficient confirmed such result: a significant correlation was found between the numerical ratio and the preference index (i.e. the magnitude of the preference) $(\mathrm{r}=0.747, P=0.008)$. Therefore, we conclude that overall accuracy was positively correlated with the ratio, and angelfish preference for the larger food set increased significantly with greater ratios.

We also found the frequency of visits to the zone of the larger food set to be significantly greater in Experiment 2 than in Experiment $3\left(F_{1,130}=17.034, P<0.001\right)$, indicating perhaps greater persistence to enter the side where the larger quantity of food was located when the smaller quantity was composed of very few, i.e. only 1-2 items, instead of 4-6 food items. This greater number of entries may be due to motivational factors. Possibly both of the large food sets provided enough food to satisfy the fish, consequently they did not
preferentially visit more times one zone over the other. On the other hand, differences in latency to approach the preference zones close to both the larger food set (one-way ANOVA, $\left.F_{1,130}=1.366, P=0.245\right)$ and the smaller food set $\left(F_{1,130}=2.885, P=0.092\right)$ were not significantly different between Experiment 2 and 3.

DISCUSSION

Idiosyncratic numerical abilities may be required, or may have evolved for, distinguishing quantities of items under distinct contexts. Previously, we investigated numerical abilities of angelfish when they were required to choose between different numbers of conspecifics, a social context. Most studies analyzing numerical or quantity estimation abilities of fish worked within this context. However, similar studies employed with other species, e.g. mammals and birds, often utilized foraging, a context in which numerical abilities of fish are virtually unknown.

In the present study we investigated the capacity of angelfish to discriminate numerically larger food quantity from the smaller one when the two sets of food items were simultaneously presented. This task was difficult because the choice had to be quantified using a single, isolated test subject, a condition under which fish of most species would experience stress or fear, and thus would not perform in a food choice test. The angelfish, like several other fish species, is a shoaling fish, at least before reaching sexual maturity, that would suffer from being isolated. To circumvent this issue, we developed a new test aquarium and procedure. Although we tested the subjects individually, i.e. in isolation, the experimental fish was allowed to remain within its shoal of conspecifics, and would enter the test session only once it voluntarily left its shoal.

A series of important features characterized the new approach: (1) although subjects were individually tested, the procedure did not require the artificial (experimenter forced)
separation of the subject from the rest of its companions in the shoal; (2) habituating the test fish to, and keeping them in, the test aquarium for a period of time before the actual choice task reduced handling stress and the stress of being introduced into a novel tank (GómezLaplaza \& Morgan, 1993); (3) by presenting the stimuli outside the aquarium, chemical/olfactory cues were excluded, and (4) the procedure allowed assessment of spontaneous preference (as opposed to trained preference) for food quantity within a short period of time, allowing us to collect data for each fish using a 5 min long recording session. Other researchers have also tried to reduce the stressors that may confound the results in this type of tests, however, their procedures required periods of individual training and habituation of each subject, as well as several trials for each discrimination contrast (LuconXiccato \& Dadda, 2017; Lucon-Xicatto et al., 2015).

Using the novel methodological approach, our results provide the first evidence about the abilities of angelfish to discriminate between food quantities and, to our knowledge, the first results with testing food quantities in the large number range. Experiment 1 demonstrated that the procedure is appropriate to study discriminability in a shoaling species of fish. Subjects were able to distinguish food from non-food, with all parameters measured indicating a clear preference for the zone where the food was presented when the alternative was the absence of food. The performance of experimental fish demonstrated that the subjects were sufficiently motivated for the choice, which, in turn, evidenced another advantage of our experimental protocol: there is no need of depriving the subjects of food. Since motivation may play an important role in the response, food deprivation is sometimes employed (e.g. Bánszegi et al., 2016; Lucon-Xiccato et al., 2015). It may be argued that experimental angelfish could not have perceived the panel without food, and consequently may not have behaved as if the task offered a binary numerical choice (i.e. angelfish just approached the only visible stimulus in the compartment). This possibility, is unlikely since all fish could see
both preference zones while in the starting box, and although they spent most of the time in the preference zone wih food, occasionally they did move around the compartment, and had a chance to see the zone without food even if they did not enter in it.

Although angelfish have shown good abilities to discriminate shoals of conspecifics differing in numerical size in a social, shoaling context, also thought of driven by predator avoidance (Gómez-Laplaza \& Gerlai, 2011a, 2011b, 2015, 2016a, 2016b, Gómez-Laplaza et al., 2017), to date no study has tested these abilities in a foraging context. The current results demonstrate that angelfish can spontaneously select the larger quantity of food items, and are able to process quantitative information related to obtaining food. The successful discrimination, i.e. the preference for the larger food set both in the small and in the large number range is in accordance with optimal foraging (Stephens \& Krebs, 1986). Since the distance from the start box to the food patches was identical in all contrasts, the costs in terms of time and effort to reach one or the other set were identical, and angelfish spontaneously selected the larger set of food items, i.e. the most advantageous option. Given the importance of this task for gaining fitness benefits in nature, it is likely that natural selection favoured fish with an ability to detect and show preference towards sets containing more food items.

Especifically, in Experiment 2 angelfish were able to discriminate all pairings of combinations in the small number range, except the lowest ratio tested (4 versus 3). As in the current study, in none of the previous studies with angelfish, using shoals as stimuli and under different conditions, was the contrast 4 versus 3 elements found to be successfully discriminated, while the rest of the contrasts were discriminated in some of them (GómezLaplaza \& Gerlai, 2011b, 2015, 2016b; Gómez-Laplaza et al., 2017). These previous studies showed that angelfish could not, or did not, preferentially distinguish between 4 versus 3 stimulus shoals and the limit of discrimination within the small number range was found to be 1.5:1, i.e. 3 versus 2 (Gómez-Laplaza \& Gerlai, 2011b). This ratio was also found to be
discriminated here in a foraging context. Thus, it appears that under spontaneous choice test conditions, angelfish do not exhibit the ability to distinguish ratios below $1.5: 1$, such as 1.33:1 (4 versus 3) irrespective of the ecological context. Similarly, results showing context independency have been reported in chicks (Rugani, et al., 2013). When chicks were tested in a social (objects were used as social attractors) and a foraging context (food was used as attractor) they distinguished between quantities with similar accuracy. Although our findings also suggest that there is no context dependency in the discrimination of small quantities in angelfish, further experiments are required to systematically explore under what contexts and how angelfish and other species may perform with regard to their numerical estimation abilities.

Our present results are in line with those found in some other animal species. In the only other fish species that quantity discrimination of food has been investigated, guppies successfully discriminated the larger food set in 4 versus 2 and 4 versus 1 items but failed with comparisons of 4 versus 3 and 3 versus 2 items (Lucon-Xiccato et al., 2015). Difficulties in discriminating 4 versus 3 food items have also been found in amphibians, such as salamanders (Uller et al., 2003) and frogs (Stancher et al., 2015), that were able to discriminate the larger food set in 2 versus 1 and 3 versus 2 contrasts but not in 4 versus 3 . Likewise, dogs (Canis lupus familiaris) select the larger set of food items up to 3 versus 2 but not 4 versus 3 (Miletto Petrazzini \& Wynne, 2016), and similarly 10-12-month-old infants are able to select the larger quantity of crackers when the contrasts consist of 2 versus 1 and 3 versus 2, but they fail with 4 versus 3 (Feigenson, Carey, \& Hauser, 2002). However, contrasting evidence has also been reported. Rhesus monkeys were found to successfully discriminate comparisons of 2 versus 1,3 versus 2 , and 4 versus 3 apple slices, although failed in other comparisons such as 5 versus 4 and 6 versus 4 (Hauser, Carey, \& Hauser, 2000). Similar results with individuals being able to choose the greater food quantity in the 4
versus 3 comparisons have been shown in birds (e.g. New Zealand robins: Hunt, Low, \& Burns, 2008, jungle crows: Bogale et al., 2014). All these studies suggest that there is a set size limit of 3-4 items on discrimination performance, with individuals having more difficulty (or failing) in comparisons between larger numbers (e.g. 5 versus 4, 6 versus 5, 6 versus 4, etc.). The latter findings have led to the suggestion that for representing small quantities, individuals use the Object File System, which is distinct from the system used to represent large quantities (Feigenson et al., 2004; see Introduction). In fact, in previous studies with angelfish, we also suggested the existence of two distinct numerical representation systems, with the Object File System being employed for contrasts with an upper limit of three elements (shoals of three conspecifics: Gómez-Laplaza \& Gerlai, 2011b, 2015). Nevertheless, the failure in contrasts of 4 versus 3 shoals of conspecifics, and now 4 versus 3 sets of food items could also reflect a limit ratio that angelfish were not able to discriminate using the Approximate Number System, and the results in the large number range also appear to support the existence of that ratio limit in the current foraging context.

The results of Experiment 2 also indicated that the performance of angelfish was affected by the numerical ratio, i.e. the accuracy of discrimination performance decreased with decreasing the ratio of the different contrasts. Differences between contrasts were more evident with respect to 4 versus 3 , the lowest ratio tested. This is a feature that characterizes the ANS. However, no extended accuracy was found here in the discrimination between food sets of different numerical size in the small number range compared to the ability in the discrimination in a shoal-preference task found previously, suggesting again that in angelfish different contexts do not activate different performance in quantity estimation. The consistent nature of our findings is notable given the different experimental paradigms employed in these studies. For example, in the current study motivational aspects of the test, e.g. exploratory drive or level of hunger, differed from those in previous studies, in which the
main motivating force was shoaling and/or anxiety. Given that we allowed experimental fish to make a spontaneous choice, i.e. voluntarily leave their shoal for making a food set choice, a possibility exists that our results represent a bias in sampling for bolder (more exploratory) or hungrier experimental fish, a potential problem that was absent in our prior studies using shoals as stimuli, and one which we intend to explore in the future. Another difference between the current study and the previous ones conducted in the context of shoaling to measure quantity discrimination abilities is the manner in which the stimuli may be perceived and quantified by angelfish. In other words, perceptibe features of moving, living conspecifics may greatly differ from those of inanimate objects (e.g., see Agrillo, Dadda, Serena, \& Bisazza 2008b). Although making direct comparisons between studies conducted in the contexts of shoaling versus foraging is complex, similarity in the acuity of the response despite differences in procedures and context indicates the robustness of the discrimination abilities of angelfish. Similarity in the response under different testing conditions and contexts has also been found, for example, in chicks (Rugani, Fontanari, Simoni, Regolin, \& Vallortigara, 2009; Rugani, et al., 2013). In contrast, numerical acuity of some other animal species has been shown to be context-dependent, which may include the sensory modality involved in the task (e.g., visual, auditory: see Agrillo et al., 2017). Context-specific differences in performance in different quantitative tasks have been reported in other fish species too (Lucon-Xiccato \& Dadda, 2017; Miletto Petrazzini et al., 2014).

With large numerical quantities (Experiment 3) experimental angelfish were successful in discriminating the different binary comparisons of food quantities presented, when the ratio between contrasts was again 1.5:1 or greater. In most of the parameters measured (Table 1) the response of fish was found to be similar and we found no significant difference in general performance among all contrasts of the large number range. For example, although a slight ratio dependency is apparent on Fig. 3, discrimination was not
significantly affected by the numerical ratio between the sets compared (e.g. 8 versus 6 was discriminated with similar accuracy as 8 versus 4 , and 5 versus 4). These results contrast with those we have previously found using shoals of conspecifics as stimuli. In the latter context, discrimination accuracy of large numbers positively correlated with ratio of the contrasts, and became indistinguishable from chance level below a numerical ratio of 2:1 (see also GómezLaplaza \& Gerlai, 2016b; Gómez-Laplaza et al., 2017).

Likewise, we did not find statistically appreciable difference in overall preference for the larger food set between the large number (Experiment 3) and the small number (Experiment 2) range task. This suggests, unlike in the context of shoaling behaviour (e.g. Gómez-Laplaza \& Gerlai, 2011a; Gómez-Laplaza et al., 2017), similar discrimination abilities within the small and large number ranges in the context of foraging in angelfish. However, we did find differences in some parameters of the response between small and large numerical quantities (e.g. in the frequency of visits to the zone of the larger food set), and the capacity to discriminate small quantities seemed to be initially more precise (the first choice of a significantly large number of experimental fish was the larger food set, Table 1). These findings may be due to motivational factors. For example, any one of the two contrasted food sets in the large number range presented a number of food items that may provide enough food to satisfy the subjects, which may have led to similar frequency of visits to the sets and to a nonsignificant initial election of one food set over the other.

Although apparently none of the two key features to experimentally differentiate the Object File System from the Approximate Number System (i.e. greater accuracy when comparing small quantities as compared to large quantities, and sensitivity to the numerical ratio when discriminating between large quantities: Weber's law; see Feigenson et al., 2004) were accomplished in the current study, we found an overall significant increase in accuracy as the numerical ratio between the constrasts increased (results of linear regression analysis).

Such ratio-dependent discrimination is a sign of the ANS activation. Also, a similarity in the discrimination between quantities having the same ratio in the small and large numerical values, evidencing the numerical distance and size effect, are features that characterize the existence of the ANS. The finding of a similar discrimination sensitivity in the two numerical ranges has been reported in other animal species (DeLong, Barbato, O'Leary, \& Wilcox, 2017; Irie-Sugimoto, Kobayashi, Sato, \& Hasegawa, 2009; see also Beran \& Parrish, 2016; Jones \& Brannon, 2012), and a ratio effect found both in the small (as in the current study) and in the large number range (unlike the current study), supported the idea of one system (the ANS). Therefore, even though the pattern of discrimination exhibited by angelfish is, in some aspects, not fully consistent with the ANS, overall our results suggest that angelfish employed this system in the current study. In support of this conclusion are our results showing the successful discrimination between quantities that cross the large-small boundary: the comparison 5 versus 2 food items. Notably, however, unlike in the context of foraging shown in our current study, previous findings with angelfish in the shoaling context generally indicated the functioning of two systems, and demonstrated ratio dependent discrimination ability only for numerically large shoals of conspecifics (ANS), while absolute number difference-based discrimination ability for numerically small shoals (OFS). However, variations in testing and procedural conditions occasionally did indicate the existence of only one mechanism, the approximate number system (ANS).

Another possibility to account for the lack of ratio sensitivity in the large number range found in the current study is that the ratio comparisons were not large enough to allow ratio effects to emerge, a hypothesis to be tested in the future. Indeed, we tested ratios up to 2:1 (8 versus 4) and up to 2.5:1 (5 versus 2, in this case crossing the large-small number range divide). A ratio of 2:1 or greater has been successfuly discriminated by angelfish in the context of shoal size discrimination, but greater ratios such as $3: 1$ and $4: 1$ were also included
in the large number range in the past, but not in the current study (Gómez-Laplaza \& Gerlai, 2011a, 2016a, 2016b, Gómez-Laplaza et al., 2017). An alternative explanation that might account for the ratio insensitivity shown by subjects in Experiment 3, is a putative ceiling effect in performance. Such ceiling effect is unlikely, however, since in Experiment 1 the preference index was larger than in the rest of the experiments, i.e. a ceiling effect was not reached.

The question remains whether angelfish relied upon the number of food items in the sets or upon non-numerical variables when making their choices. Since we did not control for continuous variables (e.g. cumulative surface area, density, or the overall space occupied by the sets), the performance of our experimental angelfish could have been affected by multiple cues that differentiated the stimulus sets. Likewise, similarities in performance in the small and large number range contrasts could have been due to the use of the same perceptual variables that covary with item number. Indeed, non-numerical attributes of the stimuli have been shown to influence quantity discrimination in fish in other contexts (e.g. Agrillo, Piffer, \& Bisazza, 2011; Gómez-Laplaza \& Gerlai, 2012, 2013a, 2013b). Further investigation controlling for non-numerical cues of the stimuli could clarifiy the role they may play in foraging contexts.

In sum, our new procedure opens the way for developing adequate methods to test quantity discrimination in fish. The overall evidence points to a cognitive system underyling discrimination that is ratio-dependent and likely be driven by the ANS.

Acknowledgments

This research was supported by grant PSI2016-78249-P from the Ministerio de Economía, Industria y Competitividad (Spain) to L.M.G.-L., and NSERC \#311637 (Canada) grant to R.G. We would like to thank three anonymous reviewers for their valuable comments for improving the manuscript.

References

Agrillo, C., \& Bisazza, A. (2014). Spontaneous vs. trained numerical abilities. A comparison between the two main tools to study numerical competence in non-human animals. Journal of Neuroscience Methods, 234, 82-91.

Agrillo, C., Dadda, M., \& Serena, G. (2008a). Choice of female groups by male mosquitofish (Gambusia holbrooki). Ethology, 114, 479-488.

Agrillo, C., Dadda, M., Serena, G. \& Bisazza, A. (2008b). Do fish count? Spontaneous discrimination of quantity in femalen mosquitofish. Animal Cognition, 11, 495-503. Agrillo, C., Miletto Petrazzini, M. E., \& Bisazza, A. (2014). Numerical acuity of fish is improved in the presence of moving targets, but only in the subitizing range. Animal Cognition, 17, 307-316.

Agrillo, C., Miletto Petrazzini, M. E., \& Bisazza, A. (2017). Numerical abilities in fish: A methodological review. Behavioural Processes, 141, 161-171.

Agrillo, C., Miletto Petrazzini, M. E., Tagliapietra, C. \& Bisazza, A. (2012). Inter-specific differences in numerical abilities among teleost fish. Frontiers in Psychology, 3:483. doi: 10.3389/fpsyg.2012.00483.

Agrillo, C. Piffer, L., \& Bisazza, A. (2011). Number versus continuous quantity in numerosity judgments by fish. Cognition, 119, 281-287.

Agrillo, C., Piffer, L., Bisazza, A. \& Butterworth, B. (2012). Evidence for two numerical systems that are similar in humans and guppies. PLoS ONE, 7(2): e31923. doi:10.1371/journal.pone.0031923.

Baker, J. M., Morath, J., Rodzon, K. S., \& Jordan, K. E. (2012). A shared system of representation governing quantity discrimination in canids. Frontiers in Psychology, 3:387. doi: 10.3389/fpsyg.2012.00387.

Bánszegi, O., Urrutia, A., Szenczi, P., \& Hudson, R. (2016). More or less: spontaneous quantity discrimination in the domestic cat. Animal Cognition, 19, 879-888. Beran, M. J. (2004). Chimpanzees (Pan troglodytes) respond to nonvisible sets after one-byone addition and removal of items. Journal of Comparative Psychology, 118, 25-36. Beran, M. J., Evans, T. A., \& Harris, E. H. (2008). Perception of food amounts by chimpanzees based on the number, size, contour length and visibility of items. Animal Behaviour, 75, 1793-1802.

Beran, M. J., \& Parrish, A. E. (2016). Capuchin monkey (Cebus apella) treat small and large numbers of items similarly during a relative quantity judgment task. Psychonomic Bulletin \& Review, 23, 1206-1213.

Bogale, B. A., Aoyama, M., \& Sugita, S. (2014). Spontaneous discrimination of food quantities in the jungle crow, Corvus macrorhynchos. Animal Behaviour, 94, 73-78. Bonanni, R., Natoli, E., Cafazzo, S., \& Valsecchi, P. (2011). Free-ranging dogs assess the quantity of opponents in inter-group conflicts. Animal Cognition, 14, 103-115. Brown, C. (2015). Fish intelligence, sentience and ethics. Animal Cognition, 18, 1-17. Buckingham, J. N., Wong, B. B. M., \& Rosenthal, G. G. (2007). Shoaling decisions in female swordtails: how do fish gauge group size? Behaviour, 144, 1333-1346.

Cantlon, J. F., \& Brannon, E. M. (2006). Shared system for ordering small and large numbers in monkeys and humans. Psychological Science, 17, 401-406.

Cordes, S. \& Brannon, E. M. (2009). Crossing the divide: Infants discriminate small from large numerosities. Developmental Psychology, 45, 1583-1594.

Cox, L., \& Montrose, V. T. (2016). Quantity discrimination in domestic rats, Rattus norvegicus. Animals, 6, 46. doi:10.3390/ani6080046.

DeLong, C. M., Barbato, S., O’Leary, T., \& Wilcox, K. T. (2017). Small and large number discrimination in goldfish (Carassius auratus) with extensive training. Behavioural Processes, 141, 172-183.

El Balaa, R., \& Blouin-Demers, G. (2011). Anti-predatory behaviour of wild-caught vs. captive-bred freshwater angelfish, Pterophyllum scalare. Journal of Applied Ichthyology, 27, 1052-1056.

Feigenson, L., Carey, S., \& Hauser, M. D. (2002). The representations underlying infants' choice of more: object files vs. analog magnitudes. Psychological Science, 13, 150-156. Feigenson, L., Dehaene, S., \& Spelke, E. S. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307-314.

Garland, A., Low, J., \& Burns, K. C. (2012). Large quantity discrimination by North Island robins (Petroica longipes). Animal Cognition, 15, 1129-1140.

Gómez-Laplaza, L. M., \& Gerlai, R. (2011a). Can angelfish (Pterophyllum scalare) count? Discrimination between different shoal sizes follows Weber's law. Animal Cognition, 14, 19.

Gómez-Laplaza, L. M., \& Gerlai, R. (2011b). Spontaneous discrimination of small quantities: shoaling preferences in angelfish (Pterophyllum scalare). Animal Cognition, 14, 565-574. Gómez-Laplaza, L. M., \& Gerlai, R. (2012). Activity counts: the effect of swimming activity on quantity discrimination in fish. Frontiers in Psychology, 3:484. doi: 10.3389/fpsyg. 2012.00484.

Gómez-Laplaza, L. M., \& Gerlai, R. (2013a). Quantification abilities in angelfish (Pterophyllum scalare): the influence of continuous variables. Animal Cognition, 16, 373383.

Gómez-Laplaza, L. M., \& Gerlai, R. (2013b). The role of body surface area in quantity discrimination in angelfish (Pterophyllum scalare). PLoS One, 8(12): e83880. doi:10.1371/ journal.pone. 0083880 .

Gómez-Laplaza, L. M., \& Gerlai, R. (2015). Angelfish (Pterophyllum scalare) discriminate between small quantities: a role of memory. Journal of Comparative Psychology, 129, 78-83. Gómez-Laplaza, L. M., \& Gerlai, R. (2016a). Discrimination of large quantities: Weber's law and short-term memory in angelfish (Pterophyllum scalare). Animal Behaviour, 112, 29-37. Gómez-Laplaza, L. M., \& Gerlai, R. (2016b). Short-term memory effects on crossing the boundary: discrimination between large and small quantities in angelfish (Pterophyllum scalare). PLoS One, 11(9): e0162923. doi: 10.1371/journal.pone.0162923.

Gómez-Laplaza, L. M., \& Morgan, E. (1993). Transfer and isolation effects on the feeding behaviour of the angelfish, Pterophyllum scalare. Experientia, 49, 817-819.

Gómez-Laplaza, L. M., Caicoya, A. L., \& Gerlai, R. (2017). Quantity discrimination in angelfish (Pterophyllum scalare) is maintained after a 30-s retention interval in the large but not in the small number range. Animal Cognition, 20, 829-840.

Hager, M. C., \& Helfman, G. S. (1991). Safety in numbers: shoal size choice by minnows under predatory threat. Behavioral Ecology \& Sociobiology, 29, 271-276.

Hanus, D., \& Call, J. (2007). Discrete quantity judgments in the great apes (Pan paniscus, Pan troglodytes, Gorilla gorilla, Pongo pygmaeus): the effect of presenting whole sets versus item-by-item. Journal of Comparative Psychology, 121, 241-249.

Hauser, M. D., Carey, S., \& Hauser, L. B. (2000). Spontaneous number representation in semi-free ranging rhesus monkeys. Proceedings of the Royal Society B: Biological Sciences, 267, 829-833.

Hunt, S., Low, J., \& Burns, K. C. (2008). Adaptive numerical competency in a food-hoarding songbird. Proceedings of the Royal Society B: Biological Sciences, 275, 2373-2379.

Irie-Sugimoto, N., Kobayashi, T., Sato, T., \& Hasegawa, T. (2009). Relative quantity judgment by Asian elephants (Elephas maximus). Animal Cognition, 12, 193-199. Jones, S. M., \& Brannon, E. M. (2012). Prosimian primates show ratio dependence in spontaneous quantity discrimination. Frontiers in Psychology, 3:550. doi: 10.3389/fpsyg. 2012.00550.

Krusche, P., Uller, C., \& Dicke, U. (2010). Quantity discrimination in salamanders. Journal of Experimental Biology, 213, 1822-1828. Lourenco, S. F. (2016). How do humans represent numerical and nonnumerical magnitudes? Evidence for an integrated system of magnitude representation across development. In A. Henik (Ed.), Continuous issues in numerical cognition. How many or how much (pp. 375403). London: Academic Press.

Lucon-Xiccato, T., \& Dadda, M. (2017). Individual guppies differ in quantity discrimination performance across antipredator and foraging contexts. Behavioral Ecology and Sociobiology, 71, 13. DOI 10.1007/s00265-016-2231-y.

Lucon-Xiccato, T., Miletto Petrazzini, M. E., Agrillo, C., \& Bisazza, A. (2015). Guppies discriminate between two quantities of food items but prioritize item size over total amount. Animal Behaviour, 107, 183-191.

Lyon, B. E. (2003). Egg recognition and counting reduce costs of avian conspecific brood parasitism. Nature, 422, 495-499.

Mehlis, M., Thünken, T., Bakker, T. C. M., \& Frommen, J. G. (2015). Quantification acuity in spontaneous shoaling decisions of three-spined sticklebacks. Animal Cognition, 18, 11251131.

Miletto Petrazzini, M. E., \& Agrillo, C. (2016). Turning to the larger shoal: are there individual differences in small-and large-quantity discrimination in guppies? Ethology Ecology \& Evolution, 28, 211-220.

Miletto Petrazzini, M. E., \& Wynne, C. D. L. (2016). What counts for dogs (Canis lupus familiaris) in a quantity discrimination task? Behavioural Processes, 122, 90-97.

Miletto Petrazzini, M. E., Agrillo, C., Izard, V., \& Bisazza, A. (2016). Do humans (Homo sapiens) and fish (Pterophyllum scalare) make similar numerosity judgments? Journal of Comparative Psychology, 130, 380-390.

Miletto Petrazzini, M. E., Agrillo, C., Piffer, L., \& Bisazza, A. (2014). Ontogeny of the capacity to compare discrete quantities in fish. Developmental Psychobiology, 56, 529-536. Miletto Petrazzini, M. E., Fraccaroli, I., Gariboldi, F., Agrillo, C., Bisazza, A., Bertolucci, C., \& Foà, A. (2017). Quantitative abilities in a reptile (Podarcis sicula). Biology Letters, 13, 20160899. http://dx.doi.org/10.1098/rsbl.2016.0899.

Parrish, A. E., Evans, T. A., \& Beran, M. J. (2015). Defining value through quantity and quality - Chimpanzees (Pan troglodytes) undervalue food quantities when items are broken. Behavioural Processes, 111, 118-126.

Perdue, B. M., Talbot, C. F., Stone, A. M., \& Beran, M. J. (2012). Putting the elephant back in the herd: elephant relative quantity judgments match those of other species. Animal Cognition, 15, 955-961.

Piffer, L., Agrillo, A., \& Hyde, D. C. (2012). Small and large number discrimination in guppies. Animal Cognition, 15, 215-221.

Potrich, D., Sovrano, V. A., Stancher, G., \& Vallortigara, G. (2015). Quantity discrimination by zebrafish (Danio rerio). Journal of Comparative Psychology, 129, 388-393.

Rugani, R., Cavazzana, A., Vallortigara, G., \& Regolin, L. (2013). One, two, three, four, or is there something more? Numerical discrimination in day-old domestic chicks. Animal Cognition, 16, 557-564.

Rugani, R., Fontanari, L., Simoni, E., Regolin, L., \& Vallortigara, G. (2009). Arithmetic in newborn chicks. Proceedings of the Royal Society B: Biological Sciences, 276, 2451-2460.

Rugani, R., Vallortigara, G., \& Regolin, L. (2013). Numerical abstraction in young domestic chicks (Gallus gallus). PLoS One, 8(6): e65262. doi: 10.1371/journal.pone.0065262. Seguin, D., \& Gerlai, R. (2017). Zebrafish prefer larger to smaller shoals: analysis of quantity estimation in a genetically tractable model organism. Animal Cognition, 20, 813-821. Stancher, G., Rugani, R., Regolin, L., \& Vallortigara, G. (2015). Numerical discrimination by frogs (Bombina orientalis). Animal Cognition, 18, 219-229.

Stancher, G., Sovrano, V. A., Potrich, D., \& Vallortigara, G. (2013). Discrimination of small quantities by fish (redtail splitfin, Xenotoca eiseni). Animal Cognition, 16, 307-312. Stephens, D. W., \& Krebs, J. R. (1986). Foraging theory. Princeton, NJ: Princeton University Press.

Thünken, T., Eigster, M., \& Frommen, J. G. (2014). Context-dependent group size preferences in large shoals of three-spined sticklebacks. Animal Behaviour, 90, 205-210. Uller, C., Jaeger, R., Guidry, G., \& Martin, S. (2003). Salamanders (Plethodon cinereus) go for more: rudiments of number in an amphibian. Animal Cognition, 6, 105-112. Vallortigara, G. (2015). Foundations of number and space representations in non-human species. En D. C. Geray, D.B. Berch, \& Mann Koepke, K. (Eds.), Evolutionary origins and early development of number processing (pp. 35-66). London: Academic Press.

Tabla 1. Performance of angelfish when faced with the different contrasts in experiments 1,2 and 3 ($N=12$ in each contrast)

Contrasts	First choice (out of 12 fish) ${ }^{\text {a }}$			Frecuency of entries ${ }^{\text {b }}$				Latency ${ }^{\text {c }}$			
	Larger food set	Smaller food set	Binomial test	Larger food set	Smaller food set	t test		Larger food set	Smaller food set	t test	
						t_{11} value	Probability			t_{11} value	Probability
Experiment 1											
3 vs. 0	12	0	$P<0.001$	8.00 ± 0.78	1.08 ± 0.29	7.287	$P<0.001$	3.75 ± 1.74	173.33 ± 28.32	12.943	$P<0.001$
Experiment 2											
4 vs. 1	12	0	$P<0.001$	5.17 ± 0.47	2.75 ± 0.74	3.446	$P=0.005$	1.00 ± 0.00	138.58 ± 32.37	16.728	$P<0.001$
3 vs. 1	10	2	$P=0.039$	5.83 ± 1.13	3.92 ± 0.72	2.418	$P=0.034$	9.75 ± 5.27	43.17 ± 10.92	3.134	$P=0.010$
2 vs. 1	10	2	$P=0.039$	5.25 ± 0.79	3.67 ± 0.83	1.247	$P=0.238$	6.16 ± 3.44	39.08 ± 8.87	3.055	$P=0.011$
4 vs. 2	10	2	$P=0.039$	8.00 ± 0.70	6.25 ± 0.80	1.481	$P=0.167$	14.00 ± 5.86	80.58 ± 26.83	2.481	$P=0.031$
3 vs. 2	10	2	$P=0.039$	9.17 ± 1.02	4.92 ± 0.65	3.787	$P=0.003$	14.58 ± 9.69	63.75 ± 18.59	2.958	$P=0.013$
4 vs. 3	8	4	$P>0.050$	9.08 ± 1.41	7.00 ± 1.07	2.803	$P=0.017$	15.50 ± 6.43	43.58 ± 11.61	1.329	$P=0.211$
Experiment 3											
5 vs. 4	8	4	$P>0.050$	6.08 ± 1.02	5.83 ± 1.04	0.201	$P=0.844$	24.33 ± 14.06	41.83 ± 16.81	1.350	$P=0.204$
8 vs. 6	8	4	$P>0.050$	4.00 ± 0.71	2.50 ± 0.34	1.964	$P=0.075$	22.92 ± 12.88	43.75 ± 16.57	1.097	$P=0.296$
9 vs. 6	8	4	$P>0.050$	3.50 ± 0.36	3.42 ± 0.47	0.162	$P=0.874$	20.17 ± 10.35	42.17 ± 15.82	1.320	$P=0.214$
8 vs. 4	9	3	$P>0.050$	6.67 ± 1.21	4.67 ± 1.14	1.214	$P=0.250$	15.75 ± 9.56	48.25 ± 11.13	2.269	$P=0.044$
5 vs. 2	9	3	$P>0.050$	2.83 ± 0.34	2.08 ± 0.34	1.682	$P=0.121$	24.00 ± 11.85	109.50 ± 31.95	1.948	$P=0.077$

878 Note. Subjects were tested individually. Descriptive statistics includes means \pm SE. The tests used to compare the scores are also included.
$879{ }^{a}$ Number of fish whose first choice was one or the other stimulus set. ${ }^{b}$ Frecuency, number of times that subjects entered to the preference zones.
$880{ }^{\text {c }}$ Latency to enter the preference zone near one or the other stimulus set.

Figure captions

Figure 1. The experimental apparatus. Schematic representation of the experimental aquarium including partitions and panels. Left: Side view of the experimental aquarium showing the preference zones and the partitions (transparent and white opaque), with the guillotine windows, that delimited the compartments. Middle: Transparent panels with an example of the food sets presented. During testing, the panels were placed outside the experimental aquarium leaned against the glass wall to avoid olfactory cues (see texts for details). Right: Top view of the experimental aquarium showing the large compartments (home and testing) separated by a smaller middle compartment that was subdivided by additional transparent partitions into three parts: in one compartment, closest to the rear wall, the tube of the water filter and a thermostat-controlled heater were placed to ensure constant water conditions, whereas the central part constituted the starting box. The preference zones are also indicated (dashed line), separated by a transparent plastic divider. The time the test fish spent within the preference zones was recorded together with the latency to enter, the frequency of entries and the first choice made by the subjects.

Figure 2. Discrimination of small quantities. Mean \pm SE proportion of time (preference index) spent by test fish in the preference zone close to the larger quantity of food. Numbers in parentheses indicate the ratio of the larger to the smaller food set, and the contrasts are shown in decreasing ratios. Values above 0.5 indicate a preference for the larger food set. Significant departure from the null hypothesis of no preference is indicated by asterisks: *** $P \leq 0.005, * P<0.05$.

Figure 3. Discrimination of large quantities. Mean \pm SEM proportion of time (preference index) spent by test fish in the preference zone close to the larger quantity of food. Numbers in parentheses indicate the ratio of the larger to the smaller food set, and the contrasts are
shown in increasing ratios. Values above 0.5 indicate a preference for the larger food set. Significant departure from the null hypothesis of no preference is indicated by asterisks: $* P<$ 0.05 .

Figure 4. Regression line. Relationship between the proportion of time (preference index) test fish spent in close proximity of the food sets and the numerical ratio of the comparisons (number of elements in the larger set divided by the number of elements in the smaller set).

Figure 1A. Examples of the comparisons tested and the corresponding ratios.

