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Abstract

The evolution of cattle weight is a very important issue for beef cattle breeders.

The weights of the animals of a herd are usually available at different ages and it

is intended to predict the trajectory that will follow the weight of each animal.

In this paper, we address this problem as a Recommender System. In this case,

the users would be the animals, and the items would be the ages of weight

measurements. The values of the items would be the measured weights at a

given age. As in Recommender Systems the aim is to complete the valuation

matrix (weights) in an individualized way (that is, adapted to each animal). A

matrix factorization system is devised to learn weights using all the available

characteristics of the animals. The weights thus obtained are compared with

a linear regression that adequately estimates the general evolution of the herd,

but not the individual evolution of each animal. To illustrate the benefits of

this approach, we used a real world dataset of cattle of the breed Avileña-Negra

Ibérica and crossbreeding with sires of Charolais and Limousin.
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1. Introduction

Live weight of beef cattle is the main feature affecting carcass performance

and hence the incomes of breeders. Thus, the estimation of the weight of bovines

as a function of time is very important for meat producers. Predicting growth

can help breeders to decide the best time to slaughter in order to increase their

economic benefits.

There are different approaches to study weight evolutions in the literature.

In (West et al., 2001) they propose a universal curve that describes the growth

of many diverse species, transforming time and weight data to a common di-

mensionless scale. Live weight of bovines is often estimated from easily accessi-

ble morphometric characteristics (Enevoldsen and Kristensen, 1997; Coopman

et al., 2009). Sometimes, to obtain the body measurements the authors use

digital image processing (Stajnko et al., 2008; Tasdemir et al., 2011). In other

cases, genetic information about animals it is also considered. A comparison of

different genetics methods can be seen in (Jaffrézic and Pletcher, 2000). These

methods try to obtain the capability of animals to transmit genetically the gain

of weight to their progeny (Arango et al., 2004; Freetly et al., 2011).

In this paper, we use Machine Learning procedures to learn a model to

predict weights of animals of Avileña-Negra Ibérica. We want to anticipate

the weight of each single animal (Dı́ez et al., 2003; Alonso et al., 2007, 2013,

2015). Avileña-Negra Ibérica is a beef breed of central Spain. Their carcasses

are characterized by an intermediate muscle conformation (69.1%) and fatness

level (12.6%) (Albert́ı et al., 2008). The market target of these carcasses is made

up of those consumers that prefer tender meat but with an intense flavor (Dı́ez

et al., 2006). Due to calving ease, straightbred cows of Avileña-Negra Ibérica

are used in crossbreeding programs with sires of Charolais and Limousin breeds.

The approach presented here is based on Matrix Factorization (MF). In

recent years, MF techniques for machine learning have been attracting more and

more attention, especially since a recommender system based on MF won the

Netflix prize (Koren et al., 2009). MF algorithms were used in many application
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fields such as medical recommendations (Zhang et al., 2016), audience selection

(Kanagal et al., 2013), text analysis (Ji and Eisenstein, 2014), or evaluating

open-response assignments in Massive Open Online Courses (MOOCs) (Luaces

et al., 2015a).

Dimensionality reduction is another important task of machine learning

where MF is widely used. In this context, the purpose is to obtain a simpli-

fied lower-rank approximation of the original dataset. This allows presenting,

possibly geometrically, the structure that may be inherent in a dataset, mainly

the relationship between objects and their attributes. Dimensionality reduc-

tion with MF has been successfully applied in feature selection (Wang et al.,

2015), image analysis (Khurana et al., 2015; Moon et al., 2016), to identifying

user preferences (Luaces et al., 2015b) and in many other problems along with

clustering techniques.

We took advantage of matrix factorization techniques in two different ways.

On the one hand, we develop an algorithm capable of predicting the evolution

of animal weights with good accuracy. On the other hand, our system projects

the information of animals in a Euclidean space with a reduced dimension. This

embedding enables visualization and clustering of animals based on some trait,

such as its growth potential.

Data in our problem are represented by means of a matrix in the same way

as recommender systems do. In such systems, ratings of users about a kind of

products are arranged in matrices. Users are laid out in rows, while products

are set out in columns. Users only rate a small subset of the product database.

Therefore, even the most popular items have very few ratings; thus the matrix

has very low density. In our case, the entries of the matrix are the live weights

of animals, the rows contain the information of each animal and the columns

contain the information on the animal’s age when the corresponding weight was

taken. Since animals have been weighed only a few times at different ages we

get a sparse matrix. We have to learn a function able to fill in the gaps of the

matrix (weights missing at certain ages) with the least possible error. Our data

would be similar to those shown in Table 1.
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Table 1: Representation of the data of our problem in matrix form.

Age 1 Age 2 Age 3 Age 4 Age 5

Animal 1 220 290 340

Animal 2 180 275 400

Animal 3 150 196 230

Animal 4 210 258 389 460

Both animals and ages are represented by feature vectors. These vectorial

descriptions are essential for the proper performance of the system. They allow

to establish differences between animals based on features such as sex, breed,

body condition or birthing season. Moreover, descriptions can be enriched if

needed with some new features of animals or ages.

It is important to emphasize that our method allows to obtain weight tra-

jectories adapted to the specific data of each animal. Other systems, such as

regression, only differentiate weight trajectories of the animals in a constant

(specific to each animal). As a result, all the trajectories are parallel. This

simplification implies the assumption that the weight of all animals increases in

the same way, which is unacceptable.

2. Material and methods

2.1. Data

The dataset used in this study was obtained from several feedlots of Avileña-

Negra Ibérica breed of cattle. This set contains two types of animals: pure-

bred and crossbred animals. Crossbred animals are always from Avileña-Negra

Ibérica mother and father from Charolais or Limousin breed. Information on

each animal consists of its identification, origin, date of birth and live weight

measured at different ages. Only animals that have 4 or more measurements

were used because a significant sequence of weights is required in order to learn

the way animals grow. Cattle are transferred to a feedlot at ages that range

4



Table 2: Description of the number of animals and weights divided by sex and father’s breed

Abbreviation Father’s breed Sex #Animals #Weights

Avi M Avileña male 6353 32317

Avi F Avileña female 347 1730

Cha M Charolais male 1706 8258

Cha F Charolais female 1670 7741

Lim M Limousin male 481 2360

Lim F Limousin female 435 2072

10992 54478

from 90 to 365 days. The number of animals and weights to work with are

detailed in Table 2.

We would like to emphasize that available data on animals are quite diverse

in several aspects:

• There are important differences in growth by sex and breed.

• Animals enter the feedlot at quite different ages.

• The ratio of weight to age varies considerably when cattle enter the feedlot.

• Growth rates of animals are very different even if they have the same sex

and breed.

This disparity complicates the learning task considerably. Figure 1 shows

weight curves of some animals to illustrate differences among them. It has been

necessary to design a method capable to properly reflect all this variability.

2.2. Learning Method

Let A be a set of animals and let D be a set of ages in which animals are

weighted. Let us consider a partially defined matrix

M = (mij : i ∈ A, j ∈ D) (1)
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Figure 1: Sample growth trajectories of animals showing differences in shape, slope and initial

age (the age when animals enter the feedlot)

where mij , if available, is the live weight (in kilograms) of the animal i at the

age j. Both animals and ages will be represented by vectors of features. These

vectors are used to describe specific characteristics of the animals/ages. We

explain this representation in more detail in Section 2.3.

Our main objective is to learn the weights of animals making use of matrix

completion techniques. We look for a function

g : A × D → R (2)

to compute weights of animals at any age. In other words, we will learn a

function g with the following general expression:

g(a,d) =
∑
i, j

αij ai dj . (3)

This function is just a weighted sum of the products of the vectors repre-

senting animals and ages. So, the weight of an animal at a given age depends

on all possible combinations of descriptors of animal i (ai) and descriptors of

age j (dj). But this expression may have too many parameters to learn, the
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components of a matrix Λ = (αij : i, j). Thus, we search for a couple of matrices

such that Λ can be factorized through them.

g(a,d) =
∑
i,j

αij ai dj = aTΛ d = aTW TV d = 〈Wa,V d〉. (4)

Therefore, the parameters to be learned have a clear geometrical interpreta-

tion. They are mappings (embedding) from the spaces of animals and ages into

a common Euclidean space, Rk, for some integer k.

A → Rk, a 7→Wa

D → Rk, d 7→ V d. (5)

This common space summarizes all the information of each object (animal

or age) in a vector of k components. If k is 2 or 3, then those objects can

be represented graphically. This representation on the Euclidean space allows

clusters of similar objects, not in their initial characteristics but in their behavior

in the learning task being studied.

Finally, we add a component with constant value 1 to the vector descriptions

of animals and ages, in order to make a more general expression of (3):

a← [a 1 ],

d← [d 1 ]. (6)

Then, the prediction function of the weights is as follows:

g(a,d) = 〈Wa ,V d 〉

=
∑
i, j

αij ai dj +
∑
i

βi ai +
∑
j

δj dj + µ. (7)

where µ is the intercept term, βi and δj are the coefficients of the variables of

animals and ages, respectively.

Linear regression can also be applied to estimate the weight of the animals.

In this case, the regression function could be written as:

reg(a,d) =
∑
i

β̃i ai +
∑
j

δ̃j dj + µ̃. (8)
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If we compare the equations (7) and (8), we appreciate that the difference

is in the sum of the cross products of vectors representing animals and ages.

This makes the regression expression easier to learn than the factorization one

because it has fewer parameters. However, the regression formula only differ-

entiates the trajectories of the evolutions of the weights in a constant value

(specific to each animal). Therefore, all the trajectories will be parallel. In con-

trast, our formula allows to obtain different trajectories adapted to the features

of each animal.

In (7) we look for matrices that minimize the mean square error. Thus, for

S = {(a,d) :M(a,d) is defined} (9)

where M was defined in (1), the error is calculated as:

err(g,M) =
1

2

∑
(a,d)∈S

(〈Wa ,V d〉 −mad)2. (10)

Then we will look for the matrices that solve the following convex optimiza-

tion problem:

(W ∗, V ∗) = argmin
W ,V

(err(g,M) + ν r(W ,V )) . (11)

That is, we look for matrices that minimize the mean square error and a regu-

larization term. In our case, the square of the Frobenius norm was adopted as

the regularization term:

r(W ,V ) =
∥∥W∥∥2

F
+
∥∥V ∥∥2

F
. (12)

To solve the optimization problem we use a Stochastic Gradient Descent

(SGD) algorithm (Bottou, 2010). This method iteratively updates the parame-

ters to learn until a stopping criterion is reached. The parameters of the model

are updated as follows:

θ ← θ − γ
(
∂err

∂θ
+ ν

∂r

∂θ

)
. (13)
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In our case, since the parameters we want to learn are the matrices W and

V , the above expression can be written as:

W ←W − γ
(
∂err

∂W
+ ν

∂r

∂W

)
V ← V − γ

(
∂err

∂V
+ ν

∂r

∂V

)
. (14)

The partial derivatives of the error function are computed as follows:

∂err

∂W
=

∂

∂W

1

2
(〈W a,V d〉 −mad)2

=
∂

∂W

1

2
(〈W a,V d〉2 +mad

2 − 2mad〈W a,V d〉) (15)

On one side, we apply:

∂(〈W a,V d〉2)

∂W
=
∂(aTW T (V d)(V d)TW a)

∂W
= 2 (V d)(V d)TW aaT

(16)

In addition, for an example (a, d) ∈ S:

∂(2mad〈W a,V d〉)
∂W

= 2mad
∂(aTW TV d)

∂W
= 2madV daT (17)

We obtain the final expression of the partial derivative of the error function

with respect to W using (16) and (17) in (15):

∂ err

∂W
= (V d)(V d)TW aaT −madV daT (18)

Analogously, the expression of the partial derivative of the error function

with respect to V is given by:

∂ err

∂V
= (W a)(W a)TV ddT −madW adT (19)

Finally, the regularization derivatives are:

∂ r

∂W
= 2W ,

∂ r

∂V
= 2V . (20)
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2.3. Feature vectors of animals and ages

The vectorial descriptions of the animals are very important because they

allow to establish specific differences among them. Animals are described with

a set of features, both measurable and non-measurable. All this information is

used by our system to improve the accuracy.

Let us remember that a set of live weights is available for each animal a ∈ A

taken at different ages:

a : ((ag1, lw1), (ag2, lw2), . . . , (agn, lwn)) (21)

where agi is the i-th age (in days) and lwi is the i-th live weight (in kilograms)

for animal a.

We use a set of variables to physically describe animals and to reflect their

conditions when they get at feedlot (as we explained in Section 2.1). It is

important to note that some of them are based on the m first measurements of

each animal. The goal is to obtain models that improve accuracy as the number

of animal measurements increase. These are the variables:

• ag1: age when animal enters the feedlot.

• agm: m-th age.

• agm: average age (ag1..agm).

• lw1: live weight when animal enters the feedlot.

• lwm: m-th live weight.

• lwm: average live weight (lw1..lwm).

• rwa1 = lw1

ag1
: ratio of weight to age when animal enters the feedlot.

• adgm = lwm−lw1

agm−ag1 : average daily gain considering the m first weights.

Moreover, to characterize the animals we have also used some categorical

features:
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Table 3: Statistical information about data of animals (ag1, lw1: age in days and live weight

in Kg. when animals come in at feedlot; Avi: avileña, Cha: charolais, Lim: limousin)

ag1 lw1 lw1/ag1 Age Weight

Mean 220.99 238.34 1.10 330.87 380.42

Std. 45.90 52.05 0.23 93.09 115.00

Min. 90 66 0.5 90 66

Max. 339 441 3.03 674 804

Sex Father’s breed

Male Female Avi Cha Lim

#Weights 42935 11543 34047 15999 4432

Percentage 79% 21% 63% 29% 8%

• Sex: male or female.

• Father’s breed: avileña, charolais or limousin.

Put all together, the vectorial representation of an animal a ∈ A can be

written as:

a = (ag1, agm, agm, lw1, lwm, lwm, rwa1, adgm, sex, father’s breed) (22)

In turn, the vectorial description for an age d ∈ D is:

d = (ag, ag2, ag3) (23)

where the feature vector is formed by the age (in days) where the corresponding

weight was measured as well as the square and cube of such value. The purpose

of including these values is to allow our method to learn growth trajectories

based on a non-linear relation with the age. Table 3 shows descriptive statistics

on the data used in our system to describe animals and ages.

3. Experimental results

In this section we report the results of a set of experiments designed to

evaluate the approach proposed in this paper. First we introduce the datasets
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used in the experiments. Then we describe the experimental procedure and

how to compute the accuracy of the different models. Finally, we discuss the

results and we depict some graphs to illustrate the visualization possibilities of

the factorization approach.

3.1. Datasets

The datasets consist of examples drawn from the information about the

animals. An animal a ∈ A with n measurements of live weight and age expressed

as ((ag1, lw1), (ag2, lw2), . . . , (agn, lwn)) yields n examples of this form:

(a,d1, lw1), (a,d2, lw2), . . . , (a,dn, lwn) (24)

where a is the feature vector of animal a, di is the feature vector of age agi and

lwi is the live weight of the animal at age agi. The targets are the weights at

each age.

Numerical variables have been standardized so that the value of the variable

minus the mean is divided by the standard deviation. Non-numerical features

have been binarized. That is, each original feature is replaced as many binary

variables as the possible values it can take. A binary variable can only take

values 0/1 meaning absence/presence of the trait it represents. For example,

the sex feature is replaced by two binary variables: male and female. Then, the

value of male will be 1 for a male animal and 0 if the animal is female.

Let us take a detailed look at the structure of the examples of a given pure-

bred male of Avileña. We have 6 measures, of the form (age, weight), taken on

this animal: ((273, 230), (322, 331), (351, 400), (384, 485), (412, 537), (420, 517)).

Table 4 shows the portion of the examples that corresponds to the vectorial

description of the animal, with m ranging from 1 to 4. The last pair, (420, 517),

will be used as the target to be predicted so we will represent the age, 420, as

indicated in (23), i.e. (420, 4202, 4203), for all the descriptions in Table 4.

3.2. Experiments: description and settings

We have conducted a number of experiments to evaluate the influence of

some important issues of the data:
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Table 4: Feature vectors of a purebred male of Avileña for m in range from

1 to 4. Animal measures, in the form (age, weight), are the followings:

((273, 230), (322, 331), (351, 400), (384, 485), (412, 537), (420, 517)). Columns with (∗) are not

used for m=1

Feature vector of given animal

m ag1 agm agm lw1 lwm lwm rwa1 adgm Male Female Avi Cha Lim

1 273 273∗ 273∗ 230 230∗ 230∗ 0.84 nan∗ 1 0 1 0 0

2 273 322 297.5 230 331 280.5 0.84 2.06 1 0 1 0 0

3 273 351 312 230 400 315 0.84 2.18 1 0 1 0 0

4 273 384 328.5 230 485 357.5 0.84 2.29 1 0 1 0 0

1. The type of animals: all together or separated by breed and sex. Our

system has been tested with datasets made up of all animals and with

datasets formed by animals divided by sex and breed. Obviously, in the

last case we do not use the variables representing sex and breed in the

learning process.

2. The value of m, that is, the number of measurements used to compute the

numerical variables that physically characterize animals (see Section 2.3).

We are assuming that we only know a reduced set of weights that can be

used to predict the future weights. Therefore, we consider the first weight

of each animal, or the first 2 or 3 or 4. Weights are taken in ascending

order of the animals’ ages.

The experiments consisted of 5-fold cross-validation (CV) tests. In this kind

of test, the dataset is randomly divided into 5 parts, 4 parts are used as training

set and the remaining part is used as test set. The learning task is performed

on the training set (80% of animals) and the error is computed on the test set

(20% of animals). This process is repeated 5 times using each fold as test set.

The errors from the 5 test folds are averaged to produce a single score. We

establish the folds over the set of animals and then we obtain the number of

examples for each animal as explained in Section 3.1. The average number of
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Table 5: Number of examples of datasets divided by sex and father’s breed (Avi: avileña,

Cha: charolais, Lim: limousin, M : male, F : female)

Father’s breed & Sex Train Test Total

Avi M 25873 6444 32317

Avi F 1385 345 1730

Cha M 6584 1674 8258

Cha F 6169 1572 7741

Lim M 1888 472 2360

Lim F 1666 406 2072

43565 10913 54478

training and test examples used in CV tests is summarized in Table 5.

Some implementation details are presented now. Let us recall that we use a

SGD algorithm to find the optimal values for W and V (see Equations 13 and

14). The learning rate in our SGD implementation was defined as:

γ ← 1

(γs · i) + 1
(25)

where i is the iteration number. The program finishes after performing a spec-

ified number of iterations.

The values for SGD parameters were automatically selected after a search in

the training sets (commonly named grid search) of the best scores. The values

checked were:

k ∈ {2, 10}

γs ∈ {10e : e = −5, . . . , 0}

ν ∈ {0} ∪ {10e : e = −8, . . . ,−2}

where k is the dimension of the common space where both animals and ages are

mapped, γs regulates the decreasing speed of the learning rate and ν is used to

weight the regularization.
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Recall that test sets were used to assess the performance of the models.

So given a test set of n examples, where lw1 . . . lwn are the real weights and

lw′1 . . . lw
′
n are the predicted weights, we compute the accuracy of the model by

means of three error measures:

• MSE (Mean Square Error)

MSE =
1

n

n∑
i=1

(lw′i − lwi)
2 (26)

• MAE (Mean Absolute Error)

MAE =
1

n

n∑
i=1

|lw′i − lwi| (27)

• MAPE (Mean Absolute Percentage Error)

MAPE =
1

n

n∑
i=1

|lw′i − lwi|
lwi

∗ 100 (28)

The aim of the experiments is to analyze the variations in performance of

the factorization method proposed in this paper depending on the number of

measurements, m, and the use, or not, of sex and breed features. In addition,

we compare this factorization approach with the alternative regression method.

Let us recall that the learning task is aimed at predicting the animals’ weights

at a any age, using the variables described in Section 3.1.

3.3. Scores and discussion

From the point of view of accuracy, it is clear that the more weights are used

in the process of learning, the better results will be obtained. However, breeders

are interested in making reliable predictions on the growth of their animals as

soon as possible. For example, the sooner it is determined that an animal is not

going to achieve certain goals (one of them can be the weight), the sooner it can

be discarded for selection purposes. Also, if an animal is in a feedlot, it can be

estimated the weight at different ages to decide the best time for slaughter.
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Table 6: Effect of the number of weights (m) used to physically characterize an animal for

both factorization and regression methods. Error scores are expressed in the form mean±std

Factorization Regression

m MSE MAE(kg) MAPE(%) MSE MAE(kg) MAPE(%)

1 0.057±0.11 19.9±18.7 5.2±4.7 0.073±0.13 23.6±20.4 6.4±5.3

2 0.038±0.08 16.0±15.6 4.2±3.8 0.053±0.10 19.5±17.8 5.4±5.1

3 0.024±0.06 12.7±12.6 3.5±3.3 0.042±0.08 17.4±15.8 5.1±5.3

4 0.017±0.04 10.8±10.5 3.1±3.2 0.038±0.07 16.8±14.7 5.1±5.2

For this reason, the goal of the first set of experiments is to determinate how

the accuracy of our algorithm is influenced by the number of weights, m, used

to characterize the physical condition of the animals (see Section 2.3). We used

datasets with all animals, with no division by sex or breed. The value of m

ranges from 1 to 4, where weights are taken in ascending order of the animals’

ages.

Table 6 collects the errors obtained on CV tests. Scores have been com-

puted using the standardized values of the weights. However, MAE scores are

expressed in kilos for a better interpretation. As expected, errors decreased

as the value of m increases. However, this reduction is much smaller between

m = 3 and m = 4. Therefore, m = 3 is a good trade-off between the amount of

needed information and the performance of the predictions; it can be established

as an appropriate value to make reliable decisions based on such predictions.

Moreover, we observe that our approach outperforms linear regression in all

cases. This is because, as discussed in Section 2.2, the weight trajectories ob-

tained by regression have the same shape for all animals, while our proposal is

able to adapt the trajectories to each animal individually.

So far, we have shown that the model presents good results for all animals

put together. We have also separated the animals by sex and father’s breed, in

order to check how good this general model was for each segment of the animal

population. Table 7 shows the scores.
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Table 7: Scores computed using the general model for each group of animals (with m = 3).

General model was obtained from a dataset with all animals put together (with no division

by sex or father’s breed). Error values are expressed in the form mean±std. W AVG is the

weighted average per number of examples

Father’s breed & Sex MSE MAE(kg) MAPE(%) #Examples

Avi M 0.025±0.061 12.4±12.9 3.26±3.16 32317

Avi F 0.042±0.046 17.1±15.6 5.31±4.58 1730

Cha M 0.033±0.062 14.2±14.1 3.60±3.38 8258

Cha F 0.021±0.047 11.8±12.2 3.58±3.71 7741

Lim M 0.030±0.072 12.9±13.4 3.24±2.98 2360

Lim F 0.038±0.058 15.8±15.5 4.71±4.31 2072

W AVG: 3.48±3.35

A new set of experiments has been designed to obtain specific models for each

group of animals. Thus, we obtain 6 models using datasets with the animals

divided by sex and by father’s breed. We want to compare the accuracy of

the specific models to the accuracy of the general model (when it is applied

separately to each group of animals). Obviously, the variables for sex and for

father’s breed have been eliminated from the examples. In all cases, the value

m = 3 has been used. Table 8 collects the errors on the specific models.

Comparing the scores in Tables 7 and 8 it is observed that accuracy is in-

creased in all cases using specific models. The main reason is that the number

of examples available for each group of animals is very different. On one hand,

this makes the general model fit much more to the larger group (Avi M). On

the other hand, we do not have enough examples of the other groups of animals

so that the father’s breed and sex variables compensate for this over-fit to the

Avi M group. Therefore, with the available data, it is better to learn specific

models for each group of animals.

Finally, we test whether our method is still better than regression when

animals are separated by sex and father’s breed. Then, we have calculated the
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Table 8: Scores computed using specific models for each group of animals (with m = 3).

Specific models were obtained from datasets of animals divided by sex and father’s breed.

Error values are expressed in the form mean±std. W AVG is the weighted average per

number of examples

Father’s breed & Sex MSE MAE(kg) MAPE(%) #Examples

Avi M 0.024±0.060 12.3±12.9 3.23±3.17 32317

Avi F 0.021±0.043 9.8±9.4 3.07±2.75 1730

Cha M 0.021±0.061 12.6±13.6 3.18±3.25 8258

Cha F 0.020±0.047 8.7±8.6 2.64±2.62 7741

Lim M 0.023±0.070 12.8±13.9 3.17±3.08 2360

Lim F 0.021±0.055 8.8±9.3 2.63±2.58 2072

W AVG: 3.11±3.06

scores by means of regression for each group of animals separately. They are

shown in Table 9.

As we can observe comparing Tables 8 and 9, our method also achieves

better scores than regression when animals are separated into groups by sex

and father’s breed. Let us emphasize again the main reason for this advantage:

the factorization method proposed in this paper is able to adapt the weight

trajectories to each animal individually, while the regression method is not, all

the curves are parallel. As an example, Figure 2 contains the weight trajectories

of 4 bulls randomly selected from Avi M group. These growth curves have

been obtained with our factorization method. Notice that each animal has a

customized curve.

3.4. Visualization in the Euclidean space

In addition to predicting weights with a very good performance, the fac-

torization method allows projecting the information of animals in a common

Euclidean space. Remember that this common space summarizes all the infor-

mation of each object (animal or age) in a vector of k components. Visualizing

information when the Euclidean space has up to 3 dimensions (up to k = 3) can
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Table 9: Scores computed using regression for animals divided by sex and father’s breed (with

m = 3). Error values are expressed in the form mean±std. W AVG is the weighted average

per number of examples

Father’s breed & Sex MSE MAE(kg) MAPE(%) #Examples

Avi M 0.034±0.069 15.6±14.5 4.39±4.52 32317

Avi F 0.029±0.051 12.2±10.3 4.04±3.68 1730

Cha M 0.033±0.069 17.0±15.7 4.59±4.78 8258

Cha F 0.036±0.068 12.0±10.9 3.87±3.93 7741

Lim M 0.027±0.056 15.3±14.1 4.02±3.77 2360

Lim F 0.034±0.067 12.1±10.7 3.78±3.37 2072

W AVG: 4.30±4.37

be very useful to interpret the results. Moreover, clustering techniques can be

used in order to find groups of animals with similar characteristics according to

a specific trait.

Available data on the group of animals AVI M were used to create Figure 3.

We have learned a model applying our factorization algorithm with k = 2. Then,

we represented in the Euclidean space of animals the best and the worst deciles

according to their average daily gain (ADG).

Two different regions can be clearly distinguished. The region on the left

contains animals with poor ADG while the region on the right-hand contains

animals with good ADG. Obviously, there are many animals that are in an

intermediate zone. Nevertheless, this observation is very important because it

confirms that some animals can be separated according to some of their traits,

like the average daily gain. In this case, we could identify animals that will gain

very little weight and those that will gain a lot of weight during their stay in

the feedlot. Based on this information, breeders might decide to slaughter each

animal at different ages according to their economic performance criteria. In

the same way, clusters based on other characteristics could be considered, such

as stockbreeder, feedlot or father’s breed.
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Figure 2: Weights of 4 randomly selected animals from Avi M and their corresponding learned

growth trajectory. Our factorization method results in customized trajectories for each animal

4. Conclusions

We have presented a factorization approach for learning the growth trajecto-

ries of beef cattle during their stay in a feedlot. These trajectories are adapted

to the specific data of each animal, which yields an improved precision with re-

spect to a linear estimate. This means that the estimation of the individualized

evolution of the weights requires a nonlinear component in which the interac-

tions between all available descriptors about animal and age associated with a

weight are considered. In addition, the representation of animals in a common

space of reduced dimension allows establishing clusters of animals with similar

characteristics.
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Figure 3: Visualization in a 2-dimensional Euclidean space (k=2) of some animals of the

group Avi M . We use (* ) to represent animals with good average daily gain (ADG) and (o)

to represent animals with poor ADG
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