
 

An Unstructured Mesh Partitioning Scheme for Efficiently Parallelizing an 

Explicit Time Domain Volume Integral Equation Solver 
 
 

Ahmed Al-Jarro and Hakan Bağcı 

 
Division of Computer, Electrical and Mathematical Sciences and Engineering 

King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia 

ahmed.aljarro@kaust.edu.sa, hakan.bagci@kaust.edu.sa 

 

 

Abstract: A highly scalable parallelization scheme for accelerating the explicit marching-on-in-time 

(MOT) based solution of the time domain volume integral equation (TDVIE) is proposed. The 

parallelization scheme ensures even distribution of (i) source fields and their temporal history, (ii) 

computation of the discretized spatio-temporal convolutions, and (iii) computation of finite differences 

approximating the spatial derivatives among the processors. All data exchange required in between 

processors is carefully designed to avoid global (collective) communications. Numerical results 

demonstrate that the proposed parallelized MOT-TDVIE solver scales linearly on the IBM Blue Gene/P 

platform for problems discretized using one million elements on up to 32,768 cores. 
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1. Introduction 

 

It is well known that high computational costs associated with marching-on-in-time (MOT)-based 

time domain integral equation (TDIE) solvers have been limiting their widespread use in practical real-

life electromagnetics problems [1-4]. Parallelization is one way of drastically reducing long computation 

times needed for the characterization of wave interactions on electrically large structures using MOT-

TDIE solvers. In this work, a highly efficient and scalable parallelization scheme for accelerating the 

explicit MOT-based solution of the time-domain volume integral equation (TDVIE) [4] is presented.  

Unlike classical MOT-TDIE solvers [1-3], the TDVIE solver [4] parallelized in this work expands 

unknown fields using zeroth order basis functions in space and first order interpolation functions in time, 

and uses finite differences to approximate the spatial derivatives. The TDVIE is tested using point 

matching in space and time. The stability of the time marching is maintained using a predictor-corrector 

algorithm. The simplicity of the solver, allows for a memory efficient implementation: No interaction 

matrices are stored and the discretized spatio-temporal convolutions are fully computed on the fly during 

time marching. The only storage is the temporal history of the source fields. Therefore, the parallelization 

scheme presented here mostly focuses on efficient distribution of the computational work and aims at 

achieving high scalability in computation times.  

The proposed parallelization scheme is built upon the work detailed in [5, 6]. It ensures even 

distribution of (i) source fields and their temporal history, (ii) computation of the discretized spatio-

temporal convolutions, and (iii) computation of finite differences approximating the spatial derivatives 

among the processors. It is noted here that the efficient inter process communication (IPC) required for 

the computation of the discretized convolutions, (ii), is achieved using a simple one-way pipeline 

communication strategy, so called “rotating tiles” paradigm as described in [6]. This scheme eliminates 

the need for global communications. The even distribution of the finite difference computations, (iii), 

without adversely affecting the efficiency of the discretized convolution computations is the focus of this 
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work and described in detail in this paper. It is further added that, (i), the even distribution of the source 

fields and their temporal history is an expected outcome of (ii) and (iii).  
The parallelization scheme described in [5, 6] distributes equally the source fields and their temporal 

history among the processors without taking into account the physical locations of the source field 

samples. Then, the rotating tiles paradigm is applied to compute the tested fields efficiently without the 

need for global communications [6]. Even though this approach results in almost ideal scaling for the 

computation of discretized spatio-temporal convolutions, it does not optimize the halo-type 

communications needed for the computation of the spatial finite differences; and hence jeopardizes the 

overall scalability of the solver.  

To this end, in this work, an alternative scheme to distribute the source/test points among the 

processors is proposed. The proposed scheme makes use of a graph-based partitioning method [7] to 

ensure that the total number of source/test points assigned to each processor is equal and the resulting 

number of test points that reside on the boundary of any two partitions is minimized. Numerical results 

demonstrate that parallelized MOT-TDVIE solver scales linearly on the IBM Blue Gene/P platform for 

problems discretized using one million elements on up to 32,768 cores. 

 

2. Parallel Explicit MOT-TDVIE Solver 

 

A. Time-Domain Volume Integral Equation (TDVIE) 

The electric field, E(r,t),
 
in the presence of a non-magnetic dielectric scaterrer residing in free space 

satisfies the TDVIE [4]:  
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In (1), E0(r,t)  is the band-limited incident electric field, v  is the speed of light in free space, ( ) r   and 

b  are permittivities of the scatterer and free space, respectively, V  represents the volume of the 

scaterrer, R  r r  is the distance between the observation point and source points, r  and r . To 

numerically solve the TDVIE (1), V  is discretized using cubic elements, ( , )t E r  is expanded using 

zeroth order basis functions in space and first order interpolation functions in time. The resulting equation 

is tested in space and time using point matching. Spatial derivative operator “ÑÑ×” is approximated 

using finite differences. The differentiation in time, “
2

t ”, is taken into account through the use of a 

predictor-corrector algorithm. At the predictor step, spatio-temporal samples of E(r,t)  (i.e., tested field 

samples) are computed using the samples of the discretized spatio-temporal convolution and E0(r,t) . At 

the corrector step, tested field samples from the predictor step, where a less accurate approximation has to 

be used for evaluating “
2

t ” are “corrected” using a more accurate approximation of “
2

t ”. At the end of 

each time step, tested field samples are stored as source field samples to be used in the computation of the 

spatio-temporal convolution in the next time step. Note that in this algorithm, spatial finite difference 

evaluations and corrector updates are spatially local operations while computation of the spatio-temporal 

convolution is global. The predictor-corrector algorithm is demonstrated to increase the accuracy and 

stability of the solution while maintaining the explicitness the MOT scheme [4].  

 

B. Parallelization 

The computational cost of the explicit MOT-TDVIE solver briefly described in Section 2.A is high 

due to the need to compute the discretized spatio-temporal convolutions. To enable the use of this solver 

in characterizing transient wave interactions on electrically large structures, several parallelization 

schemes have been proposed in [5, 6]. In this work, the parallelization scheme presented in [6], which 

efficiently parallelizes the computation of the discretized convolutions via the use of a one-way pipeline 

communication strategy termed “rotating tiles”, is further enhanced. This technique eliminates the need 

for the otherwise collective communications that rely on globally executed routines using summation 



operations [5]. It is further added that, in [5] and [6], the partitioning is carried out without taking into 

account the physical locations of source points, i.e. using a structured grid for their distribution 

(partitioning). Each processor stores the time history of the source field samples that belong to the 

partition assigned to it. The test point partitioning is initially (at the beginning of the rotation) is the same 

as the source point partitioning, however, the test point partitions are rotated among the processors. When 

a processor receives a test point partition, it adds the contribution from its source field samples to the 

tested fields sampled at test points of the received partition and passes the partition to its neighboring 

processor. At the end of a full rotation all contributions to the tested fields are computed at a given time 

step without the need for global collective communications. 

Even though this scheme results in almost ideal scaling of the solver, it does not automatically optimize 

the distribution of the source field samples; and therefore the computations of the discretized spatio-

temporal convolutions, or the communications required for the computation of the spatial finite 

differences. This unoptimized distribution of the source field samples can hinder the scalability of the 

solver, especially when the number of processors is high and the number of tested field points in each 

partition is relatively low. In this work, the rotating-tiles scheme is enhanced using an unstructured graph 

partitioning technique [7] to enforce the even distribution of the source field samples, as well as to 

minimize the halo-type communications, as described next.  

During the unstructured partitioning, first, the underlying mesh discretization of the volume, V ,  is 

converted into a graph. Then, this very dense graph is coarsened down from its original representation, 

but obviously of an identical volume with smaller number of nodes. This is achieved by successively 

collapsing together a maximum set of adjacent pairs of nodes. This final coarser graph is then processed 

with the objective to ensure that source/test points are evenly distributed among partitions while the 

overall number of elements that reside on the boundary of any two partitions is minimized. This objective 

is usually referred to as the edge-cut [7]. This process is executed iteratively by moving vertices between 

partitions in order to better improve the quality of the final partitioning solution [7]. It should be noted 

here that during this iterative process, priority is given to the portion of the graph that is in close 

proximity to the partitions boundaries [7].  

The unstructured partitioning of the underlying mesh discretization of the volume, V ,  can be invoked 

through METIS stand-alone programs or application programming interface (API) [7]. The METIS 

program takes as input the element-node array of the mesh to be partitioned and computes a target size of 

partitions, ,pN  for both its elements and its nodes. The unstructured graph partitioning step is a static 

task, i.e., it is not modified during the MOT loop, and therefore it is carried out only once before the 

marching starts. The solver then makes use of the elements partitioning, where several other pre-

processing tasks are needed before marching with the aim to optimize the repeated data communications 

that take place during the MOT loop. These tasks involve generation of look-up tables and data maps that 

are used for the rotating-tile and unstructured halo-type communications. 

 

3. Numerical Results 

 

The scalability tests of the proposed parallelized TDVIE solver are performed on Shaheen, an IBM 

Blue Gene/P platform located at the King Abdullah University of Science and Technology (KAUST) 

Supercomputing Laboratory (KSL). Shaheen consists of 16 racks, each of which contains 1024 quad-core 

compute nodes. Each node running at 850MHz is equipped with 4GB of memory. Scalability of the 

proposed solver is tested for two problems where the scatterer is discretized using 571595
 
and 1097240

 
elements. Figs. 1 and 2 present the strong scaling of the proposed scheme and compares it to ideal 

scalability. The strong scaling, for a given problem size, is defined as SNp = log2(TNp Tref ). Here, N p
 

represents the number of processors used in the simulations, and Tref  and TN p  are the total times recorded 

for the simulations executed on 64  and N p
 number of processors. 

It is clear from Figs. 1 and 2 that the proposed scheme scales extremely well on the IBM Blue Gene/P 

platform. This clearly demonstrates that the unstructured partitioning technique ensures the even 



distribution of the overall computation load among the processors.  It should be noted here that as N p
 is 

increased, for a fixed problem size, the communicated message sizes reduce linearly to the level where 

they are small enough to fit within the CPU cache. At this point, the average latency of data access 

(read/write) will be that of the cache access, which is much shorter than the latency of main memory 

access. As a result, and given that 
pNS is being measured against refT  with 64 cores, for the cases where 

access to only small memory segments per process is needed, the super-linear scaling effect is observed. 

This super-linear scalability is evidently observed for 2096pN   and 4096pN   in Figs. 1 and 2, 

respectively. 

 
4. Conclusions 

 

A highly scalable parallel TDVIE solver is described. The proposed parallelization scheme makes use 

of an unstructured graph partitioning technique to evenly distribute the computations required for the 

evaluation of discretized spatio-temporal convolutions and the spatial finite differences. All data 

exchange required in between processors is carefully designed to avoid global (collective) 

communications. Numerical results demonstrate the (super-linear) scalability of the solver when executed 

on the IBM Blue Gene/P platform using up to 32,768 cores. 
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Fig. 1. Scalability of the proposed scheme 

for a problem with 
 
571595

 
elements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. Scalability of the proposed scheme 

for a problem with 
 
1097240

 
elements. 
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