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                                                                                  Abstract 

The development of novel approaches to stimulate neuronal circuits is crucial to 

understand the physiology of neuronal networks, and to provide new strategies 

to treat neurological disorders.  

Nowadays, chemical, electrical or optical approaches are the main exploited 

strategies to interrogate and dissect neuronal circuit functions. However, 

although all these methods have contributed to achieve important insights into 

neuroscience research field, they all present relevant limitations for their use in 

in-vivo studies or clinical applications. For example, while chemical stimulation 

does not require invasive surgical procedures, it is difficult to control the 

pharmacokinetics and the spatial selectivity of the stimulus; electrical stimulation 

provides high temporal bandwidth, but it has low spatial resolution and it 

requires implantation of electrodes; optical stimulation provides subcellular 

resolution but the low depth penetration in dense tissue still requires the invasive 

insertion of stimulating probes. 

Due to all these drawbacks, there is still a strong need to develop new 

stimulation strategies to remotely activate neuronal circuits as deep as possible.  

The development of remote stimulation techniques would allow the combination 

of functional and behavioral studies, and the design of novel and minimally 

invasive prosthetic approaches.  

Alternative approaches to circumvent surgical implantation of probes include 

transcranial electrical, thermal, magnetic, and ultrasound stimulation. Among 
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these methods, the use of magnetic and ultrasound (US) fields represents the 

most promising vector to remotely convey information to the brain tissue. Both 

magnetic and low-intensity US fields provide an efficient mean for delicate and 

reversible alteration of cells and tissues through the generation of local 

mechanical perturbations. 

In this regard, advances in the mechanobiology research field have led to the 

discovery, design and engineering of cellular transduction pathways to perform 

stimulation of cellular activity. Furthermore, the use of US pressure fields is 

attracting considerable interest due to its potential for the development of 

miniaturized, portable and implantation-free US stimulation devices. 

The purpose of my PhD research activity was the establishment of a novel 

neuronal stimulation paradigm adding a cellular selectivity to the US stimulation 

technology through the selective mechano-sensitization of neuronal cells, in 

analogy to the well-established optogenetic approach. In order to achieve the 

above mentioned goal, we propose the cellular overexpression of 

mechanosensitive (MS) ion channels, which could then be gated upon the 

application of an US generated pressure field. Therefore, we selected the bacterial 

large conductance mechanosensitive ion channel (MscL), an exclusively-MS ion 

channel, as ideal tool to develop a mechanogenetic approach. Indeed, the MscL 

with its extensive characterization represents a malleable nano-valve that could 

be further engineered with respect to channel sensitivity, conductance and gating 

mechanism, in order to obtain the desired biophysical properties to achieve 

reliable and efficient remote mechanical stimulation of neuronal activity. 

In the first part of the work, we report the development of an engineered MscL 

construct, called eMscL, to induce the heterologous expression of the bacterial 

protein in rodent primary neuronal cultures. Furthermore, we report the 

structural and functional characterization of neuronal cells expressing the eMscL 

channel, at both single-cell and network levels, in order to show that the 

functional expression of the engineered MscL channel induces an effective 
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neuronal sensitization to mechanical stimulation, which does not affect the 

physiological development of the neuronal itself. 

In the second part of the work, we report the design and development of a water 

tank-free ultrasound delivery system integrated to a custom inverted 

fluorescence microscope, which allows the simultaneous US stimulation and 

monitoring of neuronal network activity at single resolution.  

Overall, this work represents the first development of a genetically mechano-

sensitized neuronal in-vitro model. Moreover, the developed US delivery system 

provides the platform to perform high-throughput and reliable investigation, 

testing and calibration of the stimulation protocols. 

In this respect, we propose, and envisage in the near future, the exploitation of 

the engineered MscL ion channel as a mature tool for novel neuro-technological 

applications. 
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                                CHAPTER ONE: Cell mechanobiology 

1.1. Introduction 

Cells continuously communicate with each other through chemical, electrical and 

mechanical signals. The classical approach to study cell signaling is based on a 

biochemical concept, in which biochemical signals in the form of diffusing 

molecules interact with specific cellular sites, and activate transduction 

machineries regulating fundamental cellular activities (Kramer et al., 2009). 

However, cells interact with the surrounding local environment through physical 

contacts involving the generation and sensing of forces. As in chemical signaling, 

where a chemical entity interacts with a specific protein binding site to induce 

changes in the conformational or the phosphorylation states of the protein itself, 

picoNewton forces can modify the protein structure and activate cellular 

pathways (Yao et al., 2014). 

Typically, we can identify three different routes of force transmission and 

transduction within cells (Eyckmans et al., 2011). In the first case, the force is 

directly transduced at the cell membrane by mechanosensitive ion channels, 

which sense the forces transmitted by the surrounding plasma membrane. These 

channels are broadly expressed in distinct cell types and respond to different 

stimuli such as: touch, substrate texture, stretch, vibration, and pressure (Gu and 

Gu, 2014). Moreover, membrane ion channels respond both to external and 

internal forces such as osmotic pressure and membrane deformation occurring 
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during cell reshaping and navigation (Roudaut et al., 2012). The second route for 

force transmission and transduction is actuated by other macromolecular 

structures such as cytoskeleton and ECM. 

Animal cells possess three main types of cytoskeletal structures: actin filaments, 

microtubules and intermediate filaments (Fletcher and Mullins, 2010). These 

structures control the shape, motility and mechanics of cells. Microtubules are the 

stiffest cytoskeletal filaments presenting complex assembly and disassembly 

dynamics, which ensure the stabilization of cellular protrusions, shifts and 

adaptation to the external local environment (Brangwynne et al., 2006a). Actin 

filaments are much less rigid, present faster dynamics, and they are responsible 

of cellular motility and formation of adhesion (Kuo, 2013; Nicholson-Dykstra et 

al., 2005). Unlike the microtubules architecture which is always determined by a 

single organizing center such as the mitotic spindle (Brangwynne et al., 2006a), 

the actin cytoskeleton is continually assembled and disassembled in response to 

local mechanical cues (Cingolani and Goda, 2008). The organization of the whole 

cytoskeletal architecture plays an important role in fast transmitting compressive 

and tensile stresses through the cellular compartments, thus inducing a 

multifactorial cascade of events (mechanotransduction pathways), and 

eventually leading to modifications of the genetic expression, cell morphology, 

proliferation, and differentiation (Janmey and McCulloch, 2007; Neukirchen and 

Bradke, 2011). 

At last, upstream mechanosensitive-related molecules that initiate a specific 

intracellular signaling can also modulate channel activity. In general, direct force 

transduction, as that actuated by MS channels, triggers a rapid response to force, 

on the order of tens of microseconds; on the other hand, indirect force 

transduction mediated by intracellular signaling gives a slower cell response, on 

the order of milliseconds to few days. 

In this regards, it is worth noting that the cellular membranes and organelles 

behave as a dynamic medium that directly affects the function and spatial 
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distribution of the proteins embedded in itself (Andersen and Koeppe, 2007; 

Engelman, 2005), also in response to mechanical cues and forces. Indeed, the 

plasma membrane responds to forces in a time-varying manner as non-

Newtonian fluids (Tyler, 2012), it is responsible of protein clustering and 

assembly on the cell surface, and have an active role in determining the 

mechanical properties of the brain (see section: 1.5 Mechanobiology of the brain). 

1.2. Mechanosensitive ion channels in Bacteria 

Among all the cellular constituents, the two more important sensing elements 

involved in such pathways are the cytoskeleton and the mechanosensitive ion 

channels. Considering, that not all cells present a cytoskeletal structure, MS ion 

channels are considered as the oldest and most important mechanosensing 

element evolved among all the living organisms, in order to transduce local 

mechanical perturbation provided by either external and internal environment to 

the cell membrane (Brohawn, 2015; Martinac, 2012). Nowadays, even though we 

acquired a wide knowledge about the cellular sensing of specific stimuli such as 

heat, pH, and chemical compounds, our knowledge about how cells can 

recognize and respond to mechanical forces is still limited. In this regards, the 

research field of mechanobiology has focused on the understanding of 

mechanotransduction pathways of the cells.  

Bacterial cells, as all living systems, are subjected to a wide range of mechanical 

stimuli, and therefore they have evolved molecular pathways and mechanisms to 

sense and respond to such environmental stimuli (i.e. osmotic shock, membrane 

deformation, gravity, etc.), in order to guarantee proper growth, development 

and survival (Kung et al., 2010). 

Biophysical characterization of MS proteins elucidates the ability of such 

channels to directly detect, and respond to mechanical forces exerted on the lipid 

bilayer. Today we know that bacteria cells are equipped with MS channels to 

balance their intracellular osmolarity (Perozo, 2006) during the navigation in 
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rapidly changing environmental conditions, which could generate severe osmotic 

shocks (Figure 1), in order to preserve the cell membrane from the lysis (Booth 

and Blount, 2012; Peyronnet et al., 2014). 

 

Figure 1 | Mechanosensitive ion channel function in prokaryote 

In the prokaryotic cells, the mechanosensitive ion channels act as osmotic ‘safety valves’ (a 

generic Gram-negative bacterial cell is shown). When cells are in an osmotic equilibrium (1) with 

their environment, the channels remain closed; while when the environment becomes hypo-

osmotic (2), water enters into the cell, and dramatic changes in the internal pressure lead to the 

channel opening and the release of cytoplasmic solutes (i.e. ions and small molecules) in order to 

achieve a rapid reduction of the inner pressure. Then, the quick equilibration of the internal and 

external osmotic pressures (3) induces the channel closure (image extracted from Perozo, 2006). 

 

For example, a hypo-osmotic shock induces a huge water uptake by the bacterial 

cell with a rapid volume expansion: a typical 30% increase of the cell volume 

occurs in less than 1 second (Boer et al., 2011). During the water inflow, the cell 

can increase its surface area as well as exploit membrane reservoirs through 

regulated exocytosis, to avoid a net increase of the pressure acting on the 

membrane. However, bacterial cells lack an extensive phospholipid reserve, and 

an increasing in terms of distance between phospholipid head groups could 

generate only a 2-4% membrane expansion. Therefore, the successful 

withstanding of such augmented turgor pressure, which pushes the plasma 
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membrane against the cell wall during an osmotic shock, depends on the gating 

of specifically evolved mechanosensitive ion channels (Hamill and Martinac, 

2001). When the maximum expanded state of the bacterial membrane is reached, 

the turgor pressure rise reaches about 0.1 ATM, and the gating of MS channels 

occurs (Boer et al., 2011), thus producing the efflux of cytoplasmic solutes and the 

reduction of the turgor pressure. 

Unlike bacterial cells, eukaryotic cells have a cytoskeletal structure linked to the 

lipid bilayer. Such cytoskeleton, which passively transmits external forces, allows 

the cell to swell without increasing the total bilayer area or tension. Therefore, 

MS currents in eukaryotic cells cannot be detected in whole cells, but only in 

excised patches or membrane blebs where the cytoskeleton is absent (Morris and 

Horn, 1991). 

The composition of the plasma membrane can influence the opening of MS 

channels:  variations in the thickness of phospholipid bilayer or the addition of 

compounds inducing spontaneous membrane bending could modulate the 

tension required to open MS channels (Perozo et al., 2002a). For example, adding 

cationic amphipaths to the membrane can change the membrane geometry and 

lipid solubility inducing a reversible activation of MS ion channels when a lipid 

monolayer is present (Perozo et al., 2002a). 

Therefore, the cell fate upon an osmotic shock is determined by turgor pressure, 

number of MS channels, strength of cell membrane, and more important by the 

rate of change of the osmolarity (Bialecka-Fornal et al., 2012; Kakuda et al., 2012). 

After the first report on the discovery of MS channels in Escherichia coli (Martinac 

et al., 1987), multiple types of bacterial MS channels have been identified 

(Edwards et al., 2012). Today, two major classes of bacterial MS channels are 

recognized: MscS (Levina et al., 1999) and MscL (Sukharev et al., 1994). MscS and 

MscL are so called in regard of the amount of ions passing through the channel 

pore (channel conductance), which is around 1 nS or around 3 nS, respectively 

(Figure 2, (Martinac, 2004)).  
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Figure 2 | Comparison of MscL and MscS ion channels 

Top panel: Example of current traces of MscL and MscS channels recorded at a pipette voltage of 

+40 mV and +30 mV, respectively, in E. coli.; C and O indicate the closed and open state of the 

channel and the footstep number the amount of opened channels (image extracted from Martinac, 

2004).  

Bottom panel: the comparison of structures of the MscL and MscS channel is shown. The color 

map indicates the different structural elements of each channel. Yellow: TMD1; Green: 

periplasmic loop; red: TMD2; cyan: TMD3; grey: C-terminal (images extracted and modified 

Bezanilla and Perozo, 2002). 

Moreover, these two membrane ion channels directly respond to changes in 

membrane tension by opening a pore of 6 Å and 30 Å diameter, respectively 

(Kloda et al., 2008a), thus indicating that MS channels could be gated without the 

requirement of any other cellular components such as the cytoskeleton or 

extracellular matrix (Häse et al., 1997; Martinac et al., 2014). Unlike MscL, the 

MscS channel shows also a marked voltage-dependence behavior in depolarizing 

conditions but little is yet known regarding its membrane potential sensitivity 

(Bezanilla and Perozo, 2002; Martinac et al., 1987). 
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In addition, although these two channels belong to distinct MS channel families, 

they present relevant sequence similarities at the transmembrane domain (TMD) 

constituting the channel pore (TMD1 of MscL and TMD3 of MScS), indicating a 

common evolutionary origin (Kung et al., 2010; Martinac and Kloda, 2003).  

Martinac and coworkers identified both channels in 1987 by measuring unitary 

currents steps, through voltage-clamp recordings of giant E. coli spheroplasts 

subjected to pipette suction or to dilution of the solution bathing the patch 

(Martinac et al., 1987). However, only few years later it was proved that the 

expression of two MS channel proteins were necessary to the bacteria 

survivability upon an osmotic shock (Levina et al., 1999). The possibility to easily 

isolate large amounts of the MscL channel from many bacterial strains, and to 

reconstitute it in a cell-free system has been exploited to study the mechanical 

and electrophysiological properties of MscL and MscS (Häse et al., 1995; 

Sukharev et al., 1993). 

In details, MscL can reconstitute into azolectin liposomes with a protein/lipid 

ratio as low as 1:10000 w/w, while MscS requires an higher reconstitution ratio, 

1:200 w/w (Sukharev, 2002). However, many methods for incorporating both 

MscL and MscS into liposomes are now available, and the use of such cell-free 

systems have allowed studying the interaction of these MS channels with lipid 

interfaces. The periplasmic and cytoplasmic regions can modulate the interaction 

of MscL and MscS with the surrounding phospholipids (Meyer et al., 2006; Tsai 

et al., 2005; Yang et al., 2013), indicating that the cell membrane composition may 

actively modulate the MS channel activity (Pliotas et al., 2015). In this regard, 

Perozo and coworkers demonstrated that the hydrophobic mismatch between the 

MscL and the lipid membrane does not trigger the MscL opening, but specific 

mismatches could stabilize some intermediate states towards the fully open state 

(Bavi et al., 2016; Perozo et al., 2002b). On the contrary, the hydrophobic 

mismatch doesn’t play a significant role in MscS (Nomura et al., 2012).  
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Nevertheless, the internal bilayer lateral pressure profile due to the interaction 

between membrane constituents (Figure 3), and the difference in size of their 

TMDs with respect to the bilayer thickness, may be involved in regulating the 

conformational changes of MscL and MscS (Meyer et al., 2006; Nomura et al., 

2012).  

 

Figure 3 | The bilayer pressure profile 

In the left panel, an idealized symmetrical bilayer pressure profile showing characteristic negative 

peaks at the water-lipid interface and repulsive positive peaks in the head group and tail region.  

In the right panel, a bilayer pressure profiles from molecular dynamics simulation of a bilayer 

with MscL inserted in it. Black line is the lateral pressure profile at rest, and red is in the presence 

of applied tension. Note how in the presence of the protein the pressure profile in a largely 

symmetrical lipid bilayer has become distinctly asymmetric. Peak A and peak B represent the rise 

in the pressure profile at lipid solvent interface (image extracted form Bavi et al., 2016). 

The amphipathic nature of the lipid molecules and the presence of surrounding 

water makes the lateral pressure profile of the cell membrane intrinsically 

inhomogeneous. When MscL channels are embedded in the lipid bilayer, the 

latter shows an increase in intrinsic asymmetry at the lipid-water interface (Bavi 

et al., 2016; Cox et al., 2017). However, the effect of varying lipid composition or 

tension on the channel gating has not been investigated experimentally yet. 

On the other hand, molecular dynamics studies have revealed that changing the 

hydration properties of the MscL pore leads to a change in the energy required 

for gating the channel (Birkner et al., 2012). 



21 

 

Indeed, increasing the pore hydrophilicity of a single subunit at position 22 in the 

MscL pore domain, it is sufficient to induce the channel opening in the absence of 

any applied tension.  

Nowadays, genome sequencing revealed a much greater variety of MS channel 

across the bacterial kingdom (Kloda and Martinac, 2001), and such heterogeneity 

produces a variety of responses to hypo-osmotic shock, in terms of ion 

conductance: from 100 pS up to several nS. Over the course of evolution, different 

organisms have fashioned unique solutions that reflect their environmental niche 

(Martinac and Kloda, 2003). Indeed, distinct MS channel types offer different 

temporal responses for less severe hypo-osmotic stress, and their abundance 

allows rapid reduction of the turgor pressure (Booth, 2014).  

1.3. Mechanosensitive ion channel of large conductance (MscL) 

Between the variety of bacterial MS ion channels, the mechanosensitive ion 

channel of large conductance (MscL) is the first to have been discovered. MscL 

was isolated for the first time by the Kung’s group in 1994 in giant Escherichia coli 

spheroplasts (Sukharev et al., 1994; Sukharev et al., 1997), and after decades of 

biophysical investigation, today it represents the most studied and characterized 

mechanosensitive ion channel.   

In bacterial cells, MscL plays a key role as a biological emergency release valve 

through the release of cytoplasmic osmolytes upon osmotic shock. When MscL-

knockout cells are subjected to a down shock assay, they show poor survivability, 

thus indicating that the MscL gene is necessary for sensing the membrane 

deformation occurring during the cell swelling (Levina et al., 1999). 

The mechanosensitivity of the MscL channel was quantified on liposomes 

engineered with MscL protein isolated from E. coli (Eco-MscL). The membrane 

tension required to gate the channel was estimated to about ~12 mN·m-1 (Chiang 

et al., 2004; Moe and Blount, 2005; Sukharev et al., 1999), which reflects a tension 

near the lytic limit of the membrane itself, and the channel opening occurs 
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around 3-5 ms after the tension reaches such activation threshold (Shapovalov 

and Lester, 2004). It is worth noting that such experiments also indicate that only 

tension in the membrane bilayer gates MscL ion channel without requiring other 

cellular elements. 

The MscL channel structure was resolved for the first time from the MscL 

homologues isolated in Mycobacterium tuberculosis (Tb-MscL), which presents a 

67% similarity when compared to Eco-MscL, by X-ray crystallography at a 

resolution of 3.5 Å (Chang et al., 1998). However, the crystal structure of the 

channel was resolved only in its close state, while the open state conformation 

has been simulated through molecular dynamic studies (Perozo et al., 2002b). 

The crystallography studies revealed a pentameric structure of five monomers 

organized around a central pore (Figure 4).  

 

Figure 4 | Function and structure of the homopentameric MscL 

Top panel: MscL current activity in an excised inside-out patch in response to pressure ramps 

(300 s to peak) at voltages ranging from +20 to −20 mV (image extracted from Cox et al., 2016). 
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Bottom panel: Tb-MscL is used as model for determining the structure of the Eco-MscL. The 

horizontal blue lines indicate the approximate collocation of MscL in the lipid membrane. The N-

terminal helix lies along the membrane in the intracellular side. TMD1 crosses the membrane, 

shaping the pore of the channel, and connects the TMD2 by a periplasmic loop. TMD2 creates the 

protein-lipid interface. Finally, a cytoplasmic loop connects TMD2 with the C-terminal bundle at 

the C-terminal end of the channel (image extracted from Iscla and Blount, 2012b). 

The non-selective pore size of about 30 Å allows the release of large compounds 

(Cruickshank et al., 1997), reaching a channel conductance value up to 3 nS 

(Kloda et al., 2008b). Each monomer is composed of 136 amino acids, organized 

in two transmembrane a-helices domains with both amino (N-terminal), and 

carboxyl (C-terminal) tails located on the cytoplasmic side of the membrane 

(Chang et al., 1998). 

The first transmembrane domain (TMD1) forms the channel pore, while the 

second transmembrane domain (TMD2), located in the lipid bilayer, senses the 

lipid contents of the membrane, and it is involved in the channel self-assembly. 

The two domains are connected by a periplasmic b-sheet loop. The constriction 

point (Figure 5) of the pore of 2 Å occurs at the cytoplasmic half of TMD1 at 

position 22, and constitutes a hot-spot site where mutations led to gain of 

function (GOF) phenotypes of the channel (Woe et al., 1998; Yoshimura and 

Sokabe, 2010). 

 

Figure 5 | MscL hydrophobic lock  

Cartoon of Eco-MscL structure with reference to the hydrophobic lock. The pore is constricted 

between A20 and G26. Y75 and K97 describe the extremities of the TMD2 interfacing the lipid 

bilayer. Gating threshold changes with the hydrophilicity of G22. Charged residues RKK are 
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involved in oligomer assembly (image extracted and modified from Yoshimura and Sokabe, 

2010).  

In this region, the substitution of a residue with a hydrophilic amino acid 

decreases the energy barrier to open the channel, thus increasing the 

mechanosensitivity of the channel, and concomitantly decreasing the channel 

dwell time (the amount of time a channel remains in the closed position) (Birkner 

et al., 2012; Kocer, 2015). 

Furthermore, while the C-terminal region is not necessary for the channel 

function, the deletion or mutation on the N-terminal disrupts the channel 

function (Blount et al., 1996; Iscla et al., 2008). 

MscL shows structural similarities with other eukaryotic MS ion channels such as 

the ATP-gated cation channel, the inward-rectifier potassium channel and the 

epithelial sodium channel (North, 1996). Although a recent crystal structure of 

MscL from Staphylococcus aureus shows a tetrameric complex (Liu et al., 2009), 

this appears to be a detergent-specific oligomeric organization not reflecting a 

physiological state (Dorwart et al., 2010). 

The opening mechanism of the channel was first hypothesized by Sukharev in 

the 2001 and described in the so called Sukharev-Guy (SG) gating 

model (Sukharev et al., 2001). The suggested model, known also as “iris opening 

mechanism” (Betanzos et al., 2002; Perozo et al., 2002b; Sukharev et al., 2001), 

suggests that during the increase in membrane tension the TMD1 rotates within 

the thinning membrane portion, thus causing the opening of the channel pore 

(Figure 6). The possibility to isolate large amounts of channel from many 

bacterial strains, facilitates the design and development of genetically modified 

variants of the MscL (Maurer and Dougherty, 2003), and attracts a lot of attention 

in exploiting the MscL channel in medical and biotechnological applications 

(Iscla et al., 2013). 

Moreover, MscL can be translated in-vitro (Berrier et al., 2004) or synthetically 

synthesized (Clayton et al., 2004), reconstituted into lipids and self- assembled 
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into a functional complex. Insertion of specific compounds into the channel pore, 

by site-directed mutagenesis, allows to influence the channel permeation to 

charged molecules (Levin and Blount, 2004; Yang et al., 2012). 

For all the above reasons, there has been a boost in the design and development 

of new genetically modified variants of the MscL with distinct channel sensitivity 

(Yoshimura et al., 1999), conductance (Yang et al., 2012) and gating mechanism 

(Doerner et al., 2012; Kocer et al., 2005). 

 

Figure 6 | Changing in conformational structure of the MscL  

Cartoon of the movement of the MscL components upon stretching of lipid bilayer. For clarity, 

the N-terminal region of the channel is shown in red, and a single MscL subunit in green. The 

Sukharev-Guy (SG) model predicts that the N-terminal region plays the role of a “second gate”, 

occluding the pore even when most of the expansion of the channel has already occurred (image 

extracted from Iscla et al., 2008). 

In conclusion, MscL is the best characterized mechanosensitive channel, from any 

species, with a crystal structure and a detailed model of how the channel senses 

and responds to mechanical forces, and many mutated variants are already 

isolated and characterized (Iscla and Blount, 2012). Therefore, MscL represents 

the reference model for studying newly discovered mechanosensitive channels 
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and a tunable nanovalve for controlled delivery of membrane impermeable 

molecules (Bae et al., 2013; Cox et al., 2016). 

1.4. Mechanosensitive ion channels in Eukaryotes 

Although the mechanosensation is crucial for touch perception, proprioception, 

hearing and balance, blood pressure regulation, and many other physiological 

processes in living organism, the molecular characterization of mechanosensitive 

ion channels in eukaryotic cells proceeded much slower with respect to bacterial 

cells. Indeed, structural and functional studies of bacterial MS ion channels posed 

the bases for studying the mammalian ion channels. 

Almost all eukaryotic MS channels have been recognized on the basis of the 

phenotype of mutant animals, as abnormalities of MS channel functions in 

neuronal development (Hong and Driscoll, 1994; Koser et al., 2016a), cardiac 

arrhythmias (Reed et al., 2014), hypertension (Köhler et al., 1999) and polycystic 

kidney disease (Köhler et al., 1999); or through the selective expression of 

proteins in mechanosensitive cells and in-vitro studies, rather than protein 

sequence homology. 

However, the identification of mechano-transduction pathways in eukaryotic 

cells is still hindered by the genetic redundancy of some ion channels (Árnadóttir 

and Chalfie, 2010; Li et al., 2011).  

In general, bacterial MS channels are gated by forces within the lipid bilayer 

transmitted by the interaction of the membrane lipids with the channel itself: the 

so called ‘Force-from-lipids’ concept (Cox et al., 2017; Teng et al., 2015). On the 

other hand, eukaryotic MS channels can also be gated by changes in the 

membrane tension (Maingret et al., 2000), and by the interaction of the plasma 

membrane with cytoskeletal proteins (Prager-Khoutorsky et al., 2014) or 

extracellular matrix (Akinlaja and Sachs, 1998; Poole et al., 2014), which is 

stretched accordingly to the tethering mechanism (Figure 7, (Lin and Corey, 

2005)). 
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Such tethering mechanism has been identified in auditory hair cells in Drosophila 

melanogaster (Hudspeth and Jacobs, 1979) and in the touch receptor neurons in 

Caenorhabditis elegans (Chalfie and Au, 1989). 

Several types of eukaryotic channels are mechanically gated. The transient 

receptor potential channels (TRP), the two-pore domain K+ channels (K2p), 

TREK-1, TREK-2 and TRAAK, can be gated mechanically in-vitro (Maingret et al., 

1999; Patel et al., 1998), but few evidences exist regarding their mechanical gating 

in-vivo. 

 

Figure 7 | Gating mechanosensitive ion channels in Eukaryote 

Cartoon showing a mechanosensitive ion channel gated by (a) tension along the membrane, (b) 

the interaction with ECM or cytoskeletal protein through a tethering mechanism, and (c) 

upstream molecular pathways (image extracted from Lin and Corey, 2005). 

Moreover, all these channels also open in response to other type of stimuli 

(Figure 8, (Honoré, 2007)) as membrane depolarization (Maingret et al., 2002), 

changes in cytosolic pH (Sandoz et al., 2009), heat (Kang et al., 2005) and 

polyunsaturated fatty acids as well as phospholipids (Lesage et al., 2000). 

Therefore, the sensitivity to the membrane stretch may represent only a way of 

modulating the response of these channels to other stimuli (Zheng, 2013). 
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Only recently, in eukaryotic cells have been identified an exclusively mechano-

gated channel, which does not require any interaction with other cellular 

proteins: the Piezo family (Coste et al., 2012; Nourse and Pathak, 2017). 

Moreover, there are not evidences of accessory proteins tethering the Piezo 

channels to the cellular matrix, thus suggesting a mechanism of channel opening 

similar to the bacterial MscL (Lewis and Grandl, 2015). 

In details, Piezo channels are expressed in a variety of tissues including DRG 

neurons, bladder, lung and colon, forming large pores that rapidly induce cation 

currents (Wu et al., 2017). 

 

Figure 8 | Polymodal activation of TREK1 ion channel 

The cartoon shows some physical and chemical stimuli including stretch, heat, pH, 

depolarization, and some phosphorylation pathways that may activate and inactivate the activity 

of most of eukaryotic mechanosensitive ion channels (image extracted from Honoré, 2007). 

Piezo channels can be activated in a dose-dependent manner by mechanical 

stimuli, and unlike MscL channel, it presents a characteristic fast inactivation 

mechanism, that occurs after ~30 ms, and turns the channel in a non-conducting 

state, playing an important physiological function in the modulation of the 

channel activity. Additionally, the channel inactivation can be modulated by 

divalent ion concentration (Gottlieb et al., 2012), resting membrane tension 

(Lewis and Grandl, 2015), local changes in pH and transmembrane voltage (Bae 

et al., 2015), and alterations of channel inactivation kinetics is linked to several 



29 

 

human diseases, including dehydrated hereditary stomatocytosis (Albuisson et 

al., 2013), xerocytosis (Bae et al., 2013) and distal arthrogryposis (Coste et al., 

2013). 

1.5. Mechanobiology of the brain 

In the recent years, there has been a growing evidence of the important 

contribution of physical parameters and tissue mechanics to the development of 

the central nervous system. During development, the cell systems undergo 

dramatic rearrangements, and many cellular processes as growth and motion on 

distinct length and time scales, rely on the generation and sensation of forces. 

For example, during development, the mechanical properties of nervous tissue 

vary, and neurons are subjected to different mechanical cues during 

developmental stage (Gefen et al., 2003; Koser et al., 2016b), which in turn 

influences axonal navigation and cell migration as the well-established chemical 

cues (Elkin et al., 2007; Franze et al., 2011; Moore and Sheetz, 2011). However, 

also the adult nervous tissue is mechanically inhomogeneous (Franze et al., 2013), 

and its stiffness changes with age (Sack et al., 2009), thus suggesting that tensions 

along neuronal axons may be involved in neuronal network formation, 

stabilization (Anava et al., 2009; Franze et al., 2009) and folding of the brain 

(Figure 9).  

Moreover, it has been shown that an axonal pretension of about 1 nN, it is 

necessary to establish functional neuronal connections in-vivo (Tofangchi et al., 

2016). 

The folding of the gyrencephalic mammalian cortex is the definitive mechanical 

consequence in the central nervous system development. In fact, the degree of 

cortical folding increases with brain size. Therefore, neurons in different layers 

maintain their sizes and network architecture while adapting their shape, while 

glial cells and blood vessels maintain size and shape and modify their relative 
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arrangements, in order to conserve the volume of the respective layers of gyri 

and sulci (Tallinen et al., 2016). 

In this regard, the hypothesis of tangential expansion of cortical regions driven 

by the local cellular proliferation and changes in cell size and shapes is assumed 

to be the main factor involved in cerebral convolutional development (Richman 

et al., 1975; Ronan et al., 2014). On the other hand, another theory assumes that 

the tension along the axons in the white matter is the driving force inducing the 

formation of cortex folds (Essen, 1997). However, the two hypotheses are not 

mutually exclusive and both mechanisms could contribute together to shape the 

brain. 

In-vitro, it has been shown that many neuronal cell types (e.g. dorsal root 

ganglion, hippocampal and some cortical neurons) adapt their viscoelastic 

properties, soma morphology (Hanein et al., 2011) and the dendritic arborization 

to the stiffness of the substrate (Georges et al., 2006; Norman and Aranda-

Espinoza, 2010), and neuronal growth is likely a mechanical process. Indeed, it 

has been reported that cytoskeletal forces are required for neuronal network 

development (Anava et al., 2009; Lamoureux et al., 2002), as well as to regulate 

neuronal function as vesicle accumulation (Siechen et al., 2009), exocytosis and 

synaptic plasticity (Matus, 2000). 

Although in physiological conditions, the overall central nervous system (CNS) is 

not subjected to external mechanical stresses, this tissue is highly susceptible to 

mechanical damage and strain resulting from trauma, and that the apparent 

stiffness of the brain strongly depends on the rate and extent of deformation as a 

complex viscoelastic material (Betz et al., 2011; Renema et al., 2007). 

 



31 

 

 

Figure 9 | Mechanical signals contribute to neuronal growth in the development of the central 

nervous system 

Top panel: illustration of the macroscopic structures that can be identified in the human brain. 

Bottom panel: Xenopus retinal ganglion neurons (RGC) spread their axons in a faster, straighter, 

and more parallel manner on stiffer substrates. Moreover, a higher stiffness causes persistent 

growth and facilitates fasciculation. On the other hand, lower stiffness substrates promote slowed 

exploratory growth, playing beneficial role for those brain regions in which the axons have to 

search for their targets and form synapses. On the left of the panel is shown Xenopus retinal 

ganglion neurons spreading their axons on soft (0.1 kPa) and stiff (1 kPa) substrates (image 

extracted Koser et al., 2016b).   

Therefore, the brain is modeled as a nonlinear viscoelastic material, which 

maintains a steady-state elastic modulus showing a significant degree of strain 

stiffening (Franze et al., 2013). The Young’s, or elastic, modulus (E) describes the 

amount of force required to deform a substance in terms of units of force/area 

(N·m-2) or Pascals (Pa). This modulus can be quantified for each tissue and cell, 
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revealing their relative stiffness. The elastic properties of the brain have been 

measured through different technologies including magnetic resonance 

elastography (Riek et al., 2012), micrometer scale atomic force microscopy 

(Bernick et al., 2011; Christ et al., 2010) and other rheological measurements (Lee 

et al., 2011; Shulyakov et al., 2009). 

Rodent and human brains present the smallest elastic modulus (Figure 10) with 

respect to other tissues types, which ranges from few Pascals to several 

gigaPascals (Barnes et al., 2017; Tyler, 2012). 

In the last years, it has been reported that such elastic properties, of ultra-soft 

tissue,  are important determinant of cell differentiation and proliferation (Jiang 

et al., 2015), morphology (Corey and Feldman, 2003) and function (Zhang et al., 

2015). Furthermore, alteration of these mechanical properties or in the 

mechanosensing of neurons and glial cells have significant impact on patho-

physiological state (Elkin, 2009; Iwashita et al., 2014; Murphy et al., 2011; 

Streitberger et al., 2012). 

 

Figure 10 | Mechanical properties of body tissues 

All tissues have distinct intrinsic physical properties, which are important in their structure and 

function. The stiffest tissues of the body are bones (E≥ 109 Pa), and the softest are lung and brain 

(E≤ 102 Pa). For reference, a tissue culture glass is in the order of gigaPascals (image extracted 

from Barnes et al., 2017). 

Moreover, the viscoelastic properties of the brain are relevant to the development 

of minimally invasive surgical methods (Kaster et al., 2011) and insertion of 

neuro-prosthetic devices (Harris et al., 2011; Jorfi et al., 2015). 
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In neuronal cells, many cellular elements are involved in sensing and transducing 

the mechanical cues, including the mechanosensitive ion channels, the cell 

adhesion molecules (integrins, cadherins, proteins linking the cell adhesion sites 

to the cytoskeleton and focal adhesion kinases), the cytoskeleton and the nucleus 

itself (Figure 11, (Franze et al., 2013; Tyler, 2012)). Remarkably, the cytoskeleton 

has been proposed as an epigenetic determinant of cell shape, function and fate 

(Fletcher and Mullins, 2010). Neuronal cells contain an actin cortex and densely 

packed polarized bundles of microtubules and neurofilaments, a type of 

intermediate filament (Mukhopadhyay et al., 2004). The nucleus is mechanically 

connected to the cell plasma membrane through the cytoskeleton (Maniotis et al., 

1997; Wang et al., 2009), which transmits and generates mechanical forces 

(Brangwynne et al., 2006b). 

 

Figure 11 | Mechanical forces are generated and transduced in neurons  

The cell body of a neuron, showing cellular and molecular components that transduce or sense 

micromechanical forces (image extracted and modified from Fletcher and Mullins, 2010). 
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For example, the F-actin network together with myosin motors supports neurite 

pre-tension, generates contractile forces within the navigating growth cone (Betz 

et al., 2011) as well as on the nuclear membrane and the internal nuclear 

scaffolding (Mazumder et al., 2008). In summary, many cellular pathways in the 

nervous system seem to be controlled by mechanics, and that mechanical and 

chemical cues work in synergy to activate signaling pathways (Zhang and 

Labouesse, 2012), functional outcomes of the brain tissue. 
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                CHAPTER TWO: Interfacing the nervous system 

1.6. State-of-the-art in neuromodulation 

The central nervous system constantly collects sensory information generated by 

external the stimuli, and process them in order to actuate decisional tasks and 

actions, which are thus influenced from previous experiences. Therefore, 

understanding how neuronal circuits process these information, and how the 

external stimuli can modulate the computation of the neuronal network 

represents a critical task to link the sensation of the environmental stimuli with 

the behavioral outcome of the living organisms. 

In this regard, neuronal stimulation techniques are essential tools to perform 

modulation of the neuronal network activity (neuromodulation), and thus 

investigate the causality between external stimuli, network electrophysiology, 

and physiological and behavioral responses (Panzeri et al., 2017). Moreover, 

dissecting the neuro-computation of brain circuits constitutes the primary 

knowledge to develop neuroprosthetic devices and/or identify effective strategies 

to treat neurological disorders, and allow the design of alternative and more 

effective strategies to treat neurological disorders. 

Usually, the simulation of external environmental stimuli is accomplished 

through the direct alteration of the neuronal activity in the form of electrical or 

chemical signals (Figure 12). 
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However, other approaches are currently in use to manipulate the activity of 

brain circuits, and starting from the classical chemical and electrical interfacing 

(Cohen and Newsome, 2004), other methods as the optical (Wells et al., 2005) and 

more recent magnetic (Tay and Di Carlo, 2017; Wheeler et al., 2016) and 

ultrasonic stimulation technologies are undergoing a consolidation phase to go 

beyond the research development, and thus targeting the clinical scenario (Tufail 

et al., 2010). 

Each stimulation strategy presents advantages and disadvantages with respect to 

clinical use and field of application, degree of invasiveness, penetration depth of 

target region, cell type specificity or spatial resolution, and technological/clinical 

maturity. 

 

Figure 12 | State of the art of neuromodulation technologies 

A) Chemogenetics receptor constructs are injected into selected brain areas through gene therapy 

approaches. These receptors are engineered in order to do response exclusive designed drugs that 

have no effect on organisms native receptors. 
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B) Multi Channel Systems MEA is shown. The inset shows a magnified planar image of the array 

of electrodes and further electron microscopic image showing a single electrode and its 

interaction with surrounding neurons. 

C) Optogenetics approach is shown. In the image and optical fiber is implanted and inserted 

through the bone skull for illuminating the subcortical area of the brain. 

D) A transcranial direct current stimulation device is used to apply a small amount of electrical 

current to the scalp via two electrodes; a positive “anode,” and negative “cathode”. 

E) The transcranial magnetic stimulation is achieved through the application of a magnetic coil in 

order to create a steady electromagnetic pulse above the scalp. Currently transcranial magnetic 

stimulation is the most commonly practiced brain stimulation technique in the medical field. 

F) Transcranial ultrasound waves are applied through the scalp overlying the frontal temporal 

cortex. 

Nowadays, the state of art of electrical and/or optical stimulation is paving the 

way for the development of neuro-prosthetic systems operating at single cell 

resolution, and with an high temporal bandwidth either working in open or close 

loop configuration (Cash and Hochberg, 2015). 

In particular, the advent of optogenetics, with the concomitant breakthrough of 

optical technologies, allows to modulate the firing patterns of neuronal network 

by providing both cell type-specific expression of light-sensitive ion channels 

(Beltramo et al., 2013), and subcellular targeting of the light focus spot on single 

neuronal units. Furthermore, a concomitant use of synthetic or genetically 

encoded fluorescent sensors allows the simultaneous readout of neuronal 

network activity at incomparable spatial resolution, in order to achieve an all 

optical interfacing of the brain tissue. 

For all the above reasons, optical approaches and optogenetics represent the most 

effective strategies for dissecting the physiology of neuronal circuits in the 

neuroscience research. 

However, optogenetics presents several challenges to achieve its effective clinical 

translation, because it requires the insertion of stimulation probes to achieve deep 

region of the brain, as in electrical stimulation methods, which could induce 

severe side effects (i.e. glial scar formation, inflammation, and deterioration of 

the implanted probes (Grill et al., 2009)). 
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Another recent technology relying on the genetic manipulation of tissues and 

cells, which does not require the implantation of devices, it is the so called 

chemogenetics. Chemogenetics, also known as designer receptors exclusively 

activated by designer drugs (DREADDs) technology (Armbruster et al., 2007), is 

currently employed in many studies of behavioral neuroscience. This technology 

exploits the cell specific expression of molecularly modified muscarinic G 

protein-coupled receptors (GPCRs) for controlling a defined subset of neuron 

cells in order to activate or silence neuronal firing. When compared with 

optogenetics, DREADDs shows a lower temporal resolution in controlling the 

neuronal activity, and for this reason it is suited for modulation of cell activity in 

the range of minutes–hours depending on the pharmacokinetic properties of the 

synthetic agonist employed. However, also in this case the translation of the 

approach to the clinic, it isn’t yet safely achievable because of the use of viral 

vectors, for inducing the targeted expression of engineered ion channels, could 

generate critical immune responses. 

The ideal stimulation technology should avoid implantation of probes, and favor 

wireless remote-modulation of neuronal circuits activity. Moreover, it should be 

safe under long-term exposure, and provides high spatial-temporal control of the 

stimulus (Tay et al., 2016). 

Today, the alternative approaches to bypass surgeries associated with the 

implantation of devices include transcranial electrical, thermal, magnetic, and 

ultrasound stimulation (Fregni and Pascual-Leone, 2007). Transcranial electrical 

stimulation suffers poor spatial resolution, and it has a pure modulatory effect on 

the network activity (Grossman et al., 2017). Thermal stimulation of temperature-

sensitive ion channels demand the use of functional nanoparticles to obtain 

spatially localized stimulation, as the heat fast diffuses in the neighboring tissue 

(Wang and Guo, 2016). On the other hand, magnetic and ultrasound (US) fields 

could deeply propagate in dense tissues through the intact skull bone, and they 

could be focused in small focal volumes (Tyler et al., 2008). In the first case, the 
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weak interaction of magnetic fields with biological molecules provides safety and 

low-invasiveness, but it demands the use of targeted magnetic nanoparticles, in 

order to locally transduce magnetic-to-mechanical forces, and thus accomplish 

selective cell stimulation (Hughes et al., 2008). In the latter case, US fields 

guarantee deeper penetration and sharper spatial focus in dense tissues, and US 

generators could be easily miniaturized (Li et al., 2009). Moreover, low-intensity 

US pressure fields can stimulate per se untreated neuronal cells and tissues, and 

the targeted delivery of micro- (Carugo et al., 2017a) and nano-particles (Marino 

et al., 2015) is otherwise exploited to increase its stimulation efficiency and spatial 

selectivity. Therefore, the use of US pressure field is attracting much attention, as 

it has the potential for the development of portable implantation-free stimulation 

devices.  

Nowadays, US waves are already widely employed in the clinical environment 

for imaging, rehabilitation physiotherapy, thrombolysis, and targeted tumor 

ablation protocols. Such applications rely on well-defined physical processes, 

leading to reliable and tunable results. In contrast, the application of low-

intensity US fields is still in its infancy due to the lack of a clear biophysical 

explanation of the involved phenomenon. A similar debate has been raised 

regarding the use of magnetic field, as a unifying theoretical and experimental 

framework is missing (Meister, 2016). 

Nowadays, it is becoming more clear that the mechanism behind the US-induced 

neuromodulation is pressure-dependent, however a clear identification of the 

generated local pressures with respect to the delivered US intensities is still 

missing (Younan et al., 2013). 

The emerging field of mechanobiology has led to the discovery, and subsequent 

engineering and exploitation of cellular mechanical transduction pathways, as 

shown into recent studies (Ibsen et al., 2015; Wheeler et al., 2016) which report 

the use of mechanosensitive ion channels for triggering a cellular response by 

either magnetic or low-intensity ultrasound fields (Figure 13A).  
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The extraordinary achievements of these studies establish the foundation of two 

new research areas called magnetogenetics and sonogenetics in addition to the 

well-established optogenetic approach. 

However, the use of channels, such as TRPV, with intrinsic sensitivity to several 

other endogenous stimuli including voltage, heat, pH, etc., has not yet been fully 

evaluated. Indeed, as suggested by the authors of the aforementioned study 

(Wheeler et al., 2016), the overexpression of non-exclusively MS ion channels 

may compromise the physiology of the neuronal circuits, thus further molecular 

engineering of such tools is required in order to render them non-responsive to 

other stimuli. 

An alternative route to achieve stimulus specific sensitization of tissues and cells 

is represented by the emerging field of nanotechnology (Figure 13B). Smart 

nanoparticles are designed and developed to obtain local enhancement of the 

stimulating field, or local transduction of the penetrating signal to a biological 

one, leading to a modulation of the cellular activities (Rivnay et al., 2017). 

 

Figure 13 | Next generation of neurostimulation actuators 

A) Magnetogenetics and sonogenetics approach combine magnetic proteins or air filled 

microbubbles, respectively, for stimulating mechanosensitive ion channels. 

B) The mechanical stimulation of the cells may be achieved through the combination of 

superparamagnetic nanoparticles (left) or magnetic proteins acting on a heat-sensitive channel 
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(middle) with magnetic fields. Alternatively, the ultrasound stimulation through piezoelectric 

nanoparticles may be used for modulating voltage gated ion channels (extracted from Rivnay et 

al., 2017). 

Nanoparticles are engineered accordingly with biological molecules to target 

specific cellular component or tissue portions, to avoid toxicity, or to bypass 

biological barrier as the blood brain barrier. In this regard, prominent examples 

are represented by the use of gold nanoparticles to perform both thermal cell 

stimulation (Marino et al., 2017) or ablation, and the use of barium titanate 

piezoelectric nanoparticles (Marino et al., 2015) to locally transduce ultrasound 

field in electric potential stimulating cellular growth and development. 

In conclusion, taking into account the several advantages and drawbacks of each 

approach, it is worth to note how novel methods take inspiration from the 

previously developed, and how distinct combination of core technologies such as 

genetic engineering, nanotechnology, and DNA origami to design ion channels, 

is becoming a common practice to overcome the current limitation of cell 

stimulation technologies. 

1.7. Ultrasound stimulation of neuronal circuits 

Nowadays, ultrasound waves are already exploited in many clinical applications 

from imaging to rehabilitation physiotherapy and targeted tumor ablation 

(Figure 14, (Tyler et al., 2010)). The range of US frequencies goes from tens of kHz 

to tens of MHz. 

The main advantage of US waves is that they penetrate several centimeters of soft 

and hard tissue with low attenuation, and moreover, they can be focused from 

outside the human skull to a tight focal stimulation volume (in the range of mm3) 

in the brain. In this context, while higher frequency ultrasound provides better 

spatial resolution, lower frequency ultrasound enables deeper brain penetration 

(10 - 15 cm or more) and therefore they are more effective for brain 

neuromodulation (Tufail et al., 2011).  
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The effects of the ultrasound waves can be divided into thermal and non-thermal 

ones, accordingly to the applied US frequency and intensity, and the 

corresponding acoustic pressures (Rezayat and Toostani, 2016). 

 

Figure 14 | Potential applications of ultrasonic neuromodulation 

Through both thermal and non-thermal (mechanical) mechanisms, ultrasound has been shown to 

exert numerous bioeffects on brain tissues that could provide a basis for noninvasive therapies for 

neurological and psychiatric disorders (extracted from Tyler et al., 2010). 

There are several units for measuring the ultrasound intensity, as example, it 

may be measured as function of the acoustic pressure amplitude or as function of 

the spatial peak–temporal average intensity, where the latter represents the 

highest intensity measured at any point in the ultrasound beam averaged over 

the pulse repetition period (Nelson et al., 2009). 

Three main regimes of pressure amplitude: i) low pressure, for delicate and 

reversible alterations in cells and tissues with pressure amplitudes on the order 

of 0.1 MPa (Ispta equal to ~ 0.3 W·cm-2 for a propagating wave); ii) medium 

pressure, for imaging with pressure amplitudes up to about 5 MPa (~ 10 W·cm-2); 

and iii) high intensity focused US with acoustic pressures reaching about 10 MPa 

(~ 1000 W·cm-2) at the focal zone (Bailey et al., 2003). 
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In the latter case, USs usually induce local heat (up to 70°C in 1 - 3 seconds, 

(Bailey et al., 2003)), formation of gas microbubbles (cavitation), lesioning and 

ablating local tissues (Carstensen et al., 2000). On the other side, low-intensity US 

fields have also been shown to be capable of inducing bio-effects in cells and 

tissues with no evidences of cavitation or temperature rise being present 

(Dalecki, 2004; O’Brien Jr., 2007), demonstrating great potential for safe 

biomedical applications (Rezayat and Toostani, 2016). 

It is worth noting that ultrasound stimulation of neuronal circuits has already 

been demonstrated by several studies (Table 1), including in brain slice (Tyler et 

al., 2008), in retina (Menz et al., 2013), in-vivo in mice (Tufail et al., 2010) and even 

in humans (Legon et al., 2014). 

A prominent example of low-intensity US application (as low as 0.05 W·cm-2 at 2 

MHz of US frequency), it is the use of focused ultrasound for the modulation of 

neuronal activity. Tyler and colleagues demonstrated that focused ultrasonic 

energy pulses could be used for the stimulation of neural structures within the 

mammalian brain both in-vitro and in-vivo through the intact skull bone (Tufail et 

al., 2010; Tyler et al., 2008; Yoo et al., 2011). In the last few years, similar 

modulatory effects have been reported by other research groups in different 

brain areas (Li et al., 2016; Ye et al., 2016a). However, although the safety of using 

US waves has been well-established for some clinical applications as biomedical 

imaging, rehabilitation physiotherapy, thrombolysis, and tumor ablation, the 

principle behind the use of US for stimulating cellular activities, it is still not well 

understood. 

Recent progresses in technology have also allowed the miniaturization of the US 

sources, attracting more attention for the development of portable devices, which 

would present the potential for noninvasive applications in neuromodulation 

research (Li et al., 2009). 

Moreover, in the noninvasive therapeutic application of ultrasounds, the use of 

ultrasound-responsive agents, in the form of hard-shell and soft-shell 
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microbubbles, is also exploited (Carugo et al., 2017b; Kiessling et al., 2012; 

Scarcelli et al., 2014), and clinically approved (Paefgen et al., 2015), in order to 

target specific tissues, and to locally amplify the US-cells interaction, thus 

enhancing the stimulation efficiency and the spatial selectivity. 

Publication Ultrasound parameters 

(Legon et al., 2014) Organism: humans 

Frequency: 500 kHz 

Duration: 0.5 s 

PRF: 1 kHz 

TBD: 0.36 ms 

Energy: 8.6 W·cm-2 

(Kim et al., 2014) Organism: rats 

Frequency: 350 - 650 kHz 

Duration: 40 min 

PRF: Variable 

TBD: 1- 5 ms 

Stimulus duration: 300 ms 

Energy: 2.5 - 2.8 W·cm-2 

(Deffieux et al., 2013) Organism: monkeys 

Frequency: 320 kHz 

Pulse duration = 100 ms 

Single pulse 

Energy: ≈ 0.023.3 W·cm-2 

(Choi et al., 2013) Organism: rats 

Frequency: 500 kHz 

Duration: 55 s over 5 min 

PRF: 10 – 100 Hz 

TBD: 20 ms 

Energy: 0.016 – 0.093 W·cm-2 

(Tufail et al., 2010) Organism: mice 

Frequency: 25 - 50 kHz 

Duration: 40 cycles/pulse 

at 2 kHz for 650 pulses 

Energy: 0.036 – 0.084 W·cm-2 

(Tyler et al., 2008) Organism: mice 

Frequency: 44 - 66 kHz 

TBD: 22.7 ms 

Cycles/tone: 10 

Pulse repetition: 0 – 100 Hz 

Energy: 0.023 W·cm-2 
Legend 

PRF: pulse repetition frequency        TBD: tone burst duration 

Energy reported as function of the spatial peak - temporal average intensity 

Table 1 | Summary of recent ultrasound parameters employed  

The soft-shell microbubbles are gas-filled bubble, having a size as low as 3 - 4 mm, 

and the shell largely made of phospholipids (Ferrara et al., 2007). Due to the 

presence of a compressible core and a thinner and flexible shell, the lipid-coated 

microbubbles can respond, accordingly to their resonance frequency and size, to 

a specific ultrasound frequency, and this phenomena is known as cavitation. 
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Accordingly to the US intensity, the cavitation can be divided in two different 

types: (i) stable cavitation, occurring when low-intensity ultrasounds are used 

and (ii) inertial cavitation, occurring at higher ultrasounds intensities (Lentacker 

et al., 2014).  

When the inertial cavitation is too strong, the microbubble may collapse on itself, 

fragmenting into many smaller microbubbles. Such fragmentation creates a much 

more strong mechanical perturbation than the one occurring in stable cavitation, 

and it may lead to perforation of the cell membrane as previously reported in 

literature (Postema et al., 2004). On the other hand, at very low acoustic 

pressures, microbubbles likely go toward an volume oscillatory behavior, 

alternating expansion/compression phases in an inversely proportional manner 

to the local ultrasound pressure (Sboros, 2008). When such oscillation occurs 

nearby cell membranes, cells experience the generated mild mechanical 

perturbations of the surrounding environment, in terms of shear stress 

(Vanbavel, 2007), microstreaming (Wu et al., 2002) and radiation forces on the cell 

membrane (Fan et al., 2013), which may potentially trigger the activation of many 

biological pathways (Wu and Nyborg, 2008).  

Recently, in order to decrease the level of invasiveness of such micro-scaled tools, 

ultrasound-contrast agents in the form of genetically encoded nanostructures 

(Shapiro et al., 2014) or phase-shift protein-polymer nanodroplets (Lee et al., 

2015) have also been designed and successfully applied to improve ultrasound 

imaging performance. 

As already mentioned early in the chapter, the interaction of ultrasound alone 

and the ultrasound coupled with contrast agents may induce nonthermal effect 

(mechanical one) and thermal effects, depending on the ultrasound intensity, 

exposure and tissue properties (Miller et al., 2012). It is worth noting that any 

temperature rise could change the biophysical properties of the cell membranes 

and could make them more susceptible to membrane deformation, thus eliciting 

unwanted cellular responses (Bioeffects Committee, 2008). However, in the range 
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of diagnostic ultrasound, temperature rises and triggering of potential adverse 

bioeffects are kept relatively low or negligible (Johns, 2002). This evidence has 

also been confirmed when ultrasounds are employed for eliciting neuronal 

responses through the use of transcranial pulsed low-intensity and low-

frequency ultrasounds (US frequency: 25 – 50 kHz, energy: 0.026 – 0.160 W·cm-2 

(Tufail et al., 2010)). Several models for low-intensity US-mediated bioeffects 

have been proposed (Sassaroli and Vykhodtseva, 2016), including those based on 

intramembrane cavitation (Krasovitski et al., 2011; Plaksin et al., 2016), and 

modulation of mechanosensitive ion channels (Tyler, 2011). In the latter case, the 

hypothesis is that US waves convey a pressure signal which could generate a 

mechanical perturbation of the cells, and thus activate cellular 

mechanotransduction pathways. Indeed, it is becoming more evident that all cells 

have some intrinsic mechanism of mechanosensation, and that the brain itself is a 

highly mechanosensitive organ (Tyler, 2012). 

In this regards, the pressure field generated by the low-intensity US may 

modulate neuronal excitability by changing the viscoelastic properties of the 

neuronal lipid bilayers (Johns, 2002) and/or induce the gating of 

mechanosensitive membrane proteins (Tyler et al., 2008). 

It is worth noting that direct experimental evidence of US pressure waves 

affecting the activity of mechanosensitive ion channels has been provided only 

recently (Kubanek et al., 2016), thus corroborating the hypothesis that low-

intensity US can potentially modulate cellular mechanotransduction pathways 

(Hertzberg et al., 2010). Recent studies also suggested that the mechanisms of 

excitation involve voltage-gated sodium and calcium channels eliciting synaptic 

transmission, however, the question of how low-intensity ultrasound waves with 

millimeter wavelength transduce these nano-scale perturbations is unanswered 

yet (Kubanek et al., 2016).  

One of the first experimental demonstration of the so called sonogenetic 

approach, in analogy to the optogenetic method, has been carried out in C. 
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Elegans model, through the mechano-sensitization of the animal by 

overexpressing the mechanosensitive ion channel TRP4. The genetically modified 

animals, navigating in presence of sparse air-filled microbubbles, showed a 

behavioral response to low-intensity US stimuli in 40% of the cases (Ibsen et al., 

2015). However, a parallel study presenting the design of an ultrasound 

neuromodulation chip delivering surface confined acoustic energy to perform US 

stimulation on wild type C. Elegans model reported a proportion of 85% of 

responsive animals (Zhou et al., 2017). 

The results of these two independent studies, carried out using the same type of 

organism, external stimuli, and behavioral tests, indicate that both the genetic 

engineering and manipulation of living organism, and/or the accurate design of 

US delivery systems may allow achieving efficient low-intensity US stimulation 

strategy on living organism.  

However, further understanding of the mechanosensitive pathways involved in 

US-mediated cell activation needs to be fully confirmed in order to reliably 

perform remote tissue modulation. 
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                                                       AIM OF THE PROJECT 

Development of remote stimulation techniques of neuronal tissues represents a 

challenging goal. They would allow the combination of functional and behavioral 

studies, and development of novel and minimally invasive prosthetic 

approaches. Among the potential approaches to achieve remote non-invasive 

stimulation, the ones exploiting mechanical stimuli are the most promising, 

because mechanical signals can convey information into intact brain tissue. In 

this regards, the selective mechano-sensitization of neuronal circuits would pave 

the way for the development of a novel cell-type specific stimulation approach. 

In this dissertation, we report the use of the exclusively-mechanosensitive 

bacterial ion channel MscL to obtain an experimental model of mechano-

sensitized mammalian neuronal networks, which could be used to study and 

understand the mechanism of US cell stimulation, and thus pave the way for the 

engineering and development of a cell-type specific ultrasonic neuromodulation 

approach. 

The cDNA sequence encoding for bacterial MscL channel was optimized for the 

mammalian neuronal expression and trafficking to the plasma membrane 

through the use of a neuron-specific promoter, and a membrane targeting motif. 

Additionally, we tested and validated that the expression of the engineered MscL 

construct (eMscL) does not affect the functionality and the physiological 

development of neuronal networks in terms of morphology, synapse formation 
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or excitability, and network activity, while providing an efficient mechano-

sensitization of the neuronal cells. 

Moreover, we report the design, and the accurate calibration of a prototyped 

ultrasound delivery system integrated with a custom-built fluorescence 

microscope, to perform high-throughput studies of the effects of US stimulation 

on in-vitro neuronal with single cell resolution. The optical system has been 

designed to perform functional calcium imaging of neuronal networks, and thus 

to simultaneously monitor the activity of hundreds of neurons through an 

automated analysis algorithm. The US generator has been equipped with a US 

transmission element to deliver a relatively uniform pressure field at a pre-

defined distance from the ultrasound source (without the need for a water tank 

apparatus), thus facilitating its integration with fluorescence imaging in a sterile 

and physiological conditions for the cells during US stimulation. 

Overall, our data demonstrate the successful development of a mechano-

sensitized neuronal network model to allow reliable investigation, and testing the 

stimulation of excitable circuits through the use of mechanical energy remotely-

generated by US generating devices. Moreover, considering the ease engineering 

of MscL channel properties, through the genetic modification of its well-known 

sequence and function and more worth its exclusively mechanosensitivity, we 

believe that the mammalian-engineered MscL may represent the ideal starting 

point to develop a mechanogenetic approach analogous to the optogenetic 

method. 
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                                            RESULTS AND DISCUSSION 

2. Membrane targeting of the MscL ion channel in primary neuronal 

cultures 

In the present work, we have established an experimental model to advance and 

leverage many aspects of the sonogenetic approach. Initially, we designed an 

exclusively-mechanosensitive molecular tool for sonogenetic applications, 

analogous to the sensing elements giving specific sensitivity in the well-

established opto- and chemogenetic techniques. In particular, we designed a 

mammalian expression vector encoding for the bacterial Eco-MscL ion channel 

fused to tdTomato fluorescent protein under the control of the neuronal-specific 

synapsin 1 promoter (MscL-v.1 in Figure 15). However, a first functional 

assessment of MscL-tdTomato expression in primary neuronal cells revealed a 

significant impairment in the delivery of the heterologous protein to the plasma 

membrane. In fact, transfected neurons showed large intracellular accumulation 

and clustering of MscL-tdTomato that consequently resulted in low membrane 

expression (Figure 16A, left column panels). We reasoned that the accumulation 

and clustering of MscL could likely depend on the lack of a mammalian-specific 

export signal that prevents protein retention in the endoplasmic reticulum (Li et 

al., 2000). Following previous studies that optimized the mammalian expression 

of optogenetic actuators (Gradinaru et al., 2008), we fused the export signal of 
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Kir2.1 ion channel (MscL-v.2 in Figure 15) to cytoplasmic C-terminus of our 

MscL-tdTomato protein.  

The Kir2.1 ER export sequence (FCYENEV) has been extensively studied, and it is 

known to mediate efficient trafficking and surface expression of the channel 

(Hofherr et al., 2005; Stockklausner et al., 2001). 

 
Figure 15 | Molecular engineering of the MscL ion channel 

Construct map of the MscL-v.1 (top) and MscL-v.2 (bottom) plasmid in adeno-associated viral 

vectors. MscL-v.2 is optimized for expression in mammalian primary neurons. 

Moreover, Kir channel monomers present structural similarities (e.g. two 

transmembrane domains, cytoplasmic N- and C-terminals) with MscL 

monomers, likely suggesting a similar pathway in protein trafficking. In order to 

assess the membrane localization of naïve MscL (MscL-v1) versus MscL-v.2 

bearing the ER export signal, we co-transfected primary neuronal cell cultures 

with two plasmids: the tdTomato-tagged MscL (either MscL-v.1 or MscL-v.2) and 

a membrane-targeted myristoylated GFP (myr-GFP). Confocal microscopy 

examination confirmed enhanced localization of the MscL-v.2 channel along the 

neuronal membrane (Figure 16A, right column panels), presumably due to 

prevention of ER retention and aggregation. In fact, a representative fluorescence 

intensity profile (along a cross-section line from the center of the cell soma to the 

plasma membrane, Figure 16B, top panel) of tdTomato-tagged MscL-v.1 (red 

line), together with the membrane-targeted GFP (green line), shows prominent 

intracellular localization of MscL-v.1, resulting in the absence of fluorescent co-
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localization with myr-GFP at the plasma membrane of the cell (vertical dashed 

lines). Conversely, tdTomato-tagged MscL-v.2 fluorescence largely co-localized 

with myr-GFP (Figure 16B, bottom panel), indicating efficient plasma membrane 

delivery of the channel. 

 

Figure 16 | Membrane targeting of the MscL-v.2 ion channel 

A. Cortical primary neurons expressing the MscL-v.1 (left) and MscL-v.2 (right) constructs. 

Myristoylated GFP (green) and MscL fused to tdTomato (red), and their fluorescence signal 

merged (yellow) are shown to illustrate the reduced aggregation of MscL in ER (endoplasmic 

reticulum), as well as its improved membrane expression after addition of the Kir2.1 ER export 

signal. Scale bar= 50 μm. 

B. Normalized fluorescence intensity profile of the myr-GFP with either the MscL-v.1 (top) or 

MscL-v.2 (bottom). The intensity profiles are extracted along the yellow cross-sectional line 

reported in panel B. 

C. Co-localization analysis of the myr-GFP with either the MscL-v.1 or the MscL-v.2 channel. The 

signal of the myr-GFP is correlated more strongly with the MscL-v.2 (r= 0.86±0.04, n= 8) when 

compared to MscL-v.1 (r= 0.54±0.02, n= 11), at the membrane edge. Values are reported as mean ± 
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standard errors of the mean (SEM). The difference between the means of the two data sets is 

statistically significant, with a p value < 0.0001. 

Quantitative evaluation of the co-localization index of the two fluorescent 

proteins by Pearson correlation analysis showed a coefficient of 0.54±0.02 (n= 11) 

for the MscL-v.1 construct, indicating no significant co-dependency between the 

two fluorescence signals, and a coefficient of 0.86±0.04 (n= 8) for the MscL-v.2 

construct, which confirmed a successful increase in membrane expression of the 

engineered MscL ion channels (Figure 16C). 

Importantly, neurons expressing the MscL-v.2 protein showed a good expression 

level of the channel even at later days in culture (20 DIV), both in the soma, 

neurites, and spine-like structures, thus indicating that MscL-v.2 expression was 

well-tolerated in primary neurons (Figure 17A). However, considering that an 

enhanced mechanosensitivity could affect neurite growth and branching during 

network development, we compared the complexity of the dendritic tree of 

neurons expressing the MscL-v.2 channel with respect to neurons expressing 

only the membrane-targeted GFP. 

Furthermore, this analysis was carried out on both wild-type (WT) MscL-v.2 

channel and on a gain of function MscL variant bearing a serine to glycine 

substitution at position 22 (G22S MscL-v.2), which leads to a lower activation 

pressure threshold (Yoshimura et al., 1999). In this regard, the lower activation 

threshold reported by the G22S MscL channel may represent a desirable feature 

for accomplishing the selective mechanical stimulation of neurons within 

neuronal circuits. 

As illustrated in Figure 17B, the morphology of neurons expressing either WT or 

G22S MscL-v.2 channel did not show any significant alteration in terms of neurite 

length and number of primary branches, when compared to the control neurons 

expressing only the myr-GFP. In addition, the complexity of the overall neuronal 

arborization was unaltered, as determined by the similar number of endpoints 
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between neurons expressing the myr-GFP or neurons expressing one of the two 

versions of the MscL-v.2 channel (Figure 18B).  

 

Figure 17 | Morphological evaluation of neuron expressing MscL-v.2 construct 

A. Maximum projection of a confocal z-stack of a primary cortical neuron expressing MscL-v.2 

fused to tdTomato fluorescent protein (scale bar= 50 μm). The bottom images show the MscL-v.2 

fluorescence signal in the soma (left, scale bar= 10 μm) and spine-like structures (bottom right, 

scale bar= 10 mm).   

B. In the upper panel, quantification of the neurite length of neurons expressing the WT MscL-v.2 

(490.30±55.20, n= 14) or the G22S MscL-v.2 (441.50±38.33, n= 17) or the myr-GFP (417.10±41.00, n= 

13). The data are presented in terms of number of pixels and no statistically significant difference 

was measured. In the lower panel, quantification of the number of primary neuronal branches 

calculated for each construct (WT MscL-v.2: 6.53±0.41, n= 17; G22S MscL-v.2: 7.53±0.68, n= 17; 

myr-GFP: 7.57±0.34, n= 14) is reported. Values are reported as mean ± SEM and no statistically 

significant difference was measured. 

Staining of the synaptic boutons further confirmed the unaltered number of 

endpoints (see section: 5. Functional characterization of mechano-sensitized 

neuronal networks). Taking into account the above experimental findings, 

together with the fact that MscL directly responds only to membrane tension 
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without requiring any functional interaction with other cellular elements (Cox et 

al., 2016; Heureaux et al., 2014), we hypothesized that the heterologous 

expression of such bacterial MS ion channel in primary mammalian cells should 

not interfere with any intrinsic mechanotransduction pathways of the cells. 

Therefore, we exploited the opportunity of potentially designing a new 

mechanotransduction pathway in mammalian cells. 

 

Figure 18 | Structural analysis of the dendritic tree of single cortical neuron 

A. On the left, the fluorescence image of a cortical neuron expressing the WT MscL-v.2 construct 

and, on the right, the detected skeleton of the same neuron is shown. The automatically detected 

endpoints, neurites, and cell soma are reported in red, white and blue color respectively.  

B. Quantification of the number of endpoints detected on neurons expressing the two MscL 

constructs, and the myr-GFP construct (WT MscL-v.2: 1714±209 endpoints on 14 cells, G22S MscL-

v.2: 1559±154 endpoints on 17 cells, myr-GFP= 1262±136 endpoints on 13 cells). Values are 

reported as mean ± SEM and no statistically significant differences are measured.  

 

3. Electrophysiological characterization of the engineered MscL 

channel functionality 

After confirming the efficient and well-tolerated expression of the MscL-v.2 

channel (hence forward indicated as eMscL), we verified its functionality and 

mechanosensitivity through pressure/voltage-clamp recordings in cell-attached 

configuration. 

All recordings were performed by patching primary rat cortical neurons between 

12-14 DIV (Figure 19A). A negative pressure ramp was manually applied and set 

to a maximum of 150 mmHg, through a custom pressure-clamp system (see 

materials and methods section: Patch-clamp recordings and pressure-clamp 
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system), in order to stretch the cell membrane into the patch pipette, and thus 

trigger the gating of the eMscL channel (Figure 19B). The defined maximum 

negative pressure is referred to be the activation pressure threshold of WT MscL 

(Cox et al., 2016), and a rupture of the membrane patch is likely occurring above 

this value. When mechanical stimulated, both WT and G22S eMscL showed 

different responses in terms of current amplitude, indicating the possible 

presence of distinct sub-conductance states of the channel, as described 

previously (Cox et al., 2016). Accordingly, we classified the responses into two 

groups: a partial response, characterized by bursts of small current events, and a 

full response, characterized by higher current amplitude with smaller noise and a 

sharp and steep closure when the pressure stimulus is removed. The partial 

response was often observed during the first cycles of stimulation, and was 

subsequently replaced by a full response. In Figure 19C and Figure 19E, we 

present representative traces of the induced ion currents upon stimulation of 

either WT or G22S eMscL channel (blue and green color traces, respectively). 

Control experiments (Figure 19D) were on neurons expressing only the tdTomato 

fluorescence protein, since a specific MscL inhibitor is not available yet. In 

contrast, in control neurons (n= 74 stimulation trials, on n= 15 cells) stretch-

induced currents were absent. These data indicate that the currents recorded 

from eMscL expressing neurons were due to the specific activity of the 

engineered channel rather than endogenous expression of other mechanically-

gated channels or Piezo family channels (Tay and Di Carlo, 2017). 

Finally, we quantified the pressure activation threshold for both WT and G22S 

eMscL channels (Figure 19F). 

Surprisingly, the partial response showed a similar activation threshold for both 

MscL variants (WT eMscL: 145±0.98 mmHg, n= 72 stimulation trials, on n= 19 

cells; G22S eMscL: 142.50±0.91 mmHg, n= 111 stimulation trials, on n= 24 cells). 
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Figure 19 | Electrophysiological characterization of the eMscL channel expressed in primary 

cortical neurons 

A. Bright field (left) and fluorescence image (right) of a patched cortical neuron (15 DIV) 

expressing the eMscL construct. The red fluorescence signal is due to the tdTomato fluorescent 

protein encoded by the eMscL construct. Scale bar= 50 µm. 

B. Cartoon indicating the procedure to perform pressure/voltage-clamp recording in cell-attached 

configuration during pressure-clamp stimulation. Application of a negative pressure induces the 

cell membrane stretch, which activates the gating of the eMscL channel. During the stimulation, a 
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command potential of +30 mV was applied, and, assuming a resting potential of -70 mV, the 

estimated applied potential is -100 mV. 

C. Traces of the recorded ion currents (blue trace) during pressure stimulation (red trace) of the 

membrane patch, in a neuron expressing the WT eMscL channel. On the left, the trace reports a 

typical example of recorded ionic currents during a partial response. On the right, the current 

trace of an example of recorded full response.  

D. Example of recorded ion current (gray trace) during pressure/voltage-clamp recording of a 

control neuron expressing only the tdTomato fluorescent protein.  

E. Recorded ion currents (green trace) during the pressure stimulation of a neuron expressing the 

G22S eMscL channel. On the left, the trace reports a typical example of recorded partial response. 

On the right, the trace is a representative recording of full response.  

F. Bar plots reporting the quantification of the pressure activation threshold required to trigger 

the WT and G22S eMscL-induced currents. On the left, the quantification of the pressure 

threshold gating the partial response (145±0.98 mmHg, N= 72 stimulation trials, on n= 19 cells, 

and 142.50±0.91 mmHg, N= 111 stimulation trials, on n= 24 cells, for the WT and G22S channel 

respectively). On the right, the quantification of the pressure threshold histogram gating the full 

response (130±2.36, N= 48 stimulation trials, on n= 10 cells, and 75.78±3.60, N= 67 stimulation 

trials, on n= 17 cells, for the WT and G22S channel respectively). Values are reported as mean ± 

SEM.  

G. Example of a recorded ion current trace on a cortical neuron (18 DIV) expressing the G22S 

channel. The traces correspond to the recorded ion currents on the same neuron before (left dark 

blue trace) and after (right light blue trace) incubation with 1µM TTX. The enlarged insets 

illustrate a detail of the recoded traces reported in the respective upper panels. The enlarged 

insets show the recorded single eMscL channel currents (indicated by a green arrow) and the 

associated generation of neuronal action potential (indicated by a blue arrow) before the 

incubation with TTX. After treatment of the neuron with 1µM TTX, the enlarged inset shows the 

sole presence of the eMscL single channel ion currents. 

On the contrary, the full response showed a predictable lower activation 

threshold for the G22S mutant (75.78±3.60 mmHg, n= 67 stimulation trials, on n= 

17 cells) when compared to the WT (130±2.36 mmHg, n= 48 stimulation trials, on 

n= 10 cells).  

Indeed, the partial response may be due to the interaction of the cell cytoskeleton 

with the plasma membrane, which counteracts the membrane stretch and the 

complete MscL opening. Likewise, the similar activation threshold measured for 

the partial response in both WT and G22S expressing cells may reflect the 

membrane resistance to stretch (Martinac, 2014).  

In this regard, for a better understanding of the strain applied on the plasma 

membrane, we also estimated the bilayer tension corresponding to the measured 



60 

 

activation pressure thresholds for the WT and G22S channels (see materials and 

methods section: Estimating the applied membrane tension).  

Under our experimental conditions, taking in account two values of adhesion 

energies of the cell membrane to the glass pipette (i.e. 3.7 mN·m-1 in case of 

homogenous phospholipid membrane (Ursell et al., 2011), and 1.6 mN·m-1 in the 

case of brain cell membrane (Suchyna et al., 2009), we estimated a tension range 

of 11.6÷13.7 mN·m-1 at a negative pressure of about 150 mmHg; and a tension 

range of 6.2÷8.3 mN·m-1 at a negative pressure of 70 mmHg. Both ranges are in 

line with those previously described in literature for the WT and the G22S MscL 

channels (Rosholm et al., 2017). 

Once the functional expression of the MscL channels in neuronal cells was 

confirmed, we developed an adeno-associated virus (AAV) expressing the G22S 

eMscL to allow higher expression rates, and we again carried out the patch-

clamp experiments, in order to validate the MscL-induced mechano-sensitization 

of neurons, when the virally encoded G22S eMscL construct is used.  

Also in this case, we measured in cell-attached configuration (Figure 20A) the 

activation pressure thresholds of the current for the partial and full responses 

(141±0.48 mmHg, N= 65 stimulation trials and 70±0.72 mmHg, N= 21 stimulation 

trials, respectively), and we confirmed the previously measured values for the 

not virally encoded G22S eMscL construct.  

Moreover, we measured the activation threshold of the G22S eMscL-induced 

currents in excised membrane patch (Figure 20B), showing that the activation 

pressure (67±0.14 mmHg, N= 69 stimulation trials) was similar to the value found 

for the G22S full response in cell-attached configuration.  

Taking in account these new set of data, we also confirmed our hypothesis that 

the partial response, recorded in cell-attached configuration, reflected the action 

of the cell cytoskeleton counteracting the cell membrane stretch. Indeed, it is 

important to take in account that even if MscL channels are gated directly by 

tension along the plasma membrane, the mechanical properties of the membrane 
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could be altered by cytoskeletal proteins and other scaffold proteins linking the 

cell to the extracellular matrix (Cox et al., 2016). 

 

Figure 20 | Characterization of the activation pressure threshold of the virally-encoded G22S 

eMscL construct 

A. Representative trace of the recorded full response (green trace) in excised patch-clamp 

experiment during the negative pressure stimulation (red trace). 

B. Bar plots reporting the quantification of the pressure activation thresholds at which the partial 

(141±0.48 mmHg, N= 65 stimulation trials) and full (70±0.72 mmHg, N= 21 stimulation trials)  

current response in cell-attached configuration (green plots), and in excised patch (67±0.14 

mmHg, N= 69 stimulation trials) configuration (light green) occur. Values are reported as mean ± 

SEM. 

Next, we performed the same set of experiments on neurons expressing eMscL 

channels at later DIV (15-18 DIV), when the cultured neuronal networks is 

matured and neurons are able to generate spiking activity (Soloperto et al., 2016), 

in order to investigate a potential role of the eMscL channel in stimulating the 

generation of neuronal action potentials (APs). In Figure 19G, we illustrate a 

representative trace recorded by patching a neuron expressing G22S eMscL 

channel upon application of a negative pressure ramp. The mechanical 

stimulation was applied on the same cell patch, before and after application of 1 

µM tetrodotoxin (TTX, indicated by dark and light blue traces respectively), 

which blocks the voltage-gated Na+ channel and the generation of spontaneous 

APs. Induced-spike activity was present in neuron expressing both eMscL 

variants, and it was absent upon treatment with 1 µM TTX, while the currents 

induced by eMscL opening were preserved. Interestingly, only channel currents 

with amplitude below 50 pA were associated with the generation of action 
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potentials in both WT and G22S eMscL-expressing neurons (dashed black box in 

Figure 19G; WT eMscL: 5 out of 9 cells; G22S eMscL: 9 out of 17 cells). In contrast, 

eMscL-induced currents with higher amplitudes failed to trigger APs, 

presumably due to a massive membrane depolarization. Furthermore, we could 

occasionally detect an increase of the neuronal spiking activity upon mechanical 

stimulation (Figure 21Figure 21), thus indicating the possibility to modulate the 

neuronal firing rate.  

 

Figure 21 | Mechanical stimulation of neuron expressing the G22S eMscL channel increases its 

firing rate 

Trace of the recorded ion currents (blue trace) during negative pressure stimulation (red trace) of 

the membrane patch, in a neuron (18 DIV) expressing the G22S eMscL channel. Violet and green 

lines respectively highlight the spontaneous and induced APs. 

Importantly, control cells did not show any spiking activity associated with this 

level of mechanical stimulation (n= 15 cells), as would be expected given their 

lack of mechanical response. Thus, we were also able to exclude a direct cell-

intrinsic dependence between the applied negative pressure and the increase in 

neuronal firing rate.   

These experimental results illustrate the successful development of an in-vitro 

model efficiently expressing a functional bacterial MscL ion channel in 

mammalian neuronal networks.  
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4. Functional characterization of mechano-sensitized neuronal 

networks 

Since a lower activation pressure of the channel could lead to its potential 

spontaneous gating during cell reshaping and migration, and considering that 

mechanical cues play an important roles in network maturation, we evaluated 

the effect of G22S mutant expression in network development and physiology 

(Figure 22). In order to obtain the high percentage of eMscL-expressing neurons 

within the culture which is necessary for a network-level study, we infected 

neuronal cultures with the previously developed adeno associated virus 

expressing the G22S eMscL channel fused to tdTomato fluorescent protein. 

Firstly, we compared cell viability and the number of synaptic contacts in control 

cell cultures and in neuronal networks expressing the eMscL channel. Analyses 

were performed on distinct fields of view acquired on each culture (Figure 22B 

and Figure 22C). As illustrated in Figure 22B, cell viability was preserved in 

networks expressing G22S eMscL, thus indicating that eMscL membrane 

expression does not induce cell death (57%±3 and 63%±2 for the control and G22S 

neuronal networks, respectively). As a further control, we analyzed the viability 

of only the neurons expressing the G22S eMscL channel by staining of cell nuclei 

with propidium iodide dye. We again obtained cell viability of about 59%±2 (n= 9 

fields of view), which is consistent with the previous results. Next, we quantified 

the number of glutamatergic and GABAergic synapses by immunostaining for 

the specific markers VGLUT1 (vesicular glutamate transporter 1) and VGAT 

(vesicular GABA transporter), respectively. Both the VGAT/VGLUT1 ratio 

(0.81±0.02, n= 6 for the control networks and 0.83±0.03, n= 8 fields of view for the 

eMscL expressing networks), and the number of excitatory and inhibitory 

synaptic puncta per cell (Figure 22C, left and right panel respectively) did not 

show any significant differences between the control and the eMscL expressing 
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networks. Therefore, we can conclude that expression of the eMscL channel does 

not alter the establishment of neuronal connections. 

After having verified efficient development of our neuronal networks in-vitro, we 

monitored the spontaneous calcium activity after 20 DIV (Figure 22D) using 

Fluo4 calcium dye. In Figure 22E, we report a representative trace of the 

normalized fluorescence calcium signal of a single neuron, indicated as ΔF/F0. 

The grey line is the raw calcium trace, and the superimposed black line is the 

result of the denoising algorithm (see materials and methods section: Calcium 

imaging and data analysis).  The red dots indicate the onset times of the 

automatically detected calcium events. After extracting and detecting the events 

of all cells identified within the field of view, we constructed a raster plot of the 

spontaneous neuronal network activity with single-cell resolution (Figure 22F). 

We quantified the mean firing rate (MFR) of neuronal networks expressing the 

G22S eMscL channel and compared it to the MFR of control neuronal networks 

(n= 12 and 10 cell cultures, respectively). No significant change was detected 

between the two types of network (Figure 22G, left panel). As a further control 

test, we also compared the MFRs of single neurons expressing the virally-

encoded eMscL construct (n= 917 cells) and control cells (n= 1380 cells), taken 

from the same network, confirming that the single cell MFR was unchanged 

upon eMscL expression (Figure 22G, right panel). These results show that eMscL 

expression does not alter neuronal development and integration into a functional 

network. 
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Figure 22 | Functional characterization of cortical neuronal networks expressing the G22S 

eMscL channel 

A. Fluorescence images of a cortical neuronal network (20 DIV) infected with the adeno-

associated virus expressing G22S eMscL channel. On the left, the magenta color indicates the 

fluorescence signal of the tdTomato tagged to the eMscL channel and in blue the fluorescence of 

the DAPI nuclear staining. On the right, the fluorescence image of the excitatory and inhibitory 
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synaptic puncta immuno-labeled with the VGLUT1 and VGAT markers (respectively in green 

and red color). Bars are 100 µm.  

B. Bar plot of the percentage of viable cells of control cultures and cortical neuronal networks 

expressing the G22S channels (57%±3 and 63%±2 for the control and G22S neuronal networks 

respectively). Values are reported as mean ± SEM.   

C. Bar plots reporting on the left, the ratio of VGAT/VGLUT1 synaptic puncta (0.81±0.02 and 

0.83±0.03 for control and the eMscL expressing networks, respectively), and on the right, the 

number of VGAT and VGLUT1 synaptic puncta per cells. The average of synaptic puncta per cells 

were measured and normalized with respect to the average number of cells per field of view (for 

control network: VGAT= 47.60±1.70 and VGLUT1= 59.50±2.75 on 6 fields of view; for G22S 

expressing networks: VGAT= 64.32±19.25 and VGLUT1= 54.50±1.30 on 8 fields of view). Values 

are reported as mean ± SEM.  

D. Fluorescence image showing the field of view of a neuronal network expressing the G22S 

eMscL channel (in red), and the Fluo4-AM calcium indicator (in green). Scale bar= 100 µm.  

E. Example of a single neuronal ΔF/F0 trace of a cortical network (20 DIV). The denoised trace is 

shown in black and superimposed on the raw trace (reported in gray color). The red dots indicate 

the automatically detected onset time of calcium fluctuation events (see materials and methods 

section: Calcium imaging and data analysis).   

F. Raster plot of the spontaneous calcium activity of single cells identified in the field of view of 

the neuronal network.  

G. On the left, bar plots of the mean firing rate (MFR), expressed as number of events per second, 

of control and G22S eMscL expressing neuronal networks (n= 10 and 11, respectively). On the 

right, MFR plot of single cells expressing or not the G22S eMscL channel within the same 

neuronal networks (n= 917 and 1380, respectively). Values are reported as mean ± SEM. 

 

5. Ultrasound and optical system integration layout 

Since the long-term vision of the project is to also establish the potential of 

ultrasound as a stimulation technology, and in order to test and calibrate the 

capability of US waves to modulate the activity of neuronal networks, we 

integrated the previously used wide-field fluorescence microscope with an in-

vitro US delivery system (Figure 23), and the microscope stage was equipped 

with a sample holder which contains housings for the culture dish and the US 

probe aligner. 

The time lapse calcium imaging was synchronized with the US delivery system 

through triggering signals, in order to evaluate the effect of distinct US 

stimulation protocols on the neuronal network activity at both single cell and 
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network level. The microscope was designed to include two excitation light 

sources and two dedicated filter sets (indicated in Figure 23 as λ1 and λ2), 

allowing imaging with different fluorescent markers, i.e. red or green emission 

calcium sensors combined with complementary fluorescent dyes used to label 

different cell-types or genetically modified cells. 

 

Figure 23 | Schematic layout of the ultrasound stimulation system integrated in the custom 

fluorescence microscope 

In the green box the electronic apparatus employed for the generation of the ultrasound 

stimulation protocol are shown. A custom LabView software is used to trigger the US stimulus, at 

a fixed frequency, through a data acquisition device (1) to the tone burst wave generator (2). In 

response to the trigger, the wave generator provides a US tone burst at a defined frequency and 

number of pulses in a single US stimulus. Then, a second wave generator (3) is used to trigger, 

within every single tone burst, the sinusoidal US waveform at an experimentally defined 

frequency and with a variable number of cycles. Finally, the US wave generator is connected to a 

custom built amplifier, which receives the input voltage from the wave generator and provides 

the output power to an US transducer. 

In the blue box, the ultrasound delivery system consisting of ultrasound transducer, US 

condenser and sample holder is shown. 

In the red box, two excitation light sources and dedicated filter sets, indicated as λ1 and λ2, are 

shown. CCD: charged coupled device camera; DM: dichroic mirror; M: mirror; F: filter; L: lens; 

TL: tunable lens.  

The US source was a piezo transducer, having a nominal resonant frequency of 

340 kHz, coupled with a custom built US condenser, which allows transmission 
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and focusing of the US field away from the transducer. This configuration 

facilitated integration with the fluorescence microscope, and prevented 

contamination of the optical imaging by auto fluorescence generated from the 

coating layer of the piezo-transducer when placed in closer proximity to the 

optical focal plane. Moreover, the US condenser also reduced the active area of 

the US field from approximately 22 mm diameter (the diameter of the US 

transducer element) to about 8 mm, which makes the system suitable for 

integration with patch-clamp measurements. The US delivery system is aligned 

with respect to the field of view of the microscope through the probe aligner. 

Upon alignment, the US delivery system is maintained fixed and the microscope 

stage is moved in order to position the cell chamber below the output window of 

the US condenser.  

In Figure 24A-C, we report the cross-section view and the related technical 

drawings of the US delivery system including the stainless steel propagation 

cone acting as US condenser, and US compatible cell chamber.  

The walls of the cone are thick about 6 mm because the US waves should not 

induce strong vibrations of the condenser wall, and avoid multiple reflection of 

the US waves at the air interface. In such a way, we avoided the generation of 

multiple US wavelengths which could create uncontrolled interferences within 

the condenser.  

At the tip of the cone, as the US waves were already well focused, the wall 

thickness was decreased in order to reduce its steric hindrance at the sample 

chamber. Considering that low-frequency ultrasound has a beam profile with 

significant lateral spread, the focusing of the US waves avoid the interaction of 

US with the wall of the cell culture which could generate unwanted standing 

waves. Therefore, in such a way the only surface of US reflection is the bottom 

layer of the sample dish. In this regards, the use of a long working distance 

(about 1 cm) and low magnification objective avoid the back reflection of US 

waves from the microscope objective. 
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Figure 24 | Ultrasound delivery system 

A) 3D printed components of the ultrasound delivery system. The inset displays a medial cross-

sectional view of the US compatible coverslip chamber with all its components.  

B) Technical drawing of the stainless steel ultrasound condenser is shown.  

C) Technical drawing of the ultrasound compatible cell chamber is shown. 

Once the integration of the US and imaging devices was achieved, US could be 

efficiently delivered into the cell chamber. 

The latter was designed to maximize US transmission towards the biological 

sample, and avoid reflections at the interface between the output section of the 

US condenser and the cell chamber. In this regard, PDMS was selected as a 

constitutive material for the cell chamber lid, given that its acoustic impedance is 

comparable to the one of the transmission medium. 
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For the US stimulation experiments, the cell coverslip was inserted between the 

circular base and cap disk and then the chamber was assembled through 

application of a gentle pressure. A silicon gasket was inserted at the bottom of the 

cap disk in order to prevent fluid leaks when coupled with the circular base 

(Figure 25). 

The acoustic coupling between the output window of the US condenser and the 

PDMS lid was achieved using a thin layer ultrasound gel. This layer of gel also 

reduces friction between the US condenser and the PDMS lid of the chamber, 

making it possible to move the microscope stage and identify the desired optical 

field of view within the neuronal culture sample, without perturbing the 

alignment of the fixed US probe.  

 

Figure 25 | Assembly of the ultrasound compatible cell chamber 

The circular base is coupled with the cap disk and silicon gasket, and a PDMS lid is baked on the 

top surface of the cap disk. The blue arrow indicates the direction of assembly. 

In the inset of Figure 24A, we show the detailed design of the US compatible cell 

chamber. The PDMS lid of the chamber has a thickness of about 5-7 mm, and it is 

equipped with an inlet and an outlet tubing which allows the easy exchange and 

fulfilling of the medium solution within the small volume of the chamber of 

about 300 µL. Importantly, given that the acoustic impedances of PDMS and 

water are very similar (Carugo et al., 2015), there is negligible sound reflection at 
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the water–PDMS interface, and the attenuation of the incident sound field is 

marginal.  

Moreover, numerical simulations were performed to determine the flow field 

within the cell chamber and the sealing (Figure 26). For the numerical simulation, 

the reference nominal flow rate at the inlet (QIN) was set at of 1 mL·min-1, 

however other flow rates were also taken in account during the simulation in 

order to define the flow rate range at which any cell damage or activation was 

not elicited (Figure 26B). In particular, the Figure 26A illustrates the fluid shear 

stress distribution (in Pa) over the bottom surface of the coverslip chamber, 

which corresponds to the area where cells were seeded. The maximum shear 

stress was exerted around the inlet region, with a peak value of about 0.15 Pa, 

which is lower than values reported to alter cell viability and cell adhesion 

(Douville et al., 2011) or to elicit a biological response (Hua et al., 1993), which are 

on the order of about 1 Pa. Moreover, the panel A shows the flow streamlines 

and velocity simulation set at QIN= 1 mL·min-1, during the filling-in of the 

chamber or exchange of medium solution, at which we refer as priming process. 

The absence of vortices during the priming, it is a notable feature since unwanted 

and uncontrolled mechanical stimulations of the neuronal networks are avoided. 

 

Figure 26 | Computational fluid dynamics study 

A) The left panel shows the shear stress distribution (in Pa) over the bottom surface of the 

coverslip chamber. The black circle corresponds to the region where cells are seeded. The right 

panel shows the flow streamlines and velocity (in m·s-1) within the chamber. The green and red 

arrows correspond to inlet and outlet boundaries, respectively. The shear color map and 

streamlines color are calculated at the nominal flow rate (QIN) of 1 mL·min-1. 
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B) Maximum shear stress (in Pa) and maximum static pressure (in Pa) measured at six different 

flow rates is indicated. 

 

6. Calibration of the ultrasound delivery system  

In order to provide an accurate testing and calibration of the mechanical 

stimulation paradigm of neuronal cells, we calibrated the pressure field 

generated by the US waves at the sample plane. First of all, we characterized the 

output pressure of the US transducer connected with the US condenser through a 

water tank calibration system (Figure 27A), and thus defined its maximum 

resonant frequency, which resulted slightly shifted from the nominal resonant 

frequency of the sole piezo transducer to about 380 kHz (Figure 27B). After 

setting the driving resonant frequency of the system, we calibrated its output 

peak pressure with respect to the peak to peak voltage amplitude (Vpp) of the 

driving signal (Figure 27C). Therefore, we quantified a maximum output peak 

pressure of our US system of about 105 kPa, which well matched the range of 

values reported in literature to accomplish nonthermal US cell stimulation 

(Kubanek et al., 2016). Moreover, we characterized the pressure loss in the axial 

direction propagation from the output of the US condenser toward to the 

neuronal culture plane, estimating a maximum pressure peak of about 90 kPa 

(Figure 27D).  

Finally, we measured the US pressure field generated at the sample plane (Figure 

27E and Figure 27F) of the microscope chamber, in order to verify the proper far 

field focusing of the US waves. In Figure 27E, we report the normalized intensity 

pressure field generated by the transducer with US condenser and the US-lid of 

the microscope chamber. The pressure field showed a distribution of values 

higher at the US focus center, thus confirming a proper far-field focusing of the 

US waves. Moreover, by measuring the pressure intensity profile along the black 

sectional line in Figure 27E, it become evident that the pressure is maintained 
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almost flat over about 5 mm of the stimulation field. Therefore, we can conclude 

that the US transducer and condenser together with US compatible cell chamber 

creates a pressure field which could be considered constant among a large area of 

the sample, allowing an homogenous US stimulation of the neuronal network. 

 

Figure 27 | Acoustical calibration of US delivery system 

A) Calibration setup for characterizing the acoustic properties of the ultrasound delivery system. 

B) Acoustic pressure measured at different ultrasound frequency in order to define the maximum 

resonant frequency. The green line shows the maximum resonant frequency.  

C) Acoustic peak pressure (in kPa) as a function of the output voltage.  

D) Pressure attenuation profile in the axial direction propagation from the output of the US 

condenser toward the neuronal culture plane. 

E) A color intensity plot showing the acoustic pressure distribution (in kPa) on the cell culture 

surface upon the ultrasound stimulation measured at US frequency of 380 kHz and output 

voltage of 210 Volts.  

F) Normalized acoustic pressure at the target plane along the sectional line shown in panel E. 
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7. Ultrasound stimulation of neuronal networks 

The calibrated and almost constant pressure field on the neuronal culture plane is 

an extremely favorable condition to combine calibrated US stimulation with the 

subcellular resolution of a wide-field imaging system. Indeed, once the US 

pressure field is aligned on the center of the microscope field of view, it is 

possible to perform high-throughput analysis of the effect of US mechanical 

stimulation on single neurons.  

In this regard, we investigated the influence of calibrated US pressure waves on 

mature primary rat cortical neuronal cultures (15 - 24 DIVs) by tracing the 

calcium fluctuations with the fluorescent calcium indicator Fluo4-AM (Figure 

28A, left panel). Since the thin cell culture monolayer behaves as acoustically 

transparent, we targeted the negative charged plasma membrane with positive 

charged air-filled lipid microbubbles, in order to locally amplify the mechanical 

stimulation provided by US pressure waves over the cell layer. Indeed, given the 

close adherence of the positive-charged microbubbles to the cell membranes, 

their relative small oscillation amplitude upon the application of low-intensity 

ultrasounds can create a higher mechanical effect on the cell membrane, and thus 

represents a potential biocompatible solution for providing the local 

amplification of the membrane strain produced by the US pressure waves 

(Heureaux et al., 2014; Ibsen et al., 2015). We added the microbubbles to the 

culturing medium solution within the cell chamber, and by flipping upside-down 

the chamber we favored the non-specific adhesion of the microbubbles to the 

neuronal plasma membrane, obtaining an almost uniform distribution of 

microbubbles on the neuronal culture (Figure 28A, right panel). After that, we 

exchanged the culture solution to remove the unbound microbubbles, which 

could generate local fluidic streaming and uncalibrated shear stresses to neuronal 

cultures. The image of microbubble distribution on the neuronal culture plane 

was obtained by collecting the light scattered from the air filled contrast agents 
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through the oblique illumination of the sample performed with a fiber of a 

halogen lamp. The dimensions of the microbubbles has been measured by optical 

imaging (Figure 28B), reporting an average diameter of about 4 - 5 mm, which is 

below the approved threshold set by the FDA for clinical application.  

The single US stimulus was constituted of a US pulsed wave, in order to reduce 

unwanted thermal effects and generation of uncalibrated US standing waves 

within the chamber (Figure 28C). The single US stimulus was composed by 

several tone bursts with distinct pulse repetition frequencies.  

We performed cyclic US stimulation, lasting 1 second, with a pulse repetition 

frequency (PRF) of 0.2 Hz, simultaneously performing calcium imaging in order 

to detect and quantify the response of the cells to the US pressure waves. The US 

stimulation protocols were performed both in presence and absence of 

membrane targeted microbubbles. However, all the neuronal cultures did not 

present any significant response to the US stimulation in absence of the 

microbubble. Each experimental session lasted about 3 minutes, to which 

corresponded about 36 trials of US stimulation. As reported in the Table 2 in the 

materials and methods section “Ultrasound delivery system”, different 

ultrasound stimulation protocols were tested. In the specific case of the example 

reported in Figure 28, we used US protocols having a PRF of 0.2 Hz and a tone 

burst frequency (tbf) of 20 Hz with 150 cycles per tone burst (c/tb), exerting an 

acoustic pressure of about 90 kPa per stimulation. 

In Figure 28D, top panel, we reported the normalized calcium traces (reported as 

DF/F0) of some single cells detected within the field of view. The superimposed 

violet shadow lines represent the window time in which US stimulation is 

applied. The gray trace reports an example of a non-responding cell. The red 

trace shows the response of a cell with a slow growing fluorescence intensity 

associated to the intracellular calcium increase. Usually slow dynamic calcium 

fluctuations are associated to neuronal glial cells.  
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Finally the blue trace reports an example of typical calcium fluctuations of 

neuronal cell, presenting calcium events with a fast grow of the fluorescence 

intensity, synchronized with the onset of US stimuli, followed by a slow decaying 

phase. 

 

Figure 28 | Ultrasound stimulation of neuronal network 

A) Fluorescence image of neurons loading Fluo-4 green calcium dye (left panel) and bright field 

image of  lipid-shell microbubble layer (right panel) targeted over the cell culture. Images are 

acquired through a 10X air objective. Scale bar= 100 µm.  

B) Histogram showing microbubble size in terms of percentage distribution and a schematic 

representation of the microbubble's structure. DSPC: 1,2-distearoyl-sn-glycero-3-phosphocholine; 

DSEPC: 1,2-distearoyl-sn-glycero-3-ethylphosphocholine; PEG 40s: Polyoxyethylene (40) stearate.  

C) The panel shows a detailed view of the ultrasound stimulation protocol. The DAQ device 

generates a 5 Vpp trace with a duration of 1 second at the frequency of 0.2 Hz and drives the 

emission of a single US pulse (pink box). Then, the pulse step triggers the US tone burst, a 5 Vpp  

square wave (blue) generated by the function generator. In response to the tone burst, the wave 

generator produced a 5 Vpp sinusoidal wave (red) at a frequency of 380 kHz within each single 

tone burst element. 

D) The upper panel shows the normalized calcium traces of single cells detected within the field 

of view showing a calcium response with a fast decay (blue), a calcium response with a slow 

decay (red) and a non-response (gray). The lower panel shows the normalized calcium trace of 
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the whole neuronal network within the field of view. The stimulation protocol is set with the 

following properties: PRF= 0.2 Hz, tb= 20 Hz, c/tb= 150. 

In the bottom panel of Figure 28D, we report the average calcium trace of the 

whole neuronal network, calculated as average of all the single calcium traces 

detected within the field of view. A fast and stepwise increase of the average 

calcium intensity of the cells was achieved at about the 4th US stimulus. After 

that, a slow compensation dynamic of the intracellular calcium produced a 

recovery of the initial fluorescence intensity. However, also during the 

compensation phase of the networks, some fluctuation peaks associated with the 

time of US stimuli were still present. Therefore, we may conclude that US 

stimulation produces an overall increase of the intracellular calcium in the 

majority of stimulated cells, thus generating a response of the overall network.  
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                                 CONCLUSION AND PERSPECTIVE 

Currently electrical or optical stimulation techniques are most explored strategies 

to dissect neuronal circuits, although they present relevant limitations for their 

immediate and wide clinical application. 

In this regard, the opportunity to provide cell-type or tissue-specific sensitization 

to externally controlled type of stimuli, it is inspiring the development and 

assessment of novel stimulation methods either exploiting nanotechnology 

and/or genetic engineering of cellular sensing elements. Indeed, the development 

of novel approaches to modulate the activity of neurons and deep brain circuits is 

pivotal for (i) the fundamental understanding of brain (dys)functions as well as 

(ii) the design of effective therapeutic strategies to treat neurological disorders.  

Under these perspectives, considering the growing evidences of the role of 

mechanical cues in defining cell differentiation, tissue development and 

physiology, together with the peculiar characteristic of mechanical signals which 

could be easily transmitted through dense tissues, the choice of using 

ultrasounds as type of externally controlled stimuli, for generating localized 

pressure fields is attracting a lot of attention in research community. 

However, although ultrasounds offer the potential for a non-invasive remote 

modulation of the brain activity upon low-intensity mechanical stimulation 

(Tufail et al., 2010; Tufail et al., 2011), the lack of a tunable and specifically 

responsive mechanosensitive element, such as a membrane ion channel, it is not 
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fostering the development of new cell-type specific ultrasound-based 

neuromodulation approaches.  

In fact, it is important to take into account that while neuronal cells are inherently 

equipped with several ion channels, these are simultaneously sensitive to a wide 

number of stimuli including the mechanical ones, and upon ultrasound 

stimulation, all cells could be unspecifically stimulated. 

Thus, in order to provide cell-type specificity to US stimulation, the mechano-

sensitization of a well-defined cell populations through the overexpression of 

mechanosensitive ion channels has been proposed, in analogy to the cell-type 

specific light sensitization occurring in optogenetics (Ibsen et al., 2015; Zhou et 

al., 2017). 

For all the above reasons, during my PhD study, I focused my research activity 

on the development of an ad hoc mechano-sensitized neuronal in-vitro model, to 

ultimately pave the way for the selective mechano-activation of targeted 

neuronal cells through the use of low-intensity ultrasound, as postulated in the 

sonogenetic paradigm (Ibsen et al., 2015).  

In nature, only few ion channels are known to be exclusively-mechanosensitive, 

and for this purpose, we propose the bacterial MscL as the ideal candidate to 

obtain a cellular mechano-sensitization. Indeed, MscL bacterial ion channel is the 

only exclusively-mechanosensitive channel with a detailed structural and 

functional characterization, which has already been exploited in biotechnological 

applications (Doerner et al., 2012; Iscla and Blount, 2012; Kocer et al., 2005). 

Moreover, taking into account that MscL directly responds only to membrane 

tension without requiring any functional interaction with other cellular elements 

(Cox et al., 2016; Heureaux et al., 2014), we hypothesize that the heterologous 

expression of such bacterial MS ion channel in primary mammalian cells should 

not interfere with any intrinsic mechanotransduction pathway of the cell, and 

thus we envisage the opportunity of potentially designing new mechano-

dependent pathways.  
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In our experimental results, we report an engineered MscL construct enclosed 

into a neuronal specific adeno associated viral vector, specifically designed for 

achieving an efficient neuronal mechano-sensitization. Indeed, the use of AAV 

vector allowed the long-term and well-tolerated functional expression of the 

eMscL channel in primary neuronal cultures without affecting the physiological 

development of neuronal networks. Although the degree of invasiveness 

associated to this approach is lowered in respect to currently in use 

neuromodulation approaches, it is important to take into account that the use of 

viral vector for genetically engineering the neuronal population is still required.  

Moreover, since the long-term vision of the project is to pave and foster the 

establishment of a potentially new generation of neuro-stimulation technology, 

we report the development of an in-vitro setup that combines the fluorescence 

calcium imaging of neuronal networks with a custom designed US delivery 

system, in order to perform high throughput studies of the ultrasound 

stimulation at single cell resolution. We also provide an accurate and rigorous 

calibration of the US pressure fields at the sample plane which confirms the 

proper design and the efficient far-field focusing of US waves on a large area of 

the cell culture. In fact, the US system generates an almost constant acoustic 

pressure field, thus allowing to test and evaluate the effect of distinct stimulation 

protocols on a wide number of cells within a single field of view of the 

microscope. 

Given the above, the reported model of mechano-sensitized neuronal networks, 

together with the US delivery system, could be exploited to gain new insights 

into the mechanobiology of the nervous system, and it could pave the way for the 

development of implant-free stimulation approaches. Moreover, it is worth to 

note that further manipulations of the MscL gene sequence can be defined in 

order to control gating, mechanical sensitivity and conductance of the MscL 

protein (Kocer, 2015) (Kocer, 2015; Yoshimura et al., 1999), and thus making only 

the cells expressing the eMscL responsive to the generated US fields. Indeed, 
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considering that all cells show some intrinsic mechanism of mechanosensation 

(Wu et al., 2017), the possibility to tune the mechanosensitive properties of the 

eMscL channel, with respect to other cells and cellular sensing elements, becomes 

a crucial feature to accomplish cell-type specific mechanical stimulation, and 

overcome the limit of the intrinsic cellular mechanosensitivity. In this regard, two 

recent studies exploiting the pressure field generated by propagating US waves 

showed the possibility to achieve spatially resolved neuronal stimulation either 

by the genetic expression of MS channels (Ibsen et al., 2015), or the accurate 

design of the US propagating wavefront (Zhou et al., 2017). Therefore, the 

development of a cell-type specific stimulation approach would require both the 

expression of MS channels with a well-tuned mechanosensitivity, and the 

accurate shaping and calibration of the locally generated US pressure fields. 

Another distinctive property of the MscL channel is its nominal conductance (3 

nS, (Kung et al., 2010)), which could be too high for neuronal cells. Nevertheless, 

the large conductance of the channel could represent a beneficial feature to 

accomplish shorter and gentler stimulation of cellular activity and, it could be 

modified accordingly through site-directed mutagenesis assay (Yang et al., 2012). 

Another characteristic of the MscL, which is critical for its successful usage in in-

vivo models, is that it is not ion selective and is not straightforward to change the 

selectivity of such a large pore. Indeed, the channel opening could produce a 

calcium influx which would elicit cellular apoptotic pathways. However, the use 

of MscL channel in mammalian cell cultures as a tool for the controlled delivery 

of bioactive molecules (Doerner et al., 2012) has been previously reported 

without any significant drawback. The authors of this study showed that cell 

viability was preserved also for long temporal opening of the channel (in the 

order of few minutes) in presence of Ca2+ ions in the bath solution.  

Nevertheless, our results and observations confirm that the heterologous 

expression of a functional bacterial MscL channel in primary neuronal cultures 

does not affect the cell survival, the neuronal network architecture, and the 
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spontaneous network activity. Moreover, the generation of action potentials 

associated with the channel opening, upon application of a calibrated suction 

pressure, indicates successful mechano-sensitization of the neuronal cells, which 

could be used to induce and modulate neuronal activity upon mechanical 

stimulation. In this regard, it is important to highlight that the generation of 

action potentials was only associated with the partial current response elicited by 

eMscL upon the mechanical stimulation. 

The required suction pressure to induce a partial response was about 145 mmHg, 

which correspond to about 0.02 MPa. Considering that the range of acoustic 

pressures which have previously demonstrated ability to elicit the activity of 

wild-type neuronal circuits is on the order of about 0.01 ÷ 0.1 MPa (Tufail et al., 

2010; Tyler et al., 2008), i.e. well below the typical acoustic pressures inducing 

thermal or cavitation effects (Dalecki, 2004; Kubanek et al., 2016), we could 

deduce that the activation threshold of the eMscL channel is appropriate to 

accomplish its gating through the use of low-intensity US waves. However, the 

main challenge in achieving gating of a MS channel by US pressure waves 

originates from a limited understanding of the underlying mechanisms of action, 

and in this context particularly concerning it is the interaction between low-

intensity US waves and the biological matter (Plaksin et al., 2016), and the 

corresponding US field required to induce effective membrane strain. These 

concerns have limited the identification of an optimal delivery of the US 

wavefront.  

Additionally, the system has been developed taking into account the possibility 

to test the mechano-sensitized neuronal network model in a 3D cell cultures 

configuration, as already developed and optimized in our group (Palazzolo et al., 

2017). In such a way, we could scale up the complexity of the in-vitro system 

toward a more similar in-vivo scenario, and thus study the effect of extracellular 

matrix-like mechanical (the tunable elasticity of the hydrogel scaffold used) and 
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structural (three dimensional growth of the network) environment on both the 

functionality of the MscL channel, and the mechanobiology of sensitized cells.  

Indeed, moving to ex-vivo or in-vivo models will require a further optimization of 

the in-vitro established ultrasound stimulation protocols. Therefore, the 

employment of 3D cell culture technology could also be critical to high 

throughput test and adjust the US stimulation settings for in-vivo applications.  

However, ultrasound pressure fields have been already shown to efficiently 

propagate through the intact rodent skull (Kubanek et al., 2016; Ye et al., 2016b; 

Yoo et al., 2011), so that also a direct in-vivo assessment of the eMscL-based 

sonogenetic paradigm may be pursued, and combined with behavioral tests to 

directly investigate and exploit the great potentiality of this novel 

neuromodulation approach. 

Finally, the provided experimental model will allow i) to study the tissue 

development and physiology in term of mechanosensing and 

mechanotransduction, and ii) to investigate how the tissue architecture and 

physiology may be influenced by the simultaneous expression of the eMscL and 

other endogenous MS channels, thus getting further insight in the 

mechanobiology of neuronal circuits and in the biophysical principles of the US 

interaction with the biological matter. 

Given the above, we believe that the mammalian-engineered eMscL construct 

represents an important step forward for future applications in complex animal 

models, in order to gain new insights into the mechanobiology of the nervous 

system (Koser et al., 2016b), and to pave the way to the use of low-intensity US to 

accomplish remote, non-invasive, local modulation of network activity within the 

intact brain tissue. In particular, this possible achievement would open the 

unprecedented opportunity for neuro-engineering applications and/or implant-

free treatments of various pathological disorders. 
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                                           MATERIALS AND METHODS 

Ethical approval 

All procedures involving experimental animals were approved by the 

institutional IIT Ethic Committee and by the Italian Ministry of Health and 

Animal Care (Authorization number 110/2014-PR, December 19, 2014). When 

performing the experiments, we minimized the number of sacrificed animals and 

the potential for nociceptor activation and pain-like sensation, and respected the 

three Rs (replacement, reduction and refinement) principles, in accordance with 

the guidelines established by the European Community Council (Directive 

2010/63/EU of 22 September 2010). 

Primary neuronal cultures and transfection 

Primary neurons were isolated from cortex tissues of Sprague Dawley rats at the 

embryonic age of 18 days. The female pregnant rats and mice were sacrificed 

through CO2 suffocation and cervical dislocation, before the embryos extraction. 

Dissected tissues were dissociated by enzymatic digestion, incubating them in 

0.25% Trypsin (Gibco) supplemented with 5 μL·mL-1 of 0.25 mg·mL-1 bovine 

pancreatic  deoxyribonuclease I – 15KU (Sigma-Aldrich) for 7 min at 37 °C. 

Before triturating the tissues with a P1000 pipette tip, an equal volume of 

Dulbecco's Modified Eagle Medium (DMEM, Gibco) supplemented with 10% 

Fetal Bovine Serum (FBS, Gibco) was added to the suspension for blocking the 
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trypsin activity. Isolated cortical neurons were counted and plated at a final 

density of 300 cells·mm-2 or 600 cells·mm-2 onto 18 mm glass coverslips.  

The day before the cell seeding, glass coverslips were cleaned and overnight pre-

coated with 0.1 mg·mL-1 Poly-D-lysine (PDL 70-150k, Sigma) in order to enhance 

cell adhesion.  

Neurons were grown in neuronal medium containing Neurobasal medium 

(Gibco) supplemented with 2% B27 supplement (Gibco) and 1% GlutaMAX 

(Gibco) at 37°C/5% CO2 humidified atmosphere. Cultures were maintained up to 

25 DIV and fresh medium was added weekly (about 300 µL) to avoid changing in 

osmolarity due to the medium evaporation. 

Primary neuronal cells were transfected at 2 DIV with 0.4 mg of MscL plasmid 

and/or 0.7 mg of myr-GFP plasmid with Lipofectamine 2000 transfection reagent 

(Invitrogen). A DNA to Lipofectamine ratio of 1 to 1 was mixed in 300 mL  of 

OptiMem medium (Gibco), and added to each well reaching the final volume of 1 

mL. Cells were incubated for 40 minutes at 37°C/5% CO2 with 

DNA/Lipofectamine complexes, and after that the culture medium was 

completely removed and replaced with a pre-warmed neuronal medium. 

MscL-v.1 and MscL-v.2 constructs 

pAAV-hSyn1-MscL-eGFP-v.1 construct. The MscL cDNAs, kindly provided by 

Prof. Boris Martinac (Victor Chang Cardiac Research Institute, Darlinghurst, 

Australia). The MscL cDNAs were excised from pTRE-Tight (Clontech) source 

plasmid and sub-cloned in-frame into pAAV3_hSyn1_eGFP construct through 

the SalI and BamHI restriction sites, between the promoter sequence (synapsin 1) 

and the fluorescence tag (eGFP). The digested vector plasmid and the MscL insert 

were ligated overnight at 16°C with the T4 ligase enzyme, using a vector to insert 

molar ratio of 1 to 3. pAAV-hSyn1-MscL-tdTomato-v.2 construct. In order to get a 

more specific membrane targeting of MscL channel, a second generation of the 

construct was built by adding at the C-terminal of our construct sequence the 
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Kir2.1 endoplasmic reticulum export signal (ERexp) as previously described 

(Gradinaru et al., 2010). To achieve this, the ERexp single strand oligoes were 

synthetized with an additional BsrGI restriction site at 5’ and a HindIII restriction 

site at 3’, annealed together, amplified by PCR and then cut by enzymatic 

digestion. After having also digested the pAAV3_hSyn1_MscL_eGFP v.1 vector 

with the same restriction enzymes, the two sequences were ligated together for 1 

hour at room temperature (RT). Then, the eGFP protein was replaced with a 

tdTomato protein, known for having a brighter fluorescence signal. We amplified 

by PCR the tdTomato sequence from a pCAGGS_IRES_tdTomato vector through 

a forward primer carrying a BamHI restriction site and a reverse primer carrying 

a BsrGI site. The amplified DNA and the pAAV3_hSyn1_MscL_eGFP v.2 vector 

were digested with BamHI and BsrGI and ligated together overnight at 16°C. 

Starting from the section “4. Electrophysiological characterization of the 

engineered MscL channel”, we refer to the pAAV-hSyn1-MscL-tdTomato-v.2 as 

engineered-MscL (eMscL).  

Bacteria transformation. For each construct, Stbl3 competent cells were 

transformed with 5 μL of ligation reaction through a standard heating shock 

protocol (30 minutes on ice and then heat shock at 42°C) and plated onto LB agar 

plate containing the ampicillin antibiotic for clone selection. After an overnight 

incubation at 37°C, isolated colonies were analyzed by restriction analysis and 

then sequencing. 

All the enzymes used for this project belonged to Promega and New England 

Biolabs (NEB). 

Patch-clamp recordings and pressure-clamp system 

Primary cortical neurons were plated at a density of 400 cells·mm-2 onto 18 mm 

glass coverslip and the voltage-clamp recordings were performed in the patch 

clamp cell-attached configuration between 14 and 20 DIV.  
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Borosilicate glass capillary (OD/ID 1.50 mm/0.86 mm, KF Technology) were 

pulled using an horizontal puller (P1000, Sutter Instruments) with a resistance in 

the range of 8 and 10 MOhms, to generate a glass pipette. 

The cell-attached experiments were performed applying a command potential of 

+30 mV and, assuming a resting potential of -70 mV, the estimated applied 

potential would be -100 mV. Current traces were inverted according to common 

convention for cell-attached recordings. The bath solution contained 140 mM 

NaCl, 3 mM KCl, 1 mM MgCl2, 1 mM CaCl2 and 10 mM HEPES (pH 7.2);  the 

pipette solution contained 140 mM NaCl, 0.5 CaCl2, 2 mM EGTA and 10 mM 

HEPES (pH 7.2). EGTA was added for buffering free Ca2+. The eMscL-induced 

currents were amplified through the Multiclamp 700B amplifier (Axon 

Instruments), and then digitized and recorded with the Digidata 1200A (Axon 

Instruments) acquisition board. The output current signals were sampled at 25 

kHz and filtered using a low-pass filter frequency of 10 kHz. 

In order to apply a calibrated negative pressure during the voltage-clamp 

recording, the setup was equipped with a custom-made pressure sensor system. 

It comprised a silicon piezo resistive pressure sensor (model MPDX2200DP, 

Freescale), which generated a linear voltage output directly proportional to the 

pressure applied in the tubing connected to the patch pipette. The pressure 

sensor system was connected to a custom-made conditioning circuit and acquired 

through the Multiclamp 700B amplifier (Molecular Devices). The active 

conditioning circuit performed amplification, balancing, level shifting and offset 

compensation of the differential output (temperature and drift compensation) of 

the pressure sensor, and it was based on a double stage operational amplifier 

circuitry with onboard offset and gain controls. The output voltage to pressure 

conversion factor of the overall pressure sensor system was calibrated with a 

pipette perfusion instrument (2PK+, ALA Scientific Instruments), which was 

used to apply well-defined negative pressures (in mmHg) to the tubing 

connected to the patch pipette. During the experiments, the pressure in the 
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tubing was manually applied through a 5 mL luer-lock syringe, and monitored in 

real time through the pCLAMP 10 software (Molecular Devices). 

Data acquisition and analysis were all controlled using the pCLAMP 10 software 

package. The pressure activation threshold was determined by observing at 

which pressure the first evoked-current or a relevant change in the trace slope 

occurred. Data were filtered with low-pass Bessel filter before the analysis.  

To verify that the recorded spikes were indeed action potentials, we added 1 μM 

TTX (Tocris Bioscience) to the bath solution and incubated for 5 minutes to block 

Na+ channels, before applying the negative pressure through the patch pipette.  

Estimating the applied membrane tension 

Since the lack of a highly resolved image of the membrane dome into the pipette 

patch, we estimated the tension elicited along the plasma membrane upon the 

mechanical stimulation by applying an equation based on the Laplace’s law 

previously reported in literature (Ursell et al., 2011). 

The membrane tension (t) was estimated using the equation t= g + (r · P)/2, where 

r is the radius of pipette tip (approximately 1 mm) and P is the applied negative 

pressures in terms of mN·m-2. 

Immunostaining and image analysis 

For co-localization and morphological analyses, neuronal cells were fixed at 15 

DIV, and for immunostaining with synaptic markers, cells were fixed at 18-20 

DIV. 

Neurons were fixed in 4% cold paraformaldehyde (PFA, Sigma-Aldrich) in 

standard phosphate-buffered saline (PBS, Sigma-Aldrich) for 15 minutes at RT, 

washed twice in 1X tris-buffered saline (TBS) and mounted with ProLong 

Diamond Antifade mountant (Invitrogen).  

For immunostaining, after the fixation protocols was completed cells were 

permeabilized with 0.1% Triton X-100 (Sigma-Aldrich) in 1X TBS for 5 minutes at 
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RT, and then blocked with 3% bovine serum albumin (BSA, Sigma-Aldrich) in 1X 

TBS for 1 hour at RT.  

Immunostaining was performed by incubating the primary antibody overnight at 

4°C and, after few washing steps in 1X TBS, incubating the secondary antibody 

for 1 hour at RT. During the labelling with secondary antibodies, cells were 

covered with a silver foil to preserve the sample from light. Primary antibodies 

were: guinea pig anti-VGLUT1 (135304, SYSY), rabbit anti-VGAT (131013, SYSY), 

and neuronal class III beta-tubulin antibody (MMS-435P, Covance) diluted 

respectively 1:500, 1:1000 and 1:250. Secondary antibodies were: Alexa Fluor 488 

goat anti-guinea pig IgG (A11073, Life Technologies), and Alexa Fluor 568 goat 

anti-rabbit IgG (A11036, Life Technologies). All secondary antibodies were 

diluted 1:1000. Primary and secondary antibodies were diluted in 3% BSA in 1X 

TBS. 

Images were acquired on a Leica SP8 confocal microscope (Leica Microsystems) 

and analyzed with ImageJ software (Schindelin et al., 2015), except where 

otherwise specified.  

For neuronal morphology analysis, images were acquired on the DeltaVision 

Elite microscope (GE Healthcare Life Sciences) using a 20X air objective (PLN 

20X/0.4, Olympus). The analysis was performed by running the morphology 

quantification software NeurphologyJ, an ImageJ plugin, as described in Ho et 

al., 2011 (Ho et al., 2011). 

Co-localization analysis was performed by using the Coloc2 Image plugin, by 

following the described procedure (Costes et al., 2004). 

Viability plot was calculated as mean of the percentage of live cells divided by 

the total number of cells for field of view, as described in Palazzolo et al., 2017 

(Palazzolo et al., 2017). The apoptotic cells, which are characterized by pyknotic 

nuclei, were identified by their morphology and counted.  
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Adeno associated virus production 

AAV-eMscL particles production was performed in 15-cm culture dishes by 

using a total amount of 25x106 HEK293T cells (5x106 per dish). The transfections 

were carried out at 70% confluence by using a standard calcium phosphate-based 

protocol. The transfected DNAs consisted of a 1:1:1 ratio mixture of AAV vector 

plasmid, AAV serotype 1 and 2 packaging proteins (pRV1 and pH21), and 

adenoviral helper (pFdelta6). Seventy-two hours after transfection cells were 

harvested and AAV particles were extracted by subjecting the cell pellet to three 

consecutive freeze-thaw cycles and purified through a heparin column (Hitrap 

Heparin, GE Healthcare). 

Calcium imaging and data analysis 

The primary neuronal cultures were infected with a recombinant adeno 

associated virus (hybrid serotype 1 and 2) encoding the G22S eMscL ion channel. 

Primary cultures were infected at 15 DIV by incubating overnight 1:1000 dilution 

of the virus stock solution. After incubation, the culture medium was half 

replaced with a fresh one.  

The infected cell cultures showed a good level of protein expression together 

with a significant calcium activity starting from 5 days post infection. Calcium 

imaging experiments were assayed between 20 and 25 DIV, after loading the cell 

cultures with Fluo-4 AM calcium dye (Invitrogen) for 20 minutes.  

Calcium imaging was performed by using a custom inverted fluorescence 

microscope which has been integrated with a miniaturized cell incubator. The 

time-lapse calcium imaging was performed at a frame rate of 65 Hz through a 

10X air objective (NA 0.25, Olympus), 2x2 binning, and EM gain of 120. The 

acquired time lapse imaging series (t-stack series) were analyzed with a custom 

written algorithm in Matlab, which have been previously described (Palazzolo et 

al., 2017).  
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Briefly, the algorithm computed the standard deviation projection of the t-stack 

and the non-homogeneous background in the projection image was estimated 

through a morphological opening operation with a disk of arbitrary size (smaller 

than the typical dimension of the cell soma), and then subtracted. Successively, 

the projection image was binarized, and the ROIs were detected. The 

fluorescence calcium traces of the neurons were then extracted from the t-stack 

by computing the mean fluorescence intensity value within the ROIs previously 

identified. Subsequently, the raw traces of the neurons were baseline corrected 

and normalized, to calculate the normalized fluorescent calcium signals indicated 

as ΔF/F0 (F fluorescence intensity in arbitrary units). The baseline F0 of the traces 

was automatically estimated with a linear diffusion filter, which evaluates only 

the slow varying component of the trace by setting a large time window (time 

window length= 30 s). The normalized traces were then smoothed with the 

modified Perona-Malik filter (Palazzolo et al., 2017). 

On the smoothed traces, calcium events were automatically detected by imposing 

the following conditions: (i) the first derivative in a right interval of the onset 

overcomes a fixed positive threshold (10-3 in case of asynchronous activity, 10-2 in 

case of synchronous activity); (ii) the ΔF between the onset and the offset of an 

event overcomes a threshold defined as the standard deviation of the difference 

between the original and the smoothed trace; (iii) the first derivative in a right 

interval of the event offset is lower than a fixed negative threshold (-10-4); and (iv) 

the time interval between the last time point after the onset with first derivative 

higher than a fixed threshold and the offset did not reach a fixed width (300 time 

points). 

Wide-field fluorescence microscope 

The light sources of the optical setup were two LEDs (M470L3 and M565L3 

equipped with two LEDD1B controllers, Thorlabs). One LED emitted at a 

wavelength of 488 nm to excite the fluorescent calcium sensor used to perform 
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calcium imaging, and the other emitted at 565 nm to excite red emitting 

fluorescent tags used to discriminate chemically treated or genetically modified 

cells within the field of view. The light beams from the two LEDs were combined 

through a dichroic mirror DM1 (LM01-480 - Semrock, Optoprim), and then 

collimated with a lens L1 (30 mm focal length VIS doublets, Thorlabs). The 

interchangeable dichroic mirror reflected the light towards the pupil of the 

microscope objective (10X air objective Olympus, Thorlabs). Two distinct dichroic 

mirrors were used to either perform calcium imaging (FF495-DI02 – Semrock, 

Optoprim) or to detect the cells (FF560-DI02 – Semrock, Optoprim). The 

fluorescence emission light from the sample was collected through the 

microscope objective, conveyed through the dichroic mirror, and focused on the 

CCD camera by the tube lens TL (150 mm focal length VIS doublets, Thorlabs). 

An interchangeable emission filter F3 (F530/43 and F624/40 – Semrock, Optoprim) 

was positioned in front of the CCD camera (EM-CCD Andor Camera Ixon DU897 

- Andor Technology). Time-lapse calcium imaging was performed with the 

following settings: 2x2 binning (pixel size equal to 3.75 µm), EM gain of 120, and 

frame rate of 20 Hz. The CCD generated a TTL synchronization signal indicating 

the time exposure of each consecutive, acquired image frame.  

Ultrasound delivery system 

The US delivery system was designed in order to avoid or minimize unwanted 

and uncalibrated mechanical stress on the cells, and thus allow performing 

experiments in a water tank-free setup. The water tank-free configuration allow 

to deliver a relatively uniform pressure field wide area on the cell culture (i.e. 

with a radius of ~2.5 mm) at a fixed distance from the ultrasound source, thus 

facilitating the integration of the fluorescence imaging system with the US 

devices.  The propagation probe was designed using CAD 3D Autodesk Inventor 

(Autodesk Inc.) and fabricated in stainless steel using a metal 3D printer.  
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The ultrasound compatible cell chamber was designed using CAD 3D Autodesk 

Inventor (Autodesk Inc.) and fabricated in Tango polymer via 3D printing 

process. The chamber was designed consisting of three main components: a 

circular base plate (36 mm diameter, 9 mm thick) with a cell coverslip lodging at 

the center (18 mm diameter); a cap disk (OD 38 mm, ID mm, 10 mm thick); a 

polydimethylsiloxane (PDMS Sylgard 184, Corning) lid. Degassed PDMS was 

directly poured into the cap disk and a plastic pillar base was placed at its bottom 

face in order to obtain the desired lid thickness (Figure 29). The PDMS lid was 

made by mixing the curing agent and the silicon monomer at ratio of 1:10 w/w, 

and then baking the degassed mixture overnight at 40°C. Lids of different 

thicknesses were tested. The choice to use the PDMS for fabricating the chamber 

lid is due to its intrinsically properties such as optical transparency (Whitesides, 

2006), low ultrasound attenuation at our final US frequency (Carugo et al., 2015), 

permeability to gases (Zanzotto et al., 2004), and ease of molding (Kim et al., 

1995).  

 

Figure 29 | PDMS lid fabrication 

After coupling the cap disk on the pillar base, the PDMS mixture was poured in, and then baked 

overnight at 40°C. 

The US delivery system is based on an immersion-type ultrasonic transducer 

(GS350-D19 model, The Ultran Group). The driving electronics of the US 

transducer were configured so as to define the acoustic stimulation parameters, 

which included US pulse repetition frequency, tone burst frequency, number of 
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tone bursts per stimulus, and number of acoustic cycles per tone burst. These 

parameters can be varied in order to apply distinct US stimulation protocols. As 

illustrated in Figure 23, a D/A USB-board (element 1 in the green box - PCI-6529, 

National Instruments) monitored and recorded a TTL trigger signal coming from 

the CCD camera, which increased during the frames acquisition of the time-lapse 

calcium imaging, and then reduced to a lower level when the frames acquisition 

stopped. This signal triggered the US stimulation protocol defined in a LabVIEW 

software interface, developed in-house. The user interface was employed to input 

the duration of a single US stimulus, which  also defined the number of tone 

bursts per stimulus, and the time interval between consecutive stimuli. In order 

to synchronize the calcium imaging with the US stimulation, the software 

generated and recorded an output trigger signal. We set an US stimulus of 1 

second (US on) followed by 4 seconds intervals in which the US was deactivated, 

corresponding to a stimulus repetition frequency of 0.2 Hz. This mode of 

stimulation was repeated for the overall duration of the time-lapse calcium 

imaging, and acted as enabling signal of the tone burst wave generator 

(AFG3021B, Tektronix).  

Indeed, this first wave generator (element 2 in the green box of Figure 23) 

allowed defining the repetition frequency of the tone bursts, within a single US 

stimulation, and at the same time it represented the triggering signal for a second 

wave generator (DG1022A, Rigol Technology Inc.). The output signal of the tone 

burst wave generator was configured to a square wave with amplitude of 0-5 V 

and duty cycle of 50%. The output signal of the second wave generator (element 

3 in the green box of Figure 23) was set to a sinusoidal wave with peak-to-peak 

voltage (Vpp) of 5.8 V and frequency of 380 kHz. The number of cycles of each 

triggered sinusoidal output was also set, which defined the duration of each US 

tone burst within the US stimulus. Each tone burst was triggered by a positive 

edge detected in the square wave output of the first wave generator. The output 

of the second generator was then conveyed to a custom built amplifier (element 4 
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in the green box of Figure 23). In the Table 2, the US settings tested during the 

stimulation of the neuronal networks are reported. 

 

 

 

Table 2 | Ultrasound stimulation protocols tested 

We opted to develop a custom built amplifier due to the loss capacitive nature of 

the piezoelectric transducer and the fixed working frequency of the US wave. 

Notably, the reactive electrical load of the transducer doesn’t require a large 

amount of power but rather a system able to supply large voltages (>200 Vpp) into 

reactive loads. For the specific case of a system working at a fixed US frequency, 

the amplifier can be conceived as a high efficiency class-B power stage tuned to 

the US frequency. An IC driver (International Rectifier IR2112 – RS components) 

ensured optimum driving of the two Mosfet power devices, which generated 

output voltages of 200-250 Vpp through a step-up wound toroidal transformer. 

Careful design of the output transformer and its inductance, together with the 

self-capacitance of the output cable and the US transducer, resulted in a system’s 

efficiency >75%. The output power of the amplifier could be tuned through the 

voltage of the external power supply in the range 12.6 to 17.0 VDC.  

Finally, the amplified signal was sent to the US transducer producing the pulsed 

US wave. All the trigger signals described in this section, together with the TTL 

signal coming from the CCD, were simultaneously recorded through the D/A 

USB-board, in order to align the US stimulation protocol with the frames of the 

time-lapse calcium imaging during post-processing. 

 

 

PRF tbf c/tb output voltages 
0.2 Hz 10 Hz  10 – 200 cyc 200 – 250 Vpp 
0.2 Hz 20 Hz 10 – 200 cyc 200 – 250 Vpp 
0.2 Hz 50 Hz 10 – 200 cyc 200 – 250 Vpp 
0.2 Hz 100 Hz 10 – 200 cyc 200 – 250 Vpp 
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Calibration of the acoustic field 

The acoustic pressure field was characterized using a needle hydrophone (200 

µm diameter needle, Precision Acoustics), with the ultrasound delivery system 

(US condenser and cell chamber) submerged in a tank filled with filtered and 

degassed water. During the calibration experiments, the water temperature was 

monitored with a glass thermometer, in order to calculate sound speed for use in 

estimating hydrophone position. The needle hydrophone was positioned at the 

desired distance through an automated position-control software (UMS2, 

Precision Acoustics) and the drive voltage (PP007-WR, LeCroy) and current 

(4100, Pearson Electronics) probes were monitored to ensure proper system 

operation, and allow subsequent calculation of electrical impedance. Calibration 

data were processed in MATLAB using the following steps: (i) application of a 

high pass filter to remove any DC offset in the data traces, (ii) calculation of 

hydrophone A(f,x,y,z) and drive voltage V(f) Fourier transforms, and (iii) calculation 

of the transmitting voltage response at each frequency and scan grid point (x,y,z): 

TVR(f,x,y,z) = A(f,x,y,z)/(V(f)S(f)) where S(f) is the hydrophone sensitivity. Four types of 

calibration tests were performed in this study: (1) frequency-dependence of the 

acoustic peak pressure in the target plane, to select an optimal frequency for 

operation of the ultrasound stimulation system; (2) voltage-dependence of the 

acoustic peak pressure in the target plane at the optimal frequency, to identify a 

range of acoustic pressure amplitudes suitable for neuronal stimulation; (3) axial 

scan of the peak pressure at the optimal US frequency and the maximum driving 

voltage, to evaluate the sensitivity of the system to variations in the distance 

between the US source and the target plane; and (4) planar scan of the acoustic 

pressure in the target plane at the optimal US frequency, to spatially characterize 

the properties of the ultrasound field to which cells and microbubbles are 

exposed. 
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Fluid dynamic characterization of the cell culture chamber 

A three-dimensional numerical model was developed to evaluate the fluid 

dynamics within the cell chamber as already reported in literature (Carugo et al., 

2015). We employed this approach to verify that: (i) the wall shear stress at the 

bottom surface of the chamber was not large enough to impart cell damage, and 

(ii) regions of potential entrapment for air filled microbubbles (i.e. vortices) were 

not present. ICEM CFD 14.0 (Ansys) was employed for construction and meshing 

of the model geometry. The geometry was meshed using tetrahedral cells. The 

maximum mesh element size was set at 0.05 mm at the inlet and outlet 

boundaries, and 0.5 mm at the wall boundaries. 

Mass flow rate and zero-pressure boundary conditions were imposed at the inlet 

and outlet surfaces, respectively. A no-slip flow boundary condition was 

imposed on the other surfaces. The volumetric flow rate at the inlet was varied in 

the range 1 to 10 mL·min-1 to simulate practical injection procedures. 

Production of positive charged lipid-coated microbubbles 

Air-filled lipid-coated microbubbles were used as an ultrasound-responsive 

agent to amplify the mechanical effects of ultrasound alone. Microbubbles were 

designed to have a net positive charge, thus ensure binding, and spatial 

proximity to the target cells. 

The microbubble were made of 1,2-distearoyl-sn-glycero-3-phosphocholine 

(DSPC) and 1,2-distearoyl-sn-glycero-3-ethyl phosphocholine (DSEPC, Avanti 

Polar Lipids) and Polyoxyethylene (40) stearate (PEG40s, Sigma–Aldrich). The 

compounds were dissolved in chloroform at a concentration of 25 mg·mL-1 for 

DSPC and 10 mg·mL-1 for DSEPC and PEG40s, and then mixed in a 10 mL glass 

vial at a molar ratio of 100:15:10. This mixture was left overnight in a fume hood 

at RT, to let chloroform evaporate. The resulting dry lipid film was suspended in 

3 mL filtered PBS, and placed on a hotplate set at 95°C for 30 min, under constant 

stirring. Then the air within the vial was substituted with nitrogen gas and the 
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solution sonicated for 180 seconds at 10W to disperse the lipids using an 20 kHz 

ultrasonic cell disruptor (Ultrasonic Sonifier 150, Branson Ultrasonics), with the 

tip of the sonicator fully immersed in the liquid. The suspension was 

subsequently sonicated at the gas–water interface for 30 seconds at 35W to 

produce gas-encapsulating microbubbles. Lipid-coated microbubbles were 

examined via bright field microscopy (Nikon Eclipse E100) to determine their 

size distribution and stability over time. Microbubbles sizing was performed 

using the Analyse Particles plugin in ImageJ (NIH). Images of microbubbles were 

also acquired using the optics integrated with the US delivery system, in order to 

assess microbubble binding to the cell surface and the cell chamber’s substrate. 

Data analysis and statistics 

Statistical analysis, graphs and plots were generated using GraphPad Prism 6 

(GraphPad Software) and MATLAB  2016b (MathWorks). To verify if our data 

sets were reflecting a normal distribution, the Shapiro-Wilk normality test was 

carried out. Since the normality distribution was not fulfilled, the statistical 

significance analysis was performed using the nonparametric two-sided Mann-

Whitney test (p= 0.05) and data set given as mean ± SEM.  
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9. PUBLICATION LIST 

Journal of Cell Science pii: jcs.210393 (2018) - doi: 10.1242/jcs.210393 
Mechano-sensitization of mammalian neuronal networks through expression 
of the bacterial exclusively-mechanosensitive MscL channel 

Soloperto A.*, Boccaccio A., Contestabile A., Moroni M., Hallinan G., Palazzolo 

G., Chad J., Deinhardt K., Carugo D. & Difato F. 
* First author 

Abstract 
Development of remote stimulation techniques for neuronal tissues represents a 

challenging goal. Among the potential methods, mechanical stimuli are the most 

promising vector to convey information non-invasively into intact brain tissue. In 

this context, selective mechano-sensitization of neuronal circuits would pave the 

way to develop a new cell-type specific stimulation approach. We report here for 

the first time the development and characterization of mechano-sensitized 

neuronal networks through the heterologous expression of an engineered 

bacterial large conductance mechanosensitive ion channel (MscL). The neuronal 

functional expression of the MscL channel was validated through patch-clamp 

recordings upon application of calibrated suction pressures. Moreover, we 

verified the effective development of in-vitro neuronal networks expressing the 

engineered MscL channel in terms of cell survival, number of synaptic puncta, 

and spontaneous network activity. The exclusively mechanosensitivity of the 

engineered MscL channel, with its wide genetic modification library, may 

represent a versatile tool to further develop a mechano-genetic approach. 
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Scientific Reports 7, Article number: 8499 (2017) - doi: 10.1038/s41598-017-08979-8 
Fast wide-volume functional imaging of engineered in-vitro brain tissues 
Palazzolo G.*, Moroni M.*, Soloperto A., Aletti G., Naldi G., Vassalli M., Nieus T. 

& Difato F.  
* First author 

Abstract 
The need for in-vitro models that mimic the human brain to replace animal 

testing and allow high-throughput screening has driven scientists to develop new 

tools that reproduce tissue-like features on a chip. Three-dimensional (3D) in-

vitro cultures are emerging as an unmatched platform that preserves the 

complexity of cell-to-cell connections within a tissue, improves cell survival, and 

boosts neuronal differentiation. In this context, new and flexible imaging 

approaches are required to monitor the functional states of 3D networks. Herein, 

we propose an experimental model based on 3D neuronal networks in an 

alginate hydrogel, a tunable wide-volume imaging approach, and an efficient 

denoising algorithm to resolve, down to single cell resolution, the 3D activity of 

hundreds of neurons expressing the calcium sensor GCaMP6s. Furthermore, we 

implemented a 3D co-culture system mimicking the contiguous interfaces of 

distinct brain tissues such as the cortical-hippocampal interface. The analysis of 

the network activity of single and layered neuronal co-cultures revealed cell-

type-specific activities and an organization of neuronal subpopulations that 

changed in the two culture configurations. Overall, our experimental platform 

represents a simple, powerful and cost-effective platform for developing and 

monitoring living 3D layered brain tissue on chip structures with high resolution 

and high-throughput. 
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Modulation of Neural Network Activity through Single Cell Ablation: An in-
Vitro Model of Minimally Invasive Neurosurgery 

Soloperto A.*, Bisio M.*, Palazzolo G., Chiappalone M., Bonifazi P. & Difato F. 
* First author 

Abstract 
The technological advancement of optical approaches, and the growth of their 

applications in neuroscience, has allowed investigations of the physio-pathology 

of neural networks at a single cell level. Therefore, better understanding the role 

of single neurons in the onset and progression of neurodegenerative conditions 

has resulted in a strong demand for surgical tools operating with single cell 

resolution. Optical systems already provide subcellular resolution to monitor and 

manipulate living tissues, and thus allow understanding the potentiality of 

surgery actuated at single cell level. In the present work, we report an in-vitro 

experimental model of minimally invasive surgery applied on neuronal cultures 

expressing a genetically encoded calcium sensor. The experimental protocol 

entails the continuous monitoring of the network activity before and after the 

ablation of a single neuron, to provide a robust evaluation of the induced 

changes in the network activity. We report that in subpopulations of about 1000 

neurons, even the ablation of a single unit produces a reduction of the overall 

network activity. The reported protocol represents a simple and cost effective 

model to study the efficacy of single-cell surgery, and it could represent a test-

bed to study surgical procedures circumventing the abrupt and complete tissue 

removal in pathological conditions. 

  



104 

 

Frontiers in Neuroscience 10: 101 (2016) - doi: 10.3389/fnins.2016.00101 
Laser Nano-Neurosurgery from Gentle Manipulation to Nano-Incision of 
Neuronal Cells and Scaffolds: An Advanced Neurotechnology Tool 

Soloperto A.*, Palazzolo G.*, Tsushima H., Chieregatti E., Vassalli M. & Difato F. 
* First author 

Abstract 
Current optical approaches are progressing far beyond the scope of monitoring 

the structure and function of living matter, and they are becoming widely 

recognized as extremely precise, minimally-invasive, contact-free handling tools. 

Laser manipulation of living tissues, single cells, or even single-molecules is 

becoming a well-established methodology, thus founding the onset of new 

experimental paradigms and research fields. Indeed, a tightly focused pulsed 

laser source permits complex tasks such as developing engineered bioscaffolds, 

applying calibrated forces, transfecting, stimulating, or even ablating single cells 

with subcellular precision, and operating intracellular surgical protocols at the 

level of single organelles. In the present review, we report the state of the art of 

laser manipulation in neuroscience, to inspire future applications of light-assisted 

tools in nano-neurosurgery. 
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10. PATENT LIST 

Patent issued (2016) – Application number: IT 102016000097811 

Tunable Extended Depth Of Field Microscopy 
Inventors: Difato F., Moroni M., Palazzolo G., Soloperto A. 
 

Summary statement 
We present a novel optical microscope architecture which provides an inertia-

free axial scanning of the sample, which could be used to acquire a z-stack of the 

sample or to extend the depth of field of the microscope. The extension of the 

depth of field can be arbitrarily chosen by controlling the extension of the fast 

axial scanning of the sample. 

 

 

Patent issued (2015) – Application number: IT 102015000088892 
Combined Laser ablation and Optical propulsion for efficient cell opto-
injection and transfection 

Inventors: Difato F., Soloperto A., Palazzolo G. 

Summary statement 
We present a method of cell injection and transfection that combines the laser 

ablation effect and the optical forces, through the axial shift of the laser focus 

spot. This innovative combination produces concomitant cell membrane poration 

and optically addressed fluid flow. The two laser-induced effects, generated by 

the same laser light source, are intrinsically synchronized and targeted with 

subcellular precision on the same target. The method comprises a first step of 

setting the x, y coordinates of the focus spot on the desired cell region to target; a 

second step consisting of the setting of the laser parameters for the following 

movement of the focus spot along the axial direction. Finally the laser spot is 

moved forward and backward, thus combining laser ablation and optical 

tweezing. This procedure can be automated and repeated a desired number of 

times to improve optoinjection efficiency. 
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