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Abstract 

The knowledge of snowpack dynamics is of critical importance to several real-time applications 

such as agricultural production, water resource management, flood prevention, hydropower 

generation, especially in mountain basins. Snowpack state can be estimated by models or from 

observations, even though both these sources of information are affected by several errors. With 

the aim of reducing the simulations uncertainty, an increasing interest focuses on the combined 

use of data by assimilating snow-related observations within models.  

This study aims at investigating the potential of multivariate Data Assimilation (DA) in the 

framework of snow modelling for hydrological purposes in the Alpine environment. A snow 

multilayer mass- and energy-balance model has been developed and coupled with different DA 

schemes. The model has been calibrated and validated at 3 Alpine sites: Torgnon (Italy), Col de 

Porte (France) and Weissfluhjoch (Switzerland). Two sequential ensemble-based DA methods, 

namely the Ensemble Kalman Filter (EnKF) and the Particle Filter (PF) have been developed and 

tested by assimilating several in-situ snow-related measurements. 

The development of a multivariate EnKF-based DA scheme has required to address several 

critical issues, mainly due to the constraining assumptions of this technique, which make more 

challenging the handling of the strong nonlinearities of the snow modelling system. Several 

experiments have been performed to assess the EnKF sensitivity to different DA settings, namely 

the assimilation frequency, the ensemble size, and the impact of assimilating different 

observations. 

A multivariate PF scheme has been implemented by testing different strategies aiming at 

guaranteeing a sufficiently large ensemble spread, whose poor variance can hinder the 

effectiveness of the updating procedure. After assessing the impact of the uncertainty of the 

meteorological forcing data, the perturbation of model parameters has been investigated. 

Furthermore, with the aim of reducing the system sensitivity to the generally low frequency of 

in-situ snow observations, an empirical snow density model has been introduced to assess the 

potential of using additional proxy information on snow mass-related variables within the 

resampling procedure.  
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A comparative study between the simulations provided by the two selected ensemble-based DA 

techniques has allowed to better identify their main weaknesses and strengths. Generally, both 

the techniques have proved to be suited to multivariate applications, since they allow to take into 

account different sources of uncertainty.  
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CHAPTER 1  

Introduction 

 

1.1 Research context .................................................................................................................. 1 

1.2 Motivation and goals ............................................................................................................ 3 

1.3 Thesis outline ....................................................................................................................... 4 

1.1 Research context 

The seasonal presence of snow in mountain regions strongly impacts both energy and water 

resource balances, not only locally, but also at larger scale. Snow dynamics strongly affect 

hydrological processes, mainly through the release of the significant water volume stored in 

winter season, which considerably contributes to the total discharge during the melting period 

(Barnett et al., 2005; Zappa et al., 2003; Clark and Hay, 2004). Melt water supplies a significant 

component of the annual water budget, both in terms of soil moisture and runoff, which play a 

critical role in floods generation in snow-dominated basins. Therefore, the knowledge of 

snowpack dynamics is of critical importance to several real-time applications especially in 

mountain areas, such as agricultural production, water resource management, flood prevention, 

hydropower generation. Thus, when modelling hydrological processes in snow-dominated 

catchments the reliability of predictions deeply depends on how the model succeeds in catching 

snow dynamics (Wood et al., 2016).  

A growing effort is aimed at enhancing the physical representation of the snowpack in 

hydrological models. Many different snowpack models have been developed with highly 

variable degree of complexity, mainly depending on their target application, such as hydrological 

forecasting, avalanche prediction, climate modelling, and the availability of computational 

resources and data. Snow models range from the so-called force-restore systems of composite 

snow-soil layer(s) (Douville et al., 1995; Yang et al., 1997) and explicit snow layer(s) schemes 

(Verseghy, 1991; Slater et al., 1998) up to detailed internal-snow-process schemes with physical 

parameterizations (Anderson, 1976; Jordan, 1991; Bartelt and Lehning, 2002; Lehning et al., 
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2002; Brun et al., 1989; Vionnet et al., 2012; Endrizzi et al., 2014). Intermediate-complexity 

systems result from simplified versions of the physical parameterization schemes with a reduced 

snowpack layering (Dutra et al., 2010, 2011; Boone and Etchevers, 2001). One of the main 

issues is the trade-off between model complexity, input data requirements and the computational 

demand. Despite progressive improvements, several flaws endure mainly due to uncertainty in 

parameterizations, errors affecting both meteorological forcing data and initial conditions and 

approximations in boundary conditions (Liston and Sturm, 1998; Pan et al., 2003). Moreover, 

there are several physical factors that make an exhaustive reconstruction of snow dynamics 

challenging: snow intermittence in space and time, stratification and slow phenomena like 

metamorphism processes, uncertainty in snowfall evaluation, wind transportation (Winstral and 

Marks, 2014).  

Fortunately, in addition to model simulations, other independent snow-related data sources are 

available, such as ground-based measurements and remotely-sensed observations (Barrett, 2003), 

both of which suffer from several limitations, however. Ground-based snow measurements only 

provide point values, affected by an instrumental bias and subject to distortions due to wind 

action, local topographic features and vegetation interactions. Although remotely-sensed 

observations cover extended areas, they supply indirect measurements affected by a usually 

coarse spatial resolution (passive microwave sensors) and the uncertainty in retrieval algorithms.  

Data Assimilation (DA) is an objective methodology to combine these different sources of 

information to obtain the most likely estimate of snowpack state. Several DA techniques have 

been developed, which allow to update model simulations as observations become available. 

These DA schemes are currently used with different degree of complexity: direct insertion 

(Liston et al., 1999; Rodell and Houser, 2004; Malik et al., 2012), optimal interpolation scheme 

(Brasnett, 1999; Liston and Hiemstra, 2008), Cressman scheme (Cressman, 1959; Dee et al., 

2011; Drusch et al., 2004; Balsamo et al. 2015), nudging method (Stauffer and Seaman, 1990; 

Boni et al., 2010), Kalman filtering techniques (Kalman, 1960; Gelb, 1974; Miller et al., 1994; 

Evensen, 1994, 2003), and the Particle Filter scheme (De Freitas et al., 2001; Arulampalam et al., 

2002; Moradkhani et al., 2005b; Weerts and El Serafy, 2006). Several studies aimed at 

investigating the feasibility of implementing DA techniques to consistently update snow model 

simulations. Generally, the assimilation of snow-related observations proves to succeed in 
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improving the analysis snowpack dynamics, with different performances also depending on the 

main features of the implemented DA method.  

1.2 Motivation and goals 

In the framework of snow modelling, most publications dealt with univariate assimilation, 

namely the assimilation of a single observed variable, and relatively few studies aimed at 

investigating the simultaneous assimilation of observations for multiple model state variables. 

However, current research results agree on the superior performance of the multivariate 

assimilation with respect to the univariate one (Charrois et al. 2016). Furthermore, unlike the 

atmospheric sciences, where the multivariate DA is well established, most DA applications to 

terrestrial systems present synthetic case studies, especially when dealing with satellite data 

(Montzka et al. 2012; Liu et al., 2012).  

In light of the promising potential of multivariate DA schemes and the lack of their application 

using real-world data and/or several types of data in snow modelling, this research intends to 

investigate the feasibility of a multivariate DA scheme through two of the most widely used 

sequential ensemble-based DA techniques, the Ensemble Kalman Filter (EnKF) and the Particle 

Filter (PF). Thus, the following questions are addressed: 

1) What are the most constraining limitations in implementing multivariate EnKF- and PF-

based schemes in the framework of snow modelling and how to overcome them? 

2) How do these sequential ensemble-based DA techniques succeed in consistently updating 

the snowpack system state in a multivariate application? 

3) What are the differences in the effectiveness of the two selected DA techniques and the 

main features of the resulting snow-related analysis simulations? 

This thesis aims to answer and discuss these scientific questions through the study of a system 

consisting of a newly developed multilayer energy- and mass-balance snowpack model coupled 

with a multivariate DA scheme allowing to test both EnKF- and PF techniques.  

The system is evaluated at three Alpine experimental sites in both DA configurations to assess its 

performances in assimilating snow ground-based measurements under changing local conditions. 

More generally, this research is intended to investigate the feasibility of a multivariate DA 
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scheme for snow modelling, with the aim of supporting the development of a robust and reliable 

snow module suited to be implemented within an operational chain for hydrological forecasting 

in mountain regions.  

1.3 Thesis outline 

After introducing the context of this research, its motivation and main purposes, this thesis 

consists of eight main chapters.  

Chapter 2 extensively introduces the snow hydrology, with a focus on the spatial and temporal 

variability of snow-related variables and the impact of the main ruling meteorological forcings 

on snowpack dynamics. The snow modelling is addressed through an overview on the 

parameterization laws of the main physical snowpack processes and a critical review of the state 

of the art up to the more recent studies. A comprehensive survey of in-situ measurements and 

remotely-sensed observations of snow-related variables is also presented. 

Chapter 3 presents the Alpine case studies and describes the snow and meteorological datasets 

supplied by the analysed measurement stations. After the meteorological characterization of the 

experimental sites, the pre-processing and quality check of the observational data are explained. 

In Chapter 4 the multilayer snowpack model is described into the details of the physical 

representation of snowpack and the calibration procedure. Snow energy- and mass-related 

simulations are widely analysed and discussed by assessing their accuracy against the available 

observational data. 

With the Chapter 5 starts the hub of this research, namely the discussion on the DA techniques. 

A preliminary critical review of the state of art on current applications in the framework of snow 

modelling precedes the detailed description of the theoretical formulations of Kalman and 

Particle filtering techniques. Lastly, the experimental setup of this study is introduced by 

discussing the observational uncertainty and defining the evaluation metrics used to assess the 

system performances. 

By referring to Piazzi et al. 2018a, Chapter 6 extensively describes the multivariate EnKF-based 

DA scheme by explaining in detail its development, which aimed at meeting the main 



5 CHAPTER 1 - Introduction 

 

 

 

assumptions of this technique and limiting the impact of the strong system nonlinearities on the 

updating procedure. Firstly, the approach adopted for the generation of the ensemble of model 

realizations is defined by describing a newly proposed approach. After testing this methodology, 

the implementation of the multivariate EnKF scheme is then discussed and the resulting analysis 

predictions are deeply evaluated. Finally, several experiments are shown with the aim of 

investigating the system sensitivity to the assimilation frequency, the ensemble size and the 

impact of assimilating different observations. 

The implementation of the multivariate PF scheme is discussed in Chapter 7, following Piazzi et 

al. (2018b). The main issue of the impoverishment of the particles sample is widely discussed, 

which turns out to be of even more critical importance in such a multivariate application. The 

impact of perturbing the meteorological forcing data, as well as the benefit of resampling key 

model parameters are assessed in terms of filter effectiveness in updating the model state 

variables. With the aim of mitigating the system sensitivity to the frequency of the assimilated 

observations, the potential of introducing an additional snow density model is evaluated by 

assimilating its snow mass-related estimates. 

Chapter 8 deals with the comparative study between the performances of the two analysed DA 

techniques. After assessing the filters effectiveness in reducing the model error affecting the 

snowpack simulations, the impact of the filters updates on the system physical consistency is 

investigated by evaluating the scale of the discontinuities characterizing the trend of the analysis 

predictions. Lastly, the temporal persistence of the filters updates between two following 

assimilation time steps is assessed. 

The last Chapter 9 provides a global synthesis of this research, highlighting the main 

contributions and the implications of the results. In the end, some ideas for future perspectives 

and studies are suggested. 

 

 

 



 

 

CHAPTER 2  

Snow hydrology 
===================================================================== 

  2.1 The hydrological role of snow ................................................................................................ 6 

2.2 Spatial and temporal variability of snow-related variables .................................................. 8 

2.2.1 Climate forcing to the snowpack .................................................................................. 9 

2.3 Snow modelling.................................................................................................................. 10 

2.3.1 Parameterization of snow physics .............................................................................. 11 

2.3.2 A critical review of the state of the art ....................................................................... 17 

2.4 Snowpack in-situ observations ........................................................................................... 19 

2.5 Snow remote sensing .......................................................................................................... 21 

2.5.1 Visible and near-infrared ............................................................................................ 21 

2.5.2 Passive microwave ..................................................................................................... 24 

2.5.3 Active microwave ....................................................................................................... 26 

2.1 The hydrological role of snow 

Snow-dominated areas play a distinctive role in water supply (Vivoroli et al., 2007). Snowpack 

dynamics strongly impact seasonal water resources through a temporal redistribution of winter 

precipitation to spring and summer runoff (Viviroli et al., 2003; Viviroli and Weingartner, 2004).  

During winter months, when most precipitation occurs, sizeable volume of water is stored within 

the snowpack (Lòpez-Moreno et al., 2013a). Nevertheless, the precipitation phase strongly 

depends on the local elevation and air temperature (Lòpez-Moreno and Nogués-Bravo, 2005). 

The highest elevation areas mostly receive solid precipitation, whereas the mid-elevation ones 

have a mixed precipitation regime (Surfleet and Tullos, 2013; Guan et al. 2016). In spring and 

summer, when precipitation is otherwise scarce, the snowmelt significantly contributes to the 

total discharge (Verbunt et al., 2003; Zappa et al. 2003; Clark and Hay, 2004).  

Glaciers runoff provides a smoothing effect of the interannual variability of summer flows, when 

the more variable precipitation regime results in irregular runoff (Hock et al., 2005; Zappa and 
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Kan, 2007; Koboltschnig and Schöner, 2010). Indeed, during the dry period, characterized by 

high air temperatures, they release the water volume stored in winter months (Casassa et al., 

2009). However, a quantitative distinction between snow and glacier meltwater is challenging, 

even though snow contribution from lower elevations generally precedes the glacial one from 

higher altitudes (Weingartner and Aschwanden, 1992; Viviroli et al., 2011). 

Since meltwater is a massive source of surface water and groundwater recharge (Dettinger, 

2014), the water management in mountainous regions is seasonally planned according to the 

accumulation and melt dynamics of snowpack (Viviroli et al., 2011). Because about one-sixth of 

the world’s population lives in snow-dominated areas (Barnett et al., 2005), a reliable knowledge 

of the location, extent and quality of the snow water resource is ruling for several real-time 

services and applications, such as irrigation, agricultural production, water supply, flood 

prevention, hydropower production. 

Furthermore, the seasonal presence of snow strongly impacts the surface energy balance, not 

only locally, but also at larger scale. Because of its low thermal conductivity, a snowpack 

produces an insulating effect over the underlying soil, whose temperature variability is severely 

reduced towards a stable condition (Zhang 2005). Moreover, the high snow albedo entails a 

remarkable reduction of shortwave radiation absorption, with a resulting lowering of near surface 

air temperature.  

From a hydrological point of view, the most interesting snow variable is the Snow Water 

Equivalent (SWE), which is an important hydrologic measure as it indicates the actual amount of 

water stored in a snowpack (DeWalle and Rango, 2008). SWE predictions are a useful tool for 

hydrological forecasting, since they allow to reliably predict the meltwater that the complete 

melting of the snowpack would release and the resulting impact on the total discharge. 

 

 

 



2.2 Spatial and temporal variability of snow-related variables 8 

 

 

 

2.2 Spatial and temporal variability of snow-related variables 

Snow cover variability is mainly driven by the meteorological forcing (Bormann et al., 2013; 

Luce et al., 2014). The precipitation regime, the average air temperature and the shortwave 

radiation are the most ruling climate forcings (Lòpez-Moreno and Nogués-Bravo, 2005). Jointly, 

the topography strongly affects the snow spatial distribution (Rice et al., 2011; Molotch and 

Meromy, 2014; Revuelto et al., 2014). Local elevation, slope and aspect are the most explanatory 

variables controlling the snow cover persistence. However, the definition of a proper set of 

predictors well explaining the snow distribution is hindered by the local processes occurring at 

the small scale (Molotch et al., 2005; Zheng et al., 2016). The definition of the topographic 

control is made even more difficult by the presence of vegetation impacting the intensities of the 

meteorological forcings (e.g. wind and incoming solar radiation) (Harpold et al., 2014). Where 

most of snow accumulation occurs above the tree line, the canopy interception is of secondary 

importance in the spatial distribution of snowpack (Zheng et al., 2016; Fayad et al., 2017). 

Nevertheless, in forested areas snow depth can be significantly reduced due to the sublimation or 

melting of the intercepted snow (Szczypta et al., 2015). Wind-induced erosion and deposition 

phenomena (e.g. snow drifting) play a primary role in snow redistribution (Gascoin et al., 2013; 

Vionnet et al., 2014). However, the modelling of the wind-induced snow transport is still 

challenging due to limiting issues. Firstly, the generation of reliable wind fields over complex 

topography is taxing. Moreover, snow models are generally unable to well represent the wind 

snow redistribution, since this is a sub-pixel scale process (Quéno et al., 2016). 

An important snow-related variable is the snowpack density, whose state strongly impacts the 

thermal, mechanical and optical properties of snow layers (Bormann et al., 2013; Sturm et al., 

2010). The spatial variability of snow density is mainly driven by the meteorological forcings, 

including the mean snowfall density, which contributes to the evolution of snowpack density 

(Svoma, 2011). Seasonal densification of snowpack is ruled by snow metamorphisms, 

compaction, and melt-refreeze events (Bormann et al., 2013). Furthermore, other local factors 

impact the snow density, such as slope, vegetation cover and wind exposure, whose intensity has 

prominent effects on snow densification (e.g. growth of surface hoard) (Stössel et al., 2010). 

Even though snow density has a lower spatial variability with respect to snow depth (Lòpez-

Moreno et al. 2013b), the regional spatial and temporal variability in snow densification rate can 
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be sizeable (Sturm et al., 2010), whereas the interannual variability is generally considered 

negligible. The snowpack stratification entails a high point vertical variability of snow density 

(Bormann et al., 2013). Indeed, snow layering can result in sharp density changes along the 

snowpack thickness according to the occurred snowfall events and previous climate conditions. 

2.2.1 Climate forcing to the snowpack 

Meteorological forcings are one of the main control factors affecting spatial and temporal 

variability of snow cover. Snowpack dynamics are mostly ruled by the precipitation regime and 

the average air temperature during the accumulation period (Lòpez-Moreno and Nogués-Bravo, 

2005), which define snowfalls frequency and intensity. The melting period is forced by the 

incoming radiation and heat fluxes exchanged with both atmosphere and the underlying soil 

(Herrero et al., 2009). The impact of wind-induced phenomena is generally prominent 

throughout the whole snow season (Gascoin et al., 2013).  

In Mediterranean mountain regions, more than 80% of the annual precipitation occurs during 

winter months (November to March) (Fayad et al., 2017), and they generally receive more 

precipitation than surrounding lowlands due to their orographic elevation (Derin et al., 2016). 

However, both the complexity of atmospheric processes at large scale (Lunquist et al., 2015) and 

the effect of local topography at finer scale (Lòpez-Moreno et al., 2015) hinder a reliable 

assessment of the temporal distribution of precipitation and its phase (Derin et al., 2016). 

Moreover, the widespread lack of observational data, especially at high elevations, and the 

tendency of gauges to underestimate the precipitation are further limiting factors. A poor 

knowledge of wind patterns does not allow to properly correct the precipitation-gauge 

undercatch (Sevruk et al., 1991).  

Since rain-on-snow events strongly impact the snowpack energy balance and the snowmelt rate, 

due to the supply of very high advection heat flux (Molotch and Meromy, 2014), a reliable 

knowledge of the precipitation phase is of crucial importance (Surfleet and Tullos, 2013). The air 

temperature is the most ruling factor determining the precipitation phase, together with the 

relative air humidity (Froidurot et al., 2014). Similarly to the other meteorological forcing 

variables, the lack of automatic weather stations (AWS) in remote and high-elevation areas 

entails a certain uncertainty affecting the air temperature monitoring (Raleigh et el., 2016). 
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Nevertheless, in-situ measurements of air temperature are generally the most widely available 

data and much less biased with respect to precipitation data.  

Most of the snowmelt energy is supplied by the net radiative flux (Lòpez-Moreno et al., 2013b), 

whose impact significantly varies over time and in space. In the absence of in-situ sensors, the 

incoming radiative term can be estimated through empirical relationships based on the surface air 

temperature and relative humidity (Lundquist et al., 2013). However, since the incoming 

radiation varies with elevation, local topography (e.g. mean aspect, slope orientation) and forest 

cover, its indirect retrieval can lead to a sizeable overestimation of snowmelt rates (Hinkelman et 

al., 2015). 

The assessment of the heat transfers occurring within the snowpack allows to better evaluate the 

timing of snowmelt. Sensible and latent heat exchanges are mainly driven by surface air 

temperature, relative humidity and wind speed. Because most of these meteorological variables 

have a high spatial variability over complex topography and measurements of wind speed and 

humidity are often lacking, a reliable estimate of their contribution to snowmelt is challenging. 

The net turbulent flux strongly impacts the snowmelt throughout the whole snow season with a 

tendency to increase late in the winter. Whenever rain-on-snow events occur, the contribution of 

the turbulent fluxes to melt energy is even more prominent due to the advection heat flux. 

(Mazurkiewicz et al., 2008). 

2.3 Snow modelling 

When modelling hydrological processes in snow-dominated catchments the quality of 

predictions deeply depends on how the model succeeds in catching snow dynamics (Wood et al., 

2016). Thus, a growing effort is aimed at enhancing the physical representation of snowpack in 

hydrologic models. Despite progressive improvements, several flaws endure mainly due the 

uncertainty in parameterizations, errors affecting both meteorological forcing data and initial 

conditions and approximations in boundary conditions (Liston and Sturm 1998; Pan et al. 2003). 

Moreover, there are several physical factors that hinder an exhaustive reconstruction of snow 

dynamics: snow intermittence in space and time, stratification and slow phenomena like 

metamorphism processes, uncertainty in snowfall evaluation, wind transportation (Winstral and 

Marks, 2014).  
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2.3.1 Parameterization of snow physics 

The quality of model simulations strongly depends on the representativeness of the 

parameterization of the main physical processes occurring within the snowpack. Several 

parameterizations are commonly used to describe each process, ranging from empirical relations 

to physically-based laws. At a lower level of complexity, some processes can be represented by a 

constant or simply neglected.  

Essery et al. (2013) developed a snow multi-scheme model which combines a range of existing 

parameterizations of different complexity for the representation of each dominant process. The 

analysis of the large ensemble of predictions resulting from different model configurations 

revealed that the simulations using prognostic equations for snow density and albedo generally 

allow the most consistent performance.  

More recently, Layafasse et al. (2017) investigated the uncertainty affecting physically-based 

multilayer snow models through a multiphysical ensemble system allowing to implement 

different representation of the main processes. 

Commonly, to solve the mass and energy balance equations, models require parameterizations of 

processes defining surface albedo, thermal conductivity, liquid water content, density of fresh 

and compacted snow, and turbulent fluxes. Some of the most important processes 

parameterizations are explained below. 

Fresh snow density 

The density of newly deposited snow mainly depends on the size, shape and packing of the 

falling crystals, which are defined by the air temperature and humidity during their growth and 

the wind conditions during their deposition (Essery et al., 2013). Several empirical laws can be 

used to estimate the density of falling snow (𝜌𝑛), which can rely on only air temperature data 

(Eq. 2.1; Anderson, 1976; Oleson et al., 2004) or on simultaneous measurements of wind speed 

(𝑉, [𝑚𝑠−1]) and air temperature (𝑇𝑎, [°𝐶]) (Eq. 2.2, Vionnet et al., 2012; Eq. 2.3 Schmucki et al., 

2014). 

 𝜌𝑛 = 𝜌𝑚𝑖𝑛 +𝑚𝑎𝑥 [𝑎𝜌(𝑇𝑎 + 𝑏𝜌)
3/2
, 0] [2.1] 

 𝜌𝑛 = 𝑚𝑎𝑥[𝑐𝜌 + 𝑑𝜌𝑇𝑎 + 𝑒𝜌𝑉
1/2,  𝜌𝑚𝑖𝑛] [2.2] 
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{
 
 

 
 log10 𝜌𝑛 = 𝑓𝜌 + 𝑔𝜌𝑇𝑎 + ℎ𝜌 + 𝑖𝜌 sin

−1 (√𝑗𝜌) + 𝑘𝜌 log10(𝑚𝑎𝑥[𝑉, 2])  𝑖𝑓 𝑇 ≥ 14°𝐶

log10 𝜌𝑛 = 𝑓𝜌 + 𝑔𝜌𝑇𝑎 + 𝑖𝜌 sin
−1 (√𝑗𝜌) + 𝑘𝜌 log10(𝑚𝑎𝑥[𝑉, 2])  𝑖𝑓 𝑇 < 14°𝐶

 

 

[2.3] 

The parameters of the three laws are given in Table 2.1. Some models assume a fixed density for 

fresh snow, generally set equal to 100 kg m3 (lower densities of 50 or 80 kg m3 are also used) 

(Douville et al., 1995). 

Equation Parameters 

[2.1] 𝑎𝜌 = 1.7 K−1;  𝑏𝜌 = 15 K;  𝜌𝑚𝑖𝑛 = 50 kgm−3 

[2.2] 𝑐𝜌 = 109 kgm
−3 ; 𝑑𝜌 = 6 kgm

−3K−1 ; 𝑒𝜌 = 26 kgm−7/2s1/2 ;  𝜌𝑚𝑖𝑛 = 50 kgm−3 

[2.3] 𝑓𝜌 = 3.28 ; 𝑔𝜌 = 0.03 K−1 ; ℎ𝜌 = −0.36 ; 𝑖𝜌 = −0.75 ; 𝑗𝜌 = 0.8 ; 𝑘𝜌 = 0.3 

Table 2.1: Parameter values for fresh snow density parameterizations. 

Whenever a snowfall event occurs, the density of a snow layer having initial density 𝜌0 and mass 

𝑀𝑠 is updated in order to take into account the amount of snowfall (𝑆𝑓): 

 
𝜌𝑠 =

𝑀𝑠 + 𝑆𝑓

𝑀𝑠/𝜌0  +  𝑆𝑓/𝜌𝑛
 [2.4] 

 

Snow compaction  

When modelling snowpack dynamics, the snow density is a control variable allowing to estimate 

the snow mass, which is generally a model prognostic variable, from the snow depth, which is 

instead one of the most widely measured variable, and vice versa. 

Snow compaction entails an increase in snowpack density over time due to the settling of grains, 

which gradually turn into more rounded forms due to both the weight of the overlying snow and 

the refreezing of meltwater.  

Some models neglect the compaction process by considering a constant value of snowpack 

density (e.g. equal to 250 kg m3; Cox et al., 1999). An empirical parameterization of snow 

compaction generally relies on the assumption that the snow density increases at a rate 

proportional to the difference between the current density and a maximum density value (𝜌𝑚𝑎𝑥), 

according to an empirically defined compaction time scale (𝜏𝜌) (Eq. 2.5; Verseghy, 1991).  
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The parameterization proposed by Anderson (1976) allows to consider both the two main 

processes ruling the changes in snowpack density, namely the compaction due to the weight of 

the overlying snow and metamorphic effects acting on the snow microstructure (Kojima, 1967). 

According to this physically-based parameterization, the fresh low density is subject to a rapid 

settling process, while a slower densification occurs under the load resisted by the compactive 

viscosity (𝜂) (Eq. 2.6; Boone, 2002; Kojima, 1967). 

 𝑑𝜌𝑠
𝑑𝑡

= 𝜏𝜌
−1(𝜌𝑚𝑎𝑥 −  𝜌𝑠) [2.5] 

 1

𝜌𝑠

𝑑𝜌𝑠
𝑑𝑡

=
𝑀𝑠
𝜂
+ 𝑐1𝑒xp[−𝑐2(𝑇𝑚𝑒𝑙𝑡 − 𝑇𝑠) − 𝑐3max(0,  𝜌𝑠 − 𝜌0)] 

{

1

𝜌𝑠

𝑑𝜌𝑠
𝑑𝑡

=
𝑀𝑠
𝜂
+ 𝑐1𝑒xp[−𝑐2(𝑇𝑚𝑒𝑙𝑡 − 𝑇𝑠) − 𝑐3max(0,  𝜌𝑠 − 𝜌0)]

𝜂 = 𝜂0𝑒xp[𝑐4(𝑇𝑚𝑒𝑙𝑡 − 𝑇𝑠) + 𝑐5𝜌𝑠]

 

[2.6] 

The parameters values are shown in the Table 2.2. 

Equation Parameters 

[2.5]  𝜌𝑚𝑎𝑥 = 300 kgm−3 ; 𝜏𝜌 = 3.6 ∙ 105 s 

[2.6] 
𝑐1 = 2.8 ∙  10

−6s−1 ; 𝑐2 = 0.042 K−1 ; 𝑐3 = 0.046 m
3kg−1 ; 𝑐4 = 0.081 K

−1; 

𝑐5 = 0.018 m
3kg−1 ; 𝜌0 = 150 kg m

−3 ; 𝜂0 = 3.7 ∙ 107 kg m−1 s−1  
Table 2.2: Parameter values for snow compaction parameterizations. 

A simplified version of the Eq. 2.6 can be derived by neglecting the 𝑐1 term. Moreover, different 

values for the viscosity coefficient 𝜂0 can be used, generally approximately ranging from 3.6 ∙ 

106 up to 3.7 ∙ 107 (Essery et al., 2013). Nevertheless, it is noteworthy that the complex 

dependence of the compaction velocity on the snow microstructure hinders its parameterization 

(Lehning et al., 2002). 

Snow albedo 

The high fraction of solar radiation reflected from snow surface mainly depends on the grain 

structure and snow depth. Other local factors contribute to the reflection of shortwave radiation, 

namely the wavelength and the incidence angle (Lafaysse et al., 2017). An accurate estimate of 

the surface albedo is of critical importance since this variable strongly affects the snowpack 

energy balance with a resulting significant impact on the timing of snowmelt. Snow albedo can 
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be simply diagnosed as a function of the snowpack surface temperature. According to this 

approach, the albedo is typically made to linearly decrease from a maximum value below a 

critical temperature (Tc) to a minimum at the melting point (Tmelt ) (Eq. 2.7; Cox et al., 1999). 

At a higher level of complexity, the surface albedo is predicted as prognostic variable, whose 

temporal evolution can be simulated according different parameterizations. 

An empirical parameterization relies on a linear decay of the albedo over time under cold snow 

conditions and an exponential decay in the presence of melting snow, with a consistent albedo 

update whenever a snowfall event occurs, (Eq. 2.8; Douville et al., 1995; Boone, 2002; Dutra et 

al., 2010). The physical parameterization of the surface albedo introduced by Wiscombe and 

Warren (1980) (Eq., 2.9) allows to estimate both albedos for direct-beam and diffuse radiations 

in visible and near-infrared wavebands (Marshall and Warren, 1987; Marks et al., 1992; Marshall 

and Oglesby, 1994; Oleson et al., 2010).  

𝛼𝑠 = 𝛼𝑚𝑎𝑥 + (𝛼𝑚𝑖𝑛 − 𝛼𝑚𝑎𝑥) max (
Ts − Tc
Tmelt − Tc

, 0) [2.7] 

{
 
 
 

 
 
 

ALBEDO FOR COLD SNOW

𝛼𝑠(𝑡 + 𝛿𝑡) = 𝛼𝑠(𝑡) − 𝜏𝛼
−1𝛿𝑡

ALBEDO FOR MELTING SNOW

𝛼𝑠(𝑡 + 𝛿𝑡) = [𝛼𝑠(𝑡) − 𝛼𝑚𝑖𝑛]𝑒xp(−𝜏𝑚𝑒𝑙𝑡
−1𝛿𝑡) + 𝛼𝑚𝑖𝑛

ALBEDO UPDATE AFTER SNOWFALL EVENT

𝛿𝛼𝑠 = (𝛼𝑚𝑎𝑥 − 𝛼𝑠)
𝑆𝑓𝛿𝑡

𝑆0
 

 [2.8] 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

ALBEDOS FOR DIRECT RADIATION

𝛼𝑑𝑖𝑟,𝑉𝐼𝑆|𝑁𝐼𝑅= 𝛼𝑑𝑖𝑓,𝑉𝐼𝑆|𝑁𝐼𝑅 + 𝑎𝛹𝑓(𝛹)(1 − 𝛼𝑑𝑖𝑓,𝑉𝐼𝑆|𝑁𝐼𝑅) 

ALBEDOS FOR DIFFUSIVE RADIATION 

𝛼𝑑𝑖𝑓,𝑉𝐼𝑆|𝑁𝐼𝑅 = (1 − 𝐶𝑉𝐼𝑆|𝑁𝐼𝑅 𝐹𝑎𝑔𝑒) 𝛼0,𝑉𝐼𝑆|𝑁𝐼𝑅
𝑆NOW AGE FACTOR

 𝐹𝑎𝑔𝑒 =
𝜏𝑠

1 + 𝜏𝑠
𝑆NOW AGE

𝜏𝑠(𝑡 + 𝛿𝑡) = [𝜏𝑠(𝑡) + (𝑟1 + 𝑟2 + 𝑟3) 𝜏0
−1 𝛿𝑡] (1 −

𝑆𝑓  𝛿𝑡

𝑆0
)

𝑟1 = 𝑒xp [𝑇𝛼 (
1

𝑇𝑚𝑒𝑙𝑡
−
1

𝑇𝑠
)]

𝑓(𝛹) = 𝑚𝑎𝑥 [
1 − 2𝛹

1 + 𝑏𝛹
, 0]

 [2.9] 
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The parameterizations coefficients are listed in the Table 2.3. As show in Eq. 2.8 and 2.9, both 

the empirical and physical parameterizations require snowfall and snow temperature as inputs. 

More recently, Flanner and Zender (2006) developed a physically-based model applying the 

main principles of microphysics to predict the evolution of surface albedo. 

Equation Parameters 

[2.7] 𝛼𝑚𝑎𝑥 = 0.8 ; 𝛼𝑚𝑖𝑛 = 0.62 ; 𝑇𝑐 = (Tmelt − 2K) 
[2.8] 𝛼𝑚𝑎𝑥 = 0.85 ; 𝛼𝑚𝑖𝑛 = 0.5 ; 𝑆0 = 10 𝑘g m−2 ; 𝜏𝛼 = 107s ; 𝜏𝑚 = 3.6 ∙ 10

5s 

[2.9] 
𝛼0,𝑉𝐼𝑆 = 0.95 ;  𝛼0,𝑁𝐼𝑅 = 0.65 ; 𝑎𝛹 = 0.4 ; 𝑏𝛹 = 2 ; 𝐶𝑉𝐼𝑆 = 0.2 ; 𝐶𝑁𝐼𝑅 = 0.5 ; 

𝑟2 = 𝑟1
10 ; 𝑟3 = 0.3 ; 𝑆0 = 10 𝑘g m−2 ; 𝑇𝛼 = 5000 𝐾 ;  𝜏0 = 10

6 s 
Table 2.3: Parameter values for snow albedo parameterizations. 

Snowpack thermal conductivity 

Snow thermal conductivity (𝜆𝑠) mostly depends on snowpack density (𝜌𝑠) (Calonne et al., 2012). 

The heat flux (𝑄𝑇) within snowpack having a vertical temperature gradient can be evaluated as a 

function of the snow thermal conductivity (Eq. 2.10). 

 
𝑄𝑇 = 𝜆𝑠

𝑑𝑇𝑠

𝑑𝑧
 [2.10] 

While more complex physically-based models link the snow conductivity to the microstructural 

properties (Bartelt and Lehning, 2002), generally this thermal quantity is parameterized as a 

quadratic or power function of snow density (Eq. 2.11; Oleson et al., 2010) (Eq. 2.12; Yen, 1981; 

Douville et al., 1995; Vionnet et al., 2012). 

 𝜆𝑠 = 𝜆𝑎 + (𝑎𝜆𝜌𝑠 + 𝑏𝜆𝜌𝑠
2)(𝜆𝑖 − 𝜆𝑎) [2.11] 

 
𝜆𝑠 = 𝑐𝜆 (

𝜌
𝑠

𝜌
𝑤𝑎𝑡𝑒𝑟

)

𝑛𝜆

 [2.12] 

 

Equation Parameters 

[2.11] 𝑎𝜆 = 7.75 ∙  10
−5m3kg−1 ; 𝑏𝜆 = 1.105 ∙  10

−6 m6 kg−2  
[2.12] 𝑐𝜆 = 2.22 𝑊 m−1 K−1 ; 𝑛𝜆 = 1.88 

Table 2.4: Parameter values for snow thermal conductivity parameterizations. 

Fixed snow thermal conductivity is also used (Cox et al., 1999; Smirnova et al., 2000) with a 

value ranging around 0.265 W m-1 K-1. 
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Turbulent fluxes 

Turbulent heat fluxes, namely latent heat flux (𝐿𝐸) and sensible heat flux (𝐻), are commonly 

approximated through a first-order closure:  

 𝐻 = 𝑐𝑎𝜌𝑎𝐶𝐻𝑉(𝑇𝑠𝑢𝑝 − 𝑇𝑎) [2.13] 

 𝐿𝐸 = 𝐿𝐻𝜌𝑎𝐶𝐻𝑉(𝑞𝑠𝑢𝑝 − 𝑞𝑎) [2.14] 

where 𝑐𝑎 and 𝜌𝑎 are specific heat capacity and density of air, respectively, 𝐿𝐻 is the latent heat, 

and 𝐶𝐻 is the exchange coefficient. This latter coefficient depends on atmospheric stratification, 

the surface roughness length for momentum (𝑧0) and a scalar surface roughness length (𝑧0ℎ). 

Even though values of 𝑧0 and 𝑧0ℎ are flow-dependent, they are generally assumed as constant 

parameters. The exchange coefficient can be estimated through the Monin-Obukhov similarity 

theory. However, the implementation of this approach is challenging mainly due to the 

computational cost required to iteratively solve unstable conditions and the surface decoupling in 

stable conditions (Louis, 1979). An effective alternative relies on the parameterization of the 

exchange coefficient as a function of the Richardson number (𝑅𝑖𝐵) and the exchange coefficient 

for neutral stratification (𝐶𝐻𝑁) : 

 𝐶𝐻 = 𝑓(𝑅𝑖𝐵) 𝐶𝐻𝑁 [2.15] 

 
𝑅𝑖𝐵 =

𝑔𝑧𝑉(𝑇𝑎 − 𝑇𝑠𝑢𝑝)

𝑇𝑎 𝑉
2  [2.16] 

 
𝐶𝐻𝑁 = 𝑘2 [ln (

𝑧𝑉

𝑧0
)]
−1

[ln (
𝑧𝑇

𝑧0ℎ
)]
−1

 [2.17] 

where 𝑧𝑉 and 𝑧𝑇 are the measurement elevations of wind speed (generally 10 m) and air 

temperature and humidity (usually 2 m), respectively. 

The iterative solution can be approximated through an analytical function: 

 

{
  
 

  
 

UNSTABLE CASE (RiB < 0)

𝑓(𝑅𝑖𝐵) = 1 −
3 𝑐 𝑅𝑖𝐵

1 + 3 𝑐2 𝐶𝐻𝑁(−𝑅𝑖𝐵𝑧𝑉/𝑧0)1/2

STABLE CASE (RiB > 0) 

𝑓(𝑅𝑖𝐵) = [1 +
2 𝑐 𝑅𝑖𝐵

(1 + 𝑅𝑖𝐵)1/2
]
−1

 [2.18] 
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where c is set equal to 5 (Louis, 1979). 

Snowpack liquid water content 

The liquid water content within the snowpack plays an important role, since it strongly impacts 

the snow metamorphism, the heat exchanges, the compaction dynamics and the mechanical 

stability. Nevertheless, its high horizontal variability makes this variable hard to model and 

measure. Even though the rapid gravitational drainage of liquid water from highly permeable 

snow benefits from the presence of preferential paths (Albert et al., 1999), the capillary tension 

retains some water volume and hinders the flow among snow layers with different texture 

(Hirashima et al., 2010). The liquid content can be expressed as a volumetric water content or a 

water saturation depending on the snow porosity (Essery et al., 2013). 

Generally, the common formulation for the liquid water percolation within the snowpack calls 

for a conceptual bucket approach considering the snow layers as stacked water reservoirs with a 

homogenous volumetric water content (Lafaysse et al., 2017). When the stored water exceeds the 

maximum liquid water-holding capacity, the excess water drains towards the underlying layer. 

Several approaches allow to define the volumetric capacity of each layer (Boone and Etchevers, 

2001; Oleson et al., 2004). Many models neglect the storage of liquid water within the snowpack 

(Douville et al., 1995; Cox et al., 1999). 

2.3.2 A critical review of the state of the art 

Several snowpack models have been developed with highly variable degree of complexity, 

mainly depending on their target application, such as hydrological forecasting, avalanche 

prediction, climate modelling, and the availability of computational resources and data.  

Boone and Etchevers (2001) identified three main categories of snow modelling schemes. The 

first class consists of simple force-restore schemes of composite snow-soil systems (Douville et 

al. 1995; Yang et al. 1997) and single explicit snow layer schemes (Verseghy 1991; Slater et al. 

1998). At a higher level of complexity are the detailed internal-snow-process schemes (Anderson 

1976; Brun et al. 1989; Jordan 1991), which simulate the evolution of snow microstructure and 

snowpack stratification and require a large computational cost. An intermediate category gathers 
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systems resulting from simplified versions of the physical parameterization schemes with a 

reduced snowpack layering (Lynch-Stieglitz 1994; Sun et al. 1999).  

HTESSEL (Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land) (Viterbo and 

Beljaars 1995; Van Den Hurk et al. 2000; Balsamo et al. 2009; Dutra et al., 2010) is a monolayer 

snowpack model based on energy and mass balances with a diagnostic representation of snow 

liquid water. Dutra et al. (2011) performed a multi-layer version of HTESSEL snow scheme 

through the introduction of a prognostic approach for the modelling of snow liquid content.  

The multilayer snow module implemented in the physically-based distributed hydrological 

model GEOtop (Zanotti et al., 2004; Rigon et al., 2006; Endrizzi et al., 2014) allows to consider 

the effect of the local topography thanks to a discretization of the landscape based on digital 

elevation data. This approach enables to accurately evaluate the radiative balance and thus the 

surface temperature.  

Boone and Etchevers (2001) performed an intercomparison analysis among three snow models 

of increasing complexity. ISBA-FR single snow layer scheme of the composite Interactions 

between Soil, Biosphere, and Atmosphere (ISBA) force–restore model (Douville et al. 1995).  

The highly detailed CROCUS multilayer snow model (Brun et al. 1989, 1992; Vionnet et al. 

2012) simulates the physical and microstructural evolution of snowpack and its stratification (up 

to 50 layers) through a dynamic layering scheme. The coupled ISBA–CROCUS model (ISBA-

ES) consists of a three-layers explicit snow-scheme relying on detailed physical 

parameterizations, internal-snow-process schemes (Anderson, 1976), and a relatively fine 

vertical resolution.  

Among the most sophisticated models, the snow multilayer model SNOWPACK (Bartelt and 

Lehning, 2002; Lehning et al., 2002) allows a complete depiction of snow microstructure and 

metamorphism. The model supplies an accurate physical description of snowpack, where each 

layer is defined through its macro- and microscopic properties (arbitrary number of snow layers). 

By employing a deforming material Lagrangian coordinate system, a dynamic snowpack mesh 

enables considering wind erosion and snowdrift, transport and refreezing of meltwater, runoff, 

water vapor sublimation and snowfalls by adding of removing finite elements in the existing 

grid.  
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Many studies aimed at assessing performance of models with different levels of detail and 

parameterizations with the main purpose of relating differences in model behaviour to 

differences in model structure (Essery et al., 1999; Boone and Etchevers, 2001; Feng et al., 

2008).  

Recently, several intercomparison project contrasted different snow models with the purpose of 

analysing the impact of schemes complexity on the resulting simulations: SnowMIP (Essery and 

Etchevers, 2004; Etchevers et al., 2004), SnowMIP2 (Rutter et al., 2009), PILPS2d (Schlosser et 

al., 2000; Slater et al., 2001), PILPS2e (Bowling et al., 2003; Nijssen et al., 2003), Rhône-AGG 

(Boone et al., 2004). Generally, the comparison results confirmed that models greatly differ in 

predicting snow accumulation and ablation dynamics. The uncertainty affecting the simulations 

turns out to be higher whenever snow melt occurs, during spring season, and in case of mid-

winter melt events. Almost all the studies agree on stating that no overall optimal modelling 

scheme can be identified, since the quality of the predictions strictly depends on their 

application, and the topographic, meteorological and vegetation features of the modelling 

domain (Rutter et al., 2009). Furthermore, it is noteworthy that an increasing model complexity 

does not ensure an improvement of simulations. 

Fortunately, in addition to model simulations, other independent snow-related data sources are 

available, namely ground-based measurements and remotely-sensed observations (Barrett, 2003), 

which are discussed in the following Sections. 

2.4 Snowpack in-situ observations 

In-situ snow observational data can be supplied by AWS or through manual measurements. 

However, since ground-based observations only provide point values, they are site-dependent 

and they do not manage to well catch the spatial variability of the snowpack due to the 

heterogeneity of both climate and terrain with respect to the network density (Raleigh et al., 

2016). In addition to the uncertainty about their spatial representativeness (Lòpez-Moreno et al., 

2013a), field measurements are generally affected by an instrumental error (Lundquist et al., 

2015) and subjected to distortions due to wind action, local topographic features and vegetation 

interactions. Nevertheless, the main strength of the AWS is the supply of continuous 

observations allowing to retrieve the temporal evolution of the snowpack. 
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The snow height is the most widely available observed variable, which is typically measured 

with a calibrated snow probe. Under the same local conditions, snowpack depth is generally 

easier to estimate with respect to the snow density, requiring an elaborate field-work (Sturm et 

al., 2010; Lòpez-Moreno et al., 2011). As previously explained, because snow density has a 

lower variability than snow depth (Lòpez-Moreno et al., 2013b), generally fewer measurements 

are needed.  

However, collecting in-situ measures at large scales is challenging, since the variability and 

heterogeneity of processes in snow-dominated areas are faced with a lack of instrumental 

records, especially for steeps slopes and high-elevation areas, which are usually not easily 

accessible. Viviroli et al. (2011) state that generally the gauging network is representative for 

intermediate altitudes, but its representativeness gradually decreases with the increasing altitude. 

A general lack of observational data is even getting worse since existing monitoring networks 

face a tendency for reduction in numbers due to the high operating cost of measuring stations in 

remote mountain areas with harsh environmental conditions (Viviroli et al., 2011). 

At regional scale, airborne and terrestrial Lidar now enable snow depths measurements with a 

centimetric accuracy. Nevertheless, these techniques are costly and have a low temporal 

resolution (seasonal scale). A terrestrial time-lapse camera is a cost-effective device to monitor 

the snow cover variability in space and time, even though its use is restricted to limited spatial 

scales (less than 1 km2) (Revuelto et al., 2014; Arslan et al., 2017).  

Snow density observations are somewhat limited even in well studied regions (Jonas et al., 

2009), and often completely absent in less monitored locations. Ground-based SWE point sample 

(e.g. from snow pillows for SWE measurements) provides a reliable measure of this hydrological 

quantity. However, because direct SWE observations are not widely available, a good proxy can 

be retrieved by multiplying the snow height by the density. Molotch (2009) highlighted the need 

and high value of more detailed and extensive field monitoring of SWE. Likewise, Viviroli et al. 

(2011) stressed the important and necessary task of overcoming the lack of observational data, 

especially at high altitudes, in order to better understand the processes occurring in mountainous 

areas. 
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2.5 Snow remote sensing 

Because of the difficulties in obtaining ground measurements over mountain regions, remote 

sensing represents an important tool for monitoring snow properties at larger scales and dealing 

with the lack of in-situ observational data over high elevation areas. The interactions between 

snow cover and electromagnetic radiation of different frequencies allow to discern snow cover 

from other terrestrial surfaces using satellite observations based on different active and passive 

techniques (Nolin, 2010). Snow cover can be detected through two types of sensors relying on 

(1) a combination of the visible and infrared, or (2) microwave, portions of the electromagnetic 

spectrum (Hall et al., 2005; Scherer et al., 2005; Schmugge et al., 2002). These methods are 

limited by several factors, such as clouds, forest cover fraction, terrain heterogeneity and 

precipitation (Frei et al., 2012).  

2.5.1 Visible and near-infrared 

Under specific conditions (e.g. absence of cloudiness), the snow cover detection (i.e. presence or 

absence of snow) is relatively straightforward through visible observations because of the high 

albedo of snow (up to 80% or more in the visible part of the electromagnetic spectrum) with 

respect to most land surfaces. Since the visible imagery captures the sunlight scattered back to 

the satellite, one of the main issues of the visible imagery is the lack of sufficient illumination 

(e.g. night-time). The presence of cloud cover hinders the detection of snow cover, as well. 

Indeed, because a sizeable portion of visible radiation is reflected by clouds, any visible radiative 

information about the surface is prevented from reaching the sensor. Thus, a cloud removal 

algorithm is needed to generate meaningful snow products (Gascoin et al. 2015). Moreover, 

because the albedo of clouds and snow is often similar, the discrimination between cloud- and 

snow-covered surfaces can be challenging. However, near-infrared bands enable to distinguish 

between snow and most clouds because the near-infrared reflectance of most clouds is high while 

the snow one is lower (Frei et al., 2012). Also the vegetation can obstruct visible and infrared 

information about snow. Indeed, forest canopies protruding above the snowpack reduce the 

surface albedo (Robinson and Kukla, 1985) and partially or completely obscure the underlying 

surface, making it difficult to the snow detection (Nolin, 2004; Derksen, 2008). Lastly, surface 

heterogeneity can affect the interpretation of visible and infrared imagery. For instance, the 

presence of glaciers may contribute to the overestimation of snow covered area.  
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Several satellite sensors are currently used to detect snow cover from multispectral imagery. 

The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) was launched in 1999 

and it flies on NASA’s Earth Observing System (EOS) Terra satellite to provide observations of 

several geophysical variables, including snow. A near-twin MODIS instrument is also flying on 

board the Aqua platform, which was launched in 2002. Aqua also hosted the Advanced 

Microwave Scanning Radiometer – Earth Observing System (AMSR-E) until its failure in 

October 2011. The MODIS instrument measures radiation in 36 spectral bands, including the 

visible, near infrared, and infrared parts of the electromagnetic spectrum. A fully-automated 

algorithm provides a hierarchy of snow products based on MODIS observations, including maps 

of snow-covered areas (SCA, binary snow/no-snow maps), fractional snow cover area (FSC) 

(Salomonson and Appel, 2004), and daily snow albedo (Klein and Stroeve, 2002) at a good 

spatial resolution (500 m), and frequent coverage (daily at mid to high latitudes) (Hall and Riggs, 

2007; Riggs et al., 2006). In addition, an 8-day composite using observations from prior days 

allows to detect snow cover wherever persistent cloudiness limits the number of days available 

for surface observations. The SCA product allows the evaluation of the snow cover duration 

(SCD), snow cover start (SCS), and snow cover melt-out dates (SCM), and the snow coverage in 

a watershed. The MODIS snow-mapping algorithm uses a normalized difference between 

MODIS band 4 (5.45–5.65 mm) and 6 (1.628–1.652 lm) and many additional spectral and 

threshold tests. Indeed, snow covered land typically has a very high reflectance in visible bands 

and very low reflectance in the shortwave infrared. The Normalized Difference Snow Index 

(NDSI) reveals the magnitude of this difference, with values greater than 0 typically indicating 

the presence of at least some snow. It is noteworthy that since some water bodies may also have 

a high NDSI value, a further criterion on the red reflectance is generally added to remove their 

detection. A thermal mask is also included to remove erroneous snow detection over locations 

where the presence of snow is unlikely.  

The Visible Infrared Imaging Radiometer Suite (VIIRS) of the National Snow and Ice Data 

Center (NSIDC) was designed to improve upon the capabilities of the operational Advanced 

Very High Resolution Radiometer (AVHRR) and provide observation continuity with MODIS. It 

is a scanning radiometer, which acquires visible and infrared imagery and global radiometric 

measurements of the land, atmosphere, cryosphere, and oceans. VIIRS currently flies on the 
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National Oceanic and Atmospheric Administration (NOAA) Suomi National Polar-orbiting 

Partnership (NPP) spacecraft, a joint mission implemented by NASA and NOAA. VIIRS snow 

and ice products include Ice Surface Temperature (IST), Sea Ice Characterization and Snow 

Cover data record, which encompass two products, namely binary and fractional snow cover 

products. Information on snow cover distribution is retrieved from the radiance data acquired by 

VIIRS sensor through the NDSI (bands I1 and I3) and a series of quality control screens 

designed to alleviate likely errors and flag uncertain snow detections (Key et al., 2013). Binary 

snow cover is derived at 375 m spatial resolution, whereas the spatial resolution of the fractional 

snow cover product is 750 m. Both products apply to the land surface only under clear-sky 

conditions. VIIRS scans the entire globe every one to two days. As such, most locations on Earth 

are imaged at least per day and more frequently where swaths overlap, for example near the 

poles. The repeat cycle is 16 days (quasi 8-day). 

Sentinel-2 (S2) constellation of the European Earth observation program Copernicus is a polar-

orbiting, multispectral high-resolution imaging mission for land, ocean and atmospheric 

monitoring. In order to fulfil revisit and coverage requirements and provide robust datasets for 

Copernicus Services, the constellation consists of two satellites, Sentinel-2A and Sentinel-2B, 

which were launched on 23 June 2015 (operational in early 2016) and 7 March 2017, 

respectively. Multi-Spectral Imager (MSI) instruments provide fine spatial resolution images 

having 13 bands in total, in which four bands (blue, green, red and NIR) with a spatial resolution 

of 10 m and six bands (including SWIR band) with a spatial resolution of 20 m. Two S2 data 

products are currently available. The product types are the Level-1C Top-Of-Atmosphere (TOA) 

reflectances and Level-2A Bottom-Of-Atmosphere (BOA) reflectences. Snow detection can be 

straightforwardly retrieved from both the product type through an NDSI-based approach. 

A visible- and infrared-based product widely used for large-scale application is the US National 

Ice Center (NIC) Interactive Multisensor Snow and Ice Mapping System (IMS). IMS mapping of 

snow extent (SE) basically relies on visible and near infrared imagery, but includes data from 

different sources. This product continuously undergoes improvements and refinements (Helfrich 

et al., 2007). Since the late 1990s, daily IMS maps are provided with a spatial resolution of 4 km 

(previously weekly maps with a spatial resolution of 24 km). The key feature distinguishing IMS 

from other products is its processing by trained analysts who combine several technological 
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capabilities as well as sources of information. This data processing allows to supply daily 

estimates of the SE across the globe, regardless of the presence of clouds. The primary purpose 

of this satellite product is to provide input to atmospheric forecast models. For this purpose, 

continued product improvements are advantageous. As a record for evaluating long term 

environmental change, however, the methodological changes result in temporal inconsistencies 

in the data set that might be difficult to distinguish from actual variations in SE. To maintain 

product continuity and a viable long-term record, IMS continues to produce a coarse (24 km) 

resolution version of the data set.  

2.5.2 Passive microwave 

Since snow grain dimensions are of the same order of magnitude of microwave wavelengths, 

snow well succeeds in scattering the microwave radiation naturally emitted from the Earth’s 

surface (Matzler, 1994). The presence of snow can be straightforwardly detected since the 

microwave emission from a snow-covered surface is lower with respect to a snow-free surface 

(Hall et al., 2005; Tedesco and Kim, 2006; Grody, 2008). Furthermore, since the amount of 

scattering is theoretically proportional to the amount of snow grains, microwave sensors allow to 

estimate the SWE within the snowpack. Unlike visible and infrared, since passive microwave 

does not depend on the presence of sunlight, snow cover is detected under many (non-

precipitating) cloudy conditions.  

Nevertheless, snow monitoring through passive microwave sensors is limited by several factors. 

One of the major limitations is the snowpack status (i.e. dry or wet snow). In the presence of wet 

snow, microwave emission of liquid water can mask the snow signal and prevent microwave 

sensors from detecting snow (Frei et al., 2012). Furthermore, because of the relatively weak 

microwave signal emitted by terrestrial surfaces, microwave sensor footprints are necessarily 

large (about 25 km) (Dietz et al., 2012; Frei et al., 2012; Dozier et al., 2016). Uncertainties in 

snow depth and SWE estimates deeply depends on the physical structure of snowpack which 

significantly varies in space (Chang et al., 1976; Sturm et al., 1995) and time (Langham, 1981) 

and can alter the snow backscattering and emission. Therefore, a signal change measured by the 

satellite sensor due to snow metamorphism can be misinterpreted as a signal change due to a 

change in SWE. Microwave sensors have a limited capability in detecting the SWE in regions 

with ephemeral or patchy snow cover (Vuyovich et al., 2014), and they are affected by an overall 
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tendency to underestimate SWE during snowfall and melt seasons (Dozier et al., 2016), mainly 

ascribable to the high scattering in mountain regions due to relief (Li et al., 2012). Also the 

vegetation, which emits microwave radiation, can hinder the snow detection (Tedesco et al., 

2005). Furthermore, when snowpack reaches a certain critical depth the relationship between 

snow-amount and microwave brightness temperature reverses (Markus et al., 2006; Derksen, 

2008). When SWE exceeds around 150 mm the emission by the snowpack of microwave band 

radiation is greater than scattering, resulting in a positive relationship between SWE and 

brightness temperature. This is an additional source of uncertainty in SWE retrievals for deep 

snowpack.  

Some of the difficulties in interpreting the remotely-sensed images are even more limiting in 

regions with complex terrain (Dozier, 1989; Dietz et al., 2012), due to the variability of slope, 

aspect, and land cover. Despite of their limitations, several studies demonstrated that microwave 

sensors generally well succeed in catching the overall seasonal variations of snow accumulation, 

melt timing, and season length at the macro scale. 

Historical passive microwave measurements are available from the Scanning Multichannel 

Microwave Radiometer (SMMR) instrument (1978–1987), and the Special Sensor 

Microwave/Imager (SSM/I) instrument (1987 through present), with some slight differences in 

the frequency bands measured, overpass time, swath width, native footprint resolution, and 

coverage (Derksen and Walker, 2003; Brodzik et al., 2007). AMSR-E provided a suite of 

measurements to make it spectrally compatible with both SMMR and SSM/I at higher spatial 

resolution (Kelly et al., 2004; Derksen et al., 2005). The global AMSR-E SWE products consist 

of daily, five-day maximum and monthly average SWE estimates. 

A promising research currently aims at combining satellite, ground-based observations and 

models (Frei et al., 2012). An example is the GlobSnow product provided by the European Space 

Agency (ESA). This is a long-term snow cover data set including global gridded information on 

SE and SWE with sufficient homogeneity to be suitable for climate change analysis (Pulliainen, 

2010). The combination of station observations and snowpack modelling into passive microwave 

retrieval algorithms provides an accurate product useful for analyses at many different spatial 

scales, and for near-real time as well as climatological studies (Pulliainen, 2006). From 1995 

until 2012 the SE product was based on satellite visible and infrared observations from Envisat 
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Advanced Along-Track Scanning Radiometer (AATSR) and European Remote Sensing-2 Along 

Track Scanning Radiometer-2 (ERS-2 ATSR-2) sensors (GlobSnow-1 project). Because of the 

failure of Envisat satellite (April 2012), the following GlobSnow-2 project has further improved 

the retrieval methodologies for SE and SWE and has introduced VIIRS to replace the previous 

sensor, as gap fillers before the launch of the Sentinel-3 sensor. Four sub-products are available: 

daily, weekly and monthly snow coverage in % of snow cover and daily 4-classes product. 

2.5.3 Active microwave 

Imaging in the microwave region has the main advantage over passive optical imaging of being 

independent of clouds and of solar irradiance. However, due to the low spatial resolution of 

passive microwave remote sensing (several to tens of kilometres), these sensors are excellent 

tools for snow monitoring at large scales and over uniform surfaces, but they are not useful for 

mountainous terrain (e.g. Alpine regions). Over complex orography, active microwave remote 

sensing with higher spatial resolution is needed for snow mapping. Unlike passive microwave 

sensors, which passively detect emissions coming from earth’s surface, active sensors (radar) can 

emit microwaves that reflect off the target and return to the sensors. As with passive microwave 

energy, the physical properties of the surface determine the amount and features of the 

microwave radiation bounced back to the sensor. Different types of active microwave sensors are 

used for snow detection, namely imaging radar (i.e. Real Aperture Radar and Synthetic Aperture 

Radar), non-imaging radar (also called scatterometer) and radar altimeter.  

Synthetic Aperture Radar (SAR) is an active microwave imaging device with high spatial 

resolution. This feature, along with the sensitivity of radar wavelengths to surface roughness and 

moisture content of snow, make SAR a powerful tool for detecting rapidly changing situations 

on the earth's surface occurring at any weather situation or time of the day. Usually C-band SAR 

is used for wet snow mapping, and active remote sensing with higher frequency is used for snow 

water equivalent estimation (Shi et al., 2016).  

Sentinel-1 (S1) is a polar-orbiting, all-weather, day-and-night radar imaging mission for land and 

ocean services. As with S2 mission, S1 constellation consists of two satellites, Sentinel-1A and 

Sentinel-1B, which were launched on 3 April 2014 and 25 April 2016, respectively. The 

satellites of the S1 constellation are equipped with a C-band SAR (centre frequency of 5.4 GHz), 
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which is one of the main tools for mapping and monitoring the extent of wet snow areas. 

Recently, Nagler et al. (2016) developed and validated an algorithm for retrieving snowmelt 

areas from S1 data. The Sentinel-1 mission, with its systematic and long-term acquisition 

strategy enables high resolution operational snow cover monitoring over large areas at short 

revisit intervals. Previously, C-band SAR data of the European Remote Sensing (ERS) satellites 

ERS-1, ERS-2 and Envisat, and of the Canadian RADARSAT missions have been applied for 

mapping and monitoring snowmelt area for applications at regional scale (Baghdadi et al., 1997; 

Nagler et al., 2000). The S1 spacecraft, operating in near polar sun-synchronous orbit at 693 km 

height, provides highly accurate pointing knowledge and real-time orbit determination, resulting 

in very high geolocation accuracy of the SAR products (Torres et al., 2012). The orbit repeat 

cycle is 12 days. Sentinel-1B has the same reference orbit as Sentinel-1A with a 180-degree 

orbital phasing difference to ensure a revisiting time of 6 days with the two-satellite 

constellation. In order to meet the observation requirements for a wide range of applications, the 

S1 SAR instrument supports four operational imaging modes providing different spatial 

resolution and coverage: Interferometric Wide swath (IW) mode, Extra Wide swath (EW) mode, 

Strip-Map (SM) mode, and Wave (WV) mode (Torres et al., 2012). Level-1 data (swath-based 

SAR images) are available in two main categories: Single Look Complex imagery (SLC) and 

Ground Range Detected imagery (GRD). Snow cover can be detected by exploiting the original 

backscatter statistics for speckle filtering and classification (Nagler et al., 2016). 
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With the aim of developing and testing the snow modelling system at point-scale, the selection of 

the case studies has been restricted among experimental sites, where automated weather stations 

supply meteorological and snow-related measurements of unusually high quality and 

completeness, since they are extensively verified (Morin et al., 2012; Essery et al., 2013). This 

constraint is intended to allow to reliably investigate the simulations goodness regardless of 

inconsistent and spurious in-situ measures. Indeed, the strategic requirements conditioning the 

placement of pilot sites generally entail that local features are slightly impacting (e.g. wind-

induced phenomena, slope, exposure) (Wever et al., 2015), according to the WMO standards. 

Another requirement has led to search for measurement sites located at different elevations, with 

the purpose of investigating the snow model sensitivity to varying meteorological conditions. 

Furthermore, the selection has been limited over the domain of interest, namely the Alpine 

region (Hüsler et al., 2014) (Figure 3.1). 
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3.1 Experimental sites 

In order to fulfil all the conditions, three experimental sites have been selected: 

1. Col de Porte (France); 

2. Weissfluhjoch (Switzerland); 

3. Torgnon (Italy). 

 

Figure 3.1: Overview map of Alpine perimeter (Alpine Convention, Report on the State of the 

Alps 2008). Col de Porte (France), Torgnon (Italy), and Weissfluhjoch (Switzerland) sites are 

highlighted in light blue, blue, and red, respectively. 

Hereinafter the test sites are briefly described and characterized from a meteorological point of 

view. 
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3.1.1 Col de Porte site 

The Col de Porte observatory (CDP) is located near Grenoble, in the Chartreuse massif (45°30’ 

N, 5°77’ E) at an elevation of 1325 m a.s.l. This pilot site is placed in a grassy meadow 

surrounded by a coniferous forest on the eastern side. A prominent change in the site 

environmental setting occurred during the summer 1999, when a natural barrier of trees on the 

northern side was cut, with a resulting low impact on local wind patterns. However, since 

generally very low winds are recorded, snowdrift slightly affects the spatial snow distribution at 

the site (Morin et al., 2012; Lafaysse et al., 2017). Snow cover is usually present from December 

to April, on average (Lafaysse et al., 2017). Nevertheless, during the winter season surface melt 

and rainfall events can recursively occur at the relatively low altitude of the experimental site.  

All the recorded meteorological and snow observations undergo a careful (mostly manual) 

quality control and data gaps are filled using backup sensors, or data from neighbouring days 

(depending on weather conditions). In-situ meteorological data, at the hourly resolution include 

measurements of 2 m air temperature and relative humidity, 10 m wind speed (by both heated 

and non-heated anemometers), incoming short- and longwave radiations and precipitation rates, 

whose measures are corrected for wind speed (above 1 ms-1) and temperature (Forland et al., 

1996). Precipitation phase is manually assessed using all possible ancillary information 

(Lafaysse et al., 2017). 

Snow-related observations are provided both at daily scale, and hourly time resolution. Weekly 

manual snow pits enable to collect internal snowpack information about its major stratigraphic 

properties, namely the penetration resistance, snow temperature and type, density profiles and 

the liquid water content. Furthermore, hourly records of temperature and height of vertically free 

settling disk are available. Snow depth data are manually revised to remove outliers mostly 

occurring during snowfall. An ultra-sound and a laser (since the winter season 2010-2011) 

rangers are jointly used to provide the best possible estimate. In addition, manual snow depth 

measurements are available from weekly snowpit observations. Since the season 2001-2002 

SWE has been automatically measured on a daily basis by a ground-based cosmic rays counter. 

Weekly manual SWE measurements are also available. Hourly snow albedo data are estimated 

through the radiation sensors, as the ratio between incoming and reflected shortwave radiation 

(Morin et al., 2012). In addition to threshold-based controls, albedo measurements are discarded 
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whenever snowfall occurs, or when the measured fluxes are too low. Moreover, measurements of 

snow surface and soil temperatures are hourly available. Snowmelt runoff is hourly estimated 

through two lysimeters (1 and 5 m2 surface area), as well. 

3.1.2 Weissfluhjoch site 

The Weissfluhjoch site (WFJ) (46.82°N, 9.80°E) is located at an altitude of 2540 m a.s.l. in the 

Swiss Alp, near Davos, Switzerland (WSL Institute for Snow and Avalanche Research SLF, 

2015b). This pilot site is placed in an almost flat area of a south-easterly oriented slope. At WFJ 

the snow season generally starts in October/November and lasts until June/July (Wever et al., 

2015). An automated weather station provides meteorological and snowpack measurements. The 

comprehensive multiyear dataset includes measurements of air temperature and relative 

humidity, wind speed and direction, incoming and outgoing longwave and shortwave radiation, 

snow/ice surface temperature, temperature of soil at its interface with the snowpack, snow depth 

and precipitation from a heated rain gauge. Snow temperatures are measured at 50, 100 and 150 

cm above the ground surface, using vertical rods placed approximately 30 cm apart. From 

September 2013 onwards, soil temperatures are measured at 50, 30 and 10 cm depth. 

Additionally, snowpack runoff data are supplied by a snow lysimeter with a surface area of 5 m2 

(Wever et al., 2014). The rain gauge and snow lysimeter measure at an interval of 10 min, 

whereas most other measurements are done at 30 min intervals. An undercatch correction is 

applied for the measured precipitation (Wever et al., 2014). Furthermore, where possible, data is 

quality checked and missing data are replaced from backup sensors from the measurement site 

itself, or (in only a few cases) from the MeteoSwiss weather station at 470m distance and 150m 

above the measurement site (WSL Institute for Snow and Avalanche Research SLF, 2015b). 

Lastly, an upward-looking ground-penetrating radar (upGPR) is located at about 20 m from the 

AWS and it provides 30-min data on liquid water percolation allowing to monitor the progress of 

the meltwater front (Mitterer et al., 2011; Schmid et al., 2014). 

Every 2 weeks, generally in early and in the middle of each month depending on weather 

conditions, a manual full depth snow profile is performed (WSL Institute for Snow and 

Avalanche Research SLF, 2015a), according to the guidelines from Fierz et al. (2009). The 

detailed snow profiling, carried out in the morning hours, provides measurements of snow 

temperature and snow density with a sampling resolution of 10 cm and 30 cm along the 
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snowpack vertical profile, respectively. Snow density and SWE are evaluated through snow 

cores using a 60-cm high aluminium cylinder with a cross-sectional area of 70 cm2 inserted 

vertically into the snowpack. The snow core is then weighted using a calibrated spring. In order 

to remove possible effects of the spatial variability, SWE values are adjusted by taking into 

account differences in snow height at the snow pit and the AWS. Both grain size and shape are 

evaluated by the observer using a magnifying glass. Also snow wetness is reported in five 

wetness classes as well as hand hardness in six classes (Fierz et al., 2009).  

3.1.3 Torgnon site 

Torgnon site (Tellinod, 45°50’ N, 7°34’ E) is located in Aosta Valley, a mountain region in 

northwestern Italian Alps. The experimental site is subalpine grassland, at an elevation of 2160 

m a.s.l. (Filippa et al., 2015). The area slopes lightly (4°) and it is characterized by a typical 

intra-alpine semi-continental climate, with an average annual temperature of around 3°C and a 

mean annual precipitation of 880 mm (Galvagno et al., 2013). On average, the snow season lasts 

from the end of October to late May, when the test site is covered by a thick snow cover (90-120 

cm). Since 2008, an automatic weather station provides 30-min averaged records of different 

meteorological parameters, including air and surface temperatures (HMP45, Vaisala, SI-111 and 

therm107, Campbell Scientific), soil temperature at 2-, 10-, 35-cm depths, air pressure and 

relative humidity, incoming and outgoing short- and longwave radiations, and surface albedo 

(CNR4, Kipp & Zonen), precipitation (OTT Pluvio2, Weighing Rain Gauge), soil water content 

(CS-616, Campbell Scientific), snow depth (SR50A-L, Campbell Scientific), wind speed and 

direction (WINDSONIC1-L, Campbell Scientific), ground and turbulent (i.e. latent and sensible) 

heat fluxes (Galvagno et al., 2017). 

During the snow seasons 2013/2014 and 2015/2016, SWE in-situ measurements are available 

with a sampling resolution of 6 hours (CS725, Campbell & Scientific). The sensor provides 

comprehensive SWE measures over a sizeable area of 50-100 m2, with a resulting less impact of 

several local factors (e.g. snow drifting, vegetation). Bi-weekly manual measures of snow 

density (snow pits) are available throughout all the winter seasons (3-4 measurements per month, 

on average). 
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3.2 Meteorological datasets 

The uninterrupted and consistent datasets of meteorological observations supplied by the AWS at 

the experimental sites are especially suitable for driving snowpack models.  

The snowpack thermal state strongly depends on the energy exchanges with the surrounding 

environment. Radiative fluxes and turbulent transfer of latent and sensible heats play a prominent 

role in driving snowpack dynamics (e.g. snow settling and ablation) (DeWalle and Rango, 2008). 

The main control climate forcings ruling both the surface and internal energy balance are the air 

temperature and the net incoming radiation (Lòpez-Moreno and Nogués-Bravo, 2005). The 

intensity of convective heat fluxes strongly depends on wind speed and air humidity. 

Precipitation rates supply the main input to the snowpack mass balance. When dealing with snow 

modelling an important issue is the definition of the precipitation phase. Indeed, unlike a 

snowfall event adding further snow mass, a rain-on-snow event mainly impacts the snowpack 

thermal state through the supply of advection heat (Würzer et al., 2016). Nevertheless, the 

precipitation rate is generally provided in terms of total precipitation without any partitioning 

between rain- and snowfall. At CDP site, the precipitation rate is manually partitioned, according 

to possible ancillary information, namely air temperature, relative humidity, snow depth and 

albedo observations (Morin et al., 2012). Conversely, both the Italian and the Swiss stations 

provide the total precipitation rate. Thus, at these two sites the precipitation phase has been 

defined a posteriori. According to Froidurot et al. (2014), the precipitation phase is considered as 

a binary variable, taking the value 0 for snow and 1 for rain. A logistic regression function is 

used to represent the probability p(rain) of occurrence of liquid precipitation as a function of one 

or more predictor variables X1, X2, ..., Xn (Eq. 3.1). Then, the corresponding probability 

p(snow) of occurrence of solid precipitation is accordingly derived (Eq. 3.2). Following this 

approach, the air temperature and humidity are assumed as predictor variables contributing to the 

evaluation of the probability of the precipitation phase. 

 
𝑝(𝑟𝑎𝑖𝑛) =

1

1 + 𝑒𝛼0+𝛼1𝑋1+𝛼2𝑋2+⋯+𝛼𝑛𝑋𝑛
 

[3.1] 

 𝑝(𝑠𝑛𝑜𝑤) = 1 − 𝑝(𝑟𝑎𝑖𝑛) [3.2] 
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Unlike the snowfall rate, whose estimate is affected by a higher uncertainty (Froidurot et al., 

2014), the measurements of the other meteorological forcings are generally extensively 

controlled and revised at the pilot sites (Morin et al., 2012; Wever et al., 2014). However, a 

preliminary quality check of the meteorological data has allowed to identify some temporal gaps 

in the observational time series recorded at WFJ and TGN sites. The lacking observational data 

have been filled up through a specific approach for each variable.  

At TGN site, the time series of air temperature has been reconstructed through the observations 

of the neighbouring station of Valtournenche (2497 m a.s.l.), whose measurements have been 

adjusted through a temperature-elevation regression (Figure 3.2) in order to guarantee the overall 

consistency of the dataset. Since no sizeable temporal gap of the observed air temperature has 

been detected at WFJ, the lacking values here have been filled through a linear interpolation of 

the available observations. 

 

Figure 3.2: Example of observational gaps filling of the air temperature time series through the 

measurements of the neighbouring station of Valtournenche – TGN site. 



35 CHAPTER 3 - Case studies and datasets 

 

 

 

The missing values of shortwave radiation at WFJ have been replaced through the corresponding 

observed mean value estimated by averaging the measured solar radiation at that hour of the day 

throughout the overall snow season. In order to not introduce any inconsistency, the mean values 

of shortwave radiation have been separately estimated for cloudy and not cloudy conditions 

(Figure 3.3). The same approach has been implemented to obtain a continuous time series of 

both wind speed and air temperature, since an interpolation of their observations can lead to 

spurious measurements.  

 

Figure 3.3: Example of observational gaps filling of the solar radiation time series – WFJ site. 

Because of the intermittence of precipitation events, the retrieval of useful information on the 

precipitation is generally unfeasible. Thus, the precipitation rate has been set equal to null value 

when the observational data was missing. Conversely, whenever the conditions for a solid 

precipitation phase occurred at a lacking observational time step, snowfall rates have been 

otherwise estimated according to the SWE measures, when available.  
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3.2.1 Meteorological characterization of test sites 

According to the in-situ meteorological observations, a preliminary characterization of the 

selected experimental sites has been carried out. The most ruling climate forcings, namely air 

temperature, shortwave radiation, and snowfall rate (Lòpez-Moreno and Nogués-Bravo, 2005) 

have been analysed together with the snow depth trends. 

For each pilot site, the observational data are shown over an average snow season, obtained by 

averaging all the dataset periods starting in early October until the end of July. The sizeable 

datasets of the French and Swiss stations have ensured well-representative statistics, based on 18 

and 19 full snow seasons, respectively (Table 3.1). The characterization of the TGN site has 

relied otherwise on a 4-years dataset of observational data. 

Site Dataset size Snow seasons 

CDP 18-years 1993/94, … , 2010/11 

WFJ 19-years 1996/97, … , 2014/15 

TGN 4-years 2012/13, … , 2015/16 

Table 3.1: Available datasets of the three selected experimental sites. 

The difference in the elevations of the three experimental sites entails prominent differences in 

the seasonal trends of the meteorological forcing variables. During the Swiss average snow 

season, the air temperature remains below zero degrees, with several peaks strongly negative 

(Figure 3.5). Much warmer is the average snow season at the CDP site, where the air temperature 

hovers around zero degrees, on average (Figure 3.4). Despite of the elevation of the TGN station, 

here the winter season is less cold than the Swiss one. Furthermore, a higher variability of air 

temperature affects its seasonal trend with sharp changes above and below zero degrees (Figure 

3.6). This trend is likely to be mainly due to the limited size of the observational dataset, which 

makes the statistics more sensitive to possible peculiar features of some specific snow seasons. 

As expected, different amounts of incoming solar radiation are recorded as a function of each site 

elevation. Indeed, the Swiss station, located at the highest altitude, receives more shortwave 

radiation with respect the other two downstream stations, especially the French one. 

Differences in the snowfall regime are prominent both in terms of snowfall intensity and 

seasonal cumulative snowfall. CDP and WFJ sites show roughly equivalent mean snowfall 

intensities and frequencies, except for the early and late winter, when only sparse events are 
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recorded at the French station. On the other hand, at the Italian site several heavier events are 

observed, but snowfalls occur with lower frequency. Because of differences in both the average 

duration of snow seasons and the snowfall regimes, the resulting cumulative estimates are 

strongly diversified. Thanks to the high snowfall frequency and a long snow season, cumulative 

snowfall at WFJ reaches about 1100 mm, on average. The shorter winter season at the French 

site entails lower cumulative estimate of about 600 mm. Even though the winter season lasts over 

approximately the same months at the French and the Italian sites, the lower snowfall frequency 

at TGN leads to a much lower cumulative value (around 500 mm), despite several heavy 

snowfall events. However, it is important to stress the uncertainty affecting the snowfall 

observational data, which are empirically derived. 

The differences in meteorological forcings result in different snow depth trends. At the Swiss 

station, the snowpack reaches the highest depth, up to 2 m at the late accumulation period, on 

average. At the French and Italian sites, the snow depth achieves an average maximum of around 

1 m. At CDP snow depths show the highest variability, mainly because at this low altitude the 

climatological conditions can strongly vary from year to year (i.e. average air temperature and 

snowfall rates). Conversely, snow depths at TGN reveal a higher variability during the early 

accumulation period with respect to the late snow season. 
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Figure 3.4: Meteorological characterization of CDP site – From the top-left (clockwise): Air 

temperature, shortwave radiation, snowfall and snow depth throughout 18-years average snow 

season (early October – late July). 
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Figure 3.5: Meteorological characterization of WFJ site – From the top-left (clockwise): Air 

temperature, shortwave radiation, snowfall and snow depth throughout 19-years average snow 

season (early October – late July). 
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Figure 3.6: Meteorological characterization of TGN site – From the top-left (clockwise): Air 

temperature, shortwave radiation, snowfall and snow depth throughout 4-years average snow 

season (early October – mid-June). 

3.3 Snow observational data  

When modelling the snowpack dynamics, a dataset of observations of snow-related quantities is 

needed to properly assess the accuracy of simulations. However, it is noteworthy to consider that 

the observations, as well as model predictions, are affected by some degree of uncertainty, 

mainly tied to instrumental errors.  

As previously explained, several advantages result from testing the modelling system at 

experimental sites. Firstly, at these sites in-situ observations of several variables of interest are 

largely available, and furthermore they are extensively checked and reliably adjusted. Secondly, 

the measurements are generally carried out under optimal conditions with a resulting low impact 

of local features generally affecting the recording procedure (e.g. wind-induced snow drifting).  
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3.3.1 Quality check of snow depth measures  

One of the most interesting variables is the snow depth, whose observations allow to assess how 

the model succeeds in catching the snowpack accumulation- and ablation dynamics. A 

preliminary quality check of the observational data has enabled to detect spurious measurements 

affecting the time series of snow depths at the Italian and Swiss sites, especially during the 

transition periods (early winter, late melting period) (Figure 3.7). According to the snow 

seasonality and local features, these are likely to be misleading measurements of grass. With the 

aim of not inconsistently removing actual snow measurements, the estimated snowfall rates have 

been used to better highlight the spurious measures. Thus, the time series have been accordingly 

revised in order to avoid false snow detection.  

While the CDP station provides continuous snow depth observations throughout the whole 

dataset period, at WFJ site automatic snow depth measurements have been available since the 

winter 1999/2000. Therefore, in order to be able to properly perform the forthcoming analysis, 

the Swiss dataset has been limited starting from the snow season 1999/2000 (Table 3.2). 

 

Figure 3.7: Quality check of the snow depth time series – TGN site. Grass detection is 

highlighted in blue. 
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3.3.2 SWE in-situ observations 

From a hydrological point of view, one of the most important variables is the SWE. Even though 

direct measurements of this variables are widely lacking, the experimental sites are one of the 

main sources of consistent in-situ SWE measures. Daily automatic measures are provided by the 

CDP station since the winter season 2001/2002. In light of the ruling importance of this variable 

to assess the model performances from a hydrological standpoint, the dataset of this station is 

accordingly reduced starting from this snow season (Table 3.2) 

Site Dataset size Snow seasons 

CDP 10-years 2001/02, … , 2010/11 

WFJ 16-years 1999/2000, … , 2014/15 

TGN 4-years 2012/13, … , 2015/16 

Table 3.2: Snow datasets resulting from the quality check. 

With the aim of better investigating the reliability of the observational data, a further analysis has 

been carried out at CDP site. Indeed, since measurements of both snowfall rates and SWE are 

available, their consistency has been analysed. This qualitative study has relied on the 

assumption that positive increases of SWE mainly result from snowfall events (besides possible 

snowmelt percolation). Thus, the seasonal cumulative SWE value has been compared year-by-

year with the cumulative value of snowfall rates (Figure 3.8). The two observed time series 

revealed a satisfying consistency, both in terms of correlation and mean error. 
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Figure 3.8: Consistency control between SWE and snowfall observations – CdP site. 

With a lower measurement frequency, at WFJ SWE observations are available every two weeks 

over the whole dataset period. Unlike these two pilot sites, the TGN station does not 

continuously supplies SWE measurements throughout the whole 4-years dataset period. In-situ 

6-hrs SWE measurements have been automatically recorded during two snow seasons, 

2013/2014 and 2015/2016. In order to be able to properly use these measures within the 

simulations analyses on seasonal/annual scale, the raw observational data have been smoothed 
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from possible inconsistent oscillations and anomalies (e.g. rain-on-snow events) through their 

daily average.  

3.3.3 Indirect estimation of snow-related quantities 

Even though an exhaustive knowledge of snow density is needed to properly define the 

snowpack state and its dynamics, direct continuous observations of snow density are generally 

dramatically lacking. An exception is the TGN site, where biweekly manual measurements 

provide useful information throughout the whole dataset period.  

However, thanks to the linking relation among snow depth, SWE and snow density, observations 

of at least two of these mass-related variables are enough to estimate the third one, whose 

consistency has been qualitative assessed. For instance, when direct measures of both SWE and 

snow depth are available (𝑆𝑊𝐸𝑑𝑖𝑟𝑒𝑐𝑡 [𝑚𝑚], 𝑆𝐷𝑑𝑖𝑟𝑒𝑐𝑡[𝑚]), the snow density (𝜌𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 [𝑘𝑔/𝑚³]) 

can be easily derived according to the formula:  

 
𝜌𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 =

𝑆𝑊𝐸𝑑𝑖𝑟𝑒𝑐𝑡
𝑆𝐷𝑑𝑖𝑟𝑒𝑐𝑡

 [3.3] 

Vice versa, SWE can be indirectly estimated whenever an observation of the snow density is 

available, if a snow depth measurement is provided.  

According to this approach, at both the Swiss and the French sites bi-weekly and daily snow 

density measurements have been derived, respectively. Possible inconsistencies of the resulting 

values have been removed through a threshold-based control discarding all the snow densities 

higher than 550 kg/m3. At TGN daily snow densities have been indirectly estimated during the 

two winter seasons when SWE measures are available (i.e. snow seasons 2013/2014 and 

2015/2016). Conversely, bi-weekly SWE estimates have been derived during the other two snow 

seasons, when only manual snow densities measurements are otherwise supplied. Because the 

two sensors measuring snow depth and SWE can be not located exactly at the same point, 

however, possible inconsistencies can arise due to the spatial variability in snow cover, 

especially under shallow snow conditions (Essery et al., 2013; Lafaysse et al., 2017). The 

resulting time series of snow depth, SWE and snow density are shown below for the French 

(Figure 3.9), the Swiss (Figure 3.10), and the Italian (Figure 3.11) sites.  
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Figure 3.9: In-situ observations of hourly snow depth (a), daily SWE (b), and indirect daily 

estimates of snow density (c) – CDP site. 

 

 

a) 

b) 

c) 
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Figure 3.10: In-situ observations of hourly snow depth (a), bi-weekly SWE (b), and indirect bi-

weekly estimates of snow density (c) – WFJ site. 

 

 

 

 

a) 

b) 

c) 
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Figure 3.11: In-situ observations of 30-min snow depth (a), daily SWE (b, II and IV snow 

seasons), bi-weekly snow density (c), and indirect estimates of bi-weekly SWE (b), daily snow 

density (c, II and IV snow seasons) – TGN site. 

Several other snow-related variables of interest are available at the pilot sites, namely the snow 

surface temperature and albedo, snowmelt runoff, and soil temperatures. As regards the surface 

albedo, it is noteworthy to underline that observations of this variable at the TGN site are 

available only in the years 2012 and 2013. 

a) 

b) 

c) 
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The multilayer snowpack model has been designed to be suited to its coupling with DA schemes 

for real-time applications. The snow model relies on a mass- and energy-balance scheme 

allowing to reproduce some of the main physical processes occurring within the snowpack (i.e. 

accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass 

exchanges). 
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4.1 Snow multilayer mass- and energy-balance model 

From a hydrological standpoint, the most relevant quantities to be predicted are the SWE and the 

snowmelt. The evolution of snow microstructure, snowpack stratification, and snow 

metamorphism are ruling processes of critical importance for the avalanches forecasting (Bartelt 

and Lehning, 2002; Vionnet et al., 2012). However, these snow dynamics are of less interest in 

most hydrological applications and thus they are here neglected.  

Since the aim is to develop a snow model suitable to be coupled with multivariate DA schemes, 

the degree of model complexity is limited in order to facilitate the assimilation procedure while 

maintaining a fundamental physical consistency (Slater and Clark, 2006; Magnusson et al. 2014). 

This purpose leads to some model simplifications of both snowpack scheme and physics (liquid 

water storage and refreezing process are not included). The introduction of a finer snow layering 

scheme, with respect to the simple discretization described below, would add a further challenge 

in the assimilation of observed data through DA techniques involving state-averaging operations. 

Indeed, the implementation of a multivariate DA scheme would be much more demanding since 

a higher number of layers (i.e. increased state size) entails larger computational requirements. 

The multilayer scheme consists of a 2-layers discretization for snowpack and 2-layers for soil 

(Figure 4.1). The scheme has a seasonally variable number of layers ranging from a minimum of 

two, in snow free condition, up to a maximum of four layers, in presence of snow cover. This 

dynamic layering scheme is adopted with the aim of solving the model energy balance in both 

snowy and snowless conditions without relying on a ‘model switching’ algorithm. Both snow 

and soil upper layers are much thinner than the underlying ones so that the top layer temperature 

can be considered as an acceptable approximation of the skin temperature, whose measures can 

be more efficiently assimilated. The model is driven by meteorological data, namely air 

temperature, wind velocity, relative air humidity, precipitation and incident shortwave radiation, 

to provide a complete estimate of snowpack state in an explicit surface energy balance 

framework. Model state consists of snow surface temperature (𝑇𝑠 , [°𝐶]), snow temperature at the 

interface between the two snow layers (𝑇𝑚 , [°𝐶]), surface soil temperature (𝑇0 , [°𝐶]), deep soil 

temperature (𝑇𝑑 , [°𝐶]), snow water equivalent and snow density of top (𝑊𝑠 , [𝑚𝑚]; 𝜌𝑠 , [𝑘𝑔/

𝑚³]) and bottom (𝑊𝑚 , [𝑚𝑚]; 𝜌𝑚 , [𝑘𝑔/𝑚³]) snow layers, surface albedo(𝛼, [−]). 
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Figure 4.1: Scheme of the multilayer snowpack model - Energy and mass fluxes between 

adjoining layers and atmosphere are shown. 

The thicknesses of soil layers are fixed through reference depths at 30 cm and 2 m (𝑧𝑑 and 𝑧𝑦). 

Snow layers vary their thickness (ℎ𝑠 and ℎ𝑚) according to the snow dynamics (i.e. snowfalls, 

sublimation, density changes, and snow melting) without any constraining limit. Deep soil 

temperature (𝑇𝑦) is the model boundary condition. Temperatures (𝑇𝑠 ,𝑇𝑚 ,𝑇0 , 𝑇𝑑 ) are defined as 

average temperatures of the control volumes shown in Figure 4.2. The top and bottom 

boundaries of each volume are set in the middle of the thickness of the two corresponding 

consecutive layers. 
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Figure 4.2: Scheme of the snow energy-balance model - Control volumes and model layers. 

4.2. Model snow physics parameterizations  

The snow model solves both energy and mass balances with an integration time step of 15 

minutes. The model parameterizations of the main processes occurring within the snowpack are 

described below. 

4.2.1 Mass balance 

Snow mass balance equations evaluate SWE of each snow layer accounting for snowfalls (Sf), 

sublimation process (subl), melting rates of both the two snow layers (Ms and Mm) and mass 

transfer between them (D). Since neither the liquid storage nor the refreezing process is included 

within the snowpack model, meltwater is assumed to drain directly as surface runoff (no 

infiltration into the soil). 

 𝑊𝑠(𝑡) = 𝑊𝑠(𝑡 − 1) +  𝑆𝑓 −𝑀𝑠 − 𝑠𝑢𝑏𝑙 − 𝐷 [4.1] 

 𝑊𝑚(𝑡) = 𝑊𝑚(𝑡 − 1) + 𝐷 −𝑀𝑚 − 𝑠𝑢𝑏𝑙 [4.2] 

 𝐷 =
1

𝑋
𝑊𝑠 𝑑𝑡 [4.3] 

The mass transfer from the snow surface layer downward is empirically parameterized as a 

function of the SWE and a temporal scale of the process (X). This parameter has been defined 

through several tests at different measurements sites in order to obtain a constant value allowing 

to maintain a thin snow surface layer. From a physical point of view, this parameterization can 
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be assumed to contribute to the gravitational snowpack settling thanks to a consistent update of 

the snow density of both the snow layers.  

4.2.2 Density 

Snow density is updated according to the parameterization proposed by Anderson (1976) (Sect. 

2.3.1, Snow compaction). As previously explained, this formulation considers both the 

compaction and the destructive thermal metamorphism. Snow compaction is evaluated as the 

ratio between the weight of the overlying snow and a viscosity coefficient, which stands for the 

snow resistance to a certain pressure and evaluated as an exponential function of snow 

temperature and density (Mellor, 1964; Kojima, 1967). Thermal metamorphism is estimated as a 

function of snow temperature and density. The influence of settling is higher in new snow layers 

(50-150 [kg/𝑚3]) up to a density value of 250 [kg/𝑚3]. In case of snowfall, snow density of the 

upper layer is evaluated as a weighted average between its current value and the fresh snow 

density (Sect. 2.3.1, Fresh snow density). Fresh snow density is evaluated according to the air 

temperature (Hedstrom and Pomeroy, 1998). 

4.2.3 Energy balance  

The model evaluates the net heat fluxes in each layer and the conductive heat fluxes between 

adjoining layers according to Fourier law. The surface heat flux (𝐺⃗) is estimated by considering 

the resulting net shortwave and longwave radiations (𝑅⃗⃗𝑆𝑤,𝑛𝑒𝑡 , 𝑅⃗⃗𝐿𝑤,𝑛𝑒𝑡), sensible (𝐻⃗⃗⃗) and latent 

(𝐿𝑆⃗⃗⃗⃗⃗) heat fluxes, the advection heat flux (𝑄⃗⃗𝑚𝑖𝑥) due to liquid precipitation: 

 𝐺⃗ = 𝑅⃗⃗𝑆𝑤,𝑛𝑒𝑡 + 𝑅⃗⃗𝐿𝑤,𝑛𝑒𝑡 + 𝐻⃗⃗⃗ + 𝐿𝑆⃗⃗⃗⃗⃗ + 𝑄⃗⃗𝑚𝑖𝑥 [4.4] 

Both the incoming (positive) and outgoing (negative) longwave radiation components are 

estimated through the Stephan-Boltzmann law, as a function of the surface temperature (i.e. the 

temperature of snow/soil depending on the presence/absence of snow cover) and the air 

temperature, respectively. While the surface emissivities are considered as constant values, the 

air emissivity varies over time according to both wind speed and air temperature. 

The heat flux from liquid precipitation across the snowpack surface is a function of rain 

emissivity (𝜀𝑝), the surface specific heat (𝐶𝑠), the amount of rain (𝑃𝑙) and the temperature 

gradient: 
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 𝑄𝑚𝑖𝑥 =
𝜀𝑝𝐶𝑠𝑃𝑙(𝑇𝑎 − 𝑇𝑠𝑢𝑝)

𝑑𝑡
 [4.5] 

The net shortwave radiation (𝑅𝑆𝑤,𝑛𝑒𝑡) is evaluated as a fraction of the incident solar radiation 

(𝑅𝑆𝑤,𝑖𝑛𝑐), as a function of the surface albedo: 

 𝑅𝑆𝑤,𝑛𝑒𝑡 = (1 − 𝛼) ∙ 𝑅𝑆𝑤,𝑖𝑛𝑐 [4.6] 

The penetration of shortwave radiation into the snowpack is estimated after Anderson (1976). 

According to this formulation, solar radiation decays exponentially as a function of snow depth 

 𝑅𝑆𝑤↓ = 𝑅𝑆𝑤,𝑛𝑒𝑡 ∙ exp (−𝜈 ∙ 𝑧) [4.7] 

where 𝑅𝑆𝑤↓ is the fraction of solar radiation penetrated within the snowpack; ν is the extinction 

coefficient, set equal to 0.2 𝑐𝑚−1 (constant value); z is the penetration depth [𝑐𝑚]. 

4.2.4 Surface albedo 

In snow cover condition, the surface albedo is updated through the empirical parameterization 

proposed by Douville et al. (1995). The albedo is predicted as a prognostic variable, whose 

dynamics are described by a linear decay over time under cold snow conditions and an 

exponential decay in the presence of melting snow. When a snowfall event occurs, the albedo is 

consistently updated as a function of the snowfall rate (Sect. 2.3.1, Snow albedo). 

4.2.5 Turbulent fluxes 

Sensible and latent heat fluxes are evaluated following the bulk formulation: 

 𝐻 = 𝑐𝑝𝜌𝑎𝐶𝐻𝑉(𝑇𝑠𝑢𝑝 − 𝑇𝑎) Sensible heat flux [4.8] 

 𝐿𝑆 = 𝐿𝐻𝜌𝑎𝐶𝐻𝑉(𝑞𝑠𝑢𝑝 − 𝑞𝑎) Latent heat flux  [4.9] 

Heat exchanges are proportional to the temperature (for H) and mixing ratio (for LS) gradients 

between the surface (𝑇𝑠𝑢𝑝 and 𝑞𝑠𝑢𝑝) and atmosphere (𝑇𝑎 and 𝑞𝑎). Turbulent fluxes are also 

function of air specific heat (𝑐𝑝), latent heat (𝐿𝐻) of sublimation (of vaporization when no snow 

cover is present), air density (𝜌𝑎), wind velocity, and the turbulent transfer coefficient (𝐶𝐻). This 

latter coefficient depends on the neutral conditions coefficient (𝐶𝐻𝑁), evaluated as a function of 

the surface roughness (𝑧0), and the atmospheric stability (𝜓𝑠𝑡𝑎𝑏) : 
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 𝐶𝐻 = CHN𝜓𝑠𝑡𝑎𝑏 [4.10] 

The atmospheric stability is evaluated as a function of the Richardson Bulk number, which 

depends on potential temperatures of both air and interface surface between soil/snow and 

atmosphere and wind velocity, following the empirical scheme of Caparrini et al. (2004). 

4.2.6 Heat fluxes 

Temperature variation in time (𝛥𝑇𝑖) and snow melting rate (𝑀𝑖) of each i-th layer are evaluated 

as a function of the net heat flux at its surface (𝑄𝑇𝑖), resulting from the balance of conductive 

fluxes among layers and the contribution of the penetration of solar radiation: 

  

𝛥𝑇𝑖 = 
𝑄𝑇𝑖
ℎ𝑖𝜌𝑖𝐶𝑖

 𝑑𝑡 

 

If 𝑇𝑖 > 𝑇𝑚𝑒𝑙𝑡 → 𝑀𝑖 =
𝑄𝑇𝑖_𝑚𝑒𝑙𝑡

𝐿𝑚
 𝑑𝑡 [4.11a, b] 

where Ci is the specific heat of the i-th layer. When the resulting temperature of the layer (Ti) 

exceeds the melting temperature (Tmelt = 0°C), melting occurs in the corresponding control 

volume according to the equation [4.11b], where Lm is the melting latent heat. 

4.3 Model calibration 

The snowpack model has been calibrated at the three experimental sites in order to define the 

values of the model parameters allowing the best possible simulations under different 

meteorological conditions.  

4.3.1 Sensitivity analysis of model parameters 

A sensitivity analysis has allowed to select the parameters exerting the most influence on model 

simulations. This preliminary study has been carried out by making the parameters vary within 

proper ranges and analysing the impact of their variation on the resulting model predictions. 

Parameters ranges have been estimated in order to both avoid model numerical instabilities and 

comply with possible physical constraints (Table 4.1). Two model parameters have been 

selected, namely snow roughness (𝑧0) and snow viscosity (𝜂0).  



55 CHAPTER 4 - Multilayer snowpack dynamics model 

 

 

 

The first parameter is used to evaluate the turbulent heat transfer coefficient (Sect. 4.2.5), thus it 

mainly affects the intensity of the turbulent heat fluxes, with a prominent impact on the 

snowpack internal energy balance and the resulting melting fluxes. The second parameter (see 

Snow compaction, Sect. 2.3.1) is one of the main ruling snow properties contributing to the snow 

density evolution. 

Parameters Ranges 

Snow roughness  𝑧0 [mm] [0.001 − 0.05] 
Snow viscosity  𝜂0 [kg/ms] [7 ∙ 107 − 1012] 

Table 4.1: Model calibration – Parameters ranges. 

4.3.2 Calibration strategy and procedure 

The calibration has been carried out through the commonly used split-sample calibration-

validation procedure (Klemeš, 1986). According to this approach, the dataset of each snow 

experimental site has been randomly split into two sub-datasets designed to be used within the 

calibration and the validation procedure, respectively, both relying on 15-years datasets of 

observational data (Table 4.2). This choice has been largely supported by the stability of the 

climatic conditions between the two sub-periods of each dataset.  

 

Table 4.2: Calibration and validation datasets. 

The Kling-Gupta Efficiency (KGE) criterion (Gupta et al., 2009) has been used as objective 

function. The KGE coefficient has been evaluated as: 

 𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝑎 − 1)2 + (𝑏 − 1)2 [4.12] 

where: 

- r is the linear correlation coefficient between simulated and observed values; 

- a is the ratio of the standard deviation of simulated values to the standard deviation of the 

observed ones, i.e. an estimate of the relative variability between simulated and observed 

quantities; 

Col de Porte 2001/02 2005/06 2006/07 2007/08 2009/10

Weissfluhjoch 2000/01 2002/03 2003/04 2010/11 2011/12 2012/13 2013/14 2014/15

Torgnon 2013/14 2014/15

Col de Porte 2002/03 2003/04 2004/05 2008/09 2010/11

Weissfluhjoch 1999/00 2001/02 2004/05 2005/06 2006/07 2007/08 2008/09 2009/10

Torgnon 2012/13 2015/16

CALIBRATION

VALIDATION
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- b is the ratio of the mean of simulated values to the mean of observed ones, i.e. a measure 

of the overall bias. 

The objective function (Eq. 4.12) has been evaluated by considering all the available snow-

related observations supplied by each measurement station (i.e. snow surface temperature, SWE, 

snow depth, albedo, snow density). 

The optimal KGE value is ideally equal to 1. Because the main aim is to succeed in well catching 

the observed values (theoretically, r=1, a=1, b=1), the maximization of the KGE index allows to 

minimize the Euclidian distance from the desired optimal point.  

The model calibration is performed by a two-step optimization procedure: 

1) Pre-filtering search in the parameters space; 

2) Iterative local optimization.  

Within the first phase, random combinations of parameters have been tested by making them 

vary within their ranges and evaluating the resulting values of the objective function.  

Starting from the best parameters combinations provided by the pre-filtering search, namely 

those guaranteeing the highest values of the objective function, an iterative local optimization 

has been applied to search for local KGE optima over the calibration period. A constrained 

nonlinear optimization algorithm (Interior-point Algorithm) (Wächter and Biegler, 2006) has 

been implemented to define the best parameters set.  

Finally, the calibrated parameters have been tested throughout the validation period. Table 4.3 

shows the values of the model parameters resulting from the calibration process. 

Parameters Calibrated values 

Snow roughness  [mm] 0.0226 

Snow viscosity  [kg/ms] 108 

Table 4.3: Model calibration – Calibrated values of the model parameters. 
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4.4 Open loop simulations 

The snowpack model has been tested at each experimental site. Since the system solves both 

mass- and energy- balances with an integration time step of 15 minutes, the observed 

meteorological forcings have been accordingly downscaled. 

The following Sections show the Open Loop (OL) simulations of snow mass- and energy-related 

variables, with the aim of assessing the model predictions resulting from the deterministic 

control run, which does not consider the assimilation of snow-related data (no DA scheme 

included). 

4.4.1 Snow mass-related variables 

By solving the snowpack mass balance, the model supplies simulations of SWE and snow 

density of each snow layer. The combination of these simulated quantities provides information 

on the snowpack total SWE, average density, and snow depth (Sect. 2.4; Jonas et al., 2009). 

To properly neglect the period when no snow cover is present, the time series are limited starting 

from October up to after the average melt-out date. Within this selected period zero values of 

snow depth and SWE have been considered in order to assess the model reliability in simulating 

the formation and disappearance of the snowpack. 

Figures 4.3a, b and c show the time series over the full dataset period of each measurement 

station, namely over both the calibration and the validation periods. When assessing the accuracy 

of model predictions, it is noteworthy to consider that in most cases the snow density 

observations are indirect estimates derived from the observations of snow depth and SWE in-situ 

measurements (Sect. 3.3.3). 
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Figure 4.3a: Seasonal OL snow mass-related simulations of (a) snow depth, (b) SWE, and (c) 

snow density – CDP site. The KGE indices are indicated in the upper right. 

a) 

b) 

c) 
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Figure 4.3b: Seasonal OL snow mass-related simulations of (a) snow depth, (b) SWE, and (c) 

snow density – WFJ site. The KGE indices are indicated in the upper right. 

a) 

b) 

c) 
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Figure 4.3c: Seasonal OL snow mass-related simulations of (a) snow depth, (b) SWE, and (c) 

snow density – TGN site. The KGE indices are indicated in the upper right. 

a) 

b) 

c) 
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The model succeeds in well representing the snow depth dynamics at CDP site, especially the 

melting timing. The accumulation period, instead, is mainly affected by the overestimation of 

snowfall events. This issue results from a systematic underestimation of the new snow density at 

this experimental site, where the higher average air temperature at its lower altitude (1350 m 

a.s.l.), with respect to the other two stations, impacts the estimation of the snowfall density. More 

generally, the model reveals a significant underestimation bias affecting the snow density 

simulations, which do not properly catch the snowpack settling process. As consequence, the 

snow ripening peaks range around 300 kg/m3, without never exceeding 350 kg/m3 (KGE = 0.29). 

Conversely, the SWE evolution is strongly consistent with the daily ground-based 

measurements, as proven by the considerably high KGE value of 0.86, with exception of the 

winter season 2010/2011, when a prominent underestimation is observed. Despite of the 

satisfying quality of the SWE predictions, the bias affecting the snow density dynamics hinders 

the accuracy of the snow depth simulations, with a resulting KGE index equal to 0.52.  

With respect to the French station, at the Swiss site the model better represents the snowpack 

settling, with resulting higher density peaks of ripe snow ranging between 350 and 400 kg/m3. 

As consequence, here the KGE of the snow density simulations reaches the value of 0.55, 

allowing a higher accuracy of the snow depth predictions (KGE = 0.77), for almost equivalent 

quality of the SWE predictions (KGE = 0.81). Nevertheless, also at WFJ the snow accumulation 

is overestimated due to sporadic inaccurate estimates of the new snow density, as observed 

throughout the winter seasons 2003-2004 and 2011-2012. Consistently with CDP, the timing of 

the melting dynamics is generally well represented. 

At TGN the overestimation of the snowfall events is less significant, thus the snow accumulation 

is more consistently simulated. On the other hand, a clearly detectable delay of the melt-out date 

is observed for the snow seasons 2012-2013 and 2015-2016. However, the overall accuracy of 

the snow depth simulations is characterized through a high KGE value of 0.84. Once again, the 

underestimation bias of the snow density recurs, with peaks generally no higher than 300 kg/m3 

(KGE = 0.36). Throughout the winter seasons 2012-2013 and 2014-2015 the SWE predictions 

are consistent with the bi-weekly in-situ observations, except for the peaks observations before 

the beginning of the melting periods, when significant underestimations are measured. While a 
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slight SWE underestimation is observed for the snow season 2013-2014, the delay in snow 

melting during the last winter 2015-2016 is prominent also in terms of SWE. 

Lastly it is noteworthy to observe that at the Swiss and Italian sites, during the early winters 

spurious snowfall events are generated through the algorithm defining the precipitation phase 

(Froidurot et al., 2014). Indeed, while at CDP the precipitation phase is extensively assessed and 

provided within the dataset (Sect. 3.1.1; Lafaysse et al., 2017), at WFJ and TGN this quantity is 

empirically evaluated as a function of air temperature and relative humidity.  

4.4.2 Snow energy-related variables 

The accuracy of surface temperature and albedo simulations is assessed in order to investigate 

how the model succeeds in solving the snowpack energy balance. Consistently with the previous 

evaluation of the mass-related variables, the analysis period of albedo dynamics is limited 

throughout the snow seasons. Conversely, since at WFJ and TGN sites measurements of the 

surface temperature are provided over the whole dataset periods, the simulations of this variable 

are continuously analysed even in snowless conditions to extensively assess the model 

performances when no snow cover is present. Because ground-based observations of the surface 

temperature at CDP are supplied only during the snow seasons, the analysis is actually focused 

on the snow surface temperature.  

Figures 4.4a, b and c show the time series of these energy-related state variables at the 

experimental sites. 
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Figure 4.4a: Seasonal OL energy-related simulations of (a) snow surface temperature and (b) 

albedo – CDP site. The KGE indices are indicated in the upper right. 

 

 

 

 

 

 

 

a) 

b) 
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Figure 4.4b: Seasonal OL energy-related simulations of (a) snow surface temperature and (b) 

albedo – WFJ site. The KGE indices are indicated in the upper right. 
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Figure 4.4c: Seasonal OL energy-related simulations of (a) snow surface temperature and (b) 

albedo – TGN site. The KGE indices are indicated in the upper right. 

At the French site, the simulations of snow surface temperature are generally consistent with the 

in-situ measurements. However, even though the model well succeeds in representing the daily 

thermal cycle, it fails in reproducing the size of the temperature range. Indeed, the simulations 

reveal an underestimation of the diurnal peaks and a significant overestimation of the nocturnal 

ones. In spite of a generally satisfying positive correlation between the observed and modelled 

dynamics of the surface temperature, the model predictions are affected by a significant bias 

(KGE = 0.57). The same limitation recurs also at the other two experimental sites, where the 

surface temperature simulations are continuously analysed, instead. At the Swiss station, the 

KGE reaches a higher value of 0.76, while at the Italian site the KGE index drops to 0.57. 

a) 

b) 
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Consistently with the surface temperature simulations, the albedo dynamics are properly 

correlated with the in-situ measurements, even though they do not manage to well represent the 

size of the updates resulting from the snowpack evolution (e.g. snowfall and melting events). In 

the wintertime, the albedo simulations range is generally limited between 0.8 and 1, with 

resulting KGE indices around 0.5 at CDP and WFJ sites. On the other hand, at the Italian site the 

albedo predictions of the snow season 2012-2013 reveals a lower KGE value of 0.39, mainly due 

to the poor model capacity to catch the evolution of this energy-related state variable. 

Tables 4.4a, b and c list the seasonal accuracy of the simulations of the analysed mass- and 

energy-related variables. Two statistical indices have been introduced in order to specifically 

assess both the correlation of the simulated time series and the error affecting their dynamics 

with respect to the in-situ observations. The selected statistical metrics are: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑂𝑏𝑠𝑘 − 𝐸𝑥𝑝𝑘)2
𝑁

𝑘=1

 

 

Root Mean Square Error 

(RMSE) 

 

[4.13] 

𝑅 =
𝑐𝑜𝑣(𝑂𝑏𝑠, 𝐸𝑥𝑝)

𝜎𝑜𝑏𝑠 · 𝜎𝑒𝑥𝑝
 

 

Correlation coefficient (R) 

 

[4.14] 

 

Winter 

seasons 

SD [m] SWE [mm] ρsnow [kg/m3] Tsurf [°C] α [-] 

RMSE R RMSE R RMSE R RMSE R RMSE R 

2001/2002 0.14 0.92 70.5 0.84 116 0.78 3.44 0.79 0.15 0.76 

2002/2003 0.08 0.98 103.1 0.83 149.4 0.55 3.76 0.77 0.16 0.57 

2003/2004 0.2 0.94 44.9 0.98 140.7 0.57 3.51 0.76 0.17 0.54 

2004/2005 0.33 0.88 24.2 0.98 116.5 0.52 4.25 0.79 0.16 0.63 

2005/2006 0.34 0.85 55.6 0.92 68.63 0.87 5.67 0.72 0.17 0.73 

2006/2007 0.27 0.86 20.8 0.99 213.2 0.57 3.98 0.73 0.19 0.64 

2007/2008 0.52 0.93 52.7 0.99 145 0.68 3.76 0.73 0.18 0.61 

2008/2009 0.18 0.96 44.1 0.95 92.1 0.78 3.88 0.75 0.13 0.77 

2009/2010 0.25 0.98 31.2 0.95 150.4 0.43 4.41 0.79 0.16 0.56 

2010/2011 0.14 0.90 55.8 0.74 219 0.77 3.28 0.79 0.13 0.55 

Table 4.4a: OL simulations – Seasonal scores (RMSE and R) of snow depth (SD), SWE, snow 

density (ρsnow), surface temperature (Tsurf), and albedo (α) simulations – CDP site. Calibration 

winter seasons are highlighted in bold. 
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Winter 

seasons 

SD [m] SWE [mm] ρsnow [kg/m3] Tsurf [°C] α [-] 
RMSE R RMSE R RMSE R RMSE R RMSE R 

1999/2000 0.31 0.98 111 0.95 44.9 0.97 4.72 0.84 0.11 0.74 

2000/2001 0.22 0.96 159.4 0.91 64.1 0.81 4.52 0.77 0.13 0.59 

2001/2002 0.22 0.98 70 0.96 70 0.83 5.63 0.76 0.11 0.79 

2002/2003 0.18 0.97 126 0.88 71.5 0.75 4.52 0.75 0.10 0.71 

2003/2004 0.48 0.95 111.2 0.97 68.5 0.68 3.97 0.79 0.11 0.61 

2004/2005 0.24 0.98 73.5 0.94 66 0.85 5.16 0.81 0.13 0.64 

2005/2006 0.23 0.94 79.6 0.94 60.7 0.92 5.47 0.84 0.12 0.70 

2006/2007 0.14 0.98 106.3 0.91 92.9 0.44 3.53 0.83 0.08 0.61 

2007/2008 0.36 0.92 181 0.82 113.9 0.44 4.67 0.77 0.16 0.67 

2008/2009 0.30 0.90 168.3 0.86 87.3 0.91 6.43 0.83 0.10 0.74 

2009/2010 0.29 0.86 135 0.86 152.5 -0.03 5.64 0.84 0.12 0.80 

2010/2011 0.18 0.96 105.6 0.98 101 0.68 4.52 0.85 0.13 0.56 

2011/2012 0.68 0.96 182.9 0.93 81.5 0.77 4.54 0.82 0.12 0.76 

2012/2013 0.22 0.96 185 0.87 112.6 0.63 4.67 0.84 0.12 0.79 

2013/2014 0.13 0.97 97.6 0.98 93.2 0.89 4.26 0.80 0.11 0.72 

2014/2015 0.33 0.90 122.6 0.87 76.7 0.86 4.26 0.82 0.13 0.69 

Table 4.4b: OL simulations – Seasonal scores (RMSE and R) of snow depth (SD), SWE, snow 

density (ρsnow), surface temperature (Tsurf), and albedo (α) simulations – WFJ site. Calibration 

winter seasons are highlighted in bold. 

 

Winter 

seasons 

SD [m] SWE [mm] ρsnow [kg/m3] Tsurf [°C] α [-] 

RMSE R RMSE R RMSE R RMSE R RMSE R 

2012/2013 0.17 0.86 69.7 0.96 84.9 0.67 4.90 0.80 0.14 0.47 

2013/2014 0.10 0.97 43 0.98 62.8 0.89 4.43 0.68 - - 

2014/2015 0.07 0.96 77.1 0.88 86 0.71 5.60 0.64 - - 

2015/2016 0.25 0.66 71.9 0.55 91.2 0.37 3.82 0.81 - - 

Table 4.4c: OL simulations – Seasonal scores (RMSE and R) of snow depth (SD), SWE, snow 

density (ρsnow), surface temperature (Tsurf), and albedo (α) simulations – TGN site. Calibration 

winter seasons are highlighted in bold. 

Ground temperature simulations 

The comprehensive datasets supplied by the measurement stations provide observations of 

ground temperature at different depths (Sect. 3.1). Since the model deep soil temperature (𝑇𝑑) is 

representative of soil layer from a depth of 15 cm, this state variable is assumed to be the most 

suited reference quantity subject to the snow thermal insulation, according to the design of the 

model vertical snowpack scheme. Figure 4.5 shows the simulations of the ground temperature 

compared to the in-situ measurements at 20- and 10-cm depth at the French and Italian stations, 

respectively, and just below the ground surface at WFJ. 
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Figure 4.5: Seasonal OL simulations of (a) ground temperature at 20-cm depth at CDP site, (b) 

soil temperature, just below the ground surface, at WFJ site, and (c) ground temperature at 10-

cm depth at TGN site. 

a) 

b) 

c) 
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At CDP site, the in-situ measurements of 20-cm depth ground temperature are limited to the 

winter seasons. While no significant bias is observed during both early winter and melting 

periods, the model simulations underestimate the ground temperature throughout the snow 

seasons. When assessing this bias, it is noteworthy to consider that Td is the average temperature 

of a thick ground layer starting at a depth of 15 cm (Figure 4.2), and therefore it is affected by an 

average effect of the snow thermal insulation, which is necessarily less effective than the actual 

insulation at 20-cm depth. In spite of a significant RMSE of about 3°C, the time series are 

strongly correlated. 

The Swiss and Italian stations supply observations of ground temperature throughout the whole 

datasets period. With the aim of assessing the simulations in snowy and snowless conditions, 

Table 4.5 shows the statistical scores evaluating snowy and snowless periods, separately. In the 

presence of snow cover, RMSE values are generally lower than in snowless conditions, even 

though with lower positive correlations. On the other hand, when no snow cover is present, 

RMSE values increase above 3°C at the Italian site and even close to 5°C at WFJ, but with 

significantly higher correlations. 

The lower RMSE value of the ground simulations in presence of snow cover is mainly due to the 

narrowed size of the deep ground temperature range, instead of a higher capacity of the model in 

reproducing this variable in snowy conditions, as proven by the lower values of the correlation 

coefficient. Indeed, consistently with the result at CDP, the model does not succeed in properly 

simulating the snowpack insulating effect. However, it is noteworthy that the simulations are 

representative of average temperatures hardly comparable with the in-situ measurements, which 

are sampled at specific depths. Conversely, the wider scale of the daily thermal cycle in snowless 

conditions entails higher RMSE values due to the under- and overestimation of the temperature 

peaks, as previously discussed. Nevertheless, the model better succeeds in representing the 

dynamics of the ground temperature, with resulting higher correlations. 
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Ground temperature [°C] 

 
WFJ site TGN site 

RMSE R RMSE R 

Snowy condition 2.00 0.62 2.86 0.54 

Snowless condition 4.95 0.85 3.17 0.89 

Table 4.5: OL simulations of ground temperature – Statistical scores during snowy and snowless 

periods at WFJ and TGN sites. 

4.4.3 Snow melting fluxes 

As previously explained, according to the purpose application of coupling the snow model with 

an assimilation algorithm, the degree of detail of the model snowpack physics is accordingly 

limited in order to lighten the system scheme by still maintaining the physical consistency. One 

of the main approximations concerns the liquid water storage, which is neglected, as well the 

refreezing of meltwater. As a consequence, the snow mass is reduced by the meltwater resulting 

from the dynamics of the snowpack thermal state, which is assumed to drain as surface runoff.  

Therefore, the model snow melting is hardly comparable against in-situ local runoff observations 

due to the lack of the physical representation of the main processes involved within the 

snowpack hydrological balance. Nevertheless, even though the model is unlikely to well catch 

the runoff volumes, it is noteworthy to assess the consistency between the model melting fluxes 

and the observed runoff trends. 

The French and Swiss stations supply snowmelt runoff data estimated through lysimeters of a 

surface area of 5 m2, with hourly and 10-min measurement frequency, respectively (Sect. 3.1). 

With the aim of smoothing possible inconsistencies affecting the melting simulations due to the 

model physical limitations, the comparative analysis has been performed at monthly scale by 

averaging both the observed and simulated time series, as shown in Figure 4.6. 
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Figure 4.6: Seasonal OL of model monthly-average simulations of snow melting compared with 

in-situ runoff measures over a surface area of 5 m2 at (a) CDP and (b) WFJ sites. RMSE and R 

indices are provided. 

With respect to the French site, at WFJ the simulations are strongly correlated with the runoff 

measurements (R = 0.8). Although the model well succeeds in representing the dynamics, the 

melting volumes are generally overestimated with respect to the observations. This bias is 

supposed to mainly result from the direct release of the meltwater, according to the model 

physical scheme. In reality, instead, the meltwater is actually retained within the snowpack, due 

to infiltration, storage, and refreezing processes.  

Conversely, at CDP the melting simulations are less correlated (R = 0.8), even though with an 

almost equivalent bias volume. The poorer consistency can be mainly ascribable to the more 

a) 

b) 
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complex dynamics occurring within the snowpack at the lower altitude of this site. Because the 

air temperature frequently rises to over 0°C (around snow melting point) during the wintertime, 

possible melting and refreezing events are likely to occur more frequently with respect to the 

Swiss site. 

In order to further investigate the melting simulations at CDP, the daily SWE measurements 

available at this site have been used to derive melting estimations assumed to be more consistent 

with the model predictions. The main assumption considers the decreases in the observed SWE 

amount as representative of melting events. Of course, it is noteworthy to highlight that this 

hypothesis can entail misleading considerations, since it does not take into account possible 

sublimation events. Nevertheless, this comparison aims at a qualitative assessment of the 

consistency between the cumulative time series, rather than an analysis of the resulting melting 

volumes. 

Figure 4.7 presents the cumulative trends of the daily-averaged melting rates throughout the 

whole dataset period. 

 

Figure 4.7: Consistency analysis between cumulative time series of daily melting provided by 

model simulations and derived from SWE in-situ observations, at daily scale – CDP site. 

Although the analysis relies on an inaccurate assumption, the cumulative melting rates are 

strongly consistent with each other, with an overall overestimation of the model simulations of 

about 5% with respect to the derived observations. 
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4.4.4 Turbulent and ground heat fluxes 

The Italian measurement station provides observations of ground and turbulent (i.e. latent and 

sensible) heat fluxes with a measurement frequency of 30 minutes throughout the whole dataset 

(i.e. snowy and snowless periods). Because the model explicitly simulates these heat fluxes by 

solving the snowpack energy balance, a comparative analysis has been carried out with the aim 

of assessing the consistency of the model predictions with the in-situ measurements. Figure 4.8 

shows the scatterplots between the model heat fluxes and the heat-related observations. 

 

 

a) 

b) 
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Figure 4.8: Scatterplots between OL simulations of (a) latent, (b) sensible, and (c) ground heat 

fluxes and 30-min in-situ measurements – TGN site. The correlation coefficients R are indicated. 

The simulations of heat fluxes are generally well correlated with the observations, as proven by 

the highly positive correlation values.  

When assessing the model latent heat, it is noteworthy to consider that the latent heat is 

transferred by vapor exchange between the snowpack and atmosphere due to phase change of 

water (i.e. condensation, evaporation, melt, freezing, sublimation). This quantity is positive when 

heat is supplied to the snowpack (e.g. sublimation and melting events), and negative if heat 

fluxes are released from the snowpack to the atmosphere (e.g. refreezing process). Since the 

model does not simulate deposition, condensation, and freezing processes, it necessarily 

overestimates the observed negative values, which are sporadic during the snow seasons, 

however. Nevertheless, the simulations turn out to overestimate the observed lower positive 

latent heat (i.e. in wintertime) and underestimate the more intense fluxes (i.e. in snowless 

conditions). 

The sensible heat fluxes result from the transfer of thermal energy driven by temperature 

gradients between the snowpack surface and the atmosphere. According to the sign of the 

temperature difference, this convective transfer can be headed to or from the snowpack. In 

springtime, when air temperatures largely exceed the snow surface ones, melting snowpacks gain 

high sensible heat fluxes (positive quantity). Conversely, during winter or at night during the 

melt season, the snowpack can be warmer than air with a resulting loss of energy (negative 

c) 
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quantity). While the model predictions generally underestimate the negative sensible heat fluxes, 

namely during the winter seasons, in melting periods and in snowless conditions the simulated 

and observed time series are better correlated. 

With respect to the other two variables, the ground heat fluxes are generally more consistent with 

the in-situ observations, with a resulting correlation coefficient equal to 0.75. 

With the aim of extensively assessing the reliability of the model simulations, the time series of 

the daily average heat fluxes have been analysed (Figure 4.9). The choice of averaging the fluxes 

is assumed to smooth possible inconsistencies affecting the model energy balance.  

The daily average latent heat simulations reveal a lower correlation equal to 0.57 with respect to 

the previous evaluation, with prominent over- and underestimation in snowy and snowless 

conditions, respectively. 

Even though the simulated time series of daily sensible heat fluxes are more correlated with the 

in-situ observations (R = 0.81), they are affected by a significant underestimation bias in 

wintertime, mainly ascribable to the poor accuracy of the snowpack surface temperature 

predictions. 

During snow seasons, the model ground heat fluxes have more oscillating trends due to the 

limited model capacity to properly reproduce the snow thermal insulating effect, as indicated by 

the lower correlation equal to 0.68. 
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Figure 4.9: OL simulations of daily average (a) latent, (b) sensible, and (c) ground heat fluxes – 

TGN site. RMSE and R values are indicated.

a) 

b) 
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Data Assimilation (DA) provides a theoretical framework and practical methodologies for 

addressing constrained estimation problems. The main purpose is the merging of measurements 

and model predictions under the assumption that both supply useful information on the system 

state. With the aim of obtaining a statistically optimal and dynamically consistent estimate of the 

evolving system state, all the sources of information are properly weighted according to their 

degrees of uncertainty to obtain a combined estimate with the desired statistical properties (e.g. 

unbiased, minimum variance). 

The observations, namely ground-based and remotely-sensed data, are characterized by different 

spatial and temporal resolutions and they generally suffer from several measurement errors 

(Sects 2.4, 2.5). When dealing with remotely-sensed data it is noteworthy also to consider that 

they are indirect retrievals of the variables of interest (e.g. electromagnetic radiation is used to 

indirectly estimate land surface physical properties) and thus significantly affected by 

uncertainty. 
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Even though models are simplified depictions of real systems, they rely on strong physical 

constraints (e.g. conservation of mass and energy balances), which limit the degrees of freedom 

in interpreting the observed data. Moreover, the dynamical and spatial dependencies within a 

model can be used to retrieve information wherever no observation is available. However, 

models are affected by uncertainties as well, and they generally strongly depend on the optimal 

estimation of ruling parameters. DA methods involve all the procedures necessary to 

systematically take into account spatial and temporal variability of observational and model 

errors.  

Two main DA approaches can be implemented. Sequential assimilation uses observations, as 

soon as they are available, to iteratively update and reinitialize the model state before the 

integration continues forward in time. Non-sequential assimilation uses all the available 

observations up to the current assimilation time step to correct the system state and obtain the 

best overall fit of the state variables to the observational data. 

A further distinction can be made between intermittent techniques processing the observations in 

small batches, or methods considering longer observational periods with a resulting analysis state 

smoother in time. Compromises between these approaches are also possible.  

5.1 State of art 

Meteorology and oceanography pioneered DA systems with the aim of enhancing short term 

forecasts. Conversely, the initial lack of large domain observations prevented a fast development 

of DA schemes for hydrological applications (Walker et al. 2003). Recently, a widespread 

interest aims at introducing assimilation schemes within the land-atmosphere interaction research 

field. Several DA techniques have been developed, differing in numerical cost, optimality and 

suitability for real-time applications. In the framework of snow modelling, the sequential DA 

approach is widely used, since it allows to readily process the observational data as they become 

available and sequentially update the model snowpack state.  

The most basic technique is the Direct Insertion (DI). This method promotes the simple 

replacement of forecast predictions with observations, whenever they are available, within the 

model simulations. This means that according to this approach model predictions are completely 
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unreliable and observations are considered as ground truth. By simply inserting the observations, 

which are notoriously imperfect, a possible significant bias can be introduced and an unbalanced 

state estimate can occur, with a resulting model shock. This technique has been tested in several 

studies. Liston et al. (1999) tested DI method to assimilate observed snow spatial pattern into an 

atmospheric model. Despite several limitations, this DA approach effectively made the modelled 

snow pattern more consistent with observations, although system deficiencies in simulating sub-

grid snow distribution required the implementation of a snow sub-model accounting for air 

temperature and precipitation variability. Rodell and Houser (2004) employed the same simple 

technique to assimilate MODIS SCA observations for the updating of snow-water storage into a 

Land Surface Model (LSM). Every time step when some discrepancy was detected between 

model predictions and MODIS observations, SWE simulations were adjusted by either removing 

the simulated snow or adding a thin layer to neglect spurious information. When comparing 

these simulations with the outputs of a (not updated) control run, the assimilation of snow data 

proved to generally ensure more accurate snow coverage. Malik et al. (2012) applied the DI 

technique to assimilate snow albedo observed by MODIS sensor into a LSM, whose simulations 

of fluxes and snow properties, with and without the assimilation of observations, were evaluated 

against in-situ measurements of snow albedo, upward shortwave radiation and snow depth. Even 

though a mean error reduction was not always evident because of the limited impact of snow 

albedo updates beyond snowfall events, the assimilation scheme demonstrated to enhance the 

model simulations, especially for the simulated upward shortwave radiation.  

An improved version of the DI scheme is the Optimal Interpolation (OI) technique. Whenever 

observations are available and assimilated, model predictions are adjusted according to an a 

priori error structure of both observations and model estimates, which are supposed to be 

constant throughout the simulation. Brasnett (1999) employed the OI method to assimilate snow 

depth observations into a simple snow dynamics model to obtain an operational real-time 

analysis of snow depth status. The verification of the analysis snow depths allowed to understand 

that they generally turned out to be more accurate than climatological estimates. More recently, 

Liston and Hiemstra (2008) applied OI approaches to assimilate synthetic ground- and satellite-

based snow data within a snow model by constraining its predictions with their discrepancies 

with observations. Since these corrections could be applied retroactively to improve the 

simulation fields before each assimilation time step, this technique resulted to be suitable for 
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reanalysis applications. The implementation of these schemes improved the modelled SWE 

distributions, with a more realistic spatial heterogeneity against the observations. 

More advanced is the Cressman scheme (Cressman, 1959), accounting for an empirically chosen 

weighting function in terms of influence radius, which sets the interval within each observation 

is used to update the model. Observations included within the influence radius are weighted 

according to their distances to the model grid points. For more than 20 years Cressman scheme 

has been operatively employed for the assimilation of SYNOP (surface synoptic observations) 

data in ERA-Interim, a global atmospheric reanalysis produced by the European Centre for 

Medium-Range Weather Forecasts (ECMWF) (Dee et al. 2011). Even though the corresponding 

MODIS image supported the results of the updated Cressman analysis for the cloud-free regions 

(Drusch et al. 2004), the comparison between the operational product and the satellite-derived 

snow cover enabled to identify several deficiencies in areas with intermittent and/or patchy snow 

cover and regions with a low density of observations (Balsamo et al. 2015). 

Similarly to the Cressman scheme, the Nudging method (or Newtonian relaxation) (Stauffer and 

Seaman, 1990) allows to take into account the observational uncertainty, which is a priori 

defined. According to this DA technique, a correction term is added to the prognostic model 

equations with the aim of gradually relaxing the predictions towards observations. The resulting 

nudging term is proportional to the discrepancy between model predictions and observations. 

Boni et al. (2010) implemented a nudging scheme to update a prior SWE estimates at watershed 

scale. Daily assimilation of an interpolated map of snow depth measurements, opportunely 

merged with MODIS SCA observations, enabled to improve performances of a simple snow 

dynamic model. 

At a higher level of complexity among the sequential DA methods, Kalman filtering enables to 

evaluate the optimal weighting between modelled and observed states, according to their degrees 

of uncertainty (Kalman, 1960; Evensen, 2003). The main feature distinguishing this approach 

from more static ones is the dynamic updating of the forecast error covariance during the 

simulation. Several techniques based on Kalman filtering have been developed.  

The standard Kalman Filter (KF) (Gelb, 1974), which relies on the system linearity assumption, 

is based on the relative contribution of the error covariance matrices of both model predictions 
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and observations to obtain a statistically optimal estimate for given parameters set and 

uncertainties. This technique applies a standard error propagation theory, which generates an 

analysis state by adding a correction term to the a priori state. The correction is computed as the 

difference between the model estimate of the system state and the observed state, both modulated 

through the Kalman Gain that takes into account the information supplied by both the covariance 

matrices. 

The Extended Kalman Filter (EKF) (Miller et al. 1994) allows to deal with nonlinear dynamic 

systems through a linearized statistical approach. This technique relies on an adjoint and tangent 

linear model to propagate the error covariance matrix forward in time. Thus, this technique is 

able to provide only a near-optimal estimate due to the linear approximation of the model 

through a Taylor series expansion. Sun et al. (2004) developed a one-dimensional EKF scheme 

to assimilate synthetically generated SWE observations into a LSM, neglecting the update of 

unobserved model states. Since SWE is highly correlated with snow depth and heat content, and 

independent of snow density and temperature, the study demonstrated that all snowpack 

prognostic variables can be efficiently reproduced by only assimilating SWE satellite 

observations and reconstructing the other prognostic snow states by using diagnostic model 

variables. Dong et al. (2007) used the assimilation system developed by Sun et al. (2004) to 

assimilate SWE data derived from SMMR observations into a LSM by sequentially updating 

both the system state and the covariance estimates, as observations became available. Compared 

to in-situ observations, the EKF allowed improving SWE predictions. In spite of benefits in its 

implementation, EKF is not a widespread method in operational applications due to the 

requirement of a sizeable computational time. Furthermore, even though EKF-based schemes 

generally result to well succeed in updating model simulations, in presence of strong system 

nonlinearities unstable results can be attended (Moradkhani 2008). 

With the aim of overcoming the inaccuracy of the linearization procedure affecting the filter 

performance due to possible strong model nonlinearities, the Ensemble Kalman Filter (EnKF) 

has been developed (Evensen, 1994). Unlike the KF and EKF schemes, this method does not 

require a model linearization since the error estimates are evaluated from an ensemble of 

possible model realizations using the Monte Carlo approach (Evensen, 2003). Moreover, this 

method has the further advantage of being able to handle any number of variables in the update 
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scheme. An increasing number of studies on snow hydrology have contributed to confirm the 

EnKF as a well-performing technique enabling to enhance the accuracy of hydrological 

simulations by consistently updating model predictions through the assimilation of snow-related 

observations. Andreadis and Lettenmaier (2005) applied an EnKF scheme to assimilate MODIS 

SE and AMSR-E SWE products into a macroscale hydrologic model to update SWE predictions. 

The study aimed at directly updating the SWE estimates through a snow depletion curve (SDC) 

in order to obtain a proper observation operator. Indeed, MODIS observations only supply 

information about presence or absence of snow, whereas hydrological and LSMs mainly aim to 

simulate SWE. This issue leads to the need of a conversion from simulated SWE data and 

remotely-sensed SCA and vice versa through SDCs. In their study, the assimilation of snow data 

successfully updated SCA over the domain of interest and guaranteed an improvement of SWE 

estimates. In comparison to ground-based observations, a larger DA impact was observed mainly 

in the ablation season, less during snow accumulation period, when EnKF estimates resulted to 

be very close to the OL ones. By using the same DA scheme, the study attempted to evaluate the 

filter performance in assimilating AMSR-E SWE data, which did not provide noteworthy results, 

instead. This analysis enabled to better understand the importance of an accurate parameter 

estimation required to create the SDC, which strongly impacted the assimilation performance. 

Clark et al. (2006) proposed an alternative framework to assimilate synthetic remotely-sensed 

SCA data in hydrologic and LSMs in order to improve streamflow simulations. SCA 

observations were assimilated through an EnKF scheme to modify the sub-grid probability 

density function (pdf) of snow-related variables. The assimilation of SCA data turned out to 

modify both the sub-grid SWE distribution and the basin water budget. On the other hand, the 

accuracy of streamflows was only slightly increased, mainly because of the quite fast transition 

from snow covered to snow free conditions. Since the snow dynamics are basin dependent, SCA 

information were supposed to be most useful in basins where snow cover is ephemeral. 

Consistently with Andreadis and Lettenmaier (2005), errors reduction was negligible in the 

accumulation period. Slater and Clark (2006) implemented an EnKF and an Ensemble Square 

Root Kalman Filter (EnSRKF) (Whitaker and Hamill, 2002; Tippett et al. 2003) to assimilate 

ground-based SWE observations. This study aimed at improving the estimation of SWE initial 

conditions for the ultimate objective of streamflow forecasting within a distributed conceptual 

hydrological model. Both ensembles of model forcing and assimilated data were derived through 
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a spatial interpolation and the error structures were evaluated through a cross validation. Several 

experiments enabled to demonstrate that, especially during the melt season, the combined use of 

model and independent observations enabled to improve the model SWE initial conditions, 

which lead to a better short-term streamflow forecast. Su et al. (2008) investigated the feasibility 

of assimilating through the EnKF approach the MODIS FSC for the optimal retrieval of 

continental-scale SWE within a highly complex LSM. For this purpose, they proposed a newly 

developed observational operator based on snowpack density. Ground-based measurements and 

AMSR-E estimates were used to evaluate the assimilation performance, which demonstrated the 

validity of the proposed method. The analysis of the spatial differences between the EnKF and 

OL simulations suggested that the filter more accurately simulated the seasonal variability of 

SWE and reduced the uncertainties associated with the large-scale simulations. Magnusson et al. 

(2014) analysed the potential of providing a distributed snow model with point snow 

observations by assimilating ground-based SWE data through an EnKF scheme to improve the 

simulations. They found out that the simulations resulting from the joint assimilation of snowfall 

and snowmelt rates outperformed the snow model predictions relying on the assimilation of 

SWE observations, mainly thanks to a higher flexibility in defining error statistics. More 

recently, Griessinger et al. (2016) investigated the benefit of assimilating SWE observations for 

hydrological applications in snow-dominated regions. They evaluated the sensitivity of an 

operational hydrological model to the external input of snowmelt data provided by a spatially 

distributed snow model running in different configurations. They found that the runoff 

predictions relying on the sequential assimilation of snow-related observations outperformed the 

control simulations without DA, especially at high elevations. However, no prominent effect of 

the assimilation of snow data was observed at low and mid-elevations in term of runoff, due to 

the lower contribution of snowmelt to the runoff generation. Huang et al. (2017) evaluated 

whether the assimilation of SWE data through an EnKF scheme can reliably enhance seasonal 

streamflow predictions. They extensively examined several methodological issues, namely the 

observation operator and the impact of varying the uncertainty of both observations and model 

simulations on the forecasting skill. The results generally demonstrated an improvement of 

discharge predictions, especially over the basins where the simulations of the hydrological model 

were historically poorly accurate.  
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Most publications about applications of EnKF-based scheme for snow modelling deal with 

univariate assimilation, namely the assimilation of a single data type. Relatively few studies 

aimed to investigate the simultaneous assimilation of observations for multiple model state 

variables. Durand and Margulis (2006) assimilated synthetic passive microwave observations at 

SSM/I and AMSR-E frequencies, and broadband albedo observations through an EnKF scheme 

to study the potential of remotely-sensed snow-related observations in improving SWE 

simulations. Durand and Margulis (2008) assimilated synthetic SWE and snow grain size data 

with different spatial resolutions into a LSM using an adaptive EnKF. Su et al. (2010) developed 

a multisensory EnKF-based DA system assimilating both Gravity Recovery and Climate 

Experiment (GRACE) terrestrial water storage (TWS) and MODIS FSC with respectively the 

Kalman Smoother scheme (EnKS) (Dunne and Entekhabi, 2005, 2006) and EnKF into a LSM. 

De Lannoy et al. (2012) addressed several key critical issues by investigating the potential of 

assimilating coarse-scale AMSR-E SWE and high-scale MODIS FSC observations into a LSM 

through advanced EnKF schemes. With the aim of mitigating the bias resulting from the 

mismatch between the remotely-sensed data and the model finer resolution, the authors 

innovatively tested the dynamic downscaling of AMSR-E SWE retrievals by widely assessing 

the impact of the scaling of the satellite observations on the assimilation procedure. Moreover, 

the study deeply evaluated the performance of a multiscale EnKF scheme in jointly assimilating 

both the retrieval data to overcome the limitations affecting each type of observation (e.g. under 

thin patchy snow cover and cloudy conditions).  

More recently, Stigter et al. (2016) proposed a well-performing EnKF-based methodology to 

estimate SWE and snowmelt runoff in a Himalayan catchment. They implemented an EnKF 

scheme to calibrate ruling parameters of a snow model by jointly assimilating both remotely-

sensed SCA observations and ground-based measures of snow depth.  

Even though Kalman filtering provides a flexible framework to explicitly handle both 

observational and modelling uncertainties (Salamon and Feyen, 2009), some constraining 

assumptions hinder filter performance when dealing with highly nonlinear systems (Chen, 2003).  

In order to overcome the main limiting issues affecting the EnKF technique, sequential Monte 

Carlo-based filtering methods for non-Gaussian, nonlinear dynamic models have been 

developed. These techniques, also known as Particle Filter (PF), have the main advantage of 
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relaxing the need for the main restrictive assumptions ruling the Kalman filtering (Arulampalam 

et al., 2002). Thanks to their suitability to better succeed in handling systems nonlinearities, PF 

schemes are currently garnering a growing attention for snow modelling applications. Leisenring 

and Moradkhani (2011) compared the performances of common sequential EnKF-based DA 

methods and PF variants at assimilating synthetic SWE measurements to improve the seasonal 

SWE predictions and to estimate some sensitive parameters in a small-scale snowpack model. 

The results suggested that all the DA techniques succeeded in enhancing the SWE dynamics. 

Even though PF-based DA schemes generally revealed a higher accuracy, the resulting bias was 

comparable with the Kalman filters one. Furthermore, the results showed the potential of using 

an empirical cumulative distribution function to compute the particle weights, instead of a 

Gaussian one. Indeed, the empirical likelihood variants supplied the best predictors of model 

state. Dechant and Moradkhani (2011) evaluated the PF performance in assimilating remotely-

sensed microwave radiance data to update the states of a snow model. The results showed that 

the DA scheme allowed to improve simulations of SWE as well as discharge forecasts. Thirel et 

al. (2013) investigated the implementation of the PF technique to assimilate MODIS SCA data 

into a physical distributed hydrological model, in order to improve snowmelt-related stream flow 

predictions. Both synthetic and real experiments showed clear improvements of model discharge 

simulations, especially for intermediate values of observation error. Despite of its satisfying 

efficiency when applied on relatively small basins, the algorithm turned out to be affected by 

spatial heterogeneities over larger domains. To overcome system shortcomings the authors 

suggested to improve the uncertainty assessment and test different importance distributions of 

sub-basins when evaluating the particle weights. Margulis et al. (2015) tested a newly-proposed 

PF approach, called particle batch smoother (PBS), to improve SWE estimates when assimilating 

historical Landsat-derived observations of FSC into a LSM. The study highlights that the 

likelihood function needed in the PBS may become more challenging to evaluate for higher 

dimensional measurement vectors, especially when including observations supplied by different 

sensors. Moreover, in order to make the PBS more robust, they suggested to use larger prior 

input uncertainties or different prior distributions. The same technique has been recently applied 

by Cortés et al. (2016). Charrois et al. (2016) investigated the performances of the Sequential 

Importance Resampling PF (SIR-PF) scheme in assimilating MODIS-like synthetic data of 

optical reflectance into a detailed multilayer snowpack model. The study assessed the impact of 
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the assimilation, which well succeeded in reducing RMSE values on both snow depth and SWE 

with a resulting reduction of the uncertainty on the snow melt-out date. They found that the 

reflectance assimilation improved at most the model simulations when the observation was 

available after an extended period without precipitation. On the other hand, the assimilation had 

a low impact right after a snowfall event. Thus, they stated that the assimilation of only few 

observations with suitable timing can achieve the same performances of a daily reflectance 

assimilation. An even larger model bias reduction was achieved by updating the model 

assimilating synthetic snow depth observations. The assimilation of snow depths generally 

outperforms the reflectance assimilation, except for thin snowpacks. However, the spatial and 

temporal availability of in situ measurements entailed that the joined assimilation of remotely-

sensed reflectance and measurements of snow depth can be the best combination to provide a 

significant improvement of the model simulations. Magnusson et al. (2017) applied the PF 

within a multilayer energy-balance snow model in order to assess the impact of the assimilation 

of daily snow depth measurements on the simulations of SWE and snowpack runoff. They found 

that DA allows the snow model simulations to closely track the observed snow depths and 

greatly enhances the SWE estimates, with a resulting improvement of the predicted total runoff 

over the whole analysis period. However, model daily runoff dynamics did not substantially 

benefit from the snow depths assimilation, except during the melt-out period. Furthermore, the 

assimilation of snow depths demonstrated to improve simulated properties of the underlying soil, 

especially during the spring season, mainly thanks to an enhanced melt timing. An interesting 

result showed that the assimilation of snow depths was more efficient when forcing the snow 

model with coarse resolution data (i.e., SAFRAN data, weather forecasts). For some variables, 

such as SWE, PF-based simulations forced with poor quality data were at times comparable to 

non-assimilated model outcomes driven by high quality data.  

As an alternative to sequential assimilation, the variational (VAR) methods can be efficiently 

used in complex modelling system (Ercolani and Castelli, 2017). Instead of using only the 

observations available at each assimilation time step, the VAR methods simultaneously process 

all the observations in the assimilation window to estimate the system state and obtain the best 

solution to the analysis problem (Holm, 2003). Since observations from both past and future are 

used to update model simulations over multiple time steps, VAR assimilation results into 

continuous simulated time series and it is therefore referred as a smoother technique. VAR 
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techniques can be distinguished into two main classes. The three-dimensional (i.e. space 

dimensions) VAR DA (3DVAR) uses one-time observations to statistically produce initial 

conditions through forecast fields and observational data. The four-dimensional (i.e. space and 

time dimensions) VAR DA (4DVAR) differs from the 3DVAR for including the dynamic 

evolution of the model in the assimilation (Holm, 2003). In case of reduced dimensions, terms 

1DVAR or 2DVAR are used. VAR approach use optimization algorithms to minimize an 

objective function according to some physical constraints derived from the dynamics of the 

forecast model (Reichle, 2008). The objective function is defined in terms of a trade-off between 

the amount of noise introduced into the model and the distance between simulated and observed 

variables (Lee et al., 2012). The assimilation problem is therefore redefined as an iterative 

process aiming at minimizing the gap between observed fields and model states. Formally it is an 

optimisation problem with constraints that may be solved through the Lagrange multipliers 

technique (Bryson and Ho, 1990). Even though the VAR DA methods are generally efficient and 

robust even when noisy observations and models with structural errors have to be combined, the 

modelling framework cannot be easily modified, since any changes require the reformulation of 

the ajoint model, whose implementation entails an additional level of complexity (Alvarado-

Monteroet al., 2017). These techniques allow to take into account nonlinear dependencies 

between observations and state variables without any approximation, they do not explicitly 

provide any estimate of predictive uncertainty, unlike the KF-based techniques. Furthermore, 

since VAR methods do not consider the dynamics of the second-order moment of the state 

variables, they are not readily suitable to probabilistic or recursive estimation (Seo et al., 2003; 

2009). On the other hand, an important advantage of the VAR method is a better handling of 

time lags between updated quantities and observations (Lee et al., 2012).  

Dumont et al. (2012) implemented a VAR DA scheme to assimilate MODIS-derived albedo 

observations into a snowpack model to improve the predicted annual mass balance of a glacier. 

The comparison with field measurements revealed the potential of the modelling system for the 

monitoring of the mass balance dynamics of snowpacks and glaciers. 
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5.2 Sequential data assimilation  

As previously anticipated, DA techniques can be split into two main categories, according to the 

different updating process in time: 

• Non-sequential (or retrospective) assimilation, which uses simultaneously all the 

available observations up to the analysis time step to correct the system state and obtain 

the best overall fit of the state variables to the observational data. This approach is 

particularly useful for assimilation schemes within systems where the accuracy of the 

initial conditions strongly impacts on its evolution (e.g. atmospheric sciences); 

• Sequential assimilation, which uses all the observations up to present, as soon as they are 

available, to update the model state. Therefore, sequential methods are more suitable 

when real-time observations are available. However, sequential techniques can lead to 

discontinuities in the time series of the updated state (except for the 3DVAR). 

Sequential DA, also known as filtering, has garnered a widespread interest since they provide a 

flexible framework for explicitly considering and handling different sources of uncertainty. 

Furthermore, sequential DA techniques guarantee the possibility of processing the observational 

data sequentially as it becomes available, by assuming that observations can only influence 

future model simulations (Leisenring and Moradkhani, 2011). Even though non-sequential 

methods are computationally less expensive, since they work over a given time window 

containing a sequence of observations, they are more apt for smoothing problems than for the 

assimilation of real-time data, where observations are continuously provided in time (Salomon 

and Feyen, 2009). 

Since the main goal of this study aims at supporting the development of a snow modelling 

system for real-time applications, the main focus is on the sequential DA schemes, whose 

features well satisfy the technical requirements for operational purposes. 

At first, conceptually simple DA schemes, such as DI technique, seem like attractive methods. 

However, their implementation within a complex, multi-layered snow model is not 

straightforward. Deciding how state variables should be modified based on differences in 

snowpack observations and implementing these changes within the model requires a complete 
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understanding of the system (Magnusson et al., 2017). On the other hand, more advanced 

sequential DA methods, such as Kalman and Particle filtering, are more robust to errors in model 

and observational data, which are accounted for. 

 5.2.1 Theoretical formulation of the analysis problem 

As previously explained, the main DA purpose is to characterize a system state at some future 

time, according to the knowledge of the initial system state. The process of approximating the 

true state of a physical system at a given time is called analysis, which usefully provides a 

depiction of the system state based on observational data and a model of the physical system, 

together with background information on initial and boundary conditions.  

The analysis process can be considered as an optimization problem aiming at minimizing on 

average the difference with respect to the observational truth. The mathematical formalization of 

the analysis problem firstly requires the definition of the model state, the so-called state vector 

(𝑋𝑡), which includes all the state variables evolving in time according to the following law: 

 𝑋𝑡 = 𝑀[𝑋𝑡−1, 𝜃, 𝑈𝑡 , 𝛺𝑡] [5.1] 

where M is the dynamic model operator, which contains the model input vector (𝑈𝑡) and the 

vector of the time-invariant model parameters (𝜃). Since the model error (𝛺𝑡) takes into account 

the uncertainties related to the model structure and the forcing data, it is generally state-

dependent (Cohn, 1997), and thus unknown. For this reason, the model error is statistically 

represented as system random noise through a stochastic perturbation. 

At the analysis time step, the model supplies an a priori or background state, which is an 

estimate of the true system state. Whenever a set of observations is available, the analysis allows 

to update the first guess system state by assimilating the observation vector (𝑌𝑡) into the model. 

In order to use the observational data collected in 𝑌𝑡 within the analysis procedure, it is necessary 

to make them comparable with the state variables. If each degree of freedom were observed, the 

observation vector could be considered as an observed state vector. However, generally fewer 

observations than state variables are available, so that the only proper way to relate the two 

vectors is through the use of a function from model state space to observation space, the so-

called observation (or forward) operator, denoted by H. This operator collects several operators 

enabling to generate the so-called model equivalents of the observations. At the time step when 
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observations are available, the transformation of the state to the measurement domain is given by 

the observation equation: 

 𝑌𝑡 = 𝐻[𝑋𝑡 ,  Ψ𝑡] [5.2] 

where Ψ𝑡 is the noise considering all sources of errors in observations. The observational noise is 

assumed to be Gaussian and independent of the model error. 

When dealing with an analysis system, it is necessary to take into account the unknown 

uncertainties affecting the observations and the background and analysis states. Characterizing 

the errors of both model and observations of the system is one of the main challenging issues of 

the implementation of a DA scheme. 

The mathematical framework of estimation theory provides the tools required to approach the 

problem (Moradkhani et al., 2005a). Indeed, the analysis problem can be mathematically 

formalized using the conditional, or Bayesian, probabilities allowing to represent each kind of 

uncertainty through specific probability density function (pdf) describing the errors statistics. In 

real applications, limited information hinders a full knowledge of the error pfds, which are 

generally described through their mean and covariances. Furthermore, in most cases, model 

background and observation errors are assumed to be independent.  

In a Bayesian formulation, the solution of an analysis problem is given by the posterior 

probability distribution 𝑃(𝑋𝑡|𝐷𝑡), where 𝐷𝑡 = {𝑌𝑡; 𝑡 = 1,… , 𝑡} encompasses all the available 

observational information on the time step t. 

Within the Bayesian framework, the prior pdf of the model state before considering the 

observations is denoted as 𝑝(𝑋𝑡|𝐷𝑡−1), i.e. the background pdf based on data-independent prior 

information. The resulting mathematical description of Bayes law is given as: 

 
𝑝(𝑋𝑡|𝐷𝑡) =

𝑝(𝑌𝑡|𝑋𝑡) 𝑝(𝑋𝑡|𝐷𝑡−1)

𝑝(𝑌𝑡|𝐷𝑡−1)
 [5.3] 

where the denominator is the normalization factor, also denominated as predictive distribution, 

ensuring that the integration of 𝑝(𝑋𝑡|𝐷𝑡) results to 1. The likelihood 𝑝(𝑌𝑡|𝑋𝑡) measures the 

likelihood of a given model state with respect to the observed one at time t. 
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The original Bayes law (Eq. 5.3) allows to estimate uncertainty through the conditional 

probability by using the available observational data. However, its formulation does not include 

information from new observations, as they become available. The flexibility required to use the 

new information is provided by a sequential Bayesian scheme.  

5.2.2 Recursive Bayesian scheme using ensemble filtering 

Due to the stochastic nature of 𝑋𝑡, information about the system state can be extracted at any 

time t from observations through the recursive Bayes law. Given all the available information 

and supposed that the posterior pdf at time t-1 𝑝(𝑋𝑡−1|𝐷𝑡−1) is known, using the system model it 

is possible to obtain the required prior pdf of the current state at the time step t 𝑝(𝑋𝑡|𝐷𝑡−1) in 

two stages: prediction and update. Assuming that 𝑋𝑡 follows the Markov property, the Chapman-

Kolmogorov equation can be used: 

 
𝑝(𝑋𝑡|𝐷𝑡−1) = ∫𝑝(𝑋𝑡|𝑋𝑡−1) 𝑝(𝑋𝑡−1|𝐷𝑡−1) 𝑑𝑋𝑡−1 [5.4] 

In the prediction step (Eq. 5.4), the forecast pdf is obtained assuming that also the transition pdf 

is known. When at time t a measurement 𝑌𝑡 becomes available, it may be used to update the 

forecast pdf via Bayes rule: 

 
𝑝(𝑋𝑡|𝐷𝑡) = 𝑝(𝑋𝑡|𝑌𝑡 , 𝐷𝑡−1) =  

𝑝(𝑌𝑡|𝑋𝑡) 𝑝(𝑋𝑡|𝐷𝑡−1)

𝑝(𝑌𝑡|𝐷𝑡−1)
=

𝑝(𝑌𝑡|𝑋𝑡) 𝑝(𝑋𝑡|𝐷𝑡−1)

∫ 𝑝(𝑌𝑡|𝑋𝑡) 𝑝(𝑋𝑡|𝐷𝑡−1) 𝑑𝑋𝑡 
 

 

[5.5] 

In the update equation (Eq. 5.5), the measurement 𝑌𝑡 is used to update the predicted prior pdf to 

obtain the required posterior pdf of the state. The recurrence relation of Eqs. 5.4 and 5.5 is the 

formal solution to the Bayesian recursive estimation problem. The aim of the analysis is to find 

the maximum of the conditional pdf of the model state 𝑝(𝑋𝑡|𝐷𝑡), given the observations.  

When dealing with high dimensional problems, the main issue in using Bayes law remains in the 

multidimensional integration of forecast density (Eq. 5.4), which makes the closed form solution 

of posterior density (Eq., 5.5) practically intractable. Since both 𝑝(𝑋𝑡|𝐷𝑡) and 𝑝(𝑋𝑡|𝐷𝑡−1) 

generally cannot be explicitly expressed through a mathematical formulation, a Monte Carlo 

sampling is used to explore the posterior density. Thus, the implementation of ensemble-based 

methods using a Monte Carlo sampling provides a practical solution to such problems. 



5.3 Ensemble-based DA schemes 92 

 

 

 

5.3 Ensemble-based DA schemes 

Since the posterior probability density cannot usually be solved analytically due to the high 

dimensionality and non-linearity of physical systems (Moradkhani et al., 2005b), discrete 

approximations are typically used, according to the Monte Carlo approach (Andreadis and 

Lettenmaier, 2006; Moradkhani et al., 2005a; Slater and Clark, 2006; Durand et al., 2008).  

The main assumption of the ensemble-based filtering methods is the representation of the model 

posterior probability density through a set of independent random states, sampled directly from 

the model space. As new observations become available, the posterior probability density is then 

updated according to the Bayesian rule. Following the sequential Monte Carlo (SMC) approach, 

the ensemble of model realizations is propagated forward in time by using the updated states 

from the previous time step.  

In hydrological applications, the most commonly used sequential ensemble-based DA techniques 

are the Kalman and Particle filtering, which are gaining an increasing interest. These DA 

schemes allow not only to iteratively update the system state by optimally combining the model 

predictions with observations, but also to quantify observational and modelling errors, given all 

the sources of uncertainty. As explained in the following, the difference between the EnKF and 

PF techniques lies in the method of recursively generating an approximation to the state pdf. 

5.3.1 Ensemble Kalman filter  

Evensen (1994) introduced the EnKF technique, relying on the Monte Carlo approach to 

approximate the conditional second-order moments of the variables of interest using a finite 

number of randomly generated model replicates. This technique requires the definition of an 

ensemble of model states, which are all simultaneously integrated forward in time independently 

of each other, using the nonlinear forward model with replicates of the system noise: 

 𝑋𝑡,𝑖 = 𝑀[𝑋𝑡−1,𝑖, 𝜃,𝑈𝑡,𝑖, 𝛺𝑡,𝑖] [5.6] 

Whenever observations are available, which are generally considered as random variables, 

 𝑌𝑡,𝑖 = 𝐻[𝑋𝑡,𝑖 ,  Ψ𝑡,𝑖] [5.7] 
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an analysis procedure is performed with the aim of updating the ensemble state through an 

optimal weighting between simulated and observed values. Indeed, the filter allows to correct the 

system state towards the observational estimate according to the difference between the modelled 

state and the observed one, with the degree of correction determined by the levels of error 

associated with each. Thus, firstly the ensemble mean of model states is evaluated: 

 

𝑋𝑡̅ =
1

𝑁
∑𝑋𝑡,𝑖

𝑁

𝑖=1

 [5.8] 

Then, the model error covariance matrix 𝑃𝑡 is calculated as 

 
𝑃𝑡 =

1

𝑁 − 1
𝐸𝑡𝐸𝑡

𝑇 [5.9] 

where 𝐸𝑡 is the expectation of the error in every ensemble member, calculated according to: 

 𝐸𝑡 = [𝑋𝑡,𝑖 − 𝑋𝑡̅, …… , 𝑋𝑡,𝑁 − 𝑋𝑡̅] [5.10] 

Since the true system state is generally unknown, this procedure allows to estimate the model 

error covariance matrix (𝑃𝑡) from the ensemble, which is dynamically updated at every 

assimilation time step (Evensen 1994, 2003). This is one of the main assumptions and 

advantages of the EnKF technique, requiring no estimation of a priori model error covariances 

for the analysis step (Moradkhani et al., 2005a). 

The weights are defined by the Kalman Gain (K), which is a combination of the error covariance 

matrices of both model and observations, according to the following formula: 

 𝐾𝑡 = 𝑃𝑡𝐻
𝑇(𝐻𝑃𝑡𝐻

𝑇 + 𝑅)−1 [5.11] 

where R is the error covariance matrix of observations. 

Lastly, the traditional update equation from the classical KF is used, with the Kalman Gain 

calculated from the error covariances provided by the ensemble. The ensemble states are then 

updated by comparing the measurements 𝑌𝑡 to the model estimates: 

 𝑋𝑡,𝑖
𝑎 = 𝑋𝑡,𝑖 + 𝐾𝑡[𝑌𝑡,𝑖 − 𝐻[𝑋𝑡]̅̅ ̅̅ ̅̅ ̅] [5.12] 

where 𝑋𝑡,𝑖
𝑎  is the ensemble of the analysis state vectors and 𝑌𝑡,𝑖 is the generated ensemble of 

measurements.  
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As sequential ensemble-based DA technique, the EnKF scheme provides a general framework 

for explicitly taking into account several sources of uncertainty. However, some limiting issues 

hinder filter performance (Weerts and El Serafy, 2006). The major limitation is the closure of the 

Kalman filtering at the second-order moments in the analysis step (Moradkhani et al., 2005b). 

Because the state variables in stochastic-dynamic systems are modelled as random variables, 

subject to unknown disturbances, the conditional probability of predictions will translate, 

deform, and spread, and the shape of its distribution is generally difficult to track and unlikely to 

be Gaussian (Weerts and El Serafy, 2006; Salamon and Feyen, 2009). Therefore, in highly 

nonlinear systems, the first two moments of the prior density are not likely to be sufficient to 

properly approximate the posterior probability distribution. For such cases, an accurate estimate 

of the posterior probability requires the tracking of higher-order moments (Moradkhani et al., 

2005b). Moreover, the EnKF is further limited to the linear updating procedure, with a 

significant simplification affecting the filter performance when dealing with highly nonlinear 

systems.  

The lack of any linearity and Gaussian property constraints on the modelling system is one of the 

main advantages of the Particle filtering (Weerts and El Serafy, 2006), which does not require 

any restrictive assumption on the form of the probability distributions (Arulampalam et al., 

2002).  

5.3.2 Particle filter 

Likewise, the EnKF technique, Particle filtering is a recursive Bayesian algorithm, whose key 

idea is to represent the posterior density function by a set of randomly drawn samples through a 

Monte Carlo approach. The main difference between the EnKF and the PF is how they 

recursively generate an approximation to the probability distributions of the prognostic variables 

(Weerts and El Serafy, 2006). The EnKF provides an analytical solution to the analysis problem 

(Eq. 5.5). Unfortunately, most applications are non-linear and non-Gaussian and the 

multidimensional integration typically makes a closed-form solution intractable. Indeed, only in 

some specific case (i.e. within linear systems) a sequential analysis can be carried out using the 

analytical form of the filter to obtain exact calculations for the posterior distributions of interest 

(Moradkhani et al., 2005b).  
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Unlike the EnKF, which simplifies the recursive estimation by assuming Gaussian distributional 

properties of the prognostic variables, SMC methods based on Particle filtering have the 

advantage of relaxing the need for restrictive assumptions regarding the form of the distributions, 

since the full prior density functions are used within the updating procedure. The posterior 

probability distributions of prognostic variables are fully represented through a number of 

independent random samples, called particles. As the number of particles becomes very large, 

the Monte Carlo characterization becomes an equivalent representation of the posterior 

distributions, which are approximated by discrete random measures (i.e. particles) and a set of 

associated weights (Arulampalam et al., 2002). In essence, stochastic model computations are 

performed by generating a large number of random realizations of the variables of interest, 

solving deterministic equations for each realization, and estimating the resulting statistical 

properties of the ensemble (Moradkhani et al., 2005b).  

The particles are sampled to represent the posterior probability, and updated by assimilating the 

information contained in the newly available observations. Particles are properly weighted and 

propagated sequentially by the application of the Bayesian rule. The particles drawn from the 

posterior distribution are used to map integrals to discrete sums by the following empirical 

approximation of the posterior density (Arulampalam et al., 2002): 

 

𝑝(𝑋0:𝑡|𝑌1:𝑡) ≈∑𝑊𝑡
𝑖𝛿(𝑋0:𝑡 − 𝑋0:𝑡

𝑖 )

𝑁

𝑖=1

 [5.13] 

where {𝑋𝑡 
𝑖 ,𝑊𝑡

𝑖} denote the ith particle drawn from the posterior distribution and its associated 

weight, 𝛿(∙) is the Dirac delta function. The Dirac measure is given by: 

 
𝛿(𝑋𝑡 

𝑖 ) = {
0 𝑖𝑓 𝑋𝑡 

𝑖 ∈ 𝑋𝑡
1 𝑖𝑓 𝑋𝑡 

𝑖 ∉ 𝑋𝑡
 [5.14] 

Unfortunately, it is often unfeasible to sample directly from the posterior density function, since 

it is unknown. However, this limitation can be overcome by sampling from a known, easy-to-

sample, proposal distribution. This is the main concept of the importance sampling principle. PFs 

are based on the Sequential Importance Sampling (SIS) approach (Moradkhani et al., 2005b; 

Guingla et al., 2012), which is the recursive version of the Bayesian Importance Sampling (BIS). 

The more commonly used SIS principle is based on the fact that direct sampling from the 

posterior distribution, which is often non-Gaussian, is generally challenging (if not impossible). 
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In order to overcome this limitation, the samples (𝑋𝑡 
𝑖 ) are drawn from a known function, the so-

called importance density (or proposal distribution) and the importance weights of the particles 

are defined as: 

 
𝑊𝑡

𝑖∗ ∝
𝑝(𝑋0:𝑡

𝑖 |𝑌1:𝑡)

𝑞(𝑋0:𝑡
𝑖 |𝑌1:𝑡)

 [5.15] 

In order to avoid that the entire historical trajectory of particles needs to be stored, the 

commonly-used simplification proposed by Arulampalam et al. (2002) can be applied, which 

allows to modify the proposal distribution such that 

 𝑞(𝑋𝑡|𝑋0:𝑡−1, 𝑌1:𝑡) = 𝑞(𝑋𝑡|𝑋𝑡−1, 𝑌𝑡) [5.16] 

Therefore, a recursive updating of the importance weights, at each iteration, is achieved 

according to the following formula (Arulampalam et al., 2002): 

 
𝑊𝑡

𝑖∗ ∝ 𝑊𝑡−1
𝑖∗
𝑝(𝑌𝑡|𝑋𝑡

𝑖)𝑝(𝑋𝑡
𝑖|𝑋𝑡−1

𝑖 )

𝑞(𝑋𝑡
𝑖|𝑋𝑡−1

𝑖 , 𝑌𝑡)
 [5.17] 

Correspondingly, the filtering posterior density (Eq. 5.13) is approximated by: 

 

𝑝(𝑋𝑡|𝑌1:𝑡) ≈∑𝑊𝑡
𝑖𝛿(𝑋𝑡 − 𝑋𝑡

𝑖)

𝑁

𝑖=1

 [5.18] 

where 𝑊𝑡
𝑖  are the normalized weights given by: 

 
𝑊𝑡

𝑖 =
𝑊𝑡

𝑖∗

∑ 𝑊𝑡
𝑖∗𝑁

𝑖=1

 [5.19] 

Several authors (Doucet et al., 2000; Arulampalam et al., 2002) have agreed that the choice of 

the proposal function is a critical design issue as it significantly impacts the filter performance. 

Generally, the most convenient and frequently used importance function is the transition prior, 

where: 

 𝑞(𝑋𝑡
𝑖|𝑋𝑡−1

𝑖 , 𝑌𝑡) = 𝑝(𝑋𝑡|𝑋𝑡−1
𝑖 ) [5.20] 

By substituting [5.20] into [5.17], the weight updating simplifies to 

 𝑊𝑡
𝑖∗ ∝ 𝑊𝑡−1

𝑖∗ 𝑝(𝑌𝑡|𝑋𝑡
𝑖) [5.21] 

Unlike the EnKF, the main advantage of Particle filtering is the capability of handling the 

propagation of non-Gaussian distributions through non-linear models. (Salamon and Feyen, 
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2009). Furthermore, Particle filtering performs the updating on the particles weights rather than 

on state variables directly, which allows to maintain the overall physical consistency of the 

particles. 

However, since the stochastic behaviour of the system generally causes the dispersion of the 

particles, many of them drift from the true system state. After several iterations, only few 

particles are likely to have non-zero importance weights, while most of them are discarded due to 

their negligible probability, so that only a few particles are involved within the filtering process 

(Doucet, 1998). This is a well-known common issue with SIS, namely the sample degeneracy, 

which strongly hinders the PF performance. Degeneracy is an undesirable and unavoidable side-

effect entailing that the variance of importance weights stochastically increases over time and the 

particles do not succeed in properly approximating the posterior distribution.  

The effective sample size can be used as a measure of degeneracy. However, since the exact 

effective sample size cannot be computed, an estimated value is generally evaluated: 

 
𝑁𝑒𝑓𝑓 ≈

1

∑ 𝑊𝑡
𝑖𝑁

𝑖=1

 [5.22] 

Arulampalam et al., (2002) explained that small 𝑁𝑒𝑓𝑓 indicates severe degeneracy, and therefore 

it is common to set a fixed threshold 𝑁𝑡ℎ𝑟𝑒𝑠ℎ so that if 𝑁𝑒𝑓𝑓 < 𝑁𝑡ℎ𝑟𝑒𝑠ℎ, the effect of degeneracy 

needs to be reduced. 

The impact of the degeneracy can be easily mitigated by increasing the number of particles, but 

this approach is often unfeasible due to the increase in computational demand (Salamon and 

Feyen, 2009). Actually, a resampling procedure is frequently introduced, since it allows to 

restore the sample variety without deteriorating the characterization of the posterior distribution 

through a Markov chain chaotic Monte Carlo (MCMC). Within the resampling step, particles 

having high importance weights are replicated and those with low importance weights are 

discarded, while the total of particles is maintained unchanged. 

Several resampling schemes have been developed (Douc and Cappé, 2005), namely sampling 

importance resampling (Rubin, 1988; Smith and Gelfand, 1992; Gordon et al., 1993), residual 

resampling (MacKay, 1992; Higuchi, 1997; Liu and Chen, 1998), auxiliary sampling importance 

resampling (Pitt and Sphephard, 1999), minimum variance resampling (De Freitas et al., 2001), 
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stratified resampling (Kitagawa, 1996), deterministic resampling (Kitagawa, 1996), systematic 

resampling (Carpenter et al., 1999) and regularization based on kernel density (Musso et al., 

2001). 

Sequential importance resampling  

Gordon et al. (1993) proposed the Sequential Importance Resampling (SIR), which allows to 

avoid the sample degeneracy by introducing a resampling procedure within the SIS algorithm. 

The additional resampling step discards particles having a low probability while replicating those 

having a high importance weight. SIS and SIR PFs are very similar, with the only difference that, 

unlike the SIS where the resampling is carried out when degeneracy occurs, in SIR the 

resampling procedure is always performed at each time step, with the effective sample size 

remaining almost equal to the total sample size (N). The resampling algorithm maps the Dirac 

random measure {𝑋𝑡 
𝑖 ,𝑊𝑡

𝑖} (Figure 5.1b) into an equally weighted random quantity {𝑋𝑡 
𝑖 , 1/𝑁} 

through a uniform sampling from the discrete set {𝑋𝑡
𝑖 , 𝑖 = 1,… , 𝑁} with probabilities {𝑊𝑡

𝑖 , 𝑖 =

1, … ,𝑁}. An empirical cumulative distribution function (cdf) is then generated based on the 

weights 𝑊𝑡
𝑖  (Figure 5.1c). By using a uniform distribution, N samples are drawn from the cdf, all 

of which corresponds to a certain particle index. Clearly, the greater the weight of a particle, the 

higher the chance of drawing that particle (Figure 5.1d). Therefore, the resulting particle set 

contains replications of those particles having high importance weights. 

Several improvements (e.g. reduced variance, reduced number of computations) to the SIR filter 

algorithm have been suggested (Weerts and El Serafy, 2006). Guingla et al., (2012) stated the 

specific choice of the selection method among the stratified, systematic, or residual resampling 

does not significantly affect the performance of the SIR-PF, since all the three are designed to 

minimize the particle variance. 
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Figure 5.1: Example of multivariate SIR-PF scheme for the assimilation of surface temperature 

(in blue), SWE (in red), snow depth (in magenta) and snow density (in green) observations. - (a) 

Open circles are the background errors of the variables of interest. (b) Importance weights as a 

function of the particles indices. (c) The empirical cdf of the importance weights. (d) Number of 

resampled particles as a function of the particles indices. 

5.4 Experimental setup 

The two analysed sequential ensemble-based DA techniques have been tested and evaluated 

through a common methodology. The control experiments rely on an ensemble of 100 model 

realizations, with the aim of guaranteeing a significant sample while avoiding any computational 

overload. The default assimilation frequency is set at every 3 hours, in order to ensure an 

efficient exploitation of the ground-based observations, which are supplied with a generally high 

measurement frequency by the automatic stations at the analysed experimental sites (Sect. 3.1). 

The multivariate DA schemes have been designed to consistently update the system state by 

jointly assimilating in-situ observations of surface temperature, albedo, snow depth, and SWE. 

Whenever measurements of both snow depth and SWE are simultaneously available at an 

assimilation time step, observational information on snow density are derived and used to update 

the simulated values of this variable. Vice versa, at TGN site, during the winter seasons when 

snow density measures are provided, SWE estimates are derived and assimilated. Therefore, 
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when assessing the filter performance, it is noteworthy that data of SWE and snow density can 

be indirect estimates when in-situ measurements of these snow-mass quantities are lacking (Sect. 

3.3.3). 

5.4.1 Observational uncertainty 

According to the EnKF theory, the model error covariance matrix is diagnosed from the 

ensemble, which is one of the main assumptions of this DA technique. The efficiency of the 

analysis procedure strongly depends on the representativeness of the estimated uncertainties of 

both background and observations error covariances. Indeed, the ratio of the model forecast error 

covariance to the observation one is a key factor ruling the estimate of the updating terms.  

Burgers et al. (1998) explained the effectiveness of treating the observations as random variables 

at the analysis time steps. That is, at each assimilation time step an ensemble of observations is 

generated by adding some stochastic Gaussian noise to the observed data. The perturbations are 

generally drawn from a normal distribution with zero mean and the observations error covariance 

matrix (Reichle et al., 2002a; Reichle et al., 2002b; Moradkhani et al., 2005a). According to this 

technique, the observations error covariances used within the evaluation of the gain matrix are 

estimated from the ensemble of the perturbed observations, rather than being directly used. 

Otherwise, the updated ensemble is likely to have a too low variance.  

Whitaker and Hamill (2002) agreed that if the same observations and the same gain are used to 

update each ensemble member, the analysis error covariances are likely to be systematically 

underestimated, with a resulting degradation of subsequent analyses (filter divergence). 

However, they explained how the assimilation of an ensemble of perturbed observations can 

introduce an additional source of sampling error related to the estimation of the observations 

error covariances. Because of the nonlinear dependence among the analysis and background 

error covariances, this extra source of sampling error is likely to increase the probability of 

spurious estimates of the observation background error covariances with a resulting possible 

misestimation of the analysis error covariance. This undesirable issue is mainly due to the fact 

that the perturbed observations act as a source of multiplicative noise in the analysis system, 

since the amplitude of the noise in the analysis error covariances is proportional to the 

background error estimation. Kepert (2004) pointed out that the sampling error becomes even 
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more substantial as measurements dimensionality increases, with a resulting worsening of filter 

performance. Increasing the ensemble size can be effective in mitigating the effect of the 

sampling error. However, this approach is computationally demanding. 

Thus, with the dual purpose of maintaining a limited ensemble size and preventing some 

additional sampling errors from affecting the estimate accuracy of the analysis error covariances, 

the snow-related observations have been assimilated without introducing any additional noise. 

This choice has been further supported by the aim of testing the ensemble-based DA schemes for 

multivariate applications dealing with a large amount of observational data. Therefore, an a 

priori error covariance matrix of observations has been estimated and directly used within the 

evaluation of the Kalman Gain. 

Stigter et al. (2017) explained that when considering the uncertainties of ground-based 

measurements, it is necessary to consider not only the instrumental errors, but also the errors 

related to the low representativeness of the point observations. Indeed, in-situ measurements do 

not succeed in catching the spatialized snow processes, unless with a generally high degree of 

uncertainty depending on the density of the monitoring network. A case in point are the snow 

depth measurements, which are generally affected by small errors (few centimetres), but their 

representativeness is often poor due to the large spatial variability of snow cover (Magnusson et 

al., 2017). 

In this study, the observational uncertainty has been estimated according to the known 

instrumental errors. The representativeness error is of essential importance especially when 

dealing with DA applications in distributed models. Conversely, since in this study point 

measurements are assimilated within a one-dimensional modelling system, the observational 

error covariance matrix is supposed to be satisfactorily representative even though it does not 

take into account the representativeness uncertainty. Moreover, the observational data are 

supplied by experimental sites, where the in-situ measurements are extensively checked. The 

strategic positioning of these pilot sites in well sheltered locations from local wind patterns 

generally ensures a low impact of wind-induced snow drifting and also vegetation interaction. 

Lastly, since the main purpose is to investigate the feasibility of two different sequential 

ensemble-based techniques in performing multivariate DA, it is preferred to compare their 

performances given the same observational uncertainty. Since the representativeness errors can 
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be affected by the local complex topography, it can be considered as site-dependent. Thus, the 

introduction of this type of error would add some further uncertainty in assessing the comparison 

results at different sites. For all these reasons, the observation error covariance matrix has been 

evaluated only considering the instrumental errors (Table 5.1) and it has been used within both 

the tested DA algorithms at all the analysed Alpine sites. Indeed, even though the stations are 

heterogeneously equipped, the instrumental errors of the sensors measuring a specific variable 

slightly differ from one other. However, as well explained in Lafaysse et al., (2017), it is 

important to consider that the distance of the two sensors measuring snow depth and SWE can 

affect the retrieval of snow density with a significant uncertainty, especially when shallow snow 

cover is present and during the melting period (Essery et al., 2013). 

Assimilated variable Observational uncertainty 

Surface temperature [°C] ± 1 

Snow depth [cm] ± 5 

Albedo [%] 5 

SWE [mm] ± 30 

Snow density [kg/m3] ± 40 

Table 5.1: Uncertainties of the assimilated measures. 

Therefore, the error covariance matrix of observations (𝑅) is a site-independent, time-invariant 

diagonal matrix, since all measurement errors are assumed uncorrelated (off-diagonal null 

elements). 

5.4.2 Evaluation metrics 

The performances of the filtering techniques are assessed through their effectiveness in updating 

the model simulations of all the prognostic variables involved within the assimilation procedure, 

namely snow depth, SWE, snow density, surface temperature and albedo. In addition to the 

statistical metrics previously introduced in Sect. 4.4.2, namely RMSE and R, each analysis has 

been evaluated through the further following indices: 

 

𝑁𝐸𝑅 = (1 −
𝑅𝑀𝑆𝐸𝐴𝑠𝑠𝑖𝑚
𝑅𝑀𝑆𝐸𝑂𝐿

) · 100 

Normalized Error Reduction 

(NER, Chen et al., 2011) 

 

[5.23] 
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𝐸𝑓𝑓 = (1 −

∑ (𝐴𝑠𝑠𝑖𝑚𝑘 − 𝑂𝑏𝑠𝑘)
2𝑁

𝑘=1

∑ (𝑂𝐿𝑘 − 𝑂𝑏𝑠𝑘)2
𝑁
𝑘=1

) · 100 
Assimilation efficiency  

(Eff, Brocca et al., 2012) 
[5.24] 

 

The scores have been evaluated throughout the whole measurements dataset supplied by each 

station at the original temporal resolution without considering the snowless periods.
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A multivariate EnKF scheme has been developed and implemented with the aim of testing its 

performance in improving the snow model predictions. Even though this method is able to 

handle any number of variables in the updating scheme (Moradkhani et al., 2005a), when dealing 

with multivariate DA the implementation of an EnKF-based algorithm faces several issues. 

6.1 Ensemble generation and perturbation of state variables 

In an EnKF-based DA scheme, the predicted snowpack state is updated towards its observed 

state with a degree of correction determined by the level of error associated with each. The key 

feature of the EnKF is that the model error is dynamically derived from an ensemble of (typically 

nonlinear) model integrations. Thus, the generation of an ensemble of possible model 
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realizations is of critical importance to ensure a well representative error covariance matrix, 

which strongly affects the filter performance in updating the system state.  

In an ensemble modelling approach, one or more model key variables are handled as random 

variables, depending on which sources of uncertainty are taken into account. When considering 

the uncertainty of the meteorological inputs, some random noise is added to the forcing data. 

When aiming to consider the error affecting the simulations due to the model physics and/or the 

representativeness of its parameters, a stochastic perturbation of the initial conditions, key 

parameters or the prognostic variables is performed in order to properly represent the modelling 

uncertainty. The introduction of some stochastic noise affecting each ensemble member allows 

well diversify the model trajectories, which evolve independently with various combinations of 

perturbed variables. As several sources of uncertainty are involved within a modelling system, as 

many approaches can be adopted to generate the model ensemble. Durand and Margulis (2006) 

handled the precipitation input as an uncertain random variable as well as several crucial 

parameters. Reichle et al. (2007) considered the uncertainty related to the observed forcing fields 

by perturbing the input data. Furthermore, they also perturbed the state variables in order to 

jointly taken into account the uncertainty of the model physics and parameters. Similarly, De 

Lannoy et al. (2012) performed the perturbation of selected meteorological inputs and model 

prognostic variables through a randomly generated noise.  

The uncertainty of the state variables results from all the sources of uncertainty affecting the 

whole modelling system. Therefore, the EnKF scheme has been here implemented by directly 

perturbing the model states, in order to well represent the uncertainty in the snowpack 

conditions. Moreover, this choice has been supported by further assumptions on the impact of the 

perturbations within the updating procedure.  

As extensively explained in the previous Chapter, the EnKF provides an analytical solution to 

the analysis problem, assuming that all the involved probability distributions are Gaussian 

(Salamon and Feyen, 2009). Nevertheless, the strong nonlinearities in most systems hinder a 

proper evaluation of the posterior distributions of interest (Moradkhani et al., 2005b). Along with 

the unavoidable impact of the model nonlinear dynamics, it is noteworthy that the introduction of 

perturbations can add further sampling errors affecting the updating procedure. Moreover, it is 

important to consider that the Gaussian distributions of the perturbing noises are subject to 
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unknown distortions through the model integration forward in time. All these issues are supposed 

to contribute in deforming the resulting distributions of the state variables, whose shapes are 

unlikely to be Gaussian, but instead hardly traceable. Thus, the choice of directly perturbing the 

prognostic variables is supposed to guarantee a sizeable model error covariance matrix while 

limiting possible further unknown disturbing effects of parallel perturbations on the density 

distributions involved within the updating procedure. 

Each ensemble member has been perturbed through a stochastic noise directly added to the 

prognostic variables describing the system state. This approach has also allowed to prevent a too 

low analysis-error covariance matrix, which is likely to occur especially when the observations 

are not perturbed, as in this study. Indeed, an undesirable underestimation of error covariances 

has a larger impact on the analysis error than a commensurate overestimation (Whitaker and 

Hamill, 2002). Moreover, the perturbation has been extended to all the state variables with the 

aim of preventing inconsistencies resulting from possible imbalances within the model error 

covariance matrix. This expedient is of critical importance in a multivariate EnKF-based 

application, since a misrepresentation of the error covariance matrix can misleadingly result in 

high corrective terms of the well perturbed variables and negligible terms of those not perturbed, 

being equal observational uncertainty. 

6.1.1 Gaussian perturbation of prognostic variables 

The prognostic variables have been perturbed through an additive noise, which has been 

randomly generated by performing, for each state variable, a sampling from a multivariate 

Gaussian distribution characterized by a zero-mean vector and an assigned covariance matrix 

(𝐶𝑂𝑉𝑝𝑒𝑟𝑡). The sampling has been carried out by choosing equidistant cumulated probability 

values, in order to guarantee null mean-valued perturbations and the sample Gaussianity, even 

when the sample is limited in size. 

The covariance matrix has been a priori estimated in order to properly consider the different 

degree of uncertainty affecting each prognostic variable. The definition of cross-correlations 

among the perturbations of the state variables is likely to prevent possible physically inconsistent 

snowpack state (Reichle et al., 2007; De Lannoy et al., 2012). However, since the estimate of 

these a priori unknown quantities is challenging, no cross-correlation has been taken into account 
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in order to avoid the introduction of possible spurious correlations among the state variables 

resulting from the perturbation procedure. Nevertheless, with the aim of preventing prominent 

physical inconsistencies affecting the ensemble model states, the perturbation variances have 

been intentionally set to low values.  

The estimation of the diagonal elements has been carried out by analysing the variances of the 

time series of each prognostic variable at all the three analysed experimental sites throughout the 

whole datasets period. The resulting variance values have been then adjusted through a trial-and-

error approach with the dual aim of ensuring a well representing error covariance matrix of the 

model ensemble (𝑃𝑡) and preventing a too large ensemble spread, which is likely to lead to 

physically inconsistent values among the state variables.  

In order to prevent the states perturbation from introducing possible physically inconsistent 

values of any prognostic variable, whenever this undesirable condition occurs the model 

ensemble is rescaled after the perturbation procedure. Indeed, the direct truncation of possible 

spurious values would compromise the null mean-valued perturbations. Thus, a rescaling 

procedure has been introduced in order to avoid the introduction of possible distortion of the 

perturbed ensemble while guaranteeing the model physical consistency. This contraction has 

been designed to preserve both the ensemble average and perturbations Gaussianity even after 

the ensemble limitation (Figure 6.1).  
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Figure 6.1: Rescaling procedure - Limitation of the ensemble prognostic variables after the 

perturbation procedure. 

Whenever the rescaling procedure is applied, it unavoidably entails a decrease in the ensemble 

spread. The variance reduction of the model simulations can affect the updating process by 

leading to overly weight the predicted snowpack states and weakly assimilate the observed ones. 

In order to mitigate this undesired condition, the values of the model error variances (i.e. 

diagonal elements of the matrix 𝑃𝑡) resulting from the rescaling procedure are rescaled in turn. 

Therefore, the ensemble-based 𝑃𝑡-matrix is post-processed to increase its variance values 

proportionally to their rescaling-induced reduction. Once the diagonal matrix of error standard 

deviation (𝜎𝑡) is derived from the 𝑃𝑡-matrix, the error correlation matrix (Ѕ𝑡) is estimated by 

combining 𝑃𝑡- and 𝜎𝑡-matrices. At this stage, the variance reduction of each state variable is 

evaluated by computing the ratio between the empirical variance of each state variable and its 

actual variance value. Once this ratio is calculated, the rescaled 𝜎𝑡-matrix (𝜎𝑡,𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑) is defined 

by multiplying each diagonal element of the 𝜎𝑡-matrix by the square root of the corresponding 

ratio value. Lastly, the rescaled 𝑃𝑡-matrix is backwards obtained with the reverse approach, 

namely by combining Ѕ𝑡- and 𝜎𝑡,𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑-matrices, according to the following formula: 

 𝑃𝑡 = Ѕ𝑡  ·  (𝜎𝑡,𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 x 𝜎𝑡,𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑) [6.1] 
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6.1.2 Model physical consistency: modulating function 

The implementation of the rescaling procedure of the perturbed ensemble members has entailed 

the definition of physically-based lower and upper limits for each state variable 

(𝐿𝑖𝑚𝑗,𝐼𝑁𝐹 ,  𝐿𝑖𝑚𝑗,𝑆𝑈𝑃) to ensure its consistent limitation. With the aim of properly estimating the 

physical ranges of state variables, they have been statistically defined through the analysis of 

their observed time series at the three snow experimental sites. Since the snowpack model has 

been designed to simulate the energy balance in both snowy and snowless conditions (Sect. 4.1), 

two different sets of physical limits have been required to guarantee the model consistency both 

in case of presence and absence of snowpack (Table 6.1). 

STATE VARIABLE 
𝑳𝒊𝒎𝑰𝑵𝑭 𝑳𝒊𝒎𝑺𝑼𝑷 

snowy snowless snowy snowless 

𝑇𝑠 [°C] -30 - 0 - 

𝑇𝑚 [°C] -30 - 0 - 

𝑇0 [°C] -10 0 0 40 

𝑇𝑑 [°C] -2 0 5 20 

𝑊𝑠 [mm] 0 - - - 

𝑊𝑚 [mm] 0 - - - 

𝜌𝑠 [kg/m3] 80 - 550 - 

𝜌𝑚 [kg/m3] 80 - 550 - 

α [-] 0.2 1 

Table 6.1: Lower and upper limits of the state variables in snowy and snowless conditions. 

Similarly, in order to generate consistent perturbations both during and beyond the winter season 

(e.g. in snowless conditions the snow-related variables are not included into the model state), two 

different covariance matrixes have been defined for snowy and snowless conditions, respectively 

(𝐶𝑂𝑉𝑝𝑒𝑟𝑡,𝑠𝑛𝑜𝑤𝑙𝑒𝑠𝑠 , 𝐶𝑂𝑉𝑝𝑒𝑟𝑡,𝑠𝑛𝑜𝑤𝑦). 

With the purpose of preventing model instabilities due to the intermittent presence of snow 

cover, a modulation has been introduced in order to relax the switch from snow cover to bare soil 

conditions, by properly setting both lower and upper physical limits of state variables 

(𝐿𝑖𝑚𝑗,𝑡,𝐼𝑁𝐹 ,  𝐿𝑖𝑚𝑗,𝑡,𝑆𝑈𝑃) and the covariance matrix used for the generation of the ensemble 
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perturbations (𝐶𝑂𝑉𝑝𝑒𝑟𝑡,𝑡). The modulation allows to well characterize the transition periods, 

namely the early winter and the melting season, by constraining each state variable into likely 

time-variant physical ranges and simulating the seasonal variability of the variance of each 

prognostic variable. 

The modulating function (β) allows discriminating the presence or absence of snow according to 

both air temperature (observed) and snow mass (modelled). This approach enables to manage the 

transition periods: snow cover and high air temperature (melting process) and bare soil and low 

air temperature (early winter). The β-function is defined according to the following formulas: 

 
𝛽𝑇𝑎 = (𝛾 −

atan(𝑇𝑎 )

𝜋
) [6.2] 

 

𝛽 = 𝛽𝑇𝑎 + (1 − 𝛽𝑇𝑎) · 𝑒
−(1+(

(𝑊𝑠+𝑊𝑚)−𝜇
𝜎

)𝜉)
−1/𝜉

 
[6.3] 

The functional form and the parameters (𝛾, 𝜇, 𝜉 , 𝜎) have been defined to centre the function on 

an air temperature value that could discriminate snow and no-snow conditions, assumed equal to 

0°C, and asymptotically reach the desired limit values (1 for winter and 0 for summer).  

Figure 6.2 shows the modulating function, which assumes values near to 0 when the air 

temperature is high and there is no snow cover (mainly during summer season), and near to 1 in 

case of snow cover and cold temperatures (winter period). In these two limit cases summer and 

winter physical ranges are assumed for all the state variables, respectively. The function assumes 

value near to 1 also when no snowpack is present, but temperatures are very low (autumn, early 

winter).  
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Figure 6.2: β-modulating function. 

During transition periods β-function allows defining intermediate model run settings depending 

on the combination of snow and air temperature information, according to the following 

formulae: 

 𝐿𝑖𝑚𝑗,𝑡,𝑆𝑈𝑃 = (𝐿𝑖𝑚𝑗,𝑆𝑈𝑃𝑠𝑛𝑜𝑤𝑙𝑒𝑠𝑠 · (1 − 𝛽)) + (𝐿𝑖𝑚𝑗,𝑆𝑈𝑃𝑠𝑛𝑜𝑤𝑦 · 𝛽) [6.4] 

 𝐿𝑖𝑚𝑗,𝑡,𝐼𝑁𝐹 = (𝐿𝑖𝑚𝑗,𝐼𝑁𝐹𝑠𝑛𝑜𝑤𝑙𝑒𝑠𝑠 · (1 − 𝛽)) + (𝐿𝑖𝑚𝑗,𝐼𝑁𝐹𝑠𝑛𝑜𝑤𝑦 · 𝛽) [6.5] 

 𝐶𝑂𝑉𝑝𝑒𝑟𝑡,𝑡 = (𝐶𝑂𝑉𝑝𝑒𝑟𝑡,𝑠𝑛𝑜𝑤𝑙𝑒𝑠𝑠 · (1 − 𝛽)) + (𝐶𝑂𝑉𝑝𝑒𝑟𝑡,𝑠𝑛𝑜𝑤𝑦 · 𝛽) [6.6] 

6.1.3 Impact of the perturbation of state variables on ensemble simulations without DA 

The aim is to verify that the stochastic noise added to the prognostic variables does not affect the 

model predictions on average, at any site. Therefore, the impact of the states perturbation is 

investigated by analysing the 100 members-ensemble simulations (Figures 6.3a, b, c), without 

considering the assimilation of snow data, in order to verify that no spurious trends occur with 

respect to the deterministic control run (i.e. OL simulations). 
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Figure 6.3a: Perturbation of model prognostic variables - Ensemble simulations of snow depth, 

SWE, snow density, surface temperature and albedo – CDP site, winter season 2008-2009. 
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Figure 6.3b: Perturbation of model prognostic variables - Ensemble simulations of snow depth, 

SWE, snow density, surface temperature and albedo – WFJ site, winter season 2003-2004. 

 



6.1 Ensemble generation and perturbation of state variables 114 

 

 

 

  

  

 

 

Figure 6.3c: Perturbation of model prognostic variables - Ensemble simulations of snow depth, 

SWE, snow density, surface temperature and albedo – TGN site, winter season 2012-2013. 

The direct perturbation of the state variables does not result in neither divergent trend nor 

spurious predictions with respect to the control OL run. Nevertheless, the introduction of the 

stochastic noise can lead to possible over- and underestimation of the ensemble simulations, on 

average. The ensemble envelopes generally include the time series of the deterministic run, 

except for the SWE and snow density simulations, which however are not strongly affected by 
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the perturbation procedure. Furthermore, this approach ensures a rather steady ensembles 

variance, with no prominent seasonality. It is noteworthy that some threshold processes involved 

within the snow dynamics model (e.g. disappearance of the surface snow layer; limitation of 

state variables within physical ranges) can result to be counter-productive in enlarging the 

ensembles spread.  

6.2 Multivariate EnKF scheme 

Several issues have been addressed within the implementation of the multivariate EnKF scheme 

into the snow model. Indeed, in a multivariate application the handling of the model 

nonlinearities becomes even more challenging and specific approaches are needed to limit the 

impact on the filter performance.  

6.2.1 Model error covariance matrix 

The correlations among state variables of a highly non-linear model may be difficult to assess 

through simple ensemble statistics, with possible miscorrection of model background errors, 

especially for those state variables which are not directly observed. In order to overcome some of 

these limitations and obtain an overall consistent update of the snowpack state, the model error 

covariance matrix has been reduced to a block-diagonal one. Two minors allow to handle the 

covariances among energy- and mass-related variables independently. The implementation of 

this solution allows updating both energy and mass balances by limiting physically incoherent 

corrections. Furthermore, in order to avoid possible model instabilities, any inconsistent value 

generated through the ensemble updating is removed by limiting each state variable into proper 

physical ranges. According to this approach, any outlier value is set equal to upper or lower limit 

of the corresponding physical range. 

6.2.2 Multivariate EnKF simulations 

The effectiveness of the Kalman filter is tested by assimilating in-situ snow-related 

measurements to update the model simulations of a 100-members ensemble. According to the 

experimental setup (Sect. 5.4), point ground-based observations of surface temperature, snow 

depth, albedo, SWE and snow density are assimilated every 3 hours. 
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Figure 6.4a: Multivariate EnKF simulations of snow depth, SWE, snow density, surface 

temperature and albedo – CDP site, winter season 2008-2009. 
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Figure 6.4b: Multivariate EnKF simulations of snow depth, SWE, snow density, surface 

temperature and albedo – WFJ site, winter season 2003-2004. 
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Figure 6.4c: Multivariate EnKF simulations of snow depth, SWE, snow density, surface 

temperature and albedo – TGN site, winter season 2012-2013. 

Figures 6.4a, b, c show the multivariate EnKF simulations throughout one benchmark winter 

season at each analysed experimental site. The filter well succeeds in handling the model 

nonlinearities, as proved by the general improvement of the simulated snowpack dynamics. The 

snowfalls overestimation is significantly reduced and the model enables to better reproduce the 

melting timing with respect to the control run simulations. The over- and underestimation biases 
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affecting the snow mass balance during both the accumulation and the melt-out periods are 

significantly decreased. Indeed, the filtering process guarantees to generally improve both the 

snowpack settling and ripening dynamics. At WFJ and TGN sites, the lower SWE measurement 

frequency entails a saw tooth pattern resulting from the model responses to the sharp filter 

updates between two following assimilation time steps. The daily SWE observations at the 

French site ensure a smoother trend thanks to more frequent filter updating calling for lower 

corrective terms. Accordingly, the same pattern is observed in the snow density simulations, 

where the system sharply tends to its previous state right after the steep stretches towards 

observations. Even though the deterministic simulations well get the daily thermal cycle, 

generally they reveal an underestimation of the diurnal surface temperature peaks and a 

significant overestimation of the nocturnal ones. The assimilation of temperature measurements 

allows to better reproduce the size of the temperature range by forcing the ensemble surface 

temperatures towards the observations, on average. The albedo simulations are more consistent 

with the observations, since they better catch both its seasonal evolution and the albedo increase 

whenever a snowfall event occurs. Furthermore, it is noteworthy that the filter updating does not 

necessarily guarantee the physical consistency among the prognostic variables describing the 

state of each ensemble member. The often-sharp corrective terms individually applied to each the 

state variable can result in a suboptimal estimate of the system state, which tends to quickly 

restore its previous conditions, as demonstrated by the saw tooth trend that characterizes the 

resulting simulations. 

The resulting statistical indices (Sect. 4.4.2; Sect. 5.4.2) are shown in Figures 6.5a, b, c. The 

snow depth simulations get the most benefit from the filter updating thanks to the high 

measurement frequency and the slow dynamics of this prognostic variable. The overall snow 

mass balance benefits from the assimilation of snow data, as proven by the scores of the snow 

density and SWE simulations, except for some sporadic winter seasons at CDP site. The filter 

reveals a satisfying efficiency in updating the surface temperature. However, even though the 

filtering procedure ensures a higher consistency with the temperature measurements at each 

assimilation time step, the updating effect turns out not to be long-lasting. This limitation is 

mainly ascribable to the sharp filter sequential corrections of the surface temperature, which are 

likely to generate thermal conditions remarkably different from the current simulated ones. The 

low model thermal inertia allows the system to quickly restore its previous thermal state between 
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two following assimilation time steps. Consistently, the albedo simulations are generally 

enhanced. 

  

  

 

 

Figure 6.5a: Multivariate EnKF scheme - Statistical scores of snow depth, SWE, snow density, 

surface temperature and albedo simulations - CDP site (full dataset). The bottom and top edges 

of each box indicate the 25th and 75th percentiles of the scores distribution of the ensemble 

members, respectively. 
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Figure 6.5b: Multivariate EnKF scheme - Statistical scores of snow depth, SWE, snow density, 

surface temperature, and albedo simulations - WFJ site (full dataset).  
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Figure 6.5c: Multivariate EnKF scheme - Statistical scores of snow depth, SWE, snow density, 

surface temperature, and albedo simulations - TGN site (full dataset). 
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6.3 Sensitivity experiments 

With the purpose of investigating the system sensitivity to different DA settings, several 

experiments have been carried out. Firstly, the sensitivity to the DA frequency has been tested. 

Secondly, the sensitivity to the ensemble size has been evaluated by varying the number of 

ensemble members. Lastly, the impact of the assimilation of different observed variables has 

been studied by assimilating different combinations of them. 

6.3.1 System sensitivity to the assimilation frequency 

This first experiment has been performed by varying the assimilation frequency, for a given 100-

members ensemble size. Snow data have been assimilated every 3, 6, 12, 24 hours in order to 

assess the impact on the filter effectiveness. Figures 6.6a, b, c show the resulting statistical 

scores at decreasing assimilation frequency. 
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Figure 6.6a: Multivariate EnKF scheme – System sensitivity to the assimilation frequency - 

Statistical scores of snow depth, SWE, snow density, surface temperature, and albedo 

simulations – CDP site, (full dataset). The range is evaluated across the dataset winter seasons. 
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Figure 6.6b: Multivariate EnKF scheme – System sensitivity to the assimilation frequency - 

Statistical scores of snow depth, SWE, snow density, surface temperature, and albedo 

simulations – WFJ site, (full dataset). 
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Figure 6.6c: Multivariate EnKF scheme – System sensitivity to the assimilation frequency - 

Statistical scores of snow depth, SWE, snow density, surface temperature, and albedo 

simulations –TGN site (full dataset). 

Generally, statistical metrics reveal a foreseen worsening of the filter performance as the 

assimilation frequency decreases from every 3 to 24 hours. 

At the French site, the decrease in the assimilation frequency does not prominently affect the 

snow depth predictions up to every 12 hrs. The daily assimilation entails a worsening of the 
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average values of Eff and NER, while the other two scores show an increase in the spread of their 

samples. This trend is mainly due to the system sensitivity in terms of snow density, whose 

simulations, in turn, reveal a slight worsening of the scores as the assimilation frequency drops to 

every 24 hrs, except for R values proving a preserved satisfying positive correlation. The SWE 

predictions at CDP maintain the average values of the statistical scores with a decreasing 

assimilation frequency, while their spreads are slightly wider with the daily assimilation. With 

respect to CDP, at the Swiss and Italian sites the RMSE and R values of the snow depth 

simulations turn out to be more conservative up to every 24 hrs. Nevertheless, a higher 

sensitivity is detected in terms of Eff and NER, which entails a more marked progressive 

worsening of these metrics. At WFJ the statistical scores of snow density predictions are better 

preserved than at the French site. As the assimilation frequency decreases, the scores samples of 

the snow density simulations at TGN are generally less spread up to the 12-hrs assimilation. 

With the daily assimilation, sharp increases in their spreads are observed, along with a worsening 

of the average statistical metrics. Consistently with CDP, at Swiss and Italian sites the filter 

performance in updating the SWE predictions is weakly sensitive to the assimilation frequency. 

However, at WFJ both the simulations with 12-hrs and 24-hrs assimilation slightly outperform 

those with a higher assimilation frequency, mainly due to the poorer bi-weekly availability of the 

in-situ measurements of this variable. Similarly, at TGN a slight improvement is observed as the 

assimilation frequency becomes coarser than every 3 hrs, especially in term of Eff and NER. 

With respect to the other analysed variables, at all the experimental sites the surface temperature 

simulations are generally characterized by a well-defined trend revealing a sizeable worsening of 

the filter performance with a decreasing assimilation frequency, which leads to statistical indices 

almost equivalent to the OL ones with the 24-hrs assimilation. This undesired issue is mainly due 

to the faster dynamic evolution of this variable, whose daily thermal cycle can make the 

predictions diverge from their analysis simulations between two following daily assimilation 

time steps. However, up to a frequency of 12 hrs the assimilation procedure well succeeds in 

properly updating this variable. At all the pilot sites, generally the filter performance is slightly 

sensitive to the assimilation frequency in terms of albedo, whose simulations are not subject to a 

progressive worsening of neither their average statistical indices nor the spread of their samples, 

up to every 24 hrs. Nevertheless, at CDP the scores get slightly worse from 3-hrs and 6-hrs 

assimilation frequencies, whose satisfying scores are then preserved up to the daily assimilation.  
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In light of these results, a useful assimilation frequency between 3 and 12 hrs can ensure a 

consistent update of the system state. 

6.3.2 System sensitivity to the ensemble size 

Alongside with the assimilation frequency, another critical parameter of the DA procedure is the 

ensemble size. Indeed, if the amount of model realizations is too limited, the evaluation of the 

model error covariance matrix could be not properly accurate. The uncertainty of this estimation 

decreases in a rate proportional to 1/√N, with N model states (Evensen, 1994). On the other 

hand, if the ensemble is oversized, an excessive computational load could be required.  

The system sensitivity to the ensemble size has been evaluated by varying the number of the 

members from 20 to 200, for a given 3-hrs assimilation frequency. 

The resulting scores (Figures 6.7a, b, c) prove that the system is not markedly sensitive to the 

ensemble size. The increase in the ensemble size does not entail a progressive improvement of 

the statistical indices, whose average values have a steady trend as the number of the model 

realizations raises. As well, the scores spreads are not characterized through well-defined trends 

as a function of the ensemble size. Nevertheless, the snow depth simulations generally reveal the 

narrowest spreads of both RMSE and R. At CDP and TGN sites the RMSE values of the albedo 

predictions are weakly spread, as well as the R indices of the SWE, snow density and surface 

temperature at all the experimental sites. 
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Figure 6.7a: Multivariate EnKF scheme – System sensitivity to the ensemble size - Statistical 

scores of snow depth, SWE, snow density, surface temperature, and albedo simulations – CDP 

site (full dataset). The range is evaluated across the dataset winter seasons. 
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Figure 6.7b: Multivariate EnKF scheme – System sensitivity to the ensemble size - Statistical 

scores of snow depth, SWE, snow density, surface temperature, and albedo simulations –WFJ 

site (full dataset). 
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Figure 6.7c: Multivariate EnKF scheme – System sensitivity to the ensemble size - Statistical 

scores of snow depth, SWE, snow density, surface temperature, and albedo simulations – TGN 

site (full dataset). 
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6.3.3 System sensitivity to the assimilation of different variables 

While keeping unchanged both the 100-members ensemble size and the 3-hrs assimilation 

frequency, the impact of the assimilation of different observed variables is investigated by 

assimilating different combinations of them: 

a. Only surface temperature (𝑇); 

b. Only SWE (𝑊); 

c. Only albedo (𝐴); 

d. Only snow depth (𝐻); 

e. Surface temperature and snow depth (𝑇𝐻); 

f. Surface temperature and albedo (𝑇𝐴); 

g. Albedo and snow depth (𝐴𝐻); 

h. Surface temperature and SWE (𝑇𝑊); 

i. SWE and albedo (𝑊𝐴); 

j. SWE and snow depth (𝑊𝐻); 

k. Surface temperature, albedo and snow depth (𝑇𝐴𝐻); 

l. Surface temperature, SWE, albedo (𝑇𝑊𝐴); 

m. SWE, albedo and snow depth (𝑊𝐴𝐻); 

n. Surface temperature, SWE and snow depth (𝑇𝑊𝐻). 

Figures 6.8a, b, c show the performances of the multivariate EnKF scheme depending on the 

assimilated quantities. As expected, the simulations of each involved prognostic variable 

generally benefit from the assimilation of its direct observations, even when assimilated in 

combination with other measurements. 
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Figure 6.8a: Multivariate EnKF scheme – System sensitivity to the assimilation of different 

variables - Statistical scores of snow depth, SWE, snow density, surface temperature, and albedo 

simulations – CDP site (full dataset). The bottom and top edges of each box indicate the 25th 

and 75th percentiles of the scores distribution throughout the dataset winter seasons, 

respectively. Reference open loop skills are reported in terms of R and RMSE values. 
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Figure 6.8b: Multivariate EnKF scheme – System sensitivity to the assimilation of different 

variables - Statistical scores of snow depth, SWE, snow density, surface temperature, and albedo 

simulations – WFJ site (full dataset). 
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Figure 6.8c: Multivariate EnKF scheme – System sensitivity to the assimilation of different 

variables - Statistical scores of snow depth, SWE, snow density, surface temperature, and albedo 

simulations –TGN site (full dataset). 

Snow mass-related prognostic variables 

To consistently update the mass balance of the system, the W-assimilation turns out not to be 

sufficient. Complementary information on snow density is needed to prevent possible misleading 

snow depth updates resulting from biased snow density estimates. The T-assimilation even 
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entails a counter-productive impact on snow depth predictions, since the filter corrections of the 

thermal variable are likely to generate thermal conditions sensibly different from the current 

ones, which can also trigger threshold processes involved within the snow dynamics model (e.g. 

induced melt-out of the surface snow layer). Sharp updates of the system temperature to reduce 

the under- and overestimation of the diurnal and nocturnal peaks can respectively lead to 

possible spurious melting and refreezing events during the winter season, which result in a 

worsening of the modelled snowpack dynamics. Accordingly, even the combined TW-

assimilation does not guarantee to cope with the induced melting events due to the general lack 

of information on snow density. Except for the TGN site, the A-assimilation does not result in 

any significant improvement of snow depth simulations, not even the joint TWA-assimilation. 

It is noteworthy that the slight impact of the A-assimilation is mainly ascribed to an effect of the 

limitation of this quantity within proper physical ranges after the perturbation procedure (Sect. 

6.1.1). Indeed, with respect to the other state variables, the albedo is limited within a more 

restricted range [0.2-1], which can lead to a lower error variance with a resulting less powerful 

weighting of its observations.  

Similarly to the snow depth simulations, the assimilation of energy-related variables (T- and A- 

assimilation) does not result in any improvement of SWE predictions. The lack of information on 

snow density hinders the consistent SWE updating when snow depth measures are assimilated 

(H-assimilation). This issue can be regarded as a filter limitation in properly handling the 

nonlinear correlations among the variables included in the mass-related minor of the model error 

covariance matrix. A further evidence of this limitation is the filter updating of snow density 

simulations, which requires observations of at least two mass-related variables to consistently 

update the system state. 

Energy-related prognostic variables 

Except for the TGN station, where the filter succeeds in enhancing, more or less effectively, the 

simulations of the surface temperature, the updating of the mass balance generally slightly 

improves the model thermal state (e.g. WH-assimilation at WFJ site, W-assimilation at CDP 

station). The A-assimilation does not significantly affect the system temperature, whose 

predictions reveal around the same statistical indices of the deterministic control run. The higher 



137 CHAPTER 6 - Multivariate Ensemble Kalman Filter scheme 

 

 

 

frequency of the SWE measurements at CDP ensures a satisfying filter performance in updating 

the surface temperature through the combined WA-assimilation. 

The albedo updating is more challenging, since even the A-assimilation does not always 

guarantee the filter effectiveness, as at WFJ site. Beyond the TA-assimilation, the greatest 

improvement results from the combined assimilation with snow mass measurements (i.e. AH- 

and WA-assimilations), except for TGN, where the lower frequency of the SWE estimates 

hinders the filter performance. 

The sensitivity analysis of the system to the assimilation of different observed variables has 

allowed to highlight the potential of the multivariate DA scheme. The combined assimilation of 

both energy- and mass-related quantities turns out to be of critical importance. Indeed, the 

updating of the energy-related variables generally does not entail a consistent update of the 

system mass balance. Rather, the often-sharp filter corrections of the surface temperature result 

into misleading updates of the simulated snowpack dynamics. Nevertheless, it is noteworthy that 

the reduction of the model error covariance matrix to the energy- and mass-related minors cannot 

guarantee the update of the overall system when individually assimilating energy- or mass-

related variables. Furthermore, observational information on at least two mass-related quantities 

is required to limit the effect of the nonlinear correlations among the prognostic variables on the 

filter updating. 

In agreement with Durand and Margulis (2006), who demonstrated the benefit of jointly 

assimilating energy- and mass-related observations, the most effective DA configurations call for 

the joint TWA-, WAH-, TWH-assimilations, which generally ensure the largest consistent update 

of the system state. 
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A multivariate SIR-PF scheme has been developed and implemented within the snow dynamics 

model. The choice of this algorithm aims to avoid the sample degeneracy via resampling (Sect. 

5.3.2, Sequential Importance Resampling). When performing a multivariate DA scheme, it is 

necessary to consider the different uncertainties affecting the observed variables in order to 

properly define the likelihood function. The likelihood function implemented within the 

multivariate SIR-PF scheme is a 𝑁𝑜𝑏𝑠-dimensional normal distribution, where 𝑁𝑜𝑏𝑠 is the 

number of the effectively assimilated variables, changing according to the available 

observational dataset. The likelihood function is therefore defined as 

 𝑝(𝑌𝑡|𝑋𝑡) = 𝑁{(𝑌𝑡 − 𝑋𝑡
𝑖), 𝜇, 𝑅} [7.1] 

where 𝜇 and 𝑅 are respectively the null mean vector and the error covariance matrix of 

observations (Sect. 5.4.1) characterizing the multivariate Gaussian distribution 𝑁. 
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Thus, at each assimilation time step the particles importance weights are updated according to 

the following equation: 

 

𝑊𝑡
𝑖 =

𝑒𝑥𝑝 (−
1
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2
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1
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2
)𝑁
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 [7.2] 

In view of assimilating snow observations through the SIR-PF method, an ensemble of possible 

realizations of the snowpack state is needed. As extensively explained in Section 6.1, the model 

ensemble can be generated by considering several sources of uncertainty affecting the 

simulations. In the multivariate EnKF-based application, the conservative approach of directly 

perturbing the state variables was adopted to accommodate the constraining assumptions by 

preventing both a too low analysis-error covariance matrix and the introduction of possible 

further sampling errors. Since the PF technique has the main advantage of relaxing most of the 

EnKF-related restrictive assumptions, the implementation of this DA scheme does not 

necessarily require a specific methodology to generate an ensemble of possible model 

realizations.  

Among the several uncertainties affecting the simulations of a physical model, the 

meteorological forcings are generally one of the major sources of uncertainty of snow-related 

predictions (Raleigh et al., 2015). Therefore, an ensemble of model simulations is here generated 

by perturbing the model inputs, namely precipitation, air temperature and relative humidity, solar 

radiation, wind speed. The ensemble of perturbed inputs allows to take into account a well-

representative range of weather conditions at the experimental sites, which results in an ensemble 

of possible snowpack states standing for the uncertainty of model predictions (Charrois et al., 

2016). 

7.1 Multivariate SIR-PF simulations with perturbed meteorological 

data 

7.1.1 Generation of the perturbed meteorological input data 

A meteorological ensemble of 100 members has been generated by perturbing the in-situ 

meteorological data with an additive stochastic noise applied at each time step. Following the 
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methodology proposed by Magnusson et al. (2017), the random perturbations are provided 

through a first-order autoregressive model in order to guarantee a physical consistency and a 

temporal correlation of the time-variant forcings. The time evolution of the error 𝑞𝑡 for time t in 

the forcing data can be represented as: 

 𝑞𝑡 = 𝛾𝑞𝑡−1 +√1 − 𝛾2𝜔𝑡 [7.3] 

where 𝜔𝑡 is the white noise with mean equal to 0 and variance equal to 1, and γ defines the time 

decorrelation. The initial error (𝑞0) is drawn from a standard normal distribution. The parameter 

γ is a function of a time decorrelation length (τ), according to the following formula: 

 
𝛾 = 1 −

𝛥𝑡

τ
 [7.4] 

where 𝛥𝑡 is the model time step, namely 15 minutes. 

Then, the time series of correlated noise are shifted and scaled to obtain the desired mean and 

variance. The normally distributed error 𝑞𝑡 is transformed to lognormally distributed noise 𝑙𝑡 

using the following relationship: 

 𝑙𝑡 = exp (𝜇 + 𝜎𝑞𝑡) [7.5] 

where 𝜇 is the mean and 𝜎 is the standard deviation of the associated normal distribution. 

Perturbations of meteorological data are generated considering the error statistics evaluated at the 

CDP site (Table 7.1) (Magnusson et al., 2017), which result from the comparison between 

SAFRAN reanalysis data (Vidal et al., 2010) and the observations supplied by the French station 

(Charrois et al., 2016).  

 

Table 7.1: Error statistics for the generation of the meteorological ensembles (Magnusson et al., 

2017). 

This approach has been tested at each measurement station in order to verify that the introduction 

of the stochastic noise does not affect the observed inputs on average at any experimental site by 

Unit Distribution μ σ τ [hr] Lower limit Upper limit

Air temperature Ta [°C] Normal 0 0.9 4.8 - -

Relative humidity RH [%] Normal 0 8.9 8.4 0 100

Solar radiation SW [W/m²] Normal 0 min(SW,109.1) 3.0 0 -

Precipitation P [mm] Lognormal -0.19 0.61 2.0 0 -

Wind speed V [m/s] Lognormal -0.14 0.53 8.2 0.5 25

Variable
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avoiding possible distortions (Figures 7.2a, b, c). Indeed, the ensemble average of each 

meteorological variable is supposed to maintain the observed value.  

  

  

  

Figure 7.1a: Ensembles of meteorological forcings – CDP site – Winter season 2003-2004. The 

panel shows the 100 members-ensembles of the meteorological variables: air temperature; solar 

radiation; air relative humidity; wind speed; rain; snowfall. 
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Figure 7.1b: Ensembles of meteorological forcings – WFJ site – Winter season 2001-2002. The 

panel shows the 100 members-ensembles of the meteorological variables: air temperature; solar 

radiation; air relative humidity; wind speed; rain; snowfall. 
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Figure 7.1c: Ensembles of meteorological forcings – TGN site – Winter season 2014-2015. The 

panel shows the 100 members-ensembles of the meteorological variables: air temperature; solar 

radiation; air relative humidity; wind speed; rain; snowfall. 
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The meteorological data are generally not substantially affected, on average, by the perturbations 

applied at each model time step (every 15 min). However, the limitation of the perturbed values 

within proper physical ranges makes the ensemble average slightly differ from the observed 

values, especially in terms of air relative humidity and wind speed. 

Nevertheless, the main limitation of this procedure is the lack of correlations among the 

perturbed forcing variables, which does not ensure their physical consistency (Charrois et al., 

2016). It is also noteworthy that the same error statistics specifically derived from the 

observations supplied by the CDP station have been used for the generation of the 

meteorological ensembles at all the pilot sites. As highlighted by Magnusson et al. (2017), this 

approach is likely to reduce the filter performances at the Italian and Swiss stations. 

7.1.2 Impact of the meteorological uncertainty on ensemble simulations without DA 

When considering the uncertainty of the forcing data, each ensemble model realization is forced 

by different meteorological conditions generating distinct snowpack states. Therefore, after 

verifying that the introduction of the stochastic noise does not affect the observed inputs on 

average, the aim is to assess the impact of the meteorological uncertainty on the ensemble 

snowpack simulations. 

Indeed, since the strong system nonlinearities make the model response to the inputs perturbation 

hardly predictable and possible inconsistencies among the meteorological variables can generate 

unlikely system states, it is important to verify that no spurious trends occur with respect to the 

deterministic control run (OL simulations).  

To investigate the impact of the meteorological stochastic perturbations, 100-members ensemble 

of snowpack simulations forced by as many different meteorological conditions have been 

analysed, without considering the assimilation of snow data. For the sake of concision and 

clarity, a representative winter season is shown for each site (Figures 7.3a, b, c). 
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Figure 7.2a: Impact of the meteorological uncertainty - Ensemble simulations of snow depth, 

SWE, snow density, surface temperature, and albedo – CDP site, winter season 2003-2004. 
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Figure 7.2b: Impact of the meteorological uncertainty - Ensemble simulations of snow depth, 

SWE, snow density, surface temperature, and albedo – WFJ site, winter season 2001-2002. 
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Figure 7.2c: Impact of the meteorological uncertainty - Ensemble simulations of snow depth, 

SWE, snow density, surface temperature, and albedo – TGN site, winter season 2014-2015. 
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The ensembles spread reveals possible over- and underestimation of the model simulations as 

direct consequence of the meteorological uncertainty. Nevertheless, the time series of the 

deterministic control run are generally included within the ensemble envelop, except for snow 

density, whose underestimation is increased. 

With respect to the other state variables, snow density and albedo are generally less affected by 

the input perturbation, since their evolution indirectly depends on meteorological inputs through 

their physical parameterization laws. Thus, the resulting ensembles of these two state variables 

are often poorly spread.  

The variance of the mass-related ensembles is generally the largest at the end of the winter 

season, when the perturbation of energy-related forcing variables (i.e. air temperature, shortwave 

radiation) leads to well spread melt-out scenarios resulting from the difference in melt timing 

(i.e. some particles have just started to melt and some others have already disappeared). During 

the winter season, the spread of SWE ensembles is increased whenever a snowfall event occurs 

due to the uncertainty in the precipitation rates allowing to provide the mass balance of each 

model realization with a different input of snowfall rate. Of course, sites climatology (e.g. 

frequency of snowfall events) strongly impacts the resulting ensemble variance.  

A significant variance of the surface temperature ensembles is ensured by its high sensitivity to 

the inputs uncertainty, namely the perturbation of the air temperature and shortwave radiation, 

which directly impacts the snowpack energy balance.  

However, it is important to consider that some threshold processes involved within the snow 

dynamics model (e.g. disappearance of the surface snow layer, limitation of state variables 

within physical ranges) can be counter-productive in enlarging the ensembles spread.  
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7.1.3 Multivariate SIR-PF simulations with perturbed input data 

After generating the meteorological ensembles to obtain consistent ensemble simulations, the 

SIR-PF scheme has been implemented to jointly assimilate several observed snow data within 

the snowpack model. The aim is to assess the performances of the multivariate DA system and 

investigate its efficiency in updating the model state variables whenever observations are 

available. According to the experimental setup (Sect. 5.4), the SIR-PF scheme is designed to 

assimilate measures of snow surface temperature and albedo, snow depth and density, SWE 

every 3 hours.  

The resulting statistical scores (Sect. 4.4.2; Sect. 5.4.2) (Figures 7.4a, b, c) reveal the filter 

effectiveness in updating snow depth simulations, whose correlation and RMSE values are 

significantly improved with respect to the control run, especially at the French and Swiss 

stations.  

The update of model predictions of SWE and snow density is more challenging. Indeed, in most 

cases the assimilation of snow data actually leads to a worsening of the quality of the model 

simulations with respect to the deterministic control run, except for some sporadic winter 

seasons. Conversely, a significant improvement of SWE predictions is observed at the Swiss 

station, where the filter updating benefits from a larger spread of the SWE simulations ensured 

by a higher frequency of snowfall events, on average.  

Even though the filter well succeeds in enhancing the simulations of surface temperature and 

albedo at CDP and WFJ sites, the snowpack thermal state at TGN is generally adversely affected 

by the assimilation of snow data.  

The filter better succeeds in updating snow depth simulations since its effect lasts longer thanks 

to the slower physical dynamics of this variable, with respect to the surface temperature. Indeed, 

despite of the snow thermal inertia, the daily cycle of the surface temperature can weaken the 

updating effect within two following assimilation time steps. As snow depth, the albedo 

dynamics are mainly affected by snowfall events which swiftly update its state. However, since 

the albedo is less affected by the perturbation of the meteorological inputs, the resulting poorer 

ensemble spread makes its update less straightforward. 
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Figure 7.3a: Multivariate DA scheme with perturbed meteorological data – Statistical scores of 

snow depth, SWE, snow density, surface temperature, and albedo simulations – CDP site (full 

dataset). The bottom and top edges of each box indicate the 25th and 75th percentiles of the 

scores distribution of the ensemble members, respectively. 
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Figure 7.3b: Multivariate DA scheme with perturbed meteorological data – Statistical scores of 

snow depth, SWE, snow density, surface temperature, and albedo simulations – WFJ site (full 

dataset). 
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Figure 7.3c: Multivariate DA scheme with perturbed meteorological data – Statistical scores of 

snow depth, SWE, snow density, surface temperature, and albedo simulations – TGN site (full 

dataset). 
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To better understand and properly assess the results, it is important to stress some key conditions 

exerting the most influence on the filter effectiveness. 

One of the main ruling issues is the scale of the model ensemble spread. A well-spread ensemble 

makes the filter efficient in weighting the particles. When the ensemble is squeezed, the 

resampling procedure is more challenging since all the particles are close to each other with 

resulting similar likelihood values. In this undesired case, the filter might not succeed in well 

discriminating the more likely ensemble members since they all are assigned almost the same 

weight. On the other hand, if the particles are well spaced, their resampling is more 

straightforward since each particle is properly discriminated through a specific weight 

proportional to its likelihood.  

Alongside this issue, it is of critical importance how the particles are placed on average with 

respect to the observations. The most conducive condition calls for well-spread ensembles 

enclosing their corresponding measures. In this situation, the filter is favoured in selecting the 

most likely particles and properly weighting them. However, the spread of the model ensemble 

turns out to be the overriding condition. Indeed, even if the model predictions are significantly 

biased, a large ensemble spread can allow to progressively stretch the simulations towards the 

observed system state through subsequent proper updates.  

When dealing with a multivariate DA scheme, the fulfilling of these conditions is even more 

challenging. In such an application, the filter is designed to select the particles best describing 

the observed system state with respect to all the available observations at each assimilation time 

step. Therefore, with respect to a univariate DA scheme, here the filtering procedure is more 

heavily constrained, depending on how many observations are provided.  

Even though the effects of the ensemble degeneracy can be reduced through the resampling 

procedure, the meteorological uncertainty turns out to be not sufficient to prevent the sample 

impoverishment within two following assimilation time steps (e.g. SWE ensemble when no 

snowfall event occurs).  

It is noteworthy that a decrease in the ensemble spread of just one variable can affect the overall 

resampling procedure. As previously explained, this limitation is even intensified by the physics 

of the snowpack model, whose threshold processes can weaken the effect of inputs perturbation.  
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Another further issue is the difference in the measurements frequency of the variables to 

assimilate. At each assimilation time step the Gaussian likelihood function is n-dimensional 

depending on the number of the observed variables. Thus, the particles weighting is carried out 

considering their likelihood values in relation to the available measurements at that time. This 

dynamic entails that the resampling procedure can be more strongly conditioned by the 

observations having a higher measurement frequency (e.g. hourly or sub-hourly measurements of 

snow depth). Thus, possible misleading updates of the variables less frequently observed can 

occur, since they are updated without taking into account particles likelihood with respect to 

their own lacking observations (e.g. daily or bi-weekly measurements of SWE). For instance, 

when a measure of snow depth is provided, no observational information on SWE can be 

retrieved unless its indirect estimate if snow density data are available. Otherwise, the filter can 

fail in consistently updating the overall snow mass-related state, since a lot of possible 

combinations of SWE and snow density can well fit the observed snowpack depth. In terms of 

filter efficiency, this means that when only a snow depth observation is provided the filter looks 

for particles having the higher likelihood with respect to this snow quantity, regardless the SWE 

and snow density states. Nevertheless, it is not unlike that several particles have the same 

likelihood because the combination of even strongly biased values of SWE and snow density can 

well fit the observed snow depth through offsetting effects among these variables. This is the 

main reason explaining the higher filter performance in terms of snow depth with respect to the 

SWE simulations.  

The multivariate SIR-PF simulations have allowed to point out two main limitations of this 

application. Firstly, the ensemble spread needs to be enlarged in order to improve the filter 

efficiency in well weighting and resampling the ensemble particles. Moreover, the effect of the 

difference in measurement frequency of the assimilated variables needs to be limited in order to 

consistently update the snow mass balance. 

7.2 Multivariate SIR-PF with perturbed model parameters 

Even though the resampling procedure prevents the sample degeneracy, the perturbation of the 

meteorological forcing data has resulted not to be sufficient to avoid the sample impoverishment. 

As highlighted in the study of Moradkhani et al. (2005b), a sample impoverishment can lead to 
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many particles having high importance weights being selected many times, with a resulting loss 

of diversity among the ensemble particles after the resampling step. Gordon et al., (1993) 

explained that this side-effect becomes prominent when the dynamical system is noise-free or 

has a very small noise preventing the particles from stochastically moving in space.  

With the aim of overcoming the sample impoverishment, the uncertainty of model parameters 

has been introduced to succeed in enlarging the ensembles spread, whose size strongly impacts 

the filter performances. Therefore, along with the perturbation of meteorological inputs, each 

particle independently evolves according to its own specific set of parameters ruling the model 

physical dynamics, whose parameterizations remain unchanged, however. 

7.2.1 Sensitivity analysis of model parameters 

When considering the uncertainty of model parameters, a preliminary sensitivity analysis is of 

critical importance for a twofold reason. Firstly, it is intended to identify the main ruling 

parameters to which the model simulations are sensitive at most. Secondly, an accurate selection 

accordingly enables to neglect those parameters whose perturbation would uselessly demand for 

a larger computational requirement.  

According to the results of the sensitivity analysis previously carried out within the model 

calibration procedure (Sect. 4.3.1), snow roughness and snow viscosity have been considered as 

the model parameters having the largest impact on the simulations of snowpack dynamics.  

Snow roughness strongly affects the snowpack energy balance by ruling the turbulent heat 

fluxes. As consequence, the perturbation of this parameter mainly impacts the SWE ensembles 

by proving each particle with different snow melting fluxes. The effects of the perturbation of 

snow viscosity are prominent on the snow density evolution, especially on the snow compaction 

dynamics.  

However, it is noteworthy that the criterion for selecting the model parameters has been mainly 

focused on identifying those allowing to increase the ensembles spread of the state variables 

more slightly affected by the meteorological uncertainty, namely SWE, snow density and surface 

albedo. While the two mass-related variables are strongly affected by the perturbation of snow 

roughness and snow viscosity, the enlargement of the spread of the albedo ensembles has 
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required to perturb also the three parameters involved in the parameterization of this energy-

related quantity (Table 7.2). 

 PARAMETER NOMINAL VALUE RANGE 

1. Snow roughness  [mm] 0.0226 [0.001 − 0.05] 

2. Snow viscosity  [kg/ms] 108 [7 ∙ 107 − 1012] 

3. Albedo parameter 𝜏𝛼 [s] 107 [0.52 − 1.55 ∙ 107] 

4. Albedo parameter 𝜏𝑚 [s] 3.6 ∙ 105 [1.73 − 5.2 ∙ 105] 

5. Albedo parameter 𝑆0 [mm] 10 [2 − 15] 

Table 7.2: Sensitivity analysis – Selection of model parameters involved within the perturbation 

procedure. 

7.2.2 Model parameters resampling and perturbations generation 

Since the introduction of stochastic noise plays a major role in reducing the effect of the sample 

impoverishment, the uncertainty of model parameters is supposed to significantly contribute to 

restore the ensembles spread between two following assimilation time steps.  

Following the methodology proposed by Moradkhani et al. (2005b), the resampling procedure 

has been introduced both in the parameters and the state variables spaces. According to this 

approach, at each assimilation time step, after the particles resampling the parameters are 

perturbed before being used at the successive time step: 

 𝜃𝑡+1
𝑖 = 𝜃𝑡,𝑟𝑒𝑠𝑎𝑚𝑝

𝑖 + 𝜀𝑡
𝑖  [7.6] 

where θ is the parameters vector and ε is a random noise, normally distributed with zero mean 

and variance 𝜑𝑉𝑎𝑟𝑡
𝜃. 𝑉𝑎𝑟𝑡

𝜃 is the variance of parameter particles at time t before resampling, and 

𝜑 is a tuning parameter standing for the radius around each particle being explored. 

In order to avoid model instabilities due to large changes in the perturbed parameter samples and 

to also assure a minimum process noise by preventing the parameters variance to collapse to very 

small values, 𝑉𝑎𝑟𝑡
𝜃 has been restricted between upper and lower limits (Salamon and Feyen, 

2009). These variance limits have been set according to the results of various tests carried out by 

varying them and evaluating the impact on filter performances. Unlike the study of Moradkhani 

et al. (2005b), who applied the dual SIR-PF scheme to estimate model parameters, in this case 
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the main aim was to succeed in enlarging the parameters ensemble to ensure a significant 

particles spread. Therefore, tuning parameters have been specifically set to guarantee a 

significant variance of the parameters distribution. Thanks to this approach, the degeneracy of 

the model ensembles is avoided via resampling and the sample impoverishment is prevented 

through the parameters perturbation (Figure 7.4). While the uncertainty of the albedo parameters 

mainly results in an enlargement of the ensemble of this prognostic variable, the perturbation of 

snow roughness and snow viscosity strongly impacts the snowpack dynamics. Several analyses 

have revealed a high sensitivity of model simulations to the resampling of these mass-related 

parameters, especially in terms of SWE and snow density. 
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Figure 7.4: Uncertainty of model parameters – CDP site – Winter season 2010-2011. The panel 

shows the ensembles seasonality of the model parameters: snow roughness, snow viscosity, the 

albedo parameters for cold, melting and fresh snow. 
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7.2.3 Multivariate DA simulations with parameters resampling  

As stated by Salamon and Feyen (2009), when dealing with parameters uncertainty it is 

important to consider that the model response to a change in parameters has not immediate effect 

on the simulated state. This issue can be overcome by giving the model a sufficiently large 

response time between following system updates. The assimilation frequency has been therefore 

reduced to every 24 hours. This choice was intended to guarantee a higher model response time 

to parameters change without omitting a large number of observed snow data.  

Figures 7.6a, b, c show the statistical metrics of the multivariate DA simulations resulting from 

the implementation of the model parameters resampling. With respect to the previous analysis 

considering the meteorological data as the only source of uncertainty (Sect. 7.1.3), the 

introduction of the parameters resampling has allowed to heavily increase the filter efficiency in 

updating the model simulations of SWE, snow density and albedo at CDP site. It is noteworthy 

that the parameters resampling does not only ensure a sizeable enlargement of the ensembles 

spread but it also allows to better estimate the model parameters on average. Indeed, while the 

resampling of the state variables allows to consistently update the system state at the assimilation 

time step, the modelling of snowpack dynamics between two following assimilation time steps 

benefits from the parameters resampling, which enables to better take into account the 

parameters seasonality (e.g. melting period). At the French site, the daily SWE measurement 

frequency ensures an effective resampling of the mass-related parameters, namely snow 

roughness and snow viscosity. Furthermore, the joint improvement of the model simulations of 

snow density dynamics results in an even more satisfying filter performance in updating snow 

depth predictions. Conversely, the introduction of the parameters resampling does not always 

result in a significant improvement of SWE simulations at the Swiss station, with a further 

prominent worsening of the model snow density dynamics. This limitation is mainly due to the 

lower biweekly frequency of the SWE measurements, with respect to the French case study. At 

WFJ site, at the daily assimilation time steps when no SWE observation is available and no 

indirect estimate of snow density can be derived, the estimate of the particles likelihood cannot 

rely on observational information on the snow mass-related (e.g. SWE, snow density). Therefore, 

it is not unlikely that the resampling procedure leads to suboptimal values of the mass-related 

parameters. Moreover, the enlargement of the ensembles spread ensured by the parameters 
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resampling entails a higher probability of selecting particles having SWE and snow density 

values even farther from the actual state with respect to the deterministic simulations of the 

control run, when no direct SWE observed data are provided. This thesis is supported by the 

results obtained at the TGN site, where the multivariate DA scheme allows to consistently update 

the SWE simulations when daily-averaged SWE measurements are available, namely throughout 

the winters 2013-14 and 2015-16. In this latter wintertime, the filter also reveals a higher 

efficiency in terms of snow density, with respect to the previous case. During the other two snow 

seasons, when biweekly SWE observations are assimilated, the filter does not succeed in 

improving model mass-related predictions.  

The filter updating is not as effective for the simulations of surface temperature, especially at the 

Swiss and French sites. This suboptimal performance is mainly due to the concurrence of several 

factors. Firstly, the quicker dynamics of the daily thermal cycle make the temperature 

simulations more sensitive to the reduction in assimilation frequency, with respect to the other 

variables. Secondly, even though the filter succeeds in daily updating the system thermal state, 

the parameters values resulting from the resampling procedure do not ensure a long-lasting effect 

on the temperature trend between two following assimilation time steps. Indeed, since the 

parameters are resampled according to their representativeness at the assimilation time step, their 

values are not likely to be the optimal ones to well catch the sequence of diurnal and nocturnal 

peaks. The enlargement of the albedo ensembles, guaranteed by the parameters resampling, 

generally ensures a slightly higher filter performance in updating the simulations of this variable. 
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Figure 7.5a: Multivariate DA scheme with perturbed meteorological data and model parameters 

resampling – Statistical scores of snow depth, SWE, snow density, surface temperature, and 

albedo simulations – CDP site (full dataset). The bottom and top edges of each box indicate the 

25th and 75th percentiles of the scores distribution of the ensemble members, respectively. 
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Figure 7.5b: Multivariate DA scheme with perturbed meteorological data and model parameters 

resampling – Statistical scores of snow depth, SWE, snow density, surface temperature, and 

albedo simulations – WFJ site (full dataset). 
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Figure 7.5c: Multivariate DA scheme with perturbed meteorological data and model parameters 

resampling – Statistical scores of snow depth, SWE, snow density, surface temperature, and 

albedo simulations – TGN site (full dataset). 
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Although the parameters resampling entails an enlargement of the ensembles spread, which is 

one of the constraining conditions to ensure the filter effectiveness, the quality of the 

multivariate DA simulations strongly depends on the reliability of the parameters resampling, 

which requires direct observational information to properly estimate the most likely parameters 

values.  

7.2.4 Sensitivity of parameters resampling to the SWE measurement frequency 

The Italian case study has provided evidence of the impact of the difference in SWE 

measurement frequency on the parameters resampling. In order to further investigate the system 

sensitivity, an experiment has been performed at the CDP station with the aim of assessing how 

the reduction from daily to biweekly SWE observed data affects the 24-hours multivariate DA 

simulations. Obviously, a reduction in measurement frequency is expected to limit the impact of 

the filter updating on the model simulations. However, when dealing with a multivariate DA 

scheme, the imbalance among the measurement frequency of the assimilated variables can lead 

to a further side-effect hindering the parameters estimate due to the largest impact of the more 

frequently observed variables (e.g. snow depth, surface temperature) within the particles 

weighting. Figure 7.6 shows the ensembles of snow viscosity and snow roughness resulting from 

the assimilation of daily and biweekly SWE observations throughout the winter season 2001-

2002 at CDP site. A divergence between the two ensemble time series is clearly detectable on 

average, especially in terms of snow viscosity. The suboptimal estimate of the mass-related 

parameters based on biweekly SWE measurements leads to a worsening of model predictions 

with respect to the deterministic control run, as shown in Figure 7.7. Conversely, the filter 

effectiveness is not affected in terms of snow depth thanks to offsetting effects between SWE 

and snow density simulations.  
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Figure 7.6: Sensitivity analysis of the multivariate DA scheme to SWE measurement frequency at 

CDP site, winter season 2001/02 – Parameters ensembles: snow roughness (on top) and snow 

viscosity (second row) resulting from the assimilation of daily (average trend in blue) and 

biweekly (red) SWE observations. 

 

 

Figure 7.7: Sensitivity analysis of the multivariate DA scheme to SWE measurement frequency at 

CDP site, winter season 2001/02 – Simulations of snow depth (left column) and SWE (right 

column) for daily (first row) and biweekly (second row) SWE measurements. 
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7.3 Proxy information of snow mass-related variables 

Even though the introduction of the parameters uncertainty has well succeeded in enlarging the 

ensembles spread, the resampling procedure of both states and parameters have turned out to be 

even counter-productive when it is not properly conditioned by observed data of ruling snow 

mass-related variables. Nevertheless, since SWE and snow density measurements are time-

consuming and thus often not available for real-time applications, the aim was to reduce the 

system sensitivity affecting the filter performances by deriving indirect information on these 

snow variables. 

7.3.1 Additional snow density model 

Jonas et al. (2009) proposed an empirical snow density model to reliably determine indirect 

sampling of SWE states from snow depth measurements though a parameterization of snow 

density. They identified four main factors affecting the snow density: seasonality, observed snow 

depth, site altitude and location. These factors are used as input variables for the snow density 

model allowing to convert measured snow depth values into SWE ones. As is well known, at low 

snow depths snow density features a pronounced variability. Indeed, a shallow snow cover can 

range from low-density new snow in autumn to high-density slush in spring. Snow density 

gradually increases over the course of the winter season, and it corresponds to the increasing 

compaction of snow initially due to settling and later to snow cover ripening. Unlike mean snow 

depths, which are significantly site-dependent due to different precipitation and temperature 

patterns, mean snow densities only slightly differ between regions. Also the site altitude has a 

minor direct effect on snow density, on average. However, Jonas et al. (2009) found that the 

interaction between the factors altitude and season reveals an indirect effect on snow density 

(Mizukami and Perica, 2008). Indeed, in early winter the snow density increases with altitude, 

since at this time of the year only higher altitudes feature considerable snow depths. On the other 

hand, in late winter snow density decreases with altitude, because the melt-out progresses faster 

at lower altitudes. 

Jonas et al. (2009) considered three altitude range classes (>2000 m, >1400 m and <2000 m, 

<1400 m) and 10 monthly classes within the winter season. For each class, they defined through 
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a linear regression the two coefficients [b, a] best fitting the dataset of snow depths and snow 

densities measured biweekly over five decades at 37 sites throughout the Swiss Alp (Table 7.3). 

 

Table 7.3: Regression coefficients [b, a] – Jonas et al. (2009). 

An estimate of snow density (𝜌𝑒𝑠𝑡𝑖𝑚) can be evaluated as a function of the snow depth 

observation (𝑆𝐷𝑜𝑏𝑠) according to the formula: 

 𝜌𝑒𝑠𝑡𝑖𝑚 = 𝑎 ∙  𝑆𝐷𝑜𝑏𝑠 + 𝑏 [7.7] 

where [b, a] are to be selected from the Table 7.3, according to the site altitude and the recording 

date. Since this is an application at single measurement sites, as first attempt the region-specific 

offsets are neglected. Thus, the resulting SWE estimation (𝑆𝑊𝐸𝑒𝑠𝑡𝑖𝑚) is retrieved as: 

 𝑆𝑊𝐸𝑒𝑠𝑡𝑖𝑚 = 𝑆𝐷𝑜𝑏𝑠 ∙ 𝜌𝑒𝑠𝑡𝑖𝑚 [7.8] 

Both the Italian and the Swiss sites fall within the first altitude class (>2000 m).  

With the aim of evaluating the reliability of the resulting estimates, a qualitative comparison 

analysis has been performed with respect to the observations available at the Swiss and Italian 

measurement sites, as shown in Figure 7.8. Once again, it is important to stress that, since no 

direct observations of snow density are generally available, this assessment actually compares 

two indirect estimates of the snow density.  

 

 

MONTH Altitudes > 2000 m [b,a] Altitudes > 1400 m and < 2000 m [b,a] Altitudes < 1400 m [b,a]

October  -  -  - 

November [206, 47] [183, 35] [149, 37]

December [203, 52] [190, 47] [201, 26]

January [206, 52] [208, 47] [235, 31]

February [217, 46] [218, 52] [279, 9]

March [272, 26] [281, 52] [333, 3]

April [331, 9]  [354, 15] [347, 25]

May [378, 21] [409, 29] [413, 19]

June [452, 8]  -  - 

July [470, 15]  -  - 
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Figure 7.8: Additional snow density model – Comparison between SWE (left column) and snow 

density (right column) measurements and the indirect proxy estimates - WFJ site, winter season 

2005/06 (first row); TGN site, winter season 2012/13 (second row). 

Except for some sporadic winter seasons, generally the estimates of SWE and snow density well 

fit the observed snowpack dynamics, as demonstrated by a good agreement with the ground-

based measurements.  

7.3.2 Multivariate SIR-PF simulations with proxy information of snow mass-related 

variables 

The additional snow density model has been implemented within the multivariate DA scheme in 

order to improve the updating of both SWE and snow density whenever no observational 

information on these two variables is available. This approach has enabled to evaluate particles 

importance weights at each assimilation time step with the support of additional estimates of 

these snow mass-related quantities. Therefore, the likelihood function is supposed to be more 

properly constrained, with a resulting lower impact of the assimilation of the more frequently 
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observed variables within the updating procedure. The introduction of proxy information on the 

mass-related snow variables has allowed to significantly optimize the parameters resampling, as 

revealed by the outperforming statistical scores of SWE and snow density simulations, especially 

at WFJ site, thanks to the good correspondence between in-situ observations and indirect 

estimates (Figures 7.10a, b). Generally, this approach ensures a consistent improvement of the 

snow depth predictions, as evidence of a proper estimate of snow density, except for the winter 

season 1999-2000 at the WFJ site. Conversely, no prominent effects are observed in terms of 

surface temperature and albedo. 

Of course, the impact of SWE and snow density estimates on the particles weighting procedure 

strongly depends on the bias affecting their values with respect to the ground-based observations. 

Whenever a significant bias occurs, the introduction of such estimates can be even counter-

productive since their conditioning can lead to spurious updates of the system state. However, it 

is also noteworthy that if an estimate is significantly far from the average model ensemble, its 

impact on particles resampling turns out to be negligible. 
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Figure 7.9a: Multivariate DA scheme with auxiliary snow model - Statistical scores of snow 

depth, SWE, snow density, surface temperature, and albedo simulations – WFJ site (full dataset). 

The bottom and top edges of each box indicate the 25th and 75th percentiles of the scores 

distribution of the ensemble members, respectively. 
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Figure 7.9b: Multivariate DA scheme with auxiliary snow model - Statistical scores of snow 

depth, SWE, snow density, surface temperature, and albedo simulations – TGN site (full dataset). 

The reduction in assimilation frequency necessarily leads to omitting large quantities of observed 

data. With the aim of preventing this limitation, the approach proposed by Salamon and Feyen 

(2009) has been tested. According to this method, each particle is assigned the median of the 

weights evaluated at all the observation time steps within the 24-hrs response time interval. 

Although this approach allows to make full use of the available measurements, a more intensive 
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use of proxy information on the snow mass-related variables has turned out to be counter-

productive by sharpening the sensitivity of the filter effectiveness to the quality of estimates, 

with resulting heterogeneous filter performances over the analysed datasets. 
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The main goal of this Chapter is to further analyse the selected sequential ensemble-based DA 

techniques by comparing their performances in consistently updating the system state. The 

analyses are based on common DA settings, namely 24-hrs assimilation frequency and 100-

members ensemble simulations.  

When assessing the performance of a DA scheme, two different aspects need to be investigated. 

The main interest focuses on the filter effectiveness in reducing the model error at each 

assimilation time step. However, it is also of upmost importance to verify the impact of the filter 

updating on the system physics, since the analysis state can be even significantly different from 

the system background conditions. This key issue entails further matters to discuss addressing 

the physical consistency of the analysis simulations supplied by the multivariable DA scheme 

and how long the effect of the filter updates on model predictions lasts from the assimilation time 

step onwards. This last question is of critical interest with reference to forecasting applications. 

8.1 Filters updating effectiveness 

The purpose of this first evaluation is to assess how the filters succeed in effectively reducing the 

error affecting the model simulations with respect to the available observations. Indeed, because 

the filter aims at properly updating the model state towards the observations, the model analysis 

error (𝐸𝑟𝑟𝑎), that is the residual error resulting from the updating procedure, is supposed to be 
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lower, in absolute value, than the model background error (𝐸𝑟𝑟𝑏𝑘𝑔), namely the error affecting 

the simulations right before the assimilation is applied.  

 𝐸𝑟𝑟𝑏𝑘𝑔,𝑡𝐴𝑠𝑠𝑖𝑚 = 𝑌𝑡𝐴𝑠𝑠𝑖𝑚 − 𝑋𝑏𝑘𝑔,𝑡𝐴𝑠𝑠𝑖𝑚 [8.1] 

 

 𝐸𝑟𝑟𝑎,𝑡𝐴𝑠𝑠𝑖𝑚 = 𝑌𝑡𝐴𝑠𝑠𝑖𝑚 − 𝑋𝑎,𝑡𝐴𝑠𝑠𝑖𝑚 [8.2] 

In order to evaluate the filters performances in reducing the model background error, they are 

evaluated through a newly introduced index, the updating Effectiveness (𝐸𝐹𝑆𝑢𝑝): 

 𝐸𝐹𝑆𝑢𝑝,𝑡𝐴𝑠𝑠𝑖𝑚 = |𝐸𝑟𝑟𝑏𝑘𝑔,𝑡𝐴𝑠𝑠𝑖𝑚| − |𝐸𝑟𝑟𝑎,𝑡𝐴𝑠𝑠𝑖𝑚| [8.3] 

where 𝐸𝑟𝑟𝑏𝑘𝑔, 𝑡𝐴𝑠𝑠𝑖𝑚  and 𝐸𝑟𝑟𝑎,𝑡𝐴𝑠𝑠𝑖𝑚are respectively the background and analysis errors affecting 

the average ensemble simulations with respect to the observations available at each assimilation 

time step. The choice of considering the modulus of model errors ensures to prevent possible 

offsetting effects. It is noteworthy that the scale of this metrics also depends on the size of the 

model background error. Indeed, the higher the background error affecting the ensemble 

simulations, the greater its potential reduction through the updating process. The evaluation of 

the relative differences between the background and analysis errors with respect to the 

background one would explicitly supply this kind of information. However, when dealing with 

errors mostly ranging around zero, the assessment of their relative differences turns out to be 

challenging. Therefore, the 𝐸𝐹𝑆𝑢𝑝 is assumed to be more suited to this purpose. According to its 

definition (Eq. 8.3), the larger the 𝐸𝐹𝑆𝑢𝑝 value, the higher the filter performance. Indeed, a 

𝐸𝐹𝑆𝑢𝑝 value greater than zero is an evidence of an actual reduction of the model background 

error, on average. A null-valued difference between background and analysis errors reveals that 

the filter does not succeed in updating the system, whose state remains unchanged with respect to 

its previous conditions before the assimilation. At worst, a negative value of 𝐸𝐹𝑆𝑢𝑝 warns that 

the filter improperly updates the system, whose analysis state is even more inconsistent with the 

available observations with respect to its background conditions. Figures 8.1a, b and c show the 

boxplots of the seasonal comparative evaluation between the filters effectiveness in updating the 

average ensemble simulations of each assimilated variable at the experimental sites.  
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Figure 8.1a: EnKF vs PF schemes – Filters effectiveness in updating simulations of snow depth, 

SWE, snow density, surface temperature, and albedo – CDP site (full dataset). The bottom and 

top edges of each box indicate the 25th and 75th percentiles, respectively. 
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Figure 8.1b: EnKF vs PF schemes– Filters effectiveness in updating simulations of snow depth, 

SWE, snow density, surface temperature, and albedo – WFJ site (full dataset). 
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Figure 8.1c: EnKF vs PF schemes– Filters effectiveness in updating simulations of snow depth, 

SWE, snow density, surface temperature, and albedo – TGN site (full dataset). 
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When assessing the filter effectiveness in updating snow depth simulations at CDP site, the 

EnKF technique outperforms the PF scheme with median values greater than zero, revealing a 

satisfying filter performance, on average. On the other hand, the PF-based median values range 

around zero, with negative lower quartiles in most of the winter seasons, which indicate 

suboptimal filter updating. Even though the EnKF reveals a greater updating effectiveness also at 

the Swiss station, as proven by its higher median values with respect to the PF, this latter 

technique is here more effective with respect to the French site. Indeed, generally also the 25th 

percentile is greater than zero, except for some sporadic snow seasons. Consistently, at TGN 

station, the PF discloses slightly poorer effectiveness, with both median values and lower 

quartiles ranging around zero. However, at this site, the two analysed DA methodologies reveal 

more equivalent performances with respect to the other pilot sites. 

At the French site, the EnKF and PF schemes have similar performances in terms of SWE, even 

though the first technique is affected by a larger variance. In Switzerland, the scale of the EnKF-

related 𝐸𝐹𝑆𝑢𝑝 is significantly higher with respect to CDP. This difference in 𝐸𝐹𝑆𝑢𝑝 scale entails 

a more sizeable disparity between the performances of the two DA techniques, even though the 

PF mostly guarantees consistent system updates (positive median values and lower quartiles). 

The same result is shown for the winter season 2014-2015 at TGN site, while during the other 

snow seasons the EnKF and PF have equivalent updating effectiveness, instead. 

Consistently with SWE simulations, at WFJ site the difference in 𝐸𝐹𝑆𝑢𝑝 scale is prominent also 

in terms of snow density. While the EnKF ensures to significantly reduce the model background 

error, generally with a sizeable variance, the PF is marked by both median values and 25 th 

percentiles ranging around zero, on average. Although more comparable performances are 

achieved at CDP, in terms of effectiveness the EnKF mostly outperforms the PF, whose 

distributions reveal negative median values for some sporadic snow seasons. At TGN site, except 

for the winter 2014-2015, generally the two DA schemes guarantee an almost equivalent 

reduction of the model background error. 

The difference in scale of the filters effectiveness in updating both SWE and snow density 

simulations at the Swiss site is manly ascribable to the lower bi-weekly SWE measurement (and 

snow density estimates) frequency with respect to the higher daily frequency at CDP. At WFJ the 
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model error resulting from the implementation of the EnKF scheme can even more quickly 

increase throughout the 24 hrs period between two following time steps with respect to the PF 

scheme. Indeed, the Kalman filtering does not benefit from the parameters resampling, which is 

supposed to contribute to the physical consistency of model simulations (Sect. 7.2). Of course, 

the larger the background error at an assimilation time step, the higher the potential filter 

updating effectiveness. This issue, allowing the EnKF to better succeed in sharply reducing the 

model error, is further supported by the consistent results at TGN site for the winter season 2014-

2015, when bi-weekly SWE observations are available. Nevertheless, it is noteworthy to 

consider that the PF scheme is also affected by the accuracy of the estimates of the mass-related 

variables supplied by the additional snow density model (Sect. 7.3). 

As regards to the filters updating effectiveness in terms of surface temperature, the PF shows 

higher performances with respect to the other analysed variables. Besides the larger variance of 

the EnKF-related distributions, at CDP site the PF scheme guarantees more stable performances, 

with both median values and lower quartiles greater than zero, unlike the EnKF, whose median 

values are often null-valued. Despite PF satisfying performances at the Swiss station, the Kalman 

filtering generally outperforms the Particle filtering in terms of 𝐸𝐹𝑆𝑢𝑝, consistently with the 

results at TGN site. 

At the French snow experimental site, both the DA techniques succeed in properly updating the 

albedo simulations, on average, even though the medians of the EnKF-based 𝐸𝐹𝑆𝑢𝑝 distributions 

are generally higher than the PF ones. The Particle filtering reveals poorer performances at WFJ, 

where the mostly negative values of 25th percentiles indicate suboptimal updates of this energy-

related variable. Even though fewer albedo measurements are available at TGN site, the 

effectiveness of the two DA techniques do not show any markedly significant difference. 

However, it is important to stress that a large update of the model state does not necessarily 

entails a positive effect between two following assimilation time steps, even though it guarantees 

a high effectiveness at the assimilation time steps.  
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8.2 The impact of filters updates on the system physical consistency 

The assessment of the filters effectiveness is a useful tool to evaluate how they succeed in 

updating the system state at the assimilation time steps. However, this analysis is not sufficient to 

properly investigate the overall filters performances. In order to extensively study and compare 

the two selected DA schemes, it is of critical importance to analyse the effect of the filters 

updates on the evolution of the model analysis state.  

One key factor is the size of the correction terms resulting from the updating procedure. Clearly, 

large correction terms ensure a significant reduction of the model background error. However, 

sharp corrections of some prognostic variables are likely to generate possible physical 

inconsistencies affecting the system state due to steep stretches towards the observations. In turn, 

the system can tend to restore its previous physical conditions after the assimilation time step. 

These dynamics can then call for further sizeable correction terms at the following assimilation 

step, since the system has already lost track of the previous update.  

On the other hand, even though a weaker update of the state variables means a poorer filter 

effectiveness, it is supposed to last longer between two following assimilation time steps, 

according to the system inertia. Theoretically, this advantage could entail lower correction terms 

at the successive assimilation time steps, if the model were not affected by uncertainties. Indeed, 

the state of an ideal model is supposed to maintain its consistency with observations, resulting 

from the updating procedure, between two following assimilation time steps, aside from the 

observational uncertainty. Conversely, the simulations of a real system are likely to gradually 

diverge with respect to the ideal trend from the filter updating onwards, according to possible 

biases affecting its predictions. However, low background errors at the assimilation time steps, 

resulting from sequential minor updates, are an evidence of a proper model physical consistency. 

In this desired case, since the system does not significantly diverge from the analysis conditions, 

the state variables are likely to have a more physically consistent evolution, whose trend is not 

subject to unreliable sharp gradients due to the sequential updates. 

With the aim of addressing this crucial issue, the two sequential DA techniques are compared by 

analysing the trend of the average analysis time series. Figure 8.2a, b and c show the scatterplots 

of the time derivatives of the multivariate DA simulations resulting from the implementation of 
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the EnKF and PF schemes (
𝛿𝑋𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠

𝛿𝑡
). In blue and red are highlighted the no- and assimilation 

time steps, respectively.  

  

  

 

 

Figure 8.2a: EnKF vs PF schemes– Scatterplot of time derivative of the multivariate DA 

simulations of snow depth, SWE, snow density, surface temperature, and albedo – CDP site (full 

dataset). 
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Figure 8.2b: EnKF vs PF schemes– Scatterplot of time derivative of the multivariate DA 

simulations of snow depth, SWE, snow density, surface temperature, and albedo – WFJ site (full 

dataset). 

 

 



183 CHAPTER 8 - Comparative discussion on EnKF and SIR-PF schemes 

 

 

 

  

  

 

 

Figure 8.2c: EnKF vs PF schemes– Scatterplot of time derivative of the multivariate DA 

simulations of snow depth, SWE, snow density, surface temperature, and albedo – TGN site (full 

dataset). 
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The main interest focuses on the analysis states at the assimilation time steps (red dots), whose 

distributions in the graphs provide useful information for the comparative assessment of the scale 

of the filters updates. The surface temperature shows the most well-defined behaviour, namely 

the EnKF-based correction terms are typically much larger with respect to the PF ones. While 

this trend is not easily detectable for the snow depth simulations, the EnKF reveals generally 

sharper updates of SWE simulations at CDP and WFJ stations, and albedo and snow density 

simulations at the French and Swiss sites, respectively. Conversely, the PF updates turn out to be 

larger in terms of snow density and albedo at TGN and CDP pilot sites, respectively. 

Furthermore, it is noteworthy that the spreads of the no-assimilation states (blue dots) result from 

the filters updates and how these latter impact the evolution of the system state, namely the 

physical dynamics between two following assimilation time steps.  

Of course, a longer-lasting effect of the filters updates from an assimilation time step onwards 

entails a well-spread distribution of the no-assimilation states, since each DA scheme differently 

updates the system state. In this case, the analysis system keeps track of the filter updating, 

which contributes to diversify the no-assimilation states resulting from the implementation of 

these two DA techniques. Nevertheless, even when the system loses track of the filters updating 

by tending to restore its background state, the correspondence between the EnKF- and PF-based 

no-assimilation states is not guaranteed. Indeed, at each assimilation time step, the background 

conditions of both the DA runs result from the physical evolution of the system having as initial 

conditions the analysis conditions resulting from the previous system update, which are different 

between the two DA runs. This is the main reason why the no-assimilation states are generally 

well spread, with resulting heterogeneous distributions. The higher density of the distributions of 

the surface temperature no-assimilation states along the bisector is mainly justified by the fast 

dynamics of this variable, which allow the system to quickly restore its background thermal 

state, with a resulting higher correspondence between the no-assimilation states of the two DA 

runs. 

In order to jointly take into account of both the filters effectiveness at the assimilation time steps 

and the scale of the resulting correction terms, a further evaluation has been performed with the 

aim of assessing the impact of the filters updating on the temporal evolution of the system state. 
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Indeed, as previously explained, a high effectiveness can be to the detriment of the physical 

consistency of the system state dynamics, subject to possible far-fetched discontinuities. 

Figures 8.3a, b, and c present the scatterplots of the ratio between the analysis and background 

errors of the average ensemble simulations with respect to the observations (
|𝐸𝑟𝑟𝑎,𝑡𝐴𝑠𝑠𝑖𝑚|

|𝐸𝑟𝑟𝑏𝑘𝑔,𝑡𝐴𝑠𝑠𝑖𝑚|
) 

against the difference between the corresponding average background and analysis ensemble 

states (|𝑋𝑎,𝑡𝐴𝑠𝑠𝑖𝑚 − 𝑋𝑏𝑘𝑔, 𝑡𝐴𝑠𝑠𝑖𝑚|) at each assimilation time step. This kind of graph can be 

somehow interpreted as a cost-benefit study, namely how large are the state updates required to 

attain a certain error reduction. Ideally, the most conducive condition calls for a null errors ratio, 

namely a zero-valued analysis error, and the lowest possible difference between the system state 

before and after the updating procedure. This outstanding result, ensuring an efficient model 

error reduction even through a minimal filter updating, can be theoretically achieved only if the 

model background state is not far from the observed one, namely if it succeeds in keeping track 

of all the previous sequential updates. To better understand the graphs shown in Figures 8.3a, b 

and c, it is noteworthy to consider both the x- and y-axis as extreme cases. The x-axis 

corresponds to the Direct Insertion DA technique (Sect. 5.1), which promotes the simple 

replacement of model predictions with the observations. In this case, the analysis error is null-

valued, but unbalanced state estimates may occur with resulting possible model shocks. 

Conversely, the y-axis can be regarded as a VAR DA scheme, or a smoother DA technique, 

which allows to preserve the physical consistency of the system state by preventing possible 

discontinuities in the model trajectories. 
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Figure 8.3a: EnKF vs PF schemes– Scatterplot of filters performances in terms of snow depth, 

SWE, snow density, surface temperature, and albedo (big dots for the average performances) – 

Big dots are the centre points of the distributions - CDP site (full dataset). 
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Figure 8.3b: EnKF vs PF schemes– Scatterplot of filters performances in terms of snow depth, 

SWE, snow density, surface temperature, and albedo (big dots for the average performances) – 

WFJ site (full dataset). 
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Figure 8.3c: EnKF vs PF schemes– Scatterplot of filters performances in terms of snow depth, 

SWE, snow density, surface temperature, and albedo (big dots for the average performances) – 

TGN site (full dataset). 

According to the definition of background and analysis errors, the ratio of their absolute values is 

supposed to range between 0, perfect correction, and 1, when the filter does not succeed in 
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updating the system state, at worst. Thus, both the analysed DA methodologies well succeed in 

properly updating the system state, since their average performances generally reveal ratio values 

lower than unity. 

Consistently with the results of the previous evaluations, with respect to the PF technique, in 

most cases the EnKF scheme ensures a more effective reduction of the model background error, 

but through larger correction terms, especially in terms of surface temperature, snow depth and 

albedo. 

When assessing the surface temperature, the EnKF scheme ensures an almost equivalent 

reduction of the background error at all the experimental sites. At TGN station, the resulting 

discontinuities in the analysis time series are larger (about 3°C) with respect to the other sites 

(less than 2°C), on average. In comparison to the EnKF technique, the PF scheme reveals a lower 

updating effectiveness, but it preserves a more consistent trend of the analysis simulations with 

average temperature leaps of around 1°C, which are slightly larger at the Italian site, as well.  

The filters reveal the same difference in performances in terms of albedo. However, it is 

noteworthy that each DA technique guarantees almost equivalent results at all the experimental 

sites, in terms of both background error reduction and size of discontinuities affecting the 

analysis simulations of the state variables. 

Consistently, the evaluation of the PF-based updating of the snow depth simulations generally 

reveals lower changes in the analysis snowpack thickness (around 5 mm) with respect to the 

EnKF technique (about 15 mm), except for the Swiss site, where the doubling of the 5-mm 

average value results in an even poorer updating effectiveness. On the other hand, the EnKF 

scheme shows a lower average reduction of the background error at the CDP site with respect to 

the other station, in spite of an almost equivalent average of the snow depth changes in the 

analysis predictions. 

The filters performances in terms of SWE and snow density are more diversified. At the French 

site, the PF and EnKF schemes entail almost equivalent average discontinuities affecting the 

snow density simulations (about 10 kg/m3), but with a resulting lower effective reduction of the 

background error through the PF technique. Conversely, at TGN station, the PF scheme slightly 

outperforms the EnKF in updating the snow density simulations, on average, even though 
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through larger discontinuities. Furthermore, at this site the PF technique succeeds in 

guaranteeing the same SWE error reduction of the EnKF scheme through lower average updates. 

With respect to the other two sites, at the Swiss station the two DA schemes reveal a significant 

difference in the size of the resulting discontinuities affecting the analysis simulations of both 

SWE and snow density. Indeed, while the EnKF entails average discontinuities of about 27 mm 

and 28 kg/m3, respectively, those resulting from the implementation of the PF scheme are one 

order of magnitude lower, namely about 2 mm and 3 kg/m3, which only allow a slight reduction 

of the background error. 

However, once again, it is noteworthy to stress that the scale of the background error reduction 

strongly depends on its size. 

8.3 Temporal persistence of filters updates 

One of the key control factors affecting the overall performance of a DA scheme is the temporal 

persistence of the filter updates, namely how long the system state keeps track of the updating 

between two following assimilation time steps. 

This factor mainly depends on how the system responds to the update of its prognostic variables. 

As already explained, it is important to consider that sharp corrections of the state are more 

likely to lead the system to restore its previous state. In turn, a low temporal persistence of the 

filter updates can entail steep corrections at the following assimilation time steps, since the 

system quickly diverges from its observed state. 

In order to investigate this issue, an experiment has been performed with the aim of assessing if 

and how the analysis states tend to restore their background conditions from the assimilation 

time step onwards. Therefore, batch ensemble OL simulations (without DA) have been generated 

by setting their initial conditions equal to the corresponding background conditions of the 

ensemble multivariate DA simulations at each assimilation time step, namely every 24 hours 

(Figure 8.4). 
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Figure 8.4: Temporal persistence of filters updates – Experimental setup – At tAssim the initial 

conditions (IC) of the OL ensemble simulations (in green) are the background conditions (black 

dots with green borders) of the DA ensemble simulations at tAssim (in black); in red are the DA 

ensemble simulation starting at tAssim with the analysis IC (red dots) resulting from the updating 

procedure. 

This experimental setup enables to properly assess the impact of the filters updating by analysing 

the temporal evolution of the analysis state variables with respect to the no-analysis simulations, 

having different initial conditions at each assimilation time step, namely background and 

analysis conditions for the OL ensemble and the multivariable DA simulations, respectively. 

Figure 8.5a, b and c show the trend of the average differences between the ensemble background 

and analysis simulations supplied by the DA schemes between two following assimilation time 

steps (𝑋𝑂𝐿,𝑒𝑛𝑠 − 𝑋𝐷𝐴,𝑒𝑛𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|
𝑡𝐴𝑠𝑠𝑖𝑚+1

𝑡𝐴𝑠𝑠𝑖𝑚
) . 

Since this experiment does not address the evaluation of the filter updates, the assimilation time 

steps are here neglected. Furthermore, it is noteworthy to stress that this comparative study relies 

on differences between datasets of model simulations and no reference observational data are 

included. The main interest is not focused on the scales of the average differences, which depend 

on the size of the correction terms at each assimilation time step (Sect. 8.1). The trends of the 

average differences are instead of critical importance. Indeed, even though each multivariate DA 
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and the corresponding control run are provided with different initial conditions (i.e. analysis and 

background conditions, respectively), they both are ruled by the same parameterization laws and 

meteorological inputs. Therefore, the resulting trend of their differences is mainly a consequence 

of the updating effect.  

Assuming that a null-valued difference corresponds to the matching between the average 

multivariate DA and OL simulations, a convergence of the EnKF- and/or PF-based differences to 

zero means that the system does not succeed in keeping track of the filter updating by tending to 

restore its background conditions. In this undesired case, it is important to consider also the 

converging slope, which well represents the behaviour of the system response. Conversely, a 

constant average difference reveals a long-lasting effect of the system updates from the 

assimilation time step onwards, in full compliance with the system physics. More challenging is 

the assessment of the divergence from zero value of the average difference of the multivariate 

DA simulations, since it can be an evidence of a gradual improvement or worsening with respect 

to the observations. However, the purpose here is not to evaluate the updating accuracy (Sect. 

6.2.2; Sect. 7.2.3; Sect., 7.3.2), but rather its temporal persistence. With the aim of taking into 

account the seasonality of the snowpack physics, namely the higher system inertia throughout the 

accumulation process (i.e. winter season), and faster dynamics over the transition periods (e.g. 

melting period), the evaluation has been carried out considering three main periods. The autumn 

period includes October and November; the winter period considers December, January, and 

February; the spring period encompasses March, April and May. 
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Figure 8.5a: EnKF vs PF schemes – Seasonal temporal persistence of filters updates of snow 

depth, SWE, snow density, surface temperature, and albedo simulations – CDP site (full dataset). 
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Figure 8.5b: EnKF vs PF schemes – Seasonal temporal persistence of filters updates of snow 

depth, SWE, snow density, surface temperature, and albedo simulations – WFJ site (full dataset). 
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Figure 8.5c: EnKF vs PF schemes – Seasonal temporal persistence of filters updates of snow 

depth, SWE, snow density, surface temperature, and albedo simulations – TGN site (full dataset). 

In most cases the constant trends of the average differences give an evidence of a proper long-

lasting effect of the filters updating.  
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The albedo analysis simulations resulting from both the DA schemes maintain almost constant 

differences with respect to their average background predictions at all the experimental sites 

during winter and spring seasons. An exception is the autumn period, when the PF and EnKF 

schemes tend to slightly converge and diverge with respect to the control run, respectively. At 

TGN station, the more irregular trends are mainly due to the poor albedo sample including barely 

more than one winter season (Sect. 3.3.3). 

The EnKF generally reveals the same steady trend of differences between the background and 

analysis snow depth simulations at all the pilot sites, except for a slight convergence during the 

wintertime at the Italian site. Conversely, the PF-based analysis predictions mostly disclose 

prominent divergent trends, except for a weak convergence to the background simulations during 

the springtime at the WFJ site. The divergence of the PF-based average analysis simulations can 

be mainly ascribable to the significantly long-lasting effect of the parameters resampling, which 

contributes in conditioning the snowpack dynamics, especially the evolution of the snow mass-

related variables (Sect. 7.2). 

Even more significant is the divergence of the PF-based average analysis simulations of snow 

density at the French station. The same trend recurring all the seasons suggests that the 

resampling procedure provides for limitations affecting the model physical representation of this 

variable. When assessing the convergence between the PF- and EnKF-based differences trends 

during both winter and spring seasons, it is noteworthy to consider that their background 

predictions can even significantly differ. Therefore, their convergence should be interpreted as 

equivalent average gaps between both the analysis simulations resulting from the two DA 

schemes and their corresponding background predictions, which are different from each other, 

however. While both PF and EnKF schemes ensure a constant tendency at WFJ station, at the 

Italian site the PF has a divergent trend of the differences between background and analysis 

simulations during the spring season (no snow density measurement is available during the 

autumn period). Furthermore, it is noteworthy to observe the dissimilarity in the order of 

magnitude of the gaps between background and analysis time series of snow density at CDP and, 

especially for the EnKF scheme, at WFJ with respect to the Italian site.  

Consistently with the assessment on snowpack density, at the Swiss station the analysis 

simulations of both the DA schemes maintain constant differences with respect to their 
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background predictions. At CDP, during the wintertime both EnKF- and PF-based analysis 

simulations reveal slightly convergent trends, and the second technique also during the spring 

season, with an even greater converging slope. On the other hand, at the Italian site, gently 

divergent trends characterize the PF-based analysis simulations during both autumn and spring 

periods. Also the evaluation of this state variable reveals different orders of magnitude among 

the values of the differences in simulations, especially between French and Italian sites, where 

the ranges are of few mm, and the Swiss station, where the EnKF-based differences even exceed 

40 mm, in absolute value. 

Unlike the other variables, the model response to the surface temperature updates reveals 

markedly well-defined features, namely the system restores its previous thermal conditions right 

after the assimilation time steps. Of course, the fast dynamics of the daily thermal cycle make the 

system response to the updates of this variable more reactive. The sharper the filter updates, the 

faster the convergence to the control simulations, as demonstrated by the higher EnKF 

converging slopes with respect PF ones, namely at TGN and CDP sites throughout the autumn 

and spring seasons, and at WFJ station during the springtime.  

8.4 Concluding remarks 

The two multivariable DA schemes have been extensively studied through several analyses with 

the aim of better investigating their strengths and weaknesses. 

With respect to the PF technique, the EnKF scheme generally guarantees a larger reduction of 

the background errors affecting the model simulations at the assimilation time steps (Sect. 8.1). 

However, when assessing the scale of the filters updates, in most cases the EnKF-based analysis 

simulations are affected by steep stretches towards the observations, which do not guarantee the 

internal physical consistency of the state of each ensemble model realization. Indeed, at each 

assimilation time step the EnKF scheme applies a corrective term to each state variable 

according to the error with respect to its measurement. Of course, a proper estimate of the 

observational uncertainty is of critical importance to proper define the Kalman Gain, with the 

aim of avoiding far-fetched updates of state variables. Nevertheless, the evaluation of the error 

covariance matrix of observations is usually challenging. Furthermore, the model error 

covariance matrix is supposed to contribute in making the correction terms taking into account of 
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the correlations among the state variables, whose estimate can be significantly hindered by the 

strong system nonlinearities, however. For these reasons, even though the EnKF proves to well 

succeed in updating the system state, possible sharp corrections of the prognostic variables can 

occur with the introduction of sporadic inconsistencies. 

On the other hand, even though the PF scheme reveals a poorer updating effectiveness, on 

average, the physical consistency of the system analysis states is preserved through the 

resampling procedure. Indeed, according to the main assumption of this technique, the analysis 

states result from the replication of feasible model realizations (Sect. 5.3.2). Therefore, this 

methodology generally ensures that the actual discontinuities affecting the evolution of the state 

variables at each assimilation time step have a scale more compliant with the system physics 

(Sect. 8.2). 

Even though the system response to sharp updates of the state variables is likely to aim at 

restoring its previous conditions, the larger average size of the EnKF-based updates does not 

necessarily entail a significantly poorer temporal persistence of the updating effect on the 

evolution of the system state variables, with respect to the PF scheme (Sect. 8.3). The temporal 

persistence of the filter updating turns out to be more strongly dependent on the dynamics of the 

physical evolution of each state variable, than on the scale of filter updates. A case in point is the 

assessment of the analysis simulations of the surface temperature, whose faster dynamics of the 

thermal cycle entail a quicker system response generally aiming at restoring its previous 

background conditions.  
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This PhD thesis is intended to contribute to addressing critical issues for operational forecasting 

systems in snow-dominated regions, where the quality of hydrological predictions deeply 

depends on the quality of snowpack simulations, especially during the melting period. 

The recent growing interest in DA techniques aiming at reducing the uncertainty of the snow 

model simulations has led to new challenging questions on the potential of implementing 

multivariate DA schemes allowing to consistently update the snowpack state through the joint 

assimilation of several observations. The study focuses on investigating the feasibility of a 

multivariate DA scheme in the framework of snowpack modelling by developing and testing the 

performances of two of the most commonly used sequential ensemble-based DA techniques. 

While the main common goal was the development of reliable and robust multivariate DA 

schemes relying on the EnKF and PF techniques, respectively, the implementation of these two 

DA methodologies has led to face different specific issues according to their main features. 

The development of the EnKF scheme has entailed addressing the constraining assumptions of 

this technique, whose fulfilment deeply conditions the implementation strategy. Since the strong 
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system nonlinearities not only make more challenging the meeting of the EnKF assumptions, but 

also proved to affect the filter updating procedure, technical solutions were needed to limit their 

impact on the Kalman filtering performance. 

On the other hand, the impoverishment of the particles sample affecting the performance of the 

PF-based DA scheme was one of the main issues to deal with. Because the spread of the particles 

ensemble has turned out to be of critical importance to ensure a satisfying filter effectiveness, 

different approaches have been introduced and tested. 

9.1 Main contributions and results 

Along this thesis a point-scale snowpack modelling system has been tested at three Alpine 

experimental sites. The system consists of a multilayer energy- and mass-balance snowpack 

model coupled with a multivariate DA scheme. The flexible system design has allowed to test 

both Kalman and Particle filtering techniques, with the aim of investigating their weaknesses and 

strengths in jointly assimilating different observations. The main purpose was to assess their 

potential for being implemented in an operational hydrological forecasting chain. 

9.1.1 Implementation and analysis of multivariate EnKF-based DA scheme for snow 

modelling  

The development of a multivariate EnKF-based DA scheme has brought out several issues to 

face, mainly due to the constraining assumptions of this technique, which make more 

challenging the handling of the strong nonlinearities of the snow modelling system.  

• With the aim of preventing the introduction of possible sampling errors resulting from the 

perturbation process and guaranteeing a well-representative model error covariance 

matrix, the ensemble of model realizations has been generated through the introduction of 

stochastic Gaussian noise directly added to the state variables. The choice of generating 

the perturbations by selecting equidistant cumulated probability values has proven to 

ensure null mean-valued perturbations and the sample Gaussianity, even when the sample 

is limited in size, with a significant benefit in terms of computational demand. 

• In order to preserve the physical consistency of the system state, a new methodology has 

been proposed, which relies on a rescaling procedure of the perturbed ensemble of the 
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prognostic variables, combined with a modulating function. After the perturbation, the 

rescaling procedure ensures the removal of possible inconsistent values of any state 

variable without compromising the null mean-valued perturbations and their Gaussian 

distribution. The complementary modulating function guarantees to define time-variant 

physically-based ranges used within the ensembles rescaling. Because the modulating 

function depends on both air temperature and snow mass, it guarantees to take into 

account the snowpack seasonality (i.e. early winter, accumulation phase, and melting 

period). With the aim of considering the difference in the seasonal correlations among the 

state variables due to the intermittent presence of snow cover, the application of the 

modulating function has been extended to the covariance matrix used to generate the 

perturbations. This newly developed technique has revealed satisfying performance for 

the generation of an ensemble of model realizations by maintaining their physical 

consistency and without introducing any distortion, on average. 

• The implementation of the multivariate EnKF scheme has required a specific approach 

aiming at limiting the impact of the system nonlinearities on the updating procedure, 

which can spuriously result in inconsistent analysis values of state variables. The 

reduction of the model error covariance matrix to a block-diagonal one, with two energy- 

and mass-related minors, has turned out to be effective in preventing the introduction of 

inconsistent filter updates due to possible misleading correlations resulting from its 

ensemble-based estimate.  

• Several experiments have allowed to further investigate the sensitivity of the EnKF-based 

system to key DA settings. The multivariate EnKF scheme has generally revealed a low 

sensitivity to both the assimilation frequency and the ensemble size, which makes the 

design of this DA scheme promising for operational purposes. The analysis of the impact 

of the assimilation of different observations has confirmed the high potential of the joint 

assimilation of several snow-related observations allowing to consistently update both the 

energy- and mass balances of the system, with resulting outperforming simulations. 

9.1.2 Development and testing of multivariate PF-based DA scheme for snow modelling 

When implementing the multivariate PF-based DA scheme, the main challenging issue concerns 

the impoverishment of the particles sample. Indeed, while the sample degeneracy is limited 
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through the resampling procedure, according to the SIR-PF technique, it is of critical importance 

to provide the system a significantly large noise to allow the particles moving stochastically in 

the model space. This essential requirement has turned out to be strongly crucial in a multivariate 

application, since in such an application the filtering procedure is more heavily constrained in 

estimating the particles likelihood. Because the PF technique allows to relax most of the EnKF-

related assumptions, the need of a sizeable system noise can be met through different 

perturbation strategies, with the aim of ensuring a proper spread of the particles ensemble.  

• The perturbation of the meteorological forcing data has turned out to be not sufficient to 

prevent the sample impoverishment within two following assimilation time steps. This 

limitation is mainly due to the threshold processes involved within the snow dynamics 

model, which hinder the enlargement of the ensembles spread, and the poor spread of the 

mass-related ensembles when no snowfall events occur. 

• The introduction of the resampling of the model parameters has proven to greatly 

contribute in enlarging the ensembles spread through the perturbation of key parameters, 

with a significant improvement of the filter effectiveness in consistently updating the 

system state variables. However, despite the enlargement of the ensemble spread, the 

parameters resampling has sharpened the system sensitivity to the frequency of the 

assimilated observations. Indeed, to properly resample the model parameters, 

observations of directly related variables are needed. Otherwise, the parameters 

resampling can lead to suboptimal values, since it mostly relies on the observations of the 

more frequently measured variables. 

• To overcome the generally widespread lack of ground-based snow mass-related 

observations, an additional snow density model has been introduced with the aim of 

assessing its potential in better conditioning the parameters resampling. This last system 

configuration relying on the perturbation of the meteorological data, the parameters 

resampling and the mass-related estimates supplied by the additional snow density model 

has revealed satisfying performance in making the simulations more consistent with the 

in-situ observations. 
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9.1.3 Comparative investigation of multivariate EnKF- and PF- based DA schemes 

In their final configurations, both the analysed DA techniques generally well succeed in 

consistently updating the model snowpack state. As sequential ensemble-based techniques, both 

Kalman and Particle filtering turn out to be suited to operational applications. Indeed, sequential 

methodologies are particularly indicated for the assimilation of real-time data, where 

observations are continuously provided in time, since they allow to fully benefit from the 

observational information as soon as measurements are available. Moreover, because both these 

techniques rely on ensemble simulations, they manage to properly take into account the several 

sources of uncertainty involved within the assimilation procedure. 

Nevertheless, an extensive comparative study has allowed to better assess their performances and 

the analysis time series resulting from the sequential filters updates, whose features make each 

DA scheme more suited to different purposes.  

When comparing the two multivariate DA schemes, it is noteworthy to consider, however, that 

the main features and assumptions behind the analysed DA techniques have led to introduce 

different strategies to generate the ensembles of model realizations. Even though the differences 

in their implementation are supposed to condition the resulting analysis simulations, this 

approach was intended to address the main issues arising from different perturbation strategies 

and test their impact on the system simulations. 

• Even though the EnKF scheme generally ensures a larger reduction of the error affecting 

the model predictions at the assimilation steps, the sizeable EnKF-based updates do not 

guarantee the internal physical consistency of the state of each model realization. By 

stretching the simulations towards the observations, possible sporadic inconsistencies can 

occur among the analysis state variables. Indeed, even though the correlations among the 

state variables are considered within the updating procedure through the model error 

covariance matrix, its ensemble-based estimate can be affected by the system 

nonlinearities. 

• Conversely, Particle filtering ensures to preserve the physical consistency of the system 

analysis states thanks to the resampling procedure. Indeed, in this case, the effective filter 

updates result from the replication of feasible model realizations having the higher 
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likelihood with respect to the observations. On the other hand, the PF scheme reveals a 

poorer updating effectiveness, on average, which entails a lower reduction of the error 

affecting the model simulations. 

• These differences in the filters updating result in larger discontinuities affecting the trend 

of the EnKF-based analysis simulations, while the smoother trend ensured by the PF 

technique is assumed to be more compliant with the snowpack system physics. 

• The filters updating turns out to be generally effective between two following 

assimilation time steps. Indeed, the temporal persistence of the filters updates mainly 

depends on the dynamics of the physical evolution of each state variable, rather than on 

the scale the filters updates themselves.  

• With respect to the EnKF-based simulations, Particle filtering better succeeds in more 

heavily conditioning the model predictions from the assimilation time step onwards. This 

advantage, mainly resulting from the parameters resampling, makes the PF scheme more 

suited to forecasting applications. Furthermore, the more physically-based trend of the PF 

analysis simulations is supposed to support the feasibility of including the PF-based snow 

module within an operational hydrological chain without introducing possible 

discontinuities, which are likely to lead to spurious discharge trends.  

• The multivariate Kalman filtering is assumed to outperform the PF scheme for real-time 

analysis of the snowpack status, thanks to its higher effectiveness in updating the system 

state whenever observations are available. 

9.2 Perspectives for future research 

9.2.1 Further improvements of the modelling system 

Although the snow model proves to generally succeed in catching the snowpack dynamics, 

several limitations persist due to two main issues. Firstly, the parameterization of the physical 

processes occurring within the snowpack mostly conditions the temporal evolution of the system 

state and impacts the accuracy of the model simulations. A case in point is the parameterization 

of the snow density, which results in underestimated predictions due to a misrepresentation of 

the snowpack settling process. With the aim of mitigating this issue, the implementation of a 

multiphysical ensemble-based approach would allow to better take into account the modelling 
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uncertainty by implementing different representations of the main physical processes. Secondly, 

the system discretization of snowpack is another key issue of critical importance. Even though a 

finer layering is supposed to make the assimilation of data more challenging and demanding, the 

introduction of a third snow layer would improve the representation of the vertical snowpack 

temperature profile and therefore support the solving of the system energy balance. This 

approach could help in reducing the under-and overestimation of the diurnal and nocturnal peaks 

of the snow surface temperature. 

When implementing a multivariate DA scheme, the generation of a well-representative ensemble 

of model realizations as well as the proper definition of the several involved sources of 

uncertainty are of critical importance. The direct perturbation of the state variables should be 

improved through an extensive study addressing the estimate of the cross-correlations within the 

covariance matrix used to generate the perturbations of state variables. Even though low 

perturbations variances are likely to not introduce any significant inconsistency among the 

prognostic variables, the proper estimate of the cross-correlations would significantly contribute 

to the physical consistency within the perturbation procedure. The representation of the 

meteorological uncertainty could be enhanced, in turn, by specifically deriving the site-

dependent error statistics from the in-situ observations. Furthermore, the perturbation procedure 

would require the estimation of the correlations among forcing variables to ensure their physical 

consistency.  

As regards the Particle filtering scheme, the potential of using empirical likelihood variants for a 

high-dimensional system should be extensively investigated to assess the impact of using a 

Gaussian distribution. 

9.2.2 Development of the spatially-distributed modelling system for operational 

hydrological applications  

In light of the high potential of the multivariate DA snowpack modelling scheme, its spatially-

distributed version is currently being developed, which entails the need to address further critical 

issues. Firstly, the interpolation of the ground-based meteorological observations over complex 

orography is of key importance to provide the system with consistent forcing data, whose quality 

strongly impacts the simulations quality. Secondly, when dealing with the distributed system 
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configuration, the proper estimate of the observational error becomes necessarily of even more 

critical relevance. In this case, the accuracy and reliability of the filter updating deeply depend 

on the proper definition of the spatialized error covariance matrix of observations. 

The 2-D modelling system will be tested and used to assimilate also several satellite products of 

interest, such as MODIS SCA and snow albedo observations, Sentinel-derived SE maps (see 

Appendix), snow surface temperature detected by Meteosat, SWE distribution from passive 

microwave sensors. 

The final goal aims at including the spatially-distributed snowpack model within an operational 

chain for hydrological forecasting in snow-dominated basins. In this application, the modelling 

system is supposed to provide the hydrological model with spatialized snowmelt maps 

contributing to the local discharge regime. 
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Appendix  

Comparative study of satellite snow products 

 

Alongside the PhD research activities, a comparative study of satellite snow products has been 

carried out in the framework of the EUMETSAT Satellite Application Facility on support to 

Operational Hydrology and Water Management (H-SAF). This study aims at investigating the 

accuracy and reliability of H-SAF snow products H10 – Snow detection and H12 – Effective 

snow cover by VIS/IR radiometry by assessing their consistency with the high-resolution 

Sentinel-2A imagery.  

Besides the interest of this survey within the H-SAF project, the analysis of remotely-sensed 

snow observations is of further crucial importance in view of the development of the spatially 

distributed snow modelling system, which is assumed to assimilate satellite snow products. 

After describing the methodology used for the analysis of H-SAF H10 and H12 snow products, 

three case studies are described and discussed for both the H-SAF products. 

A.1. Methodology 

To properly compare and assess the satellite snow products, the following steps have to be taken: 

1. Pre-processing of Sentinel-2 data; 

2. Consistency check of satellite series over the area of interest; 

3. Comparison analysis between H-SAF H10 and Sentinel-2 data series; 

4. Comparison analysis between H-SAF H12 and Sentinel-2 data series. 

 

A.1.1. Pre-processing of Sentinel-2 data 

Sentinel-2 Level-1C (L1C) Top-of-Atmosphere (TOA) image data have been acquired from the 

Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus). Once identified the region of 

interest, the tiles of the Level-1C product are downloaded (100x100 km2ortho-images, 
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UTM/WGS84 projection, 500 MB). Each tile is pre-processed through the ESA Sentinel-2 

Level-2A Prototype Processor, Sen2Cor (http://step.esa.int/main/third-party-plugins-2/sen2cor/), 

whose Scene Classification Module (L2A_SceneClass) provides a Scene Classification (SCL) 

map at a spatial resolution of 20m (JPEG-2000 image). 

A.1.2. Consistency check of satellite series over the area of interest 

First of all, the availability of the satellite products for all days of the analysis period has been 

checked. Moreover, a quality check of the satellite data series has been performed with the aim 

of preventing any possible inconsistency. Because the survey focuses on the detection of snow 

cover, cloud free scenes or scenes with minor cloud cover have been primarily selected (Nagler 

et al., 2014). 

To properly perform the comparison analysis, it is important to guarantee that the satellite 

products have the same common image projection. Once assured a common projection, it was 

necessary to select both the original satellite products over the same area of interest. Since the 

analysis is tile-based, a H-SAF H10 maps over the geographic extension of the selected Sentinel-

2 tile have been extracted from the original full H-SAF product. The selection of the data subset 

limited over the domain of interest has been carried out by considering the local coordinates of 

the tile borders, in order to guarantee the intersection of the satellite products over the Sentinel 

tile. 

A.1.3. Comparison analysis between H-SAF H10 and Sentinel-2 data series 

With the aim of using a common classification code, binary snow masks (presence/absence of 

snow cover) have been generated by selecting “soil” and “snow” pixels, as classified within the 

original satellite products, respectively (Table A.1). Moreover, to prevent possible cloud cover 

affecting the snow detection, cloud-contaminated pixels have been flagged and neglected within 

the comparison of snow maps (Crawford, 2015).  

SATELLITE PRODUCT SOIL CLASS SNOW CLASS 

H-SAF 85 0 

Sentinel  5 11 

Binary map 0 1 

Table A.1: Classification of “soil” and “snow” pixels. 
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Because H-SAF H10 and Sentinel-2 data are differently gridded, a common map grid has been 

introduced. Since the comparison has been performed at the coarser spatial resolution of the H-

SAF product (5 km) (Salomonson and Appel, 2004), Sentinel 20m- images have been re-

aggregated at 5-km resolution.  

For each 5-km grid cell, the percentage of snow cover has been determined on the basis of the 

Sentinel observations by counting the number of 20-m pixels covered by snow versus the total 

number of 20-m pixels in the coarser cell (Salomonson and Appel, 2004). This computation has 

led to Sentinel-based maps of FSC. 

To restore binary snowy/snowless maps, each resulting Sentinel 5-km pixel has been then 

classified as “snow” if at least 50% of the Sentinel 20-m pixels within the coarser pixel was 

detected as snow cover; otherwise, the 5-km pixel has been classified as “soil” (Rittger et al., 

2013; Crawford, 2015). 

Sentinel-based 5-km pixels where more than the 50% of the Sentinel 20-m have been classified 

as “cloud” and thus neglected in order to not compromise the analysis results. Then, for each 

selected tile a pixel-to-pixel analysis has been performed with the aim of assessing the agreement 

between the analysed snow cover maps. Thus, a contingency table (Table A.2) has been 

evaluated: 

i. HITS counter is increased if both satellite pixels values are equal to 1 (matched 

classification as “snow”); 

ii. MISSES counter is increased if H12-pixel is equal to 0 (classified as “soil”) and Sentinel-

pixel is equal to 1 (classified as “snow”); 

iii. FALSE ALARMS counter is increased if H12-pixel is equal to 1 (classified as “snow”) 

and Sentinel-pixel is equal to 0 (classified as “soil”); 

iv. CORRECT NEGATIVES counter is increased if both satellite pixels values are equal to 

0 (matched classification as “soil”). 
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  Sentinel  

  Snow pixel = 1 Soil pixel = 0  

H10 

 

Snow pixel = 1 HITS 
FALSE  

ALARMS 

HITS + 

 FALSE ALARMS 

Soil pixel = 0 
MISSES 

CORRECT  

NEGATIVES 

MISSES+ 

CORRECT 

NEGATIVES 

  HITS + MISSES FALSE ALARMS + CORRECT NEGATIVES  

Table A.2: Contingency table. 

From these classification results, different scores for dichotomous statistics have been calculated. 

To simplify the formulae, the following notation can be considered: 

• A = number of HITS 

• B = number of FALSE ALARMS 

• C = number of MISSES 

• D = number of CORRECT NEGATIVES 

 

Probability of detection 
𝑃𝑂𝐷 =

𝐴

𝐴 + 𝐶
 [A.1] 

False alarm ratio 𝐹𝐴𝑅 =
𝐵

𝐴 + 𝐵
 [A.2] 

Probability of false 

detection 
𝑃𝑂𝐹𝐷 =

𝐵

𝐵 + 𝐷
 [A.3] 

Accuracy 𝐴𝐶𝐶 =
𝐴 + 𝐷

𝐴 + 𝐵 + 𝐶 + 𝐷
 [A.4] 

Critical success index 𝐶𝑆𝐼 =
𝐴

𝐴 + 𝐵 + 𝐶
 [A.5] 

Heidke skill score 𝐻𝑆𝑆 =
2 ∙  (𝐴𝐷 − 𝐵𝐶)

[(𝐴 + 𝐶) ∙ (𝐶 + 𝐷)] + [(𝐴 + 𝐵) ∙ (𝐵 + 𝐷)]
 [A.6] 
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A.1.4. Comparison analysis between H-SAF H12 and Sentinel-2 data series 

Also in this case, a Sentinel-based binary snow mask has generated by selecting “soil” and 

“snow” pixels, as classified within the original satellite product (Table A.1) and cloud-

contaminated pixels have been flagged and neglected. 

Since the comparison has been performed at the coarser spatial resolution of the H-SAF product 

(2 km) (Salomonson and Appel, 2004), Sentinel 20m- images have been resampled to 2-km 

resolution.  

For each 2-km grid cell, the percentage of snow cover has been determined on the basis of the 

Sentinel observations by counting the number of 20-m pixels covered by snow versus the total 

number of 20-m pixels in the coarser cell (Salomonson and Appel, 2004). This evaluation has led 

to Sentinel-based FSC maps. Each pixel of both satellite products has been assigned into a 

discrete 10% FSC-class covering 0-100%, with a total of 10 individual classes. 

Consistently with the previous analysis, Sentinel-based 2-km pixels where more than the 50% of 

the Sentinel 20-m have been classified as “cloud” and thus neglected. 

Then, for each selected tile a pixel-to-pixel analysis has been performed with the aim of 

assessing the agreement between the two satellite products.  

The following statistical indices have been computed: 

 
𝐵𝑖𝑎𝑠 =  

1

𝑁
∑(𝐹𝑆𝐶𝐻12 − 𝐹𝑆𝐶𝑆2𝐴) 

[A.7] 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝐹𝑆𝐶𝐻12 − 𝐹𝑆𝐶𝑆2𝐴)2 

[A.8] 

A.2. Case studies 

The methodology has been tested in three case studies over snow-dominated areas with the aim 

of investigating the consistency between both the H-SAF snow products and the Sentinel-2 high-

resolution imagery over selected target regions: Aosta Valley (Italy) (Figure A.1), Pyrenees 

Mountains (Figure A.2), and Caucasus Mountains (Figure A.3).  
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For each target area, representative Sentinel tiles have been selected (Table A.3). The selection 

of tiles has targeted those both covering sizeable portions of the areas of interest and providing 

significant datasets over the analysis period, starting from December 2016 until the end of March 

2017 (4 months).  

Target area 
Selected tiles 

Tiles amount Tiles ID 

Aosta Valley 1 32TLR 

Pyrenees 2 
30TYN 

31TCH 

Caucasus 9 

37TFJ  

37TGH 

37TGJ  

38TLN 

38TMN 

38TNM 

38TNN 

38TPM 

38TQL 

Table A.3: Selected tiles over the target areas. 

For each case study, a dataset has been built up by collecting all the available imagery of the 

selected tiles over the whole period.  

 

Figure A.1: Highlighted Sentinel tile 32TLR over the Aosta Valley. 
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Figure A.2: Highlighted Sentinel tiles 30TYN and 31TCH over the Pyrenees Mountains. 

 

 

Figure A.3: Highlighted Sentinel tiles over the Caucasus Mountains. 

Both the selected H-SAF snow products have been compared against the Sentinel-2 high 

resolution imagery at all the three target areas, according to the proposed methodology. The main 

results are hereafter shown. 
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A.2.1 Results of the H-SAF H10 analysis 

Figures A.4 to A.6 show the distributions of the 5-km FSC pixels derived by aggregating the 20-

m Sentinel ones. The results are shown for both H-SAF H10 snow- and soil-classified pixels. 

The two satellite products reveal a prominent agreement in detecting full snow cover (around 

90%), but misclassification generally affects the products matching in classifying soil pixels. 

 

Figure A.4: H10 vs Sentinel – Aosta Valley –Distribution of 5-km FSC pixels derived by 

aggregating the 20-m Sentinel pixels. The analysis results are separately shown for the 5-km 

H10 pixels classified as “snow” (on the top panel) and those classified as “soil” (on the bottom 

panel) throughout the whole analysis period. 
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Figure A.5: H10 vs Sentinel–2 tiles over Pyrenees Mountains – Distribution of 5-km FSC pixels 

derived by aggregating the 20-m Sentinel pixels. The analysis results are separately shown for 

the 5-km H10 pixels classified as “snow” (on the top panel) and those classified as “soil” (on 

the bottom panel) throughout the whole analysis period. 

 

Figure A.6: H10 vs Sentinel–9 tiles over Caucasus Mountains – Distribution of 5-km FSC pixels 

derived by aggregating the 20-m Sentinel pixels. The analysis results are separately shown for 

the 5-km H10 pixels classified as “snow” (on the top panel) and those classified as “soil” (on 

the bottom panel) throughout the whole analysis period. 
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Figures A.7 to A.9 show the percentages of agreement between the two products in classifying 

“snow” and “soil” pixels. The match probabilities of each class result from the ratio of “snow” 

(and “soil”) H10 pixels over the amount of snow (and “soil”) Sentinel pixels. It is important to 

stress that Sentinel pixels have been classified as “snow” wherever the aggregation of the 20-m 

pixels within a H-SAF 5-km pixel was greater than 50%. 

 

Figure A.7: H10 vs Sentinel–Aosta Valley - Match probability in “snow” and “soil” classes 

throughout the whole analysis period. 

 

Figure A.8: H10 vs Sentinel–2 tiles over Pyrenees Mountains - Match probability in “snow” 

and “soil” classes throughout the whole analysis period. 
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Figure A.9: H10 vs Sentinel–9 tiles over Caucasus Mountains - Match probability in “snow” 

and “soil” classes throughout the whole analysis period. 

 

Sentinel 

Snow Bare soil 

H10 
Snow 0.67 0.006 

Bare soil 0.11 0.21 

Table A.4: H10 vs Sentinel - Aosta Valley - Contingency table. 

 

Sentinel 

Snow Bare soil 

H10 
Snow 0.73 0.01 

Bare soil 0.11 0.15 

Table A.5: H10 vs Sentinel - 2 tiles over Pyrenees Mountains - Contingency table. 

 

Sentinel 

Snow Bare soil 

H10 
Snow 0.602 0.004 

Bare soil 0.079 0.315 

Table A.6: H10 vs Sentinel - 9 tiles over Caucasus Mountains - Contingency table. 
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The statistical scores resulting from the analysis of the contingency matrices (Tables A.4 to A.6) 

are shown in Table A.7. 

Scores Aosta Valley Pyrenees Caucasus 

POD 0.86 0.86 0.88 

FAR 0.009 0.017 0.006 

POFD 0.031 0.08 0.012 

ACC 0.88 0.87 0.92 

CSI 0.85 0.85 0.88 

HSS 7.68 9.94 5.47 

Table A.7: H10 vs Sentinel–Total statistical indices throughout the whole analysis period. 

A.2.2 Results of the H-SAF H12 analysis 

Figures A.10 to A.12 show the percentages of agreement in FSC and soil classifying between the 

two snow products. The match probabilities of each class result from the ratio of the H12 pixels 

within a specific class over the amount of S2A pixels of the same class, considering all the 

available tiles. 

 

Figure A.10: H12 vs Sentinel–Aosta Valley - Match probability in “FSC” and “bare soil” 

classes throughout the whole analysis period. 
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Figure A.11: H12 vs Sentinel–2 tiles over Pyrenees Mountains - Match probability in “FSC” 

and “bare soil” classes throughout the whole analysis period. 

 

Figure A.12: H12 vs Sentinel–9 tiles over Caucasus Mountains - Match probability in “FSC” 

and “bare soil” classes throughout the whole analysis period. 

The pixel-to-pixel comparison analysis between the two snow products have resulted in the 

statistical indices shown in the Table A.8. 

Scores Aosta Valley Pyrenees Caucasus 

BIAS -30.93 % -34.75 % -33.53 % 

RMSE 45.07 % 47.42 % 46.40 % 

Table A.8: H12 vs Sentinel–Total statistical scores throughout the whole analysis period. 
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Since individual pixels are often affected by some retrieval noise, the statistical metrics have 

been assessed also for each discrete class, whose trends are shown in the Figures A.13 to A.15. 

 

Figure A.13: H12 vs Sentinel–Aosta Valley – Classes-based statistical scores throughout the 

whole analysis period. 

 

 

Figure A.14: H12 vs Sentinel–2 tiles over Pyrenees Mountains – Classes-based statistical scores 

throughout the whole analysis period. 
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Figure A.15: H12 vs Sentinel–9 tiles over Caucasus Mountains – Classes-based statistical 

scores throughout the whole analysis period. 
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