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Abstract 

Patterns of invasion by the seaweeds Grateloupia turuturu Yamada and Sargassum 

muticum (Yendo) Fensholt under crossed combinations of the regime (mean intensity and 

temporal variability) of climate-related mechanical disturbance and constant nutrient 

enrichment were experimentally examined in rockpools in north Portugal. The cover of both 5 

species was larger under high compared to low intensity of disturbance, but this effect was 

enhanced by events more heterogeneously distributed over a period of nineteen months. The 

invasion by G. turuturu was also larger in enriched pools, but only when disturbance was 

applied at high intensity. The richness of native taxa was increased by high intensity events of 

disturbance evenly distributed over time and by low intensity events heterogeneously 10 

distributed, while no differences were documented for other treatments. Temporal variability 

of disturbance and nutrients interactively affected the total cover of native taxa and the 

availability of bare rock in different directions. Enriched conditions increased the space 

occupancy by natives and reduced substratum availability only when associated to 

heterogeneous events of disturbance. At the same time, relatively more variable disturbances 15 

caused a reduced cover by native taxa and an increased availability of free space, but only 

under natural nutrient levels. Present findings contribute to understand the conditions that 

would be more likely to facilitate the spread of G. turuturu and S. muticum under current and 

predicted scenarios of compounded environmental changes and in relation to traits of 

recipient systems that are considered relevant for the success of invasions, including the 20 

native richness and the degree of usage of resources, i.e. primarily space. 

   

Keywords Disturbance - Grateloupia turuturu - Mean intensity - Nutrient enrichment - 

Rocky intertidal - Sargassum muticum - Temporal variance 
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Introduction 

Natural systems are directly and indirectly impacted by a range of increasing 

environmental changes due to human activities (Wilcove et al. 1998; Sala et al. 2000; Halpern 

et al. 2008). Concerning the marine realm, in particular, anthropogenic activities occurring 

along the shore or inland can increase inputs of contaminants and nutrients into coastal waters 30 

(Vitousek et al. 1997) and subtract natural habitats (Gray 1997; Airoldi and Beck 2007). Sea-

based activities can drastically reduce resources, increase pollution and alter biodiversity 

through the introduction of non-indigenous species (Pauly et al. 2005; Worm et al. 2006; 

Williams and Smith 2007). Therefore, understanding, and possibly predicting, the effects of 

such environmental stressors is a major focus of current ecological research as it is key to 35 

support a sustainable use of marine resources able to protect ecosystems without jeopardizing 

the services they provide (Costanza et al. 1997). This goal is complicated by the large 

variability in patterns of occurrence of concomitant anthropogenic and natural processes 

(Halpern et al. 2007; Wernberg et al. 2012), which can interact each other and with life-traits 

of organisms in complex ways (Paine et al. 1998, Bertocci et al. 2005; Pincebourde et al. 40 

2012). Such difficulty is particularly evident in the context of assessing the effects of climate-

related environmental stressors, which act in combination (Harley et al. 2006; Darling and 

Côté 2008), but have been examined individually (e.g. Feely et al. 2004, Bertocci et al 2005; 

Benedetti-Cecchi et al. 2006; Vaselli et al. 2008; Porzio et al. 2011), with just a few exception 

(Martin and Gattuso 2009; Russell et al. 2009; Connell and Russell 2010). There is a general 45 

lack, in particular, of experimental studies examining the simultaneous and interactive effects 

of multiple global stressors on biological invasions (but see Vaz-Pinto et al. 2013a), although 

the spread of non-indigenous species and global (i.e. climate) change are concomitantly 

considered among the most important threats to marine systems (Stachowicz et al. 2002a; 

Diez et al. 2012; Hoegh-Guldberg and Bruno 2012). In fact, a vast amount of research has 50 
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been aimed at exploring diversity-invasibility relationships (Elton 1958; Stachowicz et al. 

1999), showing in several cases greater resistance to invasions for more diverse native 

assemblages (e.g. Stachowicz et al. 1999, 2002b) or the importance of native species identity 

besides species richness (Crawley et al. 1999; Arenas et al. 2006). The mechanisms of such 

processes, however, have to be elucidated, with special focus on how biological invasions are 55 

modulated by climate-related factors themselves able to affect the regime of disturbances and 

to alter patterns of abundance and distribution of assemblages (Dukes and Mooney 1999; 

Bertocci et al. 2005; Benedetti-Cecchi et al. 2006; Vaselli et al. 2008; Widdicombe and Spicer 

2008; Molinos and Donohue 2011; Buckley and Kingsolver 2012). Specifically, climate-

related disturbances can facilitate biological invasions by increasing the competitive ability of 60 

introduced species (Ruiz et al. 1999; Byers 2002; Sorte et al. 2010, Vaz-Pinto et al. 2013a), 

but very severe conditions could reduce invasion success by directly reducing the abundance 

and impairing relevant life-history traits of introduced species (Incera et al. 2010). Moreover, 

considerable variations in rates and spatio-temporal patterns of invasions can be driven by 

complex interactions of multiple traits of a single stressor or of multiple stressors (e.g. 65 

Engelen et al. 2005; Incera et al. 2009, 2010; Vaz-Pinto et al. 2013a, b). 

The present study was aimed at experimentally assessing the effects of changes in the 

regime (i.e. mean intensity and temporal variability) of climate-related mechanical 

disturbance and nutrient enrichment on the invasion of algal and invertebrate assemblages 

from rock pools by non-indigenous macroalgae. Empirical observations and climate models 70 

indicate changes in patterns of occurrence of extreme meteorological events, such as storms, 

flood and droughts (e.g. Allen et al. 2000; Muller and Stone 2001; Benestad 2003). Such 

changes include increases in the mean intensity and the temporal variability, including both 

the frequency and the variance, of associated disturbance (Muller and Stone 2001; Gutschick 

and BassiriRad 2003), with potential separate and interactive effects on natural populations 75 
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and assemblages (Zavaleta et al. 2003; Bertocci et al. 2005; Benedetti-Cecchi et al. 2006, 

Vaselli et al. 2008; Stuart-Smith et al. 2010; Zimmermann et al. 2010; Molinos and Donohue 

2011; Buckley and Kingsolver 2012; Maggi et al. 2012). Stormy waves, for example, can 

remove organisms from the substratum (e.g. Benedetti-Cecchi 2000) proportionally to the 

intensity of disturbance, but they can also release resources that can indirectly enhance the 80 

local density of populations depending on life-traits of organisms (Connell 1978; Keough 

1984; Dayton et al. 1984; Huston 1994; Shumway and Bertness 1994; Bertocci et al. 2005). 

Analogously, increases of nutrient concentrations are a global phenomenon in coastal areas, 

mainly due to terrestrial runoff associated to the overuse of land, deforestation and fish farms 

(Ambasht and Ambasht 2003), which can drive the structure and functioning of benthic 85 

assemblages through direct positive effects on primary producers (e.g. Nielsen 2001) or 

through indirect interactions with biological processes, such as grazing (Worm et al. 2000; 

Hillebrand 2003). Meteorological events and nutrient inputs to coastal areas are strictly 

linked, on local to global scales, by increasing coastal erosion and runoff strongly affected by 

the anthropogenic alteration of the hydrological cycle, particularly of the spatial and temporal 90 

patterns and the intensity of precipitation (Vitousek et al. 1997; French 1997). Both physical 

disturbance and nutrient availability are hypothesized and, in some cases, documented as 

being able to influence the susceptibility/resistance of natural systems to invasions. For 

instance, high degrees of disturbance could promote invasions by releasing resources and 

reducing competition with native species (Burke and Grime 1996; Davis et al. 2000; Prieur-95 

Richard et al. 2000). According to the Fluctuating Resources Availability Theory (FRAT, 

Davis et al. 2000), increased nutrient inputs could represent a new availability of resources, 

not fully used by native species, that could facilitate invasions (e.g. Steen 2003; Gross et al. 

2005; Leishman and Thomson 2005; Sánchez and Fernández 2006). Such processes can be 

drastically affected also by the timing of single or repeated disturbances depending on its 100 
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match with phases of the life cycle of an introduced species that are particularly relevant for 

the success of invasion (Hobbs and Huenneke 1992; Moyle and Light 1996; Altman and 

Whitlatch 2007; Bishop and Kelaher 2007). Recent experimental studies have examined the 

separate or interactive effects of changes in mean intensity and temporal variability of single 

(e.g. Bertocci et al. 2005; Benedetti-Cecchi et al. 2006, Vaselli et al. 2008; Bulleri et al. 2010; 105 

Incera et al. 2010; Molinos and Donohue 2011) or multiple (e.g. Olabarria et al. 2013) sources 

of physical disturbance on benthic assemblages and invasive macroalgae and those of 

increased amounts and changing regimes of nutrient inputs alone (Incera et al. 2009) or 

combined with climate variables (i.e. temperature and CO2 partial pressure, Vaz-Pinto et al. 

2013a) and biological processes (i.e. grazing, Vaz-Pinto et al. 2013b) on the invasibility of 110 

rock pool assemblages. To our knowledge, the simultaneous effects of changes in mean 

intensity and temporal variance of storm-related mechanical disturbance combined with 

increased availability of nutrients were never experimentally examined before. 

Rock pool intertidal assemblages exposed to the invasion by non-indigenous seaweeds 

(i.e. the red Grateloupia turuturu Yamada and the brown Sargassum muticum (Yendo) 115 

Fensholt) in north Portugal were used as an ideal study system. Intertidal habitats are 

generally suitable for experimental studies due to their accessibility and critical position at the 

interface between the terrestrial and the marine realm, thus being exposed to a range of 

anthropogenic disturbances from both environments. In addition, macroalgae have been 

shown to represent up to 40% of all the invasive species in marine habitats (Schaffelke et al. 120 

2006), with relevant ecological effects (see Schaffelke and Hewitt 2007; Thomsen et al. 2009 

for reviews). Grateloupia turuturu and Sargassum muticum, in particular, are native Asian 

seaweeds indicated as important invaders of intertidal and shallow subtidal habitats 

worldwide. The first species has been recorded in Atlantic Europe, North America and the 

Mediterranean Sea (Cabioc’h et al. 1997; Villalard-Bohnsack and Harlin 1997) and, more 125 
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recently, in Australia and New Zealand (Saunders and Withall 2006; D’Archino et al. 2007), 

the second in Europe and North America (Critchley et al. 1983; Pérez-Cirera et al. 1989; 

Incera et al. 2011). 

We established a 19-months long manipulative experiment in rock pools involving 

treatments where changes in the regime, i.e. mean intensity and temporal variability 130 

(Benedetti-Cecchi 2003; Bertocci et al. 2005), of storm-like mechanical disturbance were 

crossed with natural vs experimentally increased availability of nutrients. Treatments were 

compared in terms of cover of G. turuturu and S. muticum in order to assess which 

combinations of conditions were associated to a relatively larger susceptibility of local 

assemblages to the invasion by these species. Such knowledge is key to understand invasion 135 

dynamics under current and predicted changes of combined, globally relevant, anthropogenic 

drivers of patterns of biodiversity on rocky shores.   

  

Materials and methods 

Study system 140 

The study was performed between February 2012 and September 2013 in a total of 39 

tide pools selected at random out of those located along 1 km of rocky coast in northern 

Portugal (between 41°42’01”N and 41°42’16”N). Pools ranged from 2.5 m to 7 m in length, 

from 1.4 m to 4.8 m in width and from 6 m2 to 33 m2 in area. A preliminary analysis was done 

to guarantee that the mean size of replicate rockpools did not statistically differ among each 145 

experimental condition (data not shown). This shore is almost rectilinear, oriented from north 

to south and typically granitic, with semidiurnal tides reaching a maximum amplitude of 

about 4 m. All sampled pools were located at low-mid intertidal level (between 0.5 m and 1 m 

above Chart Datum). The coast is exposed to prevailing NW swells associated to severe wave 

disturbance, particularly between October and March (Dias et al. 2002). Large variations in 150 
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nutrient concentration are recorded over the year, driven, in particular, by upwelling events 

that are more intense from April to September (Lemos and Pires 2004). A relaxation of 

upwelling, however, has been reported in the area during the last years (Lima et al. 2006). 

Thus, the relative contribution of terrestrial runoff to the coastal concentration of nutrients can 

be expected to increase in the near future as a consequence of nearby land-based activities, 155 

which could also cause a coastal nutrient enrichment more spread over the year. For example, 

high nutrient levels have been found in the Lima estuary, located about 1.5 km south of the 

study area (Costa-Dias et al. 2010), and an increase in the concentration of nitrate has been 

reported for the upstream reservoir of the Douro river (Magalhães et al. 2005), increasing 

loads to the estuary (about 60 km south of the study area). 160 

At the examined intertidal height, rockpools are characterized by diverse algal and 

invertebrate assemblages, whose spatial and temporal patterns of distribution, abundance and 

diversity have been described in detail (Araújo et al. 2011; Rubal et al. 2011; Bertocci et al. 

2012), including the occurrence of both G. turuturu and S. muticum (e.g. Araújo et al. 2011; 

Cacabelos et al. 2013). 165 

 

Experimental design and procedures 

Before the start of the experiment (January 2012), three out of the 39 rock pools were 

chosen at random to be left unmanipulated as controls, while three other were allocated to 

each combination of the following crossed treatments (Fig. 1): intensity of disturbance (low 170 

vs. high); temporal variability of disturbance (low vs. large); sequence of disturbance (two 

arrangements, replicated only within the large level of variability); nutrient availability 

(natural vs. enriched). Three plots (35 x 35 cm) were established at random in each pool and 

marked at corners with screws. 
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Experimental disturbance consisted of striking the substratum of each plot by means of a 175 

chisel mounted on a battery hammer (Bertocci et al. 2005). Such disturbance was intended to 

simulate the mechanical impact of waves during severe storms. In fact, extreme storms are 

able to remove patches of organisms from intertidal habitats (e.g. Underwood 1998), in most 

cases generating patches of free space interspersed within intact assemblages in a way and 

with spatial patterns comparable to our experimental disturbance (e.g. Benedetti-Cecchi and 180 

Cinelli 1994). For this goal, the top of the chisel was covered with a plastic plug to produce a 

mechanical impact in terms of battering rather than scraping and breaking the rock. Levels of 

intensity were produced by disturbing the whole area of each quadrate once (low, LI) or twice 

in a row (high, HI). 

    The temporal variability was manipulated by establishing two experimental levels 185 

characterized by a different temporal arrangement of the same total number (i.e. five) of 

events of disturbance over the period of the experiment (Benedetti-Cecchi 2003; Bertocci et 

al. 2005). This procedure kept the overall frequency of experimental events the same between 

the two levels of variability, allowing to separate the possible effects of temporal variability 

‘per se’ from those of the total intensity of disturbance applied over the experiment 190 

(Benedetti-Cecchi 2003). In order to establish realistic treatments, the total number of 

experimental events was chosen with reference to the number of extreme storms (defined as 

those characterized by maximum wave height larger than 6 m and lasting a minimum of 9 

hours) naturally occurred at the study area between 2001 and 2010 (details in Appendix 1). 

The first level of temporal variability (hereafter indicated as Reg) included events 195 

homogenously distributed over time (i.e. one every four months), thus being characterized by 

a null variance of the intervals of time between consecutive events (Fig. 1). The second level 

(hereafter indicated as Irreg) was characterized by five events arranged in a way that some of 

them were clustered in shorter periods compared to the Reg level, separated by prolonged 
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periods without experimental disturbances (Fig. 1). To tease apart possible effects of temporal 200 

variability from those of the specific arrangement of events used to produce the desired level 

of variability (Vaselli et al. 2008), the Irreg treatment was produced according to two, 

randomly chosen, sequences (S1 and S2) of events, both characterized by the same positive 

value (i.e. 21 months2) of the variance of the time intervals between consecutive disturbances 

(Fig. 1). 205 

Nutrient enrichment was performed using slow-release coated fertilizing pellets 

(Osmocote® Exact® Standard 15+3.9+9.1+1.5 Mg, corresponding to 7 % nitrate N and 8 % 

ammoniacal N, 9% P2O5, 11% K2O and 2.5.% MgO, plus microelements) (Worm et al. 2000). 

A plastic bag (2 x 2 mm mesh size) filled with 200 g of pellets was placed into a cylindrical 

PVC dispenser (220 mm long, 50 mm diameter) bearing 50 holes (3 mm diameter) evenly 210 

distributed over the surface. In February 2012, two replicate dispensers were screwed to the 

bottom of each replicate pool assigned to the enriched treatment. Empty dispensers filled with 

200 g of gravel were placed in all other pools as procedural control. In order to maintain the 

experimental conditions, all bags were removed every two months and replaced with new 

ones containing “fresh” pellets (or gravel). 215 

 

Data collection 

To assess the effectiveness of the experimental enrichment, water samples from a 

randomly chosen set of eight rock pools assigned to each level of the nutrient treatment were 

collected in each of three bi-monthly periods the fertilizer was applied in the field before its 220 

replacement. Water sampling was repeated at the beginning and at the end (first and last two 

weeks, respectively) of each period in order to assess the maintenance of experimental 

conditions over the desired time. At each sampling occasion, two 10 ml replicates were 

collected from each pool with a syringe and put in ice for transportation to the laboratory. 

There, the concentrations of nitrate (NO3) and phosphate (PO4) in each water sample were 225 
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measured with a colorimetric auto-analyzer (Skalar® SAN Plus Segmented Flow Analyser), 

using Skalar methods M461-318 (EPA 353.2) and M503-555R (Standard Method IP-450), 

respectively, and validating the analytical procedures with reference to samples containing 

known concentrations of each nutrient. 

The three plots established in each pool were sampled visually at the end of January 230 

2012, before the start of any experimental manipulation (s0), and at each of ten dates (s1 to 

s10) between May 2012 and September 2013. Sampling dates were established in a way that 

the average time elapsed since the previous event of disturbance did not differ between all 

levels of temporal variability and sequences of disturbance (Fig. 1), otherwise representing a 

potential confounding factor due to the structure of the experiment (Bertocci et al. 2005). As a 235 

consequence, response variables could be examined only integrated over the whole course of 

the study, but not at single dates of sampling. Specifically, we examined the mean percentage 

cover of each invasive seaweed, the total cover and richness of individual taxa and the 

availability of bare rock over the s1 to s10 dates. 

Sampling was done using a 30 x 30 cm frame applied in the centre of each plot (to avoid 240 

edge effects) and divided into twenty-five 6 x 6 cm sub-quadrates. Percentage cover values of 

individual taxa and bare rock were visually estimated according to Dethier et al. (1993). The 

richness of native taxa was quantified as number of taxa in each frame, once organisms were 

identified to the finest level of taxonomic resolution achievable in the field.       

 245 

Data analysis 

Two-way analyses of variance (ANOVA) were used to compare the concentrations of 

nitrate and phosphate in the water collected from experimentally enriched and natural pools in 

each occasion (details in Appendix 2). 
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Univariate (ANOVA) and multivariate (multivariate analysis of variance based on 250 

permutations, PERMANOVA: Anderson 2001) statistical techniques were performed on data 

collected before any manipulation (s0 sampling). The goal was to assess that the abundance of 

G. turuturu and S. muticum and the structure of whole native assemblages, respectively, did 

not differ among the pools allocated to each subsequent experimental condition, which could 

have confounded the effects of treatments. Both analyses were based on the same partially 255 

asymmetrical design, including a first partitioning of the total variability among all 

experimental levels into a ‘Control vs. Treatments’ contrast and the ‘Among treatments’ 

variation. The latter was then partitioned into the main effects of ‘Temporal variability’, 

‘Intensity’ of disturbance and ‘Nutrients’ and their interactions. Each test involving 

‘Temporal variability’ was further partitioned into a ‘Reg vs. Irreg’ and a “Between 260 

sequences” contrast, examined as main effects or in interaction with the other two factors (see 

Tab. 1 and Appendix 3). The three plots sampled in each pool were averaged and the three 

pools assigned to each experimental condition provided the replicates for the analyses. Tests 

of terms involving sources of variation specific for Reg vs. Irreg treatments were constructed 

using the natural denominator for that term, instead of the residual mean square. For example, 265 

the ‘Intensity x (Reg vs. Irreg)’ effect was tested over the ‘Intensity x Sequences’ term. 

   Cover values of each invasive species, native organisms as a whole and bare rock and 

the richness of native taxa averaged over ten dates of sampling were analyzed with ANOVA 

using the same design illustrated for s0 data. 

Before each ANOVA, the assumption of homogeneity of variances was checked with 270 

Cochran’s C test. If necessary, data were log-transformed. When this was not possible, 

untransformed data were analyzed and results considered robust if not significant (p > 0.05) 

or significant at p < 0.01, to compensate for the increased probability of Type I error 
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(Underwood 1997). When relevant, Student-Newman-Keuls (SNK) tests were used for ‘a 

posteriori’ comparisons of means. 275 

 

Results 

Initial conditions and effectiveness of nutrient enrichment 

The analyses of data collected immediately before the application of any experimental 

treatment (s0: January 2012) indicated no significant main or interactive differences in the 280 

structure of the whole native assemblage and in the abundance of both G. turuturu and S. 

muticum among rock pools assigned to each experimental condition (details in Appendix 2). 

In spite of large variability among individual pools and between sampling occasions, the 

experimental treatment was, in general, effective to increase the concentration of nutrients, 

with nitrate increasing, on average, by about 30% and 145%  and phosphate by about 20% 285 

and 60% in enriched compared to natural pools. The only exception was provided by the 

samples collected in April 2013, which showed just a non-significant increase in the 

availability of both nutrients (details in Appendix 3).    

 

Effects of experimental treatments 290 

The invasive species were less abundant in unmanipulated pools than, on average, in 

treated pools (Tab. 1, Fig. 2 A and B) and were affected in a similar way by the interaction 

between intensity and temporal variability of disturbance (Tab. 1). Specifically, both G. 

turuturu and S. muticum were completely absent in rock pools subject to LI disturbance 

independently of the temporal arrangement of events, while they were found in HI pools, with 295 

cover values relatively larger when events were established heterogeneously over the period 

of the experiment (Tab. 2, Fig. 2 A and B). In addition, G. turuturu responded to the 

combination of the intensity of disturbance with nutrient enrichment (Tab. 1). Nutrients, in 
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particular, did not obviously exert any effect when disturbance was applied at LI as this 

species was absent under such treatment, while they increased the cover of G. turuturu when 300 

combined with HI disturbance. As for the I x V interaction, this pattern also implied that the 

abundance of G. turuturu was always larger in HI than in LI pools, but the entity of this 

difference was relatively larger under the enriched condition (Tab. 2, Fig. 3). 

The interaction of intensity and temporal variability of disturbance affected the total 

number of native taxa (Tab. 1). When events were evenly distributed, the richness of taxa 305 

increased at increasing intensity of disturbance, while no significant differences in this 

response variable were detected under aggregated events (Tab. 2, Fig. 2 C). Moreover, LI 

disturbance events irregularly distributed over time were associated to a larger number of taxa 

compared to regularly distributed ones, while HI events did not exert any significant effect 

irrespectively of their temporal variability (Tab. 2, Fig. 2 C). 310 

Both the total cover of native taxa and the availability of bare rock differed significantly 

between the unmanipulated control and the average of experimental treatments and were 

affected by the temporal variability of disturbance in combination with the availability of 

nutrients (Tab. 1). Compared with the control, experimental treatments determined an overall 

reduction of the first variable (Fig. 4 A), while the opposite pattern was displayed by the 315 

percentage of bare rock (Fig. 4 B). Both variables did not change with the availability of 

nutrients under Reg disturbance, while opposite patterns were documented under the Irreg 

treatment, with the enrichment determining, respectively, larger and lower cover values of 

native taxa and bare rock compared to the natural condition (Tab. 2, Fig. 4 A and B). Finally, 

the Irreg treatment was associated to a lower cover of native taxa and a larger availability of 320 

bare rock compared to the Reg treatment under natural levels of nutrients, while the temporal 

variability of disturbance was irrelevant when combined with enrichment (Tab. 2, Fig. 4 A 

and B). 



 15

    

Discussion 325 

Present findings indicate, in general, the high intensity of mechanical disturbance as the 

most relevant factor facilitating the invasion by both G. turuturu and S. muticum in rock 

pools, particularly when disturbance events were applied heterogeneously over the period of 

the experiment. 

The FRAT (Davis et al. 2000) attributes to the availability of resources and, as a direct 330 

consequence, to any processes able to increase it, a key role in promoting biological invasions 

(e.g. Stachowicz et al. 1999; Naeem et al. 2000; Levine et al. 2004). Physical disturbance, in 

particular, can remove native organisms and facilitate invasions by reducing the competition 

for limiting resources (e.g. Hobbs and Huenneke 1992; Prieur-Richard and Lavorel 2000; 

Bulleri et al. 2010), an effect expectable to be positively related to the intensity of stress 335 

(Pausas et al. 2006). At the same time, the temporal variability of disturbance can affect 

invasion dynamics depending on the match between the timing of the events making 

resources available and the phases of the life cycle of the invader that are important for 

colonization, such as the periods of reproduction and recruitment (Dayton et al. 1984; 

D’Antonio et al. 1999). The observed positive effect of increasing intensity of disturbance 340 

events, enhanced by their larger temporal variability, is consistent with these models, but its 

possible mechanisms of action have to be identified.     

The majority of empirical tests on how traits of disturbance modulate invasion dynamics 

were conducted in terrestrial or freshwater systems (e.g. D’Antonio and Vitousek 1992; Burke 

and Grime 1996; Lake and Leishman 2004; Kneitel and Perrault 2006). Only one previous 345 

study has included crossed manipulations of the mean intensity and the temporal variance of 

mechanical disturbance (the impact of boulders) to examine storm-related effects on the 

invasion by the green macroalga Caulerpa racemosa var. cylindracea in rock pools (Incera et 
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al. 2010). This has reported one of the few cases where increasing intensity of disturbance 

thwarted seaweed invasions (reviewed by Williams and Smith 2007), likely due to a direct 350 

negative influence of very severe disturbance on the invader. The same mechanism did clearly 

not apply to the type of disturbance and invasive seaweeds examined here. It is acknowledged 

that different types of disturbance can drive invasions in different ways (Higgins and 

Richardson 1998; Larson 2003; Hill et al. 2005), but specific responses of G. turuturu and S. 

muticum have to be elucidated. 355 

Unfortunately, ecological studies on G. turuturu have focused mainly on its patterns of 

distribution in non-native systems (Araújo et al. 2011 and references therein) and on its 

possible effects on invaded assemblages (Janiak and Whitlatch 2012), but none have 

specifically addressed effects of the regime of disturbance on its invasion dynamics. There is 

evidence, however, that different recruitment modes can allow this species to survive during 360 

the periods when environmental conditions are harsher, such as under increased storminess, 

reduced light and lower temperatures occurring in autumn-winter, and to effectively spread in 

the following more favourable period (Harlin and Villalard-Bohnsack 2001; Rubal et al. 

2011). Moreover, G. turuturu has shown a relatively large ability to physiologically 

acclimatize to oxidative stress caused by chemicals, heavy metals, changes of salinity and 365 

extreme high and low temperatures (Liu and Pang 2010). Similarly, a positive relationship 

between intensity of disturbance and invasion success has been previously reported for S. 

muticum, although in most cases strongly dependent on concomitant factors, such as 

propagule pressure (Britton-Simmons and Abbott 2008), nutrient enrichment (Sánchez and 

Fernández 2006; Incera et al. 2009; Vaz-Pinto et al. 2013b) and the source of disturbance 370 

(Britton-Simmons and Abbott 2008). Therefore, the present facilitation of invasion under high 

intensity of disturbance, enhanced by larger temporal variability of events for both species 

and by nutrient enrichment for G. turuturu, is consistent, in general, with predictions from the 
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FRAT. In fact, our Irreg treatment implied that multiple events of disturbance were clustered 

in short periods of time (Benedetti-Cecchi 2003), a condition that could reduce the abundance 375 

of organisms and, consequently, release resources for relatively longer periods (Bertocci et al. 

2005). Analogously, nutrient enrichment represents, particularly for algal organisms, an 

obvious increase of a resource known as being able to drastically affect patterns of 

distribution, abundance and diversity of coastal assemblages (Worm et al. 2000; Burkepile 

and Hay 2006). It is worth noting, however, that a considerable proportion of nutrients 380 

available in the water column can be used by benthic and planktonic micro- rather than 

macroalgae (e.g. Morel 1987; Sigmon and Cahoon 1997; Dalsgaard 2003). This process 

might have contributed to the relatively smaller effects of experimental nutrient enrichment, 

compared to those of mechanical disturbance, documented here.  

The whole set of present findings, however, prevent the attribution of the above 385 

discussed effects to obvious invasion-relevant types of resources likely made available and 

interactions with traits of native biodiversity. Neither the richness and cover of native taxa 

nor, in an opposite direction, the availability of bare rock showed patterns of differences 

related to experimental treatments matching those of G. turuturu and S. muticum in the most 

expectable ways. Specifically, the total number of taxa was interactively affected by the 390 

intensity and the temporal variability of disturbance, with more severe events determining an 

increase of this variable only when regularly distributed over time. Taking into account the 

responses of both invasive macroalgae, this outcome clearly contrasts with the assumption 

that more diverse native assemblages should be more resistant to invasions due to a more 

efficient and complete use of resources by sets of native species covering a large range of 395 

ecological traits (Elton 1958; Loureau 2000; Stachowicz et al. 1999, 2002b). Some studies, 

however, have found a negative relationship between native diversity and invasibility (e.g. 

Lonsdale 1999), while others have shown effects of the identity overwhelming those of the 
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richness of recipient assemblages (Arenas et al. 2006). It has also to be emphasized that a 

larger diversity is not necessarily paralleled by a larger degree of ecosystem functions, 400 

including the resistance to invasions (Mouquet et al. 2002). A positive relationship between 

diversity and resistance to invasions is likely to occur in systems characterized by niche 

complementarity among species, that would allow the hypothesized more effective use of 

resources (Moore et al. 2001). Where, instead, patchy patterns of local assemblages at 

different stages of succession and of available resources are maintained by a range of 405 

processes, such complementarity can fail. This might be the case for rock pool habitats, where 

abiotic and biological processes, such as physical variables, grazing and competition, can 

maintain a mosaic-like structure of assemblages independently of niche complementarity 

among species (e.g. Chapman 1990; Benedetti-Cecchi and Cinelli 1996). Under such 

circumstances, diversity effects could not occur through a complementary use of resources. 410 

Finally, according to the FRAT, patterns of pre-emption of space by natives and of 

availability of free substratum negatively or positively, respectively, related to responses of G. 

turuturu and S. muticum in the same combinations of treatments could have been expected. 

Instead, both the cover of native taxa and the availability of bare rock were significantly 

affected by the interaction of nutrients and temporal variability of events, independently of the 415 

intensity of disturbance. These somehow surprising results possibly suggest that complex 

interactions of abiotic and biological processes might have affected patterns of invasion by G. 

turuturu and S. muticum in rock pools besides those specifically examined. For example, 

propagule pressure is recognized as a key factor potentially facilitating invasion success 

proportionally to the amount of available propagules (e.g. Grevstad 1999; Vaz-Pinto et al. 420 

2012) and to the proximity to source populations of the invader (Bossenbroek et al. 2001). 

Grazing can also significantly affect invasions, usually in interaction with concomitant factors 

such as the availability of nutrients (e.g. Vaz-Pinto et al. 2013b) and propagules (e.g. Britton-
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Simmons and Abbott 2008). Specifically addressing these issues was beyond the scope of the 

present study and a detailed discussion on how such processes might have been affected by 425 

experimental treatments would require excessive speculation. Nevertheless, a relevant role of 

grazing is unlikely in the present case, as the main grazer, i.e. the sea urchin Paracentrotus 

lividus, was always found in very low to null abundances in all experimental rock pools 

(personal observation), and some species of sea urchins are known to avoid areas invaded by 

S. muticum due to its low palatability (Britton-Simmons 2004). 430 

In conclusion, present study attributes to the high intensity of disturbance a critical role 

in facilitating the initial invasion by both G. turuturu and S. muticum in rock pools, possibly 

enhanced by increased temporal variability of disturbance or nutrient availability for the first 

or the second species, respectively. Although the specific mechanisms are far from having 

been elucidated, this finding has relevant implications to understand, and possibly anticipate, 435 

invasion dynamics under current and predicted environmental changes directly or indirectly 

due to anthropogenic activities, with special focus on variations in mean intensity and 

temporal variance of climate-related variables (Katz and Brown 1992; Easterling et al. 2000; 

Muller and Stone 2001; Allen and Ingram 2002, Maestre et al. 2012).            
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Table 1. Results of ANOVA examining the effects of intensity, temporal variability (Reg = regular treatment; Irreg = irregular treatment) of 

disturbance and nutrient enrichment on invasive macroalgae, native assemblages and bare rock. * p < 0.05, ** p < 0.01, *** p < 0.001, ns = not 

significant (p > 0.05). 

 

 Grateloupia Sargassum Native taxa Native taxa Bare rock 

 turuturu muticum richness cover 

Source of variation  df MS F MS F MS F MS F MS F 

 

All exp. levels  12 7.49 38.24*** 105.47 33.00*** 2.22 1.41 103.51 1.60 85.99 1.92 

 Control vs. treatments 1 5.78 29.52*** 84.36 26.39*** 0.68 0.44 268.88 4.15* 182.11 4.07 * 

 Among treatments 11 7.64 39.03*** 107.39 33.60*** 2.36 1.50 88.47 1.36 77.25 1.73 

 Temporal variability = V  2 1.41 7.21** 11.67 3.65 * 2.34 1.49 90.33 1.39 132.35 2.96 

 Reg vs. Irreg 1 2.56 9.56  13.71 1.42 4.65 228.00 * 129.43 2.53 166.02 1.68 

 Between sequences  1 0.27 1.37  9.63 3.01 0.02 0.01 51.24 0.79 98.69 2.20 

 Intensity = I   1 75.16 383.72*** 1096.64 343.10*** 2.10 1.34 0.98 0.02 2.56 0.06 

 Nutrients = N  1 0.96 4.91 *  9.23 2.89 0.26 0.16 30.62 0.47 61.36 1.37 
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 I x V   2 1.41 7.21** 11.67 3.65 * 5.46 3.48 * 64.49 0.99 42.63 0.95 

 I x (Reg vs. Irreg)  1 2.56 9.56  13.71 1.42 10.50 25.14 71.73 1.25 60.87 2.49 

 I x sequences   1 0.27 1.37 9.63 3.01 0.42 0.27  57.25 0.88 24.40 0.55 

 I x N  1 0.96 4.91 * 9.23 2.89 0.50 0.32  0.03 0.00  2.49 0.06 

 N x V  2 0.34 1.74 4.89 1.53 3.21 2.05  290.41 4.48* 196.86 4.40 * 

  N x (Reg vs. Irreg) 1 0.29 0.74 9.00 11.50 6.11 19.15  385.49 1.97 259.92 1.94 

  N x sequences\  1 0.39 2.00 0.78 0.24 0.32 0.20  195.32 3.01 133.80 2.99 

 I x N x V  2 0.34 1.74 4.89 1.53 0.53 0.34  25.56 0.39 19.85 0.44 

  I x N x (Reg vs. Irreg) 1 0.29 0.74 9.00 11.50 0.08 0.08  9.34 0.22 16.88 0.74 

  I x N x sequences 1 0.39 2.00 0.78 0.24 0.97 0.62  41.78 0.64 22.82 0.51 

Residual   26  0.20  3.20  1.57  64.83   44.77  

 

Cochran’s test C = 0.990, p<0.01 C = 0.514, p<0.01 C = 0.298, ns C = 0.214, ns C = 0.282, ns 

Transformation  None None None  None   None  
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Table 2. Results of SNK tests for a posteriori comparisons of means significantly different according to ANOVA reported in Tab. 1. LI = low 

intensity, HI = high intensity; Nat = natural nutrients, Rich = nutrient enriched; other abbreviations as in Tab. 1. 

 

 Grateloupia Sargassum Native taxa Native taxa Bare rock 

 turuturu muticum richness cover 

Test I x V I x N I x V I x V  N x V  N x V 

S.E. 0.188 0.154 0.760 0.521   3.346  2.681 

 

 Reg: HI>LI LI: Nat=Rich Reg: HI>LI Reg: HI>LI Reg: Nat=Rich  Reg: Rich=Nat 

 Irreg: HI>LI HI: Rich>Nat Irreg: HI>LI Irreg: LI=HI Irreg: Rich>Nat  Irreg: Nat>Rich 

 LI: Reg=Irreg Nat: HI>LI LI: Reg=Irreg LI: Irreg>Reg Nat: Reg>Irreg  Nat: Irreg>Reg 

 HI: Irreg>Reg Rich: HI>LI HI : Irreg>Reg HI : Reg=Irreg Rich: Irreg=Reg  Rich: Reg=Irreg 
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FIGURE LEGENDS 

Fig. 1. Upper panel: schematic representation of the experimental design (note: three 

control pools not illustrated). Lower panel: schematic representation of the arrangements of 

events of disturbance (D) over the course of the experiment for each level of temporal 

variability (Reg = regular treatment; Irreg-S1 =irregular treatment, sequence 1; Irreg-S2 = 

irregular treatment, sequence 2); s0 to s10 are the dates of sampling. 

Fig. 2. Mean (+ SE) percentage cover, calculated over ten dates of sampling, of G. 

turuturu (A) and S. muticum (B) and number of native taxa (C) in unmanipulated (Control) 

rock pools and pools assigned to each combination of intensity (LI = low, HI = high) and 

temporal variability (Reg = ‘Regular’, Irreg = ‘Irregular’) of disturbance (n = 3 for Control 

and Reg treatments, n = 6 for Irreg treatments). Note that different graphs are on different 

scales.  

Fig. 3. Mean (+ SE) percentage cover, calculated over ten dates of sampling, of G. 

turuturu in unmanipulated (Control) rock pools and pools assigned to each combination of 

intensity (LI = Low, HI = High) and availability of nutrients (Nat = ‘Natural’, Rich = 

‘Enriched’) (n = 3 for Control, n = 9 for each treated condition).   

Fig. 4. Mean (+ SE) percentage cover, calculated over ten dates of sampling, of native 

taxa and bare rock in unmanipulated (Control) rock pools and pools assigned to each 

combination of temporal variability of disturbance and availability of nutrients (abbreviations 

as in Fig. 2 and Fig. 3) (n = 3 for Control and Reg treatments, n = 6 for Irreg treatments). Note 

that different graphs are on different scales.   
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A. Native taxa cover
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