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Preface

In science the term “equilibrium” has been widely used in physics, chemistry, bi-
ology, engineering and economics, among others, within different frameworks. It
generally refers to conditions or states of a system in which all competing influ-
ences are balanced. For instance, in physics the mechanical equilibrium is the state
in which the sum of all the forces and torques on each particle of the system is zero,
while a fluid is said to be in hydrostatic equilibrium when it is at rest, or when the
flow velocity at each point is constant over time. In chemistry the dynamic equilib-
rium is the state of a reversible reaction where the forward reaction rate is equal to
the reverse one. In biology the genetic equilibrium denotes a situation in which a
genotype does not evolve any more in a population from generation to generation.
In engineering the traffic equilibrium is the expected steady distribution of traffic
over public roads or over computer and telecommunication networks. Even more,
the well-known equilibrium theory is a fundamental branch of economics study-
ing the dynamics of supply, demand, and prices in an economy within either one
(partial equilibrium) or several (general equilibrium) markets: the basic model of
supply and demand is an example of the former while the Arrow-Debreu and Radner
models are examples of the latter.

Actually, the term “equilibrium” has always been very relevant also in mathe-
matics, particularly in dynamical systems, partial differential equations and calcu-
lus of variations. After the breakthrough of game theory and the concept of Nash
equilibrium, the term has been used in mathematics in much larger contexts involv-
ing relevant aspects of operations research and mathematical programming. Indeed,
many “equilibrium problems”, including some of the above mentioned, can be mod-
elled in this framework through different mathematical models such as optimization,
complementarity, variational inequalities, multiobjective optimization, noncoopera-
tive games and inverse optimization among others. All these mathematical models
share an underlying common structure that allows to conveniently formulate them
in a unique format.

This book focuses on the analysis of this unifying format for equilibrium prob-
lems. Since it allows describing a large number of applications, many researchers
devoted their efforts to study it and nowadays many results and algorithms are avail-
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able: as optimization fits in this format, nonlinear programming techniques have
often been the key tool of their work. The book aims at addressing in particular
two core issues such as the existence and computation of equilibria. The first chap-
ter illustrates a sample of applications, the second addresses the main theoretical
issues, while the third introduces the main algorithms available for computing equi-
libria. A final chapter is devoted to quasi-equilibria, a more general format that
is needed to cover more complex applications having additional features such as
shared resources in noncooperative games. Finally, basic material on sets, functions
and multivalued maps that are exploited throughout the book are summarized in
the appendix. To make the book as readable as possible, examples and applications
have been included. We hope that this book may serve as a basis for a second level
academic course or a specialised course in a Ph.D. programme and stimulate further
interest in equilibrium problems.

Pisa, Italy, Giancarlo Bigi
L’Aquila, Italy Marco Castellani
Pisa, Italy Massimo Pappalardo
Pisa, Italy Mauro Passacantando
July 2018
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Chapter 1
Equilibrium models and applications

As already mentioned in the preface, the term “equilibrium” is widespread in science
in the study of different phenomena. In this chapter a small selection of equilibrium
problems from different areas is given, each leading to a different kind of mathemat-
ical model. The equilibrium position of an elastic string in presence of an obstacle,
which is depicted in Section 1.1, coincides with the solution of a complementarity
problem, the Nash equilibrium fits in well to model a power control multi-agent
system described in Section 1.2, the steady distribution of traffic over a network is
represented by a variational inequality in Section 1.3, the Markowitz portfolio the-
ory is viewed as a multiobjective problem in Section 1.4, the shadow price theory is
viewed as a saddle point problem for the nonlinear case in Section 1.5, the solution
of the input-output model given in Section 1.6 is a fixed point and the quality control
problem in a production system illustrated in Section 1.7 is an inverse optimization
problem. Finally, the last section is devoted to show that all these mathematical
models, which are apparently different, have a common structure that leads to a uni-
fied format: the Ky Fan inequality or the “equilibrium problem” using the “abstract”
name introduced by Blum, Muu and Oettli to stress this unifying feature.

1.1 Obstacle problem

Consider an elastic one-dimensional string bounded on a plane. The endpoints of
the string are kept fixed, and its natural position is a straight line between the end-
points. What shape does the string take at the equilibrium if an obstacle is inserted
in between the two endpoints? The string stretches over the obstacle: it sticks to
the obstacle somewhere while it remains stretched as a straight line elsewhere (see
Figure 1.1).

Mathematically, the equilibrium position of the string may be described by a
function u : [0,1]→R with u(0) = u(1) = 0, with 0 and 1 denoting the x-coordinates
of the two fixed endpoints. Analogously, the profile of the obstacle may be described
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2 1 Equilibrium models and applications

Fig. 1.1 The obstacle problem.

by a function f : [0,1]→ R with f (0) < 0 and f (1) < 0. At any point x ∈ [0,1]
the string is above the obstacle, that is u(x) ≥ f (x). Moreover, the string and the
obstacle touch, that is u(x) = f (x), or the string is a straight line near x, that is
u′′(x) = 0. Therefore, if f has second order derivatives, then the shape of the string
u has second order derivatives as well. Moreover, notice that the absence of any other
force beyond the pressure of the obstacle guarantees that u is a concave function,
which means u′′(x)≤ 0 for any x ∈ (0,1). Summarising, the equilibrium position of
the string is given by any u satisfying the conditions

u(0) = u(1) = 0,

u(x)≥ f (x), u′′(x)≤ 0 x ∈ (0,1),

(u(x)− f (x))u′′(x) = 0 x ∈ (0,1).

(1.1)

This functional system can be turned into a system of inequalities and equalities
in finite dimension through piecewise linear approximations of u and f given on a
finite grid of points. Specifically, fix any n∈N and consider ti = i/(n+1), ui = u(ti)
and fi = f (ti) for i = 0,1, ...,n+ 1. Exploiting finite differences, the second order
derivative of u at ti can be approximated through

u′′(ti)≈ (n+1)2 (ui+1−2ui +ui−1), i = 1, ...,n.

Therefore, system (1.1) can be approximated by the following system
u0 = un+1 = 0,

ui− fi ≥ 0, ui+1−2ui +ui−1 ≤ 0 i = 1, ...,n,

(ui− fi)(ui+1−2ui +ui−1) = 0 i = 1, ...,n,

(1.2)

in the n variables u1, ...,un. In turn, (1.2) can be written in a compact form introduc-
ing the n×n tridiagonal matrix



1.2 Power control in wireless communications 3

M =


2 −1 0

−1
. . . . . .
. . . . . . −1

0 −1 2


and the vector q ∈ Rn with qi = 2 fi− fi+1− fi−1. Indeed, ū ∈ Rn satisfies (1.2) if
and only if x̄ = ū− f satisfies

x̄≥ 0, Mx̄+q≥ 0, 〈x̄,Mx̄+q〉= 0, (1.3)

where the inequality ≥ is meant componentwise. Notice that the nonnegative con-
ditions imply either x̄i = 0 or (Mx̄+ q)i = 0 for 〈x̄,Mx̄+q〉 = 0 to hold. Systems
like (1.3) are known as (linear) complementarity problems since they require that
the product of nonnegative quantities should be zero.

1.2 Power control in wireless communications

A cellular network is designed to provide several users with access to wireless ser-
vices over a large area that is divided into smaller areas called cells: each of them
represents the area covered by a single base station which is often located at the
center of the cell. In a code-division multiple-access (CDMA) system, mobile users
operate using the same frequency and they need to adjust their transmit power to
ensure a good performance (e.g., in terms of quality of service) by controlling the
interference while minimizing the overall cost at the same time.

For the sake of simplicity, consider a single-cell CDMA system with N mobile
users. Each user i has to select a value for the uplink transmit power xi ≥ 0 in order
to minimize its own cost function

ci(xi,x−i) = λixi−αi log(1+ γi(x)), (1.4)

where x−i = (x j) j 6=i is the transmit power of all users except i and γi is the Signal-
to-Interference-plus-Noise Ratio (SINR) function

γi(x) =
W
R

hixi

∑
j 6=i

h jx j +σ2 ,

where W is the chip rate, R is the total rate, h j ∈ (0,1) is the channel gain from
user j to the base station in the cell and σ2 is the Gaussian noise variance. The
objective function of each user is the difference between a pricing function (that
assigns a price λi per power unit) and the gain obtained from a better SINR (αi is
called benefit parameter and represents the desired level of SINR). Therefore, an
increase of the power level on one hand implies a benefit in terms of interference
and on another hand a price in terms of the power consumed.
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In this framework a vector of power levels chosen by the mobile users provides
an equilibrium state if no user can decrease its own cost function by changing its
power level unilaterally. More generally, a situation in which several selfish decision
makers interact each other is known as noncooperative game and the equilibrium
concept given above as Nash equilibrium.

1.3 Traffic network

Consider a traffic network represented by a set of nodes N, a set of arcs A⊆ N×N
and a set OD of pairs of nodes that represent the origin and the destination of paths.
For each pair s ∈ OD there is a known demand ds representing the rate of traffic
entering and exiting the network at the origin and the destination of s respectively.
The demand ds has to be distributed among a given set Ps of paths connecting the
pair s and let xp denote the portion of ds routed on path p. Let P be the set of all the
n paths, i.e., the union of all the sets Ps over all s ∈ OD, and x = (xp)p∈P the vector
of all path flows. The set of feasible path flows is hence given by

C =

{
x ∈ Rn

+ : ∑
p∈Ps

xp = ds, ∀ s ∈ OD

}
. (1.5)

Since the flow za on each arc a is the sum of all flows on paths to which the arc
belongs, the arc flow vector z = (za)a∈A is given by z = ∆ x, where ∆ is the arc-path
incidence matrix:

∆a,p =

{
1 if arc a ∈ p,
0 otherwise.

A nonnegative arc cost function ta(z), which represents the travel time in traversing
arc a and depends upon the whole arc flow vector z, is given for each arc a. Assum-
ing that the path cost function is additive, the travel time Tp(x) on path p is equal to
the sum of the travel times on all the arcs of path p, that is

Tp(x) = ∑
a∈p

ta(∆ x).

Therefore, the path cost map is T : Rn→ Rn with T (x) = ∆ T t(∆ x).
According to the Wardrop equilibrium principle, a vector x̄ ∈C is an equilibrium

flow if it is positive only on paths with minimum cost, i.e., the following implication

x̄p > 0 =⇒ Tp(x̄) = min
q∈Ps

Tq(x̄)

holds for any s ∈ OD and p ∈ Ps.
It is possible to prove that a path flow x̄ ∈C is a Wardrop equilibrium if and only

if the inequality
〈T (x̄),y− x̄〉 ≥ 0, ∀ y ∈C, (1.6)
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holds. In fact, setting T̃s = minp∈Ps Tp(x̄) for any s ∈ OD, if x̄ is a Wardrop equilib-
rium, then any y ∈C satisfies

〈T (x̄),y− x̄〉 = ∑
s∈OD

∑
p∈Ps

Tp(x̄)(yp− x̄p)

= ∑
s∈OD

[
∑

p∈Ps: x̄p>0
Tp(x̄)(yp− x̄p)+ ∑

p∈Ps: x̄p=0
Tp(x̄)(yp− x̄p)

]

= ∑
s∈OD

[
∑

p∈Ps: x̄p>0
T̃s(yp− x̄p)+ ∑

p∈Ps: x̄p=0
Tp(x̄)yp

]

≥ ∑
s∈OD

[
∑

p∈Ps: x̄p>0
T̃s(yp− x̄p)+ ∑

p∈Ps: x̄p=0
T̃syp

]
= ∑

s∈OD
T̃s ∑

p∈Ps

(yp− x̄p)

= ∑
s∈OD

T̃s(ds−ds) = 0,

where the third equality follows from the definition of Wardrop equilibrium, the
inequality from the definition of T̃s and the fifth equality from the feasibility of y
and x̄. Thus, inequality (1.6) is satisfied. Conversely, if inequality (1.6) holds, then
consider an arbitrary pair s ∈ OD, two paths p,q ∈ Ps with x̄p > 0 and the path flow
y defined as follows:

yr =

 x̄r if r 6= p,q,
0 if r = p,
x̄p + x̄q if r = q.

Then, it is clear that y ∈C and

0≤ 〈T (x̄),y− x̄〉= Tp(x̄)(yp− x̄p)+Tq(x̄)(yq− x̄q) = x̄p(Tq(x̄)−Tp(x̄)),

hence Tq(x̄)≥ Tp(x̄). Since path q ∈ Ps is arbitrary, Tp(x̄) = minq∈Ps Tq(x̄) holds and
hence x̄ is a Wardrop equilibrium.

Inequalities like (1.6) are known as variational inequalities.

1.4 Portfolio selection

Suppose there are n risky assets, where asset i gives the random return Ri. Recall
that the return R of an asset is simply the percentage change in the value from one
time to another; more precisely, the return at time t is defined by

R =
Vt −Vt−1

Vt−1
,
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where Vt is the total value of the asset at time t and Vt−1 is the total value at an earlier
time t−1. For the sake of simplicity, assume that Ri are n jointly distributed random
variables with finite second moment.

Let M be a given sum of money to be invested in the n different assets and let
xi denote the amount to be allocated to the asset i. The vector x ∈ Rn is called a
portfolio if

x1 + x2 + · · ·+ xn ≤M.

Notice that the non-negativeness of the components xi could not be required. A
negative xi represents a short position for the risky asset i: a short position is an
investment strategy where the investor sells shares of borrowed stock in the open
market. The expectation of the investor is that the price of the stock will decrease
over time, at which point he will purchase the shares in the open market and return
the shares to the broker which he borrowed them from.

Fixed a portfolio x, the net profit is described by the random variable

R = x1R1 + x2R2 + · · ·+ xnRn.

A first simple method for establishing the goodness of the portfolio could be to
maximize the expected return

g1(x) = E[x1R1 + x2R2 + . . .+ xnRn] = x1µ1 + x2µ2 + . . .+ xnµn,

where µi = E[Ri], that is solving the following linear programming problemmax µ1x1 +µ2x2 + . . .+µnxn
x1 + x2 + . . .+ xn ≤M
xi ≥ 0, i = 1, . . . ,n.

The constraints xi ≥ 0 mean that only long positions are allowed, hence these con-
ditions should be omitted to include possible short sales in the model.

However, this approach does not provide meaningful results. Indeed, if there ex-
ists an index j such that µ j > 0 and µ j > µi for each i 6= j, then the problem has a
unique optimal solution x̄ with x̄ j = M and all the other components equal to zero,
which represent an undiversified portfolio and it could be very risky: don’t put all
your eggs in one basket!

Risk aversion is the behaviour of investors, when exposed to uncertainty, to pre-
fer a bargain with a more certain, but possibly lower, expected payoff rather than
another bargain with an uncertain payoff. One simple measure of financial risk is
the variance of the net profit, i.e.

g2(x) = Var(x1R1 + x2R2 + . . .+ xnRn) =
n

∑
i=1

n

∑
j=1

σi jxix j,

where
σi j = Cov(Ri,R j) = E[RiR j]−E[Ri]E[R j]
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is the covariance between Ri and R j.
The investor would like to maximize the expected return g1 and to minimize

the risk measured by variance g2. Since these two objectives are typically conflict-
ing, more reasonable solutions are available by considering a trade-off between risk
and return according to the Markowitz theory. One simple way to perform it is to
consider portfolios such that no other portfolio provides a larger return paired with
a lower risk. Formally, a portfolio x is strictly dominated by another portfolio x′

if g1(x′) > g1(x) and g2(x′) < g2(x). Hence, the corresponding selection problem
consists in finding a portfolio x̄ ∈ Rn

+ which is not strictly dominated by any other
portfolio. Such portfolios are called weak Pareto optimal.

1.5 Optimal production under restricted resources

A company produces a mix of n commodities aiming at maximizing the profit while
also evaluating further investments in the m raw materials (or resources) that are
needed. The profit is given by a function f : Rn → R, where each variable x j rep-
resents the quantity of commodity j that is produced. The use of each resource
i depends on the total production x = (x1, . . . ,xn) and is given by the function
gi : Rn→R. Therefore, the maximization of the profit amounts to maximizing f (x)
subject to the constraints gi(x) ≤ ci, where ci denotes the available quantity of re-
source i.

The tool to evaluate further investments in resources are the so-called shadow
prices, that is the marginal changes of the value of the optimal profit as the quantities
ci vary. According to the theory of Lagrange multipliers, under a standard constraint
qualification, if a mix x̄ is optimal then there exists a nonnegative vector of shadow
prices λ̄ satisfying the following conditions:

m

∑
i=1

λ̄i
∂gi

∂x j
(x̄)≥ ∂ f

∂x j
(x̄), j = 1, . . . ,n, (1.7)

λ̄i(ci−gi(x̄)) = 0, i = 1, . . . ,m, (1.8)

x̄ j

[
∂ f
∂x j

(x̄)−
m

∑
i=1

λ̄i
∂gi

∂x j
(x̄)

]
= 0, j = 1, . . . ,n. (1.9)

They yield the following economic interpretation: the left hand side of (1.7) is
the marginal value of the amount of the resources needed to increase the production
of commodity j while the right hand side is the marginal profit due to the increase;
(1.8) means that if the resource i is not used completely then it must be free, i.e.,
a resource with zero shadow price, while if it is positive, then all of the available
supply must be fully used; (1.9) asserts that if commodity j is produced, i.e., x̄ j > 0,
then the marginal quantities in (1.7) must be equal, while if they are not equal then
commodity j cannot be produced.
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If f is concave and gi are convex, then the existence of such shadow prices λ̄

is also a sufficient optimality condition for the mix x̄. Moreover, the couple (x̄, λ̄ )
satisfies the conditions (1.7)-(1.9) if and only if it is a saddle point of the function

L(x,λ ) = f (x)+
m

∑
i=1

λi(ci−gi(x)), (1.10)

which is called the Lagrangian function; this means

L(x, λ̄ )≤ L(x̄, λ̄ )≤ L(x̄,λ ), ∀ x,λ ≥ 0,

or, equivalently, x̄ maximizes L(·, λ̄ ) and λ̄ minimizes L(x̄, ·).

1.6 Input-output analysis in an economy

Input-output mathematical models for the economy of a country are based on its dis-
aggregation into sectors. Suppose the economy consists of n interdependent sectors
(or industries) S1, . . . ,Sn each of which produces a single kind of good that is traded,
consumed and invested within the same economy. Let xi denote the quantity of good
i produced by the sector Si. Each sector utilizes some of the goods produced by the
other industries for the production of its own good. More precisely, suppose that the
sector S j must use yi j units of the good i in order to produce x j units of the good
j. The proportionality is the main assumption of the original Leontief input-output
model: the exploitation of the good i is directly proportional to the production of the
good j. In other words, the ratio ai j = yi j/x j, called input coefficient, is constant and
represents the units of good i needed for producing one unit of good j. Clearly, all
the coefficients ai j are nonnegative and moreover the possibility that aii > 0 holds
for some i is not ruled out (for instance, a power station may use some of its own
electric power for the production). The quantity

ai1x1 +ai2x2 + · · ·+ainxn

is the internal demand of the good i. In addition to the internal demand, which
models the flow of goods in between the industries, suppose the existence of other
non-productive sectors of the economy (such as consumers and governments), that
may be grouped into the so-called open sector not producing anything but consum-
ing goods from all the sectors. Denote by di the demand of the open sector from the
sector Si, which is called final demand. Therefore, the total output of the sector Si
must be equal to the internal plus the final demand:

xi = ai1x1 +ai2x2 + · · ·+ainxn +di.

The output levels required by all the n sectors in order to meet these demands are
given by the system of n linear equations coupled with nonnegativity conditions
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a11x1 +a12x2 + . . .+a1nxn +d1 = x1
a21x1 +a22x2 + . . .+a2nxn +d2 = x2

...
an1x1 +an2x2 + . . .+annxn +dn = xn
xi ≥ 0, i = 1, . . . ,n

that can be written in matrix form as{
Ax+d = x
x ∈ Rn

+
(1.11)

where the input-output matrix A = (ai j) describes the interdependence of the indus-
tries.

The linearity assumption on the relation between each x j and the amount xi j is
a very strong assumption. The assumption of constant returns to scale is arguable
on the grounds that functions more complex than simple proportions are needed to
describe production processes realistically, particularly in industries where at least
one large installation (such as railroad tracks, dams or telephone lines) must be
provided before any output can be produced. For this reason some authors proposed
a nonlinear input-output model replacing the linear production functions yi j = ai jx j
with the nonlinear functions yi j = ai j(x j). The basic assumptions on the nonlinear
functions are the following:

– ai j(·) is defined and continuously differentiable on R+,
– ai j(0) = 0,
– a′i j(t)≥ 0 for all t ≥ 0.

Therefore, given the map A : Rn
+ → Rn

+ whose component i is defined by Ai(x) =
ai1(x1) + ai2(x2) + . . .+ ain(xn), the solution of the nonlinear input-output model
consists in finding x̄∈Rn

+ such that A(x̄)+d = x̄, that is x̄ is a fixed point of the map
x 7→ A(x)+d.

1.7 Quality control in production systems

A manufacturer produces one commodity aiming at maximizing the profit while
controlling the quality level of the production at its facility over a planning horizon
of n time periods. Indeed, the quality level affects both the expected demand of the
commodity and the cost of its production.

Let xi ∈ R denote the quality level of the production during period i; it may
be assumed xi ∈ [0,1] without any loss of generality. Suppose fi : R+ → R+ is
the expected demand and gi : R+ → R+ the production cost as a function of the
quality level xi during period i. If D > 0 denotes the total budget for producing the
commodity and ci the unitary price for period i, the problem can be modeled as the
following mathematical program
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max

{
n

∑
i=1

ci fi(xi) :
n

∑
i=1

gi(xi)≤ D, `i ≤ xi ≤ ui

}
(1.12)

for some given lower and upper bounds 0 ≤ `i ≤ ui ≤ 1 on the quality level. In
some production systems xi ≤ xi+1 (for i = 1, ...,n− 1) are reasonable additional
constraints: the quality level of the production does not get lower over time.

Actually, modifying the quality level may be a difficult task and may require
a lot of time in some particular production systems. In such situations it may be
convenient to adjust prices and it is clearly unreasonable to increase or decrease
each price too much. Therefore, some c̄= (c̄1, ..., c̄n) sufficiently close to the current
prices c∗ = (c∗1, ...,c

∗
n) is seeked such that the current quality levels x̄ = (x̄1, ...., x̄n)

provide an optimal solution. The problem can be formally stated as follows:

given a feasible solution x̄ of (1.12), c∗ ∈ Rn
+ and δ > 0,

find c̄ ∈ Rn
+ s.t. ‖c̄− c∗‖∞ ≤ δ and x̄ is an optimal solution of (1.12).

Problems like the above one are called inverse optimization problems since they aim
at determining whether a given feasible point can be made optimal by adjusting the
values of some parameters within a given range.

1.8 Ky Fan inequalities: a unifying equilibrium model

In this section all the mathematical models of the problems described in the previous
sections are recast as particular cases of a Ky Fan inequality, that is the following
mathematical equilibrium model

find x̄ ∈C such that f (x̄,y)≥ 0 for all y ∈C, EP( f ,C)

where C ⊆ Rn is a nonempty closed set and f : Rn×Rn → R is an equilibrium
bifunction, i.e., f (x,x) = 0 for all x ∈ C. Precisely, the section aims at showing
how complementarity problems, Nash equilibrium problems, variational inequali-
ties, weak Pareto optimization problems, saddle point problems, fixed point prob-
lems and inverse optimization problems can be all formulated in the above format
through suitable choices of f and C.

Complementarity problems

Given a closed convex cone C ⊆ Rn and a map F : Rn→ Rn, the complementarity
problem asks to

find x̄ ∈C such that F(x̄) ∈C∗ and 〈x̄,F(x̄)〉= 0, (1.13)
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where C∗ = {y ∈ Rn : 〈y,x〉 ≥ 0, ∀x ∈ C} is the dual cone of C. Notice that the
complementarity problem (1.3) described in Section 1.1 is a special case of (1.13)
with C = Rn

+ and F(x) = Mx+q.
Solving the complementarity problem amounts to solving EP( f ,C) with

f (x,y) = 〈F(x),y− x〉.

Indeed, if x̄ solves the complementarity problem, then

f (x̄,y) = 〈F(x̄),y− x̄〉= 〈F(x̄),y〉 ≥ 0, ∀ y ∈C,

that is x̄ solves (EP). Conversely, if x̄ solves EP( f ,C), then choosing y = 2x̄ and
y = 0 provides 〈x̄,F(x̄)〉= 0 and thus 〈F(x̄),y〉= f (x̄,y)≥ 0 holds for all y∈C, that
is x̄ is a solution of the complementarity problem.

Note that the system of equations F(x) = 0 is a special complementarity problem
with C = Rn.

Nash equilibrium problems

In a noncooperative game with N players, each player i has a set of possible
strategies Ci ⊆ Rni and aims at minimizing a cost function ci : C → R with
C =C1×·· ·×CN . A Nash equilibrium is any x̄ ∈C such that no player can reduce
its cost by unilaterally changing its strategy, that is any x̄ ∈C such that

ci(x̄i, x̄−i)≤ ci(yi, x̄−i)

holds for any yi ∈Ci and any i = 1, . . . ,N, where x̄−i denotes the vector of strategies
of all players except i. Finding a Nash equilibrium amounts to solving EP( f ,C) with
the so-called Nikaido-Isoda bifunction, i.e.,

f (x,y) =
N

∑
i=1

[ci(yi,x−i)− ci(xi,x−i)] . (1.14)

Indeed, if x̄ is a Nash equilibrium, all the terms in (1.14) are nonnegative for any
y ∈C and hence x̄ solves the equilibrium problem. Conversely, let x̄ be a solution of
EP( f ,C) and assume, by contradiction, there exist an index i and a strategy yi ∈Ci
such that ci(x̄i, x̄−i) > ci(yi, x̄−i). Choosing y j = x̄ j for all j 6= i leads to the contra-
diction

f (x̄,y) = ci(yi, x̄−i)− ci(x̄i, x̄−i)< 0.

The power control game described in Section 1.2 is a Nash equilibrium problem
where the strategy sets are Ci = [0,+∞) and the cost functions are defined in (1.4).
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Variational inequality problems

Given a closed convex set C⊆Rn and a map F : Rn→Rn, the variational inequality
problem asks to

find x̄ ∈C such that 〈F(x̄),y− x̄〉 ≥ 0 for all y ∈C. (1.15)

Solving this problem amounts to solving EP( f ,C) with

f (x,y) = 〈F(x),y− x〉.

Notice that the variational inequality (1.6) which models the traffic equilibrium
problem in Section 1.3 is a special case of (1.15) with F equal to the path cost
map T .

More general formats of variational inequalities are included in the EP( f ,C) for-
mat. For instance, if F : Rn ⇒ Rn is a multivalued map with compact values, then

find x̄ ∈C and ū ∈ F(x̄) such that 〈ū,y− x̄〉 ≥ 0 for all y ∈C,

amounts to solving EP( f ,C) with

f (x,y) = max
u∈F(x)

〈u,y− x〉.

Given two maps F,G : Rn→Rn and a function h : Rn→ (−∞,+∞], another kind of
generalized variational inequality problem asks to

find x̄ ∈ Rn such that 〈F(x̄),y−G(x̄)〉+h(y)−h(G(x̄))≥ 0 for all y ∈ Rn.

Solving this problem amounts to solving EP( f ,C) with C = Rn and

f (x,y) = 〈F(x),y−G(x)〉+h(y)−h(G(x)).

Notice that the presence of G and h does not allow formulating this problem in the
standard format (1.15).

Weak Pareto optimization problems

Given m real-valued functions ψi : Rn → R, x̄ ∈ X is called a weak Pareto global
minimum of the vector function ψ = (ψ1, . . . ,ψm) over a set X ⊆ Rn if there ex-
ists no element y ∈ X such that ψi(y) < ψi(x̄) for all i = 1, . . . ,m. Note that in
the portfolio selection problem proposed in Section 1.4, the objective functions are
ψ1(x) =−g1(x) and ψ2(x) = g2(x) with X = {x ∈ Rn

+ : x1 + · · ·+ xn ≤M}.
Finding a weak Pareto global minimum amounts to solving EP( f ,C) with C = X

and
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f (x,y) = max
i=1,...,m

[ψi(y)−ψi(x)].

Indeed f (x̄,y) ≥ 0 for any y ∈ X if and only if for any y ∈ X there exists an index
i = 1, . . . ,m such that ψi(y)−ψi(x̄)≥ 0, that is the definition of weak Pareto global
minimum.

Saddle point problems

Given two sets C1⊆Rn1 and C2⊆Rn2 , a saddle point of a function H : C1× C2→R
is any x̄ = (x̄1, x̄2) ∈C1×C2 such that

H(x̄1,y2)≤ H(x̄1, x̄2)≤ H(y1, x̄2)

holds for any y = (y1,y2) ∈ C1 ×C2. The production problem described in Sec-
tion 1.5 is a saddle point problem where H is the opposite of the Lagrangian func-
tion (1.10).

Finding a saddle point of H amounts to solving EP( f ,C) with C =C1×C2 and

f ((x1,x2),(y1,y2)) = H(y1,x2)−H(x1,y2).

Indeed, a saddle point of H is a Nash equilibrium in a two-person zero-sum game,
that is a noncooperative game where the cost function of the first player is H and
the cost function of the second player is −H (what one player wins is exactly what
the other player loses).

Fixed point problems

Given a set C ⊆ Rn, a fixed point of a map F : C → C is any x̄ ∈ C such that
x̄ = F(x̄). For instance, the solution of the nonlinear input-output model described
in Section 1.6 is a fixed point of the map F(x) = A(x)+d over the set C = Rn

+.
Finding a fixed point amounts to solving EP( f ,C) with

f (x,y) = 〈x−F(x),y− x〉.

In fact, if x̄ is a fixed point of F , then it obviously solves EP( f ,C). Conversely, if x̄
solves EP( f ,C), then choosing y = F(x̄) ∈C provides

0≤ f (x̄,F(x̄)) =−‖x̄−F(x̄)‖2,

hence x̄ = F(x̄).
If the set C is also convex, a further equivalent reformulation is available, that is

the fixed point problem amounts to solving EP( f ,C) with

f (x,y) = 〈y−F(x),y− x〉.
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In fact, if x̄ is a fixed point of F , then f (x̄,y) = ‖y− x̄‖2 ≥ 0 for any y ∈ C, i.e., x̄
solves EP( f ,C). Vice versa, if x̄ is a solution to EP( f ,C), then the convexity of C
guarantees that y = (x̄+F(x̄))/2 ∈C and hence

0≤ f (x̄,y) =
〈

x̄−F(x̄)
2

,
F(x̄)− x̄

2

〉
=−1

4
‖x̄−F(x̄)‖2,

thus x̄=F(x̄). Notice that the bifunctions defined in the two different reformulations
satisfy different requirements: for instance, the former f is linear with respect to y
while the latter is a strongly convex quadratic function in y.

Moreover, the EP( f ,C) format includes also the fixed point problem when the
map is multivalued. Indeed if F : C ⇒C is a multivalued map with compact values,
then finding x̄ ∈C such that x̄ ∈ F(x̄) amounts to solving EP( f ,C) with

f (x,y) = max
u∈F(x)

〈x−u,y− x〉.

Inverse optimization problems

Given two closed sets B⊆Rn and C⊆Rm
+, m functions fi : Rn→R and p functions

h j : Rn→ R, the inverse optimization problem consists in determining a parameter
c̄ ∈C such that at least one optimal solution of the maximization problem

max

{
m

∑
i=1

c̄i fi(x) : x ∈ B

}

satisfies the constraints h j(x) ≤ 0 for all j. The problem of Section 1.7 can be for-
mulated in this fashion where m = n, p = 1, B is the feasible region of (1.12), C is
the set of vectors c ∈ Rn

+ such that ‖c− c∗‖∞ ≤ δ and h1(x) = ‖x− x̄‖.
Actually, this inverse optimization problem is equivalent to a noncooperative

game with three players. The first player controls the variable x ∈ B and aims at
solving

max

{
m

∑
i=1

ci fi(x) : x ∈ B

}
;

the second player controls the auxiliary variable y ∈ Rp
+ and aims at solving

max

{
p

∑
j=1

h j(x)y j : y≥ 0

}
;

the third player controls the parameter c ∈C and aims at maximizing constant ob-
jective function, in other words he simply chooses the parameter c. Therefore, also
this inverse optimization problem can be formulated in the EP( f ,C) format via the
Nikaido-Isoda bifunction (1.14).



1.9 Notes and references 15

1.9 Notes and references

Almost every paper on Ky Fan inequalities states that this model provides a general
format that subsumes many other models so that a very large number of applica-
tions may be formulated in a unique fashion. The aim of this chapter is to corrobo-
rate this statement through a small selection of applications and the corresponding
mathematical models. Section 1.1 examines the problem of determining the shape
of an elastic string stretched over a body creating an obstacle [37]. This infinite
dimensional problem can be numerically approximated by a complementarity sys-
tem through standard discretization techniques. Section 1.2 describes the celebrated
traffic network problem [110], which is based on the Wardrop equilibrium princi-
ple [128]. Its reformulation as a variational inequality was established in [54, 122].
Section 1.3 deals with a basic version of power control problems in wireless com-
munications [69] that can be viewed as a noncooperative game and therefore turned
into a system of inequalities through the Nikaido-Isoda aggregate bifunction [106].
Pareto optimization is the core of Section 1.4, that describes a simple portfolio se-
lection problem relying on Markowitz’s original approach [90]. Section 1.5 explains
how optimal investment of resources, shadow prices and production of commodities
are mixed in a mathematical model [18] that actually amounts to finding a saddle
point of a suitable Lagrangian function. Section 1.6 describes the Leontief input-
output model [89], which is probably the most well-known static model of the struc-
ture of a national economy. Indeed, Leontief received the Nobel Price in Economics
“for the development of the input-output method and for its application to impor-
tant economic problems” in 1973. The nonlinear version provided at the end of the
section has been developed in [117]. The input-output analysis leads to a fixed point
problem. Finally, inverse optimization (see [12]) allows modeling the problem of
quality control in production systems that is addressed in Section 1.7 [133].

The solution set of each of the above problems coincides with the solution set
of a Ky Fan inequality built by choosing a suitable feasible set C and a suitable
bifunction f . This unified mathematical format has been explicitly proposed in [38,
99], following in the footsteps of the minimax inequality by Ky Fan [66].


