

ENERGY AND ENVIRONMENT DEPT. «DIPARTIMENTO DESTEC» – GRNSPG (San Piero a Grado)

UNIVERSITA' DI PISA 56100 PISA - ITALY

[116] THERMAL-HYDRAULIC PHENOMENA

N.Aksan, F. D'Auria, H. Glaeser

FONESYS

[FORUM & NETWORK OF SYS-TH CODES IN NUCLEAR REACTOR THERMAL-HYDRAULICS]

12th MEETING – Busan National University – Busan (Kr) Oct-11-12, 2018

- ✓ FOREWORD & SCOPE
- ✓ ISSUED PAPER
 - J NED 2018
- ✓ ORIGINATING DOCS/ BRIEF HISTORY
- ✓ 116 PHENOMENA (TH-P) LIST
- ✓ CROSS-LINKING Reactor Types, TH-P, Accident Scenarios and Parameters
- ✓ CONCLUSIONS & PROPOSED DEVELOPMENTS

✓ ACKNOWLEDGEMENTS

The importance of phenomena is well established in nuclear thermal-hydraulics (... already in the year 1983, Wolfert and Frisch, 1983, proposed to establish a [phenomena based] validation matrix to be used for performing code validations) and in nuclear technology.

In the year 1987, the OECD/NEA/CSNI published a document that identified systematically a set of T-HP and tests detected from IET, "CSNI Code Validation Matrix of Thermo-Hydraulic Codes for LWR LOCA and Transients", followed by another report (1989) setting the connection between T-HP and ECCS ("CSNI SOAR ON TECC").

The original scope for TH-P related activities and related reports was the **Design Basis Accident** (DBA) in selected PWR (e.g. excluding VVER) and BWR (e.g. excluding NC BWR).

The scope for the present list (116 TH-P) includes all Water Cooled Nuclear Reactors (WCNR) – and AM measures with coolable core geometry, noticeably NOT INCLUDING current Design Extension Conditions (e.g. ballooning process, H2 generation, clad ruptures, etc.).

WCNR DESIGN & OPERATION

DBA ENVELOPE

Including Accident Management & Coolable Core geometry

NUCLEAR THERMAL-HYDRAULICS

- NPP data
- ITF data
- SETF data
- Basic data
- Models / Correlations results
- SYS TH codes applications
- Involved areas: PS, SS, BoP, Cont., Sub-channel

SYS-TH CODES V&V & SCALING UNCERTAINTY

PHENOMENA

ISSUED PAPER

Nuclear Engineering and Design 330 (2018) 166-186

Contents lists available at ScienceDirect

Nuclear Engineering and Design

journal homepage: www.elsevier.com/locate/nucengdes

Thermal-hydraulic phenomena for water cooled nuclear reactors

N. Aksan^a, F. D'Auria^{b,*}, H. Glaeser^c

* Scientific Consultant, Haldenstrasse 35, CH-5415 Nucsbaumen, Switzerland

^b DESTEC/GRNSIG, University of Pasa, Via Livornae 1291, San Hero a Grado, 56100 Pisa, Italy

Consultant, Herbauraue 9, 85386 Ething Germany

ARTICLE INFO

Keywordz Validation Scaling Uncerteinty analysis Accident Analysis Cost design System design Computational tools

ABSTRACT

Nuclear Reactor Safety (NRS), Deterministic Safety Assessment (DSA) and Accident Analysis (AA) constitute the general framework for the topic of the present paper. The class of Water-Cooled Nuclear Reactors (WCNRs) is concerned. This includes most of the nuclear reactors in operation, under construction or in advanced design stage. The required licensing process for those reactors, are further necessary elements to establish the context of the performed activity.

Best Estimate (BE) system thermal-hydraulic codes are adopted to demonstrate the safety of WCNR based on AA, namely focusing on the class of Design Basis Accidents (DBAs). On the one hand, the validation of BE codes is a necessary step to prove their applicability to calculate accident scenarios. On the other hand the knowledge of accident scenarios is a requirement for the design and the operation of WCNR. The validation of BE codes and the knowledge of accident scenarios needs the identification and the characterization of Thermal-hydraulic Phenomena (T-HP).

A list of 116 T-HP is derived in the present paper, based on the documents issued in the last three decades by the Committee on the Safety of Nuclear Installations of Nuclear Energy Agency of The Organization for Economic Cooperation and Development (OECD/NEA/CSNI) and by the International Atomic Energy Agency (AEA). The T-HP list includes the consideration of Separate Effect Tests (SET) and Integral Effect Tests (IET) relevant in Reactor Coolant System (RCS) and Containment of WCNRs A dozen WCNR types are considered and include Pressurized Water Reactors (PWRs), Boiling Water Reactors (BWRs), Russian design reactor types (e.g., WER-440, VVER-1000 and RBMSC), pressure tube heavy water reactor designs in Canada (CANDU) and in India (PHWR) and so-called 'advanced' reactors (in the text of this paper, they are sometimes assigned as "New Reactors"), which are also equipped with passive systems (for instance, AP-1000 and APR-1400 designed in US and Koma, respectively).

Each T-HP can be characterized by one or more parameters or variables which are part of numerical models and constitute calculational results from system codes. A cross link process can be established between T-HP, parameters and DBA scenarios. The basis for the process and selected cross-link examples are provided and discussed.

A variety of applications for the T-HP list is envisaged in nuclear thermal-hydraulics. Insights are given in the paper in relation to the use of phenomena: a) to address the scaling issue; b) to distinguish between constitutive equations part of the balance equations and 'special models' in BE system codes; c) to prioritize research in nuclear reactor thermal-hydraulics.

ORIGINATING DOCUMENTS*

mance of thermal hydraulic codes, "CSNI Code Validation Matrix of Thermo-Hydraulic Codes for LWR LOCA and Transients", OECD/NEA/ CSNI, 1987. The report included all phenomena expected to occur in plant transients and LOCA analyses. This was followed by another report where the connections between T-HP and the design of ECCS were established, OECD/NEA/CSNI, 1989.

validation matrix, OECD/NEA/CSNI, 1994. Then, an updated integral test validation matrix report, OECD/NEA/CSNI, 1996, the VVER validation matrix, OECD/NEA/CSNI, 2001, and the containment phenomena validation report, OECD/NEA/CSNI, 2014, were issued. The

and at the International Atomic Energy Agency (IAEA): those efforts resulted in references D'Auria et al. (1992), Aksan and D'Auria (1996), and IAEA (2009).

Within the framework of a recent activity for issuing a book on Thermal-Hydraulics in Nuclear Reactors, D'Auria [Ed.], 2017, an in-

- The documents mentioned in the previous two paragraphs, plus related follow-up investigations, e.g. Pochard et al., 1994, D'Auria et al., 1995, D'Auria et al., 1995a, OECD/NEA/CSNI, 1997, and Aksan et al., 1997.
- Natural Circulation and other T-HP expected in the operation of passive systems following accident scenarios noticeably in advanced reactors as given by references IAEA, 2001, IAEA, 2002, IAEA, 2005, and IAEA, 2012.
- T-HP expected in heavy water moderated, channel type Canadian Deuterium-Uranium (CANDU) reactors, e.g. IAEA, 2003, and Prosek et al., 2004.
- T-HP expected in heavy water moderated and cooled, vessel type Pressurized Heavy Water Reactors (PHWR), e.g. D'Auria et al., 2008, UNIPI-GRNSPG, 2008, and D'Auria et al., 2012.
- T-HP expected in graphite moderated, boiling water reactors, Russian type RBMK, e.g. D'Auria et al., 2005, and D'Auria et al., 2008a.
- Transient scenarios in containment, in addition to the already mentioned document (OECD/NEA/CSNI, 2014), e.g. OECD/NEA/ CSNI 1986, OECD/NEA/CSNI, 1989a, and OECD/NEA/CSNI, 1999.

... SUMMING UP TO SEVERAL «1000» PAGES

* clear-blue reports listed in the ISSUED PAPER.

BRIEF HISTORY

LIST OF 116 TH-P (alphabetic order) – 1 of 6

ID	PHENOMENA ID	TYPE	REACTOR	DETAILS & NOTES				
S-1-ACC	Accumulator behaviour	SETF						
-1-ASY-L	Asymmetric loop behaviour	ITE	PWR					
I-2-ASY-D	Asymmetry due to the presence of a dam	ITF		Shutdown conditions				
A-1-CHV-c	Behavior of check valves			Including BWR-PSP valves				
	Behavior of containment emergency systems (e.g. PCCS)			See A-2-CE-c				
A-3-CMT-c	Behavior of core make-up tanks	Mar	Deseter					
A-4-DL-c	Behavior of density locks	INCA	v reactors					
A-5-PC-c	Behavior of emergency heat exchangers including PRHR and IC							
A-6-POO-c	Behavior of large pools of liquid							
-3-BD	Blowdown	ITF/	SETF/Basic	PHW rather than PH				
I-4-NCBC	Boiler condenser mode (of NC)	ITF	PWR-O					
	Boil-off	ITF/	SETF/Basic	See B-4-EV2				
S-2-BO	Boron mixing and transport (also A-12-BO)	SETF	PWR	Also ITF				
S-3-CCF1	CCF/CCFL-Channel inlet orifice		BWR					
S-4-CCF2	CCF/CCFL-Downcomer							
S-5-CCF3	CCF/CCFL-HL & CL	CETE	DIAID					
S-6-CCF4	CCF/CCFL-SG tubes	1961F	PWR					
S-7-CCF5	CCF/CCFL-Surgeline							
S-8-CCF6	CCF/CCFL-UTP		N/A					
	Centrifugal pump			See Impeller pump				

EACH PHENOMENON IS DESCRIBED IN:

LIST OF 116 TH-P (alphabetic order) – 2 of 6

I-5-BC	Channel and bypass axial flow and void distribution	ITF	BWR					
I-6-CLDO	Collapsed level behavior in downcomer	ITF	BWR	See also phase separation				
B-1-COH	Condensation due to heat removal	Basic	NI/A					
B-2-COP	Condensation due to pressurization	Basic	N/A					
S-9-CO1	Condensation in stratified conditions-Horizontal Pipes		PWR/BWR					
S-10-CO2	Condensation in stratified conditions-PRZ	SETE	DIA/D					
S-11-CO3	Condensation in stratified conditions-SG-PS	SEIF	PWK					
S-12-CO4-c	Condensation in stratified conditions-SG-SS & BWR-PSP		BWR	Also BWR wet-well				
A-2-CE-c	Containment emergency systems including passive cooling	Also N	lew Reactors	Including passive condenser				
	Containment pressure and temperature	ITF		See I-18-PRB & S-42-NCOC				
S-62-CPC-c	Containment pump performance including sump clogging (added T-HP)	SETF	All					
I-7-COTH	Core thermal-hydraulics	ITF	BWR	See Global multi-D				
	Core wide void and flow distribution	ITF		See Global multi-D				
S-13-CRGT	CRGT flashing	SETF	BWR					
A-7-CSC	Critical and supercritical flow in discharge pipes	Nev	v Reactors	Also CANDU and RBMK				
	Critical flow			See TPCF				
	Critical Power Ratio	ITF	BWR	See HT CHF				
	De-entrainment			See Entrainment				
	Depressurization			See Blowdown				
S-14-ECCB	ECC bypass/Downcomer penetration	SETF	PWR					
	ECC mixing and condensation	ITF		See Liquid vapor mixing				
S-15-ED1	Entrainment/De-entrainment-Core		All					
S-16-ED2	Entrainment/De-entrainment-Downcomer							
S-17-ED3	Entrainment/De-entrainment-Hot leg with ECCI	SETE						
S-18-ED4	Entrainment/De-entrainment-SG mixing chamber	actr	PWR					
S-19-ED5	Entrainment/De-entrainment-SG tubes							
S-20-ED6	Entrainment/De-entrainment-UP							

EACH PHENOMENON IS DESCRIBED IN:

LIST OF 116 TH-P (alphabetic order) – 3 of 6

B-3-EV1	Evaporation due to depressurization (including at geometric discontinuities*)	Basic	N/A	* reversible part
B-4-EV2	Evaporation due to heat input	Basic	NYA	
I-8-FO-c	Flow through openings	ITE		Shutdown conditions
S-21-GM1	Global multi-D fluid temperature, void and flow distribution-Core		PWR/BWR	
S-22-GM2	Global multi-D fluid temperature, void and flow distribution-Downcomer	CETE		
S-23-GM3	Global multi-D fluid temperature, void and flow distribution-SG SS	actr	DIAID	
S-24-GM4	Global multi-D fluid temperature, void and flow distribution-UP		E WEIN	
A-8-GDR	Gravity driven reflood	Nev	w Reactors	
S-25-HOHT	Horizontal heated channel HT [added T-HP]	SETF	CANDU	Including HT below
S-26-HT1	HT [NCO, FCO, SNB, SANB, CHF/DNB, post-CHF]-Core, SG, structures			
S-27-HT2	HT [radiation]-core	SETF	All	Including VVER conditions
S-28-HT3	HT [condensation]-SG structures			
A-9-HTCO-c	HT condensation in containment structures, with or w/o non-condensable	Nev	w Reactors	Also containment
A-9-HTCO-c S-29-IMPU	HT condensation in containment structures, with or w/o non-condensable Impeller pump behavior	Nev SETF	w Reactors All	Also containment External pumps
A-9-HTCO-c S-29-IMPU	HT condensation in containment structures, with or w/o non-condensable Impeller pump behavior Instability (in boiling channels)	SETF	w Reactors All SETF/ITF	Also containment External pumps See S-44-PCEI
A-9-HTCO-c S-29-IMPU B-5-IF1	HT condensation in containment structures, with or w/o non-condensable Impeller pump behavior Instability (in boiling channels) Interfacial friction in horizontal flow	SETF SBasic	N Reactors All SETF/ITF	Also containment External pumps See S-44-PCEI
A-9-HTCO-c S-29-IMPU B-5-IF1 B-6-IF2	HT condensation in containment structures, with or w/o non-condensable Impeller pump behavior Instability (in boiling channels) Interfacial friction in horizontal flow Interfacial friction in vertical flow	SETF SETF Basic Basic	w Reactors All ETF/ITF N/A	Also containment External pumps See S-44-PCEI
A-9-HTCO-c S-29-IMPU B-5-IF1 B-6-IF2 I-9-INC	HT condensation in containment structures, with or w/o non-condensable Impeller pump behavior Instability (in boiling channels) Interfacial friction in horizontal flow Interfacial friction in vertical flow Intermittent 2-phase NC	SETF SETF Basic Basic ITF	N Reactors All SETF/ITF N/A PWR-O	Also containment External pumps See S-44-PCEI
A-9-HTCO-c S-29-IMPU B-5-IF1 B-6-IF2 I-9-INC S-30-IPU	HT condensation in containment structures, with or w/o non-condensable Impeller pump behavior Instability (in boiling channels) Interfacial friction in horizontal flow Interfacial friction in vertical flow Intermittent 2-phase NC Internal pump behavior (specific geometry) [added T-HP]	SETF SETF Basic Basic ITF SETF	N Reactors All SETF/ITF N/A PWR-O ABWR	Also containment External pumps See S-44-PCEI Also AP-1000
A-9-HTCO-c S-29-IMPU B-5-IF1 B-6-IF2 I-9-INC S-30-IPU S-31-JPU	HT condensation in containment structures, with or w/o non-condensable Impeller pump behavior Instability (in boiling channels) Interfacial friction in horizontal flow Interfacial friction in vertical flow Intermittent 2-phase NC Internal pump behavior (specific geometry) [added T-HP] Jet pump behavior	SETF Basic Basic ITF SETF SETF	w Reactors All SETF/ITF N/A PWR-O ABWR BWR	Also containment External pumps See S-44-PCEI Also AP-1000
A-9-HTCO-c S-29-IMPU B-5-IF1 B-6-IF2 I-9-INC S-30-IPU S-31-JPU S-32-LA	HT condensation in containment structures, with or w/o non-condensable Impeller pump behavior Instability (in boiling channels) Interfacial friction in horizontal flow Interfacial friction in vertical flow Intermittent 2-phase NC Internal pump behavior (specific geometry) [added T-HP] Jet pump behavior Liquid accumulation in horizontal SG tubes	SETF SETF Basic Basic ITF SETF SETF ITF	N/A PWR-O ABWR BWR PWR-V	Also containment External pumps See S-44-PCEI Also AP-1000
A-9-HTCO-c S-29-IMPU B-5-IF1 B-6-IF2 I-9-INC S-30-IPU S-31-JPU S-31-JPU S-32-LA	HT condensation in containment structures, with or w/o non-condensable Impeller pump behavior Instability (in boiling channels) Interfacial friction in horizontal flow Interfacial friction in vertical flow Intermittent 2-phase NC Internal pump behavior (specific geometry) [added T-HP] Jet pump behavior Liquid accumulation in horizontal SG tubes Liquid carry-over	New SETF Basic Basic ITF SETF SETF ITF	W Reactors All ETF/ITF N/A PWR-O ABWR BWR PWR-V	Also containment External pumps See S-44-PCEI Also AP-1000 See Entrainment & I-24-SBI
A-9-HTCO-c S-29-IMPU B-5-IF1 B-6-IF2 I-9-INC S-30-IPU S-31-JPU S-31-JPU S-32-LA A-10-LTS-c	HT condensation in containment structures, with or w/o non-condensable Impeller pump behavior Instability (in boiling channels) Interfacial friction in horizontal flow Interfacial friction in vertical flow Intermittent 2-phase NC Internal pump behavior (specific geometry) [added T-HP] Jet pump behavior Liquid accumulation in horizontal SG tubes Liquid carry-over Liquid temperature stratification	New SETF Basic Basic ITF SETF SETF ITF ITF	v Reactors All SETF/ITF N/A PWR-O ABWR BWR BWR PWR-V	Also containment External pumps See S-44-PCEI Also AP-1000 See Entrainment & I-24-SBI

EACH PHENOMENON IS DESCRIBED IN:

LIST OF 116 TH-P (alphabetic order) – 4 of 6

ID	PHENOMENA ID	TYPE	REACTOR	DETAILS & NOTES				
S-34-LVM2	Liquid-Vapor mixing with condensation-Downcomer*			Also ITC 8 Including cold				
S-35-LVM3	Liquid-Vapor mixing with condensation-ECCI in HL and CL*		PWR	hat liquid mixing (3D effect)				
S-36-LVM4	Liquid-Vapor mixing with condensation-Lower plenum*	SETF		not liquid mixing (so effect)				
S-37-LVM5	Liquid-Vapor mixing with condensation-SG mixing chamber		DM/D					
S-38-LVM6	Liquid-Vapor mixing with condensation-UP		FWN					
S-39-LSC	Loop seal filling and clearance (or clearing)	SETF	PWR	Also ITF				
S-40-LPE	LP entrainment	SETF	PWR					
S-41-LPF	LP flashing	SETF	PWR/BWR	See also Blowdown				
	Mixture level & entrainment-Core, downcomer and SG SS	ITF		See Phase separation				
I-10-NC1	NC, 1-phase & 2-phase-PS & SS		PWR/BWR	SS only for PWR				
I-11-NC2	NC core and downcomer		BWR					
I-12-NC3	NC core bypass, hot and cold bundles	ITF	BWR, CANDU*	*also RBMK				
I-13-NC4	NC core, gap, downcomer, dummy elements		PWR-V					
I-14-NC5	NC core, vent valves, downcomer		PWR-O					
I-15-NC6	NC with horizontal SG		PWR-V					
A-11-NC	NC RPV and containment & various system configurations	Nev	v Reactors	Also containment				
S-42-NC0-c	Natural convection and H2 distribution	SETF		Inside containment				
S-43-NCG	Non condensable gas effect including condensation HT in RCS	SETF	PWR	Also ITF				
	Nuclear fuel behavior	S	ETF/ITF	See I-29-NTF2				
I-16-NTF1	Nuclear thermal-hydraulics feedback and spatial effect (see also I-29-NTF2)	ITF	BWR	Also RBMK, ABWR, etc.				
	Nuclear thermal-hydraulics instabilities	ITF	BWR	See I-16 and S-44				

EACH PHENOMENON IS DESCRIBED IN:

LIST OF 116 TH-P (alphabetic order) – 5 of 6

S-44-PCEI	Parallel channel effects and instabilities PCEI	SETF	BWR				
S-45-PSB	Phase separation at branches (including effect on TPCF)	SETF		Also ITF (T-branches)			
S-46-PS1	Phase separation/vertical flow with and w/o mixture level-Core		All	Also ITF			
S-47-PS2	Phase separation/vertical flow with and w/o mixture level-Downcomer	SETF	All				
S-48-PS3	Phase separation/vertical flow with and w/o mixture level-Pipes & Plena						
I-17-PFU	Pool formation in UP	ITF	PWR	See also S-8-CCF6			
B-7-PD-c	Pressure drops at geometric discontinuities, including containment	Basic	NI/A	Alco New Reactors			
B-8-PW	Pressure wave propagation including CIWH	Basic	N/ A	Albo New Neactors			
I-18-PRB	Pressure-temperature increase & boiling due to energy and mass input	ITF	PW/BWR	Containment & Shutdown			
I-19-PRZ	PRZ thermal-hydraulics	ITF	PWR				
S-49-QF1	QF propagation/rewet-Fuel rods	CETE	PWR/BWR				
S-50-QF2	QF propagation/rewet-Channel walls, Water rods	SEIL	BWR				
I-20-RF	Refill including loop refill in PWR-O	ITE	DVMD /DVMD	PHW rather than PH			
I-21-RE	Reflood	lir	PWN/DWN	Privi lather than Pri			
1-22-RCM	Reflux condenser mode and CCFL	ITF	PWR				
	Return to Nucleate Boiling (RNB)			See Reflood & QF			
S-51-SEP	Separator behavior (&* flooding, steam penetration, liquid carry-over)	SETF	PWR/BWR	*Mainly for BWR			
I-23-SIP	SG siphon draining (SG interaction with ESF, including gravity driven)	ITF	PWR	Shutdown conditions			
S-63-SPR-c	Spray effects-Containment (added T-HP)	SETF	All				
S-52-SPR1	Spray effects-Core (including cooling and distribution)		BWR				
S-53-SPR2	Spray effects-OTSG SS	SETF	PWR-O				
S-54-SPR3	Spray effects-PRZ		PWR				

EACH PHENOMENON IS DESCRIBED IN:

LIST OF 116 TH-P (alphabetic order) – 6 of 6

			-						
I-24-SBI	Steam binding (liquid carry-over, etc.)	ITF	PWR						
S-55-SDR	Steam dryer behavior	SETF	PWR/BWR	Mainly BWR					
I-25-SLD	Steam line dynamics	ITF	BWR						
S-56-STR	Stratification in horizontal flow-Pipes (in 1-phase & 2-phase conditions)	SETF	PWR	Also ITF					
A-12-BO	Stratification of boron	Nev	v Reactors	See S-2-BO					
I-26-SHH	Structural heat and heat losses	ITF	All	Scaling issue					
I-27-SULI	Surgeline hydraulics	ITF	PWR						
I-28-SH	Superheating in OTSG SS	ITF	PWR-O						
I-29-NTF2	Thermal-hydraulics – Nuclear fuel feedback (see also I-16-NTF1)	ITF	All	H2 production & ballooning					
S-57-HOSG	Thermal-hydraulics of horizontal SG, PS and SS	SETF	PWR-V						
S-58-OTSG	Thermal-hydraulics of OTSG, PS and SS	SETF	PWR-0	See spray effect OTSG					
S-59-CF1	TPCF-Breaks			Jet impingement, jet thrust					
S-60-CF2	TPCF-Pipes	SETF	All	and pipe whip to be con-					
S-61-CF3	TPCF-Valves			sidered here					
A-13-NCG	Tracking of non-condensable gases	Nev	v Reactors	See S-43 NCG & containment					
	Valve leak flow (connected with construction, operation, maintenance)	ITF		See also TPCF Valves					
	Vapor (or steam) carry-under	ITF		See S-51-SEP & I-10-NC1					
	Vapor pull through	SETF		See S-45-PSB					
S-64-VEB-c	Ventilation blower characteristics (added T-HP)	SETF	All						
I-30-VCP	Void collapse and temperature distribution during pressurization	ITF	BWR	Also Basic condensation					
B-9-FR	Wall to fluid friction	Basic	N/A						

EACH PHENOMENON IS DESCRIBED IN:

LIST OF WCNR AND ACCIDENT SCENARIOS (AS)

WCNR

-

-

No	WCNR ID	Key Design Feature	Notes				
1	PWR	U-tubes Steam Generators (SG), 2-3-4 loops, ECCS in CL and/or HL	Reference WCNR, OECD/NEA/				
2	BWR	Jet Pump or Internal pumps, or with external recirculation loop	NEA/CSNI, 1996				
3	PWR-OTSG	Once Through SG, 2 loops, four cold legs, two hot legs, vent valves inside RPV					
4	WER-440	Horizontal Tube Steam Generators (HOSG), 6 loops, loop seal in hot leg, hexagonal Fuel Assembly	OECD/NEA/CSN1, 2001				
		(FA) with triangular pitch					
5	VVER-1000	HOSG, 4 loops hexagonal FA with triangular pitch					
6	CANDU	Channel type, horizontal/cylindrical FA, channel inlet and outlet feeders, headers, heavy water,					
		atmospheric pressure moderator tank					
7	PHWR	Vessel type with channels, vertical/cylindrical FA, moderator cooling loops, heavy water					
8	RBMK	Boiling channel type, vertical/cylindrical FA, channel inlet and outlet feeders, graphite moderated					
9	AP1000	No loop seal, passive ECCS	IAEA, 2005, 2009, 2012				
10	APR1400	Passive ECCS in SG					
11	EPR	Evolution of PWR	Same as WCNR No 1				
12	SMR	PWR-Loop type equipped with HOSG, immersed into the sea	Different designs available				
13	ABWR	Internal pumps	Same as WCNR No 2				

LIST OF WCNR AND ACCIDENT SCENARIOS (AS)

AS - 'ALL' DBA

No	Accident Scenario (AS)	WCNR
1	ATWS (Anticipated Transient Without Scram)	ABWR, BWR, PWR
2	Boron dilution*	PWR
3	Critical Heat Flux (CHF)	-
4	Containment performance*	ABWR, AP1000
5	CRE (Control Rod Ejection)	PWR
6	PCB (Fuel Channel Blockage)	RBMK
7	FWLB (Feedwater Line break)	APR1400
8	HEBR (Header Break)	CANDU, RBMK
9	LBLOCA (Large Break Loss of Coolant Accident)	AP1000, BWR, EPR, PHWR, PWR
10	LCC/SW (Loss of Component Cooling Service Water)	PWR
11	LOFA (Loss of Flow Accident)	EPR
12	LOFW (Loss of Feed Water)	PWR
13	LOOSP (Loss of On- and Off-Site Power)	VVER-1000, BWR, CANDU
14	MBLOCA (Medium Break Loss of Coolant Accident)	PWR
15	MCP-trip (Main Coolant Pump trip)	VVER-1000
16	MPTR (Multiple Pressure Tube Rupture)	RBMK
17	MSLB (Main Steam Line Break)	PWR, PWR-OTSG
18	NC (Natural Circulation)*	PWR, PWR-OTSG, VVER-440, VVER-1000, CANDU
19	PRISE (Primary to Secondary [leakage])	VVER-440
20	PTS (Pressurized Thermal Shock)*	-
21	RIA (Reactivity Insertion Accident)	-
22	SBLOCA (Small Break Loss of Coolant Accident)	AP1000, APR1400, BWR, EPR, PWR*, PWR-OTSG, WER- 1000**
23	SBO (Station Blackout)	APR1400, PWR, VVER-1000
24	SGTR (Steam Generator Tube Rupture)	PWR
25	SH-D (Shutdown [transient])	PWR
26	TT (Turbine Trip)	BWR, SMR

CROSS-LINKING

THE FOLLOWING CROSS-LINK IS CREATED AND DESCRIBED: (GP = Generalized Parameter characterizing TH-P and AS – [TP used instead of

TH-P in table below])

CROSS LINK MATRIX TP vs GP & AS			BPV / PRZ pressure	Reactivity & boron concentration	SG pressure	Care / RPV level	PRZ level	SG level (PS and SS)	Flowrate (core inlet, break, etc.)	Core Thermal Power / Heat flux / DNBR	Coolant temp (core. HL, LP, etc.)	RST & Nuclear Fuel parameter	Coolant mass in RCS	Local fluid velocity, flow, void, load & DP	Containment pressure & temperature	ESF performance (excluded passive systems)	Passive system performance
		ACCIDENT SCENARIO VS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
No	PHENOMENON	PHENOMENON				PA	RAME	TERS VS	s - -	ACCI	DENT	SCENAR NA (P)	10 (A)				
1	S-1-ACC	LBLOCA-5 LBLOCA-1	A									Α					AP
2	I-1-ASY-L	MSLB-1	A						AP	Α				A			
3	I-2-ASY-D	SH-D	р								р	Р					
4	A-1-CHV	SBLOCA-1*							Р					Р			
5	A-2-CC	CONT-1	AP						A						Α		
6	A-3-CMT	LBLOCA-1	A			A			A			Α				Α	AP
7	A-4-DL	LOFW-PIU5*									Р			Р			
8	A-5-PC	SBLOCA-1	Α							A							AP
9	A-6-PO0	ATWS-1													Р		
10	I-3-BD	LBLOCA-1	P						Р								

DETAILED PROCEDURE & APPLICATION ARE DESCRIBED IN:

INNOVATION & PERSPECTIVES

ALL AS PART OF BEPU

CONCLUSIONS AND WHAT IS NEEDED

116 THERMAL-HYDRAULIC PHENOMENA IDENTIFIED BASED ON A COUPLE DOZEN DOCUMENTS ISSUED BY OECD/NEA AND IAEA.

FURTHERMORE

47 AS, calculated in relation to 13 WCNR, discussed in 68 reference documents (RD), utilizing 15 GP have been cross-linked with 116 TH-P in order to prove the origin of phenomena

WHAT REMAINS TO BE DONE (AT LEAST:

A) Endorsing/expanding (as needed) the list of phenomena

B) Connecting the phenomena with 5 'BEPU ISSUES': Scaling, V&V(&C), New Models, New Experiments, Uncertainty

C) Preparing Knowledge Management database (e.g. for future training)

ACKNOWLEDGEMENTS

OECD/NEA and IAEA set the frameworks with the contributions (both financial and scientific) of the national research institutions for the endeavor which ended-up in the present paper: many scientific secretaries and managers provided support by making available invaluable resources and efforts to make this possible. Their contribution is acknowledged as first step. The current authors wish to thank, also, all the authors of OECD/NEA and IAEA documents in the list of references: their expertise together with the expertise of reviewers for those documents (their names unfortunately do not appear in this paper but they are given in the original publications) contributed to the current level of understanding as internationally agreed and accepted in the field of thermal-hydraulic phenomena for nuclear reactor technology. Special thanks are due to K. Fischer in relation to his contribution for the identification and characterization of additional containment related phenomena which were not already included in the previous reports. One reviewer of the present manuscript proposed a challenging list of many other additional phenomena adopting a nomenclature different from what is used here. It was found (part of the answers to the reviewers by the present authors) that those phenomena are directly or implicitly included in the present tables which also aimed at keeping the number of phenomena within a reasonable number (see also notes added in Section 4.5). The effort by this reviewer is gratefully acknowledged.

20/20