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Energy transport in an integrable parafermionic chain via generalized hydrodynamics
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We study energy transport in the integrableZ3 parafermionic chain using the partitioning protocol. By exploiting
the Bethe-ansatz solution for the thermodynamics of the system, we develop a generalized hydrodynamic
description of the nonequilibrium steady states, which we benchmark using numerical simulations based on
matrix product states. The model features a low-energy conformal limit with central charge c = 4

5 , which affects
the low-temperature energy current, as we explicitly show. Moreover, we exploit that, for energies close to the
maximally excited state, the system is also critical and described by a conformal field theory with c = 1. By
considering the two halves prepared at two temperatures both low in value but opposite in sign, we are able to
investigate in an exact and controlled way the junction between two conformal field theories with different central
charges. Notwithstanding the absence of global conformal invariance, we find results that approximate to a high
degree those of out-of-equilibrium conformal field theories. Our study extends the generalized hydrodynamics to
a framework where it can be profitably used for exploring new physical phenomena.
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I. INTRODUCTION

Understanding and controlling energy transport is a theme
of fundamental importance, and especially in one-dimensional
quantum physics. The recent ground-breaking experimental
progress with cold atomic gases has spurred interest in the
study of coherent quantum evolution [1–8], with a particular
emphasis on the transport dynamics [9,10]. From a theoret-
ical point of view, the emergence of an anomalous ballistic
behavior that defies the diffusive one expected from Fourier’s
law, and its interplay with integrability, have been recently
widely inspected [11–18]. For integrable models [19–21], a
key result of this research endeavor has been the development
of a generalized hydrodynamics (GHD) theory, describing the
spatial arrangement, in the long-time limit, of the conserved
charges preserved by the dynamics [22,23]. Such approach is
based on a compact continuity equation, which accounts for the
flow of all conserved quantities between macroscopic subparts
of the sample, which are supposed to be locally equilibrated to
a generalized Gibbs ensemble [24–30].

The current theoretical paradigm for the study of transport
in isolated quantum evolution is represented by the so-called
partitioning protocol (PP) [31]; within this description, trans-
port can be studied as a local quantum quench [32–40].
Specifically, at the beginning, two decoupled semi-infinite
chains are initialized in two different conditions, character-
ized, e.g., by different temperatures or chemical potentials.
Subsequently, they are joined together and let to evolve in time.
Depending on the initial condition, different forms of transport
can be inspected, e.g., of energy or of particles. Rigorous
results have been derived in this setting [41–44], but a further
step was represented by exact calculations in the framework

of conformal field theories (CFT) [45–48]. The latter were
sustained by calculations in free theories [49–58], numerical
simulations [14,17,59,60], and approximate approaches [61–
63]. More recently, by applying the PP to integrable models,
the GHD has been shown to exactly reproduce the long-time
dynamics [22,23], leading to the discovery of a remarkable
number of results, both in the quantum [64–76] and in the
classical limit [77–79]. However, only three paradigmatic
models have been considered so far: the XXZ spin- 1

2 chain,
the Lieb-Liniger bosonic model, and the Hubbard model. In
this context, hydrodynamic results have been always validated
by numerical simulations obtained with matrix product states
(MPS) [80].

Here, we investigate energy transport in the Z3-integrable
parafermionic chain [81–84], through a hydrodynamic ap-
proach. This model has recently resurged to a widespread atten-
tion because of several realistic proposals for an experimental
implementation in hybrid superconductor-semiconductor de-
vices [85–90]. Adding up to previous works that discussed the
richness of its thermodynamics, when compared to analogous
fermionic chains [91,92], we show that remarkable novel
phenomena emerge also in the out-of-equilibrium framework.
An experimental verification of our findings stands as an
intriguing and challenging perspective.

The development of a GHD for this model is based on
its Bethe-ansatz (BA) solution, which differs from that of the
XXZ chain in the following aspects. First, this parafermionic
chain admits composed excitations which are not of string
form [19,81]. Second, the BA equations impose microscopic
constraints on the thermodynamic description, for which not
all the excitations are actually independent. The hydrodynamic
solution presented here, together with its careful numerical
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validation by means of MPS, stands as a first nontrivial
extension of such general phenomenological concepts to a
qualitatively different situation. We also show that this model
allows for a further nontrivial verification of the universal law
for low-temperature energy transport in a CFT, derived by
Bernard and Doyon (BD) [45,46]. According to such result, the
steady-state energy current should only depend on the central
charge c. So far, all verifications dealt with theories with c = 1
or 1

2 , corresponding to a free bosonic and fermionic theory,
respectively; here, the low-temperature scaling limit is a CFT
with c = 4

5 and as such our is the first check of BD law in a
truly interacting theory.

Additionally, even if the low-energy limit of the Hamil-
tonian Ĥ of our model is described by a CFT with c = 4

5 ,
the Hamiltonian −Ĥ has a low-energy conformal description
with c = 1. The study of energy transport between models with
different properties and scaling limits is an exciting possibility
for which only limited information has been discovered so
far [93,94]. By joining together two chains prepared at opposite
temperatures, i.e., positive on one side and negative on the
other one, we develop a GHD description of a transport
protocol where, effectively, a CFT with c = 4

5 and a CFT with
c = 1 have been joined together. Although quasiparticles are
not described by a CFT, the model features properties that
approximate it to a large degree, and yield interesting physical
properties.

This paper is organized as follows. In Sec. II we present the
model and review its equilibrium BA solution. In Sec. III we
introduce the PP and develop the hydrodynamic description,
that we benchmark with numerical MPS simulations. In Sec. IV
we study the low-temperature energy transport, and verify
the BD law. In Sec. V we study transport in the opposite
temperature regime. Our conclusions are drawn in Sec. VI.

II. MODEL

A. Hamiltonian

Let us consider a one-dimensional chain of Z3

parafermions, of length L. Each lattice site � = 1, . . . , L

is associated to two parafermionic operators γ̂2�−1 and γ̂2�,
satisfying γ̂ 3

k = 1, γ̂
†
k = γ̂ 2

k , and

γ̂kγ̂m = ω γ̂mγ̂k (k < m), with ω = e2πı/3. (1)

The system Hamiltonian is given by

Ĥ0 = −J
∑

�

[γ̂2�−1γ̂2� + γ̂2�γ̂2�+1 + H.c.], (2)

where J > 0 fixes the energy scale, and we have adopted units
of h̄ = kB = 1 [89].

It is now convenient to introduce the Fradkin-Kadanoff
transformation, which unitarily maps the parafermionic op-
erators into commuting Z3 variables [95]. To this purpose, we
define the operators τ̂� and σ̂�, such that they satisfy the fol-
lowing algebra: σ̂�τ̂� = ω τ̂�σ̂� and are otherwise commuting.
These operators are represented in the single-site Hilbert space
by the following matrices:

τ =
⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠, σ =

⎛
⎝1 0 0

0 ω 0
0 0 ω2

⎞
⎠. (3)

The mapping reads as

γ̂2�−1 = ωσ̂
†
� τ̂

†
�

∏
k>�

τ̂
†
k ; γ̂2�−1 = σ̂

†
�

∏
k>�

τ̂
†
k . (4)

The Hamiltonian Ĥ0 in Eq. (2) is thus mapped into

Ĥ =
∑

�

ĥ�, ĥ� = −J [τ̂� + σ̂
†
� σ̂�+1 + H.c.], (5)

and in the following we will make explicit reference to it. We
stress that the transformation (4) is unitary, and we will only
consider operators whose locality is preserved by the mapping;
as such, our conclusions apply also to the parafermionic
version of the model.

B. Bethe-ansatz formulation

The Hamiltonian in Eq. (5) is integrable via a standard
BA technique, and in the following we briefly summarize its
solution, originally presented in Refs. [81–83]. Let us start by
mentioning that the model is invariant under the Z3 symmetry

[Ĥ , Û ] = 0, Û =
L∏

j=1

τ̂j . (6)

Since Û 3 = 1, the eigenvalues of Û are e2ıπQ/3, with Q =
{−1, 0, 1}, corresponding to three symmetry sectors.

1. Single-particle spectrum

We are interested in the spectrum of Eq. (5) in the thermo-
dynamic limit L → ∞. Let us first consider finite-L values
and periodic boundary conditions, such that exact eigenstates
at finite size are associated to sets of rapidities (or roots)
{λ1, . . . , λM}, solutions of the BA equations [81–83][

sinh( ıπ
12 − λj )

sinh( ıπ
12 + λj )

]2L

= (−1)L+1
M∏

k=1

sinh
[

ıπ
3 − (λj − λk )

]
sinh

[
ıπ
3 + (λj − λk )

] ,

(7)

where the number M of rapitidies is fixed by the sector of theZ3

symmetry Q: M = 2(L − |Q|). Finding a solution of Eq. (7)
for an arbitrary L is generally hard. Nonetheless, the structure
of its solutions considerably simplifies for L → ∞, where the
rapidities can be grouped according to the arrangement of their
imaginary parts. There are five classes of rapidities labeled
by S = {(a), (b), (c), (d), (e)} whose properties are given in
Table I (see Ref. [81] for further details).

TABLE I. Spectrum of single particles in the BA solution of
Eq. (5), for L → ∞. In this notation λk,μ is a real number, with
k = 1, . . . , Mμ. Here, nμ indicates the length, υμ the parity, and σμ

the sign of each rapidity.

Label (μ) Roots nμ υμ σμ

(a) λk,a 1 1 1
(b) λk,b + ıπ

2 1 −1 1

(c) λk,c ± ıπ

3 2 1 −1

(d) λk,d + ıπ

2 ± ıπ

3 2 −1 −1

(e) λk,e ± ıπ

4 2 −1
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For each label μ ∈ S , there are Mμ distinct real parts

{λk,μ}Mμ

k=1 and for each real part there are nμ rapidities which
differ in their imaginary part. In other words, the initial set of
roots is splitted as

M =
∑
μ∈S

nμMμ. (8)

The label in S can be associated with five particle types
which constitute the single-particle spectrum of the model.
Note that the classes (c), (d), and (e) are composed by two
complex-conjugate rapidities: they can be considered as stable
bound states composed of two elementary particles. A reader
familiar with the BA formalism can recognize classes (a),
(b), (c), and (d) as string configurations [(b) and (d) having
a negative parity] [19]. On the other hand, class (e) is a
peculiarity of this model and, more in general, ofZN -integrable
chains [82].

2. Thermodynamic eigenstates and conserved quantities

In the thermodynamic limit, each eigenstate is occupied
by an extensive number of particles. For each particle type
μ ∈ S , the Mμ real parts become dense on the real line and are
described by a density of roots ρμ(λ):

ρμ(λ) = lim
L→∞

1

L(λk+1,μ − λk,μ)

∣∣∣∣
λk,μ=λ

, (9)

where we sorted the real parts for μ-type particles according
to λk+1,μ > λk,μ.

To describe the structure of the eigenstates in the thermody-
namic limit, it is useful to draw an analogy with noninteracting
fermions on a periodic lattice of the same size L. In that
case, different eigenstates are realized by filling some among
all the available momenta 2πn/L with n ∈ N. In the BA
jargon, the available momenta are dubbed vacancies, while
the occupied/unoccupied ones are referred to as roots/holes.
When L → ∞, an eigenstate is characterized by a density
of roots among the available vacancies. In a similar way, for
the parafermionic model we are considering here, different
eigenstates are obtained by all possible “fillings” of the real
parts λk,μ among all the possible vacancies [19]. Since each
vacancy is either filled or empty, introducing the density of
holes ρ (h)

μ (λ) and vacancies ρ (t )
μ (λ), we have the relation

ρ (t )
μ (λ) = ρμ(λ) + ρ (h)

μ (λ). (10)

The main difference with respect to noninteracting models is
that the density of vacancies is not a fixed function. Actually,
the BA equation (7) translates into a functional relation
between the density of roots and of vacancies:

σ �ρ (t ) + 1

2π
�′ �ρ = �t ′

2π
. (11)

Notice that here we have introduced a shorthand notation for
vectors: [ �f ]μ(λ) = fμ(λ) and for matrices: [M]μ,ν (λ, λ′) =
Mμ,ν (λ, λ′), with the matrix-vector multiplication defined as

[M �f ]μ(λ) =
∑

ν

∫ ∞

−∞
dλ′ Mμ,ν (λ, λ′) fν (λ′). (12)

The prime instead indicates the derivative with respect to
the rapidity, e.g., [ �f ′]μ(λ) = dfμ(λ)/dλ. Explicit forms of
the matrix �μ,ν (λ,μ) and the vector tμ(λ) are reported
in Appendix A. The matrix σ has elements σμ,ν (λ, λ′) =
σμ δμ,ν δ(λ − λ′), where the signs σμ ∈ {−1, 1} are given, for
each particle type, in Table I. In general, a set of functions
ρ (t )

μ (λ) > ρμ(λ) > 0 solutions of (11) represents a thermody-
namic eigenstate of Ĥ . For this model, one can show [81–83]
that Eq. (7) imposes the following additional constraints for
eigenstates to be physical:

ρa (λ) = ρ (h)
c (λ), ρ (h)

a (λ) = ρc(λ), (13a)

ρb(λ) = ρ
(h)
d (λ), ρ

(h)
b (λ) = ρd (λ), (13b)

which have to be satisfied together with (11).
Equivalently, a thermodynamic eigenstate can be defined in

terms of the filling factors

ϑμ(λ) ≡ ρμ(λ)/ρ (t )
μ (λ). (14)

Indeed, using (11), one can relate the filling factors ϑμ(λ) to
the corresponding root densities ρ[ϑ]

μ (λ) via

�ρ [ϑ] =
(

σϑ−1 + 1

2π
�′

)−1 �t ′
2π

, (15)

where we introduced the diagonal matrix containing the filling
factors

[ϑ]μν (λ, λ′) ≡ δμ,ν δ(λ − λ′) ϑμ(λ). (16)

In the following, we will denote compactly as |ϑ〉 the thermo-
dynamic eigenstate associated to a set of filling factors ϑμ(λ)
and root densities ρ[ϑ]

μ (λ) related one another via (15).

3. Conserved quantities and associated currents

Because of integrability, the Hamiltonian model (5) admits
an infinite number of local conserved quantities, which are
sums of local densities. Each of them can be represented as

Ẑ =
∑

�

ẑ�, (17)

with [Ĥ , Ẑ] = 0 and where ẑ� represents the charge density,
having support on a finite number of sites [96] around �. To
each conserved density ẑ� is associated a corresponding current
ĵ Z
� , defined via the continuity equation

ĵ Z
� − ĵ Z

�−1 = ı[Ĥ , ẑ�]. (18)

Since the conserved quantities commute, each state |ϑ〉 is a
simultaneous eigenstate of all of them. Being these operators
local, the corresponding eigenvalue is additive on the particle
content, i.e., it takes the form

lim
L→∞

〈ϑ | Ẑ |ϑ〉
L

= 〈ϑ | ẑ� |ϑ〉=
∑
μ∈S

∫
dλ ρ[ϑ]

μ (λ) zμ(λ). (19)

Here, zμ(λ) is the single-particle eigenvalue which quantifies
the contribution of a particle of type μ and rapidity λ to
the charge Ẑ [97]. For instance, for the Hamiltonian and the
momentum, the single-particle eigenvalue respectively takes

075421-3



MAZZA, VITI, CARREGA, ROSSINI, AND DE LUCA PHYSICAL REVIEW B 98, 075421 (2018)

the form

eμ(λ) =
√

3

8
(1 + δμ,e )t ′μ(λ) = [S�t ′]μ(λ), (20a)

�p = −1

2
S�t, (20b)

where we introduced the diagonal matrix

Sμ,ν (λ,μ) = δμ,ν (1 + δμ,e ) δ(λ − μ). (21)

Via Eq. (19), the root densities ρμ(λ) are in one-to-one
correspondence with a complete set of conserved quantities.
Therefore, the state |ϑ〉 can be equivalently considered as
a microcanonical representative of the generalized Gibbs
ensemble [24,101–103].

Even though the state |ϑ〉 is not an eigenstate of the
currents, a formula similar to (19) holds for their expectation
value [22,23]

〈ϑ | ĵ Z
� |ϑ〉 =

∑
μ∈S

∫
dλ v[ϑ]

μ (λ) ρμ(λ) zμ(λ). (22)

The function v[ϑ]
μ (λ) describes the velocity of quasiparticles

at rapidity λ in the thermodynamic eigenstate |ϑ〉. Even
though no proofs exist for lattice models, Eq. (22) has been
proven for continuous integrable field theories in [22] and
confirmed in [23] for the XXZ spin chain with extensive
numerical investigations. For a noninteracting theory, the
velocity would be simply obtained from the dispersion relation
differentiating the single-particle energy with respect to the
corresponding momentum (vμ = deμ/dpμ). In the presence of
interactions, the single-particle energy and momentum have to
be modified according to the state |ϑ〉 (dressing). One arrives
at [104]

v[ϑ]
μ (λ) = D[ϑ][e′]μ(λ)

D[ϑ][p′]μ(λ)
, (23)

where the dressing operation D[ϑ](fμ) in the state |ϑ〉 acts
linearly on a single-particle eigenfunction fμ(λ) as

�D[ϑ](f ) ≡
(

1 + 1

2π
S�′S−1σϑ

)−1
�f . (24)

4. Thermodynamics

The thermodynamic BA allows one to associate a repre-
sentative thermodynamic eigenstate |ϑ〉 to the thermal density
matrix [105]

ρ̂ = e−βĤ

Zβ

→ |ϑ〉 , (25)

where β denotes the inverse temperature of the system, and
Zβ the partition function. Here, we will not give details of
this standard construction, which is based on minimizing
the free-energy functional F = β 〈ϑ | Ĥ |ϑ〉 − SYY[ϑ], with
SYY[ϑ] the Yang-Yang entropy [19]. Here, we simply stress
that, for this model, the minimization procedure must account
for the constraints in Eq. (13), for which only three root den-
sities ϑa (λ), ϑb(λ), ϑe(λ) are actually independent. Setting

ημ(λ) = ρμ(λ)/ρ (h)
μ (λ), the minimization leads to [83]

ln ηb = −K1 ∗ ln
[(

1 + η−1
a

)(
1 + η−1

b

)]
, (26a)

ln ηa = ln ηb + 3
√

3β

cosh(6λ)
, (26b)

ln ηe = K2 ∗ ln
[(

1 + η−1
a

)(
1 + η−1

b

)]
, (26c)

where we omit the explicit dependence on the rapidity
and we indicate the convolution as f ∗ g = ∫ ∞

−∞ dλ′ f (λ −
λ′) g(λ′). In Eqs. (26), we introduced the functions

K1(λ) = 18λ

π2 sinh(6λ)
, K2(λ) = 3

π cosh(6λ)
; (27)

the functions ηa (λ; β ), ηb(λ; β ), ηe(λ; β ) can be thus easily
determined numerically for arbitrary β (either positive or
negative). By employing (11) and (13), one can then obtain
the whole set of filling factors

ϑμ(λ; β ) = ημ(λ; β )

1 + ημ(λ; β )
(28)

describing a thermal state at inverse temperature β.

III. PARTITIONING PROTOCOL

In order to study energy transport in the system, we consider
a partitioned initial state. From the Hamiltonian density ĥ�

introduced in (5), we define the Hamiltonians relative to the
left/right halves of the system

Ĥr =
∑
�>0

ĥ�, Ĥl =
∑
�<0

ĥ�. (29)

We focus on partitioned initial states, in which the two halves
are at thermal equilibrium but at different temperatures, thus
exhibiting a macroscopic unbalance in the energy density, i.e.,

ρ̂0 = e−βlĤl ⊗ e−βr Ĥr

Z , (30)

which is then evolved with the full Hamiltonian Ĥ in (5).

A. Generalized hydrodynamic formulation

Despite the integrability of the model, computing the exact
time evolution of ρ̂0 remains an extremely hard task. An
alternative approach is based on assuming local equilibration
to a generalized microcanonical ensemble. In practice, the
filling factors are promoted to space-time-dependent func-
tions ϑ (x,t )

μ (λ), which describe local observables around a
coarse-grained space-time point (x, t ). Imposing the continuity
equation of all conserved quantities, one can derive the GHD
equation [22,23] in the form

∂tϑ
(x,t )
μ + v[ϑ (x,t )]

μ ∂xϑ
(x,t )
μ = 0, (31)

where we omitted the explicit dependence on rapidity λ of all
quantities. Equation (31) has to be solved together with (23);
we refer to [67] for an analysis of efficient numerical methods
to evaluate its solutions from generic initial conditions. Once
the solution ϑ (x,t )

μ (λ) is found, the space-time profile of a
conserved density ẑ� and the corresponding current ĵ Z

� can be
obtained using (19) and (22). Note that Eq. (31) automatically
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preserves the constraints in (13), giving an additional confir-
mation of GHD beyond the models for which it was introduced.

For a partitioned initial state, Eq. (31) leads to a self-similar
dynamics, where all local expectation values have a space-time
profile which only depends on the ratio x/t . The solution can
be written explicitly as

ϑ (x,t )
μ (λ) =

{
ϑμ(λ; βl ), v[ϑ (x,t )](λ) > x/t

ϑμ(λ; βr ), v[ϑ (x,t )](λ) < x/t
(32)

where the thermal filling factors ϑμ(λ; βl,r ), obtained from the
solutions of (26) at β = βl,r , describe the left and right initial
states, in agreement with (30).

We will consider the energy current flowing at site �,
ĵH
� , which is defined in Eq. (18) for ẑ� equal to the local

Hamiltonian density ĥ� in Eq. (5). The space-time profile of
the energy current is defined as

JE (x, t ) = Tr
[
e−ıĤ t ĵH

� eıĤ t ρ̂0
]
, (33)

where x ≡ �. From the solution in (32) and (15), one ob-
tains the GHD approximation for JE (x, t ) via (22). In this
approximation, the space-time profile only depends on the

ray x/t = const, i.e., J (GHD)
E (x/t ). We expect the GHD

approach to become more and more accurate at large times,
as will become apparent in the next section.

B. Comparison with numerical simulations

In order to test the validity of the hydrodynamic approach
developed above, we compare it to numerical simulations
performed with time-dependent MPS [80]. The initial thermal
state is obtained by purifying the system through the ancilla
method; this procedure squares the dimension of the local
Hilbert space. The subsequent time evolution is performed
using a time-evolving block-decimation (TEBD) algorithm
with a fourth-order Trotter expansion of the unitary evolution
operator (we fixed a time step dt = 10−2/J ), and exploiting
a backward time evolution of the auxiliary system to optimize
the growth of entanglement [106,107]. We consider chains
up to L = 100 with open boundary conditions, ensuring that
finite-size effects are under control. The maximum allowed
bond link m is specified for each simulation, and the truncation
error per step is set to 10−10.

We begin by considering the case βl = 0.02J−1 and βr =
0.04J−1. In Fig. 1 we show the rescaled profile of the energy
current JE for several times; the hydrodynamic prediction is
superimposed as a continuous black curve. Notice that the
agreement between the numerical data and the analytics is
only approximate. With respect to previous studies on the
XXZ spin- 1

2 chain, the problem features a greater numerical
complexity, which is imputable to a larger Hilbert space and to
the absence of a U(1) symmetry; this prevents the simulations
from reaching long-enough times for a direct confirmation of
the theory. To overcome this issue, we have carefully studied
the time dependence of our data for fixed values of x/t , as
is visible in Fig. 2. By fitting the long-time behavior with the
functional form a0 + a1/t , we obtain asymptotic values that
agree with the hydrodynamic predictions within a few percent,
thus validating the GHD approach in this regime.

FIG. 1. Rescaled energy-current profile for βl = 0.02J −1 and
βr = 2βl , according to the hydrodynamic prediction for the steady
state (black solid line) and to numerical data for several finite times
(colored symbols). Simulations employ a maximal bond link m = 300
(the accuracy of the simulations is discussed in Appendix B 1).

In order to circumvent the limitations due to the finite
times accessible with our numerical tools, we also consider
the limiting case βl → −∞ and βr → +∞. In this case, the
initial state (30) is a pure state and the required computational
resources are significantly reduced, enabling us to reach
considerably larger times, up to t ≈ 18J−1. Numerical and
analytical results are shown in Fig. 3. The agreement with
the hydrodynamic prediction is significantly improved, as is
evident from a visual comparison with Fig. 1. In Appendix B 1
we present an additional, more quantitative, analysis of the
time dependence of the numerical data for fixed x/t .

FIG. 2. Time dependence of the data presented in Fig. 1 for fixed
values of x/t = −1.5, −1.0, 1.0, and 1.5. The blue line represents a fit
to the data with a function a0 + a1/t ; the fit is performed considering
only data to the left of the vertical bar. The horizontal dashed red line
represents the GHD prediction for the steady-state value.
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FIG. 3. Rescaled energy-current profile for βl → −∞ and
βr =→ +∞: GHD prediction for the steady state (black solid
line) and numerical data for several finite times (colored symbols).
Simulations employ a maximal bond link m = 300.

We conclude by mentioning that in the latter protocol,
although the system is supporting ballistic spreading of energy,
the entanglement entropy of the system grows logarithmically
(and not linearly) in time. In Fig. 4 we consider the reduced
density matrix of the first L/2 sites of the system, ρ̂L/2, and
plot its von Neumann entropy S(ρ̂L/2) = Tr[ρ̂L/2 log ρ̂L/2] as
a function of time. The growth is fully compatible with a
logarithmic scaling ∼log(tJ ). This behavior is only apparently
contradictory and it is the result of the BA integrability of the
model; as such, we expect it also in other integrable models.
We leave as an open question whether a possible CFT in
curved space treatment would be possible for a setting like
this [108,109]. Note that in a generic situation with finite
temperatures, such an analysis would not be feasible because

FIG. 4. Entanglement entropy of a bipartition of the system as a
function of time, for βl → −∞ and βr =→ +∞. The inset highlights
a scaling as ∼log(tJ ): the red curve is a fit of numerical data (black cir-
cles) for t > 10J −1, which yields S(ρL/2) ≈ 1.41 + 0.293 × ln(tJ ).
Data correspond to the same simulations as in Fig. 3.

FIG. 5. Energy current JE at the junction, as a function of βl , for
βr = 2βl , according to the hydrodynamic theory (black solid line)
and to numerical simulations (black circles). Simulations employ a
maximal bond link m = 300 (see Appendix B 2 for details). At low
temperatures, we compare the data with the BD law for c = 4

5 (dashed
red line). The more standard values c = 1 (dotted-dashed green line)
and c = 1

2 (dotted-dashed blue line) are also shown. The inset clarifies
the low-temperature scaling as β−2

l (straight red line).

entanglement entropy does not have a simple generalization to
mixed states.

IV. LOW-TEMPERATURE TRANSPORT
AND CONFORMAL BEHAVIOR

We now proceed to a direct comparison of the low-energy
transport properties in our parafermionic model with a simple
prediction obtained by means of standard CFT techniques.
Specifically, at low temperatures, energy transport in systems
which display a low-energy conformal invariance can be
captured by the following compact BD formula [45,46]:

JE = πc

12

(
β−2

l − β−2
r

)
, (34)

where c is the central charge. We stress that, contrary to
commonly studied frameworks, where c = 1 or 1

2 , in the
present case we have c = 4

5 .
The results of our analysis for the energy transport are

summarized in Fig. 5, where we report steady-state values
of the energy current JE flowing at the junction, according
to GHD (black continuous lines), numerical simulations with
MPS (black circles), as well as the BD formula of Eq. (34)
(dashed and dotted-dashed color lines). For the sake of clarity
and without loss of generality, we concentrate on the case
βr = 2βl . As such, temperature differences are significant
and the data that we present go well beyond the possibilities
of a linear-response theory. Numerical data are obtained by
performing the explicit evolution of the system in real time and
extrapolating the long-time behavior of the energy current. For
βl > 1.0J−1, the energy current still displays non-negligible
oscillations at the longest accessible times, so that the extrapo-
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lation is susceptible to a non-negligible error (see Appendix B 2
for details). The steady-state value is obtained by averaging
the value of the current for the longest accessible times; the
error is estimated in a conservative way by taking the standard
deviation of the points considered in the average (see error bars
in the figure).

We immediately recognize an excellent agreement between
numerics and hydrodynamics. In order to quantitatively assess
the validity of Eq. (34) in our case, we plot it not only for c = 4

5 ,
but also for two other values of the central charge c that are
typically encountered in this kind of problem (namely, 1

2 and
1, corresponding respectively to free-fermion and free-boson
cases). As expected, for large values of βl , the system is well
reproduced by the case c = 4

5 . The quality of the agreement
suggests that our analysis of numerical data overestimates
the error performed in extrapolating the steady-state energy
current. Before concluding, we mention that Eq. (34) can
be explicitly derived from the hydrodynamic theory using
well-established techniques. A more detailed discussion is
reported in Appendix C.

V. OPPOSITE TEMPERATURES

A peculiarity of Hamiltonian (5) is that Ĥ and −Ĥ display
a low-energy conformal limit with different central charges,
c = 4

5 and 1, respectively. We now elaborate on the results
presented in Sec. III B, where we studied the PP for vanishing
opposite temperatures βr = −βl → ∞, and argue that, in the
limit |βl,r | � J−1, we can study energy transport between two
different CFTs. We note that the models defined on spin- 1

2
chains studied so far in the context of GHD do not offer this
possibility, as in that case, the low-energy behavior of both Ĥ

and −Ĥ is described by a c = 1 CFT.
The study of energy transport between models with different

low-energy properties has been recently addressed in several
contexts; the results highlight a dependence on the specific
nature of the junction through appropriate transmission coef-
ficients, and as such are nonuniversal. Here, we are effectively
proposing a kind of junction that is integrable since the two low-
energy theories are connected through an integrable model that
interpolates between the two in energy space. This approach
has the clear disadvantage that, in the limit |βl,r | → ∞, the
energy current is nonzero, being equal to the energy current
flowing between the ferromagnetic and antiferromagnetic
ground states. Yet, it allows for exact calculations of the long-
time limits without invoking uncontrolled approximations or
numerical estimates.

Our results for the case βr = −βl are presented in Fig. 6.
Steady values of the energy current JE flowing at the junction
are reported, both according to GHD and as computed with
numerical MPS simulations. The steady values are obtained as
in Sec. IV (see Appendix B 3 for details); as realized before,
the agreement is excellent also in this situation.

It is now tempting to investigate whether a formula similar
to (34) holds also in this case. Based on formal analogies, we
make the following intuitive guess:

JE = JE,∞ + π

12

(
clβ

−2
l + crβ

−2
r

)
, (35)

FIG. 6. Energy current JE at the junction as a function of βl , for
βr = −βl , according to the hydrodynamic theory (blue solid line)
and to numerical simulations with MPS (black circles). Simulations
employ a maximal bond link m = 300 (see Appendix B 3 for further
details). The red solid curve is the CFT-like formula in Eq. (35). In
the inset we focus on large values of βl , and show the hydrodynamic
data (blue diamonds), the guessed formula in Eq. (35) (red solid
line), and the actual fit: JE − JE,∞ = 0.485β−2

l − 0.00016β−1
l (blue

dashed line). The validity of the guessed CFT-like formula is only
approximate.

where cl and cr are the two central charges for the low-energy
(βl → +∞) and the high-energy (βr → −∞) conformal lim-
its, respectively. Here, JE,∞ denotes the nonuniversal energy
current flowing in the limit |βl,r | → ∞, which has been
characterized in Sec. III B; the supposedly universal behavior
is sought in the fluctuations on top of it. Note that, since βl and
βr have opposite signs, any nonzero value of β−2

l,r generates an
energy current flowing in the same direction.

We stress that, since we are connecting two halves with
the maximal possible energy difference, the stationary state
around the junction will be far from any low-energy description
and thus there is no good reason why the stationary energy
current should obey a simple relation like (35). Nevertheless,
Eq. (35) is exact for any noninteracting model because there
is no interaction between left- and right-moving excitations:
their distribution in the stationary state only reflects the low-
temperature behavior of the half they hail from, so that the de-
tails of the dispersion relation only affect the leading termJE,∞
but not the quadratic corrections in (35). As such, a deviation
with respect to Eq. (35) can be interpreted as a manifestation
of interactions among the quasiparticle excitations.

At a first glance, the comparison of the hydrodynamic
predictions with Eq. (35) displays a surprising agreement, as
is apparent from Fig. 6. A more careful inspection, however,
shows that formula (35) has only an approximate validity, as
expected. Specifically, for βr = −βl , the behavior of JE −
JE,∞ predicted by the GHD for βl � 100J−1 is well fitted
by the function: 0.485β−2

l − 0.00016β−1
l . Note that the term

scaling as β−1
l , which is not present in Eq. (35), is of order

10−4. Moreover, the expected prefactor of the β−2
l term, that is
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π
12 (cl + cr ) = π

12
9
5 ≈ 0.471 . . ., is compatible with the fitted

behavior within a few percent. We thus conclude that the
scaling proposed in Eq. (35) is not exact, although rather
accurate. We leave as an open question the investigation of
the reason for that.

VI. CONCLUSION

Motivated by the experimental interest that parafermions
are raising in the condensed-matter and cold-atom commu-
nities, we investigated the energy transport in parafermionic
chains. We employed the partitioning protocol, according
to which two semi-infinite chains are initialized at different
temperatures and then let evolve in time. By choosing a
specific parafermionic model that is integrable and solvable
with Bethe ansatz, we developed a hydrodynamic description
of the properties of the nonequilibrium steady state, and in
particular of the energy current. We validated the results
with extensive numerical simulations based on time-dependent
matrix-product states. The differences in the Bethe-ansatz
formulation of the parafermionic integrable chain with respect
to more standard integrable models defined on spin- 1

2 chains
highlight the general validity of the generalized hydrodynam-
ics and its power as a tool for exploring the features of generic
nonequilibrium steady states.

By studying the low-temperature energy transport of the
model, we recovered the universal scaling described by the
Bernard-Doyon formula. The formula was verified in a model
with central charge different from 1 and 1

2 , and namely 4
5 .

Motivated by the interest in the study of energy transport
between models with different low-energy properties, we
considered the case in which the two halves are initialized
at opposite temperatures. As such, the half of the system at
positive temperatures is close to the ground state, whereas
the half of the system at negative temperatures is close to
the maximally excited state (namely, the ground state of
−Ĥ ). We found that corrections to the limit |βl,r | → ∞ are
approximated by a function which only depends on universal
parameters. The origin of this striking agreement cannot be ex-
plained by standard arguments based on conformal invariance.
Understanding the significance of this approximate validity
is an open problem which will shed light on the role of
interactions between the quasiparticles of the model.
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APPENDIX A: DETAILS OF THE THERMODYNAMIC
BETHE-ANSATZ FORMULATION

The kernel matrix appearing in the BA equation (11) has
the form �μ,ν (λ,μ) = �μ,ν (λ − μ) with

�a,a (λ) = �b,b(λ) = �c,c(λ) = �d,d (λ) = −�a,d (λ)

= −�b,c(λ) = 2 arctan

[
tanh λ√

3

]
, (A1)

�a,b(λ) = �c,d (λ) = −�a,c(λ) = −�b,d (λ)

= −2 arctan
(√

3 tanh λ
)
, (A2)

�a,m(λ) = �b,m(λ) = −�c,m(λ) = −�d,m(λ)

= 2

[
arctan

(
tanh λ

2 − √
3

)
−arctan

(
tanh λ√

3 + 2

)]
. (A3)

The matrix �μ,ν is also almost symmetric, i.e., it gets a scale
factor when transposed

�μ,ν (λ) =
(

1 + δν,m

1 + δμ,m

)
�ν,μ(λ), (A4)

which in matrix form can be rewtritten as �t = S�S−1, with
Sμ,ν (λ,μ) = δμ,ν (1 + δμ,e ) δ(λ − μ).

The source term tμ(λ) has instead the form

ta (λ) = 4 arctan[(
√

3 + 2) tanh(λ)], (A5)

tb(λ) = −4 arctan

(
tanh λ√

3 + 2

)
, (A6)

tc(λ) = 4 arctan(tanh λ) − ta (λ), (A7)

td (λ) = −4 arctan(tanh λ) − tb(λ), (A8)

te(λ) = 4

[
arctan

(
tanh λ√

3

)
−arctan

(√
3 tanh λ

)]
. (A9)

APPENDIX B: ADDITIONAL INFORMATION
FOR THE NUMERICAL SIMULATIONS

In this appendix we discuss some technical aspects of the
simulations presented in the paper.

1. Numerics presented in Sec. III B

In Fig. 7 we present the energy current JE at site x = 0 as a
function of time, for the case βl = 0.02J−1 and βr = 2βl . The
three data sets have been obtained allowing for three different
maximal values of bond link m = 300, 400, and 500. The
discrepancies can serve as estimates of the error committed in
retaining the simulations with the smallest bond link, m = 300,
and thus the lowest accuracy. Such error is estimated around
10−4J 2. Note that an error of order 10−4J 2 does not affect the
conclusions of the fitting procedure reported in Fig. 2.

In Fig. 8 we study the time dependence of the data presented
in Fig. 3, considering in particular four representative values

075421-8



ENERGY TRANSPORT IN AN INTEGRABLE … PHYSICAL REVIEW B 98, 075421 (2018)

FIG. 7. Time evolution of the energy current for βl = 0.02 and
βr = 2βL for three different values of the maximal allowed bond link
m. Currents on the y axis have been rescaled, so to highlight the tiny
differences emerging when increasing m.

of x/t and plotting the data as a function of time t . In all cases,
we observe an oscillatory behavior around the value obtained
with the GHD.

2. Numerics presented in Sec. IV

The energy current JE at the junction is plotted in Fig. 9
for several representative values of βl (here, βr = 2βl) as
a function of time. For small values of βl , at the longest
accessible times any oscillatory behavior has been damped;
this is not the case for βl � 1.0J−1. We thus average the data
in the interval [tmax/2, tmax] to extrapolate the steady value and
take the standard deviation of the data to estimate the error
committed in the procedure.

FIG. 8. Time dependence of the data presented in Fig. 3 for fixed
values of x/t = −1.5, −1.0, 1.0, and 1.5. The horizontal red and
dashed line represents the hydrodynamic prediction for the steady-
state value.

FIG. 9. Time dependence of the energy current JE at the junction
for several values of βl and βr = 2βl . Simulations employ a maximal
bond link m = 300.

3. Numerics presented in Sec. V

The energy current JE at the junction is plotted in Fig. 10
for several representative values of βl (here, βr = −βl) as
a function of time. For small values of βl , at the longest
accessible times any oscillatory behavior has been damped;
this is not the case for βl � 1.5J−1. We thus average the data
in the interval [tmax/2, tmax] to extrapolate the steady value and
take the standard deviation of the data to estimate the error
committed in the procedure.

APPENDIX C: LOW-TEMPERATURE
EXPANSIONS FROM GHD

In this appendix, we briefly discuss how Eq. (34) emerges
from GHD and why Eq. (35) is instead violated. We start noting
that the solutions to Eq. (26) corresponding to the ferromag-
netic (β → ∞) and the antiferromagnetic (β → −∞) ground
state can be obtained explicitly. In particular, one finds that, in

FIG. 10. Time dependence of the energy current JE at the
junction for several values of βl and βr = −βL. Simulations employ
a maximal bond link m = 300.
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both cases, the solutions ϑμ(λ; β → ±∞) are independent of
λ, and using (28) we get the values⎧⎪⎨
⎪⎩

ϑa (λ, β → ∞) = 0,

ϑb(λ, β → ∞) =
√

5−1
2 ,

ϑe(λ, β → ∞) = 3−√
5

2 ,

⎧⎨
⎩

ϑa (λ, β → −∞) = 1,

ϑb(λ, β → −∞) = 1,

ϑe(λ, β → −∞) = 0.

(C1)

Moreover, one can also obtain an explicit and constant solution
for the infinite temperature case β = 0:⎧⎨

⎩
ϑa (λ, β = 0) = 2/3,

ϑb(λ, β = 0) = 2/3,

ϑe(λ, β = 0) = 1/4.

(C2)

For finite temperature, an analytic solution cannot be found.
Nevertheless, investigating the structure of (26), one deduces
that for large |β|, the functions ϑμ(λ; β ) have a rather simple
structure [83], characterized by two flat asymptotic regimes.
For β � 1, one has

FIG. 11. Behavior of the functions ϑμ(λ) corresponding to a
thermal state at a low positive temperature β = 100 (top), and a
low negative temperature β = −100 (bottom). Horizontal dashed
lines denote the asymptotic behaviors for |β| → ∞ [Eqs. (C1)], and
those for β → 0 [Eqs. (C2)]. Vertical dashed lines correspond to
λ = ±(log β )/6 (top) and λ = ±(log |β|)/3 (bottom).

ϑμ(λ; β � 1) =
{

ϑμ(λ; β → ∞), λ � log β

6

ϑμ(λ; β = 0), λ � log β

6

(C3)

ϑμ(λ; β � −1) =
{

ϑμ(λ; β → −∞), |λ| � log |β|
3

ϑμ(λ; β = 0), |λ| � log |β|
3 .

(C4)

In other words, the solution interpolates between the
ground-state one at small |λ| and the infinite-temperature one at
large |λ|, with a crossover scale which depends logarithmically
on the inverse temperature β. An example is shown in Fig. 11.
The correction of the thermal energy with respect to the
ground-state value will only depend on the behavior of the
functions ϑμ(λ) around the crossover scale ∝log |β|. In this
way, with standard methods, one gets the universal corrections
in agreement with CFT [19,81,83]; consistently one obtains
a vanishing thermal current as the contribution from λ > 0
cancels exactly with the one at λ < 0.

With this information, we can briefly discuss the stationary
state predicted by the GHD construction according to (32) and
we focus for simplicity on the case x = 0. At low temperatures,

FIG. 12. Behavior of the functions ϑμ(λ) corresponding to the
stationary state around the origin x = 0 for the PP with βl = 20, βr =
100 (top) and βl = 100, βr = −100 (bottom). Horizontal dashed
lines are the same as in Fig. 11. Vertical dashed lines in the top panel
correspond to λ = −(log βr )/6 and λ = (log βl )/6.
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the velocity v[ϑ]
μ (λ) has the same sign of λ for |λ| � 1. It

follows that, for two low positive temperatures, the GHD
solution is obtained by joining the thermal state at βl (λ > 0)
with the one at βr (λ < 0) [see Fig. 12 (top) for an example].
One can then compute the thermal current which results from
the asymmetry from the positive and negative rapidities and
leads to (34) (see Refs. [76,110] for details). The case of
two low and negative temperatures can be treated in a similar
manner.

One could naively think that also when joining two opposite
temperatures βl > 0, βr < 0 a similar construction could be
applied. Indeed, this would be true if the dressing operation

(24) had only a weak effect, as it trivially happens for free
theories. On the contrary, when considering the junction
between two thermal states close to the ferromagnetic and
antiferromagnetic ground states, the dressing operation has a
dramatic effect: for instance, v

[ϑ]
b (λ) < 0 and v[ϑ]

e (λ) < 0 for
any value of λ. From (32), this implies that the GHD solution
for ϑb(λ) and ϑe(λ) equal the initial ones on the right [an
example of this is given in Fig. 12 (bottom)]. We stress that
this is a rather counterintuitive effect which is at the origin
of the violation of (35). It is then surprising that the violation
appears to be so small (see Fig. 6), and we leave this analysis
to a future study.
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