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Abstract: Designing an economic model predictive control (EMPC) algorithm that asymptotically
achieves the optimal performance in presence of plant-model mismatch is still an open problem. Starting
from previous work, we elaborate an EMPC algorithm using the offset-free formulation from tracking
MPC algorithms in combination with modifier-adaptation technique from the real-time optimization
(RTO) field. The augmented state used for offset-free design is estimated using a Moving Horizon
Estimator formulation, and we also propose a method to estimate the required plant steady-state gradients
using a subspace identification algorithm. Then, we show how the proposed formulation behaves on a
simple illustrative example.

Keywords: Economic Model Predictive Control (EMPC); Real-Time Optimization (RTO);
Modifier-adaptation; Moving Horizon Estimator (MHE); Systems identification.

1. INTRODUCTION

The typical hierarchical architecture for economic optimization
and control in the process industries sees often two main layers
based on optimization. As advanced controllers, model predic-
tive control (MPC) systems, have become a standard in the pro-
cess industries (Qin and Badgwell, 2003). The other optimiza-
tion based layer is the one named real-time optimization (RTO),
dedicated to the plant economic steady-state optimization. This
feeds the calculated setpoints into the MPC algorithms that have
the duty to guide a process there reliably, exploiting a (linear or
nonlinear) dynamic model of the process and numerical opti-
mization algorithms, dealing with constraints on outputs and
inputs. It has been shown that many applications, nowadays,
have not economical advantages following this separation (En-
gell, 2007).

Anyway both MPC algorithms and RTO suffers from plant-
model mismatches. This can derive from model uncertainties
and unmeasured disturbances so even model-free RTO algo-
rithm (Guay and Peters, 2006) can suffer of offset problems
and calculate non-economically optimum stationary points.

The offset correction in tracking MPC algorithms has been
firstly systematized by Muske and Badgwell (2002) and Pan-
nocchia and Rawlings (2003). Zero steady-state offset with
respect to external setpoints is obtained by augmenting the
nominal system with disturbances, i.e. building a disturbance
model, and estimating both state and disturbance from output
measurements. Pannocchia (2015) offers a comprehensive re-
view about disturbance models and offset-free MPC design.

Also in the RTO literature plant-model mismatch issues have
been analyzed. Recent proposals utilize a nominal fixed pro-
cess model and appropriate measurements to guide the it-
erative scheme towards the optimum. These kind of meth-
ods that recursively adapt correction terms exploiting differ-
ence between actual and predicted functions or gradient are

named “modifier-adaptation” (Chachuat et al., 2009). It has
been demonstrated (Marchetti et al., 2009) that these modifiers
guarantee to satisfy the necessary condition of optimality of
the unknown plant. A strong drawback of this methodology is
requiring information about the plant gradient. For this reason,
gradient estimation is an active research area in the RTO litera-
ture (see e.g. (Costello et al., 2016; Marchetti et al., 2011) and
references there in).

As above underlined, the RTO and MPC hierarchical division
issues has led to the increased interest in merging the two
layers. Several are the proposals to improve the effective use of
dynamic and economic information throughout the hierarchy.
Approaches that move the dynamic information into the RTO
take the name of “D-RTO” (Würth et al., 2011). The D-RTO
structure still requires the two layers existence. On the other
hand, the interest here is to move economic information into
the control layer. This approach requires the traditional tracking
objective function substitution with the economic stage cost
function used in the RTO layer. This formulation takes the name
of economic MPC (EMPC) (Rawlings et al., 2012; Ellis and
Christofides, 2014) and the RTO layer is completely eliminated.
Being the stage cost in the finite horizon problem not strictly
convex anymore, the traditional stability conditions for closed-
loop system based on the Lyapunov function do not hold
anymore. It has been shown that depending on certain systems
and cost functions, oscillating solutions may be economically
more profitable than steady-state ones (Angeli et al., 2009;
Rawlings et al., 2012). Dissipativity (Angeli et al., 2012) and
turnpike (Faulwasser and Bonvin, 2017) are the properties that
play a role in the convergence of EMPC.

EMPC can suffer from converging to a non economically
steady-state point when affected by plant-model mismatch.
Some works in the literature indicate multi-model linear offset-
free formulations as a solution to this problem (Alvarez and
Odloak, 2012; Ferramosca et al., 2017). In (Vaccari and Pan-
nocchia, 2016) it has been shown how even the traditional



offset-free methodology can fail for the EMPC case. Another
technique has been proposed, utilizing both offset-free MPC
and modifier-adaptation idea in order to build a more reliable
EMPC. In the present paper the work of Vaccari and Pannocchia
(2016) is extended including a different kind of state estimation
showing how the modifier-adaptation based technique achieves
the ultimate optimal economic performance despite modeling
errors and/or disturbances. Moreover, a new method based on
system identification is here introduced in order to give a gradi-
ent estimation and overcome previous assumptions.

The rest of this paper is organized as follows. The problem
definition and the current related works are presented in Sec-
tion 2. The proposed method, with a detailed analysis and
description of the new EMPC algorithm implementation is pre-
sented in Section 3. The presented algorithm and other variants
are tested over a case study, and discussions about numerical
results obtained are reported in Section 4. Section 5, finally,
concludes the paper and presents possible future directions of
this methodology.

2. PROBLEM DEFINITION

2.1 Plant and cost specification

In this paper we are concerned with the control of discrete time-
invariant dynamical systems in the form:

x+p = Fp(xp,u)
y = Hp(xp)

(1)

in which xp ∈Rn, u ∈Rm, y ∈Rp are the plant state, control in-
put and output at a given time, respectively, x+p is the successor
state. The plant output is measured at each time k ∈ Z and it is
denoted by yk. Functions Fp : Rn×Rm→Rn and Hp : Rn→Rp

are not known precisely but are assumed to be differentiable.

Input and output are required to satisfy the following input and
output constraints at all times:

umin ≤ u≤ umax, ymin ≤ y≤ ymax (2)
in which umin,umax ∈ Rm and ymin,ymax ∈ Rp are the bound
vectors. We define the system (1) economically optimized,
when a given cost function `e(y,u) is minimized, where `e :
Rp×Rm→ R.
Assumption 1. The cost function `e(y,u) is assumed continu-
ously differentiable.

Given the system (1), an equilibrium point of this system is
identified by the triple (xs,us,ys):

xs = Fp(xs,us)
ys = Hp(xs)

(3)

and the related optimal one is then defined by:
(x0

s ,u
0
s ,y

0
s ) = argmin

x,u,y
`e(y,u) (4a)

subject to
x = Fp(x,u) (4b)
y = Hp(x) (4c)

umin ≤ u≤ umax (4d)
ymin ≤ y≤ ymax (4e)

We assume (4) feasible and its solution (x0
s ,u

0
s ,y

0
s ) unique,

albeit unknown.
Remark 2. The fact that (x0

s ,u
0
s ,y

0
s ) is unknown comes directly

from the uncertainty in the description of (1).

2.2 Model and standard EMPC algorithm

In order to design an MPC algorithm, a process model has to be
defined:

x+ = f (x,u)
y = h(x) (5)

in which x,x+ ∈ Rn denote the current and successor model
states. The functions f : Rn×Rm → Rn and h : Rn → Rp are
assumed to be differentiable.

Let x= {x0,x1, . . . ,xN} and u= {u0,u1, . . . ,uN−1} be, respec-
tively, a state sequence and an input sequence. The Finite Hori-
zon Optimal Control Problem (FHOCP) solved at each time is
the following:

(x∗,u∗) = argmin
x,u

N−1

∑
i=0

`e(yi,ui) (6a)

subject to
x0 = x̂, (6b)

xi+1 = f (xi,ui) (6c)
umin ≤ ui ≤ umax (6d)

ymin ≤ h(xi)≤ ymax (6e)
xN = x∗s (6f)

in which x̂ and x∗s are the current estimate and steady-state
value of the state model (5) respectively, and N is a positive
integer representing the horizon length. Assuming problem (6)
feasible, the associated receding horizon implementation is
given by:

u = u∗0 (7)

One of the main differences between tracking and economic
MPC is the non strictly convexity of the cost function. As a
matter of fact, since the EMPC utilizes directly the operating
cost as stage cost, it may happen that `e(xs,us) > `e(x,u) for
some feasible pair (x,u) that is not the steady state target
(xs,us). The concept of average asymptotic performance of
economic MPC (Angeli et al., 2009; Rawlings et al., 2012)
is based indeed on the fact that oscillating solutions may be
economically more profitable than steady-state ones, depending
on both systems and cost functions. Moreover, the standard
Lyapunov function definition for closed-loop system cannot
be used as a stability argument. Although, in the literature,
a Lyapunov-based EMPC using an auxiliary MPC problem
solution has been also formulated (Heidarinejad et al., 2012;
Ellis and Christofides, 2014).
Assumption 3. In this work the steady-state operation is as-
sumed to be more profitable than an oscillating behavior.

In this direction the concepts of dissipativity (Angeli et al.,
2012; Rawlings et al., 2012) and turnpike (Faulwasser and
Bonvin, 2017) has to be addressed. These properties play a
key role in the analysis and design of schemes for EMPC.
Faulwasser et al. (2015) have shown how in a continuous-
time form, dissipativity of a system with respect to a steady
state implies the existence of a turnpike and optimal stationary
operation at the same steady state.

3. PROPOSED TECHNIQUE

Having revised the traditional economic MPC, we now illus-
trate the proposed method that aims to make the closed-loop
system to converge to the true plant optimum defined in (4).
Let us define the various constituents of the new algorithm.



3.1 Offset-free augmented system

Standard offset-free MPC algorithms are generally based on
an augmented model (Muske and Badgwell, 2002; Pannocchia
and Rawlings, 2003; Maeder et al., 2009; Morari and Maeder,
2012), whose general form can be written as:

x+ = F(x,u,d)
d+ = d
y = H(x,d)

(8)

in which d ∈ Rnd is the so-called disturbance. The functions
F : Rn×Rm×Rnd → Rn and H : Rn×Rnd → Rp are assumed
to be continuous and consistent with (5), i.e. F(x,u,0) = f (x,u)
and H(x,0) = h(x). Since d is considered as other nd states
of the system, defining ξ = [xT ,dT ]T as the augmented state,
we impose the following assumption regarding the non-linear
system observability (Pannocchia et al., 2015).
Assumption 4. The augmented system (8) is observable.

3.2 State and disturbance estimation

Given the system (8) an observer is defined to estimate the
augmented state. In this case, since the chosen model is non-
linear and bound constraints are present on both outputs and
inputs, the estimator selected is the so called Moving Horizon
Estimation (Rawlings, 2013) (MHE). The new state estimate,
at every sample time k, is the result of an optimization problem
based on NT past output data. This method has demonstrated
good results against other state estimation techniques for non-
linear systems such the one considered in this work.

Let us define ξ= {ξ0, . . . ,ξNT } as the augmented state sequence
and w = {w0, . . . ,wNT−1} , v = {v0, . . . ,vNT−1} for the aug-
mented process noise and measurement noise sequences, where
w j = [wx T

j ,wd T
j ]T . Hence the MHE problem to solve, at the

generic time k, is the following:

min
ξ,w,v

Γ(γ)+
k

∑
j=k−NT+1

`MHE(w j,v j) (9a)

subject to:

γ = ξ̂k−NT+1|k−NT+1− ξ̄0 (9b)

x̂ j+1 = F(x̂ j,u j, d̂ j)+wx
j (9c)

d̂ j+1 = d̂ j +wd
j (9d)

y j = H(x̂ j, d̂ j)+ v j (9e)

ymin ≤ H(x̂ j, d̂ j)≤ ymax (9f)
in which y j represents the measurement at time j and NT
represents the horizon length of the MHE problem. The term
Γ(γ) = 1

2 γ
′
Pkγ + pk approximates the arrival cost of the full

estimation problem for times before k−NT +1. The weighting
term Pk represents the inverse of the covariance of the a priori
augmented state estimate ξ̄0. Until the data window is not
filled, the optimization problem solved is the so called Full
Information Estimation, i.e. the sum in (9a) becomes ∑

k
j=0 and

the size of the problem increases at every iteration. Once NT
input and output data have been collected, the horizon moves
one step forward and the optimization problem does not grow
anymore, becoming the one in (9), i.e. the first data point is
discarded as the new one is added. This shifting can be done in
different ways and may cause the overlapping of two different
data windows. The role of the term pk is then to subtract double
counted data points during this horizon movement. Its starting

value is 0. Starting from chosen initial values, Pk and ξ̄0 are
accordingly updated only when the window of NT data has been
collected, i.e. k = NT , and their updating formula may differ
depending on the arrival cost updating selected (Rao, 2000).

The estimation problem cost function `MHE(·) in (9a) is usually
quadratic and defined as follows:

`MHE(w j,v j) = ‖wx
j‖2

Q−1
x

+‖wd
j‖2

Q−1
d

+‖v j‖2
R−1 (10)

in which Qx ∈ Rn×n, Qd ∈ Rnd×nd , R ∈ Rp×p represent the
covariance process and measurement noise respectively. Note
how the process noise w j for the augmented state ξ has different
weights for the state x and disturbance d. This can help to
address a more or less aggressive tuning depending on the
system (8). The filtered estimate of x(k) and d(k) in (8), x̂k|k
and d̂k|k are hence finally obtained from ξNT−1|k, solution of
problem (9).

3.3 Target calculation with modifier-adaptation technique

Given the current estimate of the augmented state (x̂k|k, d̂k|k),
the offset-free economic MPC algorithm firstly computes the
target problem modified in the following form:

(x∗s,k,u
∗
s,k,y

∗
s,k) = argmin

x,u,y
`e(y,u) (11a)

subject to
x = F(x,u, d̂k|k) (11b)

y = H(x, d̂k|k)+(λ G
k−1)

T (u−u∗s,k−1) (11c)
umin ≤ u≤ umax (11d)
ymin ≤ y≤ ymax (11e)

in which u∗s,k−1 is the steady-state input target found at the
previous sampling time k− 1, and λ G

k−1 is the modifier matrix
calculated at the previous iteration with the following filtering
relation:

λ G
k = (1−αs)λ

G
k−1 +αs

(
∇uGp(u∗s,k)−∇uG(u∗s,k, d̂k|k)

)
(12)

in which αs is a scalar first-order filter constant ∈ (0,1], G :
Rm+nd → Rp and Gp : Rm → Rp are the model and the plant
steady-state input-to-output maps respectively, i.e.:{

xs = F(xs, d̂k|k,us)

ys = H(xs, d̂k|k)
⇒ ys = G(us, d̂k|k) (13)

The operator ∇u(·) is the gradient of the considered function
respect to the variable u. The system is initially consistent
with the traditional EMPC defined in Section 2.2, i.e. λ G

0 = 0.
The idea of building the problem (11) using the term λ G

k−1
is borrowed from the modifier-adaptation technique developed
in the RTO literature (Marchetti et al., 2009). In (Vaccari
and Pannocchia, 2016) it has been shown that iteratively, if a
tracking cost function is substituted in (6) then the closed-loop
system converges to the solution of (11) and this is also the
optimal plant solution in (4), i.e.:

lim
k→∞

uk = lim
k→∞

u∗s,k = u0
s (14)

The proof involves a KKT matching of the two problems above
mentioned and it is inspired by the work in (Marchetti et al.,
2009).

3.4 Control optimization problem with modifier-adaptation
technique

The FHOCP (6) is similarly modified. Hence the problem
solved at each decision time is rewritten in the following form:



(x∗k ,u
∗
k) = argmin

x,u

N−1

∑
i=0

`e(yi,ui) (15a)

subject to
x0 = x̂, (15b)

xi+1 = F(xi,ui, d̂k|k) (15c)

yi = H(xi, d̂k|k)+(λ G
k−1)

T (ui−u∗s,k) (15d)
umin ≤ ui ≤ umax (15e)
ymin ≤ yi ≤ ymax (15f)

xN = x∗s,k (15g)

Analogously to the standard economic MPC, assuming prob-
lem (15) feasible, the associated receding horizon implementa-
tion is given by:

uk = u∗0,k (16)
It has to be noted that the correction term is built analogously
to the one in the target problem (11). Although, in this case, for
convergence purposes, we use the current calculated target u∗s,k.

3.5 Plant gradient estimation

As already underlined in the RTO literature (Marchetti et al.,
2009) and also in (Vaccari and Pannocchia, 2016), the major
drawback of the modifier-adaptation technique is that the mod-
ifier matrix λ G

k−1 construction and update in (12) requires the
knowledge of the steady-state process gradient ∇uGp(·), which
obviously is unknown. In literature, many are the works focused
on estimating these gradients involving a collection of past
output data (see e.g. Gao et al. (2015); Costello et al. (2016)).

In this work a similar identification approach has been used
in order to calculate an approximated value of the steady-
state process gradient that we name as ∇uG̃p(·). The gradient
approximation routine is articulated in the following steps.
Firstly, the closed-loop system is brought to a steady-state
equilibrium until k = kid . Then, for a determined amount of
time that we define as identification horizon Nid , the result of
the FHOCP (15) is excited by a random signal, i.e. the control
law (16) is substituted by:

uk = u∗0,k +σk (17)
in which σk ∈ Rm is a random vector. In order to avoid any
feasibility problem, the excited input uk is checked to be into
its boundaries, otherwise it is saturated to nearest bound. For
k ∈ [kid ,kid +Nid ] we collect all the uk calculated by (17) in
a sequence named Uid ∈ Rm×Nid . Simultaneously, the corre-
sponding yk measurements are calculated evaluating (1) and,
as well, stored into an output sequence Yid , i.e. Yid ∈ Rp×Nid .
When k = kid +Nid a subspace identification is performed to
obtain a local linearization of the plant system. The identifi-
cation algorithm chosen to identify the process is the N4SID
method (Overschee and Moor, 1994) using an open-source
package 1 . In particular, we are interested in computing locally
linearized state-space matrices A, B and C to compute the iden-
tified system gain ∇uG̃p(·)T = C(I−A)−1B, which is the best
approximation of the steady-state gradient of the process. In
order to avoid initial mismatch and numerical instability in the
identification step, both the input and the output sequences are
centered with respect to the model steady-state triple evaluated
at k = kid with (11), i.e. Uid − u∗s,kid , Yid − y∗s,kid . It is easy to
1 SIPPY (Systems Identification Package for PYthon) is available at GITHUB
https://github.com/CPCLAB-UNIPI/SIPPY

Table 1. Actual reactor parameters.

Description Symbol Value Unit
Kinetic constant 1 k1 1.0 min−1

Kinetic constant 2 k2 0.05 min−1

Reactor volume V 1.0 m3

A feed concentration cA0 1.0 kmol
m3

B feed concentration cB0 0.0 kmol
m3

A price βA 1.0 e
kmol

B price βB 4.0 e
kmol

prove that if the couple (u∗s,kid ,y
∗

s,kid ) is an equilibrium point
of (1), the identified matrices A, B and C are the same to the
one calculated identifying on the original sequences Uid , Yid .
The identification is then performed every iteration sliding the
data windows forward. It has to be noted that for k > kid +Nid
the original receding horizon law (16) is restored. To prevent
numerical issues, identification is performed only if the norm
of the current input sequence is greater than a threshold value
τid , i.e. ‖Uid‖ ≥ τid .
It is worth noting that the whole gradient estimation procedure
does not require any particular set of experiments on the plant.
As a matter of fact, since the only plant measurements col-
lected are transient ones, no additional sensors or controllers
are needed.

4. CASE STUDY

4.1 Process and optimal economic performance

The EMPC application chosen is a Continuous Stirred Tank
Reactor (CSTR), in which two consecutive reactions take place:

A
k1−→ B

k2−→C (18)
The reactor is described by the following system of ordinary
differential equations (ODE):

ẋ1 =
u
V
(cA0− x1)− k1x1 (19)

ẋ2 =
u
V
(cB0− x2)+ k1x1− k2x2

in which x1 and x2 are the molar concentrations of A and B in
the reactor, cA0 and cB0 are the corresponding concentrations
in the feed, u is the feed flow rate regulated through a valve,
V is the constant reactor volume, k1 and k2 are the kinetic
constants. For the sake of simplicity, the reactor is assumed to
be isothermal and the state measurables. The parameters of the
actual system are shown in Table 1. The process economics can
be expressed by the running cost:

`(u,x2) = βAucA0−βBux2. (20)
Using the actual process parameters reported in Table 1, the
process optimal steady-state is computed by solving the follow-
ing optimization problem:

min
u

βAucA0−βBux2 (21a)

subject to
u
V
(cA0− x1)− k1x1 = 0 (21b)

u
V
(cB0− x2)+ k1x1− k2x2 = 0 (21c)

0≤ x1 ≤ cA0 (21d)
0≤ x2 ≤ cA0 (21e)

The calculated economic optimum is u0
s = 1.043m3/min, x0

1,s =

0.511 kmol/m3 and x0
2,s = 0.467 kmol/m3. Although, we re-

mark that this optimum point is supposed to be unknown since



the controller have a wrong knowledge about the process pa-
rameters as explained below.

4.2 Model and controllers

For controller design, the two kinetic constants are supposed to
be uncertain, i.e. the value known by the controller are k̄1 and
k̄2, instead of k1 and k2. We compare the closed-loop behavior
of three EMPC algorithms, all designed according to Section 3
using the same nominal model, cost function, and a sampling
time of τ = 1.0 min. The economic cost function in (15) is:

`e(y(ti),u(ti)) =
∫ ti+τ

ti
`(u(t),y2(t))dt =∫ ti+τ

ti
[βAu(t)cA0−βBu(t)y2(t)]dt

(22)

Remark 5. If the point-wise evaluation of `(·) was used as stage
cost `e(·), the system would not be dissipative (Angeli et al.,
2012), i.e. the closed-loop system would not be stable.

The three controllers analyzed suffer all of the same plant-
model mismatch; specifically k̄1 = 1.2 and k̄2 = 0, meaning
that the first reaction is overestimated while the second one is
ignored. Also the dynamic (19) is discretized using an implicit
Euler method and the state disturbance model is used, i.e. the
considered augmented system (8) can be rewritten as:

x+ = f (x,u)+d
d+ = d
y = x

(23)

The estimator tuning is Qx = 10−6I, Qd = I, R = 10−6I and the
chosen arrival cost updating is the one called filtering, i.e. the
MHE problem is treated like a filter (Rao, 2000).

Hence the three controller formulations are defined as follows:

• EMPC0 is the standard economic MPC and uses only the
state disturbance model in (23).
• EMPC1 uses the disturbance model in (23) and also the

modified problems (11) and (15). Here we assume to know
the plant gradient, i.e. ∇uG̃p(·) = ∇uGp(·).
• EMPC2 is the EMPC1 where the gradient estimation tech-

nique described in Section 3.5 is applied. The identifica-
tion threshold is τid = 0.1, while the identification parame-
ters are the following: Nid = 60, model order n = 2, future
and past horizons SS f = SSp = 10.

4.3 Results

The closed-loop behavior of the above described controllers
is depicted in Figure 1. We can immediately notice how both
the EMPC1 and EMPC2 accomplish the goal to reach the
economic optimum even under the model errors introduced
before. The EMPC0, using only the disturbance (23), is not able
to eliminate the offset reaching a different equilibrium point.
The EMPC1 has a perfect knowledge of the plant gradients so
its correction is virtually perfect. We can see that even under
errors on k1, the controller has no difficulty in reaching the
optimal equilibrium point. This is an improved result that in
(Vaccari and Pannocchia, 2016) could not be guaranteed. In
the end we can see that before reaching t = 20min, EMPC2
behavior is identical to EMPC0 as expected. As a matter of
fact, λ G

k is updated for the first time from its original null value,
only at time step k = kid +Nid (in this case t = 80min). After
the identification has begun and the correction applied, the
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Fig. 1. Closed-loop results for the three selected controllers:
input (top) and states (middle and bottom). Note that
from 20 to 80 is evidenced the random signal used for
identification purposes. The initial state values x1(0) =
x2(0) = 0 are not displayed.

controller behavior changes and move towards the economic
optimum. It has also to be noted that a second significant
deviation reducing the offset happens around t = 140min. This
corresponds to k = kid +2Nid , when the data window has shifted
forward until the last random input calculated with (17) is
discarded. Therefore we can conclude that EMPC1 gives the
best performances but is not practically implementable, while
EMPC2 is the only suitable for real application since uses only
data collected from the process and no other major knowledge.



5. CONCLUSIONS

In this work we have proposed an economic model predictive
control (EMPC) algorithm implementation with the goal to
asymptotically achieves the optimal performance despite the
presence of plant-model mismatch. The algorithm is based
on a previously elaborated method (Vaccari and Pannocchia,
2016) that used a combination of the offset-free formulation
and modifier-adaptation technique. We firstly introduced two
new major differences between the algorithm proposed in this
work and the one in literature: the Moving Horizon Estimation
(MHE) technique has been selected as state and disturbance
observer, and a plant gradient estimation methodology based
on an identification algorithm has been implemented. We have
applied our formulation on a CSTR example. Results show how
the proposed algorithm can overcome plant-model mismatch
and converge to the best economic equilibrium. It has been
also proved how previous limitations on the mismatch structure
have been overpassed. Furthermore, the gradient estimation
methodology applied, using only transient measurements from
the plants, opens up to possible applications to real processes.

Future research should focus on how a sustained economic
performance can be maintained, and how one can understand
or test if the reached equilibrium is the real economic optimum
of the process.
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