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Abstract

This paper presents different formulations of Model Predictive Control (MPC) to handle static friction in control valves for industrial
processes. A fully unaware formulation, a stiction embedding structure, and a stiction inversion controller are considered. These
controllers are applied to multivariable systems, with linear and nonlinear process dynamics. A semiphysical model is used for
valve stiction dynamics and the corresponding inverse model is derived and used within the stiction inversion controller. The two-
move stiction compensation method is revised and used as warm-start to build a feasible trajectory for the MPC optimal control
problem. Some appropriate choices of objective functions and constraints are used with the aim of improving performance in
set-points tracking. The different MPC formulations are reviewed, compared, and tested on several simulation examples. Stiction
embedding MPC proves to guarantee good performance in set-points tracking and also stiction compensation, at the expense of a
lower robustness with respect to other two formulations.

Keywords: Model predictive control, control valves, static friction, stiction modeling and compensation.

1. Introduction1

Control valves are the most commonly used actuators in the2

process industries. Unfortunately, in many cases valves not3

only contain static nonlinearity (e.g. saturation), but also dy-4

namic nonlinearity including backlash, friction, and hystere-5

sis. Deadband due to backlash and mostly static friction (stic-6

tion) is a typical root source of the valve problems. A control7

valve with excessive deadband may not even respond to small8

changes in control action. As a result, these malfunctions may9

produce sustained oscillations in process variables, decrease the10

life of control valves, and generally, lead to inferior quality end-11

products causing reduced profitability of the whole industrial12

plant [2]. Hence, it appears that the potential benefits of us-13

ing advanced control algorithms, as model predictive control14

(MPC), could be diminished because of poor valves, especially15

if their faults and malfunctions are not expressly considered in16

the plant model.17

As a matter of fact, MPC has been used as an useful tool to18

improve control performance in the presence of various types19

of actuator faults, thus forming effective examples of fault tol-20

erant control (FTC), as in [3] and [4]. In addition, MPC has21

been specifically applied as a compensation strategy for sev-22

eral types of control valve malfunctions. In particular, the first23

MPC-based formulation was developed in [5], using a mixed-24

integer quadratic programming (MIQP) on constraints of the25

input. An inverse backlash model and valve saturation are in-26

corporated in the controller to overcome the deadband associ-27

ated with backlash. Later, this structure has been applied to a28

?A preliminary version of this paper has been presented in [1].

system with valve stiction in [6]. Due to the high computational 29

burden and the resulting feedback effect, this approach may be 30

inefficient in the case of severely nonlinear systems (high stic- 31

tion) or highly dimensional systems. Further investigations of 32

the same method in the case of valve stiction within the process, 33

but not in the model, have been presented in [7]. 34

Rodriguez and Heath [8] have proposed a formulation which 35

reduces the bounds of optimization variables computed by the 36

MPC, by trying to delete different types of valve nonlinearity, 37

and by reducing the problem to a purely linear structure. The 38

controller is indeed in series with a block that applies the in- 39

verse model for deadzone, backlash or stiction to the MPC out- 40

put and sends this signal to the faulty valve, which can eventu- 41

ally saturate. Recently, Durand and Christofides [9] have pre- 42

sented an economic MPC structure which includes a detailed 43

physical stiction model, constraints on the magnitude and rate 44

of change of the input, and is combined with a slave controller 45

of PI-type that regulates the valve output to its MPC set-point. 46

This approach comprises a compensation strategy for nonlinear 47

process systems, which can prevent the MPC from requesting 48

physically unrealistic control actions due to stiction. Later, the 49

same authors have replaced in [10] the first-principles model for 50

the valve layer with a procedure for developing empirical mod- 51

els based only on data of valve set-point and flow rate. This 52

approach incorporates a logic structure that activates different 53

equations depending on the valve condition (that is, sticking 54

or sliding phase): this forms a piecewise model where set-point 55

changes may set which equations have to be chosen. The empir- 56

ical model proves to be less stiff than the first-principles model 57

and may improve the computation time with limited violations 58

of process constraints. 59
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As stated before, when stiction is present, the valve is not60

effective in following the command signal imposed by the con-61

troller. As a result, a limit cycle with sustained oscillations is62

typically produced in the proximity of the steady-state operat-63

ing points. One way of reducing stiction effects is to explicitly64

take this malfunction into account in MPC design so that an65

improved performance could be obtained. As in many other66

fault tolerant control systems, where the fault estimate is cru-67

cial, for a good stiction tolerant MPC, a solid estimate of the68

stiction amount is needed, and the sticky valve must be prop-69

erly located, especially when the system is multidimensional.70

For this purpose, well-established techniques of oscillation de-71

tection [11], and stiction diagnosis and quantification [12] could72

be used and adapted as necessary.73

This paper is focused on designing and comparing different74

strategies of model predictive controller to handle static fric-75

tion in control valve. Among three main different solutions,76

one MPC formulation considers valve stiction explicitly, using77

a semiphysical model [13] which is proved to give very close re-78

sponses with respect to well-established first-principles models.79

The objective of this model-based approach is to compensate80

for the undesired effects of stiction on the controlled systems.81

Note that no method for valve stiction quantification has been82

expressly used or derived. Conversely, being stiction quantifi-83

cation beyond the scope of the paper, the amount of stiction is84

assumed as prior knowledge for predictive controllers.85

The various controllers have been previously derived for86

single-input single-output (SISO) systems with linear process87

dynamics, as the nonlinearity came only from the valve [1]. In88

this work, the formulations have been refined and extended to89

multidimensional processes and nonlinear (and linearized) sys-90

tems. An appropriate input sequence, derived from the two-91

move stiction compensation method and used as warm-start for92

MPC, is developed to improve set-point tracking performance.93

The considered MPC formulations are analyzed and compared94

using as test bench several simulation examples.95

2. Problem definition96

The whole multivariable plant is formed by the control valves97

followed by the process dynamics as shown in Figure 1. In98

detail, χ and y are the process input and output, that is, the99

valves output and the control variables, respectively; then, u is100

the MPC output, while w and v are white Gaussian noise. In [1]

Figure 1: The closed-loop system with (sticky) control valves followed by the
process.

101

the case of SISO system was studied. The system comprised102

a nonlinearity with memory for the valve followed by a linear103

dynamics for the process, thus forming an extended Hammer- 104

stein structure for the whole plant. In this work, applications 105

to MIMO systems with linear and nonlinear processes are pre- 106

sented. 107

In particular, the process dynamics is as follows:

ξk+1 = fP(ξk,χk)+wk

yk = hP(ξk)+ vk
(1)

where variables are χ ∈ Rm, u ∈ Rm, y ∈ Rp, and ξ ∈ Rn (the
process states), being n the model dimension; while functions
are fP: Rn×Rm→ Rn, hP: Rn→ Rp. Whereas, the dynamics
of the m valves is described by a data-driven stiction model:

χk = ϕ(χk−1,uk) (2)

expressed by the nonlinear function ϕ: Rm×Rm→ Rm, which
is later discussed. Overall, the output of valve system χ rep-
resents the first m components of the state vector of the com-
plete plant: zk = [χT

k−1,ξ
T
k ]T , so that z ∈ Rnz , being nz = m+n.

Therefore, the whole dynamics can be written as:

zk+1 =

[
χk

ξk+1

]
= φP(zk,uk) =

[
ϕ(χk−1,uk)

fP(ξk,ϕ(χk−1,uk))+wk

]
yk = ζP(zk)+ vk

(3)

where φP: Rnz×Rm→Rnz , and ζP: Rnz →Rp, being ζP(zk) = 108

hP(ξk). Note that in the present discussion, all actuators are as- 109

sumed to be control valves, possibly affected by static friction. 110

If some actuators are not valves, suitable simplifications can be 111

easily made. 112

2.1. Proposed MPC approaches 113

Three different MPC approaches are presented and compared 114

in this work. The first formulation is a “stiction unaware MPC”, 115

with a partial nonlinear formulation since it completely disre- 116

gards the valves dynamics and uses only the nonlinear process 117

model for the whole plant (see Figure 2). Secondly, a “stiction 118

embedding MPC” is considered, as shown in Figure 3. This 119

controller is aware of the stiction presence, as it uses an ex- 120

tended model – comprised of valves and process dynamics – 121

thus forming a full nonlinear formulation. 122

Finally, the third approach is also aware of stiction, but it has 123

an explicit model for the inverse dynamics of stiction (ϕ̃−1), 124

as in Figure 4. In this case, ũ is the MPC output, subject to 125

optimization, which forms input to stiction inverse model, and 126

u = ϕ̃−1(ũ) is the output of the whole controller. Note that, for 127

a perfect stiction inversion, one get ϕ(ϕ̃−1(ũ)) = ũ, and then 128

ũ ≡ χ . This type of formulation, introduced by [8], has the 129

advantage of considering expressly stiction dynamics, but it is 130

mainly beneficial when the controller uses a linear model, that 131

is, it is based on a linearized process dynamics. 132

2.2. Valve stiction modeling 133

For a healthy linear control valve, input (u) and output (χ) 134

signals are equal (or at least proportional) at all times. But in 135

the case of stiction, the valve acts like a nonlinear element and 136
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Figure 2: Closed-loop system with “stiction unaware MPC”.

Figure 3: Closed-loop system with “stiction embedding MPC”.

these two signals clearly differ. Note that stiction has been his-137

torically observed and studied in pneumatic globe valves with138

sliding stem and spring-diaphragm actuation system [2]. How-139

ever, similar sticky behaviors can also occur in rotary pneumatic140

valves and even in electric control valves. Pneumatic and elec-141

tric control valves differ actually only for the actuator, while the142

body and the plug, subjected to the majority of friction forces,143

can be exactly the same [14].144

Stiction in control valves can be described both by detailed145

physical models, then by purely empirical models [15]. Phys-146

ical models use Newton’s second law of motion and classical147

forces balance on the valve. However, there are two main148

disadvantages of these first-principles models. Firstly, sev-149

eral physical parameters, also related to the valve’s size, which150

are actually difficult to estimate, must be known. Secondly,151

computational times may be excessively long for practical pur-152

poses because cumbersome numerical integrations are neces-153

sary. Therefore, physical models are not often used in industrial154

applications.155

On the other hand, data-driven (empirical) modeling ap-156

proaches can get over the previous two drawbacks, by limiting157

the number of parameters and the computational burden. How-158

ever, such models may also present some disadvantages. In fact,159

they cannot fully capture the dynamics of the valve, since, for160

example, not all the proposed models passed the specific open-161

loop tests applied by following the standards of International162

Society of Automation (ISA) [15].163

When a fast response from the control valve is assumed, the164

transient behavior can be ignored, and a static – but with mem-165

ory – nonlinear function can be used to approximate the valve’s166

dynamic response, that is, only steady-state values of stem posi-167

tion are considered (see Figure 5). The standard empirical [16]168

or the semiphysical model [13] by He and coworkers are thus169

suitable to reproduce the valve response generated by physi-170

cal stiction models without involving computationally intensive171

numerical integration.172

He’s semiphysical stiction model. In this paper, we choose to173

use He’s semiphysical model [13], which includes stiction in174

Figure 4: Closed-loop system with “stiction inversion MPC”.

Figure 5: Steady-state approximation for valve stiction dynamics.

every valve movement, and reproduces accurately the valve sig- 175

nature obtained with the physical model in the case of low val- 176

ues of viscous friction Fv [13]. As said, preliminary version of 177

this study has been carried out in [1] using He’s standard model. 178

The flowchart of He’s semiphysical model is given in Fig-
ure 6. The generic i-th sticky valve has nonlinear dynamics
with memory χ

(i)
k = ϕ(χ

(i)
k−1,u

(i)
k ), expressed by the following

two relations:

χ
(i)
k =

{
χ
(i)
k−1 +M · [e(i)k − sign(e(i)k ) f (i)D ] if |e(i)k |> f (i)S

χ
(i)
k−1 if |e(i)k | ≤ f (i)S

(4)
for i = 1, ...,m, being m the number of valves, where f (i)S and 179

f (i)D are static and dynamic friction parameters, respectively, and 180

e(i)k = u(i)k −χ
(i)
k−1. Note that e(i)k is a sort of valve position error, 181

and f (i)S ≥ f (i)D by definition. 182

The parameter M, which accounts for the overshoot ob- 183

served in the physical model, can be assumed as a constant 184

(M = 1.99) for different valve physical parameters when Fv ' 0 185

[13]. Therefore, this three-parameter model reduces to a modi- 186

fied version of the standard two-parameter model of He, and by 187

Figure 6: He’s semiphysical stiction model [13].
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imposing M = 1 the semiphysical model becomes exactly the188

standard one [16]. Nevertheless, it has to be noted that the semi-189

physical model is inconsistent in the case of no stiction, since190

for fS = fD = 0 valve input and output do not match perfectly.191

Hence, in this case, χ
(i)
k = u(i)k , ∀k should be directly imposed.192

For the purpose of the work, after some simple algebra, (4)
can be rewritten as:

χ
(i)
k =


M(u(i)k − f (i)D )+χ

(i)
k−1(1−M) if u(i)k −χ

(i)
k−1 > f (i)S

M(u(i)k + f (i)D )+χ
(i)
k−1(1−M) if u(i)k −χ

(i)
k−1 <− f (i)S

χ
(i)
k−1 if |u(i)k −χ

(i)
k−1| ≤ f (i)S

(5)
Therefore, the stiction nonlinearity ϕ in (3) is formed by a set193

of three linear and parallel relations for each valve, thus consti-194

tuting a sort of switching “multi-mode” model to be considered195

along with the dynamics of the process, to form a discontinuous196

model. Finally, it has to be noted that the proposed methodol-197

ogy and formulations of MPC could be derived also with other198

types of data-driven stiction models, as [17, 18].199

3. MPC controller design200

In this section the considered formulations of MPC are de-201

tailed, by introducing an empirical stiction inverse model, some202

specific choices for modules and tuning parameters, and a suit-203

able warm-start based on a stiction compensation method.204

3.1. Stiction inverse model205

The “stiction inverse MPC” formulation presented in Fig-206

ure 4 requires to invert the stiction nonlinearity to obtain the207

control sequence, that is, u = ϕ̃−1(ũ). Starting from He’s semi-208

physical model in (5), by assuming ũ = χ and knowing at each209

sampling ũk and ũk−1, which compose inputs to the stiction in-210

verse model, one can write that:211

• if ũ(i)k 6= ũ(i)k−1 then:

u(i)k =

{
1
M [ũ(i)k +M f (i)D − ũ(i)k−1(1−M)] ⇔ u(i)k − ũ(i)k−1 > f (i)S
1
M [ũ(i)k −M f (i)D − ũ(i)k−1(1−M)] ⇔ u(i)k − ũ(i)k−1 <− f (i)S

• if ũ(i)k = ũ(i)k−1 then u(i)k ∈ [ũ(i)k−1− f (i)S , ũ(i)k−1 + f (i)S ]212

Then, by substituting the expression of u(i)k in the two inequali-
ties, one gets:

u(i)k


= Ũ (i)

k + f (i)D if ũ(i)k − ũ(i)k−1 > M( f (i)S − f (i)D )

= Ũ (i)
k − f (i)D if ũ(i)k − ũ(i)k−1 < M( f (i)D − f (i)S )

∈ [ũ(i)k−1− f (i)S , ũ(i)k−1 + fS] if ũ(i)k − ũ(i)k−1 = 0
is undefined otherwise

(6)
where Ũ (i)

k = 1
M [ũ(i)k − ũ(i)k−1(1 − M)]. Figure 7 shows a

schematic representation of the function ϕ̃−1 for the i-th valve.
This stiction inverse model has an incomplete domain in R, it
admits unique values for ũk− ũk−1 > M( fS− fD) ≥ 0 and for
ũk− ũk−1 < M( fD− fS)≤ 0, it is multivalued for ũk− ũk−1 = 0,
while otherwise is not defined. Note that, to implement this

Figure 7: Inverse function ϕ̃−1 for He’s semiphysical stiction model.

Figure 8: Approximated inverse function ϕ̂−1 for He’s semiphysical stiction
model.

exact model of stiction inverse in the MPC formulation, one
should theoretically impose the following nonconnected do-
main Ũ for values of ũk:

Ũ=
{

ũk : ũ(i)k > ũ(i)k−1 +M( f (i)S − f (i)D ) ∪

ũ(i)k < ũ(i)k−1−M( f (i)S − f (i)D ) ∪

ũ(i)k = ũ(i)k−1, ∀ i = 1, ...,m
}

(7)

which is not actually implementable, since it implies a noncon-
nected set of constraints on ũk, apart from the special case of
pure deadband, that is, f (i)S = f (i)D ∀ i. Therefore, an approxi-
mated inverse model (ϕ̂−1 ≈ ϕ̃−1) is needed to implement a
standard MPC. A possible simple solution is to turn the model
into a continuous function with linear junctions, as the follow-
ing:

u(i)k =


Ũ (i)

k + f (i)D if ũ(i)k − ũ(i)k−1 > M( f (i)S − f (i)D )

Ũ (i)
k − f (i)D if ũ(i)k − ũ(i)k−1 <−M( f (i)S − f (i)D )

Ũ (i)
k +

f (i)D

M( f (i)S − f (i)D )
(ũ(i)k − ũ(i)k−1) if |ũ(i)k − ũ(i)k−1| ≤M( f (i)S − f (i)D )

(8)
Figure 8 shows a schematic representation of this approximated 213

stiction inverse for i-th valve. Note that for f (i)S = f (i)D the third 214

condition, that is, when ũ(i)k − ũ(i)k−1 = 0, has to be reduced to 215

u(i)k = Ũ (i)
k . 216

Extensive simulations have verified that approximated model 217

(8) equals the exact one (6), that is, ϕ̂−1 ≡ ϕ̃−1, only when the 218

difference ũ(i)k − ũ(i)k−1 is always within the domain of the exact 219

inverse, and then one gets ũ(i) ≡ χ(i). Otherwise, the stiction 220

inverse MPC formulation has a structural mismatch and its per- 221
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Figure 9: Behavior of stiction inverse model for a test signal ( fS = 3, fD = 1.5).

formance tends to degrade. Figure 9 shows a test input ũ(i) to222

stiction inverse model. This signal belongs to Ũ in (7) until223

1500 s and thus allows a perfect stiction inversion. Then, once224

the signal ũ(i) assumes the shape of a sine curve and does not225

belong to Ũ, the stiction inversion becomes incomplete and the226

process input χ(i) differs from the controller output ũ(i).227

3.2. Other features of the MPCs selected for comparison228

In this section the main features common to all formulations229

of MPC presented in Section 2.1 are detailed. A canonical230

offset-free MPC is used for all three formulations, as shown231

in Figure 10 [19].

MPC

ProcessDynamic

Steady-state

uk

Optimization

Estimator
d̂k|k

Optimization

Tuning parameters

Tuning parameters

ẑk|k, d̂k|k

zss,k, uss,k

ẑk|k−1
d̂k|k−1

yk

Figure 10: Scheme of offset-free MPC used in proposed formulations.

232

For all three formulations an input disturbance model is used.
The stiction embedding MPC uses a full nonlinear structure, so
that the augmented plant model becomes:

ẑk+1|k = φ(ẑk|k,uk, d̂k|k) =

[
ϕ(χ̂k−1,uk)

f (ξ̂k|k,ϕ(χ̂k−1,uk)+ d̂k|k)

]
d̂k+1|k = d̂k|k

ŷk = ζ (ẑk|k−1)

(9)

where d̂ ∈Rnd is the estimate of input disturbance, where nd =
m. The stiction unaware MPC uses an incomplete nonlinear

structure, since stiction nonlinearity is unmodeled (z→ ξ , φ →
f , ζ → h):

ξ̂k+1|k = f (ξ̂k|k,uk + d̂k|k)

d̂k+1|k = d̂k|k

ŷk = h(ξ̂k|k−1)

(10)

For stiction inversion MPC, a linearized model is used, with
z→ ξ , φ → f and ζ → h, so that:

ξ̂k+1|k = A ξ̂k|k +Buk +Bd d̂k|k

d̂k+1|k = d̂k|k

ŷk =C ξ̂k|k−1

(11)

being A = D
ξ̂

f (ξ̂ ) ∈ Rn×n and B = Du f (u) ∈ Rn×m the Ja- 233

cobian matrices of state dynamics with respect to states ξ and 234

input u, respectively; C = D
ξ̂

h(ξ̂ ) ∈ Rp×n is the Jacobian ma- 235

trix of output dynamics with respect to states ξ , and Bd ∈Rn×nd 236

is the state disturbance matrix. The standard linear input distur- 237

bance model is used: Bd = B. 238

The three modules (Estimator, Steady-State Optimizer, Dy- 239

namic Optimizer) implemented in the proposed MPC formula- 240

tions are briefly described below. Note that all modules are exe- 241

cuted at each sample time given that the disturbance estimate d̂ 242

is updated at each time k, and this implies that new targets need 243

to be recomputed. 244

State estimation. The state estimator receives current output
measurement (yk) and predictions of state (ẑk|k−1) and distur-
bance (d̂k|k−1). The prediction update is made by:

[
ẑk|k
d̂k|k

]
=

[
ẑk|k−1
d̂k|k−1

]
+Kk ek (12)

where ek = yk − ŷk is the prediction error, and Kk is the ob-
server gain matrix ∈R(nz+nd)×p. The Extended Kalman filter, a
classical dynamic observer, is used. Therefore, at each sample
time k, the observer gain matrix Kk is computed by solving the
following equations:

Kk = (Pk|k−1CT
k )(CkPk|k−1CT

k +Rk f )
−1

Pk = (I−KT
k Ck)

T Pk|k−1

Pk+1|k = AkPkAT
k +Qk f

(13)

where Ak and Ck are the Jacobian matrices of the augmented 245

model dynamics and of the output map with respect to the 246

augmented state vector [zT ,dT ]T ; Rk f ∈ Rp×p and Qk f ∈ 247

Rnz+nd×nz+nd are the measurements noise and process noise co- 248

variance matrices, respectively; P0 ∈ Rnz+nd×nz+nd is the co- 249

variance of the state error at the initial time. It is then imposed 250

Rk f = Rwn, that is, estimated noise covariance matrix equals its 251

actual value. 252
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Steady-state optimization. The steady-state optimizer com-
putes the state (zss), input (uss), and output (yss) targets to follow
the desired external set-points (usp, ysp) while respecting the
imposed constraints. The optimization problem is as follows:

(zss,uss,yss) = argmin
z,u,y

`ss(u,y) (14)

subject to:

zmin ≤ z≤ zmax

umin ≤ u≤ umax (15)
ymin ≤ y≤ ymax

css(z,u,y, d̂k|k) = 0

The objective function is quadratic:

`ss(u,y) = (y− ysp)
T Qss(y− ysp)+(u−usp)

T Rss(u−usp)
(16)

where Qss ∈Rp×p is the output penalty matrix and Rss ∈Rm×m
253

is the control penalty matrix. The considered constraints are:254

• Bounds: on state, input, and output vectors;255

• Equilibrium point css(z,u,y, d̂k|k): on the state map and on256

the output map, depending on (9), (10), or (11).257

Dynamic optimization. The dynamic optimizer finds optimal
trajectory (z,u) from current state and input to targets and com-
putes uk = uk(0). The problem is formulated as follows:

[zk,uk] = argmin
z,u

`dyn(z,u) =
N−1

∑
i=0

`(zi,ui)+Vf (zN) (17)

subject to:

zmin ≤ zi ≤ zmax

umin ≤ ui ≤ umax

∆umin ≤ ∆ui ≤ ∆umax (18)
ymin ≤ yi ≤ ymax

z0 = ẑk|k

ceq(zi,zi+1,ui,yi, d̂k|k) = 0

where N is the prediction horizon, and Vf (zN) = (zN −
zss)

T QN(zN − zss) is the terminal weight, with QN ∈ Rnz×nz .
Also this objective function is quadratic:

`(zi,ui) = (zi− zss)
T Q(zi− zss)+

(ui−uss)
T R(ui−uss)+∆uT

i S∆ui (19)

where Q ∈ Rnz×nz is the state penalty matrix, R ∈ Rm×m is258

the control penalty matrix, ∆ui = ui− ui−1 is the input rate of259

change, and S ∈ Rm×m is the control difference penalty matrix.260

The considered constraints are:261

• Bounds: on the state, input, input rate of change, and on262

output;263

• Dynamic map ceq(zi,zi+1,ui,yi, d̂k|k): on the state map and264

on the output map, depending on (9), (10), or (11).265

Controller tuning. Some general details about tuning parame- 266

ters are given, even though specific numerical values depend on 267

the various case studies. In the case of valve stiction, steady- 268

state matrices can be chosen as Qss = Ip and Rss = 0, so that 269

deviations from targets of inputs uss are not weighted at all. 270

This choice is appropriate because valve stiction dynamics (5) 271

admits multiple steady-states; in particular, when the valve is 272

sticking, for a given steady output a range of inputs of width of 273

2 fS is possible, that is, uss ∈ [χss− fS, χss + fS]. 274

For stiction embedding MPC, the state penalty matrix Q can 275

be chosen as a pure diagonal matrix with higher values in the 276

first m elements in order to weigh deviations from steady-state 277

position of valves. For both stiction embedding and stiction 278

inversion MPC formulations, the following constraints on input 279

rate of change are considered: ∆umin,max =∓a fS, where a > 2. 280

3.3. A suitable warm-start for stiction embedding MPC 281

In order to get good tracking performance and move vari-
ables to their targets by avoiding sustained oscillations induced
by valve stiction, a suitable warm-start should be given to the
dynamic optimizer of MPC. A general formulation of warm-
start can be obtained by solving the following dynamic opti-
mization problem:

min
χ̂k,χ̂k+1,uk+ j

(χ̂k−1− χ̂k)
2 +(χ̂k− χ̂k+1)

2 +(χ̂k+1− χ̂ss)
2 (20)

subject to:

χ̂k = ϕ(χ̂k−1,uk)

χ̂k+1 = ϕ(χ̂k,uk+1) (21)
χ̂ss = ϕ(χ̂k+1,uk+2)

χ̂ss = ϕ(χ̂ss,uk+3)

where j = 0, ..3. The problem computes four moves 282

(uk,uk+1,uk+2,uk+3) by optimizing on χ̂k and χ̂k+1, and by as- 283

suming χ̂k+3 = χ̂k+2 = χ̂ss. 284

In the proposed formulation (3), the valves output represent
the first m components of the state vector of the complete plant
model. Therefore, at each sampling time, the steady-state opti-
mization module of stiction embedding MPC (9) can compute
a suitable steady-state target (χss) also for the valves output:

zss = φ(zss,uss) =

[
χss
ξss

]
=

[
ϕ(χss,uss)

f (ξss,ϕ(χss,uss))

]
yss = ζ (zss) = ysp

(22)

Alternatively, a particular input sequence could be used as first- 285

guess trajectory. This suitable warm-start is inspired by a new 286

version of the two-move stiction compensation method. Intro- 287

duced by [20], the “two-move compensator” ought to remove 288

oscillations on control variable, and keep the valve output at its 289

steady-state value, by performing at least two moves in opposite 290

directions. Afterwards, further and improved implementations 291

of stiction compensators based on this approach have been then 292

developed in [21], [22], and [23]. 293
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In this work, the following sequence is given as warm-start to
input signal of each m valve on the basis of semiphysical He’s
stiction model (5):

uk =

{
uk−1 +a fS if uk−1 ≥ χss

uk−1−a fS if uk−1 < χss

uk+1 =

{
χk + fD if uk ≥ χk

χk− fD if uk < χk

uk+2 =

{
Xk+2− fD if uk+1 ≥ χss

Xk+2 + fD if uk+1 < χss

uk+3 =

{
χk+2 + fD if uk+2 ≥ χk+2

χk+2− fD if uk+2 < χk+2

uk+ j = uk+3(= uss) if j > 3

(23)

where Xk+2 = 1
M [χss − χk+1(1−M)]. The first input uk (for294

j = 0) moves the valve stem away from its stuck position, if295

a > 2. By observing (5), it is evident that the maximum value296

of the difference between valve input and output that does not297

cause a movement in the valve is |uk−χk−1|= fS. If uk−1≥ χss,298

in the worst case uk−1− χk−1 = − fS. Therefore, if a > 2, one299

gets |uk−χk−1|> fS and moves the valve: χk 6= χk−1 (see Fig-300

ure 11). Then, for the second movement uk+1 (for j = 1), the301

input is moved towards the actual valve position χk and set at302

a distance fD, so that the valve does not move since the depen-303

dency of valve output with the previous value of χ is removed.304

The third signal uk+2 brings the stem position to its steady-state305

value (χss) in order to eliminate error on control variable. Fi-306

nally, the fourth movement uk+3, analogously to the aim of the307

second move, moves towards the steady-state valve position and308

set the input at distance fD, so that χk+3 = χk+2 = χss. After309

that, the stem cannot move from steady-state position since the310

input signal uk+ j (with j > 3) is always kept constant.311

Note that (24) comprises actually a sequence of four moves,312

being based on He’s semiphysical model. A simpler compen-313

sation sequence has been derived for He’s standard model in314

[1], and indeed represents a regular two-move method, since it315

imposes only two different values to the valve input.316

It is worth noting that the first version of two-move stiction317

compensation presented several drawbacks, which heavily hin-318

der its on-line implementation [22]. Firstly, accuracy is reduced319

by assuming the one-parameter model of [24] to predict the320

valve behavior. Moreover, the steady-state value of valve po-321

sition (χss) is assumed to be known, while this variable is not322

usually measurable in process plants. In particular, the method323

relies on the strong assumption that all measurements are rep-324

resented by deviation variables and their respective steady-state325

values are zero.326

In the proposed warm-start (24), steady-state valve positions
are estimated by (22), and, for transitory values of valve output
(χk,χk+1), the estimates computed along the prediction hori-
zon N are considered. This input sequence proves to be a valid
warm-start for the stiction embedding MPC, by improving sig-

Figure 11: Sequence of moves for stiction compensation.

nificantly performance of the dynamic optimization module:

u0
1:N = [u0

1, u0
2, u0

3,u
0
4, ... , u0

N−1, u0
N ]

= [u0±a fS, χ̂1± fD, X̂2± fD, χ̂ss± fD, ...

... , χ̂ss± fD, χ̂ss± fD]

(24)

where X̂2 =
1
M [χ̂ss− χ̂1(1−M)]. 327

The beneficial effect of the proposed warm-start is shown in
the remainder of this section for a numerical case-study. Nom-
inal performance is considered, since no error in process and
valve dynamics is present, and no noise is added. A linear SISO
system is considered for the sake of simplicity. Stiction is de-
scribed by He’s semiphysical model with fS = 5 and fD = 2.
A third-order transfer function for the process model is consid-
ered:

P(s) =
1

(10s+1)(5s+1)(s+1)

and the corresponding state-space model in discrete time do- 328

main with sampling period Ts = 1 is obtained. Four different 329

scenarios are analyzed: 330

1. standard stiction embedding MPC: no warm-start is used; 331

2. pure warm-start: the dynamic module of stiction embed- 332

ding MPC is bypassed and the controller output corre- 333

sponds exactly to the warm-start sequence; 334

3. stiction embedding MPC with warm-start: the sequence in 335

(24) is given as warm-start to the controller; 336

4. improved stiction embedding MPC with warm-start: the 337

proposed warm-start is used and a revised objective func- 338

tion is introduced. 339

Figure 12 shows time trends of process output and valve posi- 340

tion of the various scenarios for the same set-point. The stan- 341

dard stiction embedding MPC does not move the input, thus the 342
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Figure 12: Beneficial of warm-start on stiction embedding MPC.

output does not reach the new set-point. The dynamic optimizer343

finds more convenient to stay at the initial steady-state, since,344

by modeling the valve deadband within the plant dynamics, the345

objective function could be diminished only along an unpracti-346

cal prediction horizon (Ñ ' 5 · 104 for this specific case). The347

pure warm-start excludes dynamic module of MPC and is ba-348

sically open-loop mode control. This scenario allows one to349

get new reference with perfectly zero offset and new target for350

states, but with a very slow response.351

The stiction embedding MPC with warm-start moves valve
position when set-point changes occur, but may yield signifi-
cant offsets as new targets cannot be matched always perfectly
by dynamic module. Finally, in the improved stiction embed-
ding MPC formulation, the dynamic objective function (17) is
revised as follows:

`(zi,ui) = (zi− zss)
T Q(zi− zss)+∆χ̂

T
i Qs∆χ̂i (25)

where ∆χ̂i = χ̂i− χ̂i−1 is the rate of change of the estimated352

valve position, and Qs ∈ Rm×m is the corresponding difference353

penalty matrix. Note that matrices R and S in (17) have to be354

set to zero accordingly, since limitations on process input are355

now imposed directly on the estimated valve position and not on356

controller output. This refined approach further reduces offset357

and speeds up response, but at the expense of a larger input358

variation and wider valve movements in transitory dynamics.359

Nevertheless, it has to be remarked that the proposed warm-360

start has a major limitation since it is effective only for constant361

set-point or in the case of pure step changes. As a matter of fact,362

the two-move compensation which is based on is actually suit-363

able only in the case of constant set-point, that is, when a fixed364

steady-state value χss of valve position is known, measured or365

estimated. In the case of step changes, targets of valves posi-366

tion, as other states, show step variations and proposed warm-367

start is still effective. However, degraded performance occur368

when set-point is time-varying and corresponding steady-state369

values of valves position change along the short horizon (four370

moves) of the warm-start.371

Figure 13: A multivariable nonlinear system: the quadruple-tank process.

4. Simulation analysis 372

The objective of this section is to investigate the performance 373

of the three proposed formulations of MPC in order to compen- 374

sate for valve stiction. Simulations are performed on a code 375

adapted from [25], written in Python 2.7 with the use of sym- 376

bolic framework offered by CasADi 3.1. Both optimization 377

modules of MPC implement IPOPT as nonlinear programming 378

solver. 379

4.1. Quadruple-tank process 380

An adaptation of the well-known quadruple-tank process 381

[26] is here considered. A schematic diagram of the system 382

is shown in Figure 13. The target is to control the level of the 383

lower two tanks by means of two control valves (V1, V2). The 384

process inputs are u1 and u2, that is, the output signals from 385

MPC, and the process outputs are y1 and y2, level measurement 386

of lower tanks, while level of upper tanks are assumed not mea- 387

surable. 388

Mass balances and Bernoulli’s law yield to the following
continuous-time nonlinear process dynamics:

dξ1

dt
=− a1

A1

√
2gξ1 +

a3

A1

√
2gξ3 +

γ1

A1
K1χ1

dξ2

dt
=− a2

A2

√
2gξ2 +

a4

A2

√
2gξ4 +

γ2

A2
K2χ2

dξ3

dt
=− a3

A3

√
2gξ3 +

(1− γ2)

A3
K2χ2

dξ4

dt
=− a4

A4

√
2gξ4 +

(1− γ1)

A4
K1χ1

(26)

where the meaning of all variables and parameters is detailed in 389

Table 1. 390

The inlet flow to tank 1 is γ1
A1

K1χ1, and the inlet flow to tank 4

is (1−γ1)
A4

K1χ1. Analogously, inlet flows result for tank 2 and
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Table 1: Variables and parameters of quadruple-tank process.

Parameter Description [Unit] Value

ξi water level [cm] -
χi valve position [%] -
g acceleration of gravity [cm/s2] 981.0

ai cross-section of the outlet hole [cm2]

a1 = 0.071
a2 = 0.057
a3 = 0.071
a4 = 0.057

Ai cross-section of tank [cm2]

A1 = 28.0
A2 = 32.0
A3 = 28.0
A4 = 32.0

γ i flow splitting factor ∈ (0,1) γ1 = 0.7
γ2 = 0.6

ξ max
i maximum tank level [cm] ξ max

1 = 20.0
ξ max

2 = 20.0

qmax
i maximum flow rate [cm3/s]

qmax
1 = 2 ·a1

√
2gξ max

1
qmax

2 = 2 ·a2
√

2gξ max
2

Ki

proportional constant, valve posi-
tion vs. flow rate χi−qi;

K1 = qmax
1 /100

valves with linear characteristics K2 = qmax
2 /100

tank 3. The modeling and control of the system have been stud-
ied at two operating points [26]. In this paper, only conditions
with minimum-phase characteristics are investigated, when the
control is easier and holds for (γ1,γ2)> 0.5. Control valve can
be subject to stiction, which is described by He’s semiphysical
model (5). Valve V1 is sticky, with f (1)S = 6, f (1)D = 2, M = 1.99,
while valve V2 is healthy, so that χ(2) = u(2). Note that stiction
presence and amount are assumed known a priori for the plant
model. Continuous-time dynamics of four tanks (26) is inte-
grated using explicit Runge-Kutta 4th order method, in order to
match discrete-time dynamics of two valves:

zk+1 =

[
χk

ξk+1

]
= φP(zk,uk) =

[
ϕ(χk−1,uk)

fP(ξk,ϕ(χk−1,uk))

]
yk =Cξk + vk =

[
1 0 0 0
0 1 0 0

]
ξk + vk

(27)

where valves output and tanks level compose the state vector of391

the complete plant zk = [χT
k−1,ξ

T
k ]T .392

4.2. Nominal comparison393

The three proposed formulations of MPC are compared un-394

der equivalent conditions in terms of state observer and distur-395

bance model as discussed in Section 3.2. The prediction hori-396

zon and the sampling period are set to N = 50 and Ts = 5s. The397

major differences lay in the stiction compensation sequence of398

(24) and in the revised cost function of (25), which are respec-399

tively used within dynamic optimization module of the stiction400

embedding MPC formulation as warm-start and as objective401

function. Two different scenarios are studied:402

• nonlinear models: the quadruple-tank model used within403

MPC formulations is nonlinear (26); only stiction unaware404

MPC and stiction embedding MPC, which also imple- 405

ments valves nonlinearity, are derived. 406

• linearized model: the quadruple-tank model used within 407

stiction inversion MPC is purely linear and the stiction 408

nonlinearity ϕ(·) is inverted after optimization. 409

In this second scenario, the nonlinear dynamics of four tanks in
(27) is linearized around the initial steady-state point (ξ̂ss, χ̂ss):

A = D
ξ̂

f (ξ̂ss, χ̂ss) =


0.9222 0 0.1958 0

0 0.9451 0 0.1479
0 0 0.7958 0
0 0 0 0.8477

 ,

B = Dχ̂ f (ξ̂ss, χ̂ss) =


0.0304 0.0019
0.0009 0.0231

0 0.0162
0.0110 0

 (28)

where D
ξ̂
(·) and Dχ̂(·) are the Jacobians of process model dy- 410

namics with respect to tank levels ξ̂ and valves position χ̂ , and 411

ξ̂ss = [11.99,12.19,1.51,1.42], and χ̂ss = [39.58,38.15]. 412

For all three formulations, tuning parameters of the static 413

module and the terminal penalty matrix are the same: Qss = 414

I2, Rss = 0, and QN = 102Inz . Some differences lay in dy- 415

namic modules. In the case of stiction embedding (SE) 416

MPC, Q = diag[103,103,1,1,10−6,10−6], QS = diag[10,100]. 417

For stiction unaware (SU) and stiction inversion (SI) MPC, 418

Q = diag[1,1,10−6,10−6] ' CTC, S = diag[10,100], R = 419

diag[103,103]. Note that CTC = diag[1,1,0,0], QSE
(1:2,1:2) = 420

RSU,SI , and QSE
S = SSU,SI , that is, tuning values are compara- 421

ble among the three formulations. 422

Also a corresponding “ideal” MPC, with same tuning param- 423

eters, but under stiction-free environment has been considered. 424

This nonlinear stiction-free formulation (NMPC-SF) is used as 425

baseline for comparison, since stiction unaware MPC and stic- 426

tion embedding MPC can be reduced to this controller in the 427

absence of stiction. Figure 14 shows time trends of the tank lev- 428

els, controller outputs, and valves position with different MPC 429

formulations for the same set-points, comprised of sequences 430

of step changes. Stiction embedding formulation can guaran- 431

tee very good tracking performance with negligible offsets on 432

both process variables, thus an effective stiction compensation 433

is possible. Note that valve stiction is compensated so well to 434

reproduce the behavior of the stiction unaware nonlinear con- 435

troller in stiction-free environment (NMPC-SF). As a matter of 436

fact, process outputs and valves position are substantially the 437

same. 438

On the other hand, simple unaware MPC shows lower perfor- 439

mance and does not usually remove oscillations induced by stic- 440

tion, which propagate from sticky valve to all control variables. 441

Similarly, even stiction inversion MPC, despite being aware of 442

the valve malfunction, cannot yield good control, since the con- 443

ditions (7) on input sequence to get a perfect stiction inversion, 444

are not verified in closed-loop operation. Note that fluctuations 445

produced by these two MPC formulations are caused by the 446

disturbance estimate which is not zero, due to the unmodeled 447
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– or miss-modeled – valve dynamics. Frequencies and ampli-448

tudes of oscillation may change during the same simulation,449

since a dynamic state observer is used. Therefore, the effects450

of a time-varying gain Kk (12) on stiction induced oscillations451

are similar to those of a change of proportional gain Kc in a452

traditional PID controller. Finally, note that controller retuning453

cannot completely remove these stable oscillations, but simply454

alters occurrences, amplitudes and frequencies.455

A different version of stiction inversion MPC has also been456

tested. In order to fill the region where the exact inverse model457

ϕ̃−1 is undefined, instead of the linear function used in ϕ̂−1
458

(Figure 8), a sigmoid function has been used. This modified459

version of stiction inversion model gives some little improve-460

ments, since lower amplitude and period fluctuations with re-461

spect to the original formulation can be obtained. However,462

this revised controller is not enough to give a complete stiction463

inversion and then to delete sustained oscillation. In the sake of464

space, the corresponding results are not reported.465

It is also worth highlighting that the proposed fully-nonlinear466

formulation of stiction embedding MPC is more effective than467

a corresponding partly-nonlinear MPC, based on the linearized468

model (28), since plant-model mismatch is introduced by the469

linearization. A linearized stiction embedding MPC may ex-470

hibit non-negligible offsets since target calculation would be471

corrupted by linearization of four-tank dynamics, but detrimen-472

tal oscillations would be anyway avoided. In addition, non-473

negligible errors may be due to corruption of warm-start ef-474

ficiency, since targets would vary also after set-point changes475

due to model linearization. Finally, an eventual linearized for-476

mulation of stiction unaware MPC would exhibit fluctuations of477

similar amplitude and frequency than corresponding nonlinear478

controller.479

4.3. Further results480

Some further analyses are presented in this section.481

Effect of noise. The noise effect is investigated by considering
all the same parameters used in nominal analysis. Eight sim-
ulations are performed with different magnitude of the output
white noise covariance matrix Rwn, where v=R1/2

wn vrnd, and vrnd
is a random sequence with normal distribution, zero-mean and
unit standard deviation. The performance is evaluated using the
following closed-loop objective function:

JCL = (y− ysp)
T (y− ysp)+∆χ

T Sp∆χ

+(χ−χ
SE)T Rp(χ−χ

SE) (29)

where Sp = QS in the case of stiction embedding MPC, while482

Sp = S for stiction unaware and stiction inversion MPC; Rp =483

Q(1:2,1:2) for stiction embedding MPC and Rp = R for other two484

formulations. Note that χ and ∆χ are the value and the rate485

of change of actual valves position and χSE is the actual valves486

position for a stiction embedding MPC in nominal scenario, that487

is, in the case of no noise and no error on plant dynamics.488

Table 2 summarizes the overall results. It can be observed489

that for stiction unaware and stiction inversion MPC rather con-490

stant values of JCL are obtained. The stiction embedding MPC491

produces lower values of JCL only until Rwn = 10−5, but shows 492

a lower robustness to noise, since larger values are obtained 493

as the noise increases with respect to other two formulations. 494

Therefore, very good tracking performance and stiction com- 495

pensation cannot be guaranteed for significant levels of noise, 496

since non-negligible offset on controlled variables may occur. 497

Effect of mismatch on stiction parameters. Finally, the effect of 498

wrong values of stiction parameters ( f̂S, f̂D) in the valve model 499

of two stiction aware MPC formulations – inversion and em- 500

bedding – is studied. Actual values are fS = 6, fD = 2, and 501

mismatched values on static and dynamic friction are consid- 502

ered separately. In the first case, f̂S is varied; in the second, f̂D 503

is changed. Figure 15 summarizes the whole results, by show- 504

ing values of JCL (29) with respect to single errors: eS = fS− f̂S 505

and eD = fD− f̂D. 506

For stiction embedding MPC, as expected, minimum values 507

of the objective function are obtained for null errors. Whereas, 508

performance can significantly degrade when stiction parame- 509

ters are wrong, underrated or overrated, as significant offsets on 510

controlled variables may arise. Therefore, stiction embedding 511

MPC proves to be stiction parameters dependent and is practi- 512

cable only when stiction parameters are well known or in the 513

case of slight uncertainties on valve stiction dynamics. Con- 514

troller retuning could improve performance, but offsets might 515

occur again when other operation conditions are imposed. On 516

the other hand, stiction inversion MPC shows a higher value 517

of performance index JCL in the nominal case (eS,eD = 0), but 518

this formulation has overall a much higher robustness to errors 519

on stiction parameters. Oscillations occur in all scenarios, only 520

frequencies and amplitudes may change. 521

5. Conclusions 522

This paper has presented three different formulations of MPC 523

to handle static friction in control valves for industrial pro- 524

cesses. A fully unaware formulation, a stiction embedding 525

structure, and a stiction inversion controller are designed. These 526

model predictive controllers have been applied to multivariable 527

processes with nonlinear systems. 528

It is observed that stiction embedding nonlinear MPC is the 529

only formulation which can guarantee good performance in set- 530

points tracking and also stiction compensation. The two-move 531

stiction compensation method is revised and used as warm-start 532

to build a suitable trajectory for this MPC. In addition, some 533

appropriate choices of objective functions and variables con- 534

straints are used with the aim of further improving performance. 535

Nevertheless, this controller can produce non-negligible offsets 536

when stiction is still fully modeled, but a linearization of non- 537

linear process dynamics is performed. In addition, a robust be- 538

havior is not possible in the presence of significant amount of 539

white noise on the output. A similar result arises in the case 540

of errors in the valve dynamics, that is, mismatches on stiction 541

parameters, since offsets on process variables may be relevant. 542

On the other hand, the other two MPC formulations show 543

lower compensation performance and do not completely re- 544

move oscillations induced by valve stiction in the nominal sce- 545
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Figure 14: Nominal comparison. Tank levels, controller outputs, and valves position for three different MPC formulations.

Table 2: Effect of noise for three MPC formulations. Values of the objective function JCL[×107].

Noise Level (Rwn) 0 10−9 10−6 10−5 10−4 10−3 10−2 0.1

SU-MPC 1.6510 1.8130 1.8908 1.5204 1.6556 1.8591 1.8925 1.8638
SI-MPC 1.7459 1.2992 1.3418 1.3434 1.5666 1.4930 1.3238 1.9481
SE-MPC 0.1009 0.1235 0.8343 1.2361 4.5288 7.1767 8.7153 8.4120

nario. Note that even stiction inversion MPC, despite being546

aware of the valve fault, cannot yield a good control, since con-547

ditions of discontinuity on input sequence to get perfect stic-548

tion inversion are hardly verified when this controller is imple-549

mented in closed-loop. Anyway, this formulation shows higher550

robustness to errors on stiction parameters, and frequencies and551

amplitudes of oscillation marginally change.552
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