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Abstract 1 

Follicular Variant of Papillary Thyroid Carcinoma (FVPTC) is usually associated with a good outcome. 2 

Nevertheless, in rare cases, it develops distant metastases (1-9%). 3 

Our goal was to investigate whether mRNA and miRNA expression profiles may help distinguish between 4 

metastatic versus non-metastatic FVPTCs. 5 

Twenty-four primary FVPTCs, 12 metastatic and 12 non-metastatic, with similar clinicopathological features 6 

were selected and analyzed by nanoString nCounter technology using two distinct panels for expression 7 

analysis of 740 mRNA and 798 miRNAs. Data analysis was performed using the nanoString nSolver 3.0 8 

software.  9 

Forty-seven mRNA and 35 miRNAs were differentially expressed between the two groups. Using these 10 

mRNA and miRNAs, metastatic and non-metastatic FVPTCs were clearly divided into two distinct clusters. 11 

Our results indicate that FVPTCs with metastatic abilities have different expression profiles compared to the 12 

non-metastatic. A prospective validation is needed to evaluate the usefulness of this molecular approach in 13 

the early identification of high-risk FVPTCs.  14 

 15 

Keywords: FVPTC; Distant Metastasis; mRNA Expression, miRNA Expression.  16 
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Introduction 17 

The incidence of thyroid cancer and the mortality rate have increased over the past few decades worldwide ( 18 

Cancer Facts and Figures 2018). 19 

Despite the advances in knowledge and treatment of thyroid carcinoma, metastases continue to be the most 20 

significant cause of thyroid cancer mortality (Kitamura et al., 1999; Mazzaferri and Kloos, 2001). 21 

Follicular variant of papillary thyroid carcinoma (FVPTC) is one of the most frequent and fastest growing 22 

subsets of papillary thyroid carcinoma (PTC), accounting for 15 to 30% of all PTC cases. FVPTCs can be 23 

divided into two distinct subtypes: the encapsulated forms with or without capsular and/or vascular invasion 24 

and the non-encapsulated or infiltrative forms with invasion of the surrounding thyroid parenchyma (Liu et 25 

al., 2006; Piana et al., 2010; LiVolsi, 2011; Kakudo et al., 2012; Vivero et al., 2013). Recently, several 26 

studies have attempted to analyze the behavior and outcome of FVPTC. All of those works concurred that 27 

FVPTC display an intermediate behavior and clinicopathological features between those of the classical 28 

variant (CV) of PTC and those of the follicular thyroid carcinoma (FTC), making it challenging to establish a 29 

standard treatment protocol ( Yu et al.,2013; YANG et al., 2015). 30 

Usually, FVPTC is associated with a good outcome, especially if the tumor is encapsulated without capsular 31 

and/or vascular invasion. On the contrary, the encapsulated form of FVPTC with capsular and/or vascular 32 

invasion and the non-encapsulated form show a more aggressive behavior (Liu et al., 2006; LiVolsi and 33 

Baloch, 2009; Rivera et al., 2010; Vivero et al., 2013; Tallini et al.,2016). 34 

Several studies have shown that the age at diagnosis, histology, tumor size, extrathyroidal extension, lymph 35 

node and distant metastases are predictors of prognosis in thyroid cancer (Nixon et al., 2012; Podnos et al., 36 

2005; Sampson et al., 2007; Shah et al., 1992; Zhao et al., 2012). 37 

Distant metastasis (DM) affects 3-20% of patients with differentiated thyroid cancer, and up to 50% of these 38 

patients show a metastatic disease at diagnosis or during the first few months after surgery (Shaha et al., 39 

1997; Lin et al., 1999; Benbassat et al., 2006; Mihailovic et al., 2007; Lee and Soh, 2010; Schneider et al., 40 

2015; Farina et al., 2016). 41 

The frequency of DM is different among the various thyroid histotypes (Pomorski and Bartos, 1999; 42 

Ruegemer et al., 1988; Shaha et al., 1996; Haq and Harmer, 2005). Regarding FVPTCs, DM are uncommon 43 

and affect only 1% to 9% of the patients (Li et al., 2016; Schneider et al., 2015; Shaha et al., 1997; Shi et al., 44 
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2016; Xu et al., 2017). In those rare cases, the most common site of metastasis are the lungs followed by the 45 

bones. Other metastatic areas are less common and involve the mediastinum, brain, liver and skin (Nwaeze et 46 

al., 2015; Daniels, 2016). 47 

Higher rates of distant metastases from FVPTCs are described in patients with non-encapsulated forms, 48 

extrathyroidal extension, and angiolymphatic invasion (Haq and Harmer, 2005; Li et al., 2016). In particular, 49 

some authors reported that 25 to 50% of FVPTCs with vascular invasion show distant metastases (Mete and 50 

Asa, 2011).  51 

The clinicopathological features of a tumor by themselves are not sufficient to predict the development of a 52 

distant metastatic disease in FVPTCs. 53 

Important questions about metastatic progression remain to be addressed. Currently, the main challenge is 54 

understanding metastatic potential at the molecular level. 55 

In this regard, several studies have reported comparisons of the gene expression profiles between primary 56 

and metastatic tumors, such as melanoma, breast, colon and lung cancer (Ganepola et al., 2010; Ramaswamy 57 

et al., 2003; Weigelt et al., 2003). 58 

Furthermore, numerous studies demonstrated that microRNAs (miRNA) play a key role   in metastatic 59 

progression. These miRNAs control metastatic potential through the divergent or convergent regulation of 60 

metastatic gene pathways (Baranwal and Alahari, 2010; Pencheva and Tavazoie, 2013; Seven et al., 2014).  61 

However, unlike other tumor models, very few studies concern the identification of peculiar molecular 62 

profiles for the metastatic potential of thyroid cancer exist (Londero et al., 2016). More importantly there are 63 

no studies investigating the presence of a molecular signature for the metastatic potential of FVPTCs. 64 

Therefore, according to this literature data, we aimed to investigate the molecular basis underlying the 65 

different ability of FVPTCs to metastasize with similar histopathological characteristics. In this study, we 66 

characterized the molecular landscape of metastatic and non-metastatic FVPTC by analyzing two distinct 67 

panels that consist of carefully selected mRNAs and miRNAs. 68 

Materials and Methods 69 

Patients and Study Design Between 2000 and 2014, 14,082 consecutive patients underwent thyroid surgery 70 

at the Department of Surgical, Medical, Molecular Pathology and Critical Area of the University of Pisa and 71 
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had a diagnosis of papillary thyroid carcinoma. Among them, 4,847 (34.4%) were FVPTCs. Of the 4,847 72 

FVPTC patients, 47 (0.9%) patients developed DM beyond the locoregional neck area (figure 1). 73 

We conducted this study matching a group of 12 primary metastatic (Met) FVPTCs with 12 non-metastatic 74 

(NonMet) FVPTCs fulfilling all the following inclusion criteria: 1) absence of solid/trabecular areas of more 75 

than 30%, 2) absence  of papillary growth, 3) absence of insular areas, 4) absence of necrosis, 5) absence of 76 

mitotic activity >3/10HPF, 6) in the presence of multifocality, the tumor with the greatest size or highest pT 77 

status was always analyzed, and 7) absence of poorly differentiated areas in histologically proven distant 78 

metastasis.  79 

The NonMet group was made up by searching for FVPTCs with clinicopathological features similar to those 80 

of the Met group, including age, gender, tumor size and pathological staging (figure 2). To exclude the 81 

biochemical persistence of the disease or the developing of occult loco-regional recurrence, nodes or distant 82 

metastases, we chose NonMet patients with a mean follow-up of 9 years.  83 

Histological diagnoses were reviewed in a blinded fashion by three pathologists (F.B , L.T, C.S.) according 84 

to the World Health Organization criteria (Lloyd, 2017). Tumors were staged according to the 8th edition of 85 

the tumor node-metastasis-based staging system recommended by the American Joint Commission on 86 

Cancer (AJCC) and the International Union Against Cancer (Amin, 2017). 87 

After the initial review and case selection, fourteen clinicopathological features (age, gender, tumor size, 88 

histological subtype, capsular invasion, vascular invasion, extrathyroidal invasion, intra-tumoral fibrosis, 89 

multifocality, bilaterality, stage, distant metastasis, years of follow-up and disease status at the last follow-90 

up) were evaluated for each case for the two groups.  91 

After surgical treatment, all the patients were followed at the Department of Clinical and Experimental 92 

Medicine of University of Pisa. When indicated, they were treated with low radioiodine (131I) activities for 93 

postsurgical thyroid remnant ablation. Subsequent treatments of 131I were administered when required. 94 

At 12 months, the patients underwent physical examination, neck ultrasound (US) evaluation, recombinant 95 

human TSH stimulation tests for serum thyroglobulin (sTg) or basal ultrasensitive Tg measurement, and in 96 

cases of detectable anti-Tg antibodies (TgAb), a diagnostic whole-body scan (dWBS). 97 

Patients were considered to be free of disease when their sTg levels after recombinant human TSH were less 98 

than 1 ng/mL or their basal ultrasensitive Tg was less than 0,1 ng/mL, neck US was negative, and TgAb was 99 
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undetectable. The patients who did not undergo 131I remnant ablation were considered to be free of disease 100 

when the neck US was negative and sTg and TgAb were undetectable and/or stable during follow-up. 101 

Patients free of disease were followed up every 12–18 months. Patients who were not considered free of 102 

disease underwent subsequent 131I and/or other surgical treatments if necessary. Moreover, in case of  103 

suspicious distant metastases, other imaging studies such as computed tomography, Positron Emission 104 

Tomography, Magnetic Resonance Tomography and bone scintigraphy were performed. 105 

RNA and miRNA extraction For each sample, four FFPE tissue sections, with a thickness of 5 µm, 106 

underwent standard deparaffinization and enrichment by manual microdissection. The last section was 107 

stained with hematoxylin and eosin; the tumor area was marked, and the percentage of tumor cells was 108 

estimated by a pathologist. The mean proportion of tumor cells in the analysed samples was  at least 70%. 109 

The tumor tissue was manually microdissected to obtain tumor cell enrichment by excluding lymphocytic 110 

infiltration, hemorrhagic area, and fibrous tissue. Total RNA, including miRNAs, were isolated using a 111 

commercial kit (miRNeasy Mini Kit, Qiagen, Hilden, Germany) according to the manufacturer’s 112 

instructions. The RNA concentration was assessed using a spectrophotometer (Dropsense Xpose, Trinean, 113 

Gentbrugge, Belgium). The RNA resulted adequate for mRNA expression whenever its concentration was ≥ 114 

30 ng/µL and its quality was acceptable if the ratio between the value of the absorbance (A) at 260 nm and 115 

the absorbance at 280 nm was ≥1.8, and the ratio between the value of absorbance (A) at 260 nm and the one 116 

at 230 nm was ≥ 2. 117 

NanoString nCounter Assay The nCounter PanCancer Progression Panel and the nCounter v3 miRNA 118 

assay Panel used in this study were designed and synthesized by NanoString Technologies (NanoString, 119 

Seattle, WA, USA).  120 

For the mRNA expression, the panel was created by cross referencing several public databases and consisted 121 

of 740 endogenous human genes involved in 4 major processes of tumor progression: angiogenesis (ANG), 122 

extracellular matrix (ECM), epithelial-mesenchymal transition (EMT) and metastasis (META), plus 30 123 

housekeeping genes for reference.  124 

For the miRNA expression, the panel included unique oligo-nucleotide tags onto 798 highly curated human 125 

miRNAs (from miRBase v21) and five housekeeping mRNAs for reference (ACTB, B2M, GAPDH, RPL19 126 
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and RPLP0). Twenty-five control probes recognizing either synthetic mRNA or miRNA targets were used  127 

to monitor the efficiency and specificity of each reaction step. 128 

Each sample was analyzed with both panels by using 150 ng of total RNA for hybridization (21 h at 65°) in 129 

addition to the probe pairs consisting of a Reporter Probe, which carry the signal on their 5’ end, and a 130 

Capture Probes, which carries biotin on their 3’ end. After hybridization, sample cleanup and digital report 131 

counts were performed according to the manufacturer’s instructions.   132 

Data Normalization mRNA expression data and miRNA expression data were analyzed using nanoString 133 

nSolver version 3.0 software.  134 

For mRNA expression analysis, raw data normalization was executed in two steps. The first was a technical 135 

normalization. The background noise was subtracted using 8 negative controls. The mean and standard 136 

deviation (SD) were calculated from the negative controls, and the threshold was defined as the mean plus 2 137 

SD. Furthermore, a normalization factor was calculated by obtaining the geometric mean of the six internal 138 

positive controls used for each sample to remove the potential systematic differences between the individual 139 

hybridization experiments. For each sample, a positive control scaling factor was calculated. If the calculated 140 

positive control scaling factor was outside a range of 0.3-3, it indicated technical problems, implicating the 141 

exclusion of the sample from further analysis. On the other hand, the second was a biological normalization 142 

using housekeeping genes to remove any effect that might be attributed to differences in the amount of input 143 

RNA. In detail, this normalization corrects for differences in the RNA input among the assays, allowing the 144 

adjustment of gene counts on the basis of the reference genes. For each sample a biological normalization 145 

factor was determined and whenever it was outside the range of 0.1-10.0, the sample was excluded from the 146 

analysis. All the normalization steps were performed according to the manufacturers’ instructions.  147 

For miRNA expression, we calculated a background level of expression for each sample using the mean 148 

level of the negative controls plus two SD. MiRNAs expressed less than two standard deviations from the 149 

mean and were excluded from further analysis. After that, miRNA input levels were normalized using the 150 

geometric mean of the top 100 miRNAs with lower variability coefficients, according to the manufacturer’s 151 

protocol. All the normalization steps were performed according to the manufacturers’ instructions. 152 

DIANA-miRPath v3.0 DNA Intelligent Analysis (DIANA) - miRPath v3.0, a web-based computational 153 

tool, was used to evaluate the potential interactions between the differentially expressed miRNAs and 154 
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mRNAs. This software predicts the miRNA targets with high accuracy based on the experimentally 155 

supported miRNA-mRNA interactions from TarBase, v7.0. It performs an enrichment analysis to identify the 156 

target genes of multiple miRNAs in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 157 

(Vlachos et al., 2015). As our analysis is hypothesis-free, we used the “pathway union” option of miRPath 158 

software. P-values were obtained by Fisher’s exact test as enrichment analysis method and the false 159 

discovery rate (FDR) was estimated using the Benjamini and Hochberg method (Benjamini and Hochberg, 160 

1995).  161 

Statistical Analysis The differential mRNAs and miRNA expression between the metastatic and non-162 

metastatic FVPTC samples was tested using the Mann-Whitney U test followed by the Benjamini-Hochberg 163 

correction. 164 

Given the exploratory nature of the present study to detect differential expressed mRNAs and miRNAs to be 165 

validated in future experiments, a liberal cutoff of 0.25 for the FDR was set as the significant threshold. 166 

Statistical analysis was performed using R software package, version 3.4.0. 167 

Hierarchical clustering was performed with the NanoString nSolver version 3.0 software on normalized data 168 

using Pearson correlation (r).  169 

The association between the differentially expressed miRNAs and the differentially expressed mRNAs was 170 

carried out by (DIANA)-miRPath v3.0 software using FDR<0.05 as the significance threshold (Vlachos et 171 

al., 2015). 172 

Results 173 

Clinicopathological features of FVPTCs with and without distant Metastases Clinicopathological 174 

parameters of all the cases are reported in Table 1. No significant differences regarding age, gender, tumor 175 

size, histological subtype, capsular invasion, vascular invasion, extrathyroidal invasion, intra-tumoral 176 

fibrosis, multifocality, bilaterality and pT stage have been observed between the Met and NonMet groups. 177 

None of the cases both in Met and NonMet groups presented lymph-node metastases. In details, one out of 178 

12 Met patients underwent to lymphadenectomy, resulted negative for metastasis at histological examination. 179 

The mean follow up was 5.1 years for the Met tumors, while patients without metastasis have been observed 180 

for 9.3 years. 181 
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Twenty-one out of the 24 cases were encapsulated FVPTCs with capsular invasion (11 Met, 10 NonMet) and 182 

three out of 24 were infiltrative FVPTCs (1 Met, 2 NonMet). The vascular invasion foci were observed in 8 183 

Met FVPTCs (6 with <4 foci, and 2 with ≥4 foci) and 5 NonMet FVPTCs (3 with <4 foci, and 2 with ≥4 184 

foci).  185 

NonMet patients showed negative neck US evaluation and undetectable sTg and TgAb levels at their last 186 

screening visit. 187 

Of the 12 Met patients, 4 developed DM before surgery, 3 patients within 12 months after thyroidectomy, 188 

and 5 patients with DM were found during the follow-up period. 189 

Metastatic lesions have been confirmed histologically in 10 out of 12 patients. Nine patients had a single DM 190 

located in bone (6), central nervous system (2) and lung (1); one patient developed multiple bone metastases. 191 

Two patients had a DM detected in first 131I WBS (multiple bone and thorax uptake).  192 

mRNA Expression Profile of Metastatic and Non-metastatic FVPTCs One of samples failed the 193 

biological normalization, thus indicating an mRNA input of poor quality, and was excluded from further 194 

analyses. The expression profile of the 740 mRNAs was carried out on 23 tumor samples, including 12 195 

(52%) Met FVPTCs and 11 (48%) NonMet FVPTCs, to identify differentially expressed mRNAs between 196 

the two groups.  197 

Setting an FDR<0.25, 47 out of 740 mRNAs were differentially expressed between the Met and NonMet 198 

lesions. In detail, a total of 4 mRNAs (SMC3, TOM1L1, PLA2G2A and F11R) were upregulated in Met 199 

FVPTCs, whereas 43 mRNAs  were downregulated (Table 2). 200 

Association between Differentially Expressed mRNAs and tumor progression pathways The 201 

differentially expressed mRNAs in the Met versus NonMet FVPTCs were implicated in different pathways, 202 

as shown in Table 2. In detail, the 4 mRNAs upregulated in the Met group were: SMC3 (Structural 203 

Maintenance Of Chromosomes 3), which is involved in remodeling of basement membrane (ECM process) 204 

and tumor growth, TOM1L1 (target of myb1 (chicken)-like 1), which is implicated in the Epithelial-205 

Mesenchymal Transition (EMT process), PLA2G2A (phospholipase A2, group IIA), which is related to 206 

VEGFA signaling (ANG) and F11R (F11 receptor), which is associated with Blood Coagulation (ANG 207 

process), Cell Adhesion and Cellular Differentiation (EMT process), remodeling of the Integral to Membrane 208 

and Plasma Membrane structural components (ECM process). 209 
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On the contrary, among the 43 downregulated mRNAs in the Met versus NonMet tumors, 27 mRNAs 210 

(62.8%) were involved in ANG, 14 mRNAs (32.5%) in EMT, 13 mRNAs (30.2%) in ECM and 6 mRNAs 211 

(13.9%) in META. Moreover, 15 of these downregulated mRNAs were involved simultaneously  in different 212 

pathways.   213 

Cluster Analysis using 47 Differentially Expressed mRNAs To compare the mRNAs expression profile 214 

between the Met and NonMet FVPTCs, an unsupervised hierarchical clustering with a Pearson correlation 215 

was performed using the 47 differentially expressed mRNAs. 216 

Two distinct clusters of tumors were observed in the dendrogram showed  in  figure 3. The first cluster 217 

included 9 out of 11 (82%) Met FVPTCs, whereas the second one consisted of 9 out of 12 (75%) NonMet 218 

FVPTCs. This approach suggests that the tumors can be divided into two types based on this set of 47 219 

significant mRNAs. 220 

miRNA Expression Profile of Metastatic and Non-metastatic FVPTCs Two samples were excluded from 221 

further analysis on the basis of the biological normalization factor, thus indicating an mRNA input of poor 222 

quality. The expression profiling of 798 miRNAs was evaluated on 22 tumor samples, including 11 (50%) 223 

Met FVPTCs and 11 (50%) NonMet FVPTCs.  224 

Six-hundred-twenty-one miRNAs with an average count of less than the mean plus 2 SD of the negative 225 

controls were excluded. 226 

As reported in Table 3, setting an FDR<0.25, 35 out of the 798 miRNAs were differentially expressed 227 

between the two groups. Fifteen  were upregulated in the Met group, whereas 20  were downregulated. 228 

Cluster Analysis using 35 Differentially Expressed miRNAs An unsupervised hierarchical clustering 229 

according to the 35 differentially expressed miRNAs was performed using nSolver Analysis software with a 230 

Pearson correlation. Two distinct clusters of tumors were observed in the dendrogram shown in figure 4. The 231 

first cluster included 9 out of 9 (100%) Met FVPTCs, whereas the second one included 11 out of 13 (84.4%) 232 

NonMet FVPTCs. Only two of Met samples were classified erroneously. 233 

miRNA-mRNA interaction analysis of Metastatic and Non-metastatic FVPTCs The potential 234 

interactions between 47 mRNAs and 35 miRNAs differentially expressed in Met vs NonMet lesions were 235 

studied using DIANA-miRPath v3.0. 236 
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According to the above procedure, we identified 34 enriched pathways. Three out of the 34 enriched 237 

pathways, the ECM-receptor interaction (hsa04512), the TGF-β signaling (hsa04350) and the Cell Cycle 238 

(hsa04110) pathways, were included in the PanCancer Progression Panel used for the mRNAs expression 239 

analysis (Table 4). 240 

Twenty-nine mRNAs of the ECM-receptor interaction pathway (P-value adjusted = 1 x 10-325) are targeted 241 

by 6 miRNAs (miR-19b-3p, miR-19a-3p, miR-145-5p, miR-361-3p, miR-140-5p and miR-143-3p) that were 242 

statistically significant in our analysis. None of these miRNAs targeted mRNAs differentially expressed 243 

between Met and Non Met groups. 244 

For regarding TGF-β signaling pathway (P-value adjusted = 1.8437 x 10-06), 54 mRNAs are targeted by 10 245 

miRNAs that resulted in statistically significant differences in our analysis. Among these, miR-20a-5p 246 

targeted CUL1, SMURF1 and PPP2R1A; miR-20b-5p targeted CUL1 and PPP2R1A; miR-15b-5p targeted 247 

PPP2R1A and SMURF1; miR-1276 and miR-140-5p targeted ZFYVE16. All of these mRNAs were 248 

differentially expressed between Met and NonMet. The Cell Cycle pathway (P-value adjusted = 5.3802 x 10-
249 

06), 81 genes are targeted by 11 miRNAs that were statistically significant in our analysis. Among these, 2 250 

miRNAs (miR-20a-5p and miR-10b-5p) targeted CUL1 and 2 miRNAs (miR-15b-5p and miR-30e-5p) 251 

targeted SMC3. Both of these mRNAs were differentially expressed between Met and NonMet. 252 

Discussion 253 

DM has a frequency less than 5% of patients with well-differentiated thyroid cancer, however continues to 254 

be the most significant clinical feature of thyroid cancer mortality. DM are even more uncommon in 255 

FVPTCs, affecting  the 1% to 9% of the patients. The rarity of this event and the slow development of this 256 

disease determined until now difficulties in collecting a sufficiently large cohort of metastatic FVPTCs.   257 

To date, no reliable molecular signature for the metastatic potential in thyroid carcinomas exists. For this 258 

reason, to gain insight into the molecular basis underlying the different metastasis ability of FVPTCs with 259 

similar characteristics in terms of the histotype, degree of neoplastic invasion and tumor size, we performed 260 

a mRNAs and miRNA expression profiling analysis.  261 

Given the exploratory nature of the present study to detect differential expressed mRNAs and miRNAs in 262 

this kind of lesions, we used an FDR at 0.25. It indicates that the result is likely to be valid 3 out of 4 times. 263 

Given the high number of variables and the relatively small cohort of patients recruited, this cutoff represent 264 
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a good compromise between true-positive and false-pasitive mRNAs/miRNAs. We compared the mRNAs 265 

and miRNA expression profiles between Met and NonMet FVPTCs and discovered 47 mRNAs and 35 266 

miRNAs that were differentially expressed between these two groups. 267 

Specifically, for the mRNAs expression analysis, we used a panel of 740 mRNAs that provide coverage of 268 

several pathways that directly involved in the specific tumor progression processes, such as angiogenesis, 269 

extracellular matrix, epithelial to mesenchymal transition and metastasis. It is worth mentioning that some 270 

genes participate in these different biological pathways simultaneously. 271 

So far, several studies investigated the ability of gene expression profile to explain the biological basis of 272 

metastatic processes in various tumor models. Of note, it has been reported that the molecular layout of some 273 

genes are tissue-specific; therefore, it has to be contextualized in each specific tumor model (Bock Axelsen 274 

et al., 2007). Interestingly, Riker et al analyzed the gene expression profile of the primary and metastatic 275 

melanomas finding a molecular signature of the few genes involved in the progression or suppression of the 276 

metastatic phenotype (Riker et al., 2008). Similarly, Ganepola and collaborators analyzed the gene 277 

expression profile of non-metastatic and metastatic colon cancer proving a number of genes that are able to 278 

discriminate between  the two groups (Ganepola et al., 2010).  279 

Despite the recent expansion of knowledge and continuous attempts to characterize the PTCs genetically, 280 

and unlike other tumor models, only one study by Londero et al. has been specifically conducted on the 281 

metastatic potential of thyroid cancer. In detail, analyzing the gene expression profile in a series of metastatic 282 

and non-metastatic PTCs, they identified 17 genes that were differentially expressed between the two groups. 283 

However, through validation, no prognostic significance of this classifier was shown (Londero et al., 2016).  284 

Our mRNA expression profile analysis allowed the identification of 47 mRNAs that were able to distinguish 285 

FVPTCs into two clusters, one including the majority of Met (82%) and the other including the majority of 286 

NonMet FVPTCs (75%). In detail, our signature constituted 4 mRNAs that were upregulated in Met 287 

FVPTCs compared to NonMet and 44 that were downregulated. In thyroid cancer, no data are available so 288 

far regarding the 4 upregulated mRNA; however, these mRNA have been described in the context of other 289 

tumor models in which  their overexpression seems to be related to cancer progression (Ghiselli and Liu, 290 

2005; Chevalier et al., 2016; Ganesan et al., 2008; Zhao et al., 2014; M. Zhang et al., 2013; McSherry et al., 291 

2009; Tian et al., 2015).  Our findings showed that all these mRNAs are significantly overexpressed in Met 292 
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FVPTCs and they could play an important role in thyroid cancer metastasization. The majority of 293 

differentially expressed mRNAs evaluated in our study have been found to be downregulated in Met 294 

FVPTCs. Our data appear to contrast the findings reported in other studies, in which the largest part of these 295 

same genes were found to be upregulated in human non-thyroid carcinomas (such us renal cell carcinoma, 296 

breast cancer, gastric cancer, prostate cancer and colon cancer) both in vivo and in vitro models. 297 

Nevertheless, differentially expressed mRNAs related to the different functions (such as extracellular matrix 298 

production, cell adhesion, cell migration, growth factor binding and angiogenesis) may be downregulated 299 

during malignant transformation in human cell models, as reported by Danielsson and collaborators 300 

(Danielsson et al., 2013). Our results are in line with this study demonstrating that the downregulation of 301 

some genes could be correlated with metastatic processes. Interestingly, at least some of the 43 302 

downregulated mRNAs,  (CUL1, TGFRB2, NOTCH1, NR4A1, ADAMTS1, SPARC, TCF4) have  already 303 

been reported in the literature as tumor suppressor genes. Notably, these genes, downregulated in the Met 304 

group, are reported to have been  downregulated in a variety of tumors including cervical, breast, gastric and 305 

colon cancer. Our data, in addition to those previously reported, seem to suggest a key role of these genes in 306 

the process of thyroid cancer metastasization (Korzeniewski et al., 2009; Yang et al., 2017; Lobroy et al., 307 

2011; Wu et al., 2017; Martino-Echarri et al., 2015; Chen et al., 2014; Angus-Hill et al., 2011). 308 

The complex functions of miRNAs, especially in tumorigenesis, are still poorly understood. However, in the 309 

past few years, several studies have evaluated the miRNA profiles of different cancer models, including 310 

thyroid tumors (Nikiforova et al., 2009). In these works, different miRNAs have been associated with tumor 311 

progression, invasion and metastasis showing that some molecules may also behave as predictive biomarkers 312 

in cancer (Zhou et al., 2015). In thyroid cancer, although several works have focused on miRNA expression, 313 

no studies investigating a peculiar miRNA profile for metastatic potential exist, particularly in FVPTCs. 314 

Overall, in our series both upregulated and downregulated miRNAs suggest that a potential miRNA 315 

signature can be useful to distinguish FVPTCs with metastatic potential from FVPTCs that are less likely to 316 

produce DM. In the same way, several of these miRNAs (both up and downregulated), have been already 317 

described in the context of thyroid cancer and of other tumor models in which their expression seems to be 318 

connected to cancer progression (Ma, 2010; Fan et al., 2014; Ahmad et al., 2015; Borrelli et al., 2017; X. 319 

Zhang et al., 2013; Xiong et al., 2015; Yuan et al., 2013; Chen et al., 2016; He et al., 2016) 320 
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In the present study, we also investigated the potential miRNA-mRNA interactions using mRNA and 321 

miRNAs that are differentially expressed between the two group of lesions. Seven out of the 35 deregulated 322 

miRNAs specifically targeted 5 mRNAs differentially expressed between the two group. In detail, this 323 

analysis showed that in the TFG-β signal pathway, 3 upregulated miRNAs in Met lesions (miR-20a-5p, miR-324 

20b-5p and miR-15b-5p) targeted 3 downregulated mRNAs (CUL1, SMURF1 and PPP2R1A); 2 325 

downregulated (miR-1276 and miR-140-5p) targeted ZFYVE16 that resulted downregulated in Met group.  326 

In the Cell-Cycle pathway, 2 upregulated miRNAs (miR-20a-5p and miR-10b-5p) targeted 1 downregulated 327 

mRNA, CUL1; whereas SMC3, an upregulated mRNA was regulated from 1 downregulated (miR-30e-5p) 328 

and 1 upregulated (miR-15b-5p) miRNA. These results seem to be encouraging, however, further 329 

examinations are needed to define the role of the miRNA-mRNA interactions in FVPTCs with and without 330 

distant metastasis. 331 

In conclusion, to the best of our knowledge, this work represents the first attempt to analyze either the 332 

mRNA and miRNA expression profiles in primary FVPTCs with and without distant metastases. The main 333 

limitation of the present study is represented by the small number of cases, which does not allow us to draw 334 

any definitive conclusion about the combination of the mRNA/miRNA molecular profile with other tumor 335 

characteristics, such as mutational status and clinicopathological features. Beyond this, we identified a 336 

potential molecular signature that consists of 47 mRNAs and 35 miRNAs that can distinguish FVPTC with 337 

metastatic potential. Further examinations are needed to validate the possible role of these data in the 338 

prognostic risk stratification of the patients.   339 
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Figure Legends: 579 

 580 

Figure 1 Diagram of the study design.  581 

* Samples suitable for the study  fulfilling all the inclusion criteria, as specified in Patients and Study Design   582 

 583 

Figure 2 Representative histopathological images showing similar pathological findings of metastatic 584 

and non- metastatic follicular variant of papillary thyroid carcinomas (FVPTC). 585 

A and B, Capsular invasion: these encaspulated FVPTCs, metastatic (A) and non-metastatic (B) respectively, 586 

are completely surrounded by fibrous capsule with mushroom-shaped images of capsular invasion 587 

(hematoxylin and eosin staining [H&E], original magnification X 2.5). 588 

C and D, Vascular invasion: in these encapsulated FVPTCs, metastatic (C) and non- metastatic (D) 589 

respectively, aggregates of neoplastic cells are seen within the vascular spaces attached to the wall and 590 

covered by endothelium (H&E , original magnification X 10). 591 

E and F, Nuclear features: these encaspulated FVPTCs, metastatic (E) and non- metastatic (F) respectively, 592 

show at high magnification the typical nuclear features of PTC (original magnification X 40). 593 

 594 

Figure 3 Hierarchical clustering of metastatic and non-metastatic FVPTC using statistically significant 595 

genes. The columns represent the samples and the rows represent the genes. Only those genes with a 596 

statistically significantly different expression (FDR 0.25) between metastatic and non-metastatic samples 597 

were used for the hierarchical clustering. Red and green indicate a high and a low level of expression, 598 

respectively. Met, metastatic; NonMet, non-metastatic. 599 

Figure 4 Hierarchical clustering of metastatic and non-metastatic FVPTCs using statistically 600 

significant miRNAs. The columns represent the samples and the rows represent the miRNAs. Only those 601 

miRNAs with a statistically significantly different expression (FDR 0.25) between metastatic and non-602 

metastatic samples were used for the hierarchical clustering. Red and green indicate a high and a low level of 603 

expression, respectively. Met, metastatic; NonMet, non-metastatic. 604 
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Table 1 Clinicopathological features of 12 metastatic and 12 non-
metastatic Follicular Variant of Papillary Thyroid Carcinomas.  
 

Clinicopathological features Met 
(n = 12) 

NonMet 
(n = 12) P-values 

Age at diagnosis (yr), mean ± SD 
median; range 

58.3 ± 19.5 
63.5; 17-77 

46.4 ± 13.7 
50.5; 19-64 

0.0621 

Male gender (n, %) 3 (25%) 3 (25%) 0.6742 

Tumor size (cm), mean ± SD  
median; range 

3.7 ± 2.3 
3.4; 1.3-9.0 

3.2 ± 1.6 
3.0; 0.9-6.0 

0.9032 

 
Encapsulated FVPTC (n, %) 
 

11 (91.7%) 10 (83.3%) 0.5032 

Infiltrative FVPTC (n, %) 1 (8.3%) 2 (16.7%) 0.5032 

Capsular invasion for encapsulated PTC 
(n, %) 

11 (91.7%) 10 (83.3%) 0.5032 

Vascular invasion (n, %) 8 (66.7%) 5 (41.7%) 0.2044 

Extrathyroidal invasion (n, %) 
  

2 (16.7%) 
 

  
2 (16.7%) 

 
0.7031 

Intra-tumoral fibrosis (n, %) 6 (50.0%) 4 (33.3%) 0.3431 

Multifocality (n, %) 5 (41.7%) 6 (50.0%) 0.5043 

Bilaterality (n, %) 3 (25.0%) 6 (50.0%) 0.2012 

AJCC pT stage (8th edition) 
- pT1a 
- pT1b 
- pT2 
- pT3a 

 
1 (8.3%) 
4 (33.3%) 
4 (33.3%) 
3 (25.0%) 

 
1 (8.3%) 
2 (16.6%) 
5 (41.6%) 
4 (33.3%) 

 
0.7612 
0.3225 
0.5056 
0.5034 

Distant metastasis at presentation 4 (33.3%) 0 0.0433 

Follow-up (yr), mean ± SD 
median; range 

5.1 ± 3.6 
3.5; 1-12 

9.3 ± 2.8 
10; 3-9 

0.0082 
 

Disease status at the last follow-up 
- dead of unknown cause 
- dead of disease 
- alive with disease 
- free of disease 

 
3 (25%) 

2 (16.6%) 
7 (58,4%) 

0 

 
 
0 
0 
0 

12 (100%) 
 

 
0.1053 
0.2344 
0.0024 

<0.0001 

 
FVPTC, Follicular Variant of Papillary Thyroid Carcinoma; Met, metastatic; NonMet, non-metastatic; 
AJCC, American Joint Committee on Cancer. 
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Table 2 Differentially Expressed  genes in metastatic versus non-metastatic Follicular Variant of Papillary 
Thyroid Carcinomas. 

 

 
Upregulated Genes ANG EMT ECM META P-value* P-value 

adjusted** 
SMC3   +  0.0116 0.1996 
TOM1L1  +   0.0116 0.1996 
PLA2G2A +    0.0122 0.1996 
F11R + + +  0.0193 0.2441 

       
Downregulated Genes  ANG EMT ECM META P-value* P-value 

adjusted** 
AP1M2  +   0.0005 0.1537 
SMURF1  + +  0.0015 0.1537 

CX3CL1 +    0.0017 0.1537 

FERMT2  +   0.0021 0.1537 

SRGN  +   0.0031 0.1537 

ZFYVE16   +  0.0031 0.1537 

LAMA4   +  0.0046 0.1537 

RGCC +    0.0046 0.1537 

TAL1 +    0.0046 0.1537 

CUL1   +  0.0056 0.1537 

EGFL7 +  +  0.0056 0.1537 

PNPLA6 +    0.0056 0.1537 

ROBO4 +    0.0056 0.1537 

TGFR2 + + +  0.0056 0.1537 

GLYR1  +   0.0067 0.1537 

MAP2K2 +   + 0.0067 0.1537 

NOTCH1 + +   0.0067 0.1537 

NR4A1 +   + 0.0067 0.1537 

SH2B3  +   0.0067 0.1537 

ADAMTS1   +  0.0081 0.1537 

EPHA1 + +   0.0081 0.1537 

FLT4 +   + 0.0081 0.1537 

HSPG2 +  +  0.0081 0.1537 

PPP2R1A   +  0.0081 0.1537 

SPARC + + +  0.0081 0.1537 

TCF4  +   0.0081 0.1537 

DLL4 +    0.0097 0.1537 

PECAM1   +  0.0097 0.1537 

PLCG1 +   + 0.0097 0.1537 

PTPRB +    0.0097 0.1632 
SPARCL1  +   0.0097 0.1708 
SRPK2 +    0.0097 0.1708 
ECSCR +    0.0111 0.1814 
FLT1 +   + 0.0111 0.1944 
GIMAP4  +   0.0111 0.1959 
ACVRL1 +  +  0.0138 0.2003 

MAP3K7 +    0.0138 0.2021 

NOS3 +   + 0.0138 0.2082 

DICER1 +    0.0138 0.2082 

MMRN2 +  +  0.0163 0.2211 
TIE1 +    0.0163 0.2211 
GDF15  +   0.0192 0.2428 
KDR +    0.0193 0.2441 
*P-values were obtained by using Mann-Whitney U test 

**Adjusted P-values using the Benjamini-Hochberg method 

ANG, angiogenesis; EMT, ephitelial-mesenchymal transition; ECM, extracellular matrix; META, metastasis. 
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Table 3 Differentially Expressed miRNAs in metastatic versus non-metastatic Follicular Variant of Papillary 
Thyroid Carcinoma. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*P-values were obtained by using Mann-Whitney U test 

**Adjusted P-values using the Benjamini-Hochberg method 

 

Upregulated miRNAs P-value* P-value 
adjusted** 

   

miR-19b-3p 0.0020 0.0708 
miR-20a-5p+ miR-20b-5p 0.0071 0.1106 
miR-10b-5p 0.0086 0.1106 
miR-1972 0.0086 0.1106 
miR-125a-5p 0.0126 0.1163 
miR-19a-3p 0.0126 0.1150 
miR-296-5p 0.0126 0.1150 
miR-32-5p 0.0151 0.1154 
miR-26b-5p 0.0181 0.1274 
miR-30a-5p 0.0181 0.1274 
miR-141-3p 0.0215 0.1390 
miR-15b-5p 0.0215 0.1390 
miR-423-3p 0.0256 0.1484 
miR-125a-5p 0.0418 0.2252 
miR-135a-5p 0.0488 0.2478 
   

Downregulated miRNAs P-value* P-value 
adjusted** 

   
miR-155-5p 0.0005 0.0708 
miR-320e 0.0008 0.0708 
miR-1276 0.0019 0.0708 
miR-548ah-5p 0.0024 0.0708 
miR-130a-3p 0.0039 0.1011 
miR-1253 0.0043 0.1011 
miR-1973 0.0058 0.1106 
miR-361-3p 0.0071 0.1106 
miR-140-5p 0.0071 0.1106 
miR-1323 0.0080 0.1106 
miR-593-3p 0.0102 0.1106 
miR-143-3p 0.0104 0.1106 
miR-1285-5p 0.0126 0.1150 
miR-126-3p 0.0151 0.1154 
miR-5196-3p+miR-6732-3p 0.0151 0.1154 
miR-630 0.0214 0.1390 
miR-145-5p 0.0256 0.1484 
miR-4488 0.0256 0.1484 
miR-888-5p 0.0302 0.1659 
miR-30e-5p 0.0488 0.2478 
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Table 4  Results from the DIANA-miRPath v3.0 predictions of KEGG pathways. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* P-values adjusted using the Benjamini-Hochberg method 

 

 

 

 

 

  

KEGG pathway 
P-value 

adjusted* #genes #miRNAs 
ECM-receptor interaction 1 x 10

-325
 29 6 

hsa-miR-19b-3p 
hsa-miR-19a-3p 
hsa-miR-145-5p 
hsa-miR-361-3p 
hsa-miR-140-5p 
hsa-miR-143-3p 

0.0005 
0.0021 

3.0728 x 10
-11

 
0.0002 
0.0379 

3.1179 x 10
-30

 

12 
13 
7 
7 
5 

16 

 

TGF-β signaling pathway 1.8437 x 10
-06

 54 10 
hsa-miR-19b-3p 
hsa-miR-20a-5p 
hsa-miR-20b-5p 
hsa-miR-19a-3p 
hsa-miR-15b-5p 
hsa-miR-155-5p 
hsa-miR-1276 
hsa-miR-130a-3p 
hsa-miR-140-5p 
hsa-miR-145-5p 

0.0417 
0.0005 
0.0002 
0.0229 
0.0006 
0.0003 
0.0012 
0.0004 
0.0162 
0.0010 

12 
21 
12 
15 
22 
11 
5 

19 
8 

12 

 

Cell cycle 5.3802 x 10
-06

 81 11 

hsa-miR-20a-5p 
hsa-miR-10b-5p 
hsa-miR-32-5p 
hsa-miR-141-3p 
hsa-miR-15b-5p 
hsa-miR-135a-5p 
hsa-miR-1276 
hsa-miR-130a-3p 
hsa-miR-140-5p 
hsa-miR-143-3p 
hsa-miR-30e-5p 

2.0614 x 10
-05

 
0.0220 
0.0259 
0.0126 
0.0076 
0.0125 
0.0154 
0.0148 
0.0132 
0.0381 
0.0159 

33 
13 
19 
17 
33 
7 

10 
25 
15 
13 
24 
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Highlights 

• No molecular signatures are currently available for metastatic potential of FVPTCs. 
• A set of mRNA and miRNA are significantly deregulated in metastatic tumors. 

• A mRNA/miRNA signature could identify FVPTCs at risk to develop metastasis. 

 

 


