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Abstract. We consider a simple discrete model for screw dislocations in crys-

tals. Using a variational discrete scheme we study the motion of a configura-
tion of dislocations toward low energy configurations. We deduce an effective

fully overdamped dynamics that follows the maximal dissipation criterion in-

troduced in [14] and predicts motion along the glide directions of the crystal.
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Introduction. Dislocations are one-dimensional defects in the periodic structure
of crystals, and their motion represents the microscopic mechanism of plastic flow
in metals. In view of this fundamental role, dislocations have been extensively
studied by theoretical, experimental and computational means. Classical models
are mainly based on the so-called continuum theory of dislocations, in the context
of linearized elasticity (see [31] and [28] for a comprehensive treatment). In recent
years considerable efforts have been made in order to improve those models by in-
cluding more information from the microscopic scale. Much insight has been gained
on the microscopic structure of dislocations through fine numerical simulations (see
e.g. [11] and the references therein), and new phenomenological models accounting
for microscopic effects have been proposed (e.g. [26, 45]), while a variety of rigorous
mathematical analyses has been done to bridge different scales (see [43, 27, 16] and
the references therein). A major issue behind those approaches is the formulation
of a simple and efficient discrete model for dislocations that should be the starting
point of a multi-scale analysis.

In this paper we consider a two dimensional model for screw dislocations that
is inspired to the Frenkel-Kontorova model for dislocation dynamics ([24]). We
consider an anti-plane discrete setting in which atoms can only move vertically
and interact through a two-body periodic potential, a prototypical example being
a piecewise quadratic function with wells at the integers. Such type of models have
been proposed by many authors (e.g. [12, 41, 25, 29]) and are based on the ideal
mechanism of plastic slip governed by a Peierls potential ([28]). Periodic potentials
show up naturally starting from three-dimensional particle interaction energies as-
suming crystallization and anti-plane deformations. We derive their specific form
for some precise crystalline structures (as BCC, FCC and HCP lattices), start-
ing from Lennard-Jones type energies and assuming nearest neighbor interactions.
More general multi-body interaction energies could be considered, such as those
used in the Embedded Atom Method (see [17] and [40] for a discussion on EAM in
the context of dislocation dynamics). Our analysis can be performed also in these
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more general frameworks with minor changes, relying on the specific assumptions
on the interaction potentials.

Our model follows the general approach developed in [6]. We adopt the formalism
therein to introduce the notion of elastic and plastic strain defined on each bond
of the lattice, and the notion of discrete dislocations associated to each cell of the
lattice. One of the advantages of considering a genuine discrete model is that it
does not need any artificial regularization of the core, which is otherwise common
in linear continuum (or rather semi-discrete) theories.

According to the so-called low-energy dislocation structure assumption (LEDS,
[34]), dislocations move following a steepest-descent criterion. Nevertheless, it is
well known that at zero temperature discrete dislocations are pinned by the energy
barriers due to the lattice structure. This has been proved analytically for the model
under consideration in [29, 30, 2, 19]. Clearly, the depinning mechanism is governed
by fluctuations of the system that can tilt the potential allowing dislocations to
overcome the energy barriers. Here we work in the simplified zero temperature
context in which thermal effects are neglected and we describe the depinning and
motion of dislocations toward states with lower energy, by considering a variational
discrete (in time and space) scheme, already proposed in [40, 2]. Precisely, we
introduce a parameter τ , that we refer to as time step, and at each time step we
minimize the elastic energy stored in the crystal plus a term that accounts for
the energy dissipated in moving dislocations from a site to another. The discrete
parameter τ sets the size of the area that dislocations may explore in order to reach
a local minimizer, mimicking thermal effects.

A rate-independent (1-homogeneous) dissipation in the presence of a time de-
pendent load, in the spirit of [40], would lead to a quasi-static evolution (see e.g.
[36] for a rate-independent evolution law for edge dislocations). Here we consider
the case of a rate-dependent quadratic dissipation that leads to a fully overdamped
dynamics, neglecting inertial effects as well as all the other external body forces
(see [14]). Several different effects could be taken into account, leading to more
complex continuum dynamics (see for instance [21, 28, 33]).

We derive an effective dynamics, the so-called discrete dislocation dynamics, by
means of a multi-scale analysis of the discrete elastic energy stored in the crystal
(see also [27]). It turns out ([15, 2, 19]) that, in the limit as the lattice spacing
tends to zero (or equivalently in the large-body limit) the elastic energy can be
decomposed into a self energy, which scales logarithmically in the core radius, plus
an interaction energyW (x1, . . . , xM ) depending on the dislocation positions xi. The
latter is determined by the behaviour of the discrete periodic interaction potential
at the bottom of the wells. In this respect, we validate the harmonic approximation
of the far field as predicted by the continuum linear theory (see [44, 37]).

We would like to remark that this analysis has many similarities with other the-
ories in which the presence of topological defects plays an important role ([1]). This
is the case of the Ginzburg-Landau model for vortices in super-conductors ([7, 42]).
Borrowing the terminology from that context, we refer to the interaction energy be-
tween dislocations W (x1, . . . , xM ) as the renormalized energy. The gradient of the
renormalized energy is nothing but the Peach-Koehler force j between dislocations;
namely, ji = −∇xiW is the force acting on the dislocation at xi. The corresponding
overdamped dynamics is then driven by the Peach-Koehler force (see [23]).
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A crucial issue in the time-discrete scheme is the specific choice of the dissipation
potential. Choosing a quadratic isotropic dissipation, one recovers an implicit Euler
scheme for the renormalized energy, and hence, in the limit of the time step to zero,
the fully overdamped discrete dislocation dynamics ẋi = ji (see [2]).

Here we make a different choice. We consider a crystalline dissipation that ac-
counts for the specific lattice structure and that is minimal exactly on the preferred
glide directions (that in this model are considered as a given material property
of the crystal). As a consequence of this choice, we derive an effective dynamics
that forces the motion along the glide directions, and follows the maximal energy
dissipation criterion postulated in [14]. Indeed, dislocations move along the glide
direction that maximizes the scalar product with the force j = −∇W . Clearly
this direction could be not unique, so that dislocations can rapidly move from a
glide direction to another. This effective dynamics may also predict cross-slip and
fine cross-slip, according to [14] and the analysis and the simulations performed in
the recent papers [8, 9]. In view of this lack of uniqueness of the velocity field of
the dislocations, the effective dynamics turns out to be described by a differential
inclusion rather than a differential equation (see [22]).

Our discrete variational scheme provides a simple and natural model to describe
the depinning and the dynamics of screw dislocations, taking into account the
preferred glide directions. Moreover it provides an approximation of the effective
dynamics proposed by [14], highlighting its gradient flow structure.

1. Anti-plane elasticity in complex lattices with defects

In this section we will introduce our discrete models for screw dislocations in
the framework of anti-plane elasticity. To this purpose, it is convenient to fix some
notation for the discrete reference configuration we deal with.

A Bravais lattice BL in Rd is a discrete set of points in Rd of the form

BL :=

{
d∑
l=1

zlvl, zl ∈ Z

}
,

where v1, . . . , vd are given d linearly independent vectors in Rd, referred to as prim-
itive vectors.

A complex lattice CL in Rd is defined as the union of a finite number of transla-
tions of a given Bravais lattice. Namely, CL is of the form

(1.1) CL :=

M⋃
k=1

BL+ τk,

where τ1, . . . , τM are M given translation vectors in Rd.
In the sequel, we will denote by L any complex (and in particular Bravais) lattice

in R3, and by Λ any complex (and in particular Bravais) lattice in R2. The vectors
of the canonical basis in R3 will be denoted by e1, e2, and e3.

In our model Λ is the projection of L onto a plane orthogonal to the vector
v3, which we assume to be parallel to e3. In view of our discrete-to-continuum
asymptotic analysis, we scale the lattice L by a small parameter ε > 0, representing
the ratio between the atomic distance and the size of the crystal, and we consider
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the portion of εL contained in an infinite cylinder Ω × R, where Ω is a bounded
open set in R2. Then, our discrete reference configuration is given by εΛ ∩ Ω.

Next, we will introduce a discrete model for anti-plane elasticity suited to de-
scribe the presence of screw dislocations, according to the formalism introduced in
[6].

1.1. The anti-plane energy. We introduce a class of energy functionals defined
on any vertical displacement u e3, with u : εΛ∩Ω→ R. Let {fi,j}i,j∈Λ be a family
of continuous, 1-periodic interaction potentials vanishing on Z. We also assume
that

(1.2) fi,j(t) = ci,jt
2 + o(t2),

for some constants ci,j ≥ 0. This condition is satisfied by our main examples (see
Subsection 1.3).

For every positive ε, the energy functionals Fε,Λ are defined by

(1.3) Fε,Λ(u) =
∑

εi,εj∈εΛ∩Ω
i6=j

fi,j(u(εi)− u(εj)).

A prototypical example is given by the piecewise quadratic energy

(1.4)
∑

εi,εj∈εΛ∩Ω
i 6=j

ci,j dist2(u(εi)− u(εj),Z),

which is a Frenkel-Kontorova type energy ([24]), already used by several authors in
order to study dislocation dynamics (see e.g. [13, 25, 41]).

Discrete two-dimensional interaction energies as in (1.3) can be justified starting
from three-dimensional elastic models for crystals governed by Lennard-Jones type
interactions and assuming anti-plane deformations, as described below (se also [29]).

1.2. Formal derivation of the energy. We now present some heuristic argu-
ments that give a more solid ground to our choice for the energy. We will also use
these arguments to identify some explicit examples of two dimensional lattice struc-
tures and their corresponding energies. To simplify matter, we work in an infinite
complex lattice L in R3 as defined in (1.1) and we assume that the primitive vector
v3 of the Bravais lattice BL is e3. Moreover, we assume that e3 is the minimal
vertical translation for which the lattice is invariant.

We consider a pair potential J : (0,+∞)→ R of Lennard-Jones type (satisfying,
in particular, limr→0 J(r) = +∞ and limr→+∞ J(r) = 0) and we assume that the
infinite lattice L has minimal energy with respect to local vertical perturbations.

Precisely, for any deformation v : L → R3 with v = Id outside a compact set we
define the residual energy

E(v) :=
∑

ı̃,̃∈L, ı̃6=̃

J(|v(̃ı)− v(̃)|)− J(|̃ı− ̃|)

and we assume that for every u : L → R with compact support

(1.5) E(Id+ ue3) ≥ E(Id) = 0.

Notice that if Id + ue3 is injective, then all the interactions have finite energy; if
in addition u has compact support, then some mild assumptions on the decay at
infinity of the potential J guarantee that the total energy is finite. The projected
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J

Figure 1. A Lennard-Jones type interaction potential.

lattice along the direction e3 is defined by Λ := Π(L), where Π(x1, x2, x3) := (x1, x2)
for every (x1, x2, x3) ∈ R3. Since Π(v3) = 0, it is straightforward to check that Λ is
a complex lattice in R2, and it is a Bravais lattice whenever L is a Bravais lattice.

The anti-plane discrete elastic energy is defined on the projected lattice Λ as the
energy stored in the cylindrical crystal per unit length. Precisely, we compute the
energy for any vertical displacement that do not depend on the vertical direction
e3. To this end, fix u : Λ→ R with compact support, and for every h > 0 consider
uh : L → R3 defined by uh(̃ı) = u(Π(̃ı))e3 if |̃ı3| ≤ h and uh(̃ı) = 0 otherwise.
Assume that Id+ uh is injective, so that it has finite energy for every h. Then we
can define the anti-plane energy as

Eap(u) = lim
h→+∞

1

2h
E(Id+ uhe3).

Loosely speaking, we are computing the elastic energy per unit length stored in a
cylinder whose cross section is much smaller than the height h. This is the classical
formal computation used to derive anti-plane models from three dimensional elas-
ticity. A more rigorous derivation, in terms of Γ-convergence, should rely on some
assumptions of Cauchy-Born type with respect to the vertical direction.

Note that, in view of (1.5), Eap(u) ≥ 0 and equality holds true for u ≡ 0. For
every i, j ∈ Λ, with i 6= j, and for every t ∈ R, set

J̄(i, j, t) :=
∑
z∈Z

(J(|̃ı− ̃+ (t+ z)e3|)− J(|̃ı− ̃+ ze3|)) ,

where ı̃, ̃ are (arbitrarily chosen) points in L projecting on i, j, respectively.
From the definition of Eap(u) we deduce that

Eap(u) =
∑

i,j∈Λ, i 6=j

J̄(i, j, u(i)− u(j)) ,

which corresponds to (1.3) choosing fi,j(t) = J̄(i, j, t).

Periodicity. Notice that the interaction of two rows of atoms through the pairwise
interaction potential J is invariant under a translation of one row by an integer
multiple of e3 (which restores the lattice). As a consequence of this invariance, the
anti-plane interaction potential J̄ turns out to be 1-periodic, i.e.,

(1.6) J̄(i, j, t) = J̄(i, j, t+ z) for every i, j ∈ Λ , i 6= j, t ∈ R, z ∈ Z.
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In particular, by the minimality property (1.5) and by the periodicity (1.6), we
have that

(1.7) Eap(ζ) = Eap(0) ≤ Eap(u) = Eap(u+ ζ)

for every ζ : Λ→ Z and u : Λ→ R with compact support.

Linearization. Let ζ : Λ → Z and let u : Λ → R with compact support. By (1.7)
we have

d

dδ |δ=0

Eap(ζ + δu) = 0.

The next term in the Taylor expansion of Eap represents the linearized anti-plane
elastic energy. Indeed, for every ζ : Λ → Z and for every u : Λ → R with compact
support

(1.8) Eap(ζ + δu,Ω) = δ2
∑

i,j∈Λ, i 6=j

ci,j |u(i)− u(j)|2 + o(δ2),

where the constants ci,j are given by 1
2

d2

dt2 J̄(i, j, t)|t=0
for every i, j ∈ Λ, with i 6= j.

Such constants can be computed using the very definition of J̄

(1.9) ci,j =
1

2

∑
z∈Z

J ′′(|̃ı− ̃+ ze3|)
|̃ı3 − ̃3 + z|2

|̃ı− ̃+ ze3|2
+ J ′(|̃ı− ̃+ ze3|)

|i− j|2

|̃ı− ̃+ ze3|3
,

where ı̃, ̃ are points in L projecting on i, j, respectively. If L is a Bravais lattice,
it can be easily seen that the coefficients ci,j in (1.9) depend only on i− j.

The expansion (1.8) justifies the use of the prototypical piecewise quadratic
model (1.4), which is also very convenient for computational purposes (see [40]).
Moreover, we will see that the effective dynamics of dislocations in the limit ε→ 0
is governed by the Peach-Koehler forces, determined only by the constants ci,j and
the crystalline structure Λ.

In the crystalline structures described in Subsection 1.3 we will assume that the
constants ci,j are positive for short range (either nearest neighbor or next-to-nearest
neighbor) interactions, and zero otherwise. This is consistent with the assumption
that all the relevant interactions are between particles whose distance is in the
convex region of the potential J (and this property is clearly preserved under small
deformations).

1.3. The crystal structures. Here we illustrate some examples of crystal lat-
tices: Body-Centered Cubic (BCC), Face-Centered Cubic (FCC), Hexagonal Close-
Packed (HCP), and Simple Cubic (SC), and we compute the corresponding coeffi-
cients ci,j in (1.9) for very special Lennard-Jones potentials. For BCC, FCC and
HCP crystals we assume nearest neighbor interactions and we require that the dis-
tance between nearest neighbors in the undeformed lattice is at the minimum point
of the Lennard-Jones potential J , that we fix to be equal to 1. Clearly we have
J ′(1) = 0 and assume J ′′(1) > 0. Let i, j ∈ Λ be the projection of nearest neighbors
ı̃, ̃ in L. A straightforward computation yields

(1.10) ci,j =

{
1
2J
′′(1)|̃ı3 − ̃3|2 if |̃ı3 − ̃3| 6= 1

2 ;
1
4J
′′(1) if |̃ı3 − ̃3| = 1

2 .

If i, j are not projections of nearest neighbors in L, then ci,j = 0.
Finally, we will consider also the Simple Cubic structure (SC). In this case, as-

suming nearest neighbor interactions would provide a degenerate energy. Hence, we
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compute the linearized energy in the case of next-to-nearest neighbor interactions.

The BCC lattice. We consider the following unitary linearly independent vectors

v1 := (
√

8
9 , 0,−

1
3 ), v2 := (

√
2
9 ,
√

2
3 ,

1
3 ), v3 := (0, 0, 1)

and we define the BCC lattice as the Bravais lattice LB generated by v1, v2, v3.
Namely v1, v2, v3 represent three vectors that connect the center of the cube (here
given by (0, 0, 0)) in the BCC crystal with three neighboring vertices. The class of
nearest neighbors N -N 0

LB to the origin in LB is then given by

N -N 0
LB := {±v1,±v2,±v3,±(v1 − v2 + v3)}.

Projecting the lattice LB along the direction v3 we obtain the hexagonal Bravais
lattice ΛB , generated by

w1 := (
√

8
9 , 0), w2 := (

√
2
9 ,
√

2
3 ).

v1

v2v3

w1

w2

w2

w1

v1

w2

v3

w1

v2

Figure 2. Left: the primitive cell in the BCC lattice. Center: the primi-
tive cell oriented according to the anti-plane direction. Right:
the projected hexagonal lattice.

The class of nearest neighbors of the origin in ΛB is given by the projection of
the nearest neighbors of the origin in LB (see Figure 2), i.e.,

N -N 0
ΛB := {±w1,±w2,±(w1 − w2)}.

Recalling (1.10), a straightforward computation yields

ci,j = c0,j−i =

{
J′′(1)

18 if j − i ∈ {±w1,±w2,±(w1 − w2)}
0 otherwise.

1.3.1. The FCC lattice. We consider the following unitary linearly independent
vectors

v1 := (
√

2
2 ,−

1
2 ,

1
2 ), v2 := (

√
2

2 ,
1
2 ,

1
2 ), v3 := (0, 0, 1),

and we define the FCC lattice as the Bravais lattice LF generated by v1, v2, v3.
The class of nearest neighbors N -N 0

LF to the origin in LF is given by

N -N 0
LF := {±v1,±v2,±v3,±(v1 − v2),±(v1 − v3),±(v2 − v3)}.
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The projected lattice ΛF along the direction v3 is the rhombic (centered rectan-
gular) Braivas lattice (see Figure 3) generated by

w1 := (
√

2
2 ,−

1
2 ), w2 := (

√
2

2 ,
1
2 ) .

w2

w1

v3

v2
v1

w1 w2

w2

v3v2

w1

v1

Figure 3. Left: the primitive cell in the FCC lattice. Center: the
primitive cell oriented according with the anti-plane direction.
Right: the projected rhombic lattice.

The class of nearest neighbors N -N 0
ΛF

to the origin is given by

N -N 0
ΛF := {±w1,±w2}.

One can check that for every i, j ∈ ΛB

ci,j = c0,j−i =

{
J′′(1)

4 if j − i ∈ {±w1,±w2}
0 otherwise.

Notice that, even if N -N 0
ΛF
6= Π(N -N 0

LF ), ci,j vanishes for i− j /∈ N -N 0
ΛF

.

1.3.2. The HCP lattice. Set

v1 := (
√

3
2 , 0,

1
2 ), v2 := (0,

√
8
3 , 0), v3 := (0, 0, 1), τ := (

√
3

6 ,
√

2
3 ,

1
2 ).

Let L′H be the Bravais lattice generated by v1, v2, v3; we define the HCP lattice as
the complex lattice given by

LH := L′H ∪ (L′H + τ).

The class N -N ı̃
LH of nearest neighbors to ı̃ ∈ LH is given by

N -N ı̃
LH := {ı̃± v1, ı̃± v3, ı̃± (v1 − v3), ı̃+ τ, ı̃+ τ − v1, ı̃+ τ − v2, ı̃+ τ − v3,

ı̃+ τ − v1 − v2, ı̃+ τ − v2 − v3} if ı̃ ∈ L′H
N -N ı̃

LH := {ı̃± v1, ı̃± v3, ı̃± (v1 − v3), ı̃− τ, ı̃− τ + v1, ı̃− τ + v2, ı̃− τ + v3,

ı̃− τ + v1 − v2, ı̃− τ − v2 + v3} if ı̃ ∈ L′H + τ.

The projected lattice along v3 is the complex lattice

ΛH = Λ′H ∪ (Λ′H + η) ,
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where Λ′H is the Bravais lattice generated by the vectors

w1 := (
√

3
2 , 0), w2 := (0,

√
8
3 ),

and

η := (
√

3
6 ,
√

2
3 ).

v1

v3
τ η

w2 = v2

w1

w2

w1η

v3
τ

w1

η

w2

v1

Figure 4. Left: the primitive cell in the HCP lattice. Center: the primi-
tive cell oriented according to the anti-plane direction. Right:
the (complex) projected lattice.

The class N -N i
ΛH

of nearest neighbors to i ∈ ΛH is given by the projection of

N -N ı̃
LH (see Figure 4), i.e.,

N -N i
ΛH := {i± w1, i+ η, i+ η − w2} if i ∈ Λ′H

N -N i
ΛH := {i± w1, i− η, i− η + w2} if i ∈ Λ′H + η.

One can check that for every i, j ∈ ΛH

ci,j =

{
J′′(1)

4 if j ∈ N -N i
ΛH

0 otherwise.

1.3.3. The SC lattice. The SC lattice is the Bravais lattice LS generated by the
vectors of the canonical basis e1, e2, e3, namely LS := Z3. Hence the projected
lattice is the square lattice ΛS = Z2.

Since all the nearest neighbors in the cubic lattice are either parallel or orthogonal
to e3, by (1.10) we deduce that ci,j ≡ 0 for any i, j ∈ ΛS with |i−j| = 1: considering
only nearest neighbor interactions would give degenerate linearized energy. It can be
indeed checked that a system of harmonic springs connecting only nearest neighbors
in a cubic lattice and subject to a vertical simple shear of size δ gives an energy
response of order δ4.

In order to get a non-trivial linearized energy, we are led to consider next-to-
nearest-neighbors. In this case, recalling (1.9), we have that for every i ∈ ΛS

ci,j = c0,i−j =


1
2 (J ′′(

√
2) + J′(

√
2)√

2
+ J ′(1)) if |i− j| = 1,

J′(
√

2)

2
√

2
if |i− j| =

√
2,

0 otherwise.
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1.4. Identification of screw dislocations. Classically, dislocations can be de-
tected through so-called Burgers circuits, measuring the geometrically necessary
dislocations in a planar region of the crystal surrounded by a given closed path.
The corresponding density of dislocations is nothing but the Nye’s density mea-
sure [38]. Following [6], we consider elementary Burgers circuits, defined on the
boundary of elementary cells of the crystal. In such a way, we obtain a measure
of dislocations with a resolution of the order of the lattice spacing. This point of
view is very suited to the variational approaches to dislocations, in particular in
the asymptotic analysis of the energy stored by discrete dislocations as the lattice
spacing tends to zero. For screw dislocations and nearest neighbor interactions,
this formalism has been adopted for instance in [39] for SC crystals, and in [29] for
BCC crystals.

We first need to fix some additional notation. Let Λ be a complex lattice in R2

and denote by T a Delaunay triangulation of Λ. The class of ε-triangles is defined
by

Ω2
ε,Λ := {T ∈ εT : T ⊂ Ω}.

The edges of the triangles in Ω2
ε,Λ are the bonds of the lattice, and are identified

by a pair (i, j), where i and j are vertices of a triangle. Clearly, (i, j) and (j, i)
identify the same bond. We fix an arbitrary orientation on such bonds: to each
bond (i, j) = (j, i), we associate an oriented vector `i,j = `j,i which either coincides
with i− j or with j − i.

We now introduce the notion of discrete screw dislocations in our model. Let
P : R→ Z be the projection to the closest integer, i.e.,

|t− P (t)| = min {|t− s| : s ∈ Z} ,

with the convention that, if the minimizer is not unique (namely if t ∈ 1
2 + Z),

we choose the minimal one. The discrete plastic strain βu, associated to any dis-
placement u, is defined on the oriented bonds of the triangulation by βu(`i,j) =
P (u(j)− u(i)) if `i,j = j− i (and hence βu(`i,j) = P (u(i)− u(j)) if `i,j = i− j). In
accordance with the additive decomposition of the strain in elastic and plastic part,
following in particular the discrete approach of [6], we have that the elastic strain
on `i,j = j − i is given by u(j) − u(i) − βu(`i,j). Since the interaction potentials
fi,j are 1-periodic, the elastic energy defined in (1.3) depends only on the elastic
strain.

Given T ∈ Ω2
ε,Λ, let (i, j, k) denote a triple of vertices of T defining a counter-

clockwise orientation of T . We introduce the discrete Burgers circulation of u
around T as

αu(T ) := `i,j ·
j − i
|j − i|2

βu(`i,j) + `j,k ·
k − j
|k − j|2

βu(`j,k) + `k,i ·
i− k
|i− k|2

βu(`k,i).

Notice that the sign in front of any contribution βu(`i,j) depends on the relative
orientation of the bond `i,j and the counter-clockwise orientation of the triangle T .
This ensures that, whenever we sum the Burgers circulation around two adjacent
triangles, then the plastic contribution on the common bond cancels. The resulting
total dislocation is given by the Burgers circulation around the union of the two
triangles.

From the kinematic definition of αu it is immediate to check that αu takes values
in {−1, 0, 1}. The values +1 and −1 for αu correspond to the presence of a screw
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u(i) = 0 u(j) = 1/3

u(k) = 2/3u(l) = 1/3

Figure 5. Discrete Burgers Circuit: According to the definition of αu,
the discrete circulation of u along the edges of the triangle
(i, j, k) equals 1 and along the edges of the triangle (i, k, l)
equals −1.

dislocation in the triangle T pointing upward and downward respectively. We now
introduce a discrete version of the Nye’s dislocation density by means of the measure

µ(u) :=
∑

T∈Ω2
ε,Λ

αu(T )δb(T ),

where b(T ) is the barycenter of the triangle T . By its very definition, for every
subset A of Ω which is union of ε-triangles we have that µ(u)(A) depends only on
the values of u on ∂A and represents the geometrically necessary dislocations in A.

Note that different choices for the orientation of the bonds (as well as for the
projection P whenever it is not unique) may slightly vary the position of the dis-
location cores associated to a given displacement u, but they would not affect the
asymptotic analysis that we will describe in the sequel. In particular, assigning
two different orientations to the bonds does not affect the definition of the Burg-
ers circulation, except on two adjacent triangles where the elastic strain on the
common bond is equal to ±1/2. In this case, the specific choice of the orientation
of the common bond has the effect of switching the dislocation from a triangle to
the adjacent one. Clearly, for periodic structures, one could in principle assign the
orientation of the bonds using some conventional periodic rule (as done in [2, 29]).

The set of all configurations of discrete dislocations in Ω is identified with

Xε,Λ(Ω) :=

{
µ =

∑
i

diδb(Ti), Ti ∈ Ω2
ε,Λ, di ∈ {−1, 0, 1}

}
.

For any distribution of dislocations µ ∈ Xε,Λ(Ω) we can consider the elastic
energy Fε,Λ(µ) induced by µ by minimizing the energy Fε,Λ(u) (defined in (1.3))
over all displacements u compatible with µ, i.e.,

Fε,Λ(µ) := inf{Fε,Λ(u) : u : εΛ ∩ Ω→ R, µ(u) = µ}.

Notice that in the above minimization problem we do not enforce any boundary
condition. Therefore, we are dealing with the so-called natural Neumann boundary
data, corresponding to traction free boundary conditions. One could as well con-
sider prescribed Dirichlet boundary conditions, with minor changes in our analysis.

It is well known that diluted dislocations induce an elastic energy that scales
logarithmically in the core radius, i.e., proportional to | log ε|, while short dipoles,
as well as dislocations close to the boundary, may store energy of order one. This
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means that, in our asymptotic analysis, a logarithmic bound on the total energy
does not provide a uniform bound on the number of dislocations. Hence, it is
convenient to introduce a distance between different configurations of dislocations,
which vanishes on annihilating dipoles (somehow it vanishes on the statistically
stored dislocations).

It is then natural to define the norm of a distribution µ of dislocations as the
minimal-length connection joining positive and negative masses, possibly adding
virtual dislocations at the boundary. In geometric measure theory this is known
as the flat norm, while in mass transport theory it is related with the so-called
1-Wasserstein metric, and it is given by

‖µ‖flat := min

∑
l

|ml||pl − ql| : ml ∈ Z, pl , ql ∈ Ω ,
∑

pl,ql∈Ω

ml(δql − δpl) = µ

 .

Note that if µ := δx − δy, then

‖µ‖flat = min{|x− y|,dist (x, ∂Ω) + dist (y, ∂Ω)} .

This norm turns out to be very convenient in our analysis of the effective dynamics,
which for ε = 0 (i.e., in the continuous description of the crystal) involves only the
geometrically necessary dislocations.

2. Dynamics of discrete screw dislocations

According to the LEDS hypothesis, a relevant mechanism in plastic deformations
is the motion of configurations of dislocations toward low energy configurations,
following the steepest descent of the interaction energy. Discrete systems, however,
are often characterized by the presence of many metastable configurations. In order
to move, discrete dislocations have to overcome energy barriers. As a consequence,
the gradient flow of the discrete energy Fε,Λ is pinned.

In order to describe an effective dynamics driven by the sole minimization of the
elastic energy we follow a discrete in time scheme, in the spirit of [40]. Precisely, we
introduce a notion of discrete gradient flow (see [2]), defined through a step-by-step
minimization of a total energy given by the sum of the elastic energy Fε,Λ and a
suitable scaled dissipation. This method corresponds to the Euler implicit scheme
for convex energies, which has been generalized to infinite dimensional problems
and to non regular and non convex functionals. In the mathematical community,
such a general variational approach is known as minimizing movements (see [4] and
the references therein).

2.1. Dissipations. Here we introduce a class of dissipation functionals, that will
measure the energy spent to move a configuration of dislocations during the discrete
gradient flow.

Assume for a while that the dislocation configuration at two different time steps
t1, t2 is given by a single Dirac mass δx(t) centered at x(t). Then, we assume that
the energy spent to move the dislocation from x(t1) to x(t2) can be expressed as
φ2(x(t1)− x(t2)), for a suitable norm φ, which depends on the material properties
of the crystal, taking into account the specific glide directions. In our applications,
φ is minimal on the slip directions, so we can think that its unit ball is given by a
polygon whose vertices coincide with the glide directions of the crystal.
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We define our dissipation in two steps. First assume that all the dislocations

have the same sign. More precisely, let ν1 =
∑N1

i=1 d
1
i δx1

i
and ν2 =

∑N2

j=1 d
2
jδx2

j
with

d1
i , d

2
j ∈ N and set

D̃φ(ν1, ν2) := min

∑
l

φ2(ql − pl) : ql, pl ∈ Ω,
∑
ql∈Ω

δql = ν1,
∑
pl∈Ω

δpl = ν2

 .

Namely, we minimize the quantity
∑
l φ

2(ql − pl) over all connections between the

masses of ν1 with the masses of ν2 and possibly with ∂Ω. Actually, D̃φ(ν1, ν2) can
be rewritten as

D̃φ(ν1, ν2) = min
λ

∫
Ω̄×Ω̄

φ2(x− y)dλ(x, y) ,

where the minimum is taken over all positive measures λ which are sums of Dirac
deltas in Ω̄×Ω̄ with integer coefficients, and have marginals restricted to Ω given by
ν1 and ν2. In other words, the dissipation D̃φ computed on probability measures is
the square of a 2-Wasserstein type metric for a cost function given by the distance
induced by φ.

For the general case of µ1 =
∑N1

i=1 d
1
i δx1

i
and µ2 =

∑N2

j=1 d
2
jδx2

j
with d1

i , d
2
j ∈ Z

we set

Dφ(µ1, µ2) := D̃φ(µ+
1 + µ−2 , µ

+
2 + µ−1 ),

where µ+
l and µ−l are the positive and the negative part of µl. This definition

encodes the fact that we are connecting in an optimal way dipoles belonging to the
same measure, and dislocations with the same sign, belonging to different measures,
and has been used to deal with evolution of signed measures in [5, 2].

2.2. Discrete in time and space dynamics. We are now in a position to intro-
duce the discrete gradient flow of Fε,Λ with respect to the dissipation Dφ, fixing a
time step τ > 0 and constructing iteratively a discrete in time evolution. To this
purpose, first notice that a given dipole δx − δy induces an elastic energy which
blows up as | log ε|, as ε→ 0. This fact can be formalized in terms of Γ-convergence
(see [39, 2]). It is therefore clear that, for ε small enough, it is always convenient
to annihilate (in a single time step) such a pair of dislocations, paying a finite
dissipated energy (independent of ε), while gaining an amount of elastic energy of
order | log ε|. This suggests that the scheme needed in order to define our discrete
gradient flow cannot be based on a global minimization argument, that would lead
to instantaneous collision. It is then convenient to consider local minimizers of the
total energy instead of global minimizers. To this purpose, we introduce a length
scale δ, and we look for minimizers in a δ-neighborhood of the configuration at the
previous time step. While it is essential to fix such a length scale, it turns out that
its specific choice does not affect at all the dynamics: dislocations move with finite
velocity, and hence at each time step they make a “jump” of order τ , which for
small τ is smaller than any fixed δ. In this scheme, the dissipation plays the role
of a kinetic term, and indeed sets the time scale of the motion.

Fix a length scale δ > 0, the lattice spacing ε and a time step τ > 0. We define a

discrete dynamics, starting from a given initial condition µ0 =
∑M

1 di,0δxi,0 (with
multiplicities di,0 = ±1), through an iterative minimization process. Namely the
discrete dynamics (gradient flow) is given by the measures {µτε,k}, with k ∈ N∪{0},
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satisfying µτε,0 = µ0 and for k ∈ N, µτε,k is a solution of

min

{
Fε,Λ(µ) +

Dφ(µ, µτε,k−1)

2τ
: µ ∈ Xε,Λ(Ω), ‖µ− µτε,k−1‖flat ≤ δ

}
.(2.1)

Notice that the existence of a minimizer is obvious, since µ lies in Xε which is a
finite set.

If φ(x) = |x|2, the step-by-step minimization (2.1) is nothing but the Euler
implicit scheme for the fully overdamped dynamics governed by the gradient flow
v = −∇Fε,Λ, where v represents the velocity of the dislocations. We will see that
the effect of this minimization problem will be a discrete in time “relaxation of the
system”, in the sense that dislocations of opposite sign tend to annihilate, while
dislocations near the boundary tend to escape from the domain, as it is expected.

During this process, there might be the emergence of new dislocations in form of
short dipoles. Nevertheless, studying the asymptotics as the lattice spacing ε tends
to zero, we can show that the discrete evolution µτε,k is given by the motion of the
initial dislocations µ0, plus the possible presence of short dipoles that do not affect
the dynamics of the geometrically necessary dislocations.

The limit effective dynamics has still a gradient flow structure, with respect to an
effective interaction energy and a metric which depends on the specific dissipation
norm φ.

3. Effective dynamics

Our approach in constructing the effective dynamics is based on the assump-
tion that the elastic energy can be decomposed, for ε small, into a self energy,
concentrated around each dislocation, and an interaction energy W , referred to
as renormalized energy, governing the dynamics. It turns out that, for ε much
smaller than the time step τ , the dislocations overcome the energetic barriers and
the dynamics is described by a gradient flow of such a renormalized energy.

Actually, we will see that, as ε→ 0, the sequence µτε,k converges (up to a subse-

quence) to some µτk =
∑M

1 di,0δxk,τi
, whose singularities have the same multiplicity

of those of the initial datum, and that solve a step-by-step minimum problem similar
to (2.1), but with Fε,Λ replaced by the renormalized energy (see (3.7)).

Finally, letting τ → 0, we obtain a differential inclusion, proposed in [14] and
analyzed in [8], which can be interpreted as the gradient flow of the renormalized
energy with respect to a metric related with the specific choice of the dissipation
functional.

3.1. Renormalized energy. Here we introduce the renormalized energy, which
governs the dynamics of dislocations as ε tends to zero. Under suitable assumptions
on the periodic potentials fi,j , the energy functionals behave as

(3.1) Fε,Λ(µ) ≈ λself M | log ε|+ WΛ(µ) +Mγ.

The first term is the so-called self energy, WΛ is an interaction energy (the renor-
malized energy) and γ is a finite core energy. Our standing assumption to study the
dynamics of dislocations will be to assume that the energy induced by dislocations
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satisfies the expansion (3.1) in terms of Γ-convergence. For nearest and next-to-
nearest neighbor interactions, this Γ-convergence analysis has been developed in [2]
and [19].

We now introduce the renormalized energy. Let M ∈ N be fixed, representing
the number of dislocations, and let d = (d1, . . . , dM ) ∈ {−1,+1}M , representing
the signs of the dislocations. Once fixed these parameters, the renormalized energy
can be expressed in terms of the sole position of the dislocations: it is a smooth
function

WΛ,d : ΩM \ {(x1, . . . , xM ) : xi = xj for some i 6= j} → R.

Given µ :=
∑M
i=1 ziδxi ∈ X(Ω), we set

WΛ(µ) := WΛ,d(x1, . . . , xM ).

We will give a formal derivation of the different terms in the asymptotic expan-
sion (3.1), following the classical core radius approach as described in [7] in the
context of vortices, and recently developed for variational models of dislocations
(see for instance [15, 2, 19, 8]). We first assume that no dislocations are present.
In this case, under suitable assumptions on the pair interaction potentials fi,j , one
can expect that the discrete energy stored in the crystal can be approximated, as
ε→ 0, by a continuous energy, which is quadratic in the small strain regime, i.e.,

Eelastic(u,Ω) ≈
∫

Ω

〈AΛ∇u,∇u〉 dx,

for some suitable macroscopic positive symmetric matrix AΛ, which depend only
on the lattice Λ and the linearization of the energy Fε,Λ (see (1.2)). The self
energy associated to a dislocation can be described as the continuous energy stored
in a fixed ball around such a dislocation, once a disk of radius ε centered at the
dislocation position is removed. As ε → 0, this quantity blows up logarithmically.
The logarithmic prefactor λself is then given by

λself := lim
ε→0

1

| log ε|

∫
B1\Bε

〈AΛβ, β〉 dx,

where β is the strain induced on the plane {x3 = 0} by a screw dislocation centered
at the origin with Burgers vector e3. If AΛ = Id, we have β(x) = 1

2π∇θ(x),

where θ(x) := arctan x2

x1
, and λself = 1

2π . In general (by a change of variable)

β = 1
2πA

− 1
2

Λ ∇θ(A
− 1

2

Λ x), and

λself =
1

2π

√
detAΛ.

Since in general the matrix AΛ is not a multiple of the identity matrix, it is more
convenient to identify the cores of the singularities with ellipses instead of balls,
whose ellipticity is suitably determined by the matrix AΛ (in principle a different
choice for the shape of the core would lead to the same renormalized energy up to
an additive constant that would not affect the dynamics). More precisely, set

(3.2) BΛ :=
AΛ√

detAΛ

,

and for any σ > 0 let Dσ(x) := B
− 1

2

Λ (Bσ(B
1
2

Λ (x))). With such a notation, the core
energy γ measures the asymptotic discrepancy between the continuous and the
discrete energy around each dislocation xi in the elliptic annulus D1(xi) \Dε(xi).
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Loosely speaking, if Ediscε denotes the minimal discrete energy stored in D1(xi) and
induced by a dislocation in its center, and Econtε denotes its continuous counterpart
(stored in D1(xi) \Dε(xi)), then γ := limε→0E

disc
ε −Econtε . We refer to [2, 19] for

the formal definition of γ.
Finally the renormalized energy WΛ(µ) is nothing but the finite continuous en-

ergy stored in Ω once the self energy is removed. More precisely, let σ > 0 and let
Ωσ be the perforated domain obtained removing the ellipses Dσ(xi) from Ω. Then

(3.3) WΛ,d(x1, . . . , xM ) = lim
σ→0

(
Eelastic(u,Ωσ)− λself log

1

σ

)
,

where u is the displacement induced by the presence of the dislocations. This is
an interaction energy, depending on the mutual positions of the dislocations, and
it is responsible for their dynamics. For traction free boundary conditions, it can
be described in terms of the following Dirichlet problem{

div(AΛ∇Φ) =
√

detAΛ

∑
i diδxi in Ω,

Φ = 0 on ∂Ω.

Let

(3.4) RΛ(x) := Φ(x)−
M∑
i=1

di log |B−
1
2

Λ (x− xi)|

be the regular part of the singular potential Φ, which accounts for the interaction
with the boundary of Ω. Then, the following formula for the renormalized energy
holds

(3.5) WΛ,d(x1, . . . , xM ) := −λself

∑
i 6=j

didj log |B−
1
2

Λ (xi − xj)|+
M∑
i=1

diRΛ(xi)

 .

It can be seen that the derivative of the renormalized energy measures the force
exerted by the elastic strain to the dislocations (see [15, 9, 8]), i.e.,

(3.6) ji := −∇xiWΛ,d(x1, . . . , xM )

is the Peach-Koehler force on the dislocation at xi. In dislocation dynamics the
Peach-Koehler force is the driving force for the motion of the dislocations ([28]).
Notice that (3.6) holds true also under prescribed boundary conditions for the
displacement. In this case the work done by the boundary conditions is taken into
account by the renormalized energy (3.3).

In the Appendix A we will give some explicit examples of the quantities λself and
the singular part of WΛ,d for different crystalline structures, namely BCC, FCC,
HCP (assuming nearest neighbor interactions) and SC (assuming next-to-nearest-
neighbor interactions). The computation of the regular part RΛ(x), which accounts
for the interaction with the boundary of the domain Ω, can be obtained numerically
or explicitly for very special domains, for which the Green function of the Laplacian
is explicit.

3.2. Asymptotic dynamics. In view of the asymptotic expansion (3.1) we can
derive a limit dynamics as the lattice spacing ε tends to zero. If the dissipation
introduced in the scheme (2.1) is differentiable, such a limit dynamics can be de-
scribed by a finite difference equation for the positions of the evolving M dislocation
points. Here we are interested in considering crystalline dissipations, and hence not
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differentiable (see Figure 6). Therefore we obtain a finite difference inclusion rather
than a finite difference equation for the positions of the dislocations.

Denote by x0 = (x1,0, . . . , xM,0) the initial positions of the dislocations and
by d0 = (d1,0, . . . , dM,0) the corresponding multiplicities. The limiting (as ε →
0) discrete in time evolution is defined by solving the step-by-step minimization
problem

min

{
WΛ,d0

(x) +

M∑
i=1

φ2(xi − xτi,k−1)

2τ
: x ∈ ΩM ,

M∑
i=1

|xi − xτk−1,i| ≤ δ

}
,(3.7)

with x = (x1, . . . , xM ) ∈ ΩM and WΛ,d0(x) = WΛ(
∑M
i=1 di,0δxi). We refer to the

solutions xτk := (xτ1,k, . . . , x
τ
M,k) as the discrete gradient flow of the renormalized

energy WΛ,d0
with dissipation φ2. These trajectories represent the limit of the

trajectories µτε,k (see (2.1)) as ε → 0. Such result has been proved in [2] in the
case of a dissipation proportional to the square of the Euclidean distance and will
appear in [3] for the crystalline case.

The trajectories defined in (3.7) also satisfy a finite difference inclusion. Indeed
if δ is chosen smaller than the relative distance between the dislocations and the
boundary of the domain, it can be seen that

∑
|xi − xτi,k−1| < Cτ , and hence for

τ small enough the constraint is not active for all k up to a time step kδ ≈ 1
τ . We

are then led to compute the Euler-Lagrange equation for the minimization problem
(3.7). To this end we notice that the function φ2 might be not differentiable (and
this will be the case of the examples treated in Section 4), but it is convex, and
that WΛ,d0 is regular as far as the dislocations do not collide or reach the boundary
of the domain. Therefore the minimality of xτk yields

(3.8) 0 ∈ ∇xiWΛ,d0
(xτk) +

1

2τ
∂−φ2(xτi,k − xτi,k−1) ,

where ∂−g denotes the subdifferential of a function g, which always exists for convex
g, and is given by

∂−g(x) = {v ∈ R2 : g(y) ≥ g(x) + v · (y − x) ∀y} .

The differential inclusion (3.8) can be rewritten using the homogeneity of φ (pre-
cisely the 1-homogeneity of ∂−φ2) as follows

−∇xiWΛ,d0
(xτk) ∈ ∂−φ

2

2

(
xτi,k − xτi,k−1

τ

)
.

Now, by a classical argument of convex analysis (see e.g. [20], Corollary 5.2) we
have that

ξ ∈ ∂−φ
2

2
(z) ⇐⇒ z ∈ ∂−

(
φ2

2

)∗
(ξ),

where (φ
2

2 )∗ is the polar function of φ2

2 defined by

ψ∗(ξ) := max
η∈R2
〈ξ, η〉 − ψ(η).

We can conclude that the discrete gradient flow xτk satisfies the finite difference
inclusion

(3.9)
xτi,k − xτi,k−1

τ
∈ ∂−

(
φ2

2

)∗
(−∇xiWΛ,d0

(xτk)) .
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The effective dynamics can be then obtained by taking the limit as the time step
τ tends to zero. To this end, we denote by xτ (t) = (xτ1(t), . . . , xτM (t)) the piece-
wise affine interpolation in time of {xτk}, and, using classical results on differential
inclusions (see [22], Chapter 2, paragraphs 6 and 7), we can show that there ex-
ists a positive time T such that xτ (t) converges uniformly in [0, T ] to a trajectory
x = x(t) which is a solution of

(3.10)

{
ẋi(t) ∈ ∂−

(
φ2

2

)∗
(−∇xiWΛ,d0(x(t))) for i = 1, . . . ,M

x(0) = x0.

Here T represents the first time when dislocations collide or escape from the bound-
ary. In the case of traction free boundary conditions considered in this paper, even-
tually all the dislocations will either annihilate to each other or escape from the
boundary. Conversely, in the case of Dirichlet boundary conditions the renormal-
ized energy (and hence the Peach Koehler force) would confine dislocations within
the domain.

Summarizing, we start from a discrete system governed by a periodic interac-
tion potential and we construct a discrete in time evolution for dislocations which
converges to a solution of the differential inclusion (3.10). This result is obtained
by taking first the limit as the space parameter ε tends to zero and then by letting
the time step τ tend to zero.

Notice that, letting first τ → 0 and then ε → 0 the evolution would be pinned
by the local minima of the discrete energy. This means that there are at least two
regimes for τε � ε and τε � ε, for which the effective dynamics is either described
by (3.9) or is stuck. A natural question is whether there are other relevant regimes
for ε and τ tending to zero. We believe that a critical regime is ε ∼ τ where the
pinning/depinning threshold could be determined by the intensity of the Peach-
Koehler force.

In the next section we will specialize the effective dynamics (3.10) to some specific
crystalline dissipations, giving rise to a motion along glide directions, according to
the maximal dissipation principle stated in [14]. The corresponding differential
inclusion has been analyzed in [8], showing existence as long as dislocations stay
away from the boundary of Ω and from collision. In [8] it is also shown that this
equation may exhibit the occurrence of cross slip and fine cross slip effects.

4. Motion along glide directions

Here we introduce a natural class of crystalline dissipations taking into account
the glide directions of the crystal, that are assumed to be a known material property.
Let ξ1, . . . , ξm be m vectors in R2, representing the glide directions in the lattice
Λ. We define the norm

φ(ξ) := inf

{
m∑
i=1

|αi| :
m∑
i=1

αiξi = ξ

}
.

We notice that the unit ball in the metric φ is given by the convex hull of the
polygon whose vertices are ±ξi. Notice also that we do not require that all ξi have
the same norm, so that some glide directions could turn out to be preferable to
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others. One can compute the polar function of φ2

2 and get

(4.1)

(
φ2

2

)∗
(η) =

1

2
max
i
〈η, ξi〉2 .

This is again a 2-homogeneous function whose level sets are convex polygons dual
to the level sets of φ2. Notice that, for any fixed η ∈ R2, we may have either a
unique ξmax, or a pair, ξmax,1, ξmax,2 which maximize 〈η, ξi〉2 (the set of η in which
the maximizers are not unique is called the ambiguity set). In the first case, we
have that also the subdifferential contains a single vector, precisely

(4.2) ∂−
(
φ2

2

)∗
(η) = ∇

(
φ2

2

)∗
(η) = 〈η, ξmax〉ξmax.

In the second case, which corresponds to the vertices of the dual polygons, we have

(4.3) ∂−
(
φ2

2

)∗
(η) = 〈η, ξmax,1〉co({ξmax,1, ξmax,2}) ,

where co({ξmax,1, ξmax,2}) is the convex hull of the set {ξmax,1, ξmax,2} (see Figure 6).
With this choice of a crystalline dissipation the differential inclusion (3.10) recov-

ers the dynamics proposed in [14], according to the maximal dissipation of energy
criterion. If the Peach-Koehler force (3.6) acting on a dislocation belongs to the
set in which the subdifferential is single valued, then the dislocation moves in the
direction prescribed by (4.2). Otherwise, if the Peach-Koehler force lies in the
ambiguity set, the dislocation can move along any direction of the convex hull in
(4.3) and cross slip and fine cross slip may occur. This is clarified by the following
examples.

Example 4.1 (The square lattice). For the square lattice ΛS = Z2 it is reasonable
to assume that the preferred glide directions are given by e1, e2.

In this case φ(ξ) = ‖ξ‖1 := |ξ1|+ |ξ2|, where ξ = (ξ1, ξ2), and therefore(
φ2

2

)∗
(η) =

1

2
max{|η1|2, |η2|2} .

Moreover, for every η such that |η1| 6= |η2|, we have

∂−
(
φ2

2

)∗
(η) =

{
(η1, 0) if |η1| > |η2|,
(0, η2) if |η2| > |η1|,

while in the ambiguity set {|η1| = |η2|} we have

∂−
(
φ2

2

)∗
(η) = co({(η1, 0), (0, η2)}).

In particular we deduce that in equation (3.10) the dislocation at position xi(t)
moves along the slip directions e1 or e2 whenever |∂x1

i
Wλ,d0

(x(t))| > |∂x2
i
Wλ,d0

(x(t))|
or |∂x1

i
Wλ,d0(x(t))| < |∂x2

i
Wλ,d0(x(t))|, respectively.

Example 4.2 (The hexagonal lattice). For the hexagonal lattice

ΛB := {z1(1, 0) + z2( 1
2 ,
√

3
2 ) : z1, z2 ∈ Z}

we assume that the preferred glide directions are given by the vectors ξ1 = (1, 0),

ξ2 :=
(

1
2 ,
√

3
2

)
and ξ3 :=

(
1
2 ,−

√
3

2

)
. By the very definition of (φ

2

2 )∗ in (4.1), for
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any η = (η1, η2) ∈ R2 we have(
φ2

2

)∗
(η) =

1

2
max
i=1,2,3

〈η, ξi〉2 =
1

2
max

{
|η1|2, |η

1

2 +
√

3η2

2 |
2, |η

1

2 −
√

3η2

2 |
2
}
.

Moreover, for every η ∈ R2 with η1 /∈ {−
√

3η2, 0,
√

3η2}, we have

∂−
(
φ2

2

)∗
(η) =


(η

1

2 −
√

3η2

2 )ξ3 if −
√

3 < η1

η2 < 0,

(η
1

2 +
√

3η2

2 )ξ2 if 0 < η1

η2 <
√

3,

η1ξ1 if −
√

3|η2| < η1 <
√

3|η2|,
while in the critical cases we get

(
φ2

2

)∗
= 1

2

η1 = −
√

3η2
η1 = 0

η1 =
√

3η2

Figure 6. The red hexagon represents a level set of the function
(
φ2

2

)∗
.

The blue lines represent the ambiguity set where the subdif-
ferential is not single valued. Outside this region the function(
φ2

2

)∗
is differentiable and the differential is orthogonal to

the level set, while on the blue lines, which correspond to the
corners of the level sets, the subdifferential is obtained by the
convex combination of the differentials on the adjacent edges.

∂−
(
φ2

2

)∗
(η) =


η1co({ξ1, ξ3}), if η1 = −

√
3η2

√
3η2

2 co({ξ2,−ξ3}) if η1 = 0,

η1co(ξ1, ξ2) if η1 =
√

3η2.

The structure of the subdifferential is described in Figure 6.

Conclusions

We have introduced a simple discrete setting of anti-plane elasticity in crystals
governed by periodic potentials, accounting for the presence of screw dislocations.
A multi-scale analysis of this model highlights concentration of energy around the
cores, and the emergence of an interaction far field energy, referred to as the renor-
malized energy, governing the dynamics of dislocations.

In order to model depinning and dynamics of dislocations toward lower energy
configurations, we have considered a step-by-step local minimization scheme. The
dissipations involved in this process encode fundamental material properties of the
crystal, such as the preferred glide directions. We have shown that our effective
dynamics satisfies the so-called maximum dissipation criterion: dislocations move
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according to the glide directions that maximize the scalar product with the Peach-
Koehler force, i.e., follow a steepest descent of the renormalized energy along glide
directions. We remark that this criterion is not imposed to the model as a con-
straint, but arises as a consequence of energy balance arguments. On the other
hand, enforcing such a constraint in the discrete in time (but continuous in space)
scheme would lead to the same evolution law. Restricting the class of admissible
velocity directions in the purely discrete scheme would require a fine analysis of
formation and annihilation of short dipoles.

The effective dynamics has a gradient flow structure, and is parabolic in time.
It describes the dynamics of dislocations toward ground states. In case of slowly
varying time dependent boundary conditions and external loads, one could also
consider quasi static rate independent evolutions. This would correspond to one-
homogeneous instead of quadratic dissipation functionals.

In our model we neglect thermal effects, or any kind of statistical fluctuation
of the system. Our time discretization mimics these effects with a simpler mech-
anism, allowing dislocations to overcome energy barriers and move. This happens
whenever the time step is much larger than the lattice spacing. We believe that
the regime when these two scales are of the same order is somehow critical, leading
to a threshold depinning criterion.

We finally remark that our variational approach can be extended in principle
to the dynamics of straight edge dislocations; however, in this case, a rigorous
derivation of the renormalized energy from a purely discrete model is, to the best of
our knowledge, still not available (see [15] for a formal derivation of the renormalized
energy in a semi-discrete setting). The general case of curved dislocations in 3D is
in essence more complex. In this case, we expect that also the self energy would
affect the dynamics of curved dislocation lines by decreasing their length.

Appendix A. Some example of explicit renormalized energies

A rigorous derivation of the asymptotic expansion (3.1) in terms of Γ-convergence
can be done under quite general assumptions for the interaction potentials fi,j .

We now review such conditions on the potentials fi,j and we compute explic-
itly the renormalized energy if the lattice structures is given by ΛB , ΛF , ΛH (see
Subsection 1.3), and fi,j ≡ 0 whenever |i − j| > mini,j∈Λ,i6=j |i − j|. This corre-
sponds to considering nearest neighbors in the three dimensional BCC, FCC and
HCP lattices. To this purpose, we first fix a linear (indeed piecewise-affine for ΛH)
application mapping such lattices into Z2, by setting

LΛB

(
x1

x2

)
:=

3

2
√

2

(
1 1/

√
3

0 2/
√

3

)(
x1

x2

)
,

LΛF

(
x1

x2

)
:=

( √
2/2 −1√
2/2 1

)(
x1

x2

)
,

LΛH

(
x1

x2

)
:=



 2√
3
x1 − x2−2k

√
2
3√

6√
3
2 x

2

 if 2k
√

2
3 ≤ x

2 ≤ (2k + 1)
√

2
3 2√

3
x1 +

x2−2k
√

2
3√

6√
3
2 x

2

 if (2k − 1)
√

2
3 ≤ x

2 ≤ 2k
√

2
3 .
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For every Λ ∈ {ΛB ,ΛF ,ΛH} there exists a linear application L̄Λ : R2 → R2 such
that the piecewise-affine functions Lε,Λ mapping εΛ into εZ2 defined by

(A.1) Lε,Λ(x) := εLΛ(x/ε)

satisfy ‖Lε,Λ − L̄Λ‖L∞(Ω) ≤ C̄ε for some constant C̄ > 0. In particular L̄Λ = LΛ if
Λ ∈ {ΛB ,ΛF }, while

L̄ΛH

(
x1

x2

)
:=

(
2/
√

3 0

0
√

3/2

)(
x1

x2

)
.

We assume that the potentials fi,j depend only on i − j (and that fi,j = fj,i),
i.e., there exists a family of functions {gξ}ξ∈{±e1,±e2,±(e1+e2)} such that fi,j =
gLΛ(i−j) for every pair of nearest neighbors (i, j). By virtue of the nearest neighbor
assumption, we have that ge1+e2 6= 0 only for the BCC lattice, while it is zero
otherwise.

In [19] the Γ-convergence result for (3.1) is proven under the following assump-
tions: For every ξ ∈ {e1, e2, e1 + e2} there exists cξ ≥ 0, strictly positive for
ξ = e1, e2, such that the potentials gξ satisfy

gξ(t) ≥
cξ

4π2
(1− cos(2πt)), gξ(t) = cξt

2 + o(t2).

To ease the computations, we assume an isotropy condition for our potentials
fi,j , which reads as ge1 = ge2 for every Λ ∈ {ΛB ,ΛF ,ΛH}, and ge1+e2 = ge1 for the
BCC lattice. We set

c := ce1 = ce2 , cd := ce1+e2 .

Then, cd = 0 for every Λ except for the BCC lattice, where cd = c. These choices
are coherent with the derivation of linearized anti-plane elasticity done in Section
1.2.

Now we compute the renormalized energy WΛ,d in (3.5) under the assumptions
above. To this purpose, we need to know the explicit formula of the matrix AΛ

used in its definition. We first notice that, in the case of the square lattice with
interactions along the directions e1, e2, e1+e2, the linearized effective elastic energy
is obtained by interpolating the displacement field and the corresponding elasticity
matrix A′ is given by

A′ :=

(
c+ cd cd
cd c+ cd

)
.

The general case of a lattice Λ can be dealt with a change of variable obtaining

AΛ := det L̄Λ L̄
−1
Λ A′(L̄−1

Λ )T .

Then, by the very definition of AΛ, we have

λself =

√
detAΛ

2π
=

√
c2 + 2ccd

2π
.
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Now we specialize the formula of the renormalized energy in (3.5) to each of our
lattices. For every d = (d1, . . . , dM ) ∈ {+1,−1}M and x1, . . . , xM ∈ Ω, we have

WΛB ,d(x1, . . . , xM ) := −
√

3c

2π
(
∑
i 6=j

didj log |xi − xj |+
∑
i

diRΛB (xi))

WΛF ,d(x1, . . . , xM ) := − c

2π
(
∑
i 6=j

didj log |
√
BΛF (xi − xj)|+

∑
i

diRΛF (xi)),

WΛH ,d(x1, . . . , xM ) := − c

2π
(
∑
i6=j

didj log |
√
BΛH (xi − xj)|+

∑
i

diRΛH (xi)),

where BΛF , BΛH and R(x) are defined according to (3.2), and (3.4). Specifically,
we have

BΛF :=

(
1/ 4
√

2 0

0 4
√

2

)
and BΛH :=

(
4
√

8/9 0

0 4
√

9/8

)
.

Finally, we consider the case of nearest and next-to-nearest neighbor interactions
in the SC crystal. This corresponds to considering interactions along the directions
e1, e2, e1 + e2, e1 − e2 on the two dimensional lattice ΛS = Z2. In [19] it is proven
that the Γ-convergence expansion in (3.1) holds true if the potentials fi,j depend
only on i− j and there exist constants c′, c′d > 0 such that

fi,i+ξ(t) ≥
c′

4π2
(1− cos(2πt)), fi,i+ξ(t) = c′t2 + o(t2) if ξ ∈ {e1, e2}

fi,i+ζ(t) ≥
c′d

4π2
(1−cos(2πt)), fi,i+ζ(t) = c′dt

2 +o(t2) if ζ ∈ {e1 +e2, e1−e2}.

The conditions above mean in particular that the energy functional is isotropic. In
this case it is easy to see (see [19] for more details) that AΛS := (c′ + 2c′d)I and

WΛS ,d(x1, . . . , xM ) := −c
′ + 2c′d

2π
(
∑
i 6=j

didj log |xi − xj |+
∑
i

diRΛS (xi)).
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tions with Antiplane Shear, preprint (2014).
[10] Braides A.: Local minimization, variational evolution and Γ-convergence, Lecture Notes in

Mathematics, 2094, Springer, Cham, 2014.

[11] Bulatov V.V.: Current and trends in Dislocation Dynamics, Journal of Computer-Aided
Materials Design, 9 (2002), 133–144.

[12] Carpio A., Bonilla L.L.: Edge dislocations in crystal structures considered as traveling waves

in discrete models, Physical Review Letter 90 (2003), no. 13, 135502–1–4.
[13] Celli V., Flytzanis N.: Motion of a Screw Dislocation in a Crystal, J. of Appl. Phys. 41

(1970), no. 11, 4443–4447.
[14] Cermelli P., Gurtin M. E.: The motion of screw dislocations in crystalline materials undergo-

ing antiplane shear: glide, cross-slip, filene cross-slip. Arch. Rational Mech. Anal. 148 (1999),

no.1, 3–52.
[15] Cermelli P., Leoni G.: Renormalized energy and forces on dislocations, SIAM J. Math. Anal.

37 (2005), no. 4, 1131–1160.

[16] Conti S., Garroni A., Ortiz M.: The line-tension approximation as the dilute limit of linear-
elastic dislocations, Arch. Rational Mech. Anal. 218 (2015), no. 2, 699-755.

[17] Daw M.S., Baskes M.I.: Embedded-atom method: Derivation and application to impurities,

surfaces, and other defects in metals. Physical Review B 29 (1984), no. 12, 6443–6453.
[18] De Luca, L., Garroni, A., Ponsiglione, M.: Γ-convergence analysis of systems of edge dislo-

cations: the self energy regime, Arch. Rational Mech. Anal. 206 (2012), no. 3, 885–910.

[19] De Luca, L.: Γ-convergence analysis for discrete topological singularities: The anisotropic
triangular lattice and the long range interaction energy, Asympt. Anal., to appear.

[20] Ekeland I., Temam R.: Convex analysis and variational problems. Translated from the French.
Corrected reprint of the 1976 English edition. Classics in Applied Mathematics, 28. Society

for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999

[21] Eshelby J.D.: The equation of motion of a dislocation. Phys. Rev. 90 (1953) 248.
[22] Filippov A. F.: Differential equations with discontinuous right-hand sides, translated from

the Russian. Mathematics and its Applications (Soviet Series), 18. Kluwer Academic Pub-

lishers Group, Dordrecht, 1988.
[23] Forcadel N., Imbert C., Monneau R.: Homogenization of fully overdamped Frenkel-Kontorova

models, J. of Differential Equations 246 (2009), no. 3, 1057–1097.

[24] Frenkel Y., Kontorova T.: On the theory of plastic deformation and doubling, Zh. Eksp.
Teor. Fiz. 8 (1938) (in russian).

[25] Flytzanis N., Crowley S., Celli V.: High Velocity Dislocation Motion and Interatomic Force

Law, J. Phys. Chem. Solids 38 (1977), 539–552.
[26] Groma I.: Link between the microscopic and mesoscopic length-scale description of the col-

lective behaviour of dislocations, Phys. Rev. B 56 (1997), no. 10, 5807–5013.
[27] El Hajj A., Ibrahim H., Monneau R.: Dislocation dynamics: from microscopic models to

macroscopic crystal plasticity, Contin. Mech. Thermodyn. 21 (2009), no. 2, 109–123.

[28] Hirth J.P., Lothe J.: Theory of Dislocations, Krieger Publishing Company, Malabar, Florida,
1982.

[29] Hudson T., Ortner C.: Existence and stability of a screw dislocation under anti-plane defor-
mation. Arch. Rational Mech. Anal. 213 (2014), no. 3, 887–929.

[30] Hudson, T.; Ortner, C.; Analysis of Stable Screw Dislocation Configurations in an Antiplane

Lattice Model. SIAM J. Math. Anal. 47 (2015), no. 1, 291–320.

[31] Hull D., Bacon D.J.: Introduction to dislocations, Butterworth-Heinemann, 2011.
[32] Ishioka S.: Uniform Motion of a Screw Dislocation in a Lattice, Journ. of Phys. Soc. of Japan

30 (1971), no. 2, 323–327.
[33] Kresse O., Truskinovsky L.: Mobility of lattice defects: discrete and continuum approaches,

J. Mech. Phys. Solids 51 (2003), 1305–1332.

[34] Kuhlmann-Wilsdorf D.: The theory of dislocation-based crystal plasticity. Philos. Mag. A

79 (1999), no. 4, 955–1008.



DYNAMICS OF DISCRETE SCREW DISLOCATIONS ON GLIDE DIRECTIONS 25

[35] Mielke A., Truskinovsky L.: From Discrete Visco-Elasticity to Continuum Rate-Independent

Plasticity: Rigorous Results, Arch. Rational Mech. Anal. 203 (2012), no. 2, 577–619.

[36] Mora M.G., Peletier M., Scardia L.: Convergence of interaction-driven evolutions of disloca-
tions with Wasserstein dissipation and slip-plane confinement, preprint (2014).

[37] Müller S., Scardia L., Zeppieri C. I.: Geometric rigidity for incompatible fields and an appli-

cation to strain-gradient plasticity, Indiana Univ. Math. J., 63 (2014), no. 5,1365-1396.
[38] Nye, J.F.: Some geometrical relations in dislocated crystals, Acta Metallurgica 1 (1953), 153–

162.

[39] Ponsiglione M.: Elastic energy stored in a crystal induced by screw dislocations: from discrete
to continuous, SIAM J. Math. Anal. 39 (2007), no. 2, 449–469.

[40] Ramasubramaniam A., Ariza, M. P., Ortiz, M., : A discrete mechanics approach to disloca-

tion dynamics in BCC crystals, J. Mech. Phys. Solids 55 (2007), 615–647.
[41] Salman O.U., Truskinovsky L.: On the critical nature of plastic flow: One and two dimen-

sional models, Internat. J. of Engin. Sc. 59 (2012), 219–254.
[42] Sandier E., Serfaty S.: Vortices in the Magnetic Ginzburg-Landau Model, Progress in Nonlin-

ear Differential Equations and Their Applications, vol. 70, Birkhäuser Boston, Boston (MA),
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