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A B S T R A C T

Aquaporins are water channel proteins that regulate plant development, growth, and response to environmental
stresses. Populus trichocarpa is one of the plants with the highest number of aquaporins in its genome, but only
few of them have been characterized at the whole plant functional level. Here we analyzed a putative aquaporin
gene, aqua1, a gene that encodes for a protein of 257 amino acid with the typical NPA (Asp-Pro-Ala) signature
motif of the aquaporin gene family. aqua1 was down-regulated of ∼10 fold under excess Zn in both leaves and
roots, and conferred Zn tolerance when expressed in yeast Zn hypersensitive strain. In vivo localization of
AQUA1-GFP in Arabidopsis protoplast showed a heterogeneous distribution of this protein on different mem-
branes destined to form aggregates related to autophagic multivesicular bodies. Zn-dependent AQUA1-GFP re-
localization was perturbed by phosphatases' and kinases' inhibitors that could affect both intracellular trafficking
and aquaporins' activity. Exposed to high concentration of Zn, AQUA1 also co-localized with AtTIP1;1, a well-
known Arabidopsis vacuolar marker, probably in pro-vacuolar multivesicular bodies. These findings suggest that
high concentration of Zn down-regulates aqua1 and causes its re-localization in new forming pro-vacuoles. This
Zn-dependent re-localization appears to be mediated by mechanisms regulating intracellular trafficking and
aquaporins' post-translational modifications. This functional characterization of a poplar aquaporin in response
to excess Zn will be a useful reference for understanding aquaporins' roles and regulation in response to high
concentration of Zn in poplar.

1. Introduction

Heavy metal contamination derived from urban activities, agri-
cultural operations and industrial processing constitute a worldwide
problem nowadays (Lado et al., 2008; Li et al., 2001). Zinc (Zn) is one
of the most common contaminants (http://eusoils.jrc.ec.europa.eu/
foregshmc/) with toxic Zn concentrations for plants occurring in soils
(especially at low pH) contaminated by mining and smelting activities,
sewage sludge, and other human-relate activities (Broadley et al.,
2007).

Endemic plants of areas with elevated metal contamination, like the
hyperaccumulator Noccaea caerulescens and Arabidopsis halleri, are able
to accumulate more than 1% of their dry biomass in Cd and Zn, 10
times more than non-accumulator plants (Rigola et al., 2006; Zhao
et al., 2000). This natural metal uptake capacity suggested the use of

hyperaccumulator plants in phytoremediation programs, even if they
have low growth rate and a poor biomass production. On the other
hand, high biomass-producing perennial plants like trees could be a
valuable alternative to these hyperaccumulator plants (Pulford and
Dickinson, 2005). Species from the Salicacea family could be useful for
phytoremediation application thanks to their high growth rate, biomass
production, tolerance to heavy metal, and also thanks to their adapta-
tion to wetland systems (Kuzovkina and Quigley, 2005; Mertens et al.,
2006; Pulford et al., 2001; Tack et al., 2005). In particular, Populus
species and hybrids have been used in studies on heavy metal tolerance
and phytoremediation programs (Castiglione et al., 2009; Dos Santos
Utmazian et al., 2007; Laureysens et al., 2005; Pulford and Dickinson,
2005; Sebastiani et al., 2004; Tognetti et al., 2004). In addition, the
availability of a full annotated genome sequence of Populus trichocarpa
makes this species the model plant for tree-specific physiological and
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molecular studies (Tuskan et al., 2006). Several of the biochemical
mechanisms essential for heavy metal tolerance and accumulation are
well known in plant (Li et al., 2018; Singh et al., 2015; Zhu, 2016), but
the molecular events underlying heavy metal sensing, signal transduc-
tion and defense systems have been only partially elucidated. In pre-
vious studies, the hybrid poplar clone I-214 (Populus x canadensis
Moench) was extensively used as a model system for elucidating mo-
lecular, physiological, biochemical and anatomical responses to excess
Zn (Di Baccio et al., 2010, 2003; Di Baccio et al., 2009; Stoláriková
et al., 2012). In particular, high throughput analyses performed in leaf
and root under Zn stress identifies several differentially expressed
genes, like those involved in glutathione metabolisms, ion homeostasis
and water transport, such as aquaporins (Ariani et al., 2015; Di Baccio
et al., 2011).

Aquaporins are small membranes proteins ubiquitous in all organ-
isms (Gomes et al., 2009), and several studies report that in addition to
water, aquaporins can transport other substrates of great physiological
interest such as ammonia, boron, carbon dioxide, hydrogen peroxide,
silicon and urea (Hove and Bhave, 2011; Maurel et al., 2008), proving
to be more than simple water channels and possibly engaged in struc-
tural roles (Chevalier and Chaumont, 2015; Hachez et al., 2014a,
2014b).

Despite the evolutionary differences between aquaporins, the ty-
pical protein structure was highly conserved with a tetrameric qua-
ternary structure characterized by a central aqueous pore carrying the
conserved NPA motif (Asp-Pro-Ala) specific of aquaporins (Danielson
and Johanson, 2008; Li et al., 2014). Furthermore, the majority of
aquaporins share conserved Cys residues which determines sensitivity
towards HgCl2 (Li et al., 2014) that can block the pore by directly
binding to this site, and a reducing agent, i.e. DTT, could revert this
inhibition (Hirano et al., 2010). These characteristics have been ex-
tensively used for aquaporin identification and for evaluation of
aquaporin-mediated water-flow across different tissues (Javot and
Maurel, 2002).

Aquaporins are a large and highly divergent protein super-family in
plants, with more than thirty members identified in Arabidopsis thaliana
(Johanson et al., 2001; Quigley et al., 2002), Zea mays (Chaumont et al.,
2001), Oryza sativa (Sakurai et al., 2005) and Populus trichocarpa (Gupta
and Sankararamakrishnan, 2009). Plant aquaporins are usually classi-
fied into four subfamilies based on sequence homology and subcellular
localization. These subfamilies are: plasma membrane intrinsic proteins
(PIP), with two groups (PIP1 and PIP2); tonoplastic intrinsic proteins
(TIP); nodulin 26-like intrinsic proteins (NIPs) and small intrinsic pro-
teins (SIPs) (Li et al., 2014).

Aquaporins are tightly regulated by an integrated signaling network
at both transcriptional and post-transductionaltranslational level
(Maurel et al., 2008) and their water-flow activity can also be modu-
lated by direct gating of protons and divalent cations (Gerbeau et al.,
2002) and heterotetramerization among isoforms (Chaumont et al.,
2005; Li et al., 2014). Aquaporin phosphorylation occurs in inter-
dependent sites at both Ne and C-terminal part of the proteins
(Boursiac et al., 2008; Chaumont et al., 2005) that can directly gate the
channel (Chevalier and Chaumont, 2015; Horie et al., 2011) or affect
protein's re-localization (Chevalier and Chaumont, 2015; Li et al., 2014;
Prak et al., 2008). Moreover, aquaporins were also subjected to co-
translational maturation process of their N-terminus by N-α-acetylation
of specific residue, cleavage of initiating methionine or methylation of
two adjacent sites of the protein. These modifications may regulate the
correct export of the protein to the plasma membrane and determine
their stability (Santoni et al., 2006). Finally, several studies report that
aquaporins can undergo modifications, such glycosylation (Vera-
Estrella et al., 2004) or ubiquitination (Lee et al., 2009), which ac-
company a stress-induced or development-induced re-localization.

Previous analysis of a Populus x canadensis aquaporin (aqua1,
GenBank: GQ918138) in transgenic Populus plants showed a stomata
specific localization of this protein, but transgenic over expressing lines

did not show any differences in comparison to wild type plants re-
garding stomatal conductance and photosynthetic activity (Ariani et al.,
2016). These results suggested possible modifications of aqua1 activity
by regulation of cellular localization or post-translational modification
of this gene. For testing these hypotheses, we analyzed the function and
regulation of this gene at both transcriptional, sub-cellular, and post-
translational level in response to excess Zn. To our knowledge, this is
the first functional characterization of a Populus aquaporin in response
to excess Zn.

2. Materials and methods

2.1. Poplar growing conditions

Woody cuttings of the hybrid poplar P x canadensis Moench clone I-
214 were provided by the Istituto Sperimentale per la Pioppicoltura
(Casale Monferrato, Italy).

After rooting, woody cuttings were transplanted into plastic pots
with Agrileca clay (Laterlite, Milano, Italy) and grown in a controlled
growth chamber under an hydroponic system. Aeration of nutrient so-
lution (250 L h−1) was applied using aquarium air pumps. Growth
conditions were as follow: 23-18 °C day-night temperature, 65–70%
relative humidity and a photoperiod of 16/8 h light/dark at a maximum
photon flux density of 400 μmol m−2 s−1 (photosynthetically active
radiation) supplied by fluorescent lights.

Plant growth and Zn screening were performed in a hydroponic
system using two different Zn treatments: (i) basic Hoagland's solution
with 1 μM Zn (0.065 ppm, i.e., the control); (ii) basic Hoagland's solu-
tion with 1mM Zn (65 ppm) as previously described in Di Baccio et al.
(2011).

2.2. Arabidopsis growing and transient transformation conditions

Arabidopsis thaliana (ecotype Colombia 0) seeds were sterilized by
washes in 10% household bleach (0.45% sodium hypochlorite at final
concentration) for 1min and in ethanol 70% for 1min. Seeds were then
collected and washed with abundant bi-distilled sterile water. The seeds
were sown on MS medium (Duchefa) as described by Li et al. (2009)
and germinated at 21 °C with a photoperiod 16 h/8 h light dark. Four
days after germination, the plantlets were agroinfiltrated with Agro-
bacterium tumefaciens GV3101 according to Li et al. (2009) with minor
modifications. A. tumefaciens was grown in LB and in presence of ri-
fampicin (50 μgml−1), gentamycin (25 μgml−1), as well as the anti-
biotic for binary plasmid. After 24 h from co-cultivation start, the
agrobacterium suspension was eliminated washing plants with MS
medium. The plants were incubated again in the dark and observed by
confocal microscopy after 48 h from transformation.

2.3. Cloning of aqua1

The CDS of aqua1 was amplified by RT–PCR on mRNA isolated from
I-214 poplar leaves, and cloned into the pCRII vector (Invitrogen). The
reverse transcription reaction was performed using the QuantiTect
Reverse Transcription Kit (Qiagen, http://www.qiagen.com) in ac-
cordance with the manufacturer's manual. The cDNA obtained was then
amplified with PCR using the Phusion High-Fidelity DNA polymerase
(Finnzymes, http://www.finnzymes.com) and the primers coupled with
the following oligonucleotides derived from the putative 5′- and 3′-UTR
of the homologue Populus trichocarpa aquaporin gene: forward TAGG
TACATCCGGGAGTG, reverse ACAACGAATCCAACGTAGTC. The aqua1
product of this amplification was directly ligated, after A-tailing, to the
pCRII vector, using the TA Cloning Kit Dual Promoter (Invitrogen,
http://www.invitrogen.com) in accordance with the manufacturer's
manual. All the clones were sequenced by PRIMM company, Italy. The
aqua1 sequence has been deposited in PubMed database (GenBank:
GQ918138.1).
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The aqua1 genomic sequence was amplified by PCR from genomic
DNA isolated from poplar I-214 clone leaves using the ChargeSwitch
gDNA Plant Kit (Invitrogen). The DNA was used as template for the PCR
reactions, which were performed as above using the primers designed
over the cDNA sequence (forward: ATGCGTAATTTTATTACATCGAAC;
reverse: CTAAAACTCCTCCACCGGGCA). The cloning and the sequen-
cing procedures were performed as above.

2.4. Genomic DNA and mRNA extraction

The extraction of both genomic DNA and total mRNA was per-
formed from 80 to 100mg leaf or root tissue flash frozen in liquid ni-
trogen and kept at −80 °C. DNA/RNA extractions were performed
using respectively the DNeasy plant mini kit (Qiagen) and RNeasy plant
mini kit (Qiagen) according to manufacturer's instructions. Genomic
DNA was removed from total RNA prior to reverse transcription by
digesting the samples with the RNase Free DNase set (Qiagen).

2.5. mRNA relative quantification

Real time PCR of aqua1 expression were performed as previously
described (Ariani et al., 2016). In brief, RNA concentration and quality
were evaluated using the Experion RNA StdSens Kit (Biorad). One μg of
total RNA was reverse transcribed using the Quantitect Reverse Tran-
scription Kit (Qiagen) according to manufacturer's instructions. Real-
time PCR were performed with Quantitect SYBR Green PCR Kit
(Qiagen) according to manufacturer's instructions on the ECO Real-
Time PCR System (Illumina Inc. San Diego, USA). For aqua1 amplifi-
cation we used the following primers: forward 5′CCTCCGTGGCATTCT
GTATT3′, reverse 5′CAAAGGTCCAGCCCAGTAAA3’. As reference genes
we used β-tubulin for leaves, and EF1α for root from Brunner et al.
(2004) Relative gene expression levels were calculated with the 2−ΔΔCt

method (Livak and Schmittgen, 2001). Each PCR analysis was repeated
three times for three different biological replicates.

2.6. Constructs preparation for confocal analysis

The fusion construct for AQUA1-GFP was generated by PCR am-
plification of the cDNA with specific forward (5′) and reverse (3′) pri-
mers containing anchored BglII and XbaI restriction sites, respectively.
The PCR products were ligated into the pCRII vector and sequenced.
The amplified insert was excised after digestion with BglII and XbaI
restriction enzymes (NEB, https://www.neb.com/) and ligated in plant-
specific expression vector pAVA393 GFP (Dr. von Arnim's gift).

Open reading frames of PtAQUA1, AtSYP122, AtSYP51, AtATG8f,
the first 53 amino acids of the sialyltransferase of Rattus norvegicus (ST)
derived from the chimeric protein ST-RFP (Saint-Jore-Dupas et al.,
2006), Cherry-BP80 (S1) and RFP-KDEL were amplified with specific
primers (S2) including Gateway attachment sites (attB1/attB2).

A subsequent BP reaction in pDONR221 (Invitrogen) yielded Entry
clones that were verified via sequencing. To generate the final con-
struct, each Entry clone was made react with an appropriate pDest
vector trough LR reaction (Invitrogen). For AQUA1 was used the pDest
pK7FWG2 (C-terminal fusion GFP), for SYP122, SYP51 andATG8f the
pDEST pH7WGR2 (N-terminal fusion RFP), for ST the pDEST pK7RWG2
(C-terminal fusion RFP) the and for Cherry-BP80 and RFP-KDEL the
pDEST pK2GW7 that doesn't contain any fluorescent tag. The expres-
sion of the constructs produced was expected to reproduce published
data, labelling respectively PM with RFP:AtSYP122 (Rehman et al.,
2008), TGN and tonoplast with RFP:AtSYP51 (De Benedictis et al.,
2013), RFP-ATG8f in autophagosomes (Michaeli et al., 2014), ER with
RFP-KDEL (Nesler et al., 2017), PVC with Cherry-BP80 (De Benedictis
et al., 2013).

2.7. Transient expression studies in Arabidopsis protoplast

Protoplasts used for fluorescent proteins localization were isolated
from 5 weeks old plant rosettes and transformed as previously de-
scribed (De Benedictis et al., 2013).

Protoplasts used for chemical treatments were isolated from 3-day-
old Arabidopsis cell suspension cultures as described in Scebba et al.
(2003) and transient transfections were carried out by Gene Pulser Xcell
electroporation system (BioRad, http://www.biorad.com) (Pitto et al.,
2000). After electroporation, the protoplasts were grown on modified
MS medium (MS, 3% sucrose, 0.3 M mannitol, 0.1 mg l−1 2,4 D,
0.2 mg l−1 6-BAP, 10−6 M α-NAA, pH 5.8).

To study the Zn effects on AQUA1 localization, after transfection
100 μM and 200 μM Zn(NO3)2 6H2O (LD50 and LD70, respectively) were
added to the culture medium and the cells were analyzed on confocal
microscope after 24 h.

For inhibition of AQUA1 activity, after transfection the culture
medium was supplemented with 10 μM HgCl2 and 200 μM Zn(NO3)2
6H2O. The cells were cultured for 24 h before the confocal microscopy
observation. To test the recovery of Hg induced reduction in AQUA1
activity, a new AQUA1 transfection experiment was exposed first to
10 μM HgCl2 for 24 h and then, to 100mM DTT for other 24 h. To re-
move the HgCl2, the suspension cells were centrifuged twice at 2000×g
for 5min and the cell pellets re-suspended in fresh culture medium
before adding DTT. Confocal images analysis has been performed 24 h
and 48 h after electroporation. Cell viability test with the above men-
tioned HgCl2 and DTT concentrations has been performed with fluor-
escein diacetate (FDA) prior to transfection experiments and sub-cel-
lular localization analyses.

To check the effect of inhibition of phosphatase and kinase activities
on AQUA1 trafficking, wortmannin (Wt) and okadaic acid (OA) were
added to the culture medium supplemented with 200 μM Zn(NO3)2
6H2O after electroporation and analyzed in different experimental
conditions. The concentration of 0.01, 0.1, 1 and 3 μM OA acid and 2
and 10 μM Wt have been used for 24 h before confocal observations.

2.8. aqua1 expression in yeast

aqua1 coding sequence was excised from pCRII after digestion with
EcoRI and XbaI restriction enzymes (NEB) and ligated into the pYES2
yeast expressing vector (Invitrogen). The yeast strain BY4741 (Schiestl
and Petes, 1991) and the double mutant strain (zrc1cot1) (MacDiarmid
et al., 2003) were transformed with the lithium acetate method (Gietz
et al., 1995). The transformants were selected on high-stringency syn-
thetic medium lacking uracile (SD). For metal tolerance assays, yeast

Fig. 1. aqua1 differential expression in response to excess Zn in leaf and root
tissues. Differential expression of aqua1 in leaves and roots in control condition
and exposed to 1mM of Zn (Zn). The expression levels were indicated as re-
lative fold change using the 2−ΔΔCt method. β-tubulin and EF1α were used as
reference genes in leaf and root tissues, respectively. Each data and the corre-
sponding error bar represent average and standard deviation of three biological
replicates, respectively.
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was grown on SD medium to an OD600 of 1 to perform further dilutions.
The drop assays were performed with three different yeast transfor-
mants on SD plates with and without 5% galactose containing 0 μM,
10 μM, 50 μM, 100 μM and 200 μM Zn(NO3)2·6H2O. As control pYES2
empty vector was used and the transformants were processed together
with pYES2-AQUA1.

2.9. Confocal imaging

The fluorescent protein distribution in protoplasts and transgenic
plants was examined using a confocal laser-scanning microscope LSM
710 Zeiss (ZEN Software, GmbH, Germany). GFP markers were detected

in the wavelength range 505–530 nm (green color); RFP and Cherry
markers were detected in the wavelength range 560–600 nm (red
color); chlorophyll epifluorescence was detected above 650 nm (blue
color). Excitation wavelength of 488 and 543 nm were used simulta-
neously. Images were processed using Adobe Photoshop 7.0 software
(Mountain View, CA, USA).

The transformed protoplasts expressing AQUA1-GFP under different
treatments were analyzed with an inverted Leica TCS SP2 confocal laser
scanning microscope (Leica Microsystems, http://www.leica.com),
using a 63X NA 1.3 Plan-Apo oil-immersion objective at 1024× 1024
pixel resolution. For GFP fluorescence analyses, we used the 488 nm
excitation line of an argon ion laser and the emission light was

Fig. 2. Co-expression of AQUA1-GFP with A) PM marker RFP-SYP122; B) ER marker RFP-KDEL; the arrow evidences the red labeling of nuclear envelop in an area
not co-labeled by AQUA1-GFP. C) Golgi marker STRFP; D) Tonoplast marker RFP-SYP51; arrows evidence areas where tonoplast is well visible. E) PVC marker
Cherry-BP80. “N” indicates the position of the nucleus. Scale bar 10 μm. (For interpretation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)
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dispersed and recorded at 500÷535 nm.

2.10. Image and statistical analysis

Image analysis were performed using Fiji (http://pacific.mpi-cbg.
de) and Imaris software (Bitplane, http://www.bitplane.com). To
quantify the effects of the different treatments on AQUA1 re-localiza-
tion the number and total volume of the spots and the vesicles were
measured for each cell. ANOVA, post-doc comparison LSD test, Kruskal-
Wallis non parametric analysis and regression analysis were using
Statistica (StatSoft - http://www.statsoft.it/) and R program (www.r-
project.org). Data were normalized if needed.

The comparison of the differences of vesicles number and total
volume were performed between different groups: (i) Control and Zn
treatment (Zn consider as level), (ii) Zn and Zn + OA (OA consider as

level and only Zn as control condition) and (iii) Zn and Zn + Wt (Wt
consider as level and only Zn as control condition).

3. Results

3.1. Molecular and expression analysis

The aqua1cDNA is a 771bp sequence encoding for a 257 amino acid
protein. The nucleotide sequence shows 99% identity with a putative
TIP of Populus trichocarpa (RefSeqID: XM_002331442.1), with 8 differ-
ences in the nucleotide sequence and 2 differences in the amino acid
sequence (S3). The gDNA sequence of aqua1 has shown 2 exons and one
intron (S4).

For a deeper understanding of the role of aqua1 in Populus x cana-
densis I-214 clone in response to excess Zn, a relative quantification by

Fig. 3. Imaging of an Arabidopsis single epidermal cell co-expression AQUA1-GFP and RFP-ATG8f. A) the AQUA1-GFP fluorescent structure is co-localizing with a
chloroplast (blue signal) and moved in the direction indicated by the white arrow, B) after 5 min AQUA1-GFP and RFP-ATG8f labeled structures fused. C) After 5
additional minutes from fusion, the markers where perfectly colocalized and the chlorophyll fluorescence was no more detectable. White arrow indicate the direction
of movement. Scale bar 10 μm. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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qPCR was performed in both leaf and root tissues. This analysis con-
firmed the previous high-throughput results using a microarray on leaf
(Di Baccio et al., 2011) and the RNA Sequencing on root (Ariani et al.,
2015), showing that aqua1 was also down-regulated in both tissues in
response to excess Zn, with a relative fold change of 0.14 in leaf and
0.06 in root (Fig. 1).

3.2. AQUA1 sub-cellular localization in Arabidopsis

For further characterization of the role of AQUA1 protein, we co-
expressed into Arabidopsis cotyledon cells two constructs carried in two
independent Agrobacterium strains. Co-transforming seedlings with
35S:AQUA1-GFP with the plasmatic membrane (PM) marker
RFP:AtSYP122, 35S:AQUA1-GFP was clearly localized on internal
membranes well different from the plasma membrane (Fig. 2A).
Moreover, the aquaporin appeared to have a distribution partially
compatible with the ER because it evidenced the nuclear envelope and
a peripheric network (Fig. 2A.2). Nonetheless, careful observation

revealed that the distribution was not always compatible with ER lo-
calization. When co-expressed with the ER marker RFPKDEL (Fig. 2B),
it was evident that there was not a perfect co-localization of markers
and in some cases, it was clearly visible that the nuclear envelop was
not labeled by AQUA1-GFP (Fig. 2B.1 and 2B.2) as it was by RFPKDEL
(Fig. 2B.3 red arrow). Also, the well-known fusiform ER-bodies were
not completely wrapped by AQUA1-GFP as expected if this protein was
on the ER membrane.

AQUA1-GFP labeled membranes did not co-localize with Golgi
marker ST-RFP (Fig. 2C) and (even if some patterns could be confused
with tonoplast) had a very limited co-localization with the tonoplast
marker RFP:AtSYP51 (Fig. 2D). No co-localization was, also, observed
when co-expressed with the Pre-Vacuolar Compartment (PVC) marker
Cherry-BP80 (Fig. 2E). Despite its distribution clearly distinguished
from RFP:AtSYP51, in several cases, AQUA1-GFP appeared to label the
tonoplast, as visible in Fig. 2D.

Trying to investigate the relation between AQUA1-GFP distribution,
ER and tonoplast, we co-expressed the chimerical construct with the

Fig. 4. AQUA1:GFP co-localization in Arabidopsis protoplasts. A-B) Co-expressed with Cherry-BP80 labeling ER and small pre-vacuolar compartments (A) as well as
larger compartments in stressed cells, as evidenced by the arrow (B) or co-expressed with RFP-ATG8f (D–E) where large compartments become more evident
(indicated by arrows) in healthy (C) and stressed cells (D). Column 1 show the merge of all fluorescent emissions: GFP in green, Cherry in red and chlorophyll in blue;
column 2 allows to visualize GFP and column 3 Cherry alone. Scale bar 10 μm. (For interpretation of the references to color in this figure legend, the reader is referred
to the Web version of this article.)
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autophagosome marker RFP-ATG8f (Fig. 3). This marker is mainly cy-
tosolic but it can form aggregates that should correspond to autopha-
gosomes. No co-localization was observed in small punctate aggrega-
tions dispersed in the cytosol, but co-localization was observed in rare
large aggregates that occasionally appeared to include chlorophyll
fluorescence. In particular, we could image in vivo a chloroplast sur-
rounded by AQUA1-GFP fluorescence (Fig. 3A) moving (white arrow
indicate the direction of movement) toward a RFP-ATG8f aggregate. In
5min, the two structure fused (Fig. 3B) and in 5 additional minutes
from fusion the chlorophyll fluorescence was completely lost (Fig. 3C).

Fluorescent proteins transiently expressed in differentiated tissue
require 48 h to be clearly detectable and in this period their distribution
is influenced by several factors. To acquire additional information, the
localization of AQUA1-GFP was also studied in Arabidopsis (Fig. 4) and
Nicotiana tabacum (tobacco) (S1 Fig.) protoplasts. In this experimental
system markers transient expression is abundant but restricted in time,
producing fluorescent pattern often clearer than in intact tissues where

expression time is necessarily longer.
We confirmed that AQUA1-GFP does not co-localize with normal

distribution of the proposed markers (Fig. 4a) but it can co-localize with
Cherry-BP80 (Fig. 4b) and RFP-ATG8f (Fig. 4c-d) in larger Multi-Vesi-
cular Bodies (arrows).

3.3. AQUA1 localization in response to Zn stress

Since aqua1 was found to be down-regulated in response to Zn stress
in leaves and roots, variation of its sub-cellular localization was eval-
uated in response to Zn stress in transiently transformed protoplast. By
adding 100 μM and 200 μM Zn to the protoplast culture media, the
localization pattern of AQUA1-GFP was visibly perturbed (Fig. 5d, f).
Indeed, there are fewer and larger fluorescent structures in both Zn
treatments compared to those observed in the control condition. The
reduction in number and the increasing in size were more evident at the
highest Zn concentration, where large vesicles appeared (Fig. 5f)

Fig. 5. AQUA1:GFP localization in control and excess Zn conditions. Confocal microscopy images of AQUA1:GFP fusion proteins expressed in Arabidopsis protoplast
under different Zn concentration. a) Control condition, bright-field; b) Control condition, 488 nm; c) 100 μM Zn, Bright-Field; d) 100 μM Zn, 488 nm; e) 200 μM Zn,
bright-field; f) 200 μM Zn, 488 nm. Bars= 10 μm.
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coherently with the formation of multivesicular bodies (MVBs).
Statistical analysis showed a significant reduction of vesicles and

dispersed structures number (P < 0.001), between 3 and 6×, and an
increase in the ratio between vesicles total volume and number (V/N) of
about 10× (P < 0.001) in 100 μM and 200 μM Zn-treated protoplasts.
No significant differences were observed across the two Zn treatments
(Fig. 6).

3.4. AQUA1 localization in the presence of Hg

Since aquaporin activity is generally inhibited by HgCl2, the sub-
cellular localization of AQUA1-GFP was evaluated in transiently
transfected Arabidopsis protoplast cultured with 10 μM of HgCl2.
Confocal microscopy analysis showed that the GFP fluorescent signal
disappeared almost completely (Fig. 7b) and very few spots were visible
peripherally of the cell. Instead, when the cells were cultured with
HgCl2 and 200 μM Zn, the Hg inhibition seemed to be reduced, showing
fluorescent spots with a similar visualization pattern as the control
(Fig. 7d). Moreover, image analysis confirms this trend, with large
vesicle detectable only under HgCl2 and 200 μM Zn treatment (Fig. 7e).

To evaluate if the fluorescence signal of AQUA1-GFP could be re-
stored by DTT, transiently transfected protoplasts were treated for 24 h
with HgCl2. After removing Hg and adding DTT, the protoplasts were
observed (48 h after initial electroporation). Confocal analysis showed
that the sub-cellular localization patterns after the addition of DTT at
24 h from electroporation resemble the ones observed in control con-
dition (S2 Fig.).

3.5. Phosphatases and kinases inhibitors effect on AQUA1 sub-cellular
localization

In order to verify if the routing of AQUA1 from spots in the plas-
malemma and endomembranes to cytoplasmic vesicles is due to Zn-
induced modification of membrane trafficking or AQUA1 activity, we
tested the effects of two potent inhibitors of phosphatase (OA) and ki-
nase (Wt), on AQUA1 sub-cellular localization in presence of 200 μM
Zn. Wt caused a significant reduction of vesicle numbers between
control and drug treatments (P < 0.05) of about 50%, with no differ-
ences between treatments (Fig. 8), showing a negative correlation of
vesicle numbers and increasing Wt concentrations (Pearson' s correla-
tion coefficient=−0.45, P < 0.05). Instead there are no significant
differences in total vesicles' volume per cell between control and Wt
treatments conditions (data not shown).

Moreover, Okadaic acid (OA) caused a significant reduction of ve-
sicle numbers (P < 0.05) in the range 0.1–1 μM, but at the higher drug
concentration (3 μM) there was no significant difference with control
condition (Fig. 9a). Also, total volume was significantly affected by OA
(P < 0.05), with a significant reduction at the higher drug con-
centration (3 μM) of about 4× (Fig. 9b). Correlation analysis shows a
negative correlation between total vesicle volume and increasing OA
concentrations (Spearman' s rank correlation coefficient=−0.36,
P < 0.05).

3.6. aqua1 confers Zn tolerance in yeast

In order to characterize aqua1's role in mediating Zn response or
tolerance, the protein was expressed in yeast BY4741 (wt) and zrc1/
cot1, a double mutant strain. Heterologous expression of aqua1 into this
mutant complemented zrc1/cot1 mutations by conferring Zn tolerance
up to 100 μM Zn; instead the mutant strain transformed with the empty
vector and without the induction of the pYES promoter (-Gal 5%)
showed Zn sensitivity at 100 μM Zn (Fig. 10).

4. Discussion

In our previous studies, aqua1, an orthologous of Populus trichocarpa
aquaporin, has been identified as a down-regulated gene in a micro-
array of leaves and in an RNA sequencing of roots of P. x canadensis
clone I-214 exposed to excess Zn (Ariani et al., 2015; Di Baccio et al.,
2011). The RT-qPCR data confirm this expression pattern in leaves and
in roots. Several studies report that aquaporins are differentially ex-
pressed in response to metal stress, but the patterns are not uniform and
are dependent on the species and type of aquaporins studied (Li et al.,
2014). For example, in Solanum torvum and Arabidopsis thaliana there is
a general down regulation of aquaporin transcripts under metal stress
(Boursiac et al., 2008; Maathuis et al., 2003; Yamaguchi et al., 2010),
while in Brassica juncea there is an up regulation of a PIP1 aquaporin
that showed improved metal resistance in transgenic over expressing
plants (Zhang et al., 2008). In this light, aqua1 down regulation in both
leaf and root tissues of the P. x canadensis I-214 clone in response to Zn
stress could be a mechanism to reduce transpiration, water/Zn uptake,
and leaf growth, probably for protecting photosynthetic tissues and for
enhancing poplar tolerance to this stress (Di Baccio et al., 2003;
Sebastiani et al., 2004).

The amino acid sequence of AQUA1 contains the typical aquaporins
NPA signature motif, which forms the aqueous pore, and have similar
responses towards Hg and DTT as other characterized aquaporins
(Preston et al., 1993). This suggests that AQUA1 is a Hg-sensitive
aquaporin. Indeed, the reduction of fluorescence signal in Hg-treated
protoplasts could be interpreted as an enhanced turnover and de-
gradation of the Hg-blocked (non-functional) proteins. In agreement
with Preston et al. (1993) and Knipfer et al. (2011), the reversion of
normal localization pattern by DTT after Hg treatment confirms this
hypothesis.

Fig. 6. Vesicles variation in response to Zn in Arabidopsis protoplasts. a)
Variation of vesicles number in response to different Zn concentration; b)
Variation in V/N (volume/number) ratio in response to different Zn con-
centration. Values represent the averages and the SE of the measurements,
different letters within each treatment indicate significant differences at
P < 0.05 (Kruskal-Wallis test).
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In the last years, several aquaporins with non-aqua functions have
been identified and characterized (Hove and Bhave, 2011). These
aquaporins can transport ammonia, hydrogen peroxide, carbon dioxide
and also metals. Since over expression of aqua1 in transgenic Populus
plants did not increase Zn accumulation under excess Zn conditions
(Ariani et al., 2016), the ability of aqua1 to complement the phenotype
of the Zn hypersensitive zrc1/cot1 mutant yeast strain could be inter-
preted as a protective effect of this gene aimed at regulating water
potential in response to metal stress or at increasing cellular growth.
This hypothesis is supported by the overexpression of the barley
aquaporin HvPIP2;5 that confers salt and osmotic stress tolerance in
yeast and plants (Alavilli et al., 2016).

The localization of the GFP-tagged protein indicated a diffused
distribution (often observed for several over expressed aquaporins) but

specifically leading to MVBs co-localization together with other mar-
kers typical of PVC and autophagosomes.

The true identity of the observed multivesicular bodies (MVBs)
cannot be stated. The MVBs formation and function is far from being
fully elucidated. It is reasonable to speculate they may become spe-
cialized vacuoles when heterotypic fusion is impaired. Other membra-
nous structures have been described such as dark-induced protein (DIP)
vesicles characterized by the presence of aquaporins and RMR-like
proteins (Jiang et al., 2001). DIP vesicles are the main system for
transporting crystalloid elements to the protein storage vacuoles (PSVs)
(Vitale and Hinz, 2005) and are surrounded by a double membrane that
fuses with PSVs, delivering the inner membrane that forms an in-
dependent compartment inside PSVs (Isaienkov, 2014). Also, autop-
hagosomes have a double membrane and are capable to fuse with the

Fig. 7. HgCl2 disrupts AQUA1:GFP fluorescent signal and Zn restores fluorescent signal in the presence of HgCl2. (a–d) Confocal microscopy analysis of AQUA1:GFP
fusion proteins expressed in Arabidopsis protoplast treated with a) 10 μM HgCl2, brigth-field; b) 10 μM HgCl2, 488 nm; c) 10 μM HgCl2 and 200 μM Zn, bright-field; d)
10 μMHgCl2 and 200 μM Zn, 488 nm. Bars= 10 μM. e) Variation in vesicles number in response to 0 (Control) and 200 μM Zn with a constant 10 μM concentration of
HgCl2. Values represent the averages and the SD of the measurements.
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vacuole (Bassham and Crespo, 2014). The imaging presented here did
not allow to appreciate how AQUA1-related MVBs had double

membrane, but it was clearly confirmed by imaging in tobacco.
AQUA1-related MVBs may influence vacuolar homeostasis directly,
changing its composition, or indirectly, producing autonomous com-
partments for homeostasis.

The reduction of Hg inhibition of AQUA1 in the presence of 200 μM
of Zn, with its localization pattern similar to control condition, and the
significant increase in vesicle number in Arabidopsis protoplasts under
excess Zn, suggest a direct relationship between Zn and AQUA1 loca-
lization, highlighting a protective role of this protein.

The best blast hit of aqua1 is a Populus trichocarpa aquaporin that
belong to the TIP sub-family, a class of aquaporins which usually lo-
calize in the tonoplast of plant cells and have been widely used as va-
cuolar markers in several studies (reviewed in Frigerio et al., 2008;
Gattolin et al., 2010). However, aquaporins co-localization may be
confusing, as confirmed by Gattolin et al. (2011) reporting Arabidopsis
TIPs localization in both the plasmalemma and tonoplast during seed
maturation and germination, thus reflecting a more complex and fine-
tuned regulation of TIP aquaporins in different physiological contexts.

Zn treatments caused the re-localization of AQUA1 only in ag-
gregated structures, with no fluorescent signal associated to the ER. The
significant reduction in number, together with the increase in the vo-
lume/number (V/N) ratio, could suggests AQUA1-related MVBs' ag-
gregation in response to Zn stress. The formation of these compartments
may remove aquaporins from the ER reducing its permeability or
concentrate all the activity in the new compartment. A similar me-
chanism of re-localization has been reported for the human aquaporin-2
in response to hormone-signaling in the renal collecting duct (Moeller
and Fenton, 2012) and for Arabidopsis PIPs in root subjected to NaCl
and salicylic acid treatments (Boursiac et al., 2008), accompanied with
the re-localization of AtTIP1 in small double-membrane vacuolar in-
vaginations called 'bulbs'. In fact, AQUA1-GFP co-localized with Ara-
bidopsis vacuolar marker AtTIP1;1 (not shown).

The formation of separated vacuoles is a general mechanism to
counteract metal stress in both plant and animals, and previous studies
report that in Arabidopsis cells Zn detoxification was mainly mediated
by specific vacuolar metal transporter such as AtMTP1 and AtHMA3
(Desbrosses-Fonrouge et al., 2005; Morel et al., 2009). AtMTP1 loca-
lizes mainly at vacuolar level, and mtp1 mutants did not form Zn-ac-
cumulating vesicles when exposed to excess Zn (Kawachi et al., 2009),
suggesting an additional role for this protein in such Zn-induced ve-
sicles. These Zn-accumulating vesicles have been previously identified
in yeast and mammalian cells (Devirgiliis et al., 2004; Eide, 2006;
Haase and Beyersmann, 2002) and are designated as 'zincosomes'.

It is likely that the previously found vesicles (Kawachi et al., 2009)
have similar function to those observed in our experiments. Indeed,
AQUA1 could be involved in Zn storage in these new compartments by
regulating water flow across their membranes and buffering osmotic
potential within the cytosol. The aquaporin internalization has been
previously observed by Ueda et al. (2016) which report that AtPIP2;1 is
constitutively trafficked between the PM and the trans-Golgi network
(TGN) in Arabidopsis thaliana. Under salt stress condition PIP2;1 re-
localizes into intracellular compartments to decrease the water per-
meability. The same behavior has been also confirmed by Chu et al.
(2018) which observed a specific relocalization of plasma membrane
aquaporins into intracellular compartments depending on the isoform,
the cell type or the treatment.

Investigating aquaporins endocytosis is generally interesting be-
cause it reduces plasma membrane permeability. In this case, AQUA1
was not observed in the plasma membrane. Anyhow the unclear dis-
tribution of AQUA1 in endomembranes required further investigations
to understand if trafficking occurred through the classic Golgi-depen-
dent vacuolar sorting path or other emerging pathways (Occhialini
et al., 2016) bypassing the Golgi. Stress-dependent endocytosis of
aquaporins could be regulated by two different mechanisms which in-
volve protein kinases: the first is mediated by phosphatidylinositol 3-
kinase (PI3K) activity, which modulates the intracellular membrane

Fig. 8. Wortmannin (Wt) reduces the number of AQUA1 cytosolic vesicles in
response to excess Zn. Comparison of the variations in vesicles' number in re-
sponse to 0 (Control), 2 and 10 μM Wt with a constant 200 μM concentration of
Zn. Values represent the averages and the SE of the measurements, different
letters within each treatment indicate significant differences at P < 0.05
(Kruskal-Wallis test).

Fig. 9. Okadaic acid (OA) affects both vesicles number and total volume of
AQUA1 cytosolic vesicles in response to excess Zn. a) Variation of vesicles
number in response to different OA concentration and a constant 200 μM
concentration of Zn. Different letters within each treatment indicate significant
differences at P < 0.05 (Kruskal-Wallis test); b) Variation of vesicles volume in
response to different OA concentration and a constant 200 μM concentration of
Zn, the data has been normalized as 1/logn. Different letters indicate significant
differences at P < 0.05 (LSD test with false discovery rate correction). Values
represent the averages and the SE of the measurements.
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trafficking by regulating phosphatidylinositol 3-P availability
(Santiago-Tirado and Bretscher, 2011; Simonsen et al., 2001); the
second involves multiple phosphorylation in the C-terminus of aqua-
porins (Boursiac et al., 2008; Prak et al., 2008). Arabidopsis mutant for
PI3K and wt plants treated with wortmannin (a specific inhibitor of
PI3K) showed suppression of endocytosis in response to salt stress,
which could be rescued by supplementation with exogenous phospha-
tidylinositol 3-P. Studies using the toxin wortmannin showed that also
the vacuoles heterologous fusion, and consequently vacuolar sorting,
depends on PI3K (Di Sansebastiano et al., 2007; Jiang and Rogers,
1998; Zheng et al., 2014a, 2014b).

The significant reduction in vesicle numbers, together with the ne-
gative correlation of AQUA1-GFP-labeled MVBs in Arabidopsis proto-
plast, treated with 200 μM Zn and wortmannin, could suggest a PI3K-
mediated endocytosis of AQUA1 or a reduction in MVBs formation
under Zn stress. Since wortmannin could inhibit also other kinases (Liu
et al., 2007, 2005), it is not possible to discriminate between the effect
of traffic and of the re-localization mediated by phosphorylation in the
C-terminus of AQUA1 in response to Zn stress. This regulation could be
achieved by phosphorylation of AQUA1 in order to modulate the gating
of this channel, and phosphatases inhibitors, like OA acid, could disrupt
this process. OA blocks aquaporins in an open conformation by inter-
fering with the phosphorylation state of specific residues in the Ne and
C-terminus of the protein (Chaumont et al., 2005; Horie et al., 2011;
Prak et al., 2008). Xenopus oocyte overexpressing PIP2;1 aquaporin of
Mesembryanthemum crystallinum showed modifications of the relative
volume increase, osmotic water permeability and protein phosphor-
ylation level under OA treatments (Amezcua-Romero et al., 2010),
highlighting the importance of post-translational modifications in the
regulation of aquaporins' activity. The variation in MVBs' volume ob-
served in protoplasts treated with OA, with the significant reduction at
the higher OA concentration (3 μM) and a significant negative corre-
lation, could suggests that AQUA1 phosphorylation regulates the ac-
tivity of this protein in response to excess Zn. The open-blocked con-
formation of AQUA1 could reduce vesicles' volumes, since they are

unable to control water flow across their membranes. This impairment
could be buffered by an increase in vesicle aggregation, as suggested by
the reduction of vesicles' number in the range 0.1–1 μM of OA con-
centration. At 3 μM of OA the vesicle number was not significantly
different from control condition. This could be explained by a cytotoxic
effect of this OA concentration that inhibits microtubule organization
(Perreault et al., 2012; Sheremet et al., 2009), and probably blocks
vesicles' aggregation and intracellular trafficking in our experimental
system.

5. Conclusions

A number of papers have clearly demonstrated the aquaporin in-
volvement in abiotic stress, thus suggesting that, as in soybean, the over
expression may increase stress tolerance (Lu et al., 2018). On the
contrary, the aquaporin functional mechanism is not fully character-
ized, maybe due to many isoforms and cell types. However, all data
seem to confirm that aquaporins are involved in water homeostasis in
cell at all phylogenetic levels of life, due to their ability to relocalize.
Indeed, the phosphorylation was found to play a central role in the
mechanisms that determine their gating and subcellular dynamics
(Jang et al., 2014; Kitchen et al., 2015; Verdoucq et al., 2014).

In conclusion, in agreement with the above scenario, we demon-
strated that AQUA1 is a Hg-sensitive aquaporin regulated both at
transcriptional and post-translational levels in response to Zn stress.
Indeed, Zn determines the relocalization of AQUA1 in new forming
compartments by affecting both AQUA1 intracellular trafficking and
activity. The down regulation in both leaves and roots of P. x canadensis
I-214 clone in response to Zn stress could be explained as a defense
mechanism for reducing water flow and plants growth in response to
this stress. Moreover, AQUA1 re-localization and post-translational
modification observed in Arabidopsis protoplasts could be involved in
reducing water flow and adjusting cellular osmotic potential in re-
sponse to Zn excess.

Fig. 10. AQUA1 confers Zn tolerance when
expressed in yeast. Complementation ex-
periment of aqua1 in yeast. a) Control
transformation of wild type strain (BY4741)
with the empty vector (pYES2) and with the
vector containing the coding sequence of
aqua1 (pYES-AQUA1) cultured under dif-
ferent Zn concentration in the growth media
b) Transformation of zrt1/cot1 mutant strain
with the empty vector (pYES2) and with the
vector containing the coding sequence of
aqua1 (pYES-AQUA1), cultured under dif-
ferent Zn concentration and the presence
(+Gal 5%) or absence (- Gal 5%) of ga-
lactose in the growth media.
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