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Abstract

We propose a method to account for the Earth oblateness effect in preliminary
orbit determination of satellites in low orbits with radar observations. This method
is an improvement of the one described in Gronchi et al (2015b), which uses a pure
Keplerian dynamical model. Since the effect of the Earth oblateness is strong at low
altitudes, its inclusion in the model can sensibly improve the initial orbit, giving a
better starting guess for differential corrections and increasing the chances to obtain
their convergence. The input set consists of two tracks of radar observations, each
one composed of at least 4 observations taken during the same pass of the satellite.
A single observation gives the topocentric position of the satellite, where the range
is very accurate, while the line of sight direction is poorly determined. From these
data we can compute by a polynomial fit the values of the range and range rate
at the mean epochs of the two tracks. In order to obtain a preliminary orbit we
wish to compute the angular velocity, which is the rate of change of the line of
sight. In the same spirit of Gronchi et al (2015b), we also wish to correct the values
of the angular measurements, so that they fit the selected dynamical model if the
same holds for the radial distance and velocity. The selected model is a perturbed
Keplerian dynamics, where the only perturbation included is the secular effect of
the J2 term of the geopotential.

1 Introduction
The growth in the number of space debris orbiting the Earth has increased the interest
for the studies of new orbit computation methods, e.g. Farnocchia et al (2010), Gronchi
et al (2015a), and of the dynamical properties of Earth satellites, e.g. Celletti and Gales,
(2018), Daquin et al (2016), Rosengren and Scheeres (2013). Correlating short arcs of
observations that belong to the same object and initial orbit determination (IOD) are
of crucial importance for surveillance of the current population of space debris. In the
case of optical measurements this problem has been addressed by many authors using
different techniques (see for example Siminski et al, 2014, and references therein). On
the other hand, only a fewmethods have been proposed for the case of radar observations
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(Vananti et al, 2017). In this paper we investigate an IOD method that is conceived to
compute orbits of Earth satellites at low altitudes (LEO) with radar observations.

Let us assume that each radarmeasurement at epoch t is composed by a precise value
of the range ρ (with standard deviation in the order of meters) and poorly determined
values of the topocentric right ascension α and declination δ (with standard deviation
for example of 0.2 degrees). The available data are radar tracks of the form

(ti, ρi, αi, δi), i = 1, . . . ,m, (1)

where ∆t = ti+1 − ti is usually a few seconds and m ≥ 4. Given a radar track we can
derive the vector

(t̄, ᾱ, δ̄, ρ, ρ̇), (2)

where ᾱ, δ̄ are the mean values while ρ, ρ̇ can be obtained through a cubic fit because
the measurements of the range are more precise.

We describe the osculating two-body orbit of the satellite by spherical coordinates
(known as attributable coordinates)

Eatt = (α, δ, α̇, δ̇, ρ, ρ̇). (3)

Therefore, given the data in (2), to compute an orbit we need the values of α̇, δ̇, which
are the unknowns of our orbit determination problem. We want to correlate two radar
attributables at two different epochs corrected for the aberration of light,

t̃1 = t̄1 − ρ1/c, t̃2 = t̄2 − ρ2/c, (4)

where c is the speed of light, to determine the values of α̇1, α̇2, δ̇1, δ̇2 and compute a
preliminary orbit (see Milani and Gronchi, 2010).

Assuming that the motion is Keplerian, Taff and Hall (1977) and more recently
Farnocchia et al (2010) proposed to use the conservation of the angular momentum
vector and energy to write a polynomial system which is quadratic in the unknowns.
This method has been recently improved by Gronchi et al (2015b) by allowing for the
correction of the values of ᾱ, δ̄. For this purpose they introduce the quantities ∆α, ∆δ,
which are unknown small deviations from the mean values ᾱ, δ̄:

α = ᾱ + ∆α, δ = δ̄ + ∆δ. (5)

The deviations ∆α, ∆δ are called infinitesimal angles. Moreover, in place of the
unknowns α̇, δ̇ they use the variables

ξ = ρα̇ cos δ, ζ = ρδ̇, (6)

which are the components of the topocentric velocity of the satellite orthogonal to
the line of sight. The orbit at time t̄ − ρ/c is completely determined by the modified
attributable coordinates

E ∗att = (ᾱ + ∆α, δ̄ + ∆δ, ξ, ζ, ρ, ρ̇). (7)

We extend the algorithm introduced in Gronchi et al (2015b), where a two-body
approximation is employed, by considering the secular effect of the J2 term of the
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geopotential in the dynamical model. The Earth oblateness has been already consid-
ered by Farnocchia et al (2010) for the computation of preliminary orbits but without
introducing corrections to the angles. Their IODmethod is iterative and at each iteration
the problem has the same algebraic structure of the unperturbed one.

We want to determine the values of the eight unknowns (∆α1,∆δ1, ξ1, ζ1) and
(∆α2,∆δ2, ξ2, ζ2) at t̃1, t̃2 from the input data set:

(t̄1, ᾱ1, δ̄1, ρ1, ρ̇1), (t̄2, ᾱ2, δ̄2, ρ2, ρ̇2), (8)

using the Keplerian integrals evolution, the equations of motion projected onto the line
of sight, and a suitable version of Lambert’s equation.

2 Notation
Let us denote by eρ the unit vector corresponding to the line of sight, and by q the
geocentric position of the observer. Then the geocentric position of the observed body
is

r = q + ρeρ, (9)
where ρ is the range. Using as angular coordinates the topocentric right ascension α
and declination δ in an equatorial reference frame (e.g. J2000), we have

eρ = (cos δ cos α, cos δ sin α, sin δ)T . (10)

We introduce the unit vectors

eα = (− sin α, cos α, 0)T , (11)
eδ = (− sin δ cos α,− sin δ sin α, cos δ)T . (12)

The set {eρ, eα, eδ } is an orthonormal system. Denoting by ṙ the geocentric velocity of
the satellite, we have

ṙ = ξeα + ζeδ + ( ρ̇eρ + q̇). (13)
We will use the following different sets of coordinates for the orbits:

Ekep = (a, e, I,Ω, ω, `), (14)
Ecar = (x, y, z, ẋ, ẏ, ż), (15)
Eatt = (α, δ, α̇, δ̇, ρ, ρ̇), (16)
E ∗att = (ᾱ + ∆α, δ̄ + ∆δ, ξ, ζ, ρ, ρ̇), (17)

that are respectively Keplerian, Cartesian, attributable andmodified attributable coordi-
nates. Note that the Keplerian elements in (14) have their usual meaning and ` denotes
the mean anomaly.

We also consider the coordinate changes

Ekep

φ1
−−→ Ecar, Ecar

φ2
−−→ Eatt, Eatt

φ3
−−→ E ∗att, (18)

and the composite transformation

Φ = φ3 ◦ φ2 ◦ φ1 (19)

from Ekep to E ∗att .
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3 The equations of motion
Let us consider Newton’s equation

r̈ = ∇U (r), (20)

for the motion of a point mass in the Earth gravity field where the force function U is
truncated at the J2-term, that is

U (r) =
µ

r

[
1 − J2

( R⊕
r

)2
P2(sin δ)

]
. (21)

Here, r = |r| is the geocentric distance, R⊕ is the equatorial radius of the Earth and P2
is the Legendre polynomial of second degree

P2(sin δ) =
3
2

sin2 δ −
1
2
=

3
2

z2

r2 −
1
2
. (22)

The problem defined by equation (20) is non-integrable (see Celletti and Negrini, 1981).
If we average out the short period term in (20) we obtain an integrable system (see Roy,
2004) given by




ȧ = 0,
ė = 0,
İ = 0,

Ω̇ = −
3
2

J2
R2
⊕

p2 ñ cos I,

ω̇ =
3
4

J2
R2
⊕

p2 ñ(4 − 5 sin2 I),

˙̀ = ñ = n
[
1 +

3
2

J2
R2
⊕

p2

(
1 −

3
2

sin2 I
)√

1 − e2
]
,

(23)

with p = a(1 − e2) the parameter of the two-body trajectory and n =
√
µ/a3 the mean

motion. Note that, in the dynamics defined by (23), the elements a, e, I remain constant
while the ascending nodeΩ, the argument of perigeeω, and the mean anomaly ` change
uniformly with time. Equations (23) can be written shortly as

Ėkep = Xkep (Ekep). (24)

In the following we shall assume that the observed body is moving according to the
integrable dynamics defined by equations (23), (24), and we shall call oblateness effect
(or J2 effect) the deviation from the pure Keplerian motion which is defined by these
equations.

To solve our problem, we express the equations of motion in terms of the coordinates
E ∗att . First we write equation (24) in Cartesian coordinates Ecar = (r, ṙ). We obtain

Ėcar = Y(Ecar ), (25)
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where
Y =

( ∂φ1
∂Ekep

Xkep

)
◦ φ−1

1 (26)

is the transformed vector field. From the expression above we obtain the acceleration r̈
as a function of Ecar along the solutions of (25):

r̈ =
( ∂ṙ
∂Ekep

Xkep

)
◦ φ−1

1 =: ỹ(r, ṙ). (27)

As done in Gronchi et al (2015b) for the pure Keplerian dynamics, we project the
perturbed equation of motion (27) along the line of sight eρ and obtain the equation

K = 0, (28)

with
K = (r̈ − ỹ) · eρ = ρ̈ − ρη2 + q̈ · eρ − ỹ · eρ, (29)

where η =
√
α̇2 cos2 δ + δ̇2 is the proper motion.

Equation (29) can be expressed as a function of the unknown variables (∆α,∆δ, ξ, ζ )
using the expressions of r, ṙ given in (9), (13).

4 The J2 effect on the two-body integrals
We recall the expressions of the conserved quantities in the Keplerian dynamics, i.e.
the angular momentum c, the energy E and the Laplace-Lenz vector L, as a function
of r, ṙ. These quantities can be read as functions of the attributable coordinates Eatt

using (9), (13), and

|ṙ|2 = ξ2 + ζ2 + 2q̇ · eαξ + 2q̇ · eδζ + | ρ̇eρ + q̇|2, (30)
ṙ · r = q · eαξ + q · eδζ + ( ρ̇eρ + q̇) · r. (31)

We have

c = Aξ + Bζ + C, (32)

E =
1
2
|ṙ|2 −

µ

|r|
, (33)

µL = ṙ × c − µ
r
|r|
=

(
|ṙ|2 −

µ

|r|
)
r − (ṙ · r)ṙ, (34)

where
A = r × eα, B = r × eδ, C = r × q̇ + ρ̇q × eρ . (35)

Including the J2 effect in the dynamics the angularmomentum and the Laplace-Lenz
vectors are not conserved anymore. However, the following relations hold:

Rcc1 = c2, (36)
E1 = E2, (37)

RLL1 = L2, (38)
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where
Rc = Rẑ(∆Ω), RL = Rĉ2 (ω1 + ∆ω) Rẑ(∆Ω) Rĉ1 (−ω1). (39)

Here we denote by Rv̂(ϕ) the rotation matrix defined by the rotation of an angle ϕ
around the axis of the unit vector v̂. Then, the unit vectors ẑ, ĉi , i = 1, 2, are given by

ẑ = (0, 0, 1)T , (40)
ĉi = (sinΩi sin Ii, − cosΩi sin Ii, cos Ii)T . (41)

Moreover, using equations (23) the angular variations ∆Ω and ∆ω are obtained as

∆Ω = Ω̇1(t̃2 − t̃1), ∆ω = ω̇1(t̃2 − t̃1), (42)

where t̃1, t̃2 are the epochs corrected by aberration. We display the J2 effect on the
two-body integrals in Figure 1. Remark We can also write

∆Ω = Ω2 −Ω1, ∆ω = ω2 − ω1, (43)

and
RL = R2RT

1 , (44)

with
Ri = Rĉi (ωi) Rẑ(Ωi), i = 1, 2. (45)

5 Lambert’s theorem with the J2 effect
Let us denote by L the expression defining Lambert’s equation. In the dynamics given
by (23), the mean motion evolves linearly, thus Lambert’s equation can be written as

L = ñ(t̃1 − t̃2) + (β − sin β) − (γ − sin γ) + 2kπ = 0, (46)

with ñ given by the last equation in (23). Moreover, k ∈ N is the number of revolutions
in the time interval [t̃1, t̃2]. The angles β, γ are defined by

sin2 β

2
=

r1 + r2 + dL

4a
, sin2 γ

2
=

r1 + r2 − dL

4a
, (47)

where 0 ≤ β − γ ≤ 2π and r1, r2 are the distances from the center of force. In (47) the
distance

dL = | R̃r1 − r2 | (48)

is the length of the chord joining the two positions of the body at epochs t̃1, t̃2 after
rotating the osculating ellipse at epoch t̃1 so that it overlaps with the osculating ellipse
at epoch t̃2. The rotation R̃ is given explicitly by

R̃ = R̃2 R̃T
1 , (49)
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Figure 1: According to the secular effect of the J2 term (see Equations (23)) the shape
of the conic and its inclination remain unchanged between two epochs t̃1, t̃2. The
directions of the angular momentum (ĉ), line of nodes (n̂) and Laplace-Lenz vector
(L), by contrast, are rotated due to the secular variations ∆Ω, ∆ω accumulated by Ω, ω
during the time interval t̃2 − t̃1.
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with R̃1 and R̃2 the transformations from the selected equatorial reference frame to the
orbital reference frame at the epochs t̃1 and t̃2, respectively:

R̃1 = Rĉ1 (ω1) Rn̂1 (I1) Rẑ(Ω1), (50)
R̃2 = Rĉ2 (ω1 + ∆ω) Rn̂2 (I2) Rẑ(Ω1 + ∆Ω), (51)

where
n̂i = (cosΩi, sinΩi, 0)T , i = 1, 2, (52)

are the directions of the lines of nodes. For a fixed number of revolutions k we have 4
different choices for the pairs (β, γ) (see Appendix A1 in Gronchi et al, 2015b, for the
details).

6 Linkage
We wish to link two sets of radar data of the form (2), with mean epochs t̄i , i = 1, 2,
and compute one (or more) preliminary orbits. In the following we use labels 1, 2 for
the quantities introduced in the previous sections, according to the epoch. Moreover,
let us define v2 = eρ2 × q2.

Taking into account the J2 effect we consider the following system

(Rcc1 − c2, E1 − E2, K1, K2, (RLL1 − L2) · v2, L) = 0 (53)

of 8 equations in the 8 unknowns (X, ∆), with

X = (ξ1, ζ1, ξ2, ζ2), ∆ = (∆α1, ∆δ1, ∆α2, ∆δ2). (54)

Note that the unknowns are divided into two sets so that ∆ is the vector of infinitesimal
angles.

In Gronchi et al. (2015), because themotion is assumedKeplerian,X(∆) is obtained
explicitly from the conservation of the angular momentum and energy. The remaining
equations are solved for ∆ using an iterative method. In our method we also separate
system (53) into two subsystems which can be solved by a double-iterative scheme. We
search for solutions of equation

G(∆) = G(X(∆),∆) = 0, (55)

where
G = (K1, K2, (RLL1 − L2) · v2, L) (56)

and X(∆) is implicitly defined by the relation

J(X,∆) = 0, (57)

where
J = (Rcc1 − c2, E1 − E2). (58)

Newton-Raphson method is used to compute ∆ from the iterative formula

∆h+1 = ∆h −
[ ∂G
∂∆

(∆h)
]−1
G(∆h), ∆0 = 0. (59)
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Here, taking advantage of the assumed smallness of the solutions ∆, we consider ∆ = 0
as starting guess. At each iteration for ∆ we apply the Newton-Raphson method to
obtain X(∆) from system (57). Precisely, for ∆ = ∆h we compute X(h) = X(∆h) from
the iterative formula

Xj+1 = Xj −
[ ∂J
∂X

(Xj )
]−1
J (Xj ), (60)

where
J (X) = J(X,∆h). (61)

For h = 0 the starting guess X0 is computed from the interpolated values of δ, α̇, δ̇, ρ
through equations (6), while for h > 0 we set X0 = X(h−1) .

Remark Equations (57) are not polynomial in X, unlike the corresponding equations
in Gronchi et al (2015b).

7 Computing X, ∆
The algorithm to compute the vectors X, ∆ that satisfy Equations (53) consists of two
nested Newton-Raphson methods. Starting from ∆0 = 0, we determine the vector X(0)

such that J(X(0),∆0) = 0, by applying the Newton-Raphson formula (60), wherein
J (X) = J(X,∆0). Then, after computing the number of revolutions k required in
Lambert’s equation (46), by

k =
⌊

n(t̃2 − t̃1)
2π

⌋
, (62)

where n is the mean motion and bxc denotes the integer part of x, we make the
first iteration of the outer Newton-Raphson method through Equation (59), wherein
G(∆0) = G(X(0),∆0). The iterations in ∆ are carried out until for some h ≥ 1 the
magnitude of the difference ∆h −∆h−1 is smaller than a suitable tolerance. Finally, X(h)

is obtained by the iterative formula (60), and the solution of (53) is given by the pair of
vectors X(h),∆h .

In equation (55) the components of the vector G(X,∆) are similar to the ones of
the corresponding vector in Gronchi et al (2015b). However, the following differences
occur:

i) in place of the angular momentum conservation law we have equation (36);

ii) inK at epochs t̃1, t̃2, the term ỹ·eρ replaces the radial component of the Keplerian
force, i.e. −µr · eρ/|r|3;

iii) in place of the Laplace-Lenz conservation law we have equation (38);

iv) in L the quantity ñ takes a different expression from the mean motion n, coming
from the dynamical model (23). Moreover, the length of the chord is computed
in a different way, see (48).

To search for the values of ∆ that solve Equation (55) we have to compute the first
derivatives of G(∆) with respect to ∆, appearing in (59), that is

∂G

∂∆
(∆h) =

∂G
∂X

(X(h),∆h)
∂X
∂∆

(∆h) +
∂G
∂∆

(X(h),∆h). (63)
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From the implicit function theorem applied to equation (57), we have

∂X
∂∆

(∆) = −
[ ∂J
∂X

(X,∆)
]−1 ∂J

∂∆
(X,∆). (64)

Since these computations are similar to the ones reported in Gronchi et al (2015b, Sect.
7), we describe below only the differences coming from the adopted dynamical model.

7.1 The derivatives of Rcc1 − c2, E1 − E2

The derivatives of Rcc1 − c2 with respect to a component x of the vectors X, ∆ can be
written as

∂(Rcc1 − c2)
∂x

=
∂Rc

∂x
c1 + Rc

∂c1
∂x
−
∂c2
∂x

. (65)

We have
∂Rc

∂x
=



− sin∆Ω − cos∆Ω 0
cos∆Ω − sin∆Ω 0

0 0 0



∂∆Ω

∂x
, (66)

where
∂∆Ω

∂x
=
∂Ω̇1
∂x
∆t, (67)

and the expressions of ∂Ω̇1
∂x are reported in Appendix C.

Considering the angular momentum we get

∂ci
∂ξi
= Ai,

∂ci
∂ζi
= Bi, i = 1, 2. (68)

The derivatives with respect to ∆ are computed through the intermediate variables eρi ,
eαi , eδi , i = 1, 2. After introducing the vector

Ei =
*.
,

eρi
eαi
eδi

+/
-
, (69)

we can write
∂ci
∂Ei
=
∂Ai

∂Ei
ξi +

∂Bi

∂Ei
ζi +

∂Ci

∂Ei
, (70)

with

∂Ai

∂Ei
= (O3, S(qi), ρi I3), (71)

∂Bi

∂Ei
= (O3, −ρi I3, S(qi)), (72)

∂Ci

∂Ei
= (−ρiS(q̇i) + ρ̇iS(qi), O3, O3), (73)
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where O3, I3 denote the 3 × 3 zero and identity matrix, respectively. Note that S(a) is
the skew-symmetric matrix associated to a vector a = (a1, a2, a3)T by

S(a) y = a × y, ∀y ∈ R3, (74)

that is

R3 3 a 7→ S(a)
def
=



0 −a3 a2
a3 0 −a1
−a2 a1 0


. (75)

Concerning the energy we have1

∂Ei
∂ξi
= ξi + q̇i · eαi ,

∂Ei
∂ζi
= ζi + q̇i · eδi , (76)

∂Ei
∂Ei
=

(
ρ̇iq̇i + µρi

qi

r3
i

, ξiq̇i, ζiq̇i

)
. (77)

Finally, the derivatives ∂Ei

∂(∆αi,∆δi ) , i = 1, 2, can be found in Gronchi et al (2015b, Sect.
7.2).

7.2 The derivatives of (RLL1 − L2) · v2, L
The derivative of RL with respect to a component x of the vectors X, ∆ is obtained from
equation (44) as

∂RL

∂x
=
∂R2
∂x

RT
1 − R2RT

1
∂R1
∂x

RT
1 , (78)

where we have used that R1 is an orthogonal matrix. A similar expression can be written
for R̃ starting from (49). The rotation matrices in (39), (50), (51) are represented by
means of Euler-Rodrigues formula (see Gallego and Yezzi, 2015)

Rv̂(ϕ) = I3 + sin ϕ S(v̂) + (1 − cos ϕ)S2(v̂), (79)

where I3 is the identity matrix and S(v̂) is the skew-symmetric matrix associated to the
unit vector v̂ = (v1, v2, v3)T . Then, we have

∂Rv̂(ϕ)
∂x

=

3∑
k=1

∂Rv̂(ϕ)
∂vk

∂vk
∂x
+
∂Rv̂(ϕ)
∂ϕ

∂ϕ

∂x
, (80)

where

∂Rv̂(ϕ)
∂vk

= sin ϕ
∂S(v̂)
∂vk

+ (1 − cos ϕ)
( ∂S(v̂)
∂vk

S(v̂) + S(v̂)
∂S(v̂)
∂vk

)
(81)

and
∂Rv̂(ϕ)
∂ϕ

= cos ϕ S(v̂) + sin ϕ S2(v̂). (82)

1There is a typo in the equation for ∂E1
∂X reported in Gronchi et al (2015b, Sect. 7.1)
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The derivatives of v̂ are obtained from (41), (52) and using ∂Φ−1

∂x , which is given in
Appendix B. Note that

∂Ω2
∂x
=
∂Ω1
∂x
+
∂Ω̇1
∂x

(t̃2 − t̃1), (83)

∂ω2
∂x
=
∂ω1
∂x
+
∂ω̇1
∂x

(t̃2 − t̃1), (84)

and ∂(Ω̇1,ω̇1)
∂x are reported in Appendix C.

Regarding Laplace-Lenz conservation law, the derivatives of L1 · v2, L2 · v2 are
provided in Gronchi et al (2015b, Sections 7.1, 7.3).

For Lambert’s equation we have

∂L

∂x
=
∂ñ1
∂x

(t̃1 − t̃2) +
∂(β − sin β)

∂x
−
∂(γ − sin γ)

∂x
. (85)

The derivatives of ñ1 are computed from (23) as shown in Appendix C. Moreover,2

∂(β − sin β)
∂x

= ± 2
√
Γ+

1 − Γ+
∂Γ+
∂x

, (86)

∂(γ − sin γ)
∂x

= ± 2
√
Γ−

1 − Γ−
∂Γ−
∂x

, (87)

where the positive sign holds for 0 < β, γ < π. The quantities Γ± = (Γ+, Γ−) are
defined as in Gronchi et al (2015b, Sect. 7.1), where d is replaced by dL , so that

∂Γ±
∂X
= −

r1 + r2 ± dL

2µ
∂E1
∂X
∓
E1
2µ

∂dL

∂X
, (88)

∂Γ±
∂∆
= −

r1 + r2 ± dL

2µ
∂E1
∂∆
−
E1
2µ

∂(r1 + r2 ± dL )
∂∆

, (89)

where

∂ri
∂(∆αi,∆δi)

=
ρi
ri

(cos δiqi · eαi , qi · eδi ), (90)

∂dL

∂x
=

1
dL

( ∂ R̃
∂x

r1 + R̃
∂r1
∂x
−
∂r2
∂x

)
· (R̃r1 − r2), (91)

and
∂ri

∂(∆αi,∆δi)
= ρi (cos δieαi , eδi ). (92)

7.3 The derivatives of K1, K2

The value of ρ̈ is required in the equation of motion (94) at the two epochs t̃1, t̃2. The
quantity ρ̈ is regarded as a constant whose value is updated by means of equation (94)

2There is a typo in the corresponding formulae in Gronchi et al (2015b, Sections 7.1, 7.3).
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at each iteration of Newton-Raphson method for computing ∆. Note that, in this way
the values taken by K1, K2 are always identically 0.

SinceK depends on quantities that are referred to the same epoch, we will drop the
subscript i.

We need to compute:

∂K

∂E ∗att
=
∂(r̈ · eρ)
∂E ∗att

−
∂(ỹ · eρ)
∂E ∗att

. (93)

From the equation
r̈ · eρ = ρ̈ − ρη2 + q̈ · eρ (94)

we obtain
∂(r̈ · eρ)
∂E ∗att

=
(
q̈ ·

∂eρ

∂∆α
, q̈ ·

∂eρ

∂∆δ
, −

2ξ
ρ
, −

2ζ
ρ
, η2, 0

)
, (95)

with
∂eρ

∂∆α
=
∂eρ

∂α
= eα cos δ,

∂eρ

∂∆δ
=
∂eρ

∂δ
= eδ . (96)

In (96) we made a little abuse of notation: eρ stands for both a function of (α, δ) and
(∆α,∆δ).
Then, we introduce y∗, that is the vector ỹ (see 27) as a function of the coordinates E ∗att :

y∗ = ỹ ◦ φ−1
2 ◦ φ

−1
3 =

( ∂ṙ
∂E ∗att

Xkep

)
◦ Φ−1. (97)

Denoting by x (k) the k-th component of x (where x can be here either a vector or a
map) we can write

y∗(k) =
( ∂ṙ(k)

∂Ekep
Xkep

)
◦ Φ−1, k = 1, 2, 3. (98)

Their derivatives are given by
∂y∗(k)

∂E ∗att
=

[
∂

∂Ekep

( ∂ṙ(k)

∂Ekep
Xkep

)]
◦ Φ−1 ∂Φ

−1

∂E ∗att
, (99)

where
∂

∂Ekep

( ∂ṙ(k)

∂Ekep
Xkep

)
=
∂2ṙ(k)

∂Ekep
Xkep +

∂ṙ(k)

∂Ekep

∂Xkep

∂Ekep
, (100)

with
∂ṙ(k)

∂Ekep
=
∂φ1(k+3)

∂Ekep
,

∂2ṙ(k)

∂E 2
kep

=
∂2φ1(k+3)

∂E 2
kep

, (101)

and
∂Xkep

∂Ekep
=



O3 O3
∂(Ω̇,ω̇, ˙̀)
∂(a,e,I ) O3


. (102)

The expressions of
∂φ1
∂Ekep

,
∂2φ1

∂E 2
kep

,
∂Φ−1

∂E ∗att
,
∂Xkep

∂Ekep

are reported in Appendices A, B, C.
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Table 1: Keplerian elements at epoch 54127.1553819 MJD for object 1 and
54127.2991319 MJD for object 2. The values of a, e, I are exact, the others are
approximated. Distances are expressed in km, angles in degrees.

obj. a e I Ω ω `

1 7818.10 0.0658 65.81 213.92 356.70 202.25
2 7396.00 0.0341 26.88 255.49 357.13 198.67

Table 2: Standard deviation (rms) of the errors added to the radar tracks.
α, δ (deg) ρ (m)

Case 1 0.20 1
Case 2 0.20 10
Case 3 0.15 1
Case 4 0.15 10

8 Numerical tests
We show some numerical tests with two simulated objects whose orbital elements at
some epoch are defined in Table 1. For the selected orbits the perturbation due to
the J2 is dominant if we assume a small area-to-mass ratio of the two objects (see
Montenbruck and Gill, 2000, Figure 3.1). Moreover, the J2 effect will be stronger for
object 2 because of the smaller values of the inclination and semi-major axis.

A two-body propagation with the J2 effect (equations 23) is used to generate pairs
of radar tracks at epochs t̃1, t̃2 of 4 observations each taken at time intervals of 10 s,
see (1). Then, we add to ρ, α, δ a Gaussian error with zero mean and the standard
deviation (rms) shown in Table 2. In Cases 1, 3 a small error is added to ρ,3 while in
Cases 2, 4 a significant noise affects both the angles and the range. For each object
we consider two pairs of radar tracks, separated by a different number of revolutions k.
The interpolated data that we get after adding the noise to the simulated observations
are given in Tables 3, 4 for object 1 and Tables 5, 6 for object 2. Note that also the
values of α̇, δ̇ are shown because they are needed to initialize the unknown variables ξ,
ζ .

Tables 7, 8 report the absolute errors in each orbital element of objects 1, 2 at
epoch t̃1. For both objects the new method, here referred to as IA-J2, is able to correct
the errors in α, δ and to recover the Keplerian elements of the known orbits with a
satisfactory level of accuracy. Note that the performance of the new method is only
slightly affected by the increase of the noise level in ρ (Cases 2, 4).

We have also compared IA-J2 to the method IAQ proposed in Gronchi et al (2015b)
which does not take into account the effect of the J2 term of the geopotential. The

3Note that, even if the rms of ρ was 0, the interpolated values of ρ, ρ̇ at time t̃1 would not be exact in
general.
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Table 3: Data interpolated from two radar tracks of object 1 at epochs t̄1 =
54127.1553820 MJD and t̄2 = 54127.5824653 MJD, using two different noise lev-
els of Table 2. The number of revolutions k, as defined in Equation (62), is also
reported.

Object 1, k = 5
Epoch Case ᾱ (deg) δ̄ (deg) α̇ (deg/s) δ̇ (deg/s) ρ (km) ρ̇ (km/s)

t̄1
1 40.71190 −4.34972 0.06933 −0.17402 1965.89061 −1.26651
2 40.71190 −4.34972 0.06933 −0.17402 1965.88651 −1.26557

t̄2
1 243.02897 −79.04074 −0.02136 0.16045 1875.99129 −4.84869
2 243.02897 −79.04074 −0.02136 0.16045 1876.00141 −4.85139

Table 4: Same as in Table 3 for two radar tracks at t̄1 = 54127.5824653 MJD and
t̄2 = 54128.6241320 MJD.

Object 1, k = 13
Epoch Case ᾱ (deg) δ̄ (deg) α̇ (deg/s) δ̇ (deg/s) ρ (km) ρ̇ (km/s)

t̄1
3 242.95755 −79.11215 −0.01356 0.16825 1875.98971 −4.84829
4 242.95755 −79.11215 −0.01356 0.16825 1875.98562 −4.84735

t̄2
3 204.34455 53.03103 0.11860 0.10845 2061.14383 5.59005
4 204.34455 53.03103 0.11860 0.10845 2061.15395 5.58735

Table 5: Data interpolated from two radar tracks of object 2 at epochs t̄1 =
54127.2991320 MJD and t̄2 = 54127.3828126 MJD, using two different noise lev-
els of Table 2. The number of revolutions k, as defined in Equation (62), is also
reported.

Object 2, k = 1
Epoch Case ᾱ (deg) δ̄ (deg) α̇ (deg/s) δ̇ (deg/s) ρ (km) ρ̇ (km/s)

t̄1
1 72.88079 34.57579 0.20066 −0.04293 1942.23386 −3.40688
2 72.88079 34.57579 0.20066 −0.04293 1942.22977 −3.40593

t̄2
1 193.80043 −31.71774 0.13680 0.03447 2057.69443 5.00361
2 193.80043 −31.71774 0.13680 0.03447 2057.70455 5.00091
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Table 6: Same as in Table 6 for two radar tracks at t̄1 = 54127.6906251 MJD and
t̄2 = 54128.3300348 MJD.

Object 2, k = 8
Epoch Case ᾱ (deg) δ̄ (deg) α̇ (deg/s) δ̇ (deg/s) ρ (km) ρ̇ (km/s)

t̄1
3 162.41862 −0.70695 0.12744 0.07974 1914.59715 −5.09806
4 162.41862 −0.70695 0.12744 0.07974 1914.59305 −5.09712

t̄2
3 169.53245 −20.90422 0.14196 −0.01396 2013.14698 4.73488
4 169.53245 −20.90422 0.14196 −0.01396 2013.15710 4.73218

advantage of IA-J2 over IAQ becomes evident when the time interval between two
radar tracks increases. Table 8 shows that by taking two radar tracks of object 1
separated by 13 revolutions, the method IAQ does not find a good orbit, while IA-J2
is able to determine very accurate values of the orbital elements. Also, IAQ does not
work with two radar tracks of object 2 separated by 8 revolutions, while IA-J2 keeps
the errors small. Finally, the corrections to the angles α, δ computed by the method
IA-J2 are shown in Tables 9, 10.

9 Conclusions
We propose a new method to compute preliminary orbits of Earth satellites taking into
account the Earth oblateness. The method attempts to link together two radar tracks,
which may be separated by several revolutions. It consists in solving system (53) by a
double iterative scheme to determine the corrections of α, δ and the angular velocity.
Numerical tests show that the method works also in presence of a significant noise level
on the range and the angles. Future work will be to include the effect of the atmospheric
drag and perform large-scale tests on LEO objects with real observations.
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Table 7: Difference (in absolute value) between the computed and true orbital elements
of objects 1, 2 at epoch t̃1 for the interpolated data of Tables 3, 5. The new method
is compared to the method IAQ proposed in Gronchi et al (2015b). Distances are
expressed in km, angles in degrees.

Object 1, k = 5 Object 2, k = 1 CaseIAQ IA-J2 IAQ IA-J2

δa
6.1476 1.1441 5.0957 1.7662 1

171.4962 1.8259 10.3163 1.3280 2

δe
1.79 × 10−4 4.43 × 10−5 4.57 × 10−4 4.30 × 10−4 1
1.48 × 10−2 7.21 × 10−5 2.04 × 10−3 2.75 × 10−4 2

δI
1.8416 0.4283 0.9966 0.3384 1
0.8353 0.7366 0.1597 0.2694 2

δΩ
0.0677 0.2408 1.1446 0.4020 1
3.1663 0.4204 0.1827 0.3051 2

δω
3.7614 1.1999 0.8886 1.6806 1
6.2622 1.8956 6.1047 1.3220 2

δ`
4.3016 1.2948 0.0334 1.4552 1
7.9420 2.0320 6.8222 1.1558 2

Table 8: Same as in Table 7 for the interpolated data of Tables 4, 6. The method IAQ
does not work for object 2 when we take two radar tracks separated by 8 revolutions.

Object 1, k = 13 Object 2, k = 8 CaseIAQ IA-J2 IA-J2

δa
502.4785 0.0105 0.1615 3
502.4096 0.0116 0.1378 4

δe
4.32 × 10−3 7.08 × 10−5 2.00 × 10−4 3
4.76 × 10−3 1.44 × 10−4 1.50 × 10−4 4

δI
6.2022 0.0977 0.9485 3
6.2071 0.0830 0.6724 4

δΩ
5.1509 0.0469 0.5746 3
5.1487 0.0454 0.3900 4

δω
129.2975 0.0203 4.7886 3
129.3858 0.0388 3.5505 4

δ`
239.9665 0.0124 4.2105 3
239.8206 0.0095 3.1483 4
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Table 9: Infinitesimal angles (deg) found by the proposed method using the radar tracks
of Tables 3, 4 for object 1.

Case 1 Case 2 Case 3 Case 4
∆α1 −1.31448 −2.30805 0.25737 0.08057
∆δ1 −0.37447 −0.69638 0.08058 0.07575
∆α2 0.71856 1.23111 −0.23547 −0.24423
∆δ2 0.32881 0.58535 −0.02666 −0.04653

Table 10: Infinitesimal angles (deg) found by the proposed method using the radar
tracks of Tables 5, 6 for object 2.

Case 1 Case 2 Case 3 Case 4
∆α1 0.42261 0.31791 −0.01612 −0.00648
∆δ1 0.35088 0.26697 −1.54546 −1.12770
∆α2 0.30596 0.24228 0.03328 0.00800
∆δ2 −0.82680 −0.67820 −3.45550 −2.44161
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Appendix A
The Jacobian matrix of the Cartesian coordinates Ecar with respect to the Keplerian
elements Ekep (see 14, 15) can be obtained from Table 2 in Broucke (1970) by setting
t = 0 in the expressions of ∂φ1

∂a and noting that ∂φ1
∂` = ∂φ1

∂M0
, where M0 denotes the mean

anomaly at epoch in Broucke (1970).
Let us adopt here and in Appendix B the same notation explained in Section 7.3 to

refer to the component of a vector and a map. The derivatives ∂2φ1(i)

∂E 2
kep

, i = 4, 5, 6, are
given by:

∂2φ1(i)

∂Ekep∂a
= −

1
2a

(
−

3ṙ(k)

2a
,
∂φ1(i)

∂e
,
∂φ1(i)

∂I
,
∂φ1(i)

∂Ω
,
∂φ1(i)

∂ω
,
∂φ1(i)

∂`

)
,

∂

∂(a, e, `)
∂φ1(i)

∂e
=

∂ L̇
∂(a, e, `)

P(k) +
∂Ṁ

∂(a, e, `)
Q(k),

∂

∂(I,Ω, ω)
∂φ1, (i)

∂e
= L̇

∂P(k)

∂(I,Ω, ω)
+ Ṁ

∂Q(k)

∂(I,Ω, ω)
,

∂

∂(a, e, `)
∂φ1(i)

∂I
=

( ∂ Ẋ
∂(a, e, `)

sinω +
∂Ẏ

∂(a, e, `)
cosω

)
R(k),

∂

∂(I,Ω)
∂φ1(i)

∂I
= (Ẋ sinω + Ẏ cosω)

∂R(k)

∂(I,Ω)
,

∂2φ1(i)

∂ω∂I
= (Ẋ cosω − Ẏ sinω)R(k),

∂

∂Ekep

∂φ1(4)

∂Ω
= −

∂φ1(5)

∂Ekep
,

∂

∂Ekep

∂φ1(5)

∂Ω
=
∂φ1(4)

∂Ekep
,

∂

∂Ekep

∂φ1(6)

∂Ω
= 0,

∂

∂(a, e, `)
∂φ1(i)

∂ω
=

∂ Ẋ
∂(a, e, `)

Q(k) −
∂Ẏ

∂(a, e, `)
P(k),

∂

∂(I,Ω, ω)
∂φ1(i)

∂ω
= Ẋ

∂Q(k)

∂(I,Ω, ω)
− Ẏ

∂P(k)

∂(I,Ω, ω)
,

∂φ2
1(i)

∂a∂`
= n

a2

r3

(3
2

r(k) − a
∂φ1(k)

∂a

)
,

∂

∂(e, `)
∂φ1(i)

∂`
= n

a3

r3

(
3

r(k)

r
∂r

∂(e, `)
−
∂φ1(k)

∂(e, `)

)
,

∂

∂(I,Ω, ω)
∂φ1(i)

∂`
= −n

a3

r3
∂φ1(k)

∂(I,Ω, ω)
,

where k = i − 3, and the quantities Ẋ , Ẏ , L̇, Ṁ , P, Q, R are defined in Broucke (1970).
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We have

∂P
∂I
= (P3 sinΩ,−P3 cosΩ, sinω cos I)T ,

∂P
∂Ω
= (−P2,P1, 0)T ,

∂P
∂ω
= Q,

∂Q
∂I
= (Q3 sinΩ,−Q3 cosΩ, cosω cos I)T ,

∂Q
∂Ω
= (−Q2,Q1, 0)T ,

∂Q
∂ω
= −P,

∂R
∂I
= (sinΩ cos I, − cosΩ cos I, − sin I)T ,

∂R
∂Ω
= (cosΩ sin I, sinΩ sin I, 0)T ,

∂R
∂ω
= 0,

and

∂ L̇
∂a
= −

L̇
2a
,

∂Ṁ
∂a
= −

Ṁ
2a
,

∂ L̇
∂e
= n

a4

r4 (2r + a)sin3 E −
3L̇
r
∂r
∂e
,

∂Ṁ
∂e
= Ṁ

( e
1 − e2 −

3
r
∂r
∂e

)
+

n
√

1 − e2

a4

r3

[
2e − 3 cos E + (2 +

a
r

)cos3 E +
a
r

(e − 2 cos E)
]
,

∂ L̇
∂`
= n

a4

r4

[
2rsin2 E + (e − 2cos E + ecos2 E)

(
acos E − 3

∂r
∂`

)]
,

∂Ṁ
∂`
=

n
√

1 − e2

a5

r4 sin E
[
e − 4cos E + 3ecos2 E −

3ae
r

(e2 − 1 − ecos E + 2cos2 E − ecos3 E)
]
.

Finally, the derivatives of Ẋ , Ẏ , r that appear in the previous expressions can be found
in Broucke (1970, Table 1).

Appendix B
Let us introduce the coordinate change fromE ∗att toEcar as the composite transformation

ψ = φ−1
2 ◦ φ

−1
3 .

Then we have
∂Φ−1

∂E ∗att
=

( ∂φ1
∂Ekep

)−1 ∂ψ

∂E ∗att
,
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where (k = 1, 2, 3)

∂ψ(k)

∂E ∗att
= (ρeα(k) cos δ, ρeδ(k), 0, 0, eρ(k), 0)T ,

∂ψ(k+3)

∂E ∗att
= (ξe⊥(k) + eα(k) ( ρ̇ cos δ − ζ sin δ), ρ̇eδ(k) − ζeρ(k), eα(k), eδ(k), 0, eρ(k))

T ,

with
e⊥ = (− cos α, − sin α, 0)T .

Appendix C
We can write

∂(Xkep ◦ Φ
−1)

∂E ∗att
=
∂Xkep

∂Ekep

∂Φ−1

∂E ∗att
,

where

∂Ω̇

∂a
= −

3
2

J2
R2
⊕

p2 cos I
( ∂ñ
∂a
−

2ñ
a

)
,

∂Ω̇

∂e
= −

3
2

J2
R2
⊕

p2 cos I
( ∂ñ
∂e
+

4ñe
1 − e2

)
,

∂Ω̇

∂I
= −

3
2

J2
R2
⊕

p2

( ∂ñ
∂I

cos I − ñ sin I
)
,

∂ω̇

∂a
=

3
4

J2
R2
⊕

p2 (4 − 5 sin2 I)
( ∂ñ
∂a
−

2ñ
a

)
,

∂ω̇

∂e
=

3
4

J2
R2
⊕

p2 (4 − 5 sin2 I)
( ∂ñ
∂e
+

4ñe
1 − e2

)
,

∂ω̇

∂I
=

3
4

J2
R2
⊕

p2

[ ∂ñ
∂I

(4 − 5 sin2 I) − 5 sin(2I)ñ
]
,

∂ñ
∂a
=
∂n
∂a
−

21
4

J2
R2
⊕

p2
n
a

(
1 −

3
2

sin2 I
)√

1 − e2,

∂ñ
∂e
=

9
2

J2
R2
⊕

p2

(
1 −

3
2

sin2 I
) ne
√

1 − e2
,

∂ñ
∂I
= −

9
2

J2
R2
⊕

p2 nsin Icos I
√

1 − e2.
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