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Human neuroepithelial stem cell regional specificity
enables spinal cord repair through a relay circuit
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Traumatic spinal cord injury results in persistent disability due to disconnection of surviving
neural elements. Neural stem cell transplantation has been proposed as a therapeutic option,
but optimal cell type and mechanistic aspects remain poorly defined. Here, we describe
robust engraftment into lesioned immunodeficient mice of human neuroepithelial stem cells
derived from the developing spinal cord and maintained in self-renewing adherent conditions
for long periods. Extensive elongation of both graft and host axons occurs. Improved
functional recovery after transplantation depends on neural relay function through the
grafted neurons, requires the matching of neural identity to the anatomical site of injury,
and is accompanied by expression of specific marker proteins. Thus, human neuroepithelial
stem cells may provide an anatomically specific relay function for spinal cord injury recovery.
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raumatic spinal cord (SC) damage results in cell loss at the

injury level, as well as disconnection of surviving neurons,

with an irreversible interruption of the information flow to
and from the brain. The implantation of neural stem cells (NSCs)
at the lesion site has been considered an appealing potential
treatment for decades, and several approaches have been pro-
posed. Mechanistically, the hypothesized benefits of transplanta-
tion are diverse, including replacement of lost neurons, creation
of a conducive axon growth environment for host axons, pro-
duction of growth factors, and provision of glial cells to assist
function of surviving neurons. In order for these mechanisms to
occur, graft integration into the host is critical and defining the
parameters that regulate its success is fundamental to facilitate
translation of cell-based therapies to the clinic. Unfortunately, at
present, neither the identity nor the selection path for the most
appropriate cell population for optimal graft integration are
known.

Human NSC transplants for spinal cord injury (SCI) have been
limited to partially characterized human cell lines!~3 or to fetal
NSCs collected after 8 post-conceptional weeks (PCW)4-.
Although fetal NSCs can be propagated in vitro, neither their
long-term stability nor the preservation of their regional identity
in vivo have been demonstrated’. Fetal NSCs exhibit molecular
markers suggestive of radial glia and appear to differentiate more
easily toward the glial fate, whereas their neurogenic potential is
largely restricted to GABAergic neurons both in vitro and
in vivo”8. In most previous reports, NSCs were cultured in sus-
pension as neurospheres, a method that often leads to a sig-
nificant reduction in self-renewal competency and in the
neurogenic capacity of the cells®10.

As an alternative, human embryonic stem (ES) or induced
pluripotent stem (iPS) cells are an in vitro source of neural
progenitors and their application to SCI treatment is currently
being investigated!!-14. During human pluripotent stem cell
differentiation, neural progenitors exhibit spontaneous self-
organization into transient structures termed “rosettes”. Cells
within rosettes exhibit morphological and gene expression mar-
kers of neuroepithelial progenitors and are molecularly distinct
from radial glia-like NSCs!>. However, the identity and the
physiological relevance of cells derived in vitro from pluripotent
sources are unclear because cells could acquire transcriptional
and epigenetic programs in vitro that diverge from cell states
in vivol®.

To understand how regional cell identity affects graft integra-
tion, we analyzed the engraftment of a novel human NSC
population that retains over time the transcriptional profile
acquired in vivo. In contrast to other NSC sources, human neu-
roepithelial stem (NES) cells derived from tissues collected at an
embryonic stage of the neural tube development, typically from 5
to 8 PCW, possess unique advantages. NES cells can be propa-
gated as monolayers for a virtually unlimited number of passages,
retain a high and unaltered neurogenic potential over time and
preserve the molecular and transcriptional signature of their tis-
sue of origin!”-18,

We derived SC-NES cells from human post-mortem specimens
and propagated them without genetic manipulation. Human SC-
NES cells exhibited excellent integration properties in a rodent
SCI model and established functional connections with local
neurons. Through the application of chemogenetics to diverse
behavioral paradigms, we show that SC-NES cells form a relay
system through the lesioned area reconnecting spared host neural
elements. In contrast, NES cells derived from neocortex (NCX-
NES cells) fail to acquire a mature neuronal phenotype when
transplanted into SC, fail to integrate and fail to extend neurites.
Importantly, NCX-NES cell integration is dramatically enhanced
in the cerebral cortex, demonstrating that anatomical matching of

graft with recipient tissue is critical for functional neuronal net-
works. These findings provide key mechanistic, molecular and
practical information to develop human cell transplantation
therapy for SCI.

Results

Human SC-NES cells are tripotent and highly neurogenic. Here
we derived human SC-NES cells from six embryonic post-
mortem specimens in a range of 5-8 PCW (Fig. 1a)!8. The SC
samples (Supplementary Fig. 1la) were dissected free of
meninges and dorsal root ganglia and dissociated to a single-
cell suspension. After 24h of plating, SC-NES cells formed
neural rosettes with typical radial organization and apico-basal
orientation of the developing neural tube (Fig. 1a and Supple-
mentary Fig. 1b). SC-NES cells exhibit progenitor cell char-
acteristics and express the canonical NSC markers nestin,
SOX2, vimentin, phospho-vimentin and PAX6 (Fig. 1b-d, f).
KI67 staining confirmed the state of active proliferation of SC-
NES cells in vitro (Supplementary Fig. 1c). Next, we investi-
gated whether SC-NES cells retain their positional identity after
long-term expansion. Therefore, we verified the expression of
the caudal transcription factor HOXBY (Fig. 1e) and confirmed
immunolabelling specificity by lack of HOXB9 expression in
NCX-NES cells (Supplementary Fig. 1d). Self-renewing SC-NES
cells were maintained for >35 passages with no signs of
senescence or chromosomal instability (Fig. 1g).

A 30-day differentiation protocol involving mitogen with-
drawal coupled with neurotrophin addition induced the
acquisition of a neuronal phenotype. SC-NES cells gave rise
to RBFOX3- (also known as NeuN) positive neurons (Supple-
mentary Fig. le) accounting for 79.2£0.1% of cells (Supple-
mentary Fig. 1i). Neurons also expressed the pan-neuronal
markers MAP2, neurofilament (NEFL) and TUBB3 (Fig. 1h-1i)
whereas 11.2+0.2% of cells were positive for the early post-
mitotic neuronal marker doublecortin (DCX) (Supplementary
Fig. 1f, i). Among mature neurons, 1% of the cells expressed
choline acetyltransferase (CHAT), a feature of spinal motor
neurons, in agreement with SC-NES cell anatomical origin
(Fig. 1i Supplementary Fig. 1i). A subpopulation of cells
expressed astrocyte and oligodendrocyte markers including
GFAP and O4 (Supplementary Fig. 1g-i), confirming SC-NES
cell tri-potent differentiation properties. In addition, we tested
SC-NES-derived neurons for the expression of pre- and post-
synaptic markers, PSD-95 and synaptophysin (SYP) (Fig. 1j, k),
and for electrophysiological properties. Upon 90 days of in vitro
differentiation SC-NES-derived neurons displayed ionic cur-
rents and elicit spontaneous repetitive action potentials (Fig. 11,
m), consistent with a fully functional neuronal phenotype
(Supplementary Table 1).

Human SC-NES cells survive and differentiate in a SCI model.
Human SC-NES cells were transduced with GFP-coding lentiviral
vector and grafted into the lesion site of genetically immunode-
ficient mice 10 days after thoracic SC dorsal hemisection (Fig. 2a).
Anatomical analysis revealed that SC-NES cells survived in all
grafted animals and consistently filled the lesion cavity at 8 weeks
post-grafting (Fig. 2b, ¢). Grafts in 3 out of 9 animals exhibited a
rift near the graft center (Supplementary Fig. 2a) which contained
collagen and SOX10-positive host Schwann cells (Supplementary
Fig. 2b-c). The rift separated the graft into two segments and
contained very few grafted-cell-derived neurites (Supplementary
Fig. 2d).

In agreement with in vitro data, the majority (55.6 + 3.5%) of
transplanted SC-NES cells differentiated into RBFOX3-positive
neurons (Fig. 2d-p), whereas 27.9+2.1% of cells expressed

2 | (2018)9:3419 | DOI: 10.1038/541467-018-05844-8 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

a Developing spinal cord SC-NES cell derivation

Neural differentiation

In vitro propagation

SOX2 DAPI VIM DAPI

120
8% Be ¥y s aa
2 100 1 2 3 4 5
[
o 80
g B8 E8 RS o0 ne 28 &3
2 4 6 7 8 9 10 1 12
3
..g‘ 40 W 4h B8 &x an oo
o\o 20 13 14 15 16 17 18
ol . . L M a8 e se aa B o
Nestin SOX2 PAX6 VIM PVIM 19 20 21 2 X Y

DAPI

DAPI

2omv|

200 ms

2nA

3ms

Fig. 1 Characterization of human NES cells in proliferation and after in vitro differentiation. a Schematics of the experimental procedure. SC-NES cells were
derived from the SC of a human post-mortem specimen at 6 post-conceptional weeks (PCW) and propagated in vitro. After differentiation SC-NES cells
give rise to neurons, astrocytes and oligodendrocytes. b-d SC-NES cells are positive for pan-neural stem cell markers nestin, SOX2, vimentin (VIM),
phospho-vimentin (P-VIM) and PAX6. e SC-NES cells retain their regional identity as proved by the positive staining for the SC-specific transcription factor
HOXBO. f Quantification of nestin, SOX2, PAX6, VIM, P-VIM positive cells. g SC-NES cells retain a normal euploid karyotype after 25 passages. h, i
Differentiation of SC-NES cells to MAP2-, TUBB3-, and neurofilament- (NEFL) positive neurons. SC-NES cells also generate choline acetyltransferase-
(CHAT) positive neurons in agreement with their anatomical origin. j, k Mature neurons also express pre- and post-synaptic markers such as PSD95 and
synaptophysin (SYP). | Total inward and outward ionic currents elicited at test potentials ranging from -70 to +40 mV from a holding voltage of -90 mV.
(M) Subthreshold and suprathreshold voltage responses to a family of injected steps of current (O pA; 20 pA; 40 pA; 60 pA; 80 pA) from a resting
potential of —71mV. Scale bars: b-d 100 um; e 20 pm; h 100 um; m 20 um; j 10 pm; k Tum

human GFAP (Fig. 2e-p). APC-positive mature oligodendro-
cytes accounted for 1% of implanted cells (Fig. 2f). Co-staining
for RBFOX3 and human nuclei confirmed the human origin of
grafted neurons (Fig. 2g, h). These cells also expressed the
mature neuronal proteins TUBB3 and HNCAM (Fig. 2i-j). In
addition to general neuronal markers, 14.7 +1.4% of grafted
SC-NES cells were positive for CHAT (Fig. 2k-1). Inhibitory
GADI-positive neurons and excitatory VGLUT1 (SLC17A7)-
positive neurons were less frequent, and accounted for 2% and
1% of grafted cells, respectively (Fig. 2m-o). No cells within the
grafts expressed the serotonergic neuron marker, 5-HT.

In accordance with literature for other transplants®11:19:20, we
observed that some grafted cells migrated into host SC and
formed satellite clusters. We analyzed the SC from the brainstem
to conus medullaris, and found that 5 out of 7 animals exhibited
ectopic nodules. The vast majority of clusters were found just
below the meninges (Supplementary Fig. 2e) within 11 mm from
the graft center. Dispersion of cells into parenchyma occurred in
one single recipient animal at a 100-200 um distance (Supple-
mentary Fig. 2f). In addition, some grafted cells were located in

the central canal (Supplementary Fig. 3c) at 7-12 mm from the
injection site.

A subset of grafted cells (6.6 + 1.7%) were positive for KI67 or
expressed nestin and DCX, thus indicating that a fraction of cells
remained in active phases of the cell cycle after 8 weeks
(Supplementary Fig. 2g-i). However, the percentage of proliferat-
ing graft cells was not higher than the fraction of mitotic cells
present in uninjured SC, which accounts for 10% of cells
including central canal, gray and white matter?!. Of note, SC-NES
cells retained their regional identity in vivo and expressed the SC-
specific transcription factor HOXB9 (Supplementary Fig. 2j-1).

Human SC-NES cells elongate long distance axons in the host.
Graft-derived neurons extended many projections into host SC
(Supplementary Fig. 3a). Emerging GFP-labeled processes were
observed mostly in white matter (69.8 £ 3.5%) rather than in gray
matter (30.1+3.5%) (Fig. 3a, b), proving that SC-NES cells are
not affected by myelin-associated inhibitors present in adult
recipient tissues. We verified that SC-NES cell-derived neurons
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Fig. 2 Human SC-NES cell graft survival and in vivo differentiation in a model of SCI. a Schematics of the experimental procedure. SC-NES cells were
transduced with a GFP lentiviral construct before engraftment. Recipient immunodeficient (NOD/SCID) mice underwent dorsal SC hemisection and
received SC-NES cell injection onto the lesion site 10 days after. b GFP-labeled SC-NES cells were implanted into the site of the injury. Horizontal section
immunolabelled for GFP and GFAP indicates that cell implants survive and distribute into the lesion cavity. Rostral is to left, caudal is to right. ¢ High
magnification of the lesion core (Ic) showing the correct placement of the cells in the injured area. d The majority of the cells within the graft differentiates
toward the neuronal fate giving rise to RBFOX3-positive neurons. e, f SC-NES cells also generate astrocytes positive for human GFAP (HGFAP) and
oligodendrocytes positive for APC. g, h Low magnification image of grafted cells immunostained with RBFOX3 and human nuclei (HuNu) antibodies,
confirming the human origin of differentiated cells. i, j Grafted GPF-labeled cells are also positive for the neuronal markers TUBB3 and HNCAM. k-I' A
fraction of GFP-labeled SC-NES cells colocalize with the motor neuronal marker choline acetyltransferase (CHAT) and co-staining with HuNu antibody
confirms the human origin of the cells. m-n’ Immunostaining for GFP, HuNu and the inhibitory neuronal marker glutamate decarboxylase 1 (GAD1)
showing colocalization of GAD1 staining with GFP and HuNu. o Double labeling for GFP and vesicular glutamate transporter 1 (VGLUT1) showing a graft-
derived human neurite co-expressing VGLUTT. p Quantification of RBFOX3-positive neurons (55.6 + 3.6%) and HGFAP-positive astrocytes (27.9 + 2.2%)
representing the two largest cellular subtypes in the graft. Among neurons, CHAT-positive motor neurons were the most abundant subtype accounting for
up to 14.7% of grafted cells. Scale bars: b 500 um; € 200 um; d 20 um; e 40 um; f 4 um; g, h 500 um; i 40 pm; j 250 um; k 20 um; 1, I 10 ym; m, 20 um; n, n’
10 um; 0, 20 um

do not express Nogo receptor 1 (NgR1), which is known to
mediate axonal growth repression exerted by ligands Nogo A,
Myelin Associated Glycoprotein (MAG) and Oligodendrocyte
Myelin Glycoprotein (OMgp)*2-2°, thus providing a possible
mechanism for the robust axonal growth observed in white
matter (Supplementary Fig. 3b). Notably, GFP-positive projec-
tions grew in parallel linear trajectories in white matter and were
ramified in gray matter within close proximity to host neurons in
a pattern that is very similar to endogenous axonal fibers
(Fig. 3c—e). The axonal nature of projections was confirmed by
GFP colocalization with the axon-specific marker, human neu-
rofilament (NEFL) (Fig. 3f, g). SC-NES cell-derived axons did not

appear to be myelinated by host oligodendrocytes (Fig. 3h). The
absence of myelination of human axonal fibers in rodent hosts
has also been reported by others!! and may be attributable to a
lack of inter-species recognition.

Human SC-NES cell-derived axons extended over the entire
length of the SC from the injection site in the thoracic segment.
GFP-labeled terminals were observed cervically up to the medulla
oblongata and caudally in the conus medullaris (Fig. 3i-1). The
distance traversed by GFP-positive axons was 13 spinal segments
rostral and 6 segments caudal from the implantation site with a
length of 4 cm. The GFP-positive axons found in host tissue
emerged directly from the main body of the graft and not from
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Fig. 3 Extensive axonal outgrowth from human SC-NES cell grafts. a GFP and RBFOX3 immunolabeling on a horizontal section of SC grafted with SC-NES
cells. GFP-expressing cells show a massive axonal elongation rostral and caudal to the trauma site (caudal shown). b Quantification of graft-derived axons
in the gray (GM) and white matter (WM) of the recipient SC showing a preferential axonal growth in the WM. ¢, d GFP-positive axons grow in a parallel
pattern in the WM and acquire a more ramified morphology in the GM identified by the RBFOX3 staining. e GFP-expressing axon terminals are closely
associated with host RBFOX3-positive neurons. f, g GFP-labeled projections arising from the graft express human neurofilament (HNEFL), confirming their
identity as axons. h GFP and myelin associated glycoprotein (MAG) staining reveals a lack of myelination of the human fibers. i-1 GFP and RBFOX3 staining
of the recipient SC at different levels. Human GFP-positive axonal fibers elongate throughout the entire length of the SC from the original injection site in
the thoracic segment. GFP-positive axons can be found in the cervical portion and more rostrally in the medulla oblongata. Human axons also grow caudally
reaching the conus medullaris. Data are expressed as mean * s.e.m (***P < 0.001; Student's t-test). Scale bars: a 200 um; ¢, d 50 um; e 10 pm; f-h 10 um; i-k

100 um; 1 50 um

the few cells of ectopic central canal nodules, which appeared
tightly clustered and devoid of protrusions >10 pm (Supplemen-
tary Fig. 3d-g).

Thus, human SC-NES cells exhibit excellent survival properties
and appear impervious to myelin-associated inhibitors with
consequent growth of long-distance projections to re-establish a
connection between the SC segments above and below the
trauma.

Human SC-NES cells establish a functional neuronal network.
We sought to determine whether SC-NES cells form neuronal
networks within the host. To this purpose we labeled grafts with
anti-human synaptophysin (HSYP) and examined RBFOX3-
positive neurons in the gray matter of recipient SC (Fig. 4a). We
found HSYP-positive puncta surrounding host neurons,

consistent with synapses between grafted cells and the host
(Fig. 4b). Similarly, we investigated the formation of synaptic
connections between host fibers and the graft. In particular, we
analyzed two descending pathways: the corticospinal tract (CST)
and the raphespinal tract. Biotin dextran amine (BDA)-labeled
CST fibers regenerated into the graft (Fig. 4c, d) and colocalized
with the pre-synaptic marker SYP, as well as the GFP-positive
human projections, thus establishing a mechanism for host-graft
connectivity (Fig. 4e). No CST axons extended beyond the graft
into the caudal SC. Raphespinal 5-HT-positive fibers were also
found to grow into the graft (Fig. 4f, g) and formed synapses with
human cells (Fig. 4h). Notably, 5-HT fibers were observed
throughout the entire graft (Fig. 4j-1).

Grafted animals were also subject to functional analysis.
Behavioral outcomes of control group and SC-NES cell recipients
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Fig. 4 Graft-Host and Host-graft interactions. a Human synaptophysin (HSYP) staining identifies grafted SC-NES cells. RBFOX3-positive neurons indicate
the gray matter of the recipient SC. b High magnification image of a host RBFOX3-positive neuron surrounded by HSYP-positive puncta, suggesting the
establishment of synaptic contacts between the graft and the host. € Host corticospinal axons labeled with BDA regenerate into GFP-expressing SC-NES
cell grafts. d Higher magnification of BDA positive fibers in the graft. e Adjacent signal of GFP, BDA and HSYP signal indicating the formation of novel
synapses between the host CST and implanted cells. f Host serotonergic axons immunolabelled for 5-HT elongate into the GFP-positive SC-NES cell graft.
g Higher magnification of 5-HT positive fibers in the graft. h Host 5-HT fibers are proximal with HSYN and GFP-positive terminals indicating the
establishment of synaptic contacts between the host raphespinal fibers and grafted cells. i 5-HT-positive fibers elongate through the entire length of the
cell implant. Rostral is on the right and caudal is on the left. j-1 High magnification of boxed areas in (i) showing serotonergic terminals intermingled with
GFP-labeled graft cells close to the rostral graft-host interface (j), in the middle of the graft (k) and in proximity of the lesion core (I). Arrowheads indicate
5-HT-positive fibers. Scale bars: a 200 um; b 10 um; ¢ 100 um; d 50 um; e 10 um; f 100 um; g 50 um; h 10 um; i 500 um, j-1 50 um
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were measured by Basso Mouse Scale (BMS) starting 7 days after  animals scored 3 (paw placement with or without weight support)
injury, but prior to engraftment?°. At the pre-graft evaluation, (Fig. 5a). We determined the extent of tissue spared from injury,
both groups had substantial loss of locomotor function with an and confirmed that the lesion was comparable between controls
average BMS score <1 (slight ankle movement). The SC-NES cell and SC-NES grafted mice (Fig. 5b). Next, we performed a
recipient animals showed a mild improvement by weeks 7 and 8 correlation analysis between spared tissue and BMS score at
with a final score of 4 (occasional stepping), whereas control 8 weeks. We observed a statistically significant difference in the
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Fig. 5 Human SC-NES cells form a relay system in the injured SC. a Hindlimb locomotion: BMS scores before and after dorsal SC hemisection in animals
subject to cell implant (n =19) and in controls (n =14). The first time point indicates the locomotor performance one week after injury and three days prior
to cell engraftment. b Spared tissue quantification in control and treated animals. ¢ Correlation analysis of spared tissue percentage and the BMS score at
8 weeks in a subgroup of animals. Each symbol represents an animal. The correlation shows a significant difference between SC-NES cell recipient animals
and the control group. The blue line indicates the percentage of spared tissue equal to 25%. Animals on the right of the blue line were selected for a
stratification of the original cohort of animals shown in a. d BMS scores including SC-NES cells recipient animals (n = 6) and control animals (n = 6) with a
percentage of spared tissue greater than 25%. e BMS score of SC-NES cells recipient animals at 8 weeks. Each dot represents an animal. SC-NES cells were
transduced with the hM4Di-mcherry construct prior to surgical implantation. Animals were scored before CNO administration (Pre-CNO), 30 min after
CNO administration (CNO), and 24 h after (wash-out). f The per-animal change in BMS score before and 30 min after CNO administration is plotted for
SC-NES cell-treated and control animals. g Grid-walking test: percentage of missed steps of SC-NES cell recipient animals before CNO treatment, under
CNO effect and 24 h after drug administration (wash-out). h Schematics of the foot print test. Base of support and stride length were measured. i
Representative images of SC-NES cell recipient animals footprints before, during and after CNO injection. Black arrows indicate the stride length for one
representative step in all three conditions. j Quantification of stride length in SC-NES cell recipient animals pre-CNO, upon CNO treatment and after drug
wash-out. k Quantification of base of support distance. Data are expressed as means = s.e.m. (*P<0.05; **P < 0.01; Student's t-test for comparisons
between two groups and repeated measures ANOVA for BMS tests)
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linear regression between the two groups indicating that cell
recipient mice had better locomotor performance than control
animals with a comparable injury (Fig. 5c). The correlation
analysis revealed that the divergence in the behavioral outcome
was most prominent for animals with mild to moderate injury,
defined as spared tissue >25% (Fig. 5¢c). Therefore, we stratified
the behavioral data, including mice with a lesion not greater than
the 75%. For mice with such mild to moderate injuries, there was
significantly greater performance by cell recipient animals with a
BMS score of 5 (frequent or consistent plantar stepping) by week
8 post-implant, as compared to similarly injured control animals
scoring <3 (Fig. 5d).

The beneficial effect of neural grafts within the injured SC has
been associated with diverse mechanisms. However, at present,
no direct evidence has been provided to demonstrate that neural
grafts can generate novel circuits within recipient SC. Here, to
assess the necessity for SC-NES cell neural relay function, we
transiently silenced their electrical activity using the hM4Di-
DREADD receptor. hM4Di is an engineered human muscarinic
receptor designed to be responsive to the otherwise inert ligand
Clozapine-N-Oxide (CNO) and mediates neuronal membrane
hyperpolarization with the consequent reduction in action
potential firing?”-?8. First, we assessed the efficacy of hM4Di-
CNO for SC-NES cells in vitro. We differentiated SC-NES cells to
achieve firing of spontaneous action potentials, then, we
transduced SC-NES cell-derived neurons with an hM4Di-
mcherry lentiviral construct (Supplementary Fig. 4a). Application
of CNO caused significant hyperpolarization of membrane
potential and decrease in action potential frequency (Supple-
mentary Fig. 4b-d). SC-NES cells expressing hM4Di-mcherry
were then transplanted into hemisected SCs of immunodeficient
mice. Animals were assessed by BMS scale at 8 weeks post-
implantation before CNO administration (Pre-CNO), 30 min
after injection (CNO) and 24h later (wash-out). Upon CNO
administration, 6 out of 8 animals showed a significant decline in
locomotor skills, with restoration of function after CNO wash-out
(Fig. 5e, f). Control lesioned animals underwent identical
functional testing but did not exhibit any significant variation
in their performance with CNO treatment (Fig. 5f).

The same cohort of grafted and control mice was also evaluated
by grid-walking test where animals are assessed for their ability to
walk on a suspended grid by quantifying the percentage of
incorrectly placed steps?”. SC-NES cell grafted animals showed a
significantly greater percentage of missed steps during CNO
treatment as compared to pre-CNO and post-CNO wash-out
performances (Fig. 5g). For control animals there was no
detectable effect of drug on the grid-walking competency
(Supplementary Fig. 4e).

Finally, gait was assessed by the foot-print test?®. We measured
the distance between the hindlimbs (base of support) and the
stride length (Fig. 5h). Paired testing revealed that, compared to
the pre-CNO assessment, drug treatment resulted in a significant
reduction of the stride length for SC-NES cell recipient animals
with a recovery after wash-out (Fig. 5i-j). CNO did not alter
control animals’ performance (Supplementary Fig. 4f). Base of
support was not changed by CNO administration in either group
(Fig. 5k).

These data show that the transient silencing of SC-NES cells
abrogates the beneficial effect of transplantation in three different
functional paradigms. The temporary interruption of SC-NES cell
electrical activity through a pharmaco-genetic tool has a direct
impact on the functional outcome of grafted mice thus providing
evidence that while SC-NES cells can act as a scaffold for severed
axons to regenerate, they can also create a relay system essential
for functionally reconnecting supraspinal axons with denervated
target neurons below the level of the trauma.

Human NES cell regional origin effects graft integration. Next,
we explored whether the beneficial effects of SC-NES cells were
related to the regional identity of the cells. To this purpose, we
compared human SC-NES cells with human NES cells derived
from the NCX of an age-matched embryo. Upon in vitro differ-
entiation, SC- and NCX-NES cells appeared indistinguishable:
both displayed a mature neuronal phenotype and gave rise to a
similar number of RBFOX3-positive neurons (Supplementary
Fig. 5a-c)!8. However, when transplanted in the injured SC, NCX-
NES cells did not integrate in the parenchyma and formed dense
clusters at the injection site with drastically reduced axonal
elongation compared to their SC-derived counterparts (Fig. 6a—c).
Notably, SC-NES cells distributed more broadly into SC tissue
over a much larger area (Fig. 6d-f). The significant reduction in
the volume of NCX-NES cell grafts did not appear to be asso-
ciated with a higher number of apoptotic events as no statistical
difference was observed in the quantification of active caspase 3
positive-cells in both SC- and NCX-NES cell implants (Supple-
mentary Fig. 5d). In addition, KI67 staining performed at an early
stage of in vivo cell differentiation (i.e., 2 weeks post-implanta-
tion) did not reveal a significant difference between the two cell
types (Supplementary Fig. 5e), thus excluding enhanced mitosis
as a possible mechanism behind the larger volume of SC-NES cell
transplants. NCX-NES cells in vivo also appeared to be sub-
stantially undifferentiated. Immunostaining for pan-neuronal
markers RBFOX3 and TUBB3 revealed no colocalization with
NCX-NES cells (Fig. 6g-h), whereas the vast majority of the cells
remained immuno-positive for the neural progenitor marker
nestin (Supplementary Fig. 5f-g).

We analyzed interactions between NCX grafts and the host, but
found no BDA-labeled host CST fibers establishing connections
with grafted NCX-NES cells (Supplementary Fig. 5h). Unlike SC-
derived NES cells, NCX-NES cells failed to produce any
functional improvement in recipient animals over 8 weeks (Fig. 61
and Supplementary Fig. 5i). This cannot not be attributed to
greater injury severity, since spared tissue was similar in graft
recipients and controls (Fig. 6j).

Of note, when placed into the motor cortex of immunode-
pressed mice, NCX-NES cells displayed a mature morphology at
8 weeks after engraftment with highly branched neurites and a
wide distribution in the tissue (Fig. 6k, m). In the same location,
SC-NES cells formed small tight clusters with short linear
projections and a drastically reduced spreading in the parench-
yma (Fig. 61-m).

Our data show that the integration of human NES cells into a
SCI model is strictly related to cellular regional identity and that
the anatomical match of neural implants with the recipient tissue
is a fundamental requirement for connectivity.

Global transcriptome analysis of grafted human SC-NES cells.
To analyze molecular differences between SC- and NCX-NES
cells associated with their radically different adaptation in the
lesioned SC, we performed a global RNA-sequencing (RNA-seq)
analysis of tissue from both SC- and NCX-NES grafts. In order to
segregate intrinsic from extrinsic factors contributing to graft
integration, differentially expressed (DEX) genes were also com-
pared to the transcriptional profile of SC- and NCX-NES cells
in vitro before and after neural differentiation (Fig. 7a). Principal
component analysis (PCA) of SC- and NCX-NES cells confirmed
a clear separation of groups (Fig. 7b). In particular, we identified a
first principal component (PC1) segregating in vitro from in vivo
samples, whereas a third principal component (PC3) separates
samples based on anatomical derivation (Supplementary Fig. 6a-
b). Gene-ontology analysis showed that DEX genes upregulated
in SC-NES cell grafts belonged to the “neurogenesis” ontology
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Fig. 6 Regionally matched NES cell grafts integrate in the lesioned SC. a GFP immunostaining of human SC-NES cells grafts in the lesioned SC 8 weeks after
implantation. SC-NES cells integrate in the tissue and show a massive axonal elongation. b GFP immunostaining of human NCX-NES cell grafts. The cells
form tight clusters in the host SC with a poor axonal extension. € Quantification of GFP-positive axons per subject in SC- and NCX-NES cell transplants. The
plot indicates the number of axons at 250 and 500 um from the caudal graft-host interface. d Quantification of SC- and NCX-NES cell graft areas. e, f GFP
and GFAP staining of SC- and NCX-NES cell grafts at the injection site showing a larger extension of SC-NES cell grafts in the host tissue. g, h Grafted NCX-
NES cells are negative for the pan-neuronal markers RBFOX3 and TUBB3. i Hindlimb locomotion: BMS scores of NCX-NES cell recipient animals (n=9)
and control animals (n =14) suggesting a lack of functional recovery in treated animals. j Spared tissue quantification in control and NCX-NES cell grafted
mice. The histogram shows that the extent of the lesion in both groups is not statistically different. k, I GFP and human nuclei (HuNu) immunostaining of
NCX-NES cells implanted in the motor cortex of immunodeficient mice two months after surgery. m Rostro (R)-caudal (C) spread and graft extension in
the coronal plane two months after engraftment of SC- and NCX-NES cells into the motor cortex of adult immunodeficient mice. Data are expressed as
mean £s.e.m (*P<0.05; ***P < 0.001; Student's t-test). Scale bars: a, b, 500 um; e, f, 200 um, g, h, k, I, 50 um
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Fig. 7 Global transcriptome analysis reveals SC-NES cell neuronal commitment after transplantation. a Schematics of the experimental procedure. SC- and
NCX-NES cell grafts were isolated from recipient mice 8 weeks after implantation. RNA-seq was performed to identify differentially expressed (DEX) genes
in the two samples. The expression level of DEX genes was eventually compared with in vitro samples: proliferating cells from both SC and NCX (SC-NES;
NCX-NES), and cells upon 8 weeks of differentiation (SC Neurons; NCX Neurons). b 3D plot of the principal component analysis (PCA) of SC- and NCX-
NES cells in proliferation (NES), after in vitro differentiation (neuron) or in vivo transplant for 8 weeks (graft). Each dot represents a sample. ¢ Box plot of
normalized gene expression for selected genes in SC- and NCX-NES cell grafts. The black bar within each box represents the median value. Vertical bars
indicate the maximum and minimum values. d Box plot of normalized gene expression of maturin (MTURN), caytaxin (ATCAY) and pleiotrophin (PTN)
genes across all SC ad NCX samples. The black bar within each box represents the median value. Vertical bars indicate the maximum and minimum value.
e-h Human MTURN (HMTURN) and GFP stainings of SC- and NCX-NES cells 8 weeks after engraftment. Samples derived from the SC express HMTURN
after grafting, whereas grafted NCX cells are HMTURN-negative. i- Human PTN (PTN) and GFP stainings confirming the expression of PTN in grafted SC-
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cluster (GO: 0007399; P value 1.3 x 10~2), supporting our his-
tological data reporting the in vivo neural differentiation of SC-
NES cells compared to undifferentiated NCX-NES cells. Among
the top 50 up-regulated genes in the SC-NES cell grafts were
genes related to neuronal maturation, such as maturin (MTURN)
30 and caytaxin (ATCAY)3!, as well as genes involved in axonal
elongation (pleiotrophin, PTN)3? and cell adhesion (anosmin,
KAL1)33. The maturation of SC-NES cells was also confirmed by
the up-regulation of synaptic genes SYT4 and SYT13, reinforcing
our observation of graft-host interaction (Fig. 7c). Differential
expression of SC- and NCX-positional genes, such as HOXB4 and
HOXBY9 or FOXGI and OTX2 respectively, confirmed the long-
term preservation of positional identity after transplantation
(Fig. 7¢).

Interestingly, while MTURN and ATCAY were upregulated by
in vitro NCX-NES cell-derived neurons, their expression was
strongly reduced in the grafts. On the other hand, the expression
of these genes was maintained by SC-NES cells during
engraftment, with no significant difference between SC-NES
cell-derived neurons and SC-NES cell grafts (Fig. 7d). PTN
expression was drastically reduced in NCX-NES cell grafts
compared to NCX-NES cell-derived neurons, with less reduction
observed in SC-NES cell grafts compared to the same cells after
in vitro neural differentiation (Fig. 7d). Finally, we validated our
transcriptome analysis with immunostainings for MTURN and
PTN. The cytosolic protein MTURN was visualized in the soma
and neurites of grafted SC-NES cells (Fig. 7e—f), whereas PTN was
secreted into the extracellular environment (Fig. 7i-j). Neither
protein was detected in the NCX-NES cell grafts (Fig. 7g-1).

To extract additional biologically relevant information, we
applied weighted gene co-expression correlation network analysis
(WGCNA) to identify gene modules with similar variation across
in vitro and in vivo samples and identified overall 23 modules
(Supplementary Fig. 7, Supplementary Data 1). We observed that
module 1 (M1) identifies genes upregulated in grafted cells from
both NCX and SC, suggesting that implantation itself impacts
NES cell transcriptional profile. Genes in M9 were upregulated in
grafted SC-NES cells and mostly related to synaptic signaling
(GO: 0099536; P value 4.48x10714), ion transmembrane
transport (GO: 0034220; P value 3.48 x 10710), neurogenesis
(GO; 0048666 P value 1.3x107°) and neuron projection
development (GO: 0031175; P value 4.43 x 10-%). Module MS,
on the other hand, clustered genes related to forebrain neuronal
differentiation, revealing that while NCX-NES cells have the
potential to differentiate, they fail to do so upon implantation into
SC.

Thus, global RNA profiling provides strong evidence for
selective integration into SC of human SC-NES cells as compared
to NCX-NES cells. The findings indicate that upregulation of
genes involved in neural precursor maturation, neurite extension,
and synapse formation plays a crucial role in graft integration,
and that host environment determines the transcriptional profile
of implanted cells. Therefore, SC-NES cell integration results
from both intrinsic and extrinsic factors, with an anatomical
match of grafted cells to recipient tissue being required for
successful SCI treatment.

Transplantation in a model of spinal cord contusion. To
explore the translational impact of our findings, we challenged
SC-derived NSCs with an allograft procedure in a clinically
relevant model of SCI. For this purpose, we derived NSCs from
the embryonic SC primordia of Sprague Dawley rats (r-NSCs)
ubiquitously expressing the GFP reporter gene and transplanted
into rats with a contusion of thoracic SC. We used rats as reci-
pients since contusion is more controllable and reproducible in

larger species, and we administered cyclosporine A as immuno-
suppressant in place of genetic immunodeficiency. Anatomical
analysis 2 months after engraftment confirmed that r-NSCs
successfully survived in host SC, filled the contusion cavity and
elongated bilaterally many GFP-positive axons, most of which
were myelinated by host oligodendrocytes (Supplementary
Fig. 8a-d). No graft rifts were observed. Functional analysis by
Basso Beattie and Bresnahan (BBB) test’* revealed improved
motor performance in the transplanted group as compared to
control rats, which reached significance at 7 and 8 weeks post-
graft (Supplementary Fig. 8e). These results confirmed that SC-
derived NSCs yield benefit in a clinically relevant SCI model.

Discussion

In this study, we report the derivation and characterization of
human SC-NES cells as candidates for cell-based therapy in SCI
treatment. Previous investigations on SC-derived NSCs were
limited to the application of one single fetal cell line (566RSC)>7
or to fetal NSCs cultured as neurospheres with the consequent
reduction of the neurogenic potential®>. Here we show that SC-
NES cells can be successfully derived from human SC primordia
and can be cultured long-term in adhesion without genetic
immortalization. Further, we demonstrate that human SC-NES
cells are highly expandable and retain over time intact karyotype
and neurogenic capacity. In vitro experiments confirm that SC-
NES cells are immunopositive for canonical NSC markers and
can be efficiently differentiated toward the neuronal and glial fate.
Importantly, SC-NES cells retain their regional commitment after
propagation as demonstrated by the expression of specific tran-
scription factors and the neurochemical identity of neural
progeny>>30,

When transplanted into injured SC, SC-NES cells exhibit
excellent integration properties: they differentiate into neurons
and extend long-distance axons reaching the rostral and caudal
extremities of the recipient SC. Previous work has emphasized the
importance of mechanical and trophic support to guarantee cell
survival and neurite extension from grafted cells’!!. Human SC-
NES cells, on the other hand, are intrinsically prone to elongate
long distance axonal connections with no need of growth factor-
enriched matrices. We also observed that SC-NES cells produce
an amelioration of locomotor deficits and that the extent of the
functional improvement depends on lesion severity. The infil-
tration of collagen and the subsequent formation of an imper-
vious fissure within some grafts may have attenuated the
behavioral outcome. However, the formation of a rift could be
due to the hemisection surgical procedure which inevitably
compromises meningeal integrity. In fact, no rifts were observed
in the SC contusion experiment where dura mater was left intact.
However, since contusion is the most common type of clinical
SCI lesion, the formation of the rift may not be a limiting factor
for potential clinical applications.

The relevance of graft rostro-caudal origin has not been sys-
tematically explored with human cell sources, though brain pre-
cursor transplantation has been described”>38, For rodent neural
precursor transplantation, there has been a direct comparison of
cells established from SC versus hindbrain versus telencephalon®
and substantially greater host CST growth was observed with SC-
matched transplants. However, the relative degree of engraftment
for different source cells, and the converse engraftment of dif-
ferent source cells into NCX have not been reported previously.
Here, in order to assess whether the engraftment potential of SC-
NES cells is correlated to their anatomical derivation, we chal-
lenged NCX-NES cells with an identical experimental paradigm.
Interestingly, we found that NCX-NES cells aggregate, forming
dense clusters in the SC with a remarkably poor graft neurite
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extension. On the other hand, when placed into NCX, they dis-
tribute widely and elongate branched projections suggestive of
efficient integration. Thus, matching NES cell sources to
engraftment site is essential not only for host CST axon growth
into the graft, but also for human neuron engraftment per se, and
most critically for graft axon extension.

To investigate the molecular mechanism responsible for the
striking difference in the engraftment properties of SC- and
NCX-NES cells, we performed global transcriptional investiga-
tion of implanted cells. Grafted SC-NES cells upregulate genes
related to neuronal maturation (MTURN, ATCAY), cell adhe-
sion (KALI), axonal elongation (PTN), and synapse establish-
ment (SYT13, SYT4). These six genes could be considered as
positive markers of engraftment in order to delineate the
molecular signature of cell populations suitable to achieve a
successful integration. Moreover, release of secreted PTN into
cerebrospinal fluid may provide an engraftment biomarker
monitored by lumbar puncture during future transplantation
studies. Two negative markers of engraftment have also been
proposed by Ladewig and colleagues®® who found that the
secretion of FGF2 and VEGF by implanted neural progenitors
impairs the integration in the tissue through chemoattraction.
Additional studies may determine whether these markers could
be used to screen cell populations before their implantation,
thereby optimizing the experimental procedure and facilitating
clinical transition. Such biomarkers may be especially relevant in
the development of novel differentiation protocols from patient-
derived pluripotent stem cells in order to enhance their inte-
gration potential and maximize their potential benefit.

The beneficial effect of NSCs in rewiring the lesioned SC occurs
through a range of mechanisms including growth factor secre-
tion0-42, severed axon myelination#3, and enhancement of sev-
ered axon regenerationb®!!. Grafted cells can provide a scaffold
for severed axons to regenerate, and descending fibers from the
CST, rubrospinal or raphespinal tracts have been observed to
enter the graft!®!l. However, the extent of axonal regeneration
beyond the lesion is much reduced if not completely absent, and
it is unlikely to support a functional benefit. It has also been
proposed that NSCs can form relay circuits in the injured SC
which are comparable to those formed by propriospinal circuits
after incomplete SCI*4~47, One key aspect of a relay system is that
injured axons do not need to regenerate long distances and the
onus for axon growth is placed on the transplant-derived neu-
rons, which can be selected for their ability to extend long axons
in vivo. Nevertheless, no proof has been provided previously to
demonstrate a graft-mediated neural relay function. Using a
pharmaco-genetic approach to obtain a transient silencing of
implanted cells, we provide the first evidence that human SC-NES
cells establish a functional circuit in recipient SC. Interruption of
the circuit by the temporary silencing of SC-NES cell-derived
neurons resulted in loss of the functional benefit in three different
behavioral paradigms. Thus, SC-NES cells restore the disrupted
connectivity by forming an intermediate station between the
rostral and caudal segments of damaged SC.

The transition of human cell therapy to the clinic will likely
require more systematic investigations. While recent studies show
that human cell transplantation is possible in non-human pri-
mates?, practical issues remain to be addressed. For instance,
further studies are needed to understand guidance of extending
axons to appropriate targets and to determine what effect newly
generated circuits may have for autonomic and sensory function.

Our investigation of human NES cells provides tools to
understand the molecular features necessary to achieve successful
engraftment in terms of both efficient cell integration and host
axonal growth. Having the means in hand to delineate the tran-
scriptional profile of human cells with a high engraftment

potential provides an important instrument for future develop-
ment in the field.

Methods

Human tissue procurement. All work was performed according to the NIH
guidelines for the acquisition and distribution of human tissue for bio-medical
research purposes and with the approval by the Human Investigation Committees
and Institutional Ethics Committees of each institute from which samples were
obtained. De-identified postmortem human brain and SC specimens were provided
by the Joint MRC/Wellcome Trust (grant #099175/7/12/Z) Human Developmental
Biology Resource (http://hdbr.org). Appropriate informed consent was obtained
and all available non-identifying information was recorded for each specimen.
Tissue was handled in accordance with ethical guidelines and regulations for the
research use of human brain tissue set forth by the NIH (http://bioethics.od.nih.
gov/humantissue.html) and the WMA Declaration of Helsinki (http://www.wma.
net/en/30pubblications/10policies/b3/index.html).

Human NES cell derivation. De-identified prenatal human samples were staged, as
previously described*. Human NES cells were derived from dorsal forebrain and
SC of six post-mortem specimens ranging from 5 to 8 PCW (Carnegie stages
15-23). After removal of all meninges, the NCX and SC tissues were dissected into
small fragments (~1 mm?) in cold PBS. Then, samples were collected by cen-
trifugation at 150 x g for 3 min. The pellets were incubated on ice for 15 min, gently
flicking every 2 min. Subsequently, samples were incubated with 0.05% trypsin
(Gibco, #25200056) at room temperature for 1-2 min and dissociated by pipetting
up and down every 30 s until a single cell suspension was obtained. Trypsin was
inactivated with PBS supplemented with 10% fetal bovine Serum (FBS, Invitrogen,
#16140-071) and cell suspension was centrifuged at 150 x g for 3 min. The cell
pellet was resuspended with NES medium prepared with DMEM/F12 (Gibco,
#PHGO0311) with the addition of B27 supplement (1:1000, Invitrogen, #175040-44),
N2 supplement (1:100 Gibco, #17502-048), 20 ng/ml FGF2 (Gibco, #13256-029),
20 ng/ml EGF (Gibco, #PHGO0311), 1,6 g/l glucose, 20 ug/ml insulin (Sigma,
#19278) and 5 ng/ml BDNF (R&D Systems Inc, #248-BD-01M). 10 uM Rock
Inhibitor (Y-27632, Stemgent, #04-0012) was added to increase cell viability. The
cells were then plated onto dishes coated with poly-L-ornithine (0.01%, Sigma,
#P4957), laminin (5 pug/ml, Invitrogen, #23017-015) and fibronectin (1 pg/ml,
Corning, #354008). Coated dishes were incubated for 1 h at 37 °C and rinsed three
times with distilled water prior to be used for cell culture. Medium was changed 12
h after plating and the cells were passaged using 0.25% trypsin within 3 days and
replated to obtain a monolayer of cells at a density of ~10° cells/cm?2. Half of the
media was changed every 2-3 days to allow culture conditioning. In the trans-
plantation studies, we used one male SC-NES cell line (HSB318) and one female
NCX-NES cell line (HSB325).

Maintenance and differentiation of NES cell lines. NES cells were kept in
proliferation in T25 flasks coated with poly-L-ornithine (0.01%), laminin (5 pg/ml)
and fibronectin (1 pg/ml). Cells were expanded in NES medium and reached
confluency (0.5-1 x 10° cells/cm?) in about 7 days. Cells were split 1:2 every

5-7 days with 0.25% trypsin. The expansion rate of the cells was constant over
time. Half volume of the medium was changed every 2-3 days. For cryopre-
servation, cells were trypsinized and ~2 x 10° cells were pelleted (200 x g for 3 min)
and resuspended in cryopreservation medium containing 10% DMSO and 90%
NES medium. For resuscitation, cells were rapidly thawed at 37 °C, resuspended in
pre-warmed culture media, centrifuged for 3 min at 200 x g, resuspended in NES
medium, and replated on coated plates. Neuronal differentiation of NES cells was
performed in two steps. For the pre-differentiation step NES cells were seeded at a
density of 0.5 x 10° cells/cm? in a T25 coated flask in NES medium without EGF
and FGF2. After 7 days, cells were dissociated and replated at a density of 0.8-1 x
10° cells/cm? in BrainPhys Medium (Stem Cell Technologies, Cambridge, MA,
#05790) supplemented with B27 (2%), N2 (1%) and BDNF (20 ng/ml). Half
volume of the medium was changed every 2-3 days and neurons were differ-
entiated up to 3 months.

Animals. Mice: 8-10 weeks old female NOD.Cg-Prkdcsid [12rg!™IWil/Sz] mice
(Jackson Laboratories) were used in the present study as NES cell recipients. Rats:
SD-Tg(CAG-EGFP)CZ-004 Osb rats were a generous gift from Dr. Jeffery Kocsis
(Yale University, Department of Neurology) and were used to derive GFP-positive
NSCs. At 10-11 weeks old female wild type Sprague Dawley rats were used as
recipients for rat NSCs grafts. All animals were housed on a 12 h light/12 h dark
cycle and had free access to food and water throughout the study. All experimental
procedures were performed in compliance with animal protocols approved by the
Institutional Animal Care and Use Committee at Yale University.

Karyotype analysis. Karyotype analysis was performed by core facility at the
Department of Genetics at the Yale School of Medicine. Briefly, the cells were
cultured in the presence of 0.1 pg/ml colcemid for up to 4h and then fixed.
Metaphase spreads were analyzed.
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Electrophysiology. Electrophysiological experiments were performed on differ-
entiated SC-NES cells infected with the hM4Di-mcherry lentiviral construct.
Recordings were performed at 21-23 °C using the whole-cell patch-clamp tech-
nique in voltage- and current-clamp configurations. Cells were continuously per-
fused with an extracellular solution composed by 125 mM NaCl, 2.5 mM KCl, 26
mM NaHCOj3, 15 mM glucose, 1.3 mM MgCl,, 2.3 mM CaCl,, 1.25 mM NaH,PO,
(bubbled with 95% O,, 5% CO,) and were visualized using an Axioskop FS2
microscope (Zeiss) equipped with epifluorescence and infrared differential inter-
face contrast (DIC) optic. An X-Cite 120LED lamp (Excelitas) and an appropriate
filter set were used to identify mcherry-positive cells. Pipettes were produced from
borosilicate glass capillary tubes (Sutter Instruments) by mean of a horizontal
puller (P-2000, Sutter instruments) and filled with the following intracellular
solution: 130 mM K-gluconate, 4 mM NaCl, 2 mM MgCI2, 1 mM EGTA, 5mM
creatine phosphate, 2 mM Na2ATP, 0.3 mM Na3GTP, 10 mM HEPES (pH 7.3 with
KOH). Membrane voltage was corrected off-line for a calculated liquid junction
potential of —10mV. Series resistance was always compensated by 70-80% and
monitored throughout the experiment. Clozapine-N-oxide [10 uM] (Sigma, St.
Louis, MO #C0832) was applied in the bath through perfusion. Recordings were
made with a MultiClamp 700B amplifier (Molecular Devices) and digitized with a
Digidata 1322 computer interface (Molecular Devices). Data were acquired at a
sampling frequency of 20 kHz and filtered at 10 kHz using the software Clampex
9.2 (Molecular Device). Software Clampfit 10.2 (Molecular Devices) and OriginPro
8 (Microcal) were used for data analysis.

Immunofluorescence. NES cells were washed with PBS and fixed with 4% for-
maldehyde for 10 min at RT. After three additional washes in PBS, cells were left in
blocking solution (PBS supplemented with 1% horse serum and 0.1% Triton) for 1
h at RT. Cells were incubated with primary antibodies o/n at 4 °C. Primary anti-
bodies were diluted as follows: Nestin (1:200 R&D systems #MAB1259); PAX6
(1:200 BD Bioscience #561462); phospho-vimentin (1:200 Abcam #ab22651);
SOX2 (1:400 Millipore #ab5603); vimentin (1:200 Abcam #ab16707); CHAT (1:500
Millipore #AB144P); Doublecortin (1:200 Cell Signaling #4604); GFAP (1:500
Sigma #G3893); RBFOX3 (1:500 Millipore #MAB377); TUBB3 (1:1000 Abcam
#ab107216); Neurofilament (1:200 Millipore #MAB1615); MAP2 (1:1000 Millipore
#AB5622); O4 (1:200 R&D systems #MAB1326) PSD95 (1:250 Thermo Fisher
Scientific #51-6900); Synaptophysin (1:500 Millipore #MAB329); K167 (1:500
Abcam #ab16667); HOXB9 (1:200 Abcam #ab66765). The following day, cells were
washed in PBS three times before being incubated with Alexa 568 or Alexa

488 secondary antibodies (1:500 Invitrogen) for 1 h at RT. The samples were finally
mounted using mounting medium (Life Technologies #P36935) containing DAPI.

Western blot. NES or HEK 293 cells were washed with PBS and harvested in
radioimmunoprecipitation assay (RIPA) buffer. WT or NgR1 KO mouse forebrain
were dissected and homogenized in RIPA buffer. The samples were then cen-
trifuged at 20,000 x g for 20 min. The lysate was resolved by SDS-PAGE, trans-
ferred to nitrocellulose membranes, immunoblotted with anti-B-actin (1:3000
Sigma-Aldrich, #A1978), and anti-NgR1 (1:1000 R&D Systems, AF1440) primary
antibodies o/n at 4 °C. After primary antibody incubation, secondary antibodies
(Odyssey IRDye 680 or 800) were applied for 1 h at room temperature. Membranes
were then washed and visualized using a Licor Odyssey Infrared imaging system.

Thoracic dorsal hemisection surgery. Mice were first anesthetized with 4% iso-
fluorane and maintained with 2% isofluorane throughout the whole procedure. A
laminectomy was performed to expose the dorsal portion of the SC corresponding
to the T8 and T9 levels. The dorsal hemisection was performed at the T8 level with
a pair of microscissors to a depth of 1.1 mm to completely sever the dorsal and
dorsolateral CST. The lateral portions of the SC were scraped with a 30 gauge
needle to ensure the completeness of the lesion. Muscle and skin overlying the
lesion were sutured with 4.0 vicryl. All animals received subcutaneous injection of
100 mg kg~! ampicillin and 0.1 mgkg~! buprenorphine twice a day for the first
two days after surgery. Bladders of injured animals were expressed manually on a
daily basis throughout the whole experiment.

SC contusion surgery. Female Sprague-Dawley rats (10-11 weeks, 220-240 g)
were used in this study. Animals were anesthetized with intraperitoneal injection of
ketamine (60 mgkg~!) and xylazine (10 mgkg~!) mixture. A laminectomy was
conducted at the caudal portion of T6 and all of T7 spinal levels. A T7 severe
contusion injury (weight of 10 g, height of 50 mm) was produced with the MASCIS
impactor. After the spinal contusion, muscle and skin layers were sutured with 4.0
polyglactin. Bladders of injured animals were expressed manually twice a day
throughout the whole experiment.

Cell engraftement. Ten days after mouse dorsal hemisection surgery, lesioned
animals underwent a second procedure for NES cell implantation. Mice were
anesthetized with 4% isofluorane and maintained anesthetized with 2% isofluorane
until the procedure was completed. The original incision was reopened and the SC
re-exposed. NES cells were resuspended in BrainPhys medium supplemented with
10 uM Rock Inhibitor and 20 ng/ml BDNF at a density of 250,000 cells/ul. NES
cells were kept on ice throughout the procedure. Two injections were performed on

the injury site, each delivering 1 pl of cell suspension at a distance of ~1 mm one
from the other. The injection was performed using a glass capillary attached to a
syringe (Hamilton, Reno, NV) and a micropump (Ultramicropump III, World
Precision Instruments, Sarasota, FL). The rate on the injection was 250 nl/min and
the capillary was left in place for two additional minutes before withdrawal.
Control animals underwent the same surgery and received a vehicle injection. At
the end of the procedure, the muscle and the skin were sutured with vicryl 4.0 and
animals received ampicillin 100 mg kg~! subcutaneous injection for 3 days. Ani-
mals survived 8 weeks before being sacrificed for the histological analysis.

Nine days after rat SC contusion, animals underwent surgery for NSCs
engraftment. Embryonic day 13.5 (E13.5) SC from transgenic SD-EGFP rats
provided donor tissue for grafting. Rat NSCs were resuspended in a fibrin matrix
enriched with growth factors, as previously described!. Starting 24 hours before cell
transplantation and throughout the whole experiment rats were treated with
cyclosporine A (15 mgkg~!) as immunosuppressant drug administered i.p. on a
daily basis. The graft mixture (250,000 cells/ul) was microinjected into three sites
on the lesion delivering 3 ul per injection. Animal underwent functional testing for
up to 8 weeks and were sacrificed for the anatomical analysis through transcardial
perfusion with 4% formaldehyde.

For NCX transplantation, mice were anesthetized with 4% isofluorane as
previously described. A craniotomy was performed using a micromotor system
(Foredom, Bethel, CT) exposing the motor cortex. The cortex was damaged by
aspiration of a portion 1x 1 mm?. A volume of 1 pl of NES cell suspension
(250,000 cells/ul) was injected onto the damaged area using a glass capillary
attached to syringe (Hamilton, Reno, NV) and a micropump (World Precision
Instruments, Sarasota, FL). Animals were kept for 8 weeks before being sacrificed
for histological analysis.

Anterograde labeling of the CST. Six weeks after injury, descending CST fibers of
grafted mice were labeled with BDA (0.1 g/ml in sterile normal saline, Thermo-
Fisher Scientific # D1956) by injection into five spots of the right motor cortex. The
skulls of anesthetized mice were tightly fixed to a stereotaxic apparatus (Kopf,
Tujunga, CA). Craniotomy over the motor cortex area was carried out using a
micromotor system (Foredom, Bethel, CT). The injection area on the right hemi-
sphere was defined in a rectangle with one side measuring 2 mm (from 1.0 mm
anterior to —1.0 mm posterior to the bregma) and one side measuring 1.5 mm
(lateral to the bregma). Injections were performed using a glass capillary attached to
a microsyringe (Hamilton, Reno, NV) at a 0.7 mm depth. Each injection delivered
751l of BDA solution into the motor cortex at a rate of 75 nl/min. The tip of the
glass capillary was left in place for two additional minutes before withdrawal. Two
weeks later, the animals were sacrificed by transcardial perfusion with PBS followed
by 4% formaldehyde. To visualize the BDA, a tyramide signal amplification fluor-
escence system (Perkin Elmer, Waltham, MA) was used.

Immunohistochemistry. After perfusion tissues were removed, post-fixed over-
night in 4% formaldehyde at 4 °C, and cryoprotected in 30% sucrose (Sigma-
Aldrich, St. Louis, MO) until they sank before being sectioned on a Leica cryostat.
SC sections were cut horizontally at a thickness of 30 um. Brain sections were cut
sagitally at a thickness of 40 um. Sections were washed three times in PBS between
each step in the immunodetection protocol. For detection of the antigens with
fluorescent antibodies, the protocol was performed as follows: sections were left in
blocking solution (PBS supplemented with 1% horse serum and 0.1% Triton) for 1
h at RT and then incubated overnight at 4 °C with primary antibodies diluted in
blocking solution. Primary antibodies were diluted as follows: APC (1: 200 Milli-
pore #OP80); active (cleaved) Caspase 3 (1:150 Millipore #AB3623); CHAT (1:500
Millipore #AB144P); Collagen type IV (1:500 Biogenex #AM379-10M); Dou-
blecortin (1:200 Cell Signaling #4604); GAD1 (1:250 R&D systems #AF2086); GFP
(1:1000 Life Technologies #A11122 or SantaCruz Biotechnologies #sc-9996); GFAP
(1:500 Sigma #G3893); HOXBY (1:200 Abcam #ab66765); Human GFAP (1:1000
Takara #Y40420); Human Neurofilament (gift from Dr. Virginia Lee and Dr. John
Trojanowski, University of Pennsylvania, used undiluted); Human Nuclei (1:200
Millipore #MAB1881); Human NCAM (1:1000 SantaCruz Biotechnologies #sc-106
incubated at RT); Human Synaptophysin (1:1000 eBioscience #14-6525-82); KI67
(1:500 Abcam #ab16667); Nestin (1:200 R&D systems #MAB1259); Human
MTURN (1:1000 Thermo Fisher Scientific # PA5-56177); RBFOX3 (1:500 Milli-
pore #MAB377 or #ABN78); MAG (1:200 Millipore #MAB1567); Pleiotropin
(1:100 abcam #ab93685); SOX10 (1:250 Abcam #ab155279); Synaptophysin
(1:1000 Millipore #MAB329); TUBB3 (1:1000 Abcam #ab107216); Vglut2 (1:1000
Millipore #MAB5504); 5HT (1;10000 Immunostar #20080); Alexa 568-conjugated
streptavidin (1:500 Thermo Fisher Scientific #511226) to label BDA traced CST
axons. The following day, sections were incubated for 1h at RT with appropriate
Alexa 488, Alexa 568 or Alexa 647 (1:500 Invitrogen) secondary antibodies. The
sections were finally covered with mounting medium (Life Technologies #P36935)
containing DAPI before being coverslipped. All images were acquired using a Carl
Zeiss LSM 710 confocal microscope. Image processing was performed using Zeiss
Zen, Adobe Photoshop and Ilustrator.

Quantification of cell types in the graft and axons. Cellular differentiation in the
grafts was determined by counting individual cells labeled for RBFOX3, GFAP,
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KI67, CHAT or caspase 3 in 8 randomly selected fields (4 sections per animal, 2
fields per section) and expressing them as a percentage of the total number of
human nuclei positive cells in the field. Cells were visualized using a Carl Zeiss
LSM 710 confocal microscope at a magnification of x63. The counting was per-
formed using the built-in plugin of the Image J program. The number of GFP
labeled human axons emerging from the graft was quantified using a Carl Zeiss
LSM 710 confocal microscope. For every 6th consecutive horizontal section, a
mediolateral line was drawn 250 and 500 um caudal to the graft/host interface
under a x40 magnification. The tissue was then examined under a x600 magni-
fication and GFP labeled axons that intersected this line were marked and counted.
To estimate the total number of axons/subjects, the number of axons counted on
sections was multiplied by 6. To visualize axons in the gray matter sections were
co-stained with RBFOX3 antibody.

Behavioral analysis. A total of 64 mice underwent SC mid-thoracic dorsal
hemisection studies in two batches. Forty-nine (49) mice underwent hemisection
injury and were tested for their locomotor ability using the Basso Mouse Scale
(BMS)26 7 days after lesion. Seven out of 49 mice were eliminated from further
study because of unsuccessful hemisection surgery, defined by BMS score higher
than 2 on day 7. The remaining 42 mice were randomized to receive vehicle
injection (14 mice), SC-NES cell injection (19 mice) or NCX-NES cell injection (9
mice) at 10 days after hemisection. These 42 animals were followed by BMS
behavioral test performed by two investigators blinded to the treatment for a total
of 8 weeks after cell implantation, then received BDA injection and were processed
for histological analysis. A post-hoc subgroup analysis of behavior in 25 (9 controls,
10 SC-NES and 6 NCX-NES cell recipients) out of 42 animals were used for spared
tissue assessment and correlation studies.

In a separate experiment, 15 mice underwent hemisection injury and received
SC injection of either hM4Di-expressing SC-NES cells (8 mice) or vehicle
injections (7 mice) 10 days after hemisection. Their behavior was assessed by BMS,
grid walking and footprint test with and without CNO administration 8 weeks after
transplantation. Grid walking and footprint analysis were performed for animals
able to walk, i.e. scoring at least 4 at the BMS test. For the footprint analysis
animals had water-based nontoxic paint placed on the plantar surfaces of all four
limbs (red on forelimbs and blue on hindlimbs) and were then run three times
along a 1 m long narrow corridor lined with absorbent paper. Stereotyped gait and
motor coordination parameters, including hindlimb stride length and hindlimb
base of support, were measured from three complete step cycles from the middle of
the runway. Animals were trained for one week in order to collect the baseline
scores. To validate the behavioral outcome upon silencing NES cells, animals were
given an i.p. injection of CNO, (1 mgkg~!%0) and were tested 30 min later. The
wash-out scores were collected 24 h later. For the grid-walking test mice were
placed on an elevated 45 x 45 cm metal grid with 2.5 x 2.5 cm square spacing
covered by a dark box to make the environment more comfortable for the animals.
Mice were videotaped via reflection from a mirror placed under the grid and
allowed to explore the grid for 3 min. Videos were scored for the percentage of
impaired steps out of the first 50 steps for each hindlimb individually. Impaired
steps included a foot slip where the limb fell between the rungs or an incorrectly
placed step where either the ankle or the tips of the digits were placed on the rung
instead of proper grasping of the rung. Similar to the footprint test, baselines scores
were collected after one week of training. The CNO effect was recorded 30 min
after i.p. administration, whereas the drug wash-out assessment was performed on
the following day.

Rats were evaluated using the BBB locomotor scale’* two days before cell
implantation and every week until killing.

Transcriptome analysis. For the transcriptome analysis each sample was handled
in triplicate. Total RNA was extracted using the RNeasy plus minikit (Quiagen,
#74134) according to manufacturer’s instruction. mRNA libraries were prepared
according to the TruSeq RNA Illumina kit protocol and sequenced using a HighSeq
2500 sequencing system (Illumina). The sequenced reads were clipped one
nucleotide in both ends, leaving 74 nucleotide long reads for sequence alignment to
human reference genome (GRCh38/hg38) by using the STAR software®!. Beyond
default parameters in the alignment procedure, human gene annotation retrieved
from the GENCODE project (version 21, http://www.gencodegenes.org/releases/21.
html) was additionally provided to improve exon-exon junction mapping. To
quantify accurately the origin of the genomic locus of short sequenced reads, only
the uniquely mapped reads were used for downstream analyses. FeatureCounts was
used to quantify expression profiles of each type of annotation entry retrieved from
GENCODE v21°2. Additional quality control measures were introduced to assess
potential issues including reads classification, mitochondrial contamination, and
gene coverage uniformity. R package DESeq2 was used to identify DEX genes®.
We generated two types of gene expression value, read counts and RPKM (reads
per kilobase of exon model per million mapped reads). The reads count per gene
served as the input for DESeq2. When performing the comparisons, DESeq2 first
gets the mean expression level as a joint estimate for both groups, and then cal-
culates the difference as well as the P value for the statistical significance of this
change. The adjusted P value was calculated based on multiple testing with the
Benjamini-Hochberg procedure, estimating the false discovery rate (FDR). To
detect statistically significant DEX genes, FDR was set to be minor than 0.01. The

gene ontology (GO) analysis was performed using The Database for Annotation,
Visualization and Integrated Discovery (DAVID) version 6.8.

Weighted gene correlation network analysis (WGCNA). The R WGCNA
package was used to find modules of highly correlated genes and characterize their
expression patterns®>. Genes expressed in at least 25% of samples were included for
the analysis. Prior to module detection, scale-free topology was calculated to
determine soft power, which was set at 6 and used to generate dissimilarity matrix.
Then, module clustering was process based on dissimilarity matrix with minimum
module size setting at 100. Detected modules were further merged together if they
have very low dissimilarity (threshold =0.2) and 23 modules were finally deter-
mined. To characterize the module expression pattern, we calculated the eigengene
of each module via moduleEigengenes function. Eigengene expression pattern was
shown using box plot.

Statistical analysis. For comparison between two groups two-tailed Student’s ¢-
test was used at a designated significance level of P < 0.05. Measurements taken at
different time points were compared using the repeated measures one-way
ANOVA. Analyses were conducted using Excel and SPSS. For the electro-
physiology experiments, statistical significance was determined by one-sample
Student’s t-test. All data are presented as mean + s.e.m. The statistical details of the
experiments can also be found in the figure legends. No statistical methods were
used to calculate sample size estimates. No animal exclusions were made except for
the subgroup specified in Fig. 5d. Animals were allocated to injection groups in
alternating order by an observer unaware of treatment. All behavioral and histo-
logical analyses were conducted without knowledge of treatment group.

Data availability. All relevant data that support our experimental findings are
available from the authors. Supporting RNA-sequencing data are available on
NCBI GEO (Gene Expression Omnibus), accession number GSE107514.
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