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Abstract. In this paper, we consider the isoperimetric problem in the space RN with a density.

Our result states that, if the density f is lower semi-continuous and converges to a limit a > 0

at infinity, with f ≤ a far from the origin, then isoperimetric sets exist for all volumes. Several

known results or counterexamples show that the present result is essentially sharp. The special

case of our result for radial and increasing densities positively answers a conjecture of Morgan

and Pratelli [13].

1. Introduction

In this paper we are interested in the isoperimetric problem with density. This means that

we are given a positive lower semi-continuous function f : RN → R+, usually called a “density”,

and we measure volume and perimeter of a generic subset E of RN as

|E|f := H N
f (E) =

∫
E
f(x) dH N , Pf (E) := H N−1

f (∂ME) =

∫
∂ME

f(x) dH N−1(x) ,

where the essential boundary of E (which coincides with the usual topological boundary when

E is regular) is defined as

∂ME =

®
x ∈ R : lim inf

r↘0

H N (E ∩Br(x))

ωNrN
< 1 and lim sup

r↘0

H N (E ∩Br(x))

ωNrN
> 0

´
,

Br(x) stands for the ball of radius r centered at x, and ωN is the euclidean volume of a ball

of radius 1. The isoperimetric problem with density then consists, as always, in minimizing

the perimeter among all the sets with a given volume. This generalization of the classical

isoperimetric problem, as well as many specific cases, has been extensively studied in recent

years and has many important applications. Without trying to describe precisely the history of

this problem, we limit ourselves to recalling its main steps. The idea of studying the isoperimetric

problem with a density first appeared in the paper [9], and it can be seen as a generalization of

the well-studied isoperimetric problem in a Riemannian manifold (see for instance [12]). Some

preliminary results, such as the regularity of isoperimetric sets, come from the classical regularity

papers of the 1970’s, recall for instance the fundamental contribution of Almgren [1, 2]. Several

authors have recently studied other aspects of the problem. For instance, the papers [14, 4]

consider the general problem, its main properties and some open questions. The papers [3, 8]

study some of the isoperimetric properties of spheres: this means that, in some particular cases,

balls are isoperimetric sets. An important example of these properties is the celebrated “log-

convex density conjecture”, see [11], which has been studied by several authors and finally
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positively answered by Chambers in [5]. Finally, the most recent general results about the

existence of isoperimetric sets are in [13], while those about the regularity are in [6, 7].

In this paper we will consider the most basic question in this setting, which is of course the

existence of isoperimetric sets, i.e. sets E with the property that Pf (E) = J(|E|f ) where, for

any V ≥ 0,

J(V ) := inf
¶
Pf (F ) : |F |f = V

©
.

Depending on the assumptions on f , the answer to this question can either be trivial or extremely

complicated.

Let us start with a very simple, yet fundamental, observation. Fix a volume V > 0 and

let {Ei} be an isoperimetric sequence of volume V : this means that |Ei|f = V for every i ∈ N,

and Pf (Ei) → J(V ). Thus, possibly up to a subsequence, the sets Ei converge to some set

E in the L1
loc sense. As a consequence, standard lower semi-continuity results in BV ensure

that Pf (E) ≤ lim inf Pf (Ei) = J(V ); therefore, if actually |E|f = V , then obviously E is an

isoperimetric set. Unfortunately, this simple observation is not sufficient, in general, to show the

existence of isoperimetric sets, because there is no general reason why the volume of E should

be exactly V (while it is obviously at most V ). In fact, volume can disappear at infinity.

A second remark is the following: if the weighted volume of the whole space RN is finite,

then in the argument above it becomes obvious that |E|f = V . In other words, the mass cannot

vanish to infinity. Hence, in this case isoperimetric sets exist for all volumes.

Let us then consider the more interesting problem when f 6∈ L1(RN ). In this case, by

the different scaling properties of volume and perimeter, roughly speaking we can say that

“isoperimetric sets like small density”. Let us be somewhat more precise: one can immediately

check that, if two different balls B1 and B2 lie in two regions where the density is constantly

d1 resp. d2, and if |B1|f = |B2|f , then Pf (B1) < Pf (B2) when d1 < d2. More generally, all the

simplest examples show that isoperimetric sets tend to prefer the zones where density is lower,

and it is very reasonable to expect that this behaviour is commen. Of course, this argument

does not predict anything in situations where the density varies quickly (for instance, it would

be very convenient for a set to lie where the density is large if at the same time the boundary

stays where the density is small!), but nevertheless having this “general rule” in mind may help

a lot.

With the aid of the above observations, let us now return to the question of the existence

of isoperimetric sets. First of all, let us consider the case when the density converges to 0

at infinity. In this case, following the argument above one should expect that isoperimetric

sequences diverge at infinity, to reach the zones with lowest density, and that the isoperimetric

function J is identically 0, so that no isoperimetric set exists. A formal proof of this fact is

quite easy in specific cases, for instance when the density goes to 0 as a polynomial, or as an

exponential. The general proof is currently a work in progress.

On the contrary, if the density f blows up at infinity, one may expect isoperimetric sets to

exist, because isoperimetric sequences should remain bounded to avoid zones where the density

is high, so there would be no loss of mass at infinity. A complete answer to this issue has already
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been given in [13]: if the density is also radial, then isoperimetric sets exist for every volume,

as expected (Theorem 3.3 in [13]), but if the density is not radial, then existence might fail

(Proposition 5.3 in [13]), contrary to intuition.

Let us move on and consider the case when the density, at infinity, is neither converging to

0 nor diverging. Again, it is very simple to observe that existence generally fails if the density

is decreasing, at least definitively. Similarly, it is easy to build examples of both existence and

non-existence for oscillating densities (that is, densities for which the lim inf and the lim sup, at

infinity, are different). Summarizing, with regard to the existence problem, the only interesting

case left is when the density has a finite limit at infinity and it is converging to that limit from

below. This leads us to the following definition.

Definition 1.1. We say that the l.s.c. function f : RN → R is converging from below if there

exists 0 < a < +∞ such that f(x)→ a when |x| → ∞, and f(x) ≤ a for |x| large enough.

Basically, the observations above mean that, for functions f which are not converging den-

sities, there is in general no interesting open question about the issue of existence. Indeed, as

explained above, in each of these cases it is already known whether isoperimetric sets exist for

all volumes or not. Conversely, for some special cases of densities converging from below, the ex-

istence problem has already been discussed. In particular, combining the results of [13] and [6],

the existence of isoperimetric sets follows for densities which are continuous and converging from

below and which satisfy some technical assumptions. For instance it is enough that f is super-

harmonic, or that f is radial and for every c > 0 there is some R� 1 for which f(R) ≤ a−e−cR.

Moreover, in [13] it was conjectured that isoperimetric sets exist for all volumes if the density is

radial and increasing.

In this paper we are able to prove the existence for any density converging from below (this

is even stronger than the above-mentioned conjecture). As explained above, this result is sharp.

Theorem 1.2. Let f ∈ L1
loc(RN ) be a density converging from below. Then isoperimetric sets

exist for every volume.

Let us conclude the introduction with a quick description of our main argument. The

starting point is the following idea, taken from [13]. Let us consider an isoperimetric sequence

{Ei}, converging in L1
loc to some set E. As explained above, if |E|f = V then E is already

an isoperimetric set, thus there is nothing to prove. Otherwise, one can easily notice (see

Lemma 2.1) that J(V ) equals the perimeter of E plus the perimeter of a “ball at infinity”, that

is, the perimeter that a ball of volume V − |E|f has in the space RN with constant density a.

As a consequence, one is led to looking for a set behaving better than a ball at infinity; in other

words, one aims at finding a set F with volume V − |E|f and with perimeter smaller than the

one of a ball at infinity. This last property can be equivalently expressed by saying that the

“mean density” of F is smaller than a, see Definition 3.1. If such a set F exists, and it does not

intersect E, then E ∪F is clearly isoperimetric, and we are done. Moreover, since one can show

that the set E is bounded (see Lemma 2.3), then the non-intersection with the (a priori not

known) set E is automatic if F is far enough from the origin. Summarizing, the whole problem
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has been easily reduced to finding a set, arbitrarily far from the origin, with a given volume and

mean density smaller than a. By making use of this observation, the existence of isoperimetric

sets was already proved in some particular cases in [13]. More precisely, the authors of that

paper observed that the needed existence of a set F with mean density smaller than a follows

under some technical assumptions, such as the rate of convergence of f at a at infinity, or the

superharmonicity of f , or other specific cases.

In the present paper, we are able to show the existence of such a set F with no additional

assumptions, thus getting the sharp Theorem 1.2. To obtain our result, we start with the same

idea as above, but we drastically change strategy. Roughly speaking the additional assumptions

used in [13] ensured that every ball far from the origin has mean density smaller than a, while

it is enough to find only a single set –and not necessarily a ball– with this property. Since f

is converging to a from below, it is reasonable to expect that the mean density of a generic

ball far from the origin should be smaller than a. This is not necessarily true for a randomly

taken ball; however, we show that it is impossible that this is false for every ball, because

otherwise an averaging argument would give a contradiction with the fact that f is converging

from below to a. Hence, we have found a ball with mean density smaller than a far from the

origin. Unfortunately, this is only the first big step of the proof, still not enough to conclude.

Indeed, keep in mind that we need to find a set with mean density smaller than a and given

volume, while with our averaging argument we are able to consider balls with given radius. As

a consequence, the second and last big step of the proof, which is actually more delicate than

the first one, consists in deforming the balls found above. We are able to do this deformation

in such a way to adjust the volume, but without destroying the property of having the mean

density smaller than a. As explained above, this concludes the proof.

2. General results about isoperimetric sets

In this section we present some general lemmas about the existence and the boundedness of

isoperimetric sets.

As already briefly described in the Introduction, let us fix some V > 0 and an isoperimetric

sequence of volume V , that is, a sequence of sets Ej ⊆ RN such that |Ej |f = V for any j,

and Pf (Ej) → J(V ) for j → ∞. As already observed, if (a subsequence of) {Ej} converges in

L1
loc to a set E, then by lower semicontinuity Pf (E) ≤ J(V ), and |E|f ≤ V ; thus, the set E

is automatically isoperimetric of volume V if |E|f = V . However, it is always true that E is

isoperimetric for its own volume. We stress that this fact is widely known, but we prefer to give

the proof fo the sake of completeness, and also because in the literature we could not find any

proof which works in such a generality. After this lemma, we will show that if there was loss of

mass at infinity (that is, if |E|f < V ), then E is necessarily bounded.

Lemma 2.1. Assume that f ∈ L1
loc(RN ) and that f is locally bounded from above far enough

from the origin. Let {Ej} be an isoperimetric sequence of volume V converging in L1
loc to some

set E. Then E is an isoperimetric set for the volume |E|f . If in addition f is converging to
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some a > 0, then

J(V ) = Pf (E) +N(ωNa)
1
N (V − |E|f )

N−1
N . (2.1)

Proof. Let us start by proving that E is isoperimetric. As we already observed, Pf (E) ≤ J(V )

and |E|f ≤ V ; as a consequence, if |E|f = V it is clear that E is isoperimetric, and on the

other hand if |E|f = 0 then the empty set E is still clearly isoperimetric for the volume 0. As a

consequence, we can assume without loss of generality that 0 < |E|f < V .

Suppose now that the claim is false, and let then F1 be a set satisfying

|F1|f = |E|f , η :=
Pf (E)− Pf (F1)

6
> 0 .

Choose now x ∈ RN being a point of density 1 in F1 and a Lebesgue point for f with f(x) > 0:

such a point exists, in particular H N
f -a.e. point of F1 can be taken. The assumptions on x

ensure that, for every radius r̄ small enough,

1

2
ωNf(x)r̄N ≤ |Br̄(x) ∩ F1|f ≤ |Br̄(x)|f ≤ 2ωNf(x)r̄N , (2.2)

and in turn this implies that there exist arbitrarily small radii r (not necessarily all those small

enough) such that

H N−1
f

Ä
∂Br(x)

ä
≤ 2NωNf(x)rN−1 . (2.3)

Indeed, if the last inequality were false for every 0 < r < r̄, then by integrating we would get

that (2.2) is false.

Similarly, let y be a point of density 0 for F1 which is a Lebesgue point for f with f(y) > 0

(the existence of such a point requires that f /∈ L1(RN ), and in turn this is surely true because

|E|f < V ). Since we can find such a point arbitrarily far from the origin (and far from x),

by assumption it is admissible to assume that f ≤ M in a small neighborhood of y. As a

consequence, there exists some radius ρ̄ > 0 such that, for every 0 < ρ < ρ̄,∣∣∣Bρ(y) \ F1

∣∣∣
f
≥ f(y)

2
ωNρ

N , H N−1
f

Ä
∂Bρ(y)

ä
≤MNωNρ

N−1 . (2.4)

Let us now fix a constant δ > 0 such that (possibly decreasing ρ̄)

δ < η ,
f(y)

2
ωN ρ̄

N > δ , MNωN ρ̄
N−1 < η . (2.5)

We claim the existence of some set F ⊆ RN and of a big constant R > 0 (in particular, much

bigger than both |x| and |y|) such that

F ⊆ BR , Pf (F ) < Pf (E)− 5η , 0 < δ′ := |E|f − |F |f <
δ

2
, (2.6)

writing for brevity BR = BR(0). To show this, it is useful to consider two possible cases. If

F1 is bounded, we define F = F1 \ Br(x) for some r very small such that both (2.2) and (2.3)

hold true. Then the inclusion F ⊆ BR is true for every R big enough, and the two inequalities

in (2.6) immediately follow by (2.2), (2.3) and the definition of η as soon as r is sufficiently

small. Otherwise, if F1 is not bounded, then we define F = F1 ∩ BR for a big constant R: of

course the inclusion F ⊆ BR is automatically satisfied, and the inequality about δ′ is also true
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for every R big enough, say R > R0. Concerning the inequality on Pf (F ), if it were false for

every R > R0, then for every R > R0 it would be

H N−1
f

Ä
F1 ∩ ∂BR

ä
≥ η ,

and then by integrating we would get

V > |F1|f ≥ |F1 \BR0 |f =

∫ +∞

R0

H N−1
f

Ä
F1 ∩ ∂BR

ä
= +∞ .

The contradiction shows the existence of some suitable R, thus the existence of F satisfying (2.6)

is proved.

We can now select some R′ > R such that

|E \BR′ |f <
δ′

2
, H N−1

f (∂E ∩BR′) > Pf (E)− η . (2.7)

Since Ej ∩BR′ (resp., Ej ∩BR′+1) converges in the L1 sense to E ∩BR′ (resp., E ∩BR′+1), for

every j big enough we have

|E|f − δ′ < |Ej ∩BR′ |f ≤ |Ej ∩BR′+1|f < |E|f + δ′ , (2.8)

H N−1
f (∂E ∩BR′) ≤H N−1

f (∂Ej ∩BR′) + η . (2.9)

Arguing as above, by (2.8) we have

δ > 2δ′ ≥
∣∣∣∣Ej ∩ ÄBR′+1 \BR′

ä∣∣∣∣
f

=

∫ R′+1

R′
H N−1

f (Ej ∩ ∂Bt) dt ,

so we can find some Rj ∈ (R′, R′ + 1) such that, also recalling (2.5),

H N−1
f (Ej ∩ ∂BRj ) < δ < η . (2.10)

Observe that, since |Ej | = V by definition, (2.8) implies

V − |E|f − δ′ < |Ej \BRj |f < V − |E|f + δ′ .

As a consequence, calling Gj = F ∪
Ä
Ej \ BRj

ä
and also recalling (2.6), (2.7), (2.9) and (2.10),

we can estimate the volume of Gj by

|Gj |f = |F |f + |Ej \BRj |f = |E|f − δ′ + |Ej \BRj |f ∈ (V − δ, V ) , (2.11)

and the perimeter of Gj by

Pf (Gj) = Pf (F ) + Pf (Ej \BRj )

< Pf (E)− 5η + H N−1
f (∂Ej \BRj ) + H N−1

f (Ej ∩ ∂BRj )

< H N−1
f (∂E ∩BR′) + H N−1

f (∂Ej \BRj )− 3η ≤ Pf (Ej)− 2η .

(2.12)

Finally, we define the competitor ‹Ej = Gj ∪ Bρj (y), where ρj < ρ̄ is the constant such that

|‹Ej |f = V –this is possible by (2.11), (2.4), and (2.5). Applying then again (2.4) and (2.5),

from (2.12) we deduce

Pf (‹Ej) < Pf (Ej)− η

for every j big enough, and this gives the desired contradiction with the fact that the sequence

Ej was isoperimetric. This finally shows that E is an isoperimetric set for the volume |E|f .
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We now move to the second part of the proof, namely, we assume that f is converging to

some a > 0 (not necessarily from below), and we aim to prove (2.1). Notice that we can assume

without loss of generality that |E|f < V , because otherwise (2.1) would be a direct consequence

of the fact that E is isoperimetric.

Arguing as in the first part of the proof, for every ε > 0 we can find a very big R such that,

calling F = E ∩BR, it is

|F |f ≥ |E|f − ε , Pf (F ) ≤ Pf (E) + ε .

Let then B a ball with volume |B|f = V − |F |f : if we take this ball far enough from the origin,

then B ∩ F = ∅, thus |G|f = V , where G = F ∪B. Moreover, again taking the ball far enough,

we have a− ε ≤ f ≤ a+ ε on the whole B. As a consequence, calling r the radius of B, we have

V − |E|f + ε ≥ V − |F |f = |B|f ≥ (a− ε)ωNrN ,

from which we get

J(V ) ≤ Pf (G) = Pf (F ) + Pf (B) ≤ Pf (E) + ε+ (a+ ε)NωNr
N−1

≤ Pf (E) + ε+
a+ ε

(a− ε)
N−1
N

Nω
1
N
N

(
V − |E|f + ε

)N−1
N

,

which in turn implies an inequality in (2.1) by letting ε→ 0.

To show the other inequality, consider again the isoperimetric sequence {Ej}; for any given

ε > 0, exactly as in the first part we can find an arbitrarily big R so that a− ε ≤ f ≤ a+ ε out

of BR and

|E ∩BR|f ≥ |E|f − ε , Pf (E \BR) ≤ ε .

For every j � 1, then, we can find some Rj ∈ (R,R+ 1) so that

|Ej ∩BRj |f ≤ |E|f + ε , H N−1
f (Ej ∩ ∂BRj ) ≤ 2ε , Pf (E) ≤ Pf (Ej ∩BRj ) + 2ε .

Since a− ε ≤ f ≤ a+ ε out of BR we deduce, using the Euclidean isoperimetric inequality,

Pf (Ej \BRj ) ≥ (a− ε)Peucl(Ej \BRj ) ≥ (a− ε)Nω
1
N
N |Ej \BRj |

N−1
N

eucl

≥ a− ε
(a+ ε)

N−1
N

Nω
1
N
N |Ej \BRj |

N−1
N

f ≥ a− ε
(a+ ε)

N−1
N

Nω
1
N
N

(
V − |E|f − ε

)N−1
N

,

which in turn gives

Pf (Ej) = Pf (Ej ∩BRj ) + Pf (Ej \BRj )− 2H N−1
f (Ej ∩ ∂BRj )

≥ Pf (E)− 6ε+
a− ε

(a+ ε)
N−1
N

Nω
1
N
N

(
V − |E|f − ε

)N−1
N

.

Since Pf (Ej)→ J(V ) for j →∞, sending ε→ 0 in the last estimate yields the second inequality

for (2.1), thus the proof is concluded. �

Remark 2.2. Actually, the claim of Lemma 2.1 can be proved even with weaker assumptions.

More precisely, one could apply the results of [6] to extend the validity to the more general case

when f is “essentially bounded” in the sense of [6].
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The second result that we present is a clever observation, which we owe to Frank Morgan.

It shows that whenever a density converges to a limit a > 0 (not necessarily from below),

then if an isoperimetric sequence is losing mass at infinity the remaining limiting set –which is

isoperimetric thanks to Lemma 2.1– is bounded.

Lemma 2.3. ([10, Lemma 13.6]). Let the density f converge to some a > 0, and let the

isoperimetric sequence {Ej} of volume V converge in L1
loc to a set E with |E|f < V . Then E is

bounded.

Proof. Assume that |E|f < V . Then for every t > 0 define

m(t) = |E \Bt|f =

∫ ∞
t

H N−1
f (E ∩ ∂Bσ) dσ .

For every t, we can select a ball B of volume V − |E|f +m(t) far away from the origin, in order

to have no intersection with E ∩ Bt; thus, the set (E ∩ Bt) ∪ B has precisely volume V , hence

J(V ) ≤ Pf (E ∩ Bt) + Pf (B). Since the ball B can be taken arbitrarily far from the origin,

thus in a region where f is arbitrarily close to a, exactly as in the second part of the proof of

Lemma 2.1 we deduce

J(V ) ≤ Pf (E ∩Bt) +N(aωN )
1
N

Ä
V − |E|f +m(t)

äN−1
N .

Recalling that |E|f < V and comparing the last inequality with (2.1), we obtain

Pf (E) ≤ Pf (E ∩Bt) + Cm(t)

for some strictly positive constant C. Notice now that

Pf (E) = Pf (E ∩Bt) + Pf (E \Bt)− 2H N−1
f (E ∩ ∂Bt) = Pf (E ∩Bt) + Pf (E \Bt) + 2m′(t) ,

and in turn by the (Euclidean) isoperimetric inequality if t� 1 we have

Pf (E \Bt) ≥ (a− ε)Peucl(E \Bt) ≥ (a− ε)Nω
1
N
N |E \Bt|

N−1
N

eucl ≥
a− ε

(a+ ε)
N−1
N

Nω
1
N
N m(t)

N−1
N .

Putting everything together, we get

Cm(t) ≥ 2m′(t) +
1

C1
m(t)

N−1
N

for some other constant C1 > 0. And in turn, if t � 1 then m(t) � 1, thus the last estimate

implies

m(t) ≤ C2

Ä
−m′(t)

ä N
N−1 .

Finally, it is well known that a positive decreasing function m which satisfies the above differ-

ential inequality vanishes in a finite time. Hence, m(t) = 0 for t big enough, and this means

precisely that E is bounded. �
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3. Proof of the main result

This section is devoted to showing the main result of the paper, namely, Theorem 1.2. The

overall idea is to take an isoperimetric sequence of volume V , and to consider a limiting set

E (up to a subsequence, this is always possible). If |E|f = V , then there is nothing to prove

because, as we already saw several times, the set E is already the desired isoperimetric set of

volume V . Instead, if |E|f < V , we know by Lemma 2.1 that E is an isoperimetric set for volume

|E|f , and by Lemma 2.3 that E is bounded. Moreover, formula (2.1) says that an isoperimetric

set of volume V can be found as the union of E and a “ball at infinity” with volume V − |E|f .

By “ball at infinity” we mean a hypothetical ball where the density is constantly a: such a ball

does not really exist, but a sequence of balls of correct volume which escape at infinity will have

a perimeter which converges to that of this “ball at infinity”. In other words, a sequence of sets

consisting of the union of E and a ball escaping at infinity is isoperimetric thanks to (2.1). Our

strategy is then simple: we look for a set B, far away from the origin, which is better than a ball

at infinity, in other words, which has the same volume and less perimeter than it. Since E is

bounded (this is a crucial point, coming from Lemma 2.3) the sets E and B have no intersection,

thus the union of E with B is isoperimetric. As one can see, the only thing that needs to be

done is to find a set of given volume, arbitrarily far from the origin, which is “better” than a

ball at infinity.

First of all, let us express in a useful way the property of being better than a ball at infinity,

by means of the following definition, first given in [13].

Definition 3.1. We say that the set E ⊆ RN of finite volume has mean density ρ if

Pf (E) = N(ωNρ)
1
N |E|

N−1
N

f .

The meaning of this definition is evident: ρ is the unique number such that, if we endow RN

with the constant density ρ, then balls of volume |E|f have perimeter Pf (E). The convenience

of this notion is also clear: being “better than a ball at infinity” simply means having mean

density less than a.

We can then continue our description of the proof of Theorem 1.2: as said above, one needs

only to find a set of volume V − |E|f arbitrarily far from the origin and having mean density

at most a. Since we want to find an isoperimetric set for any volume V , and we cannot know

a priori how big |E|f is, we need to find sets of mean density less than a of any volume and

arbitrarily far from the origin. Actually, by a trivial rescaling argument, we can assume that

a = 1 and search for a set of volume ωN . Since f is converging to 1 and we must work very

far from the origin, everything will be very close to the Euclidean case; hence a set of volume

ωN and mean density less than 1 (or, equivalently, with perimeter less than NωN ) must be

extremely close to a ball of radius 1. The first big step in our proof will then consist in finding

a ball of radius 1 arbitrarily far from the origin and with mean density less than 1.

Surprisingly enough, this will by no means conclude the proof, due to a seemingly minor

problem: since f converges to 1 from below, the ball of radius 1 that we have found does not

have exactly volume ωN , but a bit less. The further from the origin the ball is, the smaller this
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gap will be, yet still positive. Notice that at this point we cannot rely on a rescaling argument

again: we have already rescaled to the case of volume ωN , so another volume will not solve the

problem (in principle, it could be true that there are sets of mean density less than 1 only for

all the rational volumes, and for no irrational one. . . ). Hence, the second big step in our proof

will be to slightly modify the ball found in the first big step, in such a way that the volume

increases up to exactly ωN , while the mean density remains smaller than 1. At that point, the

proof will be concluded. We should mention that the proof of this second fact is more delicate

than the proof of the first!

Let us now state the claims of the two big steps with more precision, and then use them to

give the formal proof of Theorem 1.2 –which is more or less exactly what we have just described

informally. We will then conclude the paper with two sections, devoted to presenting the proof

of the two big claims.

Proposition 3.2. Let f be a density converging from below to 1, and set g = 1− f . Then for

every ε > 0 there exists a ball B with radius 1 and arbitrarily far from the origin such that

Pg(B) ≥ (N − ε)|B|g .

Proposition 3.3. Let f be a density converging from below to 1. Then there exists a set E with

volume ωN and mean density smaller than 1 arbitrarily far from the origin.

Proof of Theorem 1.2. Let {Ej} be an isoperimetric sequence of volume V , and let E be the L1
loc

limit of a suitable subsequence. If |E|f = V then the proof is already concluded. Otherwise,

we know that E is bounded by Lemma 2.3 and that (2.1) holds. Up to a rescaling, we can

assume that f converges from below to 1, and that V − |E|f = ωN . By Proposition 3.3 we can

find a set F not intersecting E with volume ωN and mean density less than 1, which means

Pf (F ) ≤ NωN . The set E ∪ F has then volume V , and by (2.1) we obtain P (E ∪ F ) ≤ J(V ),

which means that E ∪ F is an isoperimetric set. �

3.1. Proof of Proposition 3.2. This section is devoted to the proof of Proposition 3.2. Before

presenting it, it is convenient to prove a couple of technical lemmas.

Lemma 3.4. Let g : (0,∞)→ [0,∞) and α : (−1, 1)→ R be L1 functions such that

lim
t→∞

g(t) = 0 ,

∫ 1

−1
α(t) dt = 0 ,

∫ σ

−1
α(t) dt > 0 ∀σ ∈ (−1, 1) . (3.1)

Then there exists an arbitrarily large R such that∫ 1

−1
α(t)g(t+R) dt ≥ 0 ,

with strict inequality unless g(t) = 0 for all t big enough.

Proof. If the claim were false, then for every choice of R′, R′′ with R′′ ≥ R′ + 2 one has

0 >

∫ R′′

R′

∫ 1

−1
α(t)g(t+R) dt dR =

∫ R′+1

R′−1
g(s)

∫ s−R′

−1
α(t) dt ds+

∫ R′′+1

R′′−1
g(s)

∫ 1

s−R′′
α(t) dt ds

= A(R′) +B(R′′) ,
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where there is no integral over (R′+1, R′′−1) because it cancels thanks to (3.1). The conditions

on α and g also ensure that A(R′) ≥ 0 ≥ B(R′′) for every R′, R′′. Suppose now that for some

arbitrarily large R′ one has A(R′) > 0. We can then fix R′ and send R′′ →∞: since g → 0, we

get B(R′′)→ 0, and then there is some R′′ � 1 such that A(R′) +B(R′′) > 0, against the above

inequality. As a consequence, it must be that A(R′) = 0 for every R′ big enough, and in turn

this means that g is definitively zero, hence any R big enough satisfies the claim. �

Lemma 3.5. Let g : (0,∞) → [0,∞) and β : (−1, 1) → R be L1 functions such that g and

α(t) =
∫ t
−1 β(σ) dσ satisfy condition (3.1), and α(1) = 0. Then there exists an arbitrarily large

R such that ∫ 1

−1
β(t)g(t+R) dt ≥ 0 , (3.2)

with strict inequality unless g(t) = 0 for all t big enough.

Proof. The proof is analogous to the one of Lemma 3.4 above. Take R′ � 1 and assume that

the conclusion fails for every R ≥ R′; then for every R′′ > R′ + 2 we have

0 >

∫ R′′

R′

∫ 1

−1
β(t)g(t+R) dt dR =

∫ R′+1

R′−1
g(s)

∫ s−R′

−1
β(t) dt ds+

∫ R′′+1

R′′−1
g(s)

∫ 1

s−R′′
β(t) dt ds .

Exactly as before, since the last term in the right goes to 0 when R′′ →∞, we find a contradiction

as soon as the first term in the right is strictly positive. In other words, the proof is concluded

as soon as we find some R′ such that

0 <

∫ R′+1

R′−1
g(s)

∫ s−R′

−1
β(t) dt ds =

∫ R′+1

R′−1
g(s)α(s−R′) ds =

∫ 1

−1
α(t)g(t+R′) dt .

And in turn, the existence of such an R′ is ensured by Lemma 3.4 since α satisfies condition (3.1),

unless g is definitively zero. And in this latter case, of course any R big enough would satisfy

the required condition. �

We are now ready to prove Proposition 3.2.

Proof of Proposition 3.2. For simplicity, we split the proof in two steps: first we show that one

can always reduce to the case of a radial density, and then we prove the claim for this case.

Step I. Reduction to radial case.

Let us assume that the claim holds for any radial density, and let f be not necessarily radial.

Define then the density f̃ as the radial average of f , namely,

f̃(x) = −
∫
∂B|x|

f(y) dH N−1(y) . (3.3)

Of course, then g̃ = 1 − f̃ is also the radial average of g. Since the claim holds for the radial

density f̃ , for any ε > 0 we can find a ball B satisfying Pg̃(B) ≥ (N − ε)|B|g̃. Let us then call

Bθ, for θ ∈ SN−1, the ball having the same distance from the origin as B, and which is rotated

by an angle θ: all the different balls Bθ are equivalent for the density f̃ , but not for the original

density f . Observe now that by definition

Pg̃(B) = −
∫
SN−1

Pg(B
θ) dH N−1(θ) , |B|g̃ = −

∫
SN−1

|Bθ|g dH N−1(θ) ,
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and then of course there exists some θ ∈ SN−1 such that Pg(B
θ) ≥ (N − ε)|Bθ|g.

Step II. Proof of the radial case.

Thanks to Step I we can assume without loss of generality that f is radial. For a ball BR having

radius 1 and center at a distance R from the origin, we can then calculate perimeter and volume

by integrating over the radial layers, that is, we have

Pg(BR) =

∫ 1

−1
ϕR(t)g(t+R) dt , |BR|g =

∫ 1

−1
ψR(t)g(t+R) dt , (3.4)

where ϕR(t) and ψR(t) can be calculated by the Fubini Theorem and the co-area formula.

Actually, it is not important to write down the exact formula, while it is easy to observe that

(basically, since the layers become flat in the limit) the following uniform limits hold

ϕR(t)

ϕ̃(t)
−−−−→
R→∞

1 ,
ψR(t)

ψ̃(t)
−−−−→
R→∞

1 , (3.5)

the limit functions being simply

ϕ̃(t) = (N − 1)ωN−1(1− t2)
N−3

2 , ψ̃(t) = ωN−1(1− t2)
N−1

2 .

As a consequence, we can work with the approximated functions ϕ̃ and ψ̃ in place of ϕ and

ψ: more precisely, we call “approximated” perimeter and volume of BR the functions ‹Pg(BR)

and ‹Vg(B) obtained by substituting ϕ and ψ in (3.4) with ϕ̃ and ψ̃. The claim will be then

automatically obtained, thanks to (3.5), if we can find an arbitrarily large R such that‹Pg(BR) ≥ N‹Vg(BR) .

We can now define β : (−1, 1) → R as β(t) = ϕ̃(t) − Nψ̃(t), so that we can limit ourselves to

finding an arbitrarily largeR such that (3.2) holds. It is elementary to check that the assumptions

of Lemma 3.5 are satisfied: one can either do the simple calculations, or just observe that α(t)

coincides with the perimeter minus N times the volume of the portion of the unit ball centered

at the origin whose first coordinate is between −1 and t, so that all the conditions to check

become trivial. Therefore, the existence of the sought R directly comes from Lemma 3.5 and

the proof is completed. �

3.2. Proof of Proposition 3.3. This last section is entirely devoted to giving the proof of

Proposition 3.3, again divided in a few steps. For the reader’s convenience, in Steps I and II we

start with two particular cases, namely, when f is non-decreasing along the half-lines starting

at the origin, and when f is radial: even though these two particular cases are not really needed

for the proof, the argument is similar to the general one but works more easily, so this helps to

understand the general case.

Proof of Proposition 3.3. Let us set ε� 1: thanks to Proposition 3.2, there is a ball B = Bθ̄
R of

radius 1 and centered at the point Rθ̄, with some arbitrarily large R and some θ̄ ∈ SN−1, which

satisfies Pg(B) ≥ (N − ε)|B|g. Since f ≤ 1 on B, we have |B|f ≤ ωN : if |B|f = ωN we are

already done, because Pf (B) ≤ Peucl(B) = NωN , and this automatically implies that the mean

density of B is less than 1. Let us then suppose that |B|f < ωN , or equivalently that |B|g > 0,
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and let us try to enlarge B as to reach volume ωN , but still having mean density less than 1.

We will do this in some steps.

Step I. The case of non-decreasing densities.

Let us start with the case when f is a “non-decreasing density”. This means that, for every

θ ∈ SN−1, the function t 7→ f(tθ) is non-decreasing, at least for large t.

In this case, let us define a new set E as follows. First of all, we decompose B = Bl ∪ Br,
where Bl and Br are the “left” and the “right” part of the ball Bθ̄

R: formally, a point x ∈ B is

said to belong to Bl or Br if x · θ̄ is smaller or bigger than R respectively. Then for any small

δ we call Bl,δ the half-ball centered at (R − δ)θ̄ with radius (R − δ)/R, and Cδ the cylinder

of radius 1 and height δ whose axis is the segment connecting (R − δ)θ̄ and Rθ̄; finally, we let

Eδ = Br ∪Bl,δ ∪Cδ, see Figure 1, left. Since f is converging to 1, and R can be taken arbitrarily

big, we have

|Eδ|f − |B|f ≥ (1− ε)ωN−1δ ;

as a consequence, by continuity we can fix δ̄ such that E = Eδ̄ has exactly volume ωN , and we

have

δ̄ ≤ (1 + 2ε)
|B|g
ωN−1

. (3.6)

Thanks to the assumption that f is non-decreasing, we know that

H N−1
f (∂lBl,δ) ≤H N−1

f (∂lBl) , (3.7)

where we call ∂lBl,δ and ∂lBδ the “left parts” of the boundaries, that is,

∂lBl =
{
y ∈ ∂Bl : y · θ̄ ≤ R

}
, ∂lBl,δ =

{
y ∈ ∂Bl,δ : y · θ̄ ≤ R− δ

}
.

As a consequence, using again the facts that f ≤ 1 and that R can be taken arbitrarily big,

thanks to (3.6) and (3.7) we can evaluate

Pf (E) ≤ Pf (B) + (N − 1 + ε)ωN−1δ̄ ≤ NωN − Pg(B) + (N − 1 + ε)(1 + 2ε)|B|g
≤ NωN − (N − ε)|B|g + (N − 1 + ε)(1 + 2ε)|B|g < NωN .

Summarizing, we have built a set E arbitrarily far from the origin, with volume exactly ωN , and

perimeter less than NωN , thus having mean density less than 1. The proof is then concluded

for this case.

δδ/R

Br

O

∂+B+
δ

∂−B−

Cδ

E
Bl,δ

E δ

Figure 1. The sets E of Step I (left) and of Step II (right). The half-balls Br

and Bl,δ, as well as the half-balls B− and B+
δ , are light shaded; the cylinder Cδ,

as well as the region E \ (B− ∪B+
δ ), is dark shaded.
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Step II. The case of radial densities.

Let us now assume that the density is radial. In this case, we cannot use the same argument as

in the previous step, because there would be no way to extend the validity of (3.7). Nevertheless,

we can use a similar idea to enlarge the ball B: instead of translating half of the ball B we rotate

it. More formally, let us take a hyperplane passing through the origin and the center of the ball

Bθ̄
R, and let us denote by B± the two corresponding half-balls in which Bθ̄

R is subdivided. Let

us then consider the circle contained in SN−1 which contains the direction θ̄ and the direction

orthogonal to the hyperplane, and for any small σ > 0 let ρσ denote rotation through angle σ in

this circle. Then let B+
σ = ρσ(B+) and finally let Eδ be the union of B− with all the half-balls

B+
σ for 0 < σ < δ, as in Figure 1, right. As in the previous step, since f is converging to 1 we

can evaluate the difference of the volumes as

|Eδ|f − |B|f ≥ ωN−1(R− 1)(1− ε)δ .

Then we can again select δ̄ such that E = Eδ̄ has volume exactly ωN and we have

δ̄ ≤ (1 + 2ε)
|B|g

ωN−1(R− 1)
. (3.8)

This time, the radial assumption on f gives

H N−1
f (∂+B+

δ ) = H N−1
f (∂+B+) ,

where ∂+B+
δ and ∂+B+ denote the “upper” parts of the boundaries in the obvious sense. And

finally, almost exactly as in last step we can estimate the perimeter of E as

Pf (E) ≤ Pf (B) + (N − 1)ωN−1(R+ 1)δ̄ ≤ NωN − Pg(B) + (N − 1)(1 + 2ε)
R+ 1

R− 1
|B|g

≤ NωN − (N − ε)|B|g + (N − 1)(1 + 2ε)
R+ 1

R− 1
|B|g < NωN ,

where the last inequality again is true if we have chosen ε � 1 and then R � 1. Thus, the set

E has volume ωN and mean density less than 1, and the proof is obtained also in this case.

Step III. The general case in dimension 2.

Let us now treat the case of a general density f . For simplicity of notation we now assume that

we are in the two-dimensional situation N = 2. In the next step we generalize our argument to

any dimension.

As in the proof of Proposition 3.2, let us call f̃ the radial average of f according to (3.3),

and g̃ = 1− f̃ the radial average of g. Proposition 3.2 then provides us with a ball BR, of radius

1 and distance R� 1 from the origin, such that

Pg̃(BR) ≥ (N − ε)|BR|g̃ . (3.9)

For any θ ∈ S1, as usual, we call then Bθ
R the ball of radius 1 centered at Rθ. Let us now argue

as in Step II: we call Bθ,±
R (resp., ∂±Bθ

R) the two half-balls (resp., half-circles) made by the

points of Bθ
R (resp., ∂Bθ

R) having direction bigger or smaller than θ; thus, for any small δ > 0,

we define Eθδ the union of Bθ,−
R with all the half-balls Bθ+σ,+

R for 0 < σ < δ. Since the sets Eθδ
are increasing for δ increasing, if R � 1 there is a unique δ̄ = δ̄(θ) such that |Eθ

δ̄
|f = ωN , and
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exactly as in Step II we have the estimate (3.8) for δ̄, which for R big enough (since f → 1 and

then g → 0) implies

δ̄(θ) ≤ (1 + 3ε)|Bθ
R|g

ωN−1(R− 1)
. (3.10)

Let us then define the function τ : S1 → S1 as τ(θ) = θ + δ̄(θ), and notice that by construction

this is a strictly increasing bijection of S1 onto itself, with τ(θ) > θ (if τ(θ) = θ then the ball Bθ
R

has already volume ωN , and in this case there is nothing to prove, as already observed). Let us

now fix a generic θ ∈ S1, and let η � τ(θ)− θ: if we call

A =
(⋃

0<σ<η
Bθ+σ
R

)
\Bθ+η

R , B =
(⋃

0<σ<η
B
τ(θ+σ)
R

)
\Bτ(θ)

R ,

then, since ∣∣∣Eθδ̄(θ)∣∣∣f = ωN =
∣∣∣Eθ+η

δ̄(θ+η)

∣∣∣
f
, Eθ+η

δ̄(θ+η)
=
Ä
Eθδ̄(θ) ∪B

ä
\A ,

one has |A|g = |B|g. On the other hand, one clearly has

|B|eucl

|A|eucl
=
τ(θ + η)− τ(θ)

η
,

Taking R big enough, we can assume without loss of generality that 1 − ε ≤ f ≤ 1 for points

having distance at least R− 1 from the origin, and this yields

1− ε ≤ τ(θ + η)− τ(η)

η
≤ 1

1− ε
.

As an immediate consequence we obtain that the function τ is bi-Lipschitz and 1 − ε ≤ τ ′ ≤
(1 − ε)−1. Let us now observe that, by construction, all the sets Eθ = Eθτ(θ)−θ have exactly

volume ωN : we then want to find some θ̄ ∈ S1 such that Pf (E θ̄) ≤ NωN , so E θ̄ has mean

density less than 1 and we are done. Now, since a simple change of variables gives

−
∫
S1

H N−1
g

Ä
∂+Bθ

R

ä
dθ = −

∫
S1

H N−1
g

Ä
∂+B

τ(ν)
R

ä
τ ′(ν) dν ≤ 1

1− ε
−
∫
S1

H N−1
g

Ä
∂+B

τ(θ)
R

ä
dθ ,

we can readily evaluate by (3.9)

0 ≤ Pg̃(BR)− (N − ε)|BR|g̃ = −
∫
S1
Pg(B

θ
R)− (N − ε)|Bθ

R|g dθ

= −
∫
S1

H N−1
g

Ä
∂+Bθ

R

ä
dθ +−

∫
S1

H N−1
g

Ä
∂−Bθ

R

ä
dθ − (N − ε)−

∫
S1
|Bθ

R|g dθ

≤ −
∫
S1

1

1− ε
H N−1

g

Ä
∂+B

τ(θ)
R ∪ ∂−Bθ

R

ä
− (N − ε)|Bθ

R|g dθ ,

and hence get the existence of some θ̄ ∈ S1 such that

H N−1
g

Ä
∂+B

τ(θ̄)
R ∪ ∂−Bθ̄

R

ä
≥ (1− ε)(N − ε)|Bθ̄

R|g .

Thanks to (3.10), we then have

Pf
Ä
E θ̄
ä

= H N−1
f

Ä
∂+B

τ(θ̄)
R ∪ ∂−Bθ̄

R

ä
+ H N−1

f

(
∂E θ̄ \

Ä
∂+B

τ(θ̄)
R ∪ ∂−Bθ̄

R

ä)
≤ NωN −H N−1

g

Ä
∂+B

τ(θ̄)
R ∪ ∂−Bθ̄

R

ä
+ (N − 1)ωN−1δ̄(θ̄)(R+ 1)

≤ NωN − (1− ε)(N − ε)|Bθ̄
R|g + (N − 1)(1 + 3ε)|Bθ̄

R|g < NωN ,
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where the last inequality holds as soon as ε was chosen small enough at the beginning. The set

E θ̄ is then as sought and this step is done.

Step IV. The general case.

We are now ready to present the proof in the general case. We start by noticing that in the

argument of Step III the assumption N = 2 was used only to work with S1, hence to get the

validity of (3.9). More precisely, let us assume that there exists some arbitrarily large R and

some circle C ≈ S1 in SN−1 such that the estimate

−
∫
C
Pg(B

θ
R) dH 1(θ) ≥ (N − ε)−

∫
C
|Bθ

R|g dH 1(θ) (3.11)

holds true. Then we can repeat verbatim the proof of Step III: we get the existence of some θ̄ ∈ C
such that the set E θ̄R has volume ωN and mean density less than 1, and the proof is concluded.

Hence, it remains to find some R and some circle C so that (3.11) holds; notice that, if N = 2,

then C = S1 and (3.11) reduces to (3.9), which in turn holds for some arbitrarily large R thanks

to Proposition 3.2.

Let us then consider the case of dimension N = 3. By Proposition 3.2 we can take R � 1

such that (3.9) holds true; for any θ ∈ S2, then we denote by Cθ the circle in S2 which is

orthogonal to θ, and we observe that, by homogeneity,

Pg̃(BR) = −
∫
S2
−
∫
Cθ
Pg(B

σ
R) dH 1(σ) dH 2(θ) , |BR|g̃ = −

∫
S2
−
∫
Cθ
|Bσ

R|g dH 1(σ) dH 2(θ) ,

so thanks to (3.9) we get the existence of a circle C = Cθ̄ for which (3.11) holds true: the proof

is then concluded also in dimension N = 3.

Notice that the argument above can be rephrased as follows: if there exists some sphere

S ≈ S2 ⊆ SN−1 such that the average estimate (3.11) holds with S in place of C (and in turn

in dimension N = 3 this reduces to (3.9) and hence holds), then the proof is concluded. As

a consequence, the claim follows also in dimension N = 4, arguing exactly as above with the

spheres Sθ ≈ S2 orthogonal to any θ ∈ S3, and the obvious argument by induction then gives

the thesis for any dimension. �

Remark 3.6. Notice that, in the proof of Proposition 3.3, we have actually found a set which

has mean density strictly less than 1, unless g ≡ 0 on some ball of radius 1. On the other hand,

as it clearly appears from the proof of Theorem 1.2, it is impossible to find such a set if some

isoperimetric sequence is losing mass at infinity, otherwise the argument of Theorem 1.2 would

give a set with perimeter strictly less than the infimum. There are then only two possibilities:

either there are balls where f ≡ 1 arbitrarily far from the origin, or no isoperimetric sequence

can lose mass at infinity.

In particular, our proof shows that no isoperimetric sequence can lose mass at infinity if

f < 1 out of some big ball.
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