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Abstract

For high-dimensional data most feature-selection methods, such as SIS and
the lasso, involve ranking and selecting features individually. These meth-
ods do not require many computational resources, but they ignore feature
interactions. A simple recursive approach which, without requiring many
more computational resources, also allows identification of interactions, is
investigated. This approach can lead to substantial improvements in the
performance of classifiers, and provide insight into the way in which features
work together in a given population. It also enjoys attractive statistical
properties.
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1. Introduction

Feature selection is an important technique for high-dimensional data
analysis. Excellent reviews and comparisons have been given by Guyon and
Elisseeff (2003), Saeys et al. (2007), Hua et al. (2009) and Fan and Lv (2010),
for example. The method is often implemented through ranking features in
terms of certain criteria. Among feature-ranking approaches, correlation-
based methods are technically simple, theoretically elegant and widely used
in practice (Guyon and Elisseeff, 2003; Saeys et al., 2007). Correlation-based
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ranking can be implemented either in a univariate paradigm, ranking single
features independently (see e.g. Fan and Lv (2008), Hall and Miller (2009)),
or in a multivariate paradigm, ranking subsets of single features iteratively
(see e.g. Hall (2000)). For high-dimensional data most feature-selection
methods, such as “sure independence screening” (SIS) (Fan and Lv, 2008)
and the lasso (Tibshirani, 1996), reflect the univariate paradigm. In this
setting, practical and theoretical justifications have been provided by Saeys
et al. (2007), Fan and Lv (2008) and Fan et al. (2009), among others.

These feature-wise methods do not require many computational resources,
but they ignore feature interactions. To overcome this problem a simple re-
cursive approach is investigated, also requiring relatively few computational
resources but nevertheless allowing identification of interactions. Those inter-
actions are of didactic interest, in terms of the information that they convey
about how features work together in a particular population. The new ap-
proach also enables remarkable improvements in the performance of simple,
classical classifiers, for example the centroid-based classifier and the nearest-
neighbour (1-NN) classifier. It also enjoys attractive statistical properties for
additive models.

2. Methodology

2.1. Ranking based on (generalised) correlation

Suppose independent and identically distributed data pairs (X1, Y1), . . . ,
(Xn, Yn) are observed, where the explanatory variables Xi are p-vectors and
the response variables Yi are scalars.

Traditionally, correlation-based feature-ranking methods use conventional
linear correlation to measure the association between features Xij and re-
sponses Yi. Linear correlation can be used in cases where the Yis take values
in the continuum and, via a logit model, in cases where they are class labels,
taking for example the values 0 and 1. Treating nonlinear relationships be-
tween Xij and Yi, Hall and Miller (2009) adopts generalised correlation, as
follows.

Let H denote a vector space of functions, which is assumed to include all
linear functions. If Yi takes a continuum of values then theoretical and empir-
ical measures of generalised correlation between Yi and the jth component,
Xij, of Xi are given respectively by

ρj = sup
h∈H

cov{h(X1j), Y1}√
var{h(X1j)} var(Y1)

(1)
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and

ρ̂j = sup
h∈H

∑
i {h(Xij)− h̄j} (Yi − Ȳ )√∑

i {h(Xij)2 − h̄2j} ·
∑

i (Yi − Ȳ )2
, (2)

where h̄j = n−1
∑

i h(Xij) and Ȳ = n−1
∑

i Yi. Of course, the factors
var(Y1) and

∑
i (Yi − Ȳ )2, in the denominators at (1) and (2), do not de-

pend on j, and so they could be dropped without affecting ranking-based
methodology. To rank the feature indices 1, . . . , p in decreasing order of the
apparent influence that the explanatory variables have on the response, the
ρ̂js are first ranked in decreasing order, obtaining

ρ̂̂1 ≥ ρ̂̂2 ≥ . . . ≥ ρ̂̂p , (3)

say. In this notation the ranking that is sought is

̂1 � . . . � ̂p . (4)

If H were restricted to just its linear elements then the quantities in (1) and
(2) would be the absolute values of conventional correlation coefficients.

Next, cases where Yi is a categorical variable are considered. They include
instances where Yi = Ii, equal to either 0 or 1. If the index j lies between 1
and p then the relationship between Ii and Xij is captured in a “functional
logistic model”, where

P (Ii = 0 |h,Xij) = {1 + exph(Xij)}−1

and
P (Ii = 1 |h,Xij) = 1− P (Ii = 0 |h,Xij) ,

with h ∈ H. The likelihood of Ii, given Xij, is

Lij(Ii |h,Xij) =
( tij

1 + tij

)Ii ( 1

1 + tij

)1−Ii
=

tIiij
1 + tij

,

where tij = exph(Xij). Therefore the negative log-likelihood, `ij(h) =
− logLij(Ii |h,Xij), is

`ij(h) = −Ii h(Xij) + log{1 + exph(Xij)} ,

and its analogue for X1j, . . . , Xnj is `j(h) = n−1
∑

i `ij(h).
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Put ˆ̀
j = infh∈H `j(h). In the present setting, ˆ̀

j plays the role of ρ̂j, at
(1), and in particular the ordering at (4) is now determined by

ˆ̀̂
1 ≤ . . . ≤ ˆ̀̂

p , (5)

rather than (3). The conventional linear logistic model is obtained by taking
H to be the vector space of linear functions only. Applications of maximum
marginal likelihood to rank features have been discussed in Hall and Miller
(2009) and Fan et al. (2009), for example.

2.2. Recursive selection of interactions

The suggested approach proceeds in a sequence of steps, as follows.

2.2.1. Step 1: Ranking single features

Using the approach at (3), in the case of a continuous response, or at
(5), for a categorical response; or employing a related method; compute a
ranking (4) of p1 = p vector-component indices. On this occasion it is helpful
to write (4) as

̂11 � . . . � ̂1p , (6)

where the first subscript “1” signifies “first step”.

2.2.2. Step 2: Ranking single features and pairwise interactions together

Let indices ̂11, . . . , ̂1p be as in (6). Consider lengthening the vector Xi =
Xi(1) to Xi(2), say, by adjoining to the existing features all the “cross fea-
tures” formed from pairwise interactions, i.e. Xî1k1

Xî1k2
for 1 ≤ k1 < k2 ≤ p.

The data vectors Xi(2) are of length p + 1
2
p (p − 1) = 1

2
p (p + 1), and, for

the sake of definiteness, the adjoined components are listed after the compo-
nents of Xi(1). However, 1

2
p (p+1) usually will be too large for the available

computational resources, and so length is reduced to p2, say, principally by
reducing the number of cross features, and to a lesser extent reducing the
number of single components.

The most appropriate tradeoff is not specified, since it can vary from
one problem to another. However, if computational resources were sufficient
to allow ranking of all p features in Step 1, they would likely be adequate
to allow ranking of p single features together with 1

2

√
p (
√
p − 1) pairwise

interactions, resulting in a ranking of p2 = p + 1
2

√
p (
√
p − 1) numbers.

Pairwise interactions are computed from the
√
p features that were ranked

most highly in Step 1.
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More generally, when reducing dimension to p2, attention continues to
be confined to single and cross features whose indices are the most highly
ranked. In the case of the cross feature Xî1k1

Xî1k2
, dimension can be reduced

by placing an upper bound on the size of either max(k1, k2) or k1 + k2. In a
slight abuse of notation, write Xi(2) for the resulting p2-vector.

Next, Step 1 is repeated for the data Xi(2), obtaining in place of (6) a
ranking

̂21 � . . . � ̂2p2 , (7)

based on the empirical measure of association between Yi and the components
of Xi(2). This ranking indicates the relative strengths of relationships among
single-variable contributions and some of the pairwise interactions, taken
together.

An attractive alternative approach might be to group features into ranked
classes whose sizes are computationally manageable, and use the top ranked
features within a class to construct interactions among the classes. However,
it is not clear what criteria should be used to define the classes, or to rank
features within a class. Conventional correlation may not be appropriate
here, since, in a highly correlated pair of features, it is often the case that one
of the features is redundant if the other is included; and clearly low correlation
is not appropriate either. Searching for high correlation is certainly more
attractive than looking for low correlation, but it is not really an appropriate
method for identifying features that complement, rather than substitute for,
features that have already been determined. For these reasons the grouping
idea will not be explored further here.

3. Theoretical Properties

Assume that the response variable, Yi, depends on only the first r ≤ p
variables in the explanatory vector, Xi = (Xi1, . . . , Xip), and that there is
interaction between Xij1 and Xij2 but not among any of the other compo-
nents of Xi. These relationships can be expressed in an additive model with
interaction term:

Yi =
r∑
j=1

gj(Xij) + γ1(Xij1) γ2(Xij2) + εi, 1 ≤ i ≤ n, (8)

where r = r(n) ≤ p and can diverge as n → ∞; p = p(n) → ∞ as n → ∞;
and g1, . . . , gr, γ1 and γ2 are functions.
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Specific regularity conditions (A.1) and (A.4) will be given in Appendix A.
Among other properties, those conditions permit r to diverge with n; they
take g1, . . . , gr0 to be fixed, where r0 ≤ r − 2 is a fixed integer; they allow
gr0+1, . . . , gr to depend on n; they take j1 = r0 + 1 and j2 = r0 + 2 (for nota-
tional convenience) and ask that correlations involving gj(Xij1) and gj(Xij2)
do not decrease too quickly; and they take p′, of size

√
p, to be the number of

top-ranked features, in the first step, that are used to construct interactions.
Against this background, the theorem below argues that the components of
the interaction term in (8) can be well down in the first ranking of features,
at (6), but that nevertheless the interaction term typically enjoys a high po-
sition in the second ranking, at (7). Similar results can be derived when
using logistic-based correlation analysis in instances where the response Yi is
a zero-one class label.

Theorem 1. Assume the model represented by (8), that conditions (A.1) and
(A.4) hold, and that at each step in the algorithm in section 2.2 generalised
correlations, described in section 2.1, were used to effect the rankings. Then,
with probability converging to 1 as n→∞,

(a) in the ranking at (6), the sequence ̂11, . . . , ̂1,r0 is a permutation of
1, . . . , r0, and r0 + 1 and r0 + 2 are included among ̂1,r0+1, . . . , ̂1p′;

(b) in the ranking at (7), the sequence ̂21, . . . , ̂2,r0+1 is a permutation of
1, . . . , r0, together with whatever index corresponds to the pair (j1, j2).

A proof of Theorem 1 is given in Appendix B.

4. Numerical Studies

4.1. Classification of benchmark datasets
In microarray studies the response Yi is often binary and the explana-

tory variables Xi are ultra-high dimensional. An example is the identifi-
cation of differentially expressed genes among the components Xij of Xi.
In such a classification problem, conventional and generalised correlations
have both been used to select single features; see Fan and Lv (2008) for the
correlation-based SIS method and Hall and Miller (2009) for the generalised-
correlation-based “functional logistic model”, for example. Computationally,
fitting logistic regression is much slower than calculating correlation.

Section 4.1.1 will give results obtained using linear correlation for two
ultra-high-dimensional microarray datasets, and section 4.1.2 will present re-
sults for generalised correlation applied to two moderate-dimensional datasets,
relating to cardiac imaging and ionospheric structure, respectively.
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It is desired to know whether the suggested recursive approach, which
selects both top-ranked single and cross features, can provide better classi-
fication performance than SIS and the “functional logistic model”, both of
which use top-ranked single features only. For illustrative purposes the se-
lected features are used in two popular, simple classifiers, the centroid-based
and 1-NN classifiers. The former classifies a new data vector, X, into the
class for which the empirical centroid is closest to X; the latter classifies X
into the class that contains the data vector closest to X.

4.1.1. Classification of microarray datasets

The two microarray datasets used here are for hepatocellular carcinoma
(Iizuka et al., 2003) and prostate cancer (Singh et al., 2002), respectively.
They have been used often in literature to evaluate classification methods for
high-dimensional data (Pochet et al., 2004; Fan and Fan, 2008; Hall et al.,
2009). The hepatocellular carcinoma dataset (denoted by “Hepatocellular”
below) involves 12 patients with early intrahepatic recurrence, and 21 pa-
tients without recurrence in the predetermined training set; and 8 patients
with recurrence and 19 without in the test set. Each patient is represented
by a data vector of p = 7129 genes. The prostate cancer dataset (“Prostate”)
involves p = 12600 genes for 50 normal and 52 tumour vectors in the training
set, and 9 normal and 25 tumour vectors in the test set.

In each analysis, as in other studies such as those of Hall et al. (2009)
and Dudoit et al. (2002), a four-step procedure is used to preprocess all the
data: truncating intensities to make them positive; removing genes having
little variation in intensity; transforming intensities to base 10 logarithms;
and standardising each data vector to have zero mean and unit variance.
This procedure keeps p = 1627 genes for the “Hepatocellular” dataset, and
p = 3239 genes for the “Prostate” dataset. The new data are then used for
feature selection and classification.

To evaluate the performance of feature selection and classification, the
standard n-out-of-n bootstrap technique (i.e. random sampling with replace-
ment) is applied to the training set, to construct a new training set of size
equal to the original one. The new training set is used for feature selection
and for classifier training; the predetermined test set is then used to calculate
misclassification error rates. Such a procedure is repeated 200 times. The
average error rates (and their standard errors) over these 200 replicates are
plotted in Fig. 1 (and Fig. 2), versus selecting 1 to 50 top-ranked single fea-
tures using SIS, or single plus cross features using the suggested approach.
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Figure 1: Misclassification error rates (ER) for the “Hepatocellular” and “Prostate”
datasets, obtained from applying the centroid-based and 1-NN classifiers to the prede-
termined test sets. The vertical axis gives the average ER over classification results cor-
responding to 200 bootstrap replicates of the training set. The horizontal axis gives the
number of top-ranked single features, or single features plus interactions, selected. (Dashed
line: ranking single features only; solid line: recursively ranking both single features and
pairwise interactions. Left-hand column: for the centroid-based classifier; right-hand col-
umn: for 1-NN.)
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Figure 2: Standard errors of the average ER in Fig. 1.
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When using the suggested approach, all p + 1
2

√
p (
√
p − 1) single and cross

features were ranked.
From Fig. 1 it can be seen that, for the “Hepatocellular” and “Prostate”

datasets, compared with SIS which selects only influential single features, the
suggested approach, which chooses both influential single and cross features,
enables both the 1-NN and centroid-based classifiers to achieve better out-of-
sample classification. The improvement is consistent over varying numbers
of selected features. From Fig. 2 it can be observed that the standard errors
are of similar magnitudes for SIS and the suggested approach, and are rela-
tively stable when different numbers of features were selected, except for the
“Prostate” dataset when only a small number of genes were selected.

4.1.2. Classification of UCI datasets

In this section a comparison is made of the performance of the suggested
approach and a single-feature-only method for classifying two widely-adopted
benchmark datasets from the the University of California at Irvine (UCI)
machine learning repository, available at archive.ics.uci.edu/ml. The first
dataset (“Heart”) comprises 267 cardiac SPECT images including 55 nor-
mal cases and 212 abnormal cases, with each image represented by a data
vector of p = 44 features (Kurgan et al., 2001). The second dataset (“Iono-
sphere”) consists of 351 radar returns used to detect evidence of structure
in the ionosphere, including 225 “good” returns and 126 “bad” returns, for
each of p = 33 effective features (Sigillito et al., 1989). Compared with the
microarray datasets in section 4.1.1, these two UCI datasets can be viewed
as illustrating moderate-dimensional properties.

The “Heart” dataset has predetermined training and test sets but the
“Ionosphere” dataset has not, hence each of the full original datasets was
randomly split equally into a new training set and a new test set with the
original proportion of the two classes preserved. Fig. 3 shows the average
misclassification error rates over 400 random splits, and the corresponding
standard errors are displayed in Fig. 4.

From Fig. 3 it can be seen that, for the two datasets, taking interactions
into consideration for feature selection generally improves classification per-
formance for both the 1-NN and centroid-based classifiers. The pattern is
similar to that in Fig. 1. This reflects the fact that the suggested approach
produces pairwise interactions that have more influence on the response than
some important single features. That can be particularly insightful to a prac-
titioner. The standard errors shown in Fig. 4 demonstrate that the perfor-
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Figure 3: Misclassification error rates (ER) for the “Heart” and “Ionosphere” datasets,
obtained from applying the centroid-based and 1-NN classifiers to test sets obtained by
randomly splitting 400 times. Feature selection is based on generalised correlation (indi-
cated by “GenCor” in each panel). Other notation is as for Fig. 1.
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Figure 4: Standard errors of the average ER in Fig. 3.
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mance of the suggested approach is more stable with the number of selected
features, compared with that of the method selecting no interactions.

4.2. Two extensions of the suggested approach

The suggested approach can be generalised to ranking all single features
and all 1

2
p (p − 1) pairwise interactions together, if computational feasible,

and to ranking features using p-values instead of conventional and generalised
correlations. In sections 4.2.1 and 4.2.2, respectively, empirical comparisons
will be made of the originally suggested approach with these two extensions.

4.2.1. Extension-1: ranking all interactions

In this section an investigation is undertaken into the effects of limiting
the search for pairwise interactions to the top 1

2

√
p (
√
p − 1) pairs among

the initially top-ranked
√
p features, instead of searching exhaustively the

1
2
p (p − 1) pairwise interactions among all p features, which is infeasible for

very large values of p. For illustration the “Heart” and “Ionosphere” datasets
are used; Fig. 5 plots the average misclassification error rates obtained by
applying the centroid-based and 1-NN classifiers to the data selected by SIS,
and using the suggested approach and its extension. The averages were
calculated over 400 test sets obtained from random splits of the data.

From Fig. 5 it can be seen that, for the two datasets, ranking only the
1
2

√
p (
√
p− 1) interactions does not necessarily degrade classification perfor-

mance. On the contrary, its performance is, for the numbers of top-ranked
features shown, much the same as, or even a little better than, ranking all
the 1

2
p (p−1) pairwise interactions, for both the centroid-based classifier and

the 1-NN classifier.

4.2.2. Extension-2: using p-values for ranking

The suggested approach adopts a two- or multiple-stage strategy. There
exist in the literature alternative two-stage approaches to detecting influen-
tial interactions (Marchini et al., 2005; Ionita and Man, 2006; Evans et al.,
2006). They usually first identify significant single features and then detect
significant interactions among the initially identified features, often based
on p-values obtained from statistical tests feature by feature. Unlike the
methodology suggested here, they rely on at least one feature in an inter-
action being significant, and so they do not lead readily to the discovery of
(for example) two new features that are not individually significant but have
significant impact when working together.
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2 p (p − 1) and 1

2
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p (
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interactions. Notation is as for Fig. 3.
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Nevertheless it is desirable to investigate, in the context of classification,
first, whether the suggested approach using p-values is better than using
(generalised) correlation, and, secondly, whether adding interactions can also
improve performance when p-values are used. Logistic regression is used to
obtain, for each feature, the p-value.
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Figure 6: Comparison between methods using generalised correlation (GenCor) or the
p-value for ranking. Notation is as for Fig. 3.

Fig. 6 presents the average misclassification error rates obtained by ap-
plying centroid-based and 1-NN classifiers to the features selected by four
approaches: the suggested approach (indicated by solid lines), its p-value
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extension (dot-dashed lines) and the corresponding methods ignoring inter-
actions (dashed lines and dotted lines, respectively).

From Fig. 6 the following can be seen. First, for the suggested approach,
which considers interactions, using generalised correlation leads to better
performance than using p-values, for the “Ionosphere” data classified by both
the centroid-based and 1-NN classifiers and for the “Heart” data classified by
the 1-NN classifier. Secondly, as observed in Fig. 3 already, when generalised
correlation is used, classification performance is improved after considering
interactions for both datasets. However, when p-values are used, such an
improvement from adding interactions is gained for the “Heart” dataset but
not consistently for the “Ionosphere” dataset (see the improvement from the
dotted lines to the dot-dashed lines).

4.3. Reliability of the suggested ranking

The reliability of a ranking is of significant practical importance. To
investigate it for the suggested approach, data were simulated from two lo-
gistic regression models for classification, so that truly influential features
and interactions, which should be ranked highly, would be known.

The models are given by

log
P (Yi = 1 |Xi)

P (Yi = 0 |Xi)
= β0 +

3∑
j=1

4−j
3

(Xij +Xi,j+3 +Xij Xi,j+3) (9)

and

log
P (Yi = 1 |Xi)

P (Yi = 0 |Xi)
= β0 +

3∑
j=1

4−j
3

{
Xij +Xi,j+3 + sin(Xij) e

Xi,j+3
}
, (10)

where, for the ith data pair (Xi, Yi), the response Yi ∈ {0, 1} follows a
Bernoulli distribution with success probability P (Yi = 1 |Xi). For 1 ≤ j ≤ 3,
each truly influential feature pair (Xij, Xi,j+3) contains two highly-correlated
N(0, 1) random variables with their correlation equal to 0.85, as in the work
of Hall and Miller (2009). Other single features, Xi7, . . . , Xip, all follow the
standard N(0, 1) distribution, where p = 1000; and the intercept β0 = −2.5.

To validate the reliability and authority of the ranking provided by the
suggested approach, 100 random samples were simulated. Each sample con-
sisted of n data pairs (Xi, Yi), with each data vector Xi comprised of p = 1000
dimensions. In the models at (9) and (10) there are six single features,
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Xi1, . . . , Xi6, and three cross features, {Xij Xi,j+3}3j=1, with decreasing in-
fluence on Yi. An investigation was made of the ability of the suggested
approach to identify these nine truly influential features in their ideal rank-
ing: Xi1, Xi4 or Xi1Xi4; Xi2, Xi5 or Xi2Xi5; and Xi3, Xi6 or Xi3Xi6.
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Figure 7: Reliability of rankings obtained using the suggested approach. The top 10
features, ordered by their median ranks, are shown for n = 200 in the cases of model (9)
in the left-hand panel and model (10) in the right-hand panel.

The top 10 features with lowest median ranks are depicted in Fig. 7 for
the models at (9) and (10), respectively, with n = 200 for each sample. To
enhance the reliability of the results, attention was confined to interactions
that were ranked at least one third of the time (i.e. 33 out of the 100 samples).

From Fig. 7 it can be seen that the suggested approach is powerful and
reliable in identifying truly influential features, by ranking them highly and
in a relatively accurate order. In particular, the top eight features, i.e. all
truly influential features except for one of the weakest among them, Xi3Xi6,
have remarkably lower medians and smaller spreads of their ranks than those
of other features. Therefore, if the true models (9) and (10) were unknown,
the top eight or nine truly influential features could still be identified, and
the model recovered accurately.

4.4. How many features to be selected?

From Fig. 7 it can be seen that the number of features to be selected
is eight or nine for models (9) and (10), and indeed the true models are
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made up of the nine features suggested in the figure. In practice, since the
true model is unknown, cross-validation can be employed to determine an
“optimal” number of features (denoted by p∗ below), by comparing a goal-
oriented performance measure over a set of potential choices of the number.
Misclassification error rate (ER) for centroid-based classification is adopted
as the measure.

0
.1

8
0

.2
0

0
.2

2
0

.2
4

0
.2

6
0

.2
8

0
.3

0

Centroid−based; cross−validation; n=400

Number of top−ranked features selected

E
rr

o
r 

ra
te

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

no interaction

with interaction

Figure 8: Determination of p∗, the “optimal” number of features to be selected. The
average misclassification error rates (ER) were computed by 10-fold cross-validation from
100 random samples in the case of model (9). ER was estimated by applying centroid-
based classifiers to the validation data. For each curve, the value of p∗ that minimises ER
is indicated by a vertical dotted line.

For the classification model (9), 10-fold cross-validation was implemented
for each of 100 random samples, enabling calculation of ER for validation
data. The average values of ER, over 100 10-fold cross-validation procedures,
are plotted in Fig. 8. There, two vertical dotted lines indicate the values of
p∗ for which minimal ER is achieved, in the cases of SIS and the suggested
approach, respectively.

From Fig. 8 it can be seen that, as indicated by the vertical dotted lines
in Fig. 8, the suggested approach can select eight features for model (9),
which is close to the true value, nine, of p∗. In fact, it appears almost
equally reasonable to choose any value between six and nine, because the
differences in ER for these numbers of features are small. In contrast, since
SIS does not consider interactions, the (dashed) curves depicting its ER have
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their minima obtained from selecting around five single features; and the ER
there are noticeably higher than for the suggested approach.

Furthermore, the value of p∗ determined by using cross-validated ER, as
indicated in Fig. 8, matches well the p∗ that can be “determined” visually
based on the plots for ranking reliability in Fig. 7.

5. Limitations and discussions

Here two limitations of the suggested approach will be discussed. First,
mainly because it is driven by insufficient computational resources for ultra-
high-dimensional data (i.e. for very large p), the suggested approach considers
a pairwise interaction only if both of its single features rank within the top√
p in Step 1. Therefore it cannot identify interactions of any features ranking

lower than
√
p.

If computational feasible, the approach can be extended to ranking all
the 1

2
p (p− 1) pairwise interactions. However, as shown in section 4.2.1, the

extension may not improve classification performance. Moreover, after select-
ing top-ranked single and cross features, the extension increases the chances
of keeping an interaction while discarding its constituents (i.e. main effects),
which generally is not favoured in statistical modelling. Alternatively, if in
certain scenarios practitioners are interested only in influential interactions
of non-influential single features, the suggested approach can be extended by
considering interactions of the lowest

√
p-ranked single features.

Secondly, as with all other feature-selection methods, improvements in
classification cannot always be obtained by using the suggested approach. A
reason is that, for some datasets, using many single features and interactions
with higher correlation with the response Yi may increase the risk of multi-
collinearity and degrade classification performance.

However, this is generally not a serious issue in the context of classifica-
tion problems. As pointed out by Guyon and Elisseeff (2003), very highly
(but not perfectly) correlated features may not be redundant in some cases.
Additionally, given two competing methods, for example an approach select-
ing and an approach ignoring interactions, cross-validation can be used to
estimate the error rate of each approach for any given dataset, and the one
with higher error rate can be discarded.

In practice Steps 1 and 2 are often sufficient for a noticeable improvement,
and our numerical results were given only for a two-step algorithm. However,
more steps can in principle be used recursively, as follows.
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Step `+1: Ranking features and multiple interactions. Suppose that in Step `
we achieved a ranking

̂`1 � . . . � ̂`p` (11)

of the components of the n p`-vectors Xi(`). See, for example, (6) and (7).
The components whose indices are ranked at (11) will be referred to below
as “generalised features,” and the pairwise interactions to which they lead
will be said to be “generalised interactions.”

In Step `+ 1 we nominally replace Xi(`) by a vector Xi(`+ 1) of length
p`+1 = p` + 1

2
p` (p` − 1), consisting of all the generalised features in Xi(`)

and their generalised interactions. However, vectors as long as this will gen-
erally be too computationally challenging to handle, and so we again reduce
length, principally by reducing the number, 1

2
p` (p` − 1), of generalised in-

teractions to 1
2

√
p` (
√
p` − 1). Again we adhere to the principle of keeping

the most highly ranked generalised features from Step `, both when they
are included in isolation in Xi(`) and when they are included in pairs as
generalised interactions.

The average misclassification error rates obtained by applying to the mi-
croarray and UCI datasets a three-step version of the suggested method,
which adopts generalised interactions up to order 4, are depicted in Fig. 9 by
dot-dashed lines. Compared with the two-step method with single features
and pairwise interactions (solid lines), the three-step method performs bet-
ter for the “Hepatocellular” dataset and for the centroid-classified “Heart”
data, worse for the “Prostate” dataset, and inconsistently with the number
of selected top generalised features in other cases.

In order to tune the number of steps, cross-validation on the training
data can be employed. Nevertheless, the increase in computation due to
the involvement of high-order interactions and the tuning of the number of
steps has to be taken into account in practice. Furthermore, the inclusion
of higher-order interactions can lead to more correlated generalised features,
and the variability of the effect of such an inclusion on classification can
become greater.
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Figure 9: Misclassification error rates (ER) for the “Hepatocellular”, “Prostate”, “Heart”
and “Ionosphere” datasets. (Dashed line: ranking single features only; solid line: recur-
sively ranking both single features and pairwise interactions; dot-dashed line: recursively
ranking single features, pairwise interactions, and generalised interactions up to order 4.)
Other notation is as for Figs. 1 and 3. 21



Appendix A. Conditions for Theorem 1

To make the model (8) more explicit, it is assumed that:

(a) for a fixed integer r0, such that 1 ≤ r0 ≤ r−2 for all n, the functions
g1, . . . , gr0 , γ1 and γ2 are non-degenerate and do not depend on n;
(b) j1 = r0 + 1 and j2 = r0 + 2; (c) the functions gj, for r0 + 3 ≤ j ≤ r,
depend on n and satisfy sup |gj| ≤ C1 n

−a where a, C1 > 0; (d) the
Xijs and εis are all independent; and (e) r = O(na). (A.1)

Far from making the problem less challenging, the independence assump-
tion in (A.1)(d) makes it more difficult. In particular, it implies that the
main influence of Xij1 and Xij2 , which is through the term γ1(Xij1) γ2(Xij2),
is not detectable if variables are addressed one at a time. Methods based
on correlation, whether standard linear correlation or its more general form
suggested in section 2.1, will miss that term, as too will techniques based on
fitting a linear model. Therefore the suggested methodology relies on picking
up a trace of the impact of Xij1 and Xij2 through their impact on the additive
part of (8). The condition sup |gj| ≤ C1 n

−a, in (A.1)(c), means that this
impact is difficult to detect and so makes the feature-selection problem even
more challenging. The hope is that the small impact will nevertheless be
sufficient to give the feature indices j1 and j2 a sufficiently high rank in the
first-step ranking (see (6)) for the pair of indices (j1, j2) to be ranked highly
in the second step (see (7)).

More than one interaction could have been included on the right-hand side
of (8). However, since results in that setting are straightforward extensions
of the case of only a single interaction, then notational complexity is reduced
by assuming that there is only a single term. Assumptions (A.1)(c) and
(A.1)(e) together ensure that the series at (8) is uniformly bounded. It
follows from (A.1)(a) and (A.1)(c) that the variables with greatest influence
on the response, Yi, in an additive, as distinct from interactive, sense are
generally Xi1, . . . , Xi,r0+2; the other explanatory variables, Xi,r0+3, . . . , Xip,
have relatively minor individual impact.

To make the problem still more challenging the distributions of the vari-
ables Xij, and the functions gj, are allowed to vary increasingly erratically as
n increases. To formalise this property, the function space H, introduced in
section 2.1, is taken to be the set of all polynomials of a given degree d ≥ 1,
although since the correlations at (1) and(2) are invariant under changes of
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location and scale of h ∈ H then attention can be confined to h ∈ H0, de-
noting the set of h ∈ H for which E{h(N)2} = 1, where N is distributed as
normal N(0, 1). Given an integer K ≥ 1, FK and GK are defined to be classes
of distributions F of a random variable V , and functions g respectively, such
that EF |h(V )|K and EF |g(V )|K are bounded uniformly in F ∈ FK , g ∈ GK
and h ∈ H0, and, for a constant C(K) > 0 and for all k = 1, . . . , K,

EF |h(V )− EFh(V )|2k

{varF h(V )}k
≤ C(K) , for all F ∈ FK , h ∈ H0 , (A.2)

and

EF |g(V )− EFg(V )|2k

{varF g(V )}k
≤ C(K) , for all F ∈ FK , g ∈ GK . (A.3)

(Here EF and varF denote expectation and variance when V has distribu-
tion F .) For example, (A.3) holds if FK is the class of all distributions
that have a density bounded above C1, say, on a given non-degenerate, com-
pact interval I, and if GK = GK(C2, C3) is the set of all constant multiples
of continuous functions g that satisfy |g| ≤ C2 and var g(U) ≥ C3, where
C1, C2, C3 > 0 and U is uniformly distributed on I.

Let Vj have the distribution of Xij, interpret the notation an � bn to mean
that an/bn is bounded away from zero and infinity as the positive numbers
an and bn diverge, and take p and p′ to be functions of n. The following
assumptions are made:

(a) in Step 2 of the algorithm in section 2.1 the methodology adjoins
(to the p1 ≡ p original features) all distinct pairs of the top p′ features
among those ranked in (6), where p′ � √p; and ranks the resulting
p2 ≡ p + 1

2
p′ (p′ − 1) features; (b) each distribution of Vj is in FK

and each function gj and γj is in GK ; (c) suph∈H0
corr{gj(Vj), h(Vj)}

≥ C4 for j = 1, . . . , r0, suph∈H0
corr{γ1(Vj1) γ2(Vj2), h(Vj1 Vj2)} ≥ C4,

suph∈H0
corr{gj(Vj), h(Vj)} ≤ n−a2 for at least p − C5 p

′ values of j ∈
{1, . . . , p}, and suph∈H0

corr{gj(Vj), h(Vj)} ≥ n−a1 for j = r0+1, r0+2,
where a ≤ a1 < a2 <

1
2
, a is as in (A.3)(c), C4 > 0 and 0 < C5 < 1;

(d) p = O(nC6); (e) E|ε|C7 <∞, and both C7 and K, in the definitions
of FK and GK , are chosen sufficiently large, depending on C6. (A.4)

Condition (A.4)(a) is appropriate if computing resources restrict the ex-
perimenter to O(p) calculations; (A.4)(c) ensures that the features that are
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excluded by the decision, in (A.4)(a), to confine attention to the top ranked
O(
√
p) features will, with high probability, not exclude the key features that

comprise the interaction term in (8); (A.4)(d) asks that p be no more than
polynomially large as a function of n; and (A.3)(e) asserts that the error
distribution has polynomially many moments. If that distribution and the
distributions of the Xijs were to have uniformly, exponentially light tails, for
example if they all had normal distributions with bounded variances, then p
could be taken exponentially large as a function of n.

Assumption (A.4)(c) is the most important part of (A.4); it ensures that,
in most cases, the features with indices r0 + 1 and r0 + 2 endure from Step 1
to Step 2. As Theorem 1 implies, once that has happened the interaction is
(with high probability) ranked very highly in Step 2, in fact among the top
r0 contributions among the p2 features and interactions that are ranked in
Step 2.

Appendix B. Proof of Theorem 1

Given h ∈ H0, define ḡj = n−1
∑n

i=1 g(Xij), h̄j = n−1
∑n

i=1 h(Xij), γγ =
n−1

∑n
i=1 γ1(Xij1) γ2(Xij2) and ε̄ = n−1

∑
i εi. Put ξk(h) = cov{h(Xik), Yi},

of which an estimator is given by

ξ̂k(h) =
1

n

n∑
i=1

{h(Xik)− h̄k} (Yi − Ȳ ) =
r∑
j=1

Sjk(h) + Tk(h) + Uk(h) ,

where (8) was used to obtain the second identity, and

Sjk(h) =
1

n

n∑
i=1

{h(Xik)− h̄k} {gj(Xij)− ḡj} ,

Tk(h) =
1

n

n∑
i=1

{h(Xik)− h̄k} {γ1(Xij1) γ2(Xij2)− γγ} ,

and

Uk(h) =
1

n

n∑
i=1

{h(Xik)− h̄k} (εi − ε̄) .

The quantities Sjk(h) and Tk(h) here estimate sjk(h) = cov{h(Xik), gj(Xij)}
and tk(h) = cov{h(Xik), γ1(Xij1) γ2(Xij2)}, respectively.
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Define ξk1k2(h) = cov{Yi, h(Xik1Xik2)}, which is estimated by

ξ̂k1k2(h) =
1

n

n∑
i=1

{h(Xik1 Xik2)− h̄k1,k2} (Yi − Ȳ ) ,

where h̄k1,k2 = n−1
∑

i h(Xik1 Xik2). Let ρk1k2 = suph∈H0
corr{Yi, h(Xik1 Xik2)},

of which an estimator is

ρ̂k1k2 = sup
h∈H0

ξ̂k1k2(h)

{ζ̂k1k2(h)W}1/2
,

where ζ̂k1k2(h)2 = n−1
∑

i {h(Xik1 Xik2)−h̄k1k2}2 estimates ζk1k2(h)2 = var{h(Xik1 Xik2)}.
The estimators ξ̂k(h), ξ̂k1k2(h), Sjk(h) and Tk(h) are root-n consistent,

and, using (A.4)(b), (A.4)(d), and (A.4)(e), can be shown to enjoy the fol-
lowing properties, valid for each η > 0:

max
1≤k≤p

sup
h∈H0

P
{
|ξ̂k(h)− ξk(h)| > nη−

1
2

}
=O

(
n−Cη

)
, (B.1)

max
1≤k1<k2≤p

sup
h∈H0

P
{
|ξ̂k1k2(h)−ξk1k2(h)|>nη−

1
2

}
=O

(
n−Cη

)
, (B.2)

max
1≤j,k≤p

sup
h∈H0

P
{
|Sjk(h)− sjk(h)| > nη−

1
2

}
=O

(
n−Cη

)
, (B.3)

and
max
1≤k≤p

sup
h∈H0

P
{
|Tk(h)− tk(h)| > nη−

1
2

}
=O

(
n−Cη

)
, (B.4)

where the constant C can be made arbitrarily large by choosing K and C7

in (A.4) sufficiently large. For any given B1 > 0, a subset H0(n) of H0,
containing O(nB2) functions for some B2 > 0, can be constructed such that,
for each h ∈ H0, there exists hn ∈ H0(n) satisfying |h(x) − hn(x)| ≤ n−B1

for all x ∈ [−nB1 , nB1 ]. By approximating to h ∈ H0 by hn, and noting that
p is only polynomially large as a function of n; and choosing C sufficiently
large (or equivalently, K and C7 sufficiently large); it can be proved from
(B.1)–(B.4) that the versions of those results with “max” and “sup” inside
the probability statements are valid:

P
{

max
1≤k≤p

sup
h∈H0

|ξ̂k(h)− ξk(h)| > nη−
1
2

}
= O

(
n−Cη

)
, (B.5)

P
{

max
1≤k1<k2≤p

sup
h∈H0

|ξ̂k1k2(h)− ξk1k2(h)|>nη−
1
2

}
=O

(
n−Cη

)
, (B.6)

P
{

max
1≤j,k≤p

sup
h∈H0

|Sjk(h)− sjk(h)| > nη−
1
2

}
= O

(
n−Cη

)
, (B.7)
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and
P
{

max
1≤k≤p

sup
h∈H0

|Tk(h)− tk(h)| > nη−
1
2

}
= O

(
n−Cη

)
. (B.8)

In view of (A.4)(b) it can be assumed, without loss of generality, that
the scales of vector components Xij have been adjusted so that vj(h) =
var{h(Xij)} is bounded away from zero and infinity, uniformly in n, in 1 ≤
j ≤ p and in h ∈ H0. Then, defining

Vk(h) =
1

n

n∑
i=1

{h(Xik)− h̄k}2 , W =
1

n

n∑
i=1

(Yi − Ȳ )2

and w = E(W ), and using the arguments leading from (B.1)–(B.4) to (B.5)–
(B.8), it can be proved that, for each η > 0,

P
{

max
1≤k≤p

sup
h∈H0

|Vk(h)− vk(h)| > nη−
1
2

}
= O

(
n−Cη

)
,

and
P
{
|W − w| > nη−

1
2

}
= O

(
n−Cη

)
,

whence it can be shown that, for constants B3, B4 satisfying 0 < B3 < B4 <
∞,

P
{
B3 ≤ Vk(h) ≤ B4, for all k = 1, . . . , p, h ∈ H0

}
= 1−O

(
n−Cη

)
(B.9)

and
B3 ≤ w ≤ B4 for all sufficiently large n . (B.10)

Define W = n−1
∑

i (Yi − Ȳ )2 and w = E(W ), and note that it can be
shown from (1) and (2) that for each η > 0,

ρ̂j = sup
h∈H0

ξ̂j(h)

{Vj(h)W}1/2
= sup

h∈H0

Sjj(h) + {ξ̂j(h)− Sjj(h)}
{Vj(h)W}1/2

(B.11)

and

ρj = sup
h∈H0

ξj(h)

{vj(h)w}1/2
= sup

h∈H0

sjj(h) + {ξj(h)− sjj(h)}
{vj(h)w}1/2

, (B.12)

26



with analogous formulae holding for ρ̂k1k2 and ρk1k2 . Combining (B.11),
(B.12), their just-mentioned analogues, (A.1)(d), (A.4)(c) and (B.5)–(B.10),
it can be deduced that for each η > 0,

P
{
ρ̂j ≥ (1− η)C4 for j = 1, . . . , r0 − 2

}
→ 1 ,

P
{
ρ̂j ≤ (1 + η)n−a2 for at least p− C5 p

′ values of j ∈ {1, . . . , p}
}
→ 1 ,

P
{

(1− η)n−a1 ≤ ρ̂j ≤ (1 + η)n−a for j = r0 + 1, r0

}
→ 1 ,

P
{
ρ̂j1j2 ≥ (1− η)C4

}
→ 1 ,

and
P
{
ρ̂k1k2 ≤ nη−a, 2 ≤ k1 < k2 ≤ p, (k1, k2) 6= (j1, j2)

}
→ 1 .

The first three of these properties imply part (a) of Theorem 1, and that
result and the next two properties above give part (b) of Theorem 1.
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