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EXAMINING THE INFLUENCE OF CELL SIZE AND BANDWIDTH 
SIZE ON KERNEL DENSITY ESTIMATION CRIME HOTSPOT MAPS 

FOR PREDICTING SPATIAL PATTERNS OF CRIME

Spencer CHAINEY

Abstract
Hotspot mapping is a popular technique used for helping to target police patrols and other crime 
reduction initiatives.  There are a number of spatial analysis techniques that can be used for iden-
tifying hotspots, but the most popular in recent years is kernel density estimation (KDE).  KDE 
is popular because of the visually appealing way it represents the spatial distribution of crime, 
and because it is considered to be the most accurate of the commonly used hotspot mapping 
techniques.  To produce KDE outputs, the researcher is required to enter values for two main 
parameters: the cell size and bandwidth size. To date little research has been conducted on the 
infl uence these parameters have on KDE hotspot mapping output, and none has been conducted 
on the infl uence these parameter settings have on a hotspot map’s central purpose – to identify 
where crime may occur in the future.  We fi ll this gap with this research by conducting a number 
of experiments using different cell size and bandwidth values with crime data on residential 
burglary and violent assaults.  We show that cell size has little infl uence on KDE crime hotspot 
maps for predicting spatial patterns of crime, but bandwidth size does have an infl uence.  We 
conclude by discussing how the fi ndings from this research can help inform police practitioners 
and researchers make better use of KDE for targeting policing and crime prevention initiatives.

Keywords:
hotspot analysis, kernel density estimation, crime prediction, cell size, bandwidth, burglary, vio-
lent crime

Résumé
La cartographie des points chauds (hotspots) est une technique populaire pour orienter les pa-
trouilles de police et assister d’autres initiatives visant à la réduction de la criminalité. Il existe 
un certain nombre de techniques d’analyse spatiale qui peuvent être utilisées pour identifi er les 
points chauds, mais la plus populaire au cours des dernières années est l’estimation à noyau 
de densité (Kernel Density Estimation – KDE). KDE est très populaire en raison de la manière 
visuellement attrayante dont elle représente la distribution spatiale de la criminalité, et parce 
que la méthode est considérée comme la plus précise parmi les techniques de cartographie des 
points chauds couramment utilisées. Pour produire des résultats avec KDE, le chercheur est 
tenu de fi xer les valeurs de deux paramètres principaux : la taille des cellules et la taille de la 
fenêtre de convolution. A ce jour, peu de recherches ont été menées sur l’infl uence qu’ont ces 
paramètres sur l’interprétation fi nale d’une carte des points chauds – à savoir, identifi er où la 
criminalité peut se produire dans l’avenir. Nous comblons cette lacune avec cette recherche, 
en effectuant un certain nombre d’expériences en utilisant différentes tailles de cellules et de 
valeurs de fenêtre, avec des données de la criminalité sur les cambriolages résidentiels et les 
agressions violentes. Nous montrons que la taille des cellules a peu d’infl uence sur les cartes 
de points chauds de criminalité issues de KDE pour prédire la répartition spatiale de la crimi-
nalité, mais par contre la taille de la fenêtre a une infl uence. Nous concluons en discutant de la 
manière dont les résultats de cette recherche peuvent aider à informer les praticiens de la police 
et assister les chercheurs dans une meilleure utilisation de KDE permettant de mieux cibler les 
initiatives de prévention du crime et de maintien de l’ordre.

Mots-clés
Analyse des points chauds, estimateur à noyau de densité, prédiction de criminalité, taille de 
cellule, taille de fenêtre, cambriolage, agression violente
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I. INTRODUCTION

The mapping of hotspots of crime has become com-
mon practice in police agencies across the world.  A 
hotspot is defi ned as being an area of high concentra-
tion of crime relative to the distribution of crime across 
the entire study area (Home Offi ce, 2005; Chainey and 
Ratcliffe, 2005; Sherman, 2009).  In these terms, hots-
pots can exist at different geographic scales of interest, 
whether it is at the city level for exploring localities 
where crime is highest, or at a local residential housing 
estate level, identifying particular streets or clusters of 
buildings where crime is seen to highly concentrate.  
Hotspot analysis has been applied to many forms of 
crime: from the analysis of gang-related murders in 
Belo Horizonte, Brazil (Beato, 2008), violent crime in 
Philadelphia (Ratcliffe et al., 2011), residential burgla-
ry, street robbery and vehicle crime in London (Eck et 
al., 2005), and street assaults in Melbourne, Australia 
(Mashford, 2008).

The use of hotspot mapping has also helped initiate the 
concept of hotspot policing – the targeting of police pa-
trol strategies to crime hotspots in an effort to reduce 
the high volume of crime that is committed at these lo-
cations (see Braga, 2007 and Ratcliffe et al. 2011 for 
examples).  Hotspot maps are also routine outputs that 
feed into Compstat style meetings (for a description 
of Compstat and examples see Chainey and Ratcliffe, 
2005 and Home Offi ce, 2005) and the intelligence 
production process of the UK’s National Intelligence 
Model (NPIA, 2010).  Hotspot mapping has therefore 
become a ubiquitous application in contemporary po-
licing.

There are many spatial analysis techniques that can 
be applied to produce hotspot maps of crime.  These 
include the use of spatial ellipses as shown by Block 
and Block (2000) when analysing hotspots around ra-
pid transit stations in Chicago, applying a thematic (or 
choropleth) mapping approach to geographic adminis-
trative units as illustrated by Ratcliffe and McCullagh 
(2001) in their analysis of burglary across a study area’s 
census zones, and grid thematic mapping as used by 
LeBeau (2001) to map patterns of emergency calls and 
violent offences in North Carolina.  However, it is the 
use of kernel density estimation that in recent times has 
become the technique of choice by police practitioners 
and researchers (Chainey et al., 2008a), and as illustra-
ted by examples of hotspot maps presented at the 2012 
International Crime and Intelligence Analysis Confe-
rence (Figure 1).

Kernel density estimation (KDE) is also considered to 
be the most accurate of these common hotspot map-
ping techniques.  This was illustrated by Chainey et al. 
(2008a) in a study that compared the hotspot mapping 
outputs generated using spatial ellipses, thematic map-
ping of census areas, grid thematic mapping and KDE 
for their ability to predict spatial patterns of crime.  
That is, based on the principle that hotspot mapping is 
used as a basic form of crime prediction – it uses data 
on past incidents to determine where crime may occur 
in the future - they showed that KDE outputs consist-
ently produced better prediction results in comparison 
to the other techniques.

Like many spatial analysis techniques KDE requires 
the researcher to determine the values to enter for cer-
tain technical parameters in order to produce mapping 

(a) (b)

Figure 1. Examples of kernel density hotspot maps of crime, as presented at the 2012 International Crime and In-
telligence Analysis Conference (a) hotspot map of burglary for the county of Worcestershire (UK) and (b) hotspot 
map of criminal damage in Hawkesley, Birmingham (UK).
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output.  These two main parameters are the value for 
the cell size (sometimes referred to as the resolution) 
and the value for the bandwidth (often also referred to 
as the search radius).  An alternative method to specify-
ing a fi xed bandwidth is the adaptive KDE approach 
where the bandwidth varies based on a user determined 
number of neighbours to include in the kernel density 
calculation.  This adaptive kernel approach is rarely 
used by crime mapping practitioners (Chainey et al., 
2008), hence the focus of this research was towards the 
more commonly used fi xed kernel bandwidth approach.  
There is currently very little guidance on cell size and 
bandwidth size selection for the practical application of 
KDE hotspot mapping in policing, with the researcher 
either giving little thought to these values and their in-
fl uence, settling for the default values determined by 
their KDE software application, or drawing from their 
own particular whims, fancies or experience (Eck et al., 
2005; Chainey and Ratcliffe, 2005).

In this paper we aim to better inform practitioners and 
researchers by examining the infl uence that cell size 
and bandwidth size have on KDE hotspot mapping out-
puts.  We follow as a guide the methodology used by 
Chainey et al. (2008a) that compared the spatial predic-
tion measures of different hotspot mapping techniques, 
by comparing the infl uence that different cell size and 
bandwidth size values have on the spatial prediction 
abilities of KDE hotspot mapping outputs.

Section 2 describes in further detail the kernel density 
estimation function and how cell size and bandwidth 
values fi t mathematically into its formulation.  Section 
3 describes the methodology, with results (section 4), a 
discussion and conclusions then following.

II. KERNEL DENSITY ESTIMATION

The spatial application of kernel density estimation 
emerged as a popular technique in spatial epidemio-
logy to assist the study of disease patterns (for an early 
example see Bithell, 1990).  Similar to disease, crime 
incidents are most usually geographically referenced as 
points.  The kernel density estimation function is ap-
plied to these points to obtain a smooth surface estimate 
representing the density of the point distribution.  In 
mathematical terms, KDE is expressed as:

 (1)

Where f(x,y) is the density value at location (x,y), n 
is the number of incidents/points, h is the bandwidth, 
di is the geographical distance between incident i and 
location (x, y) and k is a density function, known as 
the kernel.  k can take many forms although the results 
between different functions produce very similar densi-

ty values (Bailey and Gatrell, 1995).  A common choice 
for k is the quartic function (Bailey and Gatrell, 1995; 
Ratcliffe, 2002; Levine, 2004).

Evaluation of the components of the KDE equation 
show that the density value for each location is affected 
by the number of points, their spatial distribution, and 
the bandwidth.  For the purpose of generating a hotspot 
map of crime for a single study area, using data for a 
particular retrospective snapshot of previous incidents, 
the number of crime incidents across the area would 
remain the same (and hence not infl uence changes in 
the density estimate), the spatial distribution of the 
crime incidents is static, therefore it is the bandwidth 
that will infl uence different values of f at each x,y lo-
cation.  Each x,y location is represented spatially as a 
grid cell (the coordinates referring to the centroid of 
that cell), with the calculated density value f attribu-
ted to each cell.  The cell size chosen by the researcher 
can vary, resulting in many calculations of f if the cell 
size is small or much fewer calculations if the cell size 
is large.  Whilst cell size is not an input to the KDE 
equation, the representation of these density values for 
areas of different size will be subject to the Modifi able 
Areal Unit Problem (Openshaw, 1984) – different size 
cells may produce different results of the spatial KDE 
distribution of crime.

There is currently very little guidance on the choice of 
cell size a researcher should select and no research that 
we are aware of that investigates comprehensively the 
impact it can have on a crime hotspots central aim – to 
accurately identify areas where there have been high 
concentrations of crime, using the hotspot mapping 
output to determine where policing resources should 
then be targeted.  The little guidance that is offered is 
by Chainey and Ratcliffe (2005) who recommend that 
a suitable KDE cell size to choose for crime hotspot 
mapping is to divide the shorter side of the study area’s 
minimum bounding rectangle (MBR) by 150.  Whilst 
simple to calculate and used to determine the default 
cell size in the Hotspot Detective MapInfo add-on (Rat-
cliffe, 2002), this approach has not been rigorously eva-
luated.

The choice of bandwidth size value for crime resear-
chers to select is similarly uninformed.  Whilst there 
are several bandwidth size optimisation routines such 
as the Mean Integrated Square Error (Fotheringham et 
al., 2000; Bowman and Azzelini, 1997), Akaike Cor-
relation Coeffi cient and the Cross Validation method 
(Silverman, 1986; Brunsdon, 1995; Fotheringham et 
al., 2002), these tend to produce large bandwidths and 
are considered unsuitable for the purposes of explo-
ring local spatial patterns of the density distribution 
of crime (Uhlig, 2005).  Bailey and Gatrell suggest a 
value derived from calculating 2.068.0 −= nh  as a rough 
choice (Bailey and Gatrell, 1995, 86) for the bandwidth 
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(where n is the number of observed events across the 
study area), but again experimentation of this approach 
tends to produce bandwidth values that are much larger 
than those used by crime researchers in practice (Uhlig, 
2005).  Chainey (2011) recommends a good starting 
bandwidth is to measure the shorter side of the study 
area’s MBR, divide by 150, and multiply this value by 
5.  Whilst simple to calculate, the choice of this band-
width size has not been evaluated, but is common ap-
plied - Hotspot Detective for MapInfo uses a very simi-
lar procedure for calculating bandwidth default values 
(Ratcliffe, 2002).  Many others suggest an approach of 
experimenting with different sizes of bandwidth (Bailey 
and Gatrell, 1995; Eck et al., 2005; Chainey and Rat-
cliffe, 2005).  Whilst this encourages the researcher to 
explore their data under different bandwidth conditions 
it often leaves the researcher choosing the mapping 
output that looks the best (Chainey and Ratcliffe, 2005, 
159), rather than being more scientifi cally informed on 
the infl uence that bandwidth size selection may have on 
the hotspot map’s central purpose – to accurately assist 
the targeting of police interventions by helping deter-
mine where crime is likely to occur in the future.

III. METHODOLOGY

Kernel density hotspot maps were created using MapIn-
fo Professional version 10.5 and the MapInfo add-on 
programme Hotspot Detective (Ratcliffe, 2002).  The 
study area chosen was the district of Newcastle-upon-
Tyne in North East England (Figure 2).  Newcastle is 
one of England’s largest ten cities and therefore includes 
many of the urban geographical features and amenities 
that one would expect in a typical city.  This includes 
a vibrant shopping and entertainment area in the centre 
of the city, a large number of economic and commerce 
functions, a mainline train station, a metro system, and 
two large universities.  The district also includes rural 
areas towards the north.  The district population was 
292,000 at the time of the 2011 Census of England and 
Wales.

Geocoded crime point data was provided by Northum-
bria Police for a one year period (1st October 2009 to 
30th September 2010).  Burglary to a residential dwel-
ling and violence with injury were the two subsets of 
data that were chosen for analysis.  Two types of crime 

Figure 2. Newcastle-upon-Tyne study area
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were selected to explore consistencies between the re-
sults.  Previous research into the spatial prediction of 
hotspot maps has used residential burglary (Chainey et 
al., 2008a), but to date no study has used violent crime 
data.  The analysis of residential burglary would there-
fore enable comparisons with previous research, with 
the analysis of violent crime offering a new perspec-
tive of spatial prediction patterns using KDE hotspot 
maps.  These crime types were also chosen because 
they are groupings that are regularly analysed by police 
and crime reduction practitioners - therefore the impli-
cations of the research would be of practical interest.  
Table 1 lists the number of crimes in each sample crime 
type dataset.  The two sets of geocoded crime data were 
validated using a methodology for geocoding accuracy 
analysis as reported in Chainey and Ratcliffe (2005, 61-
63).  This revealed the crime data to be more than 95% 
accurate to the street address level and fi t for purpose 
for this research.

Table 1. The number of crime incidents for each crime 
type in Newcastle-upon-Tyne

In following the methodology used by Chainey et al. 
(2008a), a suitable date had to be chosen within the 
data time period as the day on which retrospective data 
were selected to generate hotspot maps against which 
future events could be compared.  For simplicity, the 1st 
April 2010 was selected in order to maximise the use 
of 6 months of retrospective data for generating KDE 
hotspot maps, and to use the complete set of 6 months 
of data after this date for measuring the hotspot maps’ 
abilities for predicting future events.  In their analysis 
that compared two different measurement dates (1st Ja-

nuary and 13th March), Chainey et al. (2008a) found no 
difference in their results.  We were therefore confi dent 
that the selection of the 1st April 2010 would offer a 
measurement date that generated representative results.

The retrospective time data was sliced into six time pe-
riods and used as input data to generate KDE hotspot 
maps.  This meant that rather than using just one retros-
pective time period (e.g. the three months prior to the 
measurement date) which may generate an anomalous 
result, the use of a number of retrospective time periods 
would form a more reliable basis on which to draw 
conclusions.  Retrospective input data was sliced into 
the time periods shown in Table 2a, for each crime type.  
This concept of using different slices of data as the input 
data was also followed through to the analysis against 
measurement data.  Six time periods of measurement 
data were used.  This meant that rather than using just 
one measurement data period for the research (e.g. the 
three months after the measurement date), the use of a 
number of measurement data time periods would gene-
rate results from which more reliable conclusions could 
be made.  Measurement data was sliced into the time 
periods shown in Table 2b.  This meant that KDE hots-
pot maps that were generated for each period of input 
data would be measured for their ability to predict spa-
tial patterns of crime, when the prediction period was 
the next month, the next two months, and to the next 
six months.

In their study that compared common hotspot tech-
niques, Chainey et al. (2008a) introduced the Predic-
tion Accuracy Index (PAI).  The index was devised as a 
simple method to allow comparisons between different 
types of hotspot maps.  The index considers the hit rate 
value (the proportion of crime that occurs within the 
areas where crimes were predicted to occur i.e. the hots-
pots) against the size of the areas where crimes were 
predicted to occur (i.e. the areas determined as hots-
pots), relative to the size of the study area.  The PAI 
is calculated by dividing the hit rate percentage by the 

Crime type Number of 
incidents 

(1st October 2009 to 30th 
September 2010) 

Residential burglary 1304 
Assaults with injury 1838 

Time periods of data used to create KDE hotspot maps 
1 month 2 months 3 months 4 months 5 months 6 months 
01 March 2010 - 
31 March 2010 

01 February 2010 - 
31 March 2010 

01 January 2010 - 
31 March 2010 

01 December 2009 - 
31 March 2010 

01 November 2009 - 
31 March 2010 

01 October 2009 - 
31 March 2010 

Time periods of data used to measure the spatial prediction abilities of KDE hotspot maps 
1 month 2 months 3 months 4 months 5 months 6 months 
01 April 2010 - 
30 April 2010 

01 April 2010 - 30 
May 2010 

01 April 2010 – 
31 June 2010 

01 April 2010 - 31 
July 2010 

01 April 2010 - 31 
August 2010 

01 April 2010 - 30 
September 2010 

Table 2.  (a) The temporal slices of input data for generating hotspot maps, for a measurement date of the 1st April 
2010 and (b) the temporal slices of measurement data for calculating the ability of KDE hotspot maps to predict 
spatial patterns of crime

a

b
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area percentage (the area of the hotspots in relation to 
the whole study area (see Equation 2)).

(2)

n: number of crimes in areas where crimes are predicted 
to occur (e.g. hotspots)
N: number of crimes in study area
a: area (e.g. km²) of areas where crimes are predicted to 
occur (e.g. area of hotspots)
A: area (e.g. km²) of study area

For example, if 25% of future crime events took place 
in 50% of the study area, the PAI value would equal 0.5; 
if 20% of future crime events took place in 10% of the 
area, the PAI would equal 2.  Therefore, the higher the 
PAI, the better the hotspot map for predicting spatial 
patterns of crime.

Since the PAI was introduced, other approaches for 
measuring the predictive abilities of mapping output 
have been developed.  Perhaps the most rigorous of 
these is proposed by Johnson et al. (2009).  The pro-
blem with a single measure such as the PAI is that 
it only offers a comparison between one hit rate and 
one defi ned hotspot area, and no comparison against 
chance expectation.  Johnson et al. (2009) proposed 
the use of an accuracy concentration curve.  This is ge-
nerated by plotting the percentage of crimes that have 
been accurately predicted (i.e. the hit rate) against the 
incremental risk ordered percentage of the study area 
i.e. comparing the number of future crimes in 1% of 
the study area, with this 1% area containing the highest 
KDE values; comparing the number of future crimes in 
the areas containing the top 2% of KDE values in the 
study area; comparing the number of future crimes in 
the areas containing the top 3% of KDE values in the 
study area ..., to comparing the number of future crimes 
in the areas containing 100% of the study area.

However, in Johnson et al.’ study (2009) they only com-
pared results between mapping techniques for one input 
data period (two months) and one output data period 
(seven days).  Calculating an accuracy concentration 
curve and comparing it against a Monte Carlo simulated 
result (produced after running at least 19 simulations in 
order to use a 0.05 level of signifi cance) is practical for 
comparing one set of data input and output for two dif-
ferent techniques (i.e. two experiments).  In our study 
that uses six different input datasets, and six different 
output datasets for eight different bandwidth settings 
and eight different cell size settings (more details on 
bandwidth and cell size settings are described below), 
for two types of crime (therefore involving 1152 experi-
ments), and generating 19 Monte Carlo simulations for 
each experiment, this approach is not practical nor pro-

portionate to the aims of this research – to explore diffe-
rences between cell size value and bandwidth value, for 
the same study area, using the same hotspot mapping 
technique.  The use of the PAI has since been discussed 
further by Pezzuchi (2008), Levine (2008) and Chai-
ney et al. (2008b; 2008c), with researchers concluding 
it to be a useful measure for comparing multiple hotspot 
mapping outputs.  This has included minimising chance 
expectation by using the mean PAI results and obser-
ving the variation in the standard deviation generated 
from the many experiments.

Eight cell size values were chosen for comparison: 30 
m, 60 m, 90 m, 120 m, 150 m, 180 m, 210 m and 240 m.  
A value that is often used for the cell size (as referred 
to in section 2) is the result from measuring the shortest 
side of the minimum bounding rectangle of the study 
area, and dividing this distance by 150.  Although the 
choice of 150 is rather arbitrary, in practice it provides a 
useful starting measure and is the procedure that is used 
to calculate cell size in the popular Hotspot Detective 
for MapInfo software (Ratcliffe, 2002).  This gave the 
value of 89.6 (rounded upto 90 m).  We therefore felt 
it useful to generate results for this measure in compa-
rison to other cell size values, using multiples of 30 m 
in our cell size experiments.  For each cell size expe-
riment, the bandwidth was controlled to a single size: 
a bandwidth of 450 m was used, as per the guidance 
described in section 2.

Eight bandwidth size values were chosen for compari-
son: 100 m, 200 m, 300 m, 400 m, 500 m, 600 m, 700 
m and 800 m.  If we had followed the recommenda-
tions of Chainey (2011) (i.e. fi ve times the cell size) 
this would have suggested a bandwidth value of 450 m.  
Rather than use multiples of 150 m, we decided to use 
multiples of 100 m in order to explore the infl uence of 
a small bandwidth (100 m), to help more simply pre-
sent results, but still enable a comparison between the 
outputs generated between 400 m and 500 m as an indi-
cation of the effectiveness of this rather crude approach 
for determining bandwidth size.  For each bandwidth 
size experiment, the cell size was controlled to a single 
size: a cell size of 90 m was used, as per the guidance 
described in section 2.

To identify if predicted spatial patterns of crime genera-
ted by KDE hotspot maps under different cell size and 
bandwidth settings differed, Prediction Accuracy Index 
measures were aggregated and averaged for the periods 
of input data and for the periods of measurement data.  
This meant that the PAI measures could be compared, 
with any differences being explained in relation to the 
cell size and bandwidth size rather than different pe-
riods of input and measurement data.  This approach 
was applied separately to the two crime datasets: resi-
dential burglary and assault with injury.  The standard 
deviation and coeffi cient of variation of the PAI for 
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each crime type across the eight different cell size va-
lues and eight bandwidth values were also calculated.

During the data time period (1st October 2009 to 30th 
September 2010) there could have been police opera-
tions and crime reduction initiatives that had an impact 
on crime levels, plus there could have been an impact 
from seasonal infl uences.  For this study, because 
the focus was on comparing KDE parameter settings 
against the same data, any changes in crime patterns 
would have the same impact on different cell size and 
bandwidth size parameter entries and would not affect 
the ability to examine results and draw conclusions on 
the analyses.
A fi nal parameter to consider for KDE hotspot map 
generation is a threshold value for determining which 
areas are hot.  For purposes of research comparison, 
we followed the methodology used by Chainey et al. 
(2008a).  This involved using fi ve thematic classes and 
default values generated from using the quantile the-

matic classifi cation method in MapInfo.  Hot was then 
determined by the top thematic class (Figure 3).

IV. RESULTS

A. The infl uence of cell size on KDE hotspot maps 
for predicting where crime may occur 

Table 3 shows the PAI results for residential burglary 
and assaults with injury for different cell sizes.  The 
PAI results for residential burglary varied between 6.6 
for a cell size of 240 m to 7.1 for 30 m and 60 m cell 
sizes.  The PAI results for assaults with injury were 
much higher than those for residential burglary, but 
again showed only a small amount of relative variation 
from 59.9 for a cell size of 210 m to 68.5 for a cell size 
of 60 m.  These results suggest that although PAI va-
lues decrease with increases in cell size, this difference 
is marginal.  These results are also shown in Figure 4.  

(a) KDE hotspot map  (b) Top thematic class of KDE hotspot map

Figure 3. Hotspots were determined by selecting the top thematic class calculated using fi ve classes and the default 
values generated from applying the quantile thematic range method in MapInfo

 Residential burglary Assaults with injury 
Cell size (m) PAI SD CV PAI SD CV 
30 7.1 0.60 0.08 68.4 3.06 0.04 
60 7.1 0.66 0.09 68.5 2.96 0.04 
90 6.7 0.53 0.08 65.1 2.66 0.04 
120 6.9 0.57 0.08 64.5 2.50 0.04 
150 6.7 0.53 0.08 63.0 3.17 0.05 
180 6.8 0.64 0.10 64.3 2.95 0.05 
210 6.7 0.46 0.07 59.9 2.39 0.04 
240 6.6 0.48 0.07 60.2 2.85 0.05 

Table 3. KDE hotspot map PAI, standard deviation (SD) and coeffi cient of variation (CV) results for residential 
burglary and assaults with injury for different cell sizes
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There was little statistical variation in the results for 
each cell size, as indicated by the low coeffi cient of 
variation (CV) values, and little difference in the CV 
values between cell sizes.

The similarity in results for different cell sizes is further 
illustrated by the difference in the number of crimes 
that maps of different cell sizes predict in KDE gene-
rated hotspot areas (Table 4).  When the KDE hotspot 
areas were controlled to identify 1% of the total study 
area (i.e. the 1% of areas with the highest KDE values), 
generated from 3 months of input data using cell sizes 
of 30 m and 240 m to predict where crimes would oc-
cur in the next 3 months, very similar results were pro-
duced: for residential burglary, KDE outputs generated 
using a 30 m cell size predicted 29 crimes, in compari-
son to 28 crimes using a cell size of 240 m; for assaults 
with injury, KDE outputs generated using a 30 m cell 

size predicted 158 crimes, in comparison to 153 crimes 
using a cell size of 240 m.  That is, as the spatial reso-
lution of the KDE hotspot map begins to degrade, the 
ability of the map to predict where crime occurs in the 
future reduces only slightly.

A. The infl uence of bandwidth size on KDE hotspot 
maps for predicting where crime may occur
Table 5 shows the PAI results for residential bur-
glary and assaults with injury for different bandwidth 
sizes.  The PAI results for residential burglary varied 
between 5.6 for bandwidth sizes of 700 m to 13.1 for 
100 m bandwidth sizes.  The PAI results for assaults 
with injury were much higher than those for residential 
burglary, but also showed large variation from 42.9 for 
bandwidth sizes of 800 m to 142.8 for bandwidth sizes 
of 100 m.  These results suggest that as bandwidth size 
increases, the power of the KDE hotspot map to pre-

Figure 4. The infl uence of cell size on KDE hotspot map PAI values for residential burglary and assaults with 
injury

Table 4. Crimes predicted using kernel density estimation outputs of difference cell sizes for residential burglary 
and assaults with injury, based on using three months of input crime data (January – March 2010) and 3 months of 
measurement data (April – June 2010). The area determined as hot was controlled to cover 1% of the study area’s 
total area.

Crime type and cell size (m) 

Crimes 
committed 

April – 
June 2010 

Number of 
crimes in 
hotspots 

(1% of area) 

Percentage 
of crimes in 

hotspots 

Residential burglary: 30 m 329 29 8.8% 
Residential burglary: 240 m 329 28 8.5% 
Assaults with injury: 30 m 459 158 34.3% 
Assaults with injury: 240 m 459 153 33.3% 
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dict spatial patterns of crime degrades.  These results 
are also shown in Figure 5.  With the exception of re-
sidential burglary KDE hotspot maps generated using a 
bandwidth of 100 m, there was little statistical variation 
in the results for each bandwidth size and little diffe-
rence in the CV values between cell sizes.

The difference in results for different bandwidth sizes 
is further illustrated by the difference in the number of 
crimes that maps of different bandwidth sizes predict in 
hotspots generated using KDE (Table 6).  To illustrate 
this (and to allow for easier comparisons with future re-
search) we controlled the KDE hotspot areas to identify 
only the top 1% of density values (i.e. the 1% of areas 

with the highest KDE values), generated from 3 months 
of input data using bandwidth sizes of 100 m and 800 
m to predict where crimes would occur in the next 3 
months.  For residential burglary, KDE outputs genera-
ted using a 100 m bandwidth size predicted 35 crimes 
(i.e. 11% of all burglaries in just 1% of the study area), 
in comparison to 22 crimes using a bandwidth size of 
800 m; for assaults with injury, KDE outputs generated 
using a 100 m bandwidth size predicted 166 crimes (i.e. 
36% of all violent assaults in 1% of the study area), 
in comparison to 137 crimes using a bandwidth size of 
800 m.  That is, as the smoothing of the KDE hotspot 
map increases, the ability of the map to predict where 
crime occurs degrades.  These results also illustrate the 

Table 5. KDE hotspot map PAI, standard deviation (SD) and coeffi cient of variation (CV) values for residential 
burglary and assaults with injury for different bandwidth sizes

 Residential burglary Assaults with injury 
Bandwidth size (m) PAI SD CV PAI SD CV 
100 13.1 2.8 0.22 142.8 11.53 0.08 
200 11.1 1.3 0.12 91.7 4.65 0.05 
300 8.7 1.0 0.12 79.4 3.03 0.04 
400 7.1 0.7 0.10 68.3 3.54 0.05 
500 6.5 0.6 0.09 60.2 2.60 0.04 
600 5.9 0.6 0.11 54.3 2.52 0.05 
700 5.6 0.6 0.11 48.6 2.23 0.05 
800 5.7 0.5 0.09 42.9 1.98 0.05 

Figure 5. The infl uence of bandwidth (m) size on KDE hotspot map PAI values for residential burglary and as-
saults with injury.
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proportion of crime that KDE hotspot maps can predict.

V. DISCUSSION AND IMPLICATIONS

The fi ndings from this research show that KDE hots-
pot maps generated using different cell sizes have little 
impact on the mapping outputs ability to predict spatial 
patterns of crime, but that different bandwidth sizes do 
have an impact.  Cell size mainly impacts on the visual 
appeal of the KDE mapping output, with higher resolu-
tions producing maps that avoid the blocky pixilation of 
outputs generated using larger cell sizes.  For example, 
the maps shown in Figure 6 are equally as good as each 
other for predicting where crime may occur in the fu-
ture, but Figure 6a is the more preferable output due to 
its better visual appeal.  While smaller cell sizes require 
greater computer processing due to the larger number 
of calculations that are required, in our experiments this 
extra length of processing was not a signifi cant impair-
ment.

Bandwidth size does though affect the ability of KDE 
hotspot maps to predict spatial patterns of crime.  For 

example, the maps shown in Figure 7 were generated 
using the same period of input data but have very dif-
ferent PAI values.  That is, the smaller the bandwidth, 
the better the KDE map is at predicting spatial patterns 
of crime.

The research has also shown the large variation that 
exists between the ability to predict different types of 
crime using KDE.  This was initially shown by Chainey 
et al. (2008a), with street robbery KDE maps generat-
ing higher PAI values than KDE hotspot maps of resi-
dential burglary, and vehicle crime.  The PAI results for 
residential burglary in this study of crime in Newcas-
tle-upon-Tyne are higher than those found by Chainey 
et al. (2008a) for residential burglary in London, indi-
cating differences between areas.  However, it is the 
high PAI values generated for violent assaults that offer 
new insights into the spatial prediction of KDE hotspot 
maps.  This is refl ected by the manner in which violent 
assaults cluster in comparison to burglary.  Whilst bur-
glary does concentrate spatially, these hotspots tend to 
be larger in number and more dispersed.  This is most 
likely due to the wider (in spatial terms) opportunity for 
burglary, with residential properties spread geographi-

Table 6. Crimes predicted using kernel density estimation outputs of difference bandwidth sizes for residential 
burglary and assaults with injury, based on using three months of input crime data (January – March 2010) and 3 
months of measurement data (April – June 2010).  The area determined as hot was controlled to cover 1% of the 
study area’s total area.

Crime type and bandwidth size (m) 

Crimes 
committed 

April – 
June 2010 

Number of 
crimes in 
hotspots 

(1% of area) 

Percentage 
of crimes in 

hotspots 

Residential burglary: 100 m 329 35 10.6% 
Residential burglary: 800 m 329 22 6.7% 
Assaults with injury: 100 m 459 166 36.2% 
Assaults with injury: 800 m 459 137 29.8% 

Figure 6. A comparison of KDE hotspot maps generated using the same bandwidth but with different cell sizes (a) 
30 metres (PAI of 7.0) and (b) 240 metres (PAI of 7.0)
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cally across areas.  Areas where violent assaults take 
place tend to be highly concentrated in areas that are 
associated with alcohol and the night-time economy 
(Maguire and Hopkins, 2003; Babor et al., 2003; Gra-
ham and Homel, 2008).  Newcastle’s night-time econo-
my is heavily concentrated in the city centre, therefore 
the occasional violent interaction between people in 
this highly compact area heavily infl uences the spatial 
distribution of this type of crime.  That is, the highly 
compact nature of the night-time economy has a direct 
impact on the highly compact, and predictable nature of 
where violent assaults are most concentrated.
The analysis of different cell sizes and bandwidths 
also offers practitioners the means to better qualify the 
default parameter values that are determined by Geo-
graphical Information System products such as ESRI’s 
ArcGIS Spatial Analyst, Crime Analyst, and Hotspot 

Detective for MapInfo.  Our results indicate that de-
faults for cell size such as those generated using Hot-
spot Detective (which involves dividing the shorter side 
of the MBR by 150) offer a useful starting point, but 
that reducing this value further will generate maps of 
greater visual appeal without affecting the maps ability 
to predict where crime is likely to occur in the future.  
However, bandwidth default values need further scru-
tiny by practitioners to ensure they are not too large and 
impair the purpose of the KDE hotspot mapping output.  
For example, the default Hotspot Detective KDE band-
width size for three months of violent assaults data for 
Newcastle-upon-Tyne was 450 m – a bandwidth size 
that generated a PAI value of 60 compared to a PAI of 
143 if a bandwidth of 100 m was used.

However, low bandwidth values produce KDE hotspot 

Figure 7. A comparison of KDE hotspot maps generated using the same cell size but with different bandwidth 
sizes (a) 100 metres (PAI of 119.3) and (b) 800 metres (PAI of 40.4)

(a)  (b)

Figure 8.  A procedure for creating precise and practical KDE hotspot maps for accurately assisting in the targeting 
of policing and crime reduction resources: (a) is a KDE hotspot map generated for a large area for identifying the 
key strategic areas for focus (bandwidth 300 m; cell size 90 m).  Once a focus area is identifi ed data for this area is 
selected, and a KDE hotspot map is generated using a smaller bandwidth (100 m) and cell size (10m).



18 Spencer CHAINEY

maps that appear spikey, with many small areas identi-
fi ed as hotspots.  In practice, this type of hotspot map is 
often considered unsuitable because it does not identify 
a small number of areas for strategic attention.  There-
fore, it is argued that a balance is required between 
KDE hotspot prediction accuracy, and output that is 
useful in practice.  A way in which this can be over-
come is to use a bandwidth size that is large enough to 
initially identify key hotspot areas for strategic atten-
tion, with these areas then being focused upon in more 
detail with a second hotspot map generated based on 
the distribution of crime in this focus area.  Figure 8 
shows an example of this – Figure 8a uses a bandwidth 
size of 300 m and cell size of 90 m to identify the main 
assaults hotspots in Newcastle-upon-Tyne.  The main 
hotspot then becomes the area of attention, with a sec-
ond KDE hotspot map generated for this area to more 
precisely identify the areas that are required for police 
attention.  Figure 8b was generated using a bandwidth 
of 100 m and a cell size of 10m.

KDE is though not without its weaknesses.  The pro-
cedure described above would fail to identify areas 
where there is a high and compact concentration of 
crime because larger bandwidths have the tendency 
to smooth these out over the area it generates density 
values for.  An additional weakness is that the use of 
KDE requires the researcher to determine what is hot 
by deciding the value for the top thematic class.  In this 
research we standardised this procedure by using the 
quantile thematic classifi cation method in all experi-
ments.  However, most GIS software offer several op-
tions for the user to determine a thematic classifi cation 
method preference, leading to subjectivity in hotspot 
mapping output.  This calls for further research that 
identifi es hotspot mapping methods that can overcome 
these KDE weaknesses.

VI. CONCLUSION

Hotspot analysis is a basic form of crime prediction – 
using crime data from the past to predict where crime 
may occur in the future, with the outputs from hotspot 
mapping being used in practice for determining where 
police patrols and other crime prevention initiatives 
should be targeted.  Kernel density estimation has be-
come the most popular technique used in practice for 
identifying hotspots of crime.

Cell size and bandwidth size are the two main parame-
ters that the user is required to enter in order to generate 
KDE hotspot mapping output.  The fi ndings from this 
research illustrate that cell size has little impact on a 
KDE hotspot map’s ability to predict spatial patterns 
of crime, but that smaller sizes generate hotspot maps 
of greater visual appeal.  Bandwidth size does though 
have an impact on a KDE hotspot output’s ability to 

predict spatial patterns of crime, with the spatial predic-
tion ability of the KDE hotspot map degrading as band-
width size increases.  To date, most users of KDE for 
hotspot mapping make use of default settings for cell 
size and bandwidth size, without qualifying these va-
lues.  This research has helped to identify the infl uence 
these parameters have, and in so doing offer practitio-
ners and researchers a more informed basis on which 
to qualify the values they should use for cell size and 
bandwidths for producing KDE hotspot maps.
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