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LES ZONES ET LES FORCES DE CONTACT TIBIO-FÉMORAL CHEZ LES 

SUJETS SAINS ET GONARTHROSIQUES 

Ali ZEIGHAMI 

 

RÉSUMÉ 

 
La gonarthrose est un type courant d'incapacité musculo-squelettique, en particulier chez les 
personnes âgées. Des forces de contact excessives sur l’articulation, ou sur une partie 
spécifique des surfaces articulaires (par exemples sur le compartiment médial), ainsi que le 
déplacement des forces de contact vers les régions qui ne sont pas adaptées aux charges sont 
les facteurs mécaniques qui peuvent provoquer la gonarthrose. Par conséquent, il est crucial de 
comprendre les différences de ces paramètres mécaniques chez les sujets gonarthrosiques par 
rapport aux sujets sains. Le but de cette étude était de comparer les localisations des points de 
contact tibiofémoraux et les forces de contact chez les sujets gonarthrosiques et sains et 
d'examiner si les localisations des points de contact influencent la distribution des forces de 
contact dans l’articulation dans ces deux groupes. 
 
La localisation des points de contact tibiofémoraux chez 10 sujets sains et 9 sujets 
gonarthrosiques au cours d'un mouvement de squat a été mesurée à l'aide d’une série d'images 
radiographiques biplanes. Une méthode manuelle de reconstruction et recalage 3D multi-vues 
a été utilisée pour reconstruire la forme et la position des os dans différentes positions et un 
calcul pondéré de la carte des distances os-à-os a été appliqué pour estimer la localisation des 
points de contact. Les résultats ont montré que les emplacements des points de contact des 
sujets gonarthrosiques sur les deux compartiments médial et latéral étaient décalés 
médialement par rapport aux emplacements du groupe sain. Dans les deux groupes, les points 
de contact ont montré une excursion postérieure sur le compartiment médial et des excursions 
postérieures et latérales sur le compartiment latéral. L'excursion sur le compartiment latéral 
était plus petite chez les sujets gonarthrosiques. 
 
Afin d’estimer les forces de contact tibiofémorales, un modèle musculo-squelettique du 
membre inférieur avec l'intégration des points de contact personnalisés a été mise en œuvre. 
Le modèle estime les forces de contact pendant la marche aux points de contact spécifiques au 
sujet, tels que définis pendant le mouvement de squat. Le modèle de l'articulation fémoro-
tibiale a ainsi été reformulé de telle sorte que les contraintes de l'articulation correspondent à 
la superposition des points de contact personnalisés tibial et fémoral en fonction de l’angle de 
flexion du genou. Les contraintes proposées sont adaptables aux points de contact dérivés des 
modèles articulaires classiques (par exemple, des mécanismes parallèles) ou ceux mesurés 
expérimentalement à partir des techniques d'imagerie 3D (par exemple, la fluoroscopie). Les 
forces de contact estimées à l'aide des points de contact personnalisés ont été comparées à 
celles estimées à partir des modèles classiques de l'articulation du genou chez 10 sujets sains. 
Les résultats ont montré que l'impact de la personnalisation des points de contact sur les forces 
de contact est très variable entre les sujets et que les déplacements des points de contact seuls 



X 

ne peuvent prédire la distribution des forces de contact entre les compartiments médial et 
latéral. 
 
Pour évaluer la contribution des points de contact à la distribution des forces de contact, le 
modèle musculo-squelettique du membre inférieur avec les trajectoires de points de contact 
personnalisées a été utilisé pour estimer les forces de contact médiales et latérales de 12 
gonarthrosiques et 10 sujets sains. Les forces de contact chez les sujets sains étaient légèrement 
plus élevées que chez les sujets gonarthrosiques. Cependant, aucune différence statistiquement 
significative n'a été notée dans les pics de force de contact médiaux, latéraux ou totaux. Les 
résultats d’une analyse de régression linéaire ont montré que le moment d'adduction du genou 
et le moment de flexion du genou étaient les principaux contributeurs au ratio de force de 
contact entre médial et total dans les deux groupes. Selon l'emplacement du point de contact 
dans deux directions anatomiques, seul l'emplacement du point de contact médial dans la 
direction médiale/latérale a eu une contribution significative au ratio de force chez les sujets 
gonarthrosiques. Cette étude a montré que le mécanisme de distribution de la force de contact 
dans l’articulation était différent dans les articulations arthrosiques où, contrairement aux 
personnes en bonne santé, l'emplacement du point de contact avait une contribution 
significative. De plus, le moment de flexion du genou a eu une plus grande contribution que le 
moment d'adduction du genou, alors que chez les sujets sains, le moment d'adduction du genou 
était le facteur le plus important. 
 
Mots-clés : gonarthrose, points de contact tibiofémoraux, modèle musculo-squelettique du 
membre inférieur, forces de contact tibiofémoraux, distribution des forces de contact.  
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ABSTRACT 

 
Knee osteoarthritis (OA) is a common type of musculoskeletal disability, particularly among 
the elderly population. Excessive contact forces on the joint, or on specific parts of it (e.g. 
medial compartment), or shifting the contact forces to the regions that are not adapted to 
loading are the mechanical factors which can trigger OA. Therefore, it is crucial to understand 
the differences of these mechanical parameters in OA subjects with respect to the healthy ones. 
The aim of this study was to the compare the tibiofemoral contact point locations and the 
contact forces in OA and healthy subjects and examine if the contact point locations influence 
the contact force sharing in both groups.  
 
The tibiofemoral contact point locations in 10 healthy and 9 osteoarthritic (OA) subjects during 
a weight-bearing squat was measured using stand-alone biplane X-ray images. A manual 
multiple view 3D reconstruction/registration method was used to reconstruct the bones in 
different squat postures from the biplane radiographs and a weighted center of bone-to-bone 
proximity was applied to estimate the contact point locations. Results showed that the contact 
point locations of the OA subjects on the medial and lateral compartments were shifted 
medially compared to the healthy group. In both groups, contact points showed a posterior 
excursion on the medial compartment and posterior and lateral excursions on the lateral 
compartment, where the excursion on the lateral compartment was smaller in OA subjects.  
 
To estimate the tibiofemoral contact forces, a custom musculoskeletal model of the lower limb 
with the integration of personalized contact points was provided to estimate contact forces at 
subject-specific contact points during gait. The tibiofemoral joint model was reformulated so 
that the constraints of the joint were formed by the superimposition of the personalized tibial 
and femoral contact points. The suggested constraints are adaptable to the contact points 
derived from the classical joint models or those experimentally measured from the 3D imaging 
techniques. The estimated contact forces estimated using the personalized contact points were 
compared to those estimated from the classical knee joint models in 10 healthy subjects. 
Results showed that the impact of personalization of contact points on the contact forces is 
very variable among the subjects and the shifts of the contact points alone cannot predict the 
distribution of contact forces in the medial and lateral compartments.  
 
To evaluate the contribution of contact point locations to the contact force distribution the 
musculoskeletal model of the lower limb with the personalized contact point trajectories were 
used to estimate the medial and lateral contact forces of 10 healthy and 12 OA subjects. The 
contact forces in healthy subjects were slightly higher compared to the OA subjects. However, 
no statistically significant difference was noted in the peaks of medial, lateral or total contact 
forces. The regression analysis results showed that the knee adduction moment and knee 
flexion moment were the main contributors to the medial-to-total contact force ratio (MR) in 
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both groups. From the components of the contact point location, the medial contact point 
location in medial/lateral direction had a significant contribution to the MR in OA subjects. 
This study showed that the mechanism of load distribution was different in OA joints where 
contrary to the healthy ones the contact point location was a significant contributor to MR. In 
addition, the knee flexion moment had a higher contribution to MR than the knee adduction 
moment whereas in healthy subjects the knee adduction moment was the most significant 
contributor to the MR. 
 
Keywords: osteoarthritis, tibiofemoral contact point locations, musculoskeletal model of the 
lower limb, tibiofemoral contact force, distribution of the contact forces.  
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INTRODUCTION 

 

 Knee osteoarthritis (OA) is a degenerative joint disease characterized by loss or deterioration 

of articular cartilage. It happens when the cartilage is unable to normally repair itself resulting 

in the breakdown of the cartilage tissue and the subchondral bone. OA primary clinical 

manifestations include swelling, pain, stiffness, and decreased range of motion. Known 

treatments are not effective to stop or slow down OA progression, but they rather address the 

symptoms of the disease. OA affects more than 10% of Canadian adults and is one of the main 

causes of chronic musculoskeletal disabilities worldwide. As the population ages, a growing 

number of OA disability is expected in the future. 

 

There are two types of factors which are known to be responsible for OA initiation and 

progression: systematic factors such as gender, age, genetics, and racial characteristics and 

biomechanical factors such as joint overloading, obesity, joint deformity, and joint injury. 

Systematic factors are believed to establish the foundation of cartilage properties whereas the 

biomechanical factors determine the location and severity of cartilage degeneration (Arokoski 

2003). Biomechanical abnormalities can be detrimental to the tissue by exposing the cartilage 

to excessive contact forces or by changing the contact point locations from the frequently 

loaded regions to the regions that are not usually loaded. Subtle kinematic abnormalities 

triggered by conditions such as anterior cruciate ligament deficiency (ACLD), shift the contact 

point locations from the frequently loaded regions and causes cartilage thinning which is an 

early sign of OA initiation (S Koo et al., 2007).  

 

High levels of contact forces could also damage the cartilage. While some level of repetitive 

loading is required for the nutrient distribution through the cartilage and regeneration of the 

tissue structure, excessive contact forces could damage cartilage by killing the cartilage living 

cells (chondrocytes), which regenerate and maintain the tissue structure (Clements et al., 

2001). In the knee joint, the medial compartment carries a bigger proportion of the contact 

forces and is more likely to be affected by OA than the lateral compartment. The larger forces 

on the medial compartment are due to the line of ground reaction force which falls medial to 
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the knee joint center creating an external adduction moment in the frontal plane. However, 

studies have argued that other parameters such as knee flexion moment, knee frontal plane 

alignment, gait speed have also a significant contribution to the contact force distribution 

(Adouni et al., 2014; Esculier et al., 2017; Kumar et al., 2013; Kutzner et al., 2013). In addition, 

since the external knee moments are counterbalanced partially by the medial and lateral contact 

forces, the contact point locations would also contribute to the contact force distribution 

(Lerner et al., 2015; Saliba et al., 2017b).  

 

According to what was discussed above, the knee contact point locations and contact forces 

are the two main biomechanical parameters in understanding the pathomechanics of OA. Thus, 

it is crucial to understand the patterns of contact points and contact forces and also, the 

relationship between these two parameters in OA and healthy subjects. This latter requires 

knowledge of the personalized contact points and the inclusion of these personalized contact 

points in the contact force estimations. Until now, the literature has not provided a quantitative 

description of the contact points in OA subjects in comparison with healthy controls. 

Moreover, the attempts to personalize the knee kinematic models in OA subjects does not 

address directly the contact points (Clément et al., 2017; Lerner et al., 2015). None of knee 

kinematic models introduced in musculoskeletal model currently allow evaluating the impact 

of the pathology distinct patterns of contact points on the contact force estimations.   

 

The general objective of this thesis is to evaluate the tibiofemoral contact locations and the 

contact forces in OA subjects and to analyze the differences with respect to the healthy 

subjects. Chapter 1 provides an introduction on the function and anatomy of the knee joint, the 

mechanisms of OA and discusses the current body of the literature on the tibiofemoral contact 

points and contact forces in normal and pathological knees and the methodological aspects of 

estimating these parameters and their limitations. Chapter 2 lists the problematics, aims and 

specific objectives of the current work. Chapter 3 introduce a method to estimate the 

personalized contact points during a weight-bearing squat activity from a set of biplane X-ray 

images and a 3D/2D registration techniques. The contact point locations in OA and healthy 

subjects are compared to examine the existence of a shift in the contact point locations of OA 
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joints with respect to the healthy ones. Chapter 4 provides the preliminary results on evaluating 

the effectiveness of a valgus knee orthosis in changing the contact point locations of severe 

OA subjects during squat. This gives a clinical example of the use of contact point locations 

as a novel metric for assessing the effectiveness of the interventions planned to improve the 

ambulatory function of subjects with OA. Chapter 5 introduces a method for the integration of 

the personalized contact points in the musculoskeletal model of the lower limb when estimating 

the contact force. Chapter 6 uses the musculoskeletal model with the personalized contact 

points to compare the medial and lateral contact forces in OA and healthy subjects. We also 

evaluated the contribution of contact point trajectories in the medial-to-total contact force ratio 

in the knee joint and determined the parameters with the highest contribution in OA and healthy 

subjects. Chapter 7 presents a general discussion summarizing the results of the four studies 

and remind the various limitations of the project and makes recommendations for the further 

projects. Finally, a general conclusion with the principal contributions ends this thesis. 

 





 

CHAPTER 1 
 

LITERATURE REVIEW 

1.1 Structure and anatomy of the knee joint 

The knee represents one of the most voluminous joints and surely one of the most complex of 

the human body. It is composed of two main joints, one being the junction between the two 

main long bones of the lower limb, i.e. the femur and the tibia (tibiofemoral joint), and the 

second between the femur and the patella (patellofemoral joint) (Figure 1-1). Although these 

two articulations are anatomically and functionally related, this project will focus on the 

tibiofemoral articulation. 

 

1.1.1 Structure and components of the tibiofemoral joint 

The tibiofemoral joint is a double load carrying joint. The articulation (Figure 1-2) is composed 

of the femoral and tibial condyles which are located at the medial distal and lateral distal ends 

of the femur and at the proximal medial and proximal lateral ends of the tibia respectively. The 

convex shape of the femoral condyles articulates with the slightly concave surface of the tibial 

condyles granting significant mobility to the knee in the six degrees of freedom. The 

articulating surfaces are covered by a thin layer of articular cartilage allowing an efficient 

lubrication. The low congruence of the joint surfaces leaves limited contact surface that may 

be the cause of high contact pressures. This is, however, attenuated by the presence of two 

menisci attached to the peripheral edges of the tibial condyles. The crescent-shaped menisci 

with fibrocartilaginous structure, make it possible to distribute articular pressures over a larger 

contact area. The medial meniscus is narrow and long in shape of a "c" while the lateral 

meniscus is wider as well as shorter in the shape of an "0" (Figure 1-3). The menisci are slightly 

deformable structures during movement, but they remain firmly anchored at the joint surfaces 

by the meniscal attachments.  
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A set of ligaments provide stability to the tibiofemoral joint. Medial collateral ligament (MCL), 

Lateral collateral ligament (LCL), Anterior cruciate ligament (ACL), and Posterior cruciate 

ligament (PCL) are the four main knee joint ligaments.  

Collateral ligaments are necessary to prevent rotation in the frontal plane around the 

anteroposterior axis when the knee is in extension, while cruciate ligaments help to prevent 

anteroposterior translation of the articular surfaces by connecting the tibia and femur.  

Meniscus and ligament pathology are in some cases primary to OA. A long-term change in the 

dynamics of knee loading due to ligament or meniscus injury is associated with a very high 

risk of OA development (Lohmander et al., 2007).  

 

 

Figure 1-1   Anatomy of the knee and the tibiofemoral joint. Figure adapted from Norkin et 
al. (2016). 
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Figure 1-2 Tibiofemoral articulation viewed from anterior (left) lateral (middle) and posterior 
(right) directions, allowing to illustrate the shape of the femoral and tibial condyles, adapted 

from Dufour (2007). 

 

 

Figure 1-3 Top view of the tibial plateau showing the shape of the medial (1) and lateral (2) 
menisci and their corresponding attachments (3,4). The figure is adapted from (Dufour, 

2007). 
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1.1.2 Structure and composition of articular cartilage  

Knee articular cartilage is a thin layer of hyaline cartilage specialized to provide a smooth and 

efficient lubrication between the joint surfaces. This tissue has no nerves, blood vessels, or 

lymphatics. It rather consists of an extracellular matrix (ECM) structure in which a type of 

cells called chondrocytes is scarcely distributed. The ECM structure is principally formed from 

collagen and proteoglycans and retains a substantial amount of water (Sophia Fox et al., 2009). 

This water is gently released under pressure and provides cartilage its unique lubrication 

properties under dynamic loading. The components of the cartilage are briefly described in the 

following. 

 

1.1.2.1 Water 

 

Water accounts for about 65 % - 80% of the wet weight of articular cartilage in deep and 

superficial zones respectively (Baykan, 2009). Water has two main roles in the cartilage being 

the distribution of nutrients and giving special mechanical properties to the cartilage. Unlike 

other organs and tissues, cartilage is devoid of nutrient carrying blood vessels. The nutrients 

to chondrocyte cells are transported through the flow of fluid in and out of the cartilage. 

Articular cartilage has the ability to withstand significant loads while maintaining minimal 

friction thanks to the interstitial fluid in its structure. Under loading, the fluid inside the 

cartilage which cannot escape easily from the surface is pressurized and transfers a major 

proportion of the load. Meanwhile, the water flow minimizes the solid-to-solid friction and 

makes the cartilage very efficient in lubrication. 

 

1.1.2.2 Collagens 

 

Type II collagen molecules represent ~75% of the dry weight of the cartilage. Collagen 

molecules form small fibrils and larger fibers distributed throughout the cartilage with depth-

dependent dimension and orientation. The specific architecture of the collagen fibrils 
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contributes to the stability of the ECM and provides cartilage with important shear and tensile 

properties. In the superficial zone, collagen fibrils are packed tightly and aligned parallel to the 

surface to better resist shear and tensile forces imposed by articulation. They are oriented 

obliquely in middle zone and perpendicularly in the deep zone to provide the highest resistance 

to the compressive forces (Figure 1-4).  

 

 

Figure 1-4 Scheme of articular cartilage structure, adapted from Fox et al. (2009) 

 

1.2 Cartilage loading and OA progression 

Progression of OA occurs during a long period of time. However, due to the lack of nerves in 

the cartilage tissue the symptoms appear towards the end stages. At this point, OA cannot be 

stopped or reversed. Therefore, it is crucial to understand the initiation and progression 

mechanisms. These mechanisms are largely unknown. But, it is generally thought that the 

initiation and progression of OA are associated to the mechanical properties and structure of 

cartilage on one hand and the joint loading on the other hand (Herzog et al., 2006).  

 

1.2.1 Mechanical loading effect on cartilage 

Mechanical loading has a double effect on the cartilage tissue. Given the nature of nutrient 

distribution with the fluid flow throughout the cartilage, loading has a great impact on the 
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synthesis of proteoglycan molecules. Normal cyclic loading of the cartilage promotes 

proteoglycan synthesis and makes it stiffer. It is reported that a cartilage regularly exposed to 

some levels of stress contains a higher amount of proteoglycans (Arokoski et al., 2000). On 

the other hand, continuous high-stress levels in the cartilage diminish proteoglycan synthesis 

and result in damages to the tissue through necrosis. Clements et al. (2001) suggested a 

threshold over which the chondrocytes would dye under cyclic loading. In a bovine cartilage 

experiment, they reported this threshold to be 6 Mpa. Over this threshold, the chondrocyte 

viability was negatively correlated to the magnitude of applied stress (Figure 1-5). 

 

 

Figure 1-5 cyclic loading over 6 Mpa kills the chondrocytes in bovine cartilage. Figure 
adapted from (Clements et al., 2001) 

 

Decreased proteoglycan concentration, disorganization of the collagen network, and softening 

of cartilage are the early signs of OA and cartilage injury (Figure 1-6). It is believed that once 

the integrity of the superficial zone of cartilage is lost, the underlying tissue would experience 

abnormally high strains. Thereafter, the degenerations would extend into the deeper zones of 

cartilage (Figure 1-6) (Arokoski et al., 2000). In the initial stage, the cartilage loses volume 

and becomes more vulnerable to damage under excessive load. The subchondral bone thickens 
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and fluid-filled cysts may appear near the joint. Eventually, broken bone or cartilage particles 

may float in the joint triggering further mechanical damage.   

 

 

Figure 1-6 Articular cartilage structure. Chondrocytes (ovals), proteoglycans (dots) and 
collagen fibrils (curved lines). The normal histology of the cartilage (left). The onset of OA 

(middle): Depletion of proteoglycans and disorganization of collagen fibrils in the superficial 
zone. Point of no return (right): Fibrillation of the superficial zone, additional loss of 
proteoglycans, and subchondral bone sclerosis, adapted from (Arokoski et al., 2000). 

 

1.2.2 Mechanical behavior of cartilage as an indicator of OA  

Following the histopathological and structural changes of cartilage due to OA progression, its 

mechanical characteristics change as well. Softening of cartilage in the initial stage is reported 

in some papers. In a study on different parts of cartilage collected during total knee 

arthroplasty, Kleemann et al. (Kleemann et al., 2005) found a meaningful correlation between 

OA severity and the reduction in the cartilage stiffness.  

Other studies showed that in artificially made OA through ACL transaction shear, tensile, 

compressive and other mechanical behaviors of cartilage are considerably changed (Setton et 
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al., 1999). It indicates that the mechanical, structural, and histological changes of cartilage 

during OA are interrelated. The results indicated a relation between structural, mechanical and 

histological changes in all stages of the degeneration. With increasing grade, the cartilage 

stiffness, which is primarily influenced by the integrity of the extracellular matrix, decreases 

and so are other mechanical properties. 

 

1.3 OA demonstrations and grading of the disease 

Regarding the histopathological changes in cartilage different scoring and grading methods are 

presented to classify the development of disease (Collins, 1939; Mainil-Varlet et al., 2003; 

Mankin et al., 1971). A histopathological grade assessment guide is presented in Table 1-2 

based on Pritzker’s method (Pritzker et al., 2005) to indicate what generally represents the step 

by step OA progression in different stages.  

  

The mainstay tool for diagnosis and monitoring of OA is plain radiography. Therefore, the 

classification of the disease is commonly performed using the manifestations observed in 

radiographic images. Kellgren-Lawrence  (K-L) is among the most popular OA classification 

tools which describe the severity of OA based on a 0 to 4 grading system (Kellgren et al., 1957; 

Schiphof et al., 2008). The K-L grading system was used in this thesis to discriminate the 

severe OA subjects and healthy controls.  

 

Table 1-1 Kellgren-Lawrence OA grading system and each grade characteristics. Adapted 
from Kohn et al. (2016). 

Kellgren-Lawrence scale grades Characteristics 

Grade 0 No Joint space narrowing or reactive changes 
Grade 1 Doubtful joint space narrowing, possible osteophytic lipping 
Grade 2 Possible joint space narrowing, definite osteophytes.  
Grade 3 Definite joint space narrowing, moderate osteophytes, some sclerosis, 

possible bone-end deformity 
Grade 4 Marked joint space narrowing, large osteophytes, severe sclerosis, 

definite bone ends deformity 
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Table 1-2 Pritzker’s histopathological grade assessment guide indicating the 
histopathological changes of cartilage during OA progression. Adapted from (Pritzker et al., 

2005). 
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1.4 Altered gait and anatomy characteristics in patients with OA  

The gait differences in OA subjects has been the subject of previous studies. Symptomatic OA 

subjects experience pain performing daily activities. This may result in adopting compensating 

gait strategies to reduce joint loading and the resultant pain (Stauffer et al., 1977). Reduced 

range of knee flexion is a remarkable pattern in the gait of OA patients (Schnitzer et al., 1993; 

Stauffer et al., 1977). Kaufman et al. (2001) reported 6° reduced range of motion and 

significantly lower gait speed in OA patients. The stride characteristics were also altered in 

OA group. Stride length was significantly smaller in OA subjects whereas cadence increased 

with respect to healthy controls (Kaufman et al., 2001). Knee varus alignment is another typical 

feature in OA and is believed to make the joint more vulnerable to the adverse effects of obesity 

and joint overloading (Sharma et al., 2000). 

External moments, and in particular adduction moment has been found to be associated with 

OA in many studies. Baliunas et al. (2000) observed increased peak of adduction moment in 

OA subjects. Adduction moment has been found to correlate with severity (Schnitzer et al., 

1993) or progression (Miyazaki et al., 2002) of OA. Adduction moment was also found to be 

correlated with the bone density of the proximal tibia (Hurwitz et al., 2002) and the outcome 

of tibial osteotomy surgery (C. Prodromos et al., 1985; Wang et al., 1990). Knee flexion 

moments is also one of the altered characteristics of gait in OA subjects.  The peak of knee 

flexion moment decreased in OA subjects with respect to healthy controls (Baliunas et al., 

2000; Kaufman et al., 2001).  

The mechanism behind the biomechanical alterations in OA is not fully understood. It is known 

that mitigating knee joint pain in some subjects can reverse some of these changes. For 

instance, following 4 weeks of treatment with nonsteroidal anti-inflammatory drugs (NSAID), 

the maximum adduction moment and quadriceps moment (measured on ergometer) increased 

due to the joint pain reduction (Schnitzer et al., 1993). However, some biomechanical 

alterations are attributed to the morphological changes such as joint space narrowing in OA 

knees which permanently change the configuration of the joint and, as a result, the dynamics 

of the joint. Relieving the pain, in this case, would not make a difference. In a study on medial 
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compartment OA subjects and healthy controls, Andriacchi et al. (2004) reported that the varus 

alignment and the adduction moment were similar between healthy and moderate OA subjects 

whereas they were significantly different in severe OA patients who had a remarkable joint 

space narrowing in the medial compartment. Andriacchi et al. (2004) hypothesized that the 

change in the varus alignment and the adduction moment are a result of the change in the 

morphology of the joint in severe OA. 

 

1.5 Altered tibiofemoral contact point in patients with OA 

Along with the morphological changes of the joint, the tibiofemoral joint surface interpositions 

change as well. It is assumed that the initiation of OA begins with a change in the contact 

locations of the joint to the regions where it is not frequently loaded (Andriacchi et al., 2004). 

This shift could follow a traumatic or chronic condition such as meniscus or ligament injury. 

Loading the regions that are not conditioned to carry high frequent loads is detrimental to the 

cartilage tissue resulting in fibrillation of the surface and further damage to the tissue. Surface 

fibrillation causes an increase in the surface friction which induces further damage to the 

cartilage and accelerates the progression of the disease (Figure 1-7). However, the 

experimental data supporting this hypothesis on the pathomechanics of the knee OA is scarce. 
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Figure 1-7 A hypothetical framework for the initiation and progression of OA. OA initiation 
begins with a change in the contact locations of the joint. Cartilage in the less loaded regions 

Show signs of damage and surface fibrillation under the higher-than-normal loading 
conditions. Increased friction due to damage to the cartilage causes more severe degeneration 

of the tissue stimulating the progression of the cartilage breakdown. Figure adapted from 
(Andriacchi et al., 2004) 

  

 

Using dual fluoroscopy, Farrokhi et al. (2014) found that in OA subjects with self-reported 

instability the excursion and velocity of the medial compartment contact points were 
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significantly increased with respect to the healthy controls. In a later study, they showed that 

the increased velocity and excursion of contact points in OA group was associated with the 

increased frontal plane alignment. Increased contact point (CP) excursion in OA was therefore 

considered as a measure of mechanical instability of the affected joint (Farrokhi et al., 2016).  

In this regard, in the biomechanical analysis of the knee joint in OA, it is important to consider 

the configuration of the joint and the interaction of the articulating bones along with the other 

parameters of gait. This will help to better understand the parameters contributing to the 

pathomechanics of OA.  

 

1.6 Tibiofemoral contact point estimation 

Estimating the in vivo tibiofemoral contact points provides precious information that is 

valuable in understanding the initiation and progression mechanism of OA. It is hypothesized 

that the initiation of cartilage degeneration is triggered by a shift in the tibiofemoral contact 

point locations from the frequently loaded parts of the joint close to the tibial plateau 

centerlines towards the less loaded regions (T. P. Andriacchi, 2004).  Positioning the contact 

point is also important in designing total knee arthroplasties and developing the customized or 

personalized musculoskeletal models (Lerner ZF, 2015 Feb 26).  

 

Identification of joint contact parameters utilizing casting and pressure sensitive films are only 

practical in cadaver models (Ahmed et al., 1983; Walker et al., 1985). Magnetic resonance 

techniques normally scan the knee joint statically in supine posture and have technical 

limitations in studying naturally loaded joints and large ranges of motion (Johal et al., 2005; 

Yao et al., 2008). Therefore, 3D/2D registration techniques have been widely used to track the 

in vivo 3D motion of the bones in load-bearing conditions. The bone is generally reconstructed 

from magnetic resonance imaging (MRI) or computed tomography (CT)-scan with or without 

the cartilage layer, and then rigidly moved to match the 2D fluoroscopic or X-ray images 

recorded during movements. Tibiofemoral contact points are then estimated using the 

proximity of the articulating surfaces.  
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1.6.1 Reconstruction of subject-specific bone using imaging techniques 

The geometry of the knee joint for analysis of the joint is usually reconstructed from a stack of 

images obtained from MRI or CT-scan of the joint. The MRI is typically preferred for the soft 

tissues reconstruction, whereas CT images are widely used for hard tissues i.e., bones (Kazemi 

et al., 2013).  MRI does not emit ionizing radiation that makes it minimally detrimental to the 

patient. Both imaging methods provide segmentation accuracy with a root mean square (RMS) 

error below twice the pixel size. For a 1.5T MRI, this accuracy is less than 1mm. However, 

MRI is relatively costly, time-consuming in each acquisition and is normally performed only 

in supine position. CT-scan, on the other hand, exposes the subject to high levels of ionizing 

radiations making it potentially detrimental particularly in larger scale reconstructions such as 

the whole lower body.  

 

1.6.2 Reconstruction of subject-specific bone using X-ray images 

The radiographic images are the most clinically available data in assessing OA subjects and 

they show hard tissue boundaries with a very good resolution. The ability to reconstruct the 

3D patient-specific surface model of a bone from a limited number of 2D X-ray images (2 or 

more) would be clinically valuable. Various manual, semi-automatic and automatic solutions 

were proposed for this purpose. One solution is using a statistical shape model of the bone and 

adapting it to the personalized biplane X-ray of the subject to approximate the individual 3D 

geometry (G. Zheng et al., 2009).  

 

Another solution was proposed using EOS® system (EOS imaging, Paris, France) biplane X-

ray images and a generic model of the bone. The EOS® system simultaneously captures 2 

perpendicular images of the whole (or lower) body of standing subject in a single scan with a 

1:1 vertical scaling. Generating the geometric models of the bone structures of the knee with 

the EOS® system requires segmenting the bone contour in the biplane radiographs (Chav et 

al., 2009). Then, a generic bone model is deformed semi-automatically until it is superimposed 
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on the contours segmented in the previous step (Thierry Cresson et al., 2010; Cresson et al., 

2008) (Figure 1-9). 

 

 

Figure 1-8 EOS® low-dose imaging system and the reconstruction of the 3D geometry of the 
bones using a pair of biplane X-ray images. Adopted from http://www.eos-imaging.com, 

2016 

 

A major advantage of the EOS® system is its low emission of ionizing radiation; at the level 

of the spine, it has been estimated 8 to 10 times less than that of conventional radiography, and 

800 to 1000 times less than CT-scan (Deschênes et al., 2010; Dubousset et al., 2005). The main 

drawback of this procedure is that segmentation of soft tissue and cartilage is not possible. 

Only hard tissues are well visualized in X-ray images.  
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Figure 1-9 Reconstruction of the bone using EOS® biplane X-ray images. 

 

 

1.6.3 3D kinematics tracking of bones using biplane images  

The techniques to study in vivo 3D knee kinematic include a 3D reconstruction of the geometry 

using CT-scan, MRI, or biplane radiographs (EOS®) and then matching the model to the 2D 

projections of the joint captured during joint movement. Tashman et al. (2003) used a 

combination of CT and high-speed biplane radiography to measure the joint motion. (G Li et 

al., 2001) performed a computational analysis on the cartilage with the cartilage contact 

calculated using a reconstruction of bone and cartilage from MRI and movement tracking by 

2D fluoroscopic images.  

 

In the current project, we use the 2D images captured in EOS® in a standing position to 

reconstruct the shape of the bone. For the kinematics tracking, the 3D reconstructed geometry 

is matched to the biplane EOS® images of the subject taken at different flexion angles. The 

reconstruction/registration procedure is performed in IdefX software through the steps as 

described in (Chaibi et al., 2010). Further technical details are provided in chapter 3.  

Previous studies have been conducted on kinematics tracking using EOS® images. In a 

cadaveric study, Azmy et al. (2010) combined EOS® 3D reconstructions with an 
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optoelectronic motion capture system for measuring tibiofemoral and patellofemoral pseudo-

kinematics. They reported the overall rotational and translational uncertainty below 0.4° and 

1.8 mm for the tibiofemoral and 0.4° and 1.2 mm for the patellofemoral kinematics 

respectively.  

 

Other studies used stand-alone EOS® X-ray images for both geometry reconstruction and 

motion registration processes to study squat task (Clément et al., 2015, 2017). Some studies 

developed automated techniques for the 3D/2D registration step while others used manual 

registration. Südhoff et al. (2007) used EOS® reconstruction/registration as a reference to 

compare three attachment systems and harnesses designed to measure the 3D kinematics of the 

knee. All three were installed on subjects during pseudo-dynamic squats in the EOS® system. 

Thus, the tibiofemoral kinematics measured by the attachment systems and harnesses could be 

compared to that from EOS® system as a reference. Jerbi et al. (2011) employed an automated 

registration process based on the frequency domain to track the motion of the bone in healthy 

and prosthetic subjects. In this case, the manual registration was considered as the gold 

standard and the registration error was reported 1.5 mm and 1.5° for the healthy group and 0.5 

mm 0.8° for the prosthetic group. Michèle Kanhonou (2017) used an iterative closest point 

algorithm for the 2D/3D registration process and reported the reproducibility of the method 

0.4 mm and 0.5°. They also checked the sensitivity of the method to the 3D reconstruction and 

found the translational and rotational sensitivities to be 1.7 mm and 1.4° respectively. 

 

1.7 Gait Analysis 

1.7.1 3D kinematics: Marker tracking using KneeKG™ system 

In 3D kinematic studies by marker tracking, reflective or light-emitting markers are attached 

to the skin surface of the segments whose movements are to be tracked. Their movements are 

recorded by cameras during a dynamic activity and the 3D kinematics is deduced by processing 

these data. However, the measured kinematics suffers from measurement inaccuracy induced 

due to soft tissue artefact, i.e. the sliding of the soft tissues between the markers and the bones. 
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This soft tissue artefact has been quantified by several teams. By comparing the kinematics 

calculated using skin markers with respect to the actual movement of the bones measured with 

fluoroscopy. The errors could reach up to 12 ° and 20 mm for the 3D rotations and 

displacements respectively (Ganjikia et al., 2000; Sati et al., 1996; Tsai et al., 2015). Others 

compared the 3D kinematics obtained using skin markers with that calculated using bone 

embedded implants during walking. Here, maximum mean differences of about 4 ° and 

between 10.5 mm and 13.7 mm have been reported for the angular and linear displacements 

(Michael S Andersen et al., 2010; Benoit et al., 2006). 

 

To reduce measurement errors associated with soft tissue artefact, the exoskeleton attachment 

systems were developed to measure the 3D kinematics of the knee. They exploit the fact that 

some areas of the lower limb are less prone to movement than others. In the current project, 

we used the KneeKG ™ system (Emovi inc., Laval, Quebec, Canada) which is an exoskeleton 

system developed with the objective of providing a reliable analysis of the lower limb 

kinematics while minimizing the soft tissue artefact (Figure 1-10). The femoral arch of the 

exoskeleton is installed between the tendons of the biceps femoris and iliotibial band on the 

lateral side. On the medial side, it is placed between vastus medialis and sartorius tendon. For 

the tibial portion, the rigid portion of the exoskeleton is attached along the anterior tibia. 
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Figure 1-10 Anterior view of a right knee fitted with the KneeKG ™ system. Secure fixation 
to the thigh and calf minimizes skin motion artifact. 

 

Sati et al. (1996) evaluated how the Knee KG ™ harness reduces the influence of soft tissue 

movement in 3D kinematics measurements. Three subjects instrumented with KneeKG ™ 

system performed a dynamic flexion. Radiopaque markers were placed on the skin and the 

KneeKG ™ system. The markers movement was recorded by a monoplane fluoroscopy. It was 

observed that the harness reduced skin movement artifact from 11 mm RMS to 1.7 mm RMS 

at the medial condyle and from 8.5 mm RMS to 2.9 mm RMS at the lateral condyle. By 

analyzing KneeKG™ under fluoroscopy and biplane radiography, Ganjikia et al. (2000) and 

then Südhoff et al. (2007) assessed its stability during movement. In this latter study, 3 

attachment systems were tested on 6 subjects. It was estimated that the KneeKG ™, the most 

stable of the three, allowed accurate angular measurement in the sagittal and frontal planes, 

with an average measurement accuracy of less than 1.4 °. In a recent study, the 3D kinematics 

measured from KneeKG™ system in obese and non-obese subjects was compared to the 

kinematics obtained from EOS® radiographs to quantify the soft tissue artefact in both groups 

(Clément et al., 2018). The soft tissue artefact at the femur ranged 1.4° – 8.0° for the rotations 

and from 5.2 mm – 9.1 mm for the displacements in the non-obese group and ranged from 1.2° 

– 3.0° for the rotations and 4.4 mm – 8.9 mm for the displacements in the obese group.  At 
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tibia, the soft tissue artefact impact was smaller, ranging 0.3° - 2.4° and 1.1 mm – 3.3 mm in 

non-obese group, and ranging 0.6° - 4.5° and 0.9 mm – 5.8 mm in the obese group (Clément 

et al., 2018). In addition, Hagemeister et al. (2005) estimated the reproducibility of angular 

measurements between 0.4 ° and 0.8 ° and those of translational measurements between 0.8 

mm and 2.2 mm, during walking in 15 subjects.  

 

In sum, despite some measurement errors, KneeKG™ remains a reliable measurement tool 

when considering the use of markers for kinematics measurement; reproducibility is high and 

accuracy sufficient to study the biomechanical behavior of the knee following a degenerative 

pathology (Lustig et al., 2012).  

 

1.8 Tibiofemoral contact force estimation 

1.8.1 Musculoskeletal models of the lower limb 

A direct in vivo measurement of joint loads is not currently practical in natural human tissue.  

While instrumented implants can provide measurements in total knee arthroplasty subjects, 

musculoskeletal (MSK) models are currently the only means of comparing joint loadings of 

OA and healthy subjects in the natural knee joint. Some of the previous studies providing 

estimations for the tibiofemoral joint contact forces using instrumented implants or 

musculoskeletal models in healthy or pathologic subjects are listed in (Table 1-3).  

 

The external joint moments acting on the joints can be reliably estimated using the motion data 

and an inverse dynamics analysis. Transformation of these external (or internal) moments into 

individual muscle forces needs to overcome the muscular redundancy problem. It could be 

resolved by regrouping muscles and build a very simplistic model of the lower limb or by 

solving an optimization problem.  

 

Various approaches were used in the literature to solve the redundancy problem (Chèze et al., 

2015; Erdemir et al., 2007). In this thesis, we used a 3D MSK model of the lower limb allowing 
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musculo-tendon and joint contact force simultaneous estimations in a one-step optimization 

procedure (Florent Moissenet et al., 2014). The computational framework of the MSK model 

computing the musculo-tendon, joint contact and ligament forces from experimental data is 

illustrated in Figure 1-11.  

 

 

Figure 1-11 Computational framework of the MSK model used to calculate the 
musculotendon and contact forces. All variables are defined in the following text. Adapted 

form (Raphael  Dumas et al., 2018) 

 

This model is parametrized with natural coordinates to describe the position and orientation of 

segments in space (R. Dumas et al., 2007). Each segment (i) is defined with two position 

vectors for the proximal and distal endpoints (	ܚ୔୧	,  ୈ୧) and two unitary direction vectorsܚ

,	୧ܝ)   .୧) (Figure 1-11)ܟ
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Figure 1-12 Lower limb parametrization with natural parameters (left). The kinematic 
constraints for the hip knee and ankle joints. Figure adapted from (Florent Moissenet et al., 
2012) 

 

Each segment is characterized with 12 parameters for 6 degrees of freedom (DOFs) 

representing an overabundant system. 6 rigid body constraints per segment ( rΦ ) with the 

corresponding Jacobean matrix, ۹௥complete the system for further kinematics and dynamics 

analyses (Duprey et al., 2010). 

 

The joints are defined, each with kinematic constraints, ( kΦ ) and the corresponding Jacobean 

matrix, ۹୩ . The hip joint is modeled as a ball and socket (3 DOFs) and ankle joint as a parallel 

mechanism (1 DOF). In a generic model of the knee, it is also modeled as a parallel mechanism 

with sphere-on-plane contacts and isometric ligaments (1 DOF) (Florent Moissenet et al., 2012, 

2014) (Figure 1-12). In this thesis ,we presented a novel technique to replace the generic model 

of the knee joint with personalized kinematic constraints deduced directly from the tibial and 

femoral contact point trajectories estimated from the biplane EOS® images. The different 
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mechanisms used to model the knee joint are provided in the next section. The integration of 

personalized contact point trajectories into the MSK model is further explained in chapter 5.  

 

Once the kinematic chain is completed with all the joints and segments, a constrained 

multibody kinematics optimization is performed with the objective of minimizing the sum of 

squared differences between measured and model-derived skin marker trajectories (Begon et 

al., 2018). The aims of this first optimization, sometimes, called inverse kinematics step, are 

to compensate for the skin motion artefact and find consistent accelerations ۿሷ , velocities ۿሶ , 
and positions ۿ for the dynamic computation step.   

 

In the dynamics step, the dynamics equation of the lower limb is formulated as follow: 

ሷۿ۵  + ۹୘ૃ = ܀ + ۾ +  ܎ۺ
 

(1.2) 

With G being the generalized mass matrix, ۿሷ  the generalized accelerations, ۹ =	 ൣ۹୩				۹୰൧ 
the Jacobian matrix of both joint kinematic and rigid body constraints, λ the Lagrange 

multipliers, R the ground reaction forces and moments, P the weight vector, L the generalized 

muscular lever arms and f the musculo-tendon forces. The unknowns are the musculotendon 

forces f, and the Lagrange multipliers ࣅ which represent the forces associated to kinematics 

and rigid body constraints. Among these Lagrange multipliers some, of them have important 

biomechanical interpretation including the contact, ligament, and bone forces.    

The dynamics equation above is an under-constrained problem which should be solved through 

optimization. The optimization criterion was minimizing the sum of squared musculo-tendon 

forces (܎) and a number of joint contact and ligament forces (a subpart λ1 of the Lagrange 

multipliers  ࣅ).  Since not all of the Lagrange multipliers are of interest in the optimization, a 

partial parameter reduction is performed (De Jalon et al., 2012; Florent Moissenet et al., 2014) 

to keep only the Lagrange multipliers of interest in the objective function.  

 

Therefore, the objective function (J) is formulated as below taking into account the musculo-

tendon forces and the contact and ligament forces that are included in the optimization (ࣅଵ). 
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The constraints consist of the dynamic equation and the fact that the musculotendon and 

contact forces are bounded (typically, the musculotendon forces are positive).  
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W is the optimisation weights matrix, and 
2
TK

Z is the projection matrix (i.e. for the partial 

parameter reduction). A more detailed description of the equations, assigned weights, and the 

model could be found in  (Florent Moissenet et al., 2014). 

 

Table 1-3 1st and 2nd peak of tibiofemoral medial (Med pk1-pk2), lateral (Lat pk1-pk2), and 
total (Total pk1-pk2), contact forces (per BW) in healthy, OA, total knee arthroplasty (TKA), 
ACL-deficient(d), or ACL-reconstructed(r) subjects (subj) in studies within the past 20 years.  

Study subj Condition OA status Total 
(pk1-pk2) 

Medial  
(pk1-pk2) 

Lateral  
(pk1-pk2) 

Strithan 2017 19 Model Healthy 2.3-3.5 2.0-3.0 0.3-0.52 

Strithan 2017 39 Model OA 2.32-3.8 2.12-3.25 0.3-0.59 

Dell’Isola 2017 18 Model Healthy 3.50 2.13 1.44 

Dell’Isola 2017 10  Model  Medial OA with varus  3.25 2.30 1.00 

Dell’Isola 2017 12  Model  Bilateral OA with varus  3.10 1.97 1.13 

Dell’Isola 2017 17  Model  OA normally aligned 3.40 2.07 1.34 

Bergmann 2014 8 Prosthetic Treadmill  TKA 2.9-3.4     

Marouane 2016 1 FE Model  Normal 4.1-3.7 3.2-3.0 2.6-0.8 

Lemieux 2016 1 Model Healthy   1.53-1.72 0.94-1.03 

Lemieux 2016 1 Model Healthy   1.30-.091 0.91-1.1 

Marouane 2016 1 FE Model OA 3.3-3.5 2.7-3.0 1.8-0.7 
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Study subj Condition OA status Total 
(pk1-pk2) 

Medial 
(pk1-pk2) 

Lateral 
(pk1-pk2) 

Meireles 2016 23 OpenSim Model OA 4.5-3.7     

Meireles 2016 16 OpenSim Model Early OA 4.1-3.6     

Meireles 2016 20 OpenSim Model Healthy 4.0-3.7     

Harding 2016 80 2D 3muscle Model Healthy 1.99-1.61     

Harding 2016 115 2D 3muscle Model Moderate OA 1.81-1.52     

Moissenet 2016 1 Model TKA 1.8-1.1 1.3-0.6 0.5-0.5 

Lerner 2015 1 OpenSim Model TKA 2.3-2.8 1.3-1.5 1.0-1.3 

Moissenet 2014 4 Model TKA 2.2-2.9 1.5-2.0 0.7-0.9 

Kumar 2013 16 EMG-driven Model healthy 3.7-2.2 2.4-1.8 1.3-0.5 

Kumar 2013 12 EMG-driven Model OA 3.5-2.2 2.6-2.1 0.9-0.1 

Manal 2013 10 EMG-driven model  ACLr 4.1 2.3 1.8 

Kutzner 2011 3 Prosthetic overground TKA 2.1–2.5 1.5–2.0 0.5–0.9 

Richards 2010 14 OpenSim Model Healthy 4.36-4.40     

Richards 2010 10 OpenSim Model Moderate OA 4.17-3.9     

Richards 2010 2 OpenSim Model Severe OA 4.45-3.67     

Catalfamo 2010 1 Model Healthy, ACLd 8.1     

Lin 2010 1 Model TKA 1.8–3.6 1.4–2.7 0.4–0.9 

Erhart 2010 1 Prosthetic overground TKA 2.6 1.7 0.9 

Kutzner 2010 5 Prosthetic overground TKA 2.2–3.0     

Lundberg 2009 1 Model Prosthetic 3.5 2.5 1 

Wehner 2009 1 Model Healthy 3.3     

Winby 2009 1 Model Healthy  3.0–4.4 2.0–3.0 1.0–1.4 

Fregly 2009 1 Prosthetic overground TKA 2.3 1.8 0.5 

Heinlein 2009 2 Prosthetic overground TKA 2.1–2.8     

Kim 2009 1 Model TKA 2.0–2.6 1.2–1.8 0.8–0.8 

D'Lima 2008 3 Prosthetic treadmill TKA 1.8–2.5     

Zhao 2007 1 Prosthetic treadmill TKA 2.2 1.2 1 

D'Lima 2006 1 Prosthetic overground TKA 2.4     
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Study subj Condition OA status Total 
(pk1-pk2) 

Medial 
(pk1-pk2) 

Lateral 
(pk1-pk2) 

D'Lima 2006 1 Prosthetic overground TKA 2.3     

Shelburne 2006 1 Model Healthy 2.7 2.2 0.5 

D'Lima 2005 1 Prosthetic overground TKA 2.8     

D'Lima 2005 1 Prosthetic treadmill TKA 2     

Shelburne 2005 1 Model Healthy  2.9 2.4 0.5 

Thambyah 2005 10 Model Cadaveric 2.9–3.5     

Taylor 1998 1 Prosthetic overground TKA 2.5   

 

 

1.8.2 Knee joint models 

Accurate estimation of the skeleton kinematics from the skin markers requires defining joint 

constraints in order to produce movements similar to the natural kinematics of the joint and 

minimize the effect of soft tissue artefact. Especially in case of MSK models, the soft tissue 

artefact has a negative impact on the estimation of the muscle lever arms. There are several 

kinematic constraints used to describe the knee joint kinematics (Begon et al., 2018; Leardini 

et al., 2017). A short review of the associated mechanisms will be provided in this section. 

 

Ball and socket: The knee is modeled as a spherical joint with 3 DOFs (Charlton et al., 2004; 

Lu et al., 1999). No study listed in Table 1-3 used this model at the knee joint. 

 

Hinge: The knee is modeled as a hinge (also known as revolute or pin) joint with 1 DOF around 

flexion/extension axis (Michael Skipper Andersen et al., 2009). No study listed in Table 1-3 

except the one of Dell’Isola et al., 2017 used this model at the knee joint but some of them 

used a 2D model that considers only flexion extension. 

  

Parallel mechanism: This model describes the articulation as two sphere-on-plane contacts, 

guided by three isometric ligaments acting as connecting links. The system has 5 constraints 

leaving 1 DOF (Feikes et al., 2003; Florent Moissenet et al., 2014). The parameters of this 
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model could be personalized according to the anatomical measures from imaging techniques 

(Clément et al., 2015, 2017; da Luz et al., 2017) . From Table 1-3, (Florent Moissenet et al., 

2014, 2016b) used the parallel mechanism model.  

 

Coupling curves: In this case, the coupling between the degrees of freedom defines the 6 DOFs 

knee joint motion. Coupling curves could be obtained from techniques such as registration in 

cadaveric joints (Sholukha et al., 2006). A special case, limited to the sagittal plane, is 

sometimes described as a sliding hinge. This sliding hinge is used in most of the study listed 

in Table 1-3.  

 

In this study, we present a novel approach to derive the knee joint constraints directly from the 

femoral and tibial personalized contact point trajectories. Interestingly, the contact point 

trajectories deriving from parallel mechanisms or coupling curves can be also modeled this 

way. The impact of the personalization on the kinematics and dynamics of the joint will be 

further discussed in chapter 6.  

 

1.8.3 Medial and lateral contact force distribution 

In knee OA, the medial compartment is often much more affected compared to the lateral 

compartment. The systematic risk factors of OA such as age, gender, and genetics affect both 

compartments equally. Therefore, the excessive loading on the internal side of the joint could 

be the reason for higher prevalence of the medial compartment OA. Studies have shown that 

more than 60% of the contact force is transferred through the medial compartment. This 

highlights the need to better understand (1) the contact force distribution between medial and 

lateral in knees affected by OA with respect to the normal knees to investigate the possible 

contact force distribution abnormalities in OA and (2) to identify the crucial parameters 

affecting the contact force distribution to find better interventions to lower the chances of 

accelerated OA progression. (Table 1-4) list the previous studies reporting the parameters 

contributing to the knee medial contact force.  The medial-to-total contact force ratio (MR) has 

been an essential variable studied in the literature.  
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CHAPTER 2 
 
 

RESEARCH PROBLEMATICS AND OBJECTIVES 

2.1 Problematic 1:  

According to what has been discussed in the previous chapter, the shift of the tibiofemoral 

contact points was hypothesized to initiate the cartilage damage process in OA. However, the 

current body of the literature does not provide a clear description of the regions of contact in 

OA joints and in what sense/direction they are different from the healthy ones.  

 

The first aim of this thesis was to assess the contact point kinematics in OA and healthy joints 

and quantify the location and direction of the contact point shift in pathological knees. 

 

Objective 1: Develop a validated 3D/2D reconstruction/registration technique to accurately 

measure the 3D kinematics of the knee joint from EOS® biplane X-ray images. 

 

Objective 2: Measure the tibiofemoral contact points from the bone-to-bone proximity 

 

Objective 3: Measure the contact point locations during a quasi-static squat task in healthy 

and OA subjects 

 

Objective 4: Measure the contact point locations of OA subjects during a quasi-static task with 

and without wearing a valgus knee orthosis in repeated postures.  

 

Our first hypothesis was that the contact point locations in OA subjects would be shifted 

medially on both medial and lateral compartment as a result of changes in joint morphology 

and alignment.  
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Our second hypothesis was that the valgus knee orthosis influences the contact point locations 

of the OA subjects and pushes the contact point location laterally on both medial and lateral 

compartments.  

 

Chapters 3 and 4 address this first problematic of the thesis. 

  

2.2 Problematic 2: 

The external moments on the knee joint are counterbalanced by the musculo-tendon forces as 

well as the medial and lateral contact forces. Dynamics of the joint requires that a change in 

the contact point locations -by changing the lever arms of the contact forces- affects the medial 

and lateral contact forces. Based on the classical models of the tibiofemoral joint (i.e., parallel 

mechanisms, sliding hinge), the current musculoskeletal models of the lower limb do not allow 

the direct integration of personalized contact point trajectories in the contact force calculations.  

 

The second aim of this thesis was to implement a musculoskeletal model of the lower limb 

which enables integration of personalized contact point trajectories. 

 

Objective 1: Introduce a knee joint constraint using tibial and femoral contact point trajectories 

as input parameters and estimate the corresponding contact forces on the medial and lateral 

compartments. 

 

Objective 2:  Compare the medial and lateral contact forces using personalized contact point 

trajectory model with classical models of the tibiofemoral.  

 

Objective 3: Validate semi-quantitatively the musculo-tendon forces with EMG signals to 

check if the results are realistic. 

 

Chapters 5 addresses this second problematic of the thesis. 
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2.3 Problematic 3: 

While the systematic risk factors of OA such as age, sex, or genetics affect both medial and 

lateral compartments equally, the cartilage on the medial compartment is almost always much 

more affected by the disease compared to the lateral compartment. Higher contact forces on 

the medial compartment are related to the severity of the OA on the medial side. Few studies 

have reported the medial and lateral contact forces in OA subjects in comparison with healthy 

controls. Moreover, regardless of the considerable amount of work on the role of external 

moments on the contact force distribution, the contribution of contact point locations has not 

been investigated up to now.  

 

The third aim of this thesis was to investigate the contribution of contact point locations on 

the knee contact force distribution compared to the other mechanical and functional 

parameters.  

 

Objective 1: Estimate and compare the medial, lateral, and total contact forces in OA and 

healthy subjects using the personalized contact point locations.  

 

Objective 2: Identify the most important parameters affecting the medial-to-total contact force 

ratio (MR), and find the contribution of contact point locations to the MR with respect to the 

other parameters.  

    

We hypothesized that the contact force point location is a significant parameter in the MR, 

and that the contribution of parameters to MR is different in OA and healthy groups. 

 
Chapters 6 addresses this third problematic of the thesis 

  





 

CHAPTER 3 
 
 

TIBIO-FEMORAL JOINT CONTACT IN HEALTHY AND OSTEOARTHRITIC 
KNEES DURING QUASI- STATIC SQUAT: A BI-PLANAR X-RAY ANALYSIS 

A. Zeighami1*, R. Dumas2, M. Kanhonou1, N. Hagemeister1, F. Lavoie3, J.A. de 

Guise1, R. Aissaoui1 

1. Laboratoire de Recherche en Imagerie et Orthopédie (LIO), École de Technologie 
Supérieure (ÉTS), Centre de Recherche du CHUM, Montréal, Québec, Canada 

2. Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, UMR_T9406, LBMC, 
F69622, Lyon, France 

3. Department of Orthopedic Surgery, Centre Hospitalier de l'Université de Montréal 
(CHUM), Montréal, Québec, Canada 

 
The article has been published in Journal of Biomechanics 53 (2017): 178-184.  

 

3.1 Preface 

This chapter addresses the objectives 1,2,3 of the first aim of this thesis: assess the contact 

point kinematics in healthy and OA joints and quantify the location and direction of the contact 

point shift in pathological knees.  

 

3.2 Abstract 

The aim of this study was to quantify the tibio-femoral contact point (CP) locations in healthy 

and osteoarthritic (OA) subjects during a weight-bearing squat using stand-alone biplanar X-

ray images.  

Ten healthy and 9 severe OA subjects performed quasi-static squats. Bi-planar X-ray images 

were recorded at 0ᵒ, 15ᵒ, 30ᵒ, 45ᵒ, and 70ᵒ of knee flexion. A reconstruction/registration process 

was used to create 3D models of tibia, fibula, and femur from bi-planar X-rays and to measure 

their positions at each posture. A weighted centroid of proximity algorithm was used to 
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calculate the tibio-femoral CP locations. The accuracy of the reconstruction/registration 

process in measuring the quasi-static kinematics and the contact parameters was evaluated in 

a validation study.  

The quasi-static kinematics data revealed that in OA knees, adduction angles were greater 

(p<0.01), and the femur was located more medially relative to the tibia (p<0.01). Similarly, the 

average CP locations on the medial and lateral tibial plateaus of the OA patients were shifted 

(6.5±0.7 mm; p<0.01) and (9.6±3.1 mm; p<0.01) medially compared to the healthy group. 

From 0ᵒ-70ᵒ flexion, CPs moved 8.1±5.3 mm and 8.9±5.3 mm posteriorly on the medial and 

lateral plateaus of healthy knees; while in OA joints CPs moved 10.1±8.4 mm and 3.6±2.8 mm 

posteriorly. The average minimum tibio-femoral bone-to-bone distances of the OA joints were 

lower in both compartments (p<0.01). The CPs in the OA joints were located more medially 

and displayed a higher ratio of medial to lateral posterior translations compared to healthy 

joints.  

Keywords: Osteoarthritis; in vivo tibio-femoral contact; Bi-planar X-ray; Squat; Knee quasi-

static kinematics. 

 

 

3.3 Introduction 

An estimation of the in vivo 3D kinematics, the contact point (CP) locations, and the minimum 

distance between articular surfaces of knee joints can provide information that is useful in 

understanding osteoarthritis (OA) initiation and progression. Andriacchi et al., (2004) 

hypothesized that shifts in load-bearing CP locations towards less frequently loaded regions 

(i.e., far from the plateau center lines) initiate the cartilage degeneration process. However, the 

direction of the shift was not indicated in their proposed framework. A few literature studies 

have addressed CP locations in pathological knees. Experimental locations of CPs in anterior 

cruciate ligament (ACL)-reconstructed (Hoshino et al., 2012), ACL-deficient (Dennis et al., 

2005), and OA knees (Fiacchi et al., 2014; Hamai et al., 2009; C. Li et al., 2015) have been 

investigated using 3D-to-2D registration techniques during different activities such as 

kneeling, squatting, stair climbing, chair rising, and lunge, but still little is known about the 
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quantitative differences in CP locations between OA and healthy subject during functional 

activities. 

 

In 3D-to-2D registration techniques, bones are reconstructed from MRIs (Seungbum Koo et 

al., 2011; Qi et al., 2013) or CT-scans (Farrokhi et al., 2016; Fiacchi et al., 2014; Hamai et al., 

2009) and are then rigidly transformed to match X-ray or fluoroscopic images captured during 

movements. In MRI-derived models, cartilage overlap was used to identify CP locations, 

whereas in the CT-scan-derived models, due to the absence the of cartilage layer in the 

reconstructions, the bone-to-bone closest point or a weighted center of tibio-femoral proximity 

has been used to determine the location of CPs. 

 

Hamai et al. (2009) and Fiacchi et al. (2014) investigated the tibio-femoral anterior/posterior 

CP locations of OA subjects. However, they did not quantify the possible medial/lateral shifts 

in the CP locations. C. Li et al. (2015) reported that in OA knees the center of the medial and 

lateral CPs was located at the medial side of the tibia by 3.7% plateau width during a lunge 

activity. OA CPs were located medial to the both medial and lateral plateau centerlines 

throughout the lunge. After a posterior cruciate-retaining total knee arthroplasty, CPs had 

shifted laterally and had a reduced range of motion. In a recent study by Farrokhi et al. (2016), 

the excursion of CPs during a downhill gait task was found to be altered in the unstable OA 

group compared to healthy controls. The CP locations in the two groups during flexion were 

not reported in their study. Although previous works increase our knowledge of contact in OA, 

none of these studies compared the regions of contact in OA with healthy subjects, and a clear 

description of alterations in CP locations in OA is still lacking. Case-control studies comparing 

tibio-femoral CP locations between OA and healthy subjects are required before drawing any 

conclusion on altered tibio-femoral contact in OA. 

 

The objective of the present study was to compare tibio-femoral CP locations of healthy and 

OA subjects during a load-bearing squat. We used a reconstruction/registration process based 

on stand-alone bi-planar X-ray images to quantify the contact parameters of OA and healthy 
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joints. We hypothesized that the CPs in OA subjects would shift medially on both tibial 

plateaus with respect to the healthy controls.  

 

3.4 Methodology 

3.4.1 Study subjects 

Nineteen subjects volunteered to participate in this study. They included 10 healthy subjects 

(4 women, 6 men, 5 right sides, 5 left sides, age 55±17 years, weight 69±20 kg, height 

1.67±0.17 m, body mass index (BMI) 24.67±5.33 kg/m2) and 9 medial compartment OA 

subjects (2 men, 7 women, 7 right sides, 2 left sides, age 61±9 years, weight 89±15 kg, height 

1.63±0.12 m, BMI 33.35±7.23 kg/m2). The OA subjects were classified as grade 4 using the 

Kellgren-Lawrence grading scale. The subjects did not have any self-reported meniscus or 

ligament injuries. The following procedures were in accordance with the ethics committees of 

the Centre de recherche, centre hospitalier de l’Université de Montréal (CRCHUM) and École 

de technologie supérieure de Montréal (ÉTS) as well as the Helsinki Declaration of 1975, as 

revised in 2000. 

 

3.4.2 Bi-planar X-ray images 

The EOS® (EOS Imaging, Paris, France) bi-planar, low-radiation dose system recorded 5 pairs 

of orthogonal X-ray images of the lower limb at 0ᵒ, 15ᵒ, 30ᵒ, 45ᵒ, and 70ᵒ of knee flexion. The 

subjects performed controlled quasi-static squats assisted by a positioning jig(Clément et al., 

2014) (Figure 3-1(a)). Two digital X-ray images of the whole lower limb were captured 

simultaneously at each position. 
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Figure 3-1 (a) Subjects performed a quasi-static squat assisted by a positioning jig standardized 
to put the knee in desired flexion angles. 5 pairs of orthogonal X-ray images of the lower limb 
at 0ᵒ, 15ᵒ, 30ᵒ, 45ᵒ, and 70ᵒ of knee flexion were recorded. (b) Bones were reconstructed from 
bi-planar X-ray images and registered to each of the 5 squat positions the subjects adopt in the 
EOS® system cabinet. (c) 2 pairs of points on the medial and lateral sides of the tibia and 
femur represented CPs and minimum tibio-femoral bone-to-bone distances. 

 

3.4.3 Reconstruction/registration 

The first pair of X-ray images in a standing posture was processed using IdefX software (LIO, 

Montreal, Quebec, Canada) to reconstruct the 3D personalized models of the tibia, femur, and 

fibula. This was performed starting with a generic 3D model of each segment. Each generic 

3D model was then deformed and reconstructed via an as-rigid-as-possible approach based on 

the moving least squares optimization method until its projected contours on 2 radiographic 

planes matched the boundaries of the bones on biplanar X-rays (T Cresson et al., 2010). The 

average reconstruction error of the bones using this technique was found to be 1 mm (STD=0.9 

mm) (T Cresson et al., 2010). 

To find the configuration in the other squat positions, the reconstructed bones were 

transformed rigidly until their silhouettes superimposed the acquired bi-planar X-ray images 
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of each position (Figure 3-1 (b)). Translations and rotations were calculated based on an 

iterative closest point algorithm (M. Kanhonou et al., 2014).  

 

Through a fine-tuning process in each of the 5 squat positions, the reconstructions and 

registrations were further modified to take into account the features in the X-ray images that 

are not visible in other views. The final fit was decided by the operator based on the best 

possible visual matching of segmentations with background X-ray images in all 5 positions. 

The whole process took up to 90 minutes for each subject. 

 

3.4.4 Quasi-static kinematic measurements 

Orthogonal local coordinate systems were constructed on tibia/fibula and femur according to 

the anatomical definitions given in previous studies (Südhoff et al., 2007) (Figure 3-2). 

Flexion/extension, adduction/abduction, and internal/external rotations were measured 

according to the coordinate system proposed by Grood et al. (1983). Linear displacements were 

represented by the movement of the origin of the femoral coordinate system with respect to 

the origin of the tibial coordinate system as previously proposed in the literature (Asano et al., 

2001; Yue et al., 2011). 
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Figure 3-2 Origin of femur (Of): midpoint of 2 spheres fitted on the posterior femoral condyles. 
Proximal/distal axis of femur (Yf): Of - center of the femoral head. Zc: axis connecting centers 
of the posterior condyles. Anterior/posterior axis of femur (Xf): cross product of Yf and Zc, 
oriented anteriorly. Medial/lateral axis of femur (Zf): cross product Xf × Yf. Origin of tibia 
(Ot): center of intercondylar eminence. Proximal/distal axis of tibia (Yt): midpoint of the 
medial and lateral malleoli – Ot. Zp: axis passing through the posterior extremes of the tibial 
plateaus. Anterior/posterior axis of tibia (Xt): cross product of Yt and Zp, oriented anteriorly. 
Medial/lateral axis of tibia (Zt): cross product Xt × Yt (Südhoff, 2007). 

 

3.4.5 Contact parameters 

For each point on the tibial plateau, the minimal point-to-point distances to the opposing medial 

or lateral condyles were calculated at the 5 squat positions. A weighted center of proximity 

algorithm was performed to find a point on each plateau that most likely represented the CP 

(Anderst et al., 2003; Hoshino et al., 2012). A weight factor of 16 was considered for the points 

closer than the minimal point-to-point distance + 0.5 mm. Similarly, weight factors of 4, 1, and 

0 were considered for the points in the distance ranges of [0.5-1] mm, [1-2] mm, and greater 

than 2 mm more than the minimal point-to-point distance, respectively. The corresponding 

points on the opposing femoral condyles represented CPs of the femur and the calculated 
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distances were assumed to represent minimum tibio-femoral bone-to-bone distances (Figure 

3-1 (c)).  

 

Since in the proposed reconstruction technique, the personalized bones were deformed 

versions of generic bones, a unique correspondence existed between each point on the generic 

bone and its deformed versions, such that vertices located on any anatomical landmarks (e.g., 

lateral intercondylar tubercle) correspond to the same landmark after deformation. These 

correspondences allowed a feature-based normalization to represent the calculated CPs of all 

subjects, on a right tibial plateau with 74 mm medial/lateral width. 

 

A new validation study was designed to evaluate the accuracy of the whole 

reconstruction/registration technique used to calculate the contact parameters (see 

complementary methodology).  

 

3.4.6 Statistical Analysis 

Two-way analysis of variance (ANOVA) was performed to detect statistically significant 

differences in quasi-static kinematic parameters (i.e., rotations and linear displacements), CP 

locations in the anterior/posterior and medial/lateral directions, and the minimum bone-to-bone 

distances. Independent variables were the flexion angle and the OA status. Bonferroni test was 

performed to detect pair-wise different means and to compare the means in various levels of 

flexion angle. The level of significance was set at p<0.05.  

 

3.5 Results 

3.5.1 Contact Parameters 

Figure 3-3 illustrates the average CP trajectories for all the OA and healthy subjects normalized 

on a right tibial plateau, and are presented in 5 positions of squat from 0ᵒ-70ᵒ flexion. 
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Figure 3-4 Average CP trajectories in 10 healthy (blue) and 9 OA (red) subjects during squat, 
normalized over a tibial plateau. CP locations are plotted at 0ᵒ, 15ᵒ, 30ᵒ, 45ᵒ and 70ᵒ flexion. 
Error bars stand for standard deviations (±1 SD). Dashed arrows represent CP movements 

from 0ᵒ to 30ᵒ or 70ᵒ flexion, in medial/lateral or anterior/posterior direction of healthy (blue) 
or OA (red) subjects. 

 

As a general trend, the average CPs moved posteriorly during squat in both the OA and the 

healthy subjects, in both the medial and lateral compartments. Table 1 summarizes the CP 

locations over the tibial plateau, for the whole range of motion.  

  



48 

Table 3-1 CP locations of OA and healthy subjects on medial and lateral tibial plateaus in 
Anterior/posterior and medial/lateral directions at 5 flexion levels from 0ᵒ-70ᵒ. Tibial plateau 
width=74 mm, stretched from -35.5 mm to 38.5 mm. * denotes significant differences 
between OA and Healthy (p<0.05). † denotes significant differences between 0ᵒ flexion and 
the corresponding flexion level (p<0.05). 

 
 

Ant(+)/Pos(-) on Medial 
plateau 

Ant(+)/Pos(-) on 
Lateral plateau 

Med(+)/lat(-) on Medial 
plateau 

Med(+)/lat(-) on Lateral 
plateau 

Flexion 
(degree) 

OA Healthy OA Healthy OA Healthy OA Healthy 

0 11.9±8.6 13.8±4.6 1.7±3.2 7.3±4.6 25.0±8.0 17.8±5.7 -6.5±1.5 -11.7±7.0 

15 9.8±8.6 10.4±4.8 0.4±5.1 3.0±3.8 26.5±6.7 19.2±5.4 -6.8±2.19 -13.1±7.7 

30 9.7±7.7 8.0±4.5 -0.6±5.2 0.2±3.4† 26.0±4.8 19.6±5.2 -7.6±2.3* -16.8±5.8 

45 7.5±6.2 6.4±3.9 -1.3±4.8 -1.9±3.4† 26.5±4.9 19.6±6.0 -8.8±2.5* -21.8±4.2† 

70 1.7±9.7† 5.7±3.2 -1.8±3.9 -1.5±6.3† 24.7±4.8 19.9±7.2 -13.6±5.1*† -24.6±8.8† 

Average 8.1±3.9 8.9±3.2 -0.5±1.3 1.4±3.8 25.7±0.8* 19.2±0.8 -8.5±3.6* -17.6±5.5 

 

In the healthy subjects, the CPs on the lateral plateau moved 8.9±5.3 mm and 7.1±4.9 mm 

posteriorly during full (0ᵒ-70ᵒ) and low (0ᵒ-30ᵒ) flexion ranges, respectively. On the medial 

plateau, CPs moved 8.1±5.3 mm and 5.8±3.7 mm posteriorly during full and low flexion 

ranges. CP posterior movements were much larger on the medial plateau (10.1±8.4 mm) with 

respect to the lateral plateau (3.6±2.8 mm) among OA subjects through the full flexion range 

and were almost equal on the medial (2.2±8.1) and lateral (2.3±2.6) plateaus during low flexion 

range (Figure 3-4).      

  

No significant difference was noted in the average anterior/posterior CP locations between the 

two groups on the medial (p=0.28) or lateral (p=0.06) sides.  

In the medial/lateral direction and from 0ᵒ-70ᵒ flexion, the CPs moved laterally on the lateral 

plateaus for both OA (7.1±4.3 mm; p=0.014) and healthy (12.9±9.9; p<0.01) subjects. On the 

medial plateau, the medial/lateral locations of the CPs were not significantly different between 

0ᵒ and 70ᵒ flexion in either group (p>0.05) (Figure 3-4, Table 3-1).  

 

Distinct deviation occurred in the medial/lateral locations of the CPs in the OA compared to 

the healthy subjects. In the healthy subjects, the average of the medial/lateral CP locations was 
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around the middle of each compartment, whereas in the OA subjects the CPs on both sides 

deviated medially. The OA status was found to have a statistically significant effect on the 

medial/lateral location of the CPs on both sides (p<0.01). The average CPs across the flexion 

angles in the medial compartment were located 6.5±0.7 mm more medially (p<0.01) for the 

OA (25.7±0.8 mm) than for the healthy subjects (19.2±0.8 mm). Similarly, the average CPs on 

the lateral plateau were located 9.0±3.1 mm more medially (p<0.01) for the OA (-8.5±3.6 mm) 

than for the healthy (-17.6±5.5) subjects, with significant pair-wise differences from 30ᵒ-70ᵒ 

flexion (p<0.05).     

 

The average minimum tibio-femoral bone-to-bone distances for all positions in the medial 

compartment was 1.2±0.7 mm in OA and 2.6±1.2 mm in the healthy subjects (p<0.01) with 

significantly different values at 0ᵒ and 15ᵒ flexion (p<0.05). In the lateral compartments, these 

values were 2.4±1.1 mm and 3.6±1.2 mm for the OA and the healthy subjects, respectively 

(p<0.01). These results indicate an average of 54% and 27% less medial and lateral minimum 

bone-to-bone distances in the OA joints.  

 

3.5.2 Quasi-static kinematics 

Quasi-static kinematic parameters were averaged in each of the 5 squat positions in both 

groups. The average femur location was 2.4±1.2 mm more medial in the OA group compared 

to the healthy group (p<0.01) with pair-wise significant differences at full extension (p=0.38) 

(Figure 3-5 (a)). The OA femur moved 3.3±2.3 mm laterally from 0ᵒ-70ᵒ flexion, while in the 

healthy joints it was displaced medially 1.7±2.5 mm until 15ᵒ of flexion and then moved 

2.3±1.4 mm laterally. Femur moved 9.8±3.6 mm and 9.6±4.8 mm anteriorly with respect to 

the tibia in the OA and healthy subjects, respectively (Figure 3-5 (b)). 
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Figure 3-5 Quasi-static kinematics of OA and healthy joints during the controlled squat. 
Medial/lateral (a) and anterior/posterior (b) displacement of femur with respect to tibia, and 
internal/external rotation (c) as well as adduction/abduction (d) of tibia are illustrated as a 
function of 5 squat positions designed to reproduce 0◦, 15◦, 30◦, 45◦, and 70◦ of flexion 

respectively. * denotes a pair-wise significant difference between OA and healthy groups. 

 

 

The OA and healthy tibio-femoral joints exhibited similar patterns of internal rotation 

(p=0.68). Tibia rotated 12.0ᵒ±5.2ᵒ in OA and 11.8ᵒ±5.5ᵒ in healthy joints during squat. The 

majority of rotation occurred in the first 30ᵒ of flexion: 6.5ᵒ in OA and 9.9ᵒ in the healthy knees 

(Figure 3-5 (c)). The OA joints maintained significantly greater adduction angles throughout 

flexion (p<0.01) with pair-wise significant differences at all flexion levels (p<0.05). Adduction 

angles varied from 7.9ᵒ±1.9ᵒ to 8.3ᵒ±1.7ᵒ in OA, and from 0.6ᵒ±3.0ᵒ to 2.4ᵒ±2.8ᵒ in healthy 

joints (Figure 3-5 (d)).  
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3.6 Discussion 

The tibio-femoral CP trajectories in healthy knee squats or lunges in the literature are generally 

described with posterior movements, with the lateral CPs located more posteriorly. However, 

inter-subject variabilities produced some dissimilarities in CP trajectories measured using 

similar protocols during the same activities (Guoan Li et al., 2005; Qi et al., 2013). The average 

values from previous studies for anterior/posterior CP trajectories of healthy subjects from 0◦-

70◦ flexion suggest posterior movements of 6.7±2 mm (8.1±5.3 mm in our study) on the medial 

and 8.6±5.5 mm (8.8±5.3 mm) on the lateral plateaus. (Bingham et al., 2008; Dennis et al., 

2005; Guoan Li et al., 2005; Moro-oka et al., 2008; Qi et al., 2013).  

 

The medial/lateral location of the CPs was reported in the studies that used biplanar 

fluoroscopy for registration (Bingham et al., 2008; Dennis et al., 2005; Qi et al., 2013). The 

0◦-70◦ medial/lateral movement of the CPs averaged among those studies was 1.7±0.5, which 

is close to 2.1±4.6 mm in our study, both in the medial direction. On the lateral plateau, we 

observed a larger lateral movement (12.9±9.9 mm) in the 0◦-70◦ CP locations of healthy 

subjects, compared to their 3.6±1.57 mm average lateral movement. The lateral shift of CPs in 

the lateral compartment occurs mainly between 0ᵒ and 45ᵒ of flexion, despite the fact that femur 

is slightly moving medially. This paradox highlights the importance of joint geometry in the 

estimation of CP locations. The average 0◦-70◦ CP locations for healthy subjects in the 

medial/lateral direction are located within a distance of 5 mm from the centers of the medial 

and lateral plateaus, which is consistent with our findings (Bingham et al., 2008; Dennis et al., 

2005; Qi et al., 2013). 

 

There is little consensus about the CP locations of OA tibio-femoral joints in previous studies. 

Hamai et al. (2009) reported medial and lateral posterior translations of 1 mm and 3 mm during 

0◦-70◦ squats of OA subjects, while Fiacchi et al. (2014) reported 4.5 mm anterior translation 

on the medial and 15 mm posterior translation on the lateral plateaus during 0◦-70◦ flexion in 

chair rising activity with the average lateral CPs being more posterior in both studies (similar 

to our study). We observed a greater posterior translation on the medial side with respect to 
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the lateral side. An increased translation of the medial condyle in the ACL-deficient and ACL-

reconstructed knees (Dennis et al., 2005; Hoshino et al., 2012) has been identified previously 

in the kinematics of pathological knees; but it has not yet been reported in CP locations of OA 

subjects.  

 

The mean medial/lateral CP locations were not located close to the center of each compartment 

in the OA subjects. The average medial shifts in the CP location of the OA subjects with respect 

to healthy subjects in the medial (6.5 mm) and lateral (9.0 mm) compartments exceeded twice 

the uncertainty of the reconstruction/registration process in the medial/lateral direction (3 mm), 

found in our validation study (supplementary material 1). This corroborates the hypothesis of 

different contact kinematics of the tibio-femoral joints in OA made by Andriacchi et al. (2004). 

Medially located CPs in OA were observed in a previous study. (C. Li et al., 2015) reported 

that the 0◦-70◦ flexion CP locations in OA joints were located at approximately 4% of the tibial 

plateau width medial to the centerlines of both tibial plateaus. CPs were significantly shifted 

laterally after a total knee arthroplasty, but the results were not compared against healthy 

controls. 

 

The quasi-static kinematics results demonstrated that OA and healthy subjects displayed 

similar internal/external rotation patterns, which was also suggested by Yue et al. (2011). The 

average 0◦-70◦ internal rotations of tibia for healthy and OA subjects, which was averaged 

among previous studies, were 11.25±5.6◦ and 9.6±1.37◦ (Dennis et al., 2005; Fiacchi et al., 

2014; Hamai et al., 2009; Moro‐oka et al., 2008; Qi et al., 2013; Yue et al., 2011), which 

compared to 12.0±5.2◦ and 11.8±5.5◦ in our study. Yue et al. (2011) reported OA joints to have 

1ᵒ (6.6ᵒ in our study) greater adduction angles, and the adduction angles were maintained 

almost constant throughout 0◦-70◦ flexion in both groups (similar to our study). These authors 

reported that the femur was located 2.62±0.6 mm (2.4±1.2 mm) more medial with respect to 

the tibia in OA joints compared to healthy joints. It should be noted that the choice of 

coordinate systems may result in different kinematic patterns. 
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An altered adduction angle of joints might be associated with the medial shift of CP locations 

in OA subjects. A substantial medial joint space (bone-to-bone distance in the present study) 

reduction changes the alignment of the articular surface, and accordingly, increases the knee 

adduction. The altered alignment appears to change the joint structure, placing the femoral 

lateral condyle closer to the tibial eminence and the femoral medial condyle closer to the 

medial edge of the medial tibial plateau, shifting the CP locations medially. Changes in the 

geometry of the subchondral bone surfaces could also have an impact on the final location of 

CPs in OA and must be addressed in a future study. 

 

The employed reconstruction/registration process was executed on a set of bi-planar X-ray 

images alone. Skin radiation dose with EOS® imaging is 6 to 9 times lower compared to 

regular digital radiography (Deschênes et al., 2010). Incorporation of model-creation and 

kinematic observations into a single low-dose process minimizes radiation exposure compared 

to 3D-to-2D registration techniques based on CT-derived bone models of the femur and tibia. 

Moreover, the use of a generic model for bone reconstruction allows feature-based 

normalizations and enables automatic definition of anatomical landmarks eliminating errors in 

the femur and tibia coordinate system definitions among individuals. The main drawback of 

the technique is its quasi-static nature which restricts the number of images (e.g., 5 pairs). In 

addition, as in CT-derived bone models, the menisci and the cartilage cannot be reconstructed.  

 

In the absence of cartilage layers in images, CPs are estimated from the bone-to-bone 

proximity. Estimating CP locations using the closest point method (Asano et al., 2001; Guoan 

Li et al., 2004) may result in an abrupt oscillation of CPs (Beveridge et al., 2014). DeFrate et 

al. (2004) compared the location of CPs estimated using the closest point method and the 

cartilage-overlap method and found a significant difference in the location of CPs in low 

flexion despite a good agreement in higher flexions. To overcome the problems of the closest 

point method, a weighted center of proximity algorithm was suggested by Anderst et al. (2003) 

to incorporate the information of a close proximity region rather than a single point in which 

higher weights were assigned to closer points. Tuning the selected weights was reported to 

make very small changes in the location of CPs (Beveridge et al., 2014; Marouane et al., 2016). 
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Moro‐oka et al. (2008) compared CPs calculated using the center of proximity with those 

calculated from the cartilage-overlap method and observed no significant difference between 

the femoral external rotations based on the contact locations with either method. In an FE 

model of the knee during a simulated stance, Marouane et al. (2016) compared the estimated 

CPs from various techniques and compared them with reference contact points at the center of 

pressure. Estimated CPs using the weighted center of proximity algorithm resulted in lower 

accuracy but higher precision (estimated by Bland and Altman bias and confidence interval). 

In this study, we used a weighted center of proximity algorithm to calculate CP locations. 

Although this algorithm does not take into account the menisci and cartilage thickness 

variations, it has been proven to be able to identify the contact kinematic changes and 

abnormalities in human and animal articular joint models (Beveridge et al., 2014; C. Li et al., 

2015). 

The limited number of subjects and unbalanced composition of males and females in the 2 

study groups may have had a potential impact on the results and should be considered as the 

main limitation of the current work. The subjects were also not matched for body weight or 

BMI, which could have potentially affected the results. Nevertheless, obesity is typical in OA 

(Blagojevic et al., 2010) and matching subjects for BMI is difficult. Although the effect of 

BMI on CP locations should be more specifically addressed in a future study, an inter-subject 

analysis of the present data (see complementary methodology) does not provide any clue that 

obesity can shift CPs medially or laterally. Finally, tasks considered were weight-bearing but 

quasi-static. The validation study was also limited by the fact that only one set of CT bone-

scans were available and tested. 

 

The main finding of this study was that, in severe OA, CPs were located more medially and 

had a higher ratio of medial to lateral posterior movement compared to healthy subjects. The 

kinematics of tibio-femoral joint and bone-to-bone distances were also changed in OA. The 

results could provide insight into the mechanisms of OA progression. However, due to the 

small group size and the unmatched case-control parameters, the results of this work should be 

viewed with caution. Further research on low and moderate OA could better describe how 

these alterations occur during OA progression. 
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3.9 Complementary methodology 

The original article includes a list of supplementary materials that are not reproduced in 

extenso.  Conversely, in this section, we selected some of the important methodological aspects 

that are not extensively explained in the chapter due to the limited word count of the original 

article.   

 

3.9.1 Multiple view reconstruction/registration 

In the previous studies using EOS® X-ray images, the reconstruction was performed using one 

pair of X-ray images in the standing posture. A rigid transformation was then applied through 

a manual or automated process to register the bones onto the X-ray images captured at other 

postures. Using only one pair of X-ray images for the reconstruction usually results in the best 

match at the first (typically standing) posture, whereas greater errors exist in other positions. 

Given the availability of multiple EOS® images in 3D kinematics tracking studies, the 
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reconstructions could be improved using the features that are not necessarily visible in the first 

pair of images. For instance, in Figure 3-6 (right), tibia is imaged from a different angle, where 

the tibial plateau is visible and provides a good distinction of anterior and posterior edges of 

the plateau whereas in Figure 3-6 (left) the anterior and posterior edges of the plateau have 

almost overlapped in the X-ray images because they are viewed from a tight angle.   

 

 

Figure 3-6 Tibiofemoral joint imaged from 2 different angles using EOS® biplane images. 
The tibial plateau in the left pair of images is viewed from a tight angle where the anterior 
and posterior edges in the X-rays are superimposed. The right pair of images is the joint 

images at a different posture where the edges are not superimposed. 

 

In this thesis, we additionally fine-tuned the 3D reconstruction of the bones at the level of the 

articular surfaces using all available pairs of images. After any change in the 3D reconstruction, 

the registrations have been readjusted in all views. This process was repeated until the visual 

reconstruction/registration error i.e., the visual mismatch between the X-ray images and the 

reconstructed/registratered bone segment was uniformly distributed in all postures (Figure 

3-7).  
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Figure 3-7 Manual multi-view reconstruction/registration using EOS® biplaneX-ray images 

 

3.9.2 Contact point estimation using the weighted center of proximity 

Following the reconstruction/registration of the bones, the proximity of the articulating 

surfaces could provide an approximation of the center of pressure. In the absence of cartilage 

layer, we assumed that the contact occurs where the two bony surfaces are closest. Therefore, 

a weighted center of bone-to-bone proximity algorithm was performed to find the contact 

points (Anderst et al., 2003; Hoshino et al., 2012). Higher weights are assigned to the closets 

regions as shown in Figure 1-1 A weight factor of 16 is assigned to the regions where the bone-

to-bone distance is at its minimum plus 0.5 millimeters. Smaller weights are assigned to the 

farther regions accordingly.  
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Figure 3-8 weighted center of proximity algorithm for calculation of contact points. Higher 
weights are assigned to the closest regions 

 

The mesh size had an impact on the minimum bone-to-bone distance calculations. As shown 

in Figure 3-9, reducing the mesh size changed the estimated bone-to-bone distance from 0.52 

mm (right) to 0.45 mm (left). Thereafter, reducing the mesh size had a negligible effect on the 

estimations. Therefore, the surface mesh in IdefX software was subdivided so that the 

maximum mesh dimensions be less than 0.2 mm.   

 

Figure 3-9 The minimum bone-to-bone distance is 0.52mm using a coarse mesh (left), and 
0.45mm using a fine mesh. 
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3.9.3 Validation of contact point estimation 

The accuracy of the contact parameters relies on both the accuracies of the reconstruction (T 

Cresson et al., 2010) and the registration (M. Kanhonou et al., 2014) steps. Thus, a new 

validation study was designed to evaluate the accuracy of the whole reconstruction/registration 

technique used to calculate the contact parameters. 

One set of tibia, fibula, and femur that were reconstructed from a CT-scan of a healthy subject 

were positioned manually in 5 configurations to simulate a knee movement and to create a 

ground truth. This set forms control configurations where the geometry and position of bones 

are known (Figure 3-10 (right)). Five pairs of digitally generated bi-planar X-ray images were 

created through the back projection of the bones in each configuration (Moro-oka et al., 

2007)(Figure 3-10 (left)).  

The proposed reconstruction/registration process was implemented to reconstruct and register 

bones from the digitally generated bi-planar X-ray images (Figure 3-10 (left)). The root mean 

square errors (RMSE) between the contact parameters calculated after the simulated 

reconstruction/registration process and directly from the control configuration were calculated. 
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Figure 3-10 Algorithm of validation of the contact parameters estimated by a 
reconstruction/registration process using stand-alone bi-planar X-ray images, versus a set of 

controlled movements applied to a set of bones reconstructed from a CT-scan. 

 

The results showed that RMS errors averaged 0.63ᵒ for all rotations and 0.8 mm for all 

displacements. CP locations on the tibial plateau showed RMSEs of 2.0 mm and 3.0 mm (2.5% 

and 3.8% of the control plateau medial/lateral width) in the anterior/posterior and 
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medial/lateral directions. The RMSE for the minimum tibiofemoral bone-to-bone distances 

averaged 0.8 mm in both the medial and lateral compartments (Table 3-2).  

 

Table 3-2 RMSE of quasi-static kinematic parameters, and CP locations estimated by 
simulated reconstruction/registration process in the validation study. 

Parameter RMSE 

Tibia flexion/extension 0.2ᵒ 

Tibia abduction/adduction 1.1ᵒ 

Tibia internal/external rotation 0.6ᵒ 

Femur anterior/posterior displacement 1.2 mm 

Femur medial/lateral displacement 0.7 mm 

Femur proximal/distal displacement 0.6 mm 

Anterior/posterior location of CPs on the tibial plateau 2.0 mm 

Medial/lateral location of CPs on the tibial plateau 3.0 mm 

 

The validation study assessed the contact parameter accuracies, which represented the 

cumulative errors of the entire reconstruction/registration process in estimating the CP 

locations and minimum tibiofemoral bone-to-bone distances. In many 3D/2D registration 

studies, the reported accuracies were limited to errors in the measured kinematics (Dennis et 

al., 2005; Guoan Li et al., 2004). Guoan Li et al. (2004) reported accuracies of 0.1 mm and 

0.1◦ in measuring the position and orientation of a sphere and a cylinder using dual 

fluoroscopy. Moro-oka et al. (2007) found that CT-derived bone models offered better 

kinematics predictions compared to MRI-derived models with RMSE of 1.1 mm and 0.6◦ for 

all knee joint displacements and rotations, which compares to 0.8 mm and 0.6◦ for the 

corresponding pseudo-kinematic values in our study.  
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3.9.4 Medial and lateral contact point location vs. BMI 

Since the OA and healthy groups are not matched for BMI, we tested if the medial shift of the 

contact point could be the result of different BMI rather than the pathology.  

 

Figure 3-11) shows the mean medial and lateral CP locations for all 19 healthy and OA subjects 

averaged at the 5 squat positions, on the medial and lateral plateaus versus BMI. The goal is to 

find out if BMI has a correlation with the medial lateral CP locations in each of the 2 groups 

and on each plateau.  

 

1- The Pearson’s correlation coefficients in each of the 4 data series showed a weak correlation 

between the mean medial lateral CP locations and BMI. These results suggest that BMI alone 

can barely result in a trend in medial lateral CP locations. 

 

Medial OA and BMI:  r=0.15, p=0.68 

Lateral OA and BMI: =0.47, p=0.19 

Medial healthy and BMI: r=-0.30, p=0.39 

Lateral healthy and BMI: r =0.29, p=0.40 

 

2- For the few OA and healthy subjects with similar BMIs (see ellipses in Figure 3-11), CP 

location of OA subjects tended to be more medial compared to similar healthy controls, which 

is consistent with the general findings of the present study about a medial shift in OA.  

 

Although the effect of BMI on CP locations needs to be more specifically addressed in a future 

study, the inter-subject data does not provide clear clues that obesity can shift CPs medially or 

laterally. However, a confounding parameter such as BMI could have affected the results and 

further study on this issue is important. 
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Figure 3-11 Average medial and lateral CP locations for healthy and OA, on the medial and 
lateral plateaus versus BMI 
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CHAPTER 4 
 
 

QUANTITATIVE EVALUATION OF EVOKE™ KNEE ORTHOSIS USING EOS® 
BIPLANE X-RAY IMAGES DURING SQUAT MOVEMENT 

 

4.1 Preface 

This project was performed in the framework of an industrial collaboration with the company 

Medicus during May 2015 – November 2017. The aim of the project was to compare the 

contact point locations of OA subjects during a quasi-static task with and without wearing a 

valgus knee orthosis. The contact points measurement was similar to chapter 3 methods. Our 

hypothesis was that the valgus knee orthosis shifts the contact point location laterally on both 

the medial and lateral compartments of OA joints. This chapter addresses the fourth objective 

of the first problematic of the thesis. In this thesis, the methodology and the preliminary results 

for one subject are presented. This could be seen as a proof of concept for the use of contact 

point locations as a parameter for evaluating the effectiveness of knee orthoses. 

 

4.2 Introduction 

Knee orthoses are medical devices intended to stabilize or limit the movement of the knee. The 

considerable increase in the supply of these devices has not been followed by an evaluation of 

the real effectiveness of these orthoses, both in terms of the postulated physiological effects or 

the therapeutic effects in the short or long term. Knee orthoses are classified into four 

categories: knee sleeves, functional knee braces, rehabilitative or post-operative knee braces, 

or prophylactic knee braces (Martin et al., 2001; Thoumie et al., 2001). In this project, we will 

focus on functional orthoses, particularly, in case of medial compartment knee OA. Previous 

works attempted to test the concept of reducing the stresses on the medial compartment of the 

knee during walking with the use of a valgus orthosis and Matsuno et al. (1997) showed a 
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reduction in pain as well as a 16% improvement in isokinetic quadriceps strength in 20 subjects 

with internal compartment knee osteoarthritis over a period of 12 months. Komistek et al. 

(1999) showed, with dynamic fluoroscopy, a 2-mm increase in joint space in the tibiofemoral 

joint and a reduction in pain in 80% of subjects. A more recent meta-analysis conducted by 

(Moyer et al., 2015) on valgus orthoses approved a significant reduction in the external KAM 

during walking. Furthermore, this meta-analysis revealed that the biomechanical parameters 

most often used in the measurement of the results are: the KAM during the stance phase (17 

studies), followed by the alignment in the frontal plane (11 studies), external KFM (4 studies), 

joint space (4 studies), measured forces on the orthosis (3 studies), computed contact forces as 

well as muscle activations (2 studies). Most of these studies were performed with fixed-axis 

and fixed valgus orthoses. In addition, 3D joint kinematics and tibiofemoral contact point 

locations have never been measured. The company Médicus has developed a new orthosis 

(Evoke™) with a light yet strong material which is adjusted to the morphology of the subject 

through 3D printing of the brace. The orthosis has a hinge with a polycentric axis capable of 

generating an articular coupling between the flexion/extension and the internal/external 

rotation close to the joint kinematics of the normal knee measured on cadaver (Walker et al., 

1985). Our hypothesis is that this orthosis while limiting unwanted movements of the knee, 

gives it a dynamic and kinematics close to the healthy knee. The goal of this project is to 

accurately assess the immediate effect of wearing Evoke™ knee orthosis on 3D kinematics, 

tibiofemoral contact points, as well as the ground reaction forces and moments during a 

controlled squat movement. 

 

4.3 Methodology 

4.3.1 Subjects 

Six subjects (n = 6) with severe medial knee osteoarthritis participated in the project with a 

Kellegren-Lawrence grade 4. Due to the ongoing status of the project and confidentiality of 

the results at this time, only the results of one participant (68 yrs., female, 1.70 m, 89 kg, left 

knee) are presented in this thesis.  
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A personalized Evoke™ orthosis was fabricated for each participant at Médicus laboratory. A 

4-week adaptation period is required for wearing the orthosis before doing the test. The subject 

performed the test 12 weeks after receiving the orthosis. Two Knee injury and Osteoarthritis 

Outcome Score (KOOS) questionnaires were filled by the subject at the time of first clinical 

evaluation and again after the adaptation period upon arrival for doing the experiments. The 

subject completed the consent form approved by the CRCHUM and ETS ethics Committees.  

 

 

4.3.2 Experimental protocol 

The subject adopted 5 weight-bearing squat postures from the standing to a maximum flexion 

of 70ᵒ i.e. at 0ᵒ, 15ᵒ, 30ᵒ, 45ᵒ, and 70ᵒ knee flexion. The subject then performed the same 5 

postures while wearing the orthosis. A positioning support with adjustable height helped the 

participant to keep the posture. For each of the 10 postures, a pair of EOS® biplane images 

were acquired. To ensure that the posture is the same with and without the orthosis, 3 inertial 

APDM sensors were placed on the shank, thigh, and sternum to control the knee 

flexion/extension angle and trunk inclination in real-time and adjust the position if necessary.  

 

An AMTI force platform (ORS-6) was fixed inside the EOS® cabinet to measure the forces 

and moments under the studied foot. A platform was designed to isolate the reaction forces 

under the contralateral foot while both feet are maintained at the same level (Figure 4-1). The 

spacing between the feet was defined so that the distance between the external malleoli 

corresponds to the inter-acromion gap at the shoulder.  
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Figure 4-1: Force platform in the EOS® cabinet measures the forces under the studied foot in 
the middle while the contralateral foot is isolated from the force platform.  

 

4.3.3 Analysis of biomechanical parameters 

Following the two sets of squat positions with and without wearing the orthosis, the following 

parameters were be calculated accordingly: the 6 DOF kinematics of the knee joint from the 

internal landmarks using the biplane images; the flexion / extension of the knee and the trunk 

inclination using the inertial sensors; the medial and lateral contact point locations; the 

medial/lateral vector connecting the contact points; ground reaction forces; minimum bone-to-
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bone distance; location of medial/lateral femoral epicondyle; and the 3D geometry of the bone 

to check the joint configuration and identifying the orthosis hinge screw location with respect 

to the joint. The details of the experimental protocol, the 3D/2D registration technique, and the 

estimation of the contact point location are detailed in Chapter 3 or in A Zeighami et al. (2017).   

 

4.4 Results 

4.4.1 KOOS questionnaire 

The global KOOS score was improved ~23 points after 12 weeks of wearing the orthosis (Table 

4-1), showing a remarkable improvement in the subject’s opinion about the symptoms and 

relevant problems to OA. 

 

Table 4-1 The KOOS results before and after wearing the orthosis: KOOS Pain, KOOS 
Symptoms, KOOS Disability on the level of daily activities (ADL), KOOS Sport/Rec, KOOS 
QOL: Quality of life (QOL) 

 
KOOS outcome Without orthosis With orthosis 

KOOS Pain:  47.22 36.11 

KOOS Symptoms:  57.14 32.14 

KOOS ADL:  51.47  23.53 

KOOS Sport/Rec:  80.00 60.00 

KOOS QOL:  81.25 50.00 

Global score:  63.42 40.36 

 

 

4.4.2 Posture control using inertial sensors and kinematics 

The squat postures were controlled and repeated with and without wearing the orthosis using 

the inertial sensors. The knee flexions were maintained in ± 5° range from the 5 targeted squat 

positions i.e. (0°, 15°, 30°, 45°, and 70° knee flexion) (Table 4-2). Between the two sets of 



70 

experiments with and without the orthosis, the postures were repeated with an average 

difference of 2.8° ± 2.3° (maximum error = 5.1°) for the knee flexion and 0.35° ± 3.63° 

(maximum error = 5.8°) for the trunk inclination. 

 

The kinematics calculated from the internal landmarks (bone-imbedded landmarks) resulted in 

10.3±4.1 higher flexion angles compared to those calculated from the inertial sensors.  

 

Table 4-2 (1) kinematics: The knee flexion and trunk inclination from the inertial sensors and 
from the knee flexion/extension (Flx(+)/Ext(-)), adduction abduction (Add(-)/Abd(+)), and 
internal/external rotation (Ext(-)/Int(+) rot) measured from internal landmarks on the 
reconstructed bones and the femur origin: the origin of femur (middle of condyles) on the 
tibia coordinate system. (2) Force platform: vertical ground reaction force (Fz). (3) Contact 
point location: medial and lateral contact point locations in anterior/posterior (AP (x)), 
medial/lateral (ML (z)), and proximal/distal directions (PD (y)). (4) Minimum distance: 
minimum bone-to-bone distance on the medial and lateral sides 

without orthosis with orthosis 

    0ᵒ 15ᵒ 30ᵒ 45ᵒ 70ᵒ 0ᵒ 15ᵒ 30ᵒ 45ᵒ 70ᵒ 

K
in

em
at

ic
s 

APDM 
inertial 
sensor 

knee flexion  0ᵒ 15ᵒ 30ᵒ 45ᵒ 70ᵒ 0ᵒ 15ᵒ 30ᵒ 45ᵒ 70ᵒ 
trunk inclination 1.7 18.8 39.4 50.0 69.1 2.5 15.4 35.6 44.8 66.6 

internal 
landmarks 

Flx(+)/Ext(-) 7.3 11.3 22.1 28.2 27.8 9.5 14.9 21.9 22.3 26.4 

Add(-)/Abd(+) 8.9 25.9 47.7 57.6 84.0 3.8 20.4 40.8 53.8 80.6 

Ext(-)/Int(+) rot -1.8 -0.1 -2.0 -0.2 -1.1 -1.4 -2.1 0.3 0.9 0.4 

femur 
origin 

Ant(+)/Pos(-) 4.1 15.5 13.2 19.4 19.6 7.8 9.4 17.7 18.0 19.2 

Prox(+)/dist(-) -8.4 -8.8 -7.0 -6.5 -5.0 -5.0 -10.4 -7.6 -8.4 -5.6 

Med(-)/lat(+) -12.7 -10.9 -10.4 -10.8 -10.0 -15.2 -11.5 -11.2 -9.7 -10.4 

Force platform Fz (N) 433.16 -9.6 -8.8 -7.6 -7.7 -7.6 -5.7 -9.4 -7.9 -8.1 

C
on

ta
ct

 p
oi

n
ts

 CP 
location 
medial 

AP (x) 433.16 433.2 490.7 462.6 368.4 320.3 489.0 508.6 502.3 455.9 

PD (y) 1.4 2.9 -1.9 0.8 3.0 13.0 -2.8 5.0 -3.1 2.4 

ML (z) 10.1 10.1 10.0 10.1 10.0 6.6 10.3 9.7 10.0 10.0 

CP 
location 
lateral 

AP (x) -31.3 -31.7 -30.8 -30.9 -30.4 -20.6 -32.5 -30.2 -30.9 -29.3 

PD (y) -1.1 -4.7 -3.5 -5.3 -8.7 1.5 -3.1 -5.3 -6.8 -9.0 

ML (z) 0.2 1.4 1.6 2.0 3.6 0.9 0.6 2.1 3.0 4.4 

Minimum   
distance 

Medial  2.30 5.4 5.7 7.1 6.6 7.6 7.9 4.9 7.1 8.0 

Lateral  0.35 2.30 2.3 1.4 1.5 2.1 0.1 3.3 1.0 2.7 
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4.4.3 Tibiofemoral contact 

The effect of wearing the orthosis on the location of contact points is mainly noticeable on the 

medial tibial plateau. In the first squat position, the medial contact point is shifted 11.52 mm 

laterally and 10.75 mm anteriorly after wearing the orthosis. Other noticeable shifts of the 

contact points occurred on the medial plateau in anterior/posterior direction with the contact 

points at 15°, 30°, and 45° knee flexion were accordingly shifted 5.63 mm posteriorly, 6.8 mm 

anteriorly, and 3.86 mm posteriorly (Table 4-2). Other shifts of the contact point locations in 

the medial/lateral or anterior/posterior directions fell below 3 mm which is the accuracy of the 

contact point location estimation as described in chapter 3.  

The center of the femur with respect to the tibia demonstrated small displacements in 

medial/lateral or anterior/posterior directions except at 0° with 3.4 mm anterior and 3.9 mm 

lateral shift.  

  

The minimum bone-to-bone distance on the medial side increased by 0.52±0.82 mm after 

wearing the orthosis.  
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Table 4-3 Location of the medial and lateral contact points (* marks) before (blue) and after 
(red) wearing the orthosis, the origin of femur (middle of condyles) on the tibia coordinate 
system (x mark), and the epicondyles projected on the tibial plateau (o marks).  

 

 



 

4.5 Conclusion: 

This project was a proof of concept for the use of 3D/2D registration techniques to investigate 

the effect of a valgus knee orthosis on the knee kinematics and contact points locations. The 

contact point locations of the subject in this study did not demonstrate big shifts after wearing 

the orthosis expect for the standing posture on the medial side.  

 

Comparing the contact point location with and without the orthosis requires accurately 

repeating the posture in the two set of experiments to minimize the effect of posture differences 

on the contact point locations. Inertial sensors provided a repeatable means of controlling and 

adjusting the posture in real-time, however, knee flexion measured by these sensors always 

showed smaller values with respect to the flexion calculated using internal landmarks on the 

bones. The sensors attached to the skin are not necessarily aligned with the bone causing a bias 

in the flexion/extension estimations. This bias can be amplified by the soft tissue artefact. 

 

Each orthosis is designed according to the anatomical landmarks which are estimated from the 

digitized skin surface of the subject. The extent to which these estimated points correspond to 

the real anatomical landmarks requires knowledge of the skeleton configuration with respect 

to the orthosis. Using the 3D/2D imaging techniques for the analysis of the orthoses allows 

accurate localization of the orthosis with respect to the skeleton and the joint (Figure 4-2). 

Having the orthosis and the skeleton in one frame during movement is of high interest and 

importance in the design of the orthoses. This could also help to verify if the orthosis is placed 

as expected with respect to the joint and if desired design kinematics (e.g., that of (Walker et 

al., 1985)) is reproduced.  

 

This study showed the feasibility of testing the impact of a knee orthosis on the kinematics, 

ground reaction forces (not presented here), contact points, and joint configurations using 

3D/2D registration techniques. However, it is not clear if the observed changes exist in the 

other subjects and if wearing the orthosis affects them in the same direction/manner. More 
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subjects are required to draw a conclusion about the effectiveness of the orthosis. Moreover, 

given the availability of the ground reaction forces in this experiments, it is possible to use 

inverse dynamics to compare the external loads at the knee level or use the musculoskeletal 

models (as presented in Chapter 5) to estimate the contact forces and evaluate the impact of 

the knee orthosis on them.  

 

 

Figure 4-2 Illustration of the placement of the orthosis with respect to the joint.  
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5.1 Preface 

This chapter addresses the second aim of this thesis: Providing a musculoskeletal model of the 

lower limb which enables integration of personalized contact points.  

 

5.2 Abstract 

Contact point (CP) trajectory is a crucial parameter in estimating medial/lateral tibio-femoral 

contact forces from the musculoskeletal (MSK) models. The objective of the present study was 

to develop a method to incorporate the subject-specific CP trajectories into the MSK model. 

Ten healthy subjects performed 45-second treadmill gait trials. The subject-specific CP 

trajectories were constructed on the tibia and femur as a function of extension/flexion using 

low-dose bi-plane x-ray images during a quasi-static squat. At each extension/flexion position, 

the tibia and femur CPs were superimposed in the three directions on the medial side, and in 

the anterior/posterior and proximal/distal directions on the lateral side to form the five 

kinematic constraints of the knee joint. The Lagrange multipliers associated to these constraints 

directly yielded the medial/lateral contact forces. The results from the personalized CP 

trajectory model were compared against the linear CP trajectory and sphere-on-plane CP 

trajectory models which were adapted from the commonly used MSK models. Changing the 
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CP trajectory had a remarkable impact on the knee kinematics and changed the medial and 

lateral contact forces by 1.03 BW and 0.65 BW respectively, in certain subjects. The direction 

and magnitude of the medial/lateral contact force were highly variable among the subjects and 

the medial/lateral shift of the CPs alone could not determine the increase/decrease pattern of 

the contact forces. The suggested kinematic constraints are adaptable to the CP trajectories 

derived from a variety of joint models and those experimentally measured from the 3D imaging 

techniques.  

 

Keywords: knee contact force, musculoskeletal model, subject-specific, contact point 

trajectory, gait.   

 

 

5.3 Introduction 

Current musculoskeletal (MSK) models of the lower limb demonstrated good accuracy in the 

estimation of the contact forces between femoral and tibial instrumented prosthetic 

components (Gerus et al., 2013; Jung et al., 2016; Kia et al., 2014; Marra et al., 2015). 

However, the accuracy of the medial/lateral contact force estimation considerably improved 

by customizing the point of contact force application (Lerner et al., 2015). The estimation of 

the intact knee joint contact forces still remains a challenge, because the medial and lateral 

contact forces cannot be well calculated without a good estimate of the subject’s contact point 

(CP) trajectories (Saliba et al., 2017a). Such information is very difficult to obtain in vivo 

because it relies on both joint kinematics and articular surface geometries. However, recent 

methods could estimate knee contact parameters in weight-bearing conditions using either bi-

plane fluoroscopy (Farrokhi et al., 2016; Farrokhi et al., 2014), or bi-plane low-dose 

radiography (A Zeighami et al., 2017). Biplane imaging allows for a relatively small 

registration error and yields an estimation of CPs based on the concept of minimal bone-to-

bone distance (A Zeighami et al., 2017). The CP trajectory predictions were similar to in vitro 

measurements of the center of pressure (Draganich et al., 1987). Each of these studies showed 
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that the trajectory of the center of bone-to-bone proximity reveals inter-subject differences as 

well as distinctions between healthy and osteoarthritic knees.  

 

Within inverse dynamics computational frameworks, subject-specific joint kinematics has 

been introduced in MSK models at the step of inverse kinematics (Gerus et al., 2013; Scheys 

et al., 2011; Valente et al., 2015; L. Zheng et al., 2014). Nevertheless, the definition of CP 

trajectories, at the step of joint contact force computation, remains most of the time very basic, 

i.e. at a fixed distance from the tibial plateau centreline. This fixed distance is typically set at 

25% of tibial plateau width (Johnson et al., 1981) in a range from 20 mm (Gerus et al., 2013; 

Schipplein et al., 1991) to 25 mm (Crowninshield, 1978; D. Lloyd et al., 1996; Morrison, 1970) 

in various studies or, eventually, a customized distance determined using a standing radiograph 

(Lerner et al., 2015).  

 

In an earlier study, (Nissan, 1980) performed a sensitivity analysis by moving the CP 5 mm in 

the anterior/posterior direction and found that the posterior and anterior displacements would 

respectively increase the contact force by about 500N and decrease it by about 350N. More 

recently, Lerner et al. (2015) and Saliba et al. (2017a) moved the CP locations only in the 

medial/lateral direction. They found that reducing the lever arm by moving the CP close to the 

knee joint fulcrum increased the contact forces in the corresponding compartment by a gradient 

up to 0.06 BW/mm. Therefore, it is crucial to take into account the CP trajectories.  

Nevertheless, these authors computed the contact forces in a two-step procedure by considering 

the equilibrium of the contact forces, the musculo-tendon forces and the joint moment in the 

frontal plane. Therefore, they could not consider anterior/posterior shifting of the CP. 

Moreover, the modification of the CP trajectories was totally independent of the knee 

kinematics. In the light of articular surface geometrical complexity, recent experimental studies 

have demonstrated that each subject has a unique CP trajectory which showed medial/lateral 

and anterior/posterior excursions (Farrokhi et al., 2016; C. Li et al., 2015; Qi et al., 2013; A 

Zeighami et al., 2017). The anterior/posterior and medial/lateral excursion of CPs in healthy 

subjects could reach 7.1 mm and 5.1 mm in 0º-30º flexion range (A Zeighami et al., 2017). 

This excursion should be taken into account in contact force calculation. 
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To our knowledge, no study has yet estimated the contact forces along the subject-specific CP 

trajectories. The objective of the present study is to propose a new method to introduce subject-

specific CP trajectories directly at the step of inverse kinematics, through relevant kinematic 

constraints. Moreover, similar to the anatomical constraints standing for the articular surfaces 

and ligaments (Florent Moissenet et al., 2012, 2014), the Lagrange multipliers associated to 

these kinematic constraints stand straightforwardly for the contact forces at the medial and 

lateral CPs. This allows for a one-step procedure to compute simultaneously musculo-tendon 

forces and contact forces. 

 

5.4 Material and Methods 

5.4.1 Musculoskeletal Model 

The musculoskeletal model of the lower limb used in the present study is the same as (Florent 

Moissenet et al., 2014) except for the tibiofemoral joint constraints. The model is 

parameterized with natural coordinates Qi where each segment is defined by two unitary 

directional vectors and two position vectors (De Jalon et al., 2012; R. Dumas et al., 2007). It 

consists of five segments, i.e. foot, shank, patella, thigh, and pelvis (i = 1, …, 5). The hip joint 

is spherical and the patellofemoral and ankle joints are parallel mechanisms. Muscular lever 

arms were computed using the muscular geometry of Delp et al. (1990). 

 

In the present study, the tibiofemoral joint (T) is modeled with five kinematics constraints: 
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(5.1) 

with ( )j
iV

i θN  the interpolation matrix for the jth virtual marker of the ith segment depending on 

the tibiofemoral extension/flexion angle θ and with 2 2 2
2 2 2,  ,  X Y ZN N N  the interpolation matrices 

for the axes of the tibia segment coordinate system. The interpolation matrices, N , allow 

determining the position of any point (or the orientation of any direction) embedded in the 

relevant segment knowing its natural coordinates Qi.  

 

Specifically, these virtual markers (i.e., 1 2 1 2
2 2 4 4,  ,  ,  and V V V V ) correspond to the medial and 

lateral CPs embedded in the shank and thigh segment, respectively. The position of these CPs 

is prescribed as a function of the tibiofemoral extension/flexion angle in the same way as the 

ligament lengths in (Gasparutto et al., 2015; Sancisi et al., 2017). The CP locations are provided 

in annex 1. Just like the coupling curves between the degrees of freedom introduced in many 

MSK models (Arnold et al., 2010; Delp et al., 1990; DeMers et al., 2014; Liu et al., 2008), 

there are five kinematic constraints at each position in extension/flexion of the joint. The 

medial CPs of tibia and femur were superimposed in the three directions of space while the 

lateral CPs of tibia and femur were superimposed only in the X (anterior/posterior) and Y 

(proximal/distal) directions of the shank. 
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The inverse kinematics step is formulated as: 

 

( )1
min  

2

subject to 

Tm m

k

r

f =

 
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 

Q
Φ Φ

Φ
0

Φ

 

 

(5.2) 

with the complete definitions of the objective function f, driving constraints , kinematic 

constraints kΦ , and rigid body constraints  detailed in (Duprey et al., 2010; El Habachi et 

al., 2015). 

 

The kinematic constraints kΦ  include all the constraints for ankle (A), patellofemoral (P), 

tibiofemoral (T) (i.e., k
TΦ ) and hip (H) joints. 

 

The inverse dynamics step is then formulated as: 

 

 T   − = − −    
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λ
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(5.3) 

 

solved by the following optimization procedure: 

 

 

( )
1

2 2

1 1

1
1

1

1
min  

2

subject to 

T T

T

T

J
 
 
 

   
=    

   

  
 − = − −   

  


  ≥   

f

λ

K K

f f
W

λ λ

f
Z L K Z GQ P R

λ

f
0

λ



 

 

(5.4) 

 

mΦ

rΦ



81 

 

with the complete definitions of the objective function J, the vector of musculo-tendon 

forces f, the Lagrange multipliers λ, the sub-vector of Lagrange multipliers λ1 in the 

objective function, the optimisation weights matrix W, the projection matrix 
2
TK

Z , the 

matrix of generalised muscular lever arms L, the Jacobian sub-matrix 1K , the matrix of 

generalised masses G, the vector of generalised accelerations Q , the vector of generalised 

weights P, and the vector of generalised ground reaction R detailed in Florent Moissenet 

et al. (2014).  

 

The two sub-matrices 1K  and 2K  of the Jacobian matrix 

k

r

 
∂  
 =
∂

Φ

Φ
K

Q
 are introduced to 

select the Lagrange multipliers to be included in the optimization and cancel the others 

with the projection matrix 
2

TK
Z . As such, the Jacobian sub-matrix 1K  includes, among 

others, the derivatives 
k
T∂

∂
Φ

Q
 and the corresponding Lagrange multipliers stand 

straightforwardly for the contact forces at the medial and lateral CPs and about the axes 

of the shank segment coordinate system. 

The MSK modeling package runs on MatlabTM. The simulation time of the MSK model 

for a single gait cycle was around 90 seconds.   

 

5.4.2 Experimental protocol 

Ten healthy (6 men, 4 women, 55.4 ± 9.5 yrs., 1.67 ± 0.10 m, 71.5 ± 13.3 kg) subjects 

walked with their comfortable speed on an instrumented split-belt treadmill (AMTI, 

Watertown, MA, USA) for 45 seconds. A 12-camera VICON system (Oxford Metrics, 

UK) recorded the 3D motion of the reflective markers mounted on the KneeKGTM (Emovi 

Inc., Laval, QC, Canada) system. Markers and force platform data were filtered using a 

2nd order zero-lag Butterworth filter with automatic estimation of cut-off frequencies 
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(Aissaoui et al., 2006). The joint angular displacements at the hip, knee, and ankle levels 

were assessed using a functional calibration method (Hagemeister et al., 2005). The joint 

kinematics and contact forces were normalized to 100% of the stance phase of gait. EMG 

signals of 8 muscles were collected to find the active/inactive concordance with the 

estimated musculo-tendon forces (see complementary methodology). The experimental 

protocol was approved by the ethics committees of the Centre de recherche (CRCHUM) 

and the École de technologie supérieure de Montréal (ÉTS). 

 

5.4.3 CP trajectories 

Three CP trajectory models were used in the MSK model. The corresponding polynomial 

equations are presented in the annex I.  

 

1) Linear CP trajectory (LCP): This model represents the general assumptions made in 

many MSK models (Johnson et al., 1981; Lerner et al., 2015; D. Lloyd et al., 1996; 

Morrison, 1970; Saliba et al., 2017a; Winby et al., 2009). The contact forces, musculo-

tendon forces and joint moment are only balanced in the frontal plane of the tibia at a 

given distance from the tibial plateau centreline. To build the complying version of the 

model to the Eq. (5-1), the tibial CPs were represented by two straight lines in the sagittal 

plane as in Lemieux et al. (2016). The medial/lateral CP locations were fixed at 20 mm 

from the centreline and the anterior/posterior location of the CPs was driven by a 

regression equation as a function of flexion angle (Delp et al., 1990; Nisell et al., 1986). 

 

2) Sphere-on-plane trajectory (SPP): The CP trajectories represent the femur/tibia sphere-

on-plane contact mechanism guided by three isometric ligaments. (Duprey et al., 2010; 

Feikes et al., 2003). The mechanism geometry is based on in vitro measurements (Parenti-

Castelli et al., 2013), and was not personalized. 

 

3) Personalized CP trajectory (PCP): The CP trajectories were interpolated from the 

weighted center of bone-to-bone proximity measured during a quasi-static squatting task.  
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Bi-plane X-ray images of the lower limb were recorded at 0ᵒ, 15ᵒ, 30ᵒ, 45ᵒ, and 70ᵒ of knee 

flexion using the EOS® low-dose imaging system (EOS® Imaging, Paris, France). The 

accuracy of estimating the weighted center of bone-to-bone proximity was reported 2 mm 

in the anterior/posterior and 3 mm in the medial/lateral directions in a simulation test (A 

Zeighami et al., 2017).   

 

Once the CP trajectories are found in thigh and shank segment coordinate system (as a 

function of θ), the terms of Eq. (5-1) are obtained (Annex II) using the matrix B relating 

the natural coordinates Qi with the segment axes (R. Dumas et al., 2007). 

 

5.4.4 Statistical Analysis: 

One-way repeated measures analysis of variance (ANOVA) was performed to detect 

statistically significant differences in contact forces estimated using the three CP trajectory 

methods (p<0.05). Bonferroni post-hoc test detected the pair-wise differences. In the PCP 

model, a linear correlation test was performed to find the possible correlation between the 

medial peak forces and the anterior/posterior and medial/lateral locations of the medial 

CPs, and between the lateral peak forces and the anterior/posterior and medial/lateral 

locations of the lateral CPs. 

 

5.5 Results 

The trajectories of PCP and SPP models showed a distinct deviation from the LCP model 

on the medial and lateral compartments both in medial/lateral and anterior/posterior 

directions as shown for a sample subject in Figure 5-1). The CP trajectories had a 

remarkable impact on the knee joint kinematics as well as the contact forces (Figure 5-2). 

However, this impact varied widely among the subjects. For instance, the first peak of the 

medial contact forces estimated from the PCP model with respect to the LCP model, 
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increased from 1.43 BW to 2.46 BW in subject N4, whereas it decreased from 1.45 BW 

to 1.32 BW in subject N2 (Table 5-1).  

 

 

Figure 5-1 Contact point trajectories of subject N10 from the three contact point trajectory 
models over the tibial plateau: linear contact point (LCP) trajectory (: black), sphere-on-
plane (SPP) trajectory (-- blue), and personalized contact point (PCP) trajectory (- red) 
models. The sequence of stance phase events is illustrated on each contact point trajectory: 
first and second peaks of medial (pk1 Med, pk2 Med), first and second peaks of lateral 
(pk1 Lat, pk2 Lat) contact force, heel strike (HS), toe off (TO), 0ᵒ (flx0) and 70ᵒ (flx70) 
knee flexion. The shaded region around the PCP model represents the uncertainty of 
estimating the weighted center of bone-to-bone proximity (±3 mm) in the medial/lateral 
direction (Zeighami et al. 2016). 

 

The maximum difference in estimating the first medial peak between the PCP and LCP 

models was 1.03 BW in subject N4, between the PCP and SPP models was 0.65 BW in 

subject N5, and between the LCP and SPP models was 0.89 BW in subject N1. The 



85 

maximum difference in estimating the first lateral peak between the PCP and LCP models 

was 0.64 BW in subject N5, between the PCP and SPP models was 0.25 BW in subject 

N5, and between the LCP and SPP models was 0.50 BW in subject N8 (Table 5-1).  

 

Table 5-1 (a) characteristics of the ten subjects in this study. (b) First and second peaks of 
the medial and lateral (pk1Med, pk2Med, pk1Lat, pk2Lat) contact forces from the linear 
CP trajectory (LCP), sphere-on-plane (SPP) trajectory, and personalized CP (PCP) 
trajectory models, and location of the CPs in medial (M) – lateral (L) and anterior (A) – 
posterior (P) directions of the tibial plateau at the corresponding events. 

 

 

The average second peak of the medial contact force was significantly higher in the SPP 

model (2.88 BW) compared to the LCP (2.07 BW) and PCP (1.87 BW) models (p<0.05). 

The second peak of the total contact force was also greater in the SPP model, however, 
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the difference was not significant (p=0.10). In general, the LCP and PCP models 

demonstrated closer estimations compared to the SPP model (Figure 5-3).  

 

 

Figure 5-2 Medial, lateral, and total contact forces as well as the knee extension/flexion 
(Ext-Flex), adduction/abduction (Add-Abd), Internal/external (Int-Ext) rotations, lateral-
medial (Lat-Med), anterior/posterior (Ant-Post), and proximal/distal (Prox-Dist) 
translations of subject N10 using the linear contact point  (LCP) trajectory (:black), 
sphere-on-plane (SPP) trajectory (--blue), and personalized contact point (PCP) trajectory 
(-red) models. The corresponding contact point trajectories are presented in Figure (5-1). 
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Figure 5-3 The average (10 subjects) first and second peaks of medial (pk1 Med, pk2 Med) 
, first and second peaks of lateral (pk1 Lat, pk2 Lat) , first and second peaks of total (pk1 
T, pk2 T) contact forces using the linear contact point (LCP) trajectory, sphere-on-plane 
(SPP) trajectory, and  personalized contact point (PCP) trajectory models. * and @ denote 
statistically significant differences between the SPP and LCP models and between the SPP 
and PCP models respectively. 

 

All the medial compartment CPs in the PCP model were located lateral to the LCP model 

CPs. The first peak medial contact forces in PCP increased in six subjects and slightly 

decreased in four subjects with respect to the LCP model (See complementary 

methodology) (Table 5-1). Similarly, on the lateral side, the direction of the CP shift could 

not predict the direction of the change in the lateral contact forces with respect to the LCP 

model. 
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Figure 5-4 First (red marks) and second (blue marks) peaks of the medial and lateral 
contact forces (pk1 Med, pk2 Med, pk1 Lat, pk2 Lat) from the personalized contact point 
trajectory (PCP) model and the location of the personalized contact points at the 
corresponding events.  Coordinates of the points are presented in Table 1 for all 10 
subjects. The dashed line represents the regression line on the medial side (r=0.53, 
p<0.001). No correlation existed on the lateral side (r=0.18, p=0.43). Results adapted from 
two previous sensitivity analysis studies are also presented. The range of contact point 
perturbations were ±25±10 mm in Saliba et al. (2017), and ±20±4 mm in Lerner et al. 
(2016).    

 

The PCP model generally suggested lower medial contact forces when the CPs were more 

medially located (Figure 5-4). A moderate positive correlation existed between the peaks 

of medial contact forces and the medial/lateral location of the medial CPs (r=0.53, 

p<0.001). Conversely, no correlation was observed in the lateral compartment (Figure 

5-4). No correlation was found between the peaks of medial (r=0.14, p=0.54) and lateral 

(r=0.1, p=0.6) contact forces and anterior/posterior location of the CPs.  

 

5.6 Discussion 

The present study focuses on inverse dynamics computational frameworks where the 

personalization of the joints relies on the kinematic constraints and/or model geometrical 

parameters. In the literature, the joint kinematics and the position of the CPs appear to be 

treated independently (Gerus et al., 2013; Lerner et al., 2015; Saliba et al., 2017a). In our 
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formulation, it appears clearly that the subject-specific kinematics constraints k
TΦ  and 

contact forces (i.e., the Lagrange multipliers associated to
k
T∂

∂
Φ

Q
) are directly related. 

Therefore, the joint kinematics were correspondingly adapted to the subject-specific CP 

trajectories and contributed to the contact force. Certain knee joint constraints such as 

sphere-on-plane mechanism could be personalized based on the anatomical measures from 

bi-plane radiography (Clément et al., 2015, 2017) or MRI (da Luz et al., 2017). However, 

the kinematics constraints proposed in Eq. (3-1) are certainly the most versatile ones as 

they can be deduced from any joint model and geometry. As such, they have been used in 

the present study to compare two tibiofemoral joints of the literature (Delp et al., 1990; 

Florent Moissenet et al., 2014) as well as to integrate personalized CP measurements 

obtained by quasi-static squat (Ali Zeighami et al., 2016). Future works could integrate 

the personalized CP trajectories obtained from methods such as bi-plane fluoroscopy 

within the same activity i.e., treadmill walking. 

 

Within the simulated finite element computational frameworks, subject-specific joint 

models can also be built including detailed deformable geometry. The CP trajectories are 

therefore not inputs but rather outputs of the model together with the contact forces 

(Rachel L. Lenhart et al., 2015; Marouane et al., 2016). It allows these models to simulate 

relationships between joint structure and mechanics. Nevertheless, the computed CPs 

could vary from the experimentally measured CPs since several parameters including the 

stiffness of the ligament with a high impact on the CPs (Rachel L Lenhart et al., 2015) 

cannot be personalized. To our knowledge, the present study is the first to implement the 

experimentally measured CP trajectories into the inverse kinematics and contact force 

calculation steps.  

 

Our study showed that using the PCP model in certain subjects increased the estimated 

peak contact forces up to 1.03 BW (subject N4) and 0.65 BW (subject N5) on the medial 

and lateral sides compared to the LCP model (Table 5-1). For these two specific subjects, 

a remarkable increase in the vastus medialis and vastus lateralis muscle forces were 
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observed in the PCP model, which is not the case in the other subjects (See complementary 

methodology). According to the Lerner et al. (2015) gradient, the medial contact force in 

subject N4 would have increased by 0.44 BW due to 7.4 mm lateral shift of the CP, and 

the lateral contact force in subject N4 would have decreased by 0.64 BW due to the 10.7 

mm lateral shift of the CP. The estimated contact forces could vary largely when different 

CP trajectory models were used. However, the difference between the average contact 

forces from the three models was significant only in the second peak of medial contact 

force (Figure 5-3). The contact force variations were generally larger on the medial side. 

The sphere-on-plane model tended to show larger differences with respect to the other two 

models (Figure 5-3).  

 

Our results showed that the medial/lateral shift of the CPs alone could not determine the 

increase/decrease pattern of the contact forces. Lerner et al. (2015) and Saliba et al. 

(2017a) reported that if the CPs were shifted medially the medial contact force would 

decrease and the lateral contact force would increase by 1-6% BW/mm. Our results 

showed that there is no correlation between the lateral contact, yet a moderate relationship 

existed for the medial contact (Figure 5-4). Lack of a strong relationship between the 

contact location shifts and the medial/lateral force was not unexpected in our 

multifactorial study. In Lerner et al. (2015) and Saliba et al. (2017a), the musculotendon 

forces are first calculated and the joint equilibrium in the frontal plane determines the 

contact forces. In this study, the musculotendon forces and the contact forces were 

calculated in one step and the equilibrium was attained in all planes. In addition, the 

kinematics of the joints was affected by the alteration of the CP trajectories. It has been 

long known that the contact locations are non-straight subject-specific paths (Ahmed et 

al., 1983) and that the CP locations alter the contact force estimation (Nissan, 1980). 

Therefore, the change in the CP distance from the tibial plateau centreline was not 

adequate in estimating the medial/lateral contact force.  

 

Moreover, the CP trajectories are significantly altered in knee pathologies such as 

osteoarthritis (Farrokhi et al., 2016; C. Li et al., 2015; A Zeighami et al., 2017); yet still 
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most of the MSK models use the LCP-like models to estimate the medial/lateral contact 

forces both for osteoarthritic subjects and healthy controls (Kumar et al., 2013). Our 

method may serve to further personalize tibiofemoral joints in the MSK models and to 

develop a more realistic estimation of contact forces in osteoarthritic population.  

 

The MSK model used in this study was previously validated using knee instrumented 

implant data (Florent Moissenet et al., 2014, 2016b; F Moissenet et al., 2015). With the 

SPP model, it could predict the medial and lateral contact forces with a mean RMSE 

difference of 0.39 BW and 0.28 BW (Florent Moissenet et al., 2014). Unfortunately, there 

is no means to validate the PCP model. To check if the results were realistic or not a 

pseudo-validation using EMG data was used (Complementary methodology). EMG 

results revealed no remarkable difference between the three CP trajectory models yet, the 

PCP model demonstrated a slightly better concordance with EMG data for rectus femoris 

and vasti muscle that are two main contributors to the first peak contact force (Florent 

Moissenet et al., 2017). 

 

The main limitation of this study is the application of CP trajectories extracted from a 

quasi-static squat into the gait. Indeed, a mismatch between the kinematics of the 

tibiofemoral joint would result in different CP trajectories. Nevertheless, Gasparutto et al. 

(2017) synthesized the kinematics of the normal knee during various weight-bearing 

activities measured by intra-cortical pins and bi-plane fluoroscopy and concluded that the 

impact of the dynamic activity on the couplings between the joint degrees of freedom was 

limited.  Treadmill walking also creates some differences in the kinematics of the gait 

(Alton et al., 1998; Murray et al., 1964; Strathy et al., 1983; Warabi et al., 2005). However, 

this latter applies to all the 3 models used in this study and is not likely to affect the 

conclusion regarding the difference between the models. The other limitation of this work 

is the accuracy of the measured CPs. The accuracy of the bone-to-bone proximity 

estimation was reported <3mm (A Zeighami et al., 2017). The CPs at the five flexion 

angles were interpolated to find the trajectory as a function of knee extension/flexion that 

may add further errors. Moreover, cartilage thickness is not uniformly distributed over the 
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joint regions (Favre et al., 2017). Therefore our method relying solely on bone proximity 

and neglecting cartilage thickness could be biased to predict CPs in regions with minimal 

cartilage (DeFrate et al., 2004; Marouane et al., 2016). Finally, the definition of the CP 

has to be clarified. Since there is no practical way to measure the center of pressure in the 

menisci and cartilage, a weighted center of bone-to-bone proximity was considered as the 

CP location.  

 

This study introduced a new method to incorporate personalized CP trajectories in the 

MSK model contact force estimations. Currently, the CP trajectories are based on biplane 

radiography during squat which is subjected to limitations. But, more precise dynamic CP 

trajectories by considering layers of cartilage and menisci tissues could be introduced the 

same way in the proposed model. The impact of changing the CP trajectories on the 

medial/lateral contact forces was substantially large and was variable between the 

medial/lateral compartments and among the subjects. Due to the multifactorial nature of 

contact force calculations, the medial/lateral shift of the CP distance from the tibial plateau 

centreline alone could not predict the direction of compartmental contact force changes.    
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5.8 Complementary methodology 

The original article includes a list of supplementary materials that are not reproduced in 

extenso.  Conversely, in this section, we selected some of the important methodological aspects 

that are not extensively explained in the chapter due to the limited word count of the original 

article. 

 

5.8.1 Medial and lateral contact forces over the stance phase 

The mean contact forces of the 10 healthy 12 OA subjects are presented in Figure 5-5). The 

contact forces in healthy subjects are slightly higher but the difference is not significant. 

 

 

Figure 5-5 Medial, lateral, and total contact forces of the healthy and OA subjects during the 
stance phase 

  

5.8.2 Marker labeling in biomechanical trials 

The motion data in our study were recorded using A 12-camera VICON system (Oxford 

Metrics, UK). The reflective markers were placed on the lower limb as illustrated in (Figure 

5-6). Three reflective markers were placed on the femoral part of KneeKG™ (FemurG/D 1,2,3) 
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and three on the tibial part of KneeKGTM (TibiaG/D 1,2,3). Three markers were mounted on a 

belt fixed around the waist (Bassin 1,2,3). Six markers were placed on the foot on the navicular 

bone (NacG/D), 1st and 5th metatarsal bones (Meta1G/D, Meta5G/D), Internal and external 

malleoli (MalIG/D, MalEG/D), and the calcaneus bone (TalonG/D). 

 

 

Figure 5-6 Placement of reflective markers on the lower limb to track the 3D motion of the 
limbs. 

 

5.8.3 Contact forces in personalized and linear contact point models 

The contact forces and contact point locations of PCP and LCP models are compared for the 

10 healthy subjects in the following figure. All the medial compartment CPs in the PCP model 

were located lateral to the LCP model CPs. The first peak medial contact forces in PCP 
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increased in six subjects and slightly decreased in four subjects with respect to the LCP model. 

It shows that the direction of the CP shift could not predict the direction of the change in the 

lateral contact forces with respect to the LCP model. 

 

Figure 5-7 shows the difference in contact force estimations at the 1st and 2nd medial and lateral 

peaks between the personalized contact point (PCP) and linear contact point (LCP) models. 

The horizontal axis is the personalized medial/lateral contact point location at the 

corresponding events: pk1 med (first peak of medial force), pk1 lat (first peak of lateral force), 

pk2 med (second peak of medial force), and pk2 lat (second peak of lateral force). The medial 

and lateral contact points in the LCP model were always located at -20 mm and +20 mm from 

the plateau centreline.  

 

 

Figure 5-8 difference between the contact force estimated using personalized contact point 
and linear contact point models on the vertical axis and the corresponding contact point 

locations on the horizontal axis  

 

5.8.4 Muscle forces in personalized and linear contact point trajectory models 

Our study showed that using the PCP model in subject N4 and N5 the estimated peak contact 

forces increased up to 1.03 BW and 0.65 BW on the medial and lateral sides compared to the 
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LCP model which is bigger than the difference in the other subjects (Table 5-1). The main 

contributor muscles to the first peak contact force in our model are the vasti and rectus femoris 

(Florent Moissenet et al., 2017). The muscle force estimations using PCP and LCP models are 

compared for all 10 healthy subjects (Table 5-2). We observed that for these two subjects, we 

have a remarkable increase in the vasti muscles whereas the rectus femoris force has been 

reduced or stayed unchanged. This table was added to the supplementary. 

Table 5-2 Rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) musculo-
tendon force estimations from the musculoskeletal model using personalized contact point 
(PCP) model (a), linear contact point (LCP) model (b), and the difference (c) between the 
two models at the first and second peaks of medial (pk1 med, pk2 med), and first and second 
peaks of lateral (pk1 lat, pk2 lat) contact forces. 

a) PCP model muscle / BW   RF       VL    VM   

subjects 

N1 
pk1 med 0.71 0.5 0.89 

pk1 lat 0.58 0.58 1 

N2 
pk1 med 0.07 0.06 0.09 

pk1 lat 0.17 0.14 0.23 

N3 
pk1 med 0.26 0.5 0.8 

pk1 lat 0.04 0.6 0.99 

N4 
pk1 med 0.63 0.68 1.14 

pk1 lat 0.36 0.84 1.35 

N5 
pk1 med 0.06 0.89 1.43 

pk1 lat 0.1 0.88 1.42 

N6 
pk1 med 0.61 0.52 0.9 

pk1 lat 0.29 0.58 0.95 

N7 
pk1 med 0.06 0.23 0.37 

pk1 lat 0.08 0.21 0.33 

N8 
pk1 med 0.06 0.23 0.37 

pk1 lat 0.08 0.21 0.33 

N9 
pk1 med 0 0.14 0.21 

pk1 lat 0 0.19 0.28 

N10 
pk1 med 0.53 0.34 0.62 

pk1 lat 0.18 0.43 0.7 

 
        
b) LCP model muscle / BW   RF       VL    VM   

subjects 

N1 
pk1 med 0.83 0.38 0.74 

pk1 lat 0.58 0.52 0.92 

N2 
pk1 med 0.01 0.14 0.22 

pk1 lat 0.26 0.18 0.33 
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b) LCP model muscle / BW RF VL VM 

subjects 

N3 
pk1 med 0.26 0.27 0.48 

pk1 lat 0.1 0.43 0.7 

N4 
pk1 med 0.89 0.28 0.59 

pk1 lat 0.52 0.51 0.88 

N5 
pk1 med 0.02 0.41 0.65 

pk1 lat 0.07 0.4 0.64 

N6 
pk1 med 0.63 0.44 0.8 

pk1 lat 0.27 0.53 0.88 

N7 
pk1 med 0.05 0.14 0.22 

pk1 lat 0.05 0.14 0.22 

N8 
pk1 med 0.02 0.12 0.19 

pk1 lat 0.03 0.28 0.44 

N9 
pk1 med 0 0.12 0.19 

pk1 lat 0 0.18 0.28 

N10 
pk1 med 0.18 0.25 0.43 

pk1 lat 0.2 0.29 0.49 

        
c) difference PCP -LCP   RF       VL    VM   

subjects 

N1 
pk1 med -0.1 0.1 0.2 

pk1 lat 0 0.1 0.1 

N2 
pk1 med 0.1 -0.1 -0.1 

pk1 lat -0.1 0 -0.1 

N3 
pk1 med 0 0.2 0.3 

pk1 lat -0.1 0.2 0.3 

N4 
pk1 med -0.3 0.4 0.6 

pk1 lat -0.2 0.3 0.5 

N5 
pk1 med 0 0.5 0.8 

pk1 lat 0 0.5 0.8 

N6 
pk1 med 0 0.1 0.1 

pk1 lat 0 0.1 0.1 

N7 
pk1 med 0 0.1 0.2 

pk1 lat 0 0.1 0.1 

N8 
pk1 med 0 0.1 0.2 

pk1 lat 0.1 -0.1 -0.1 

N9 
pk1 med -0.1 0.1 0.2 

pk1 lat 0 0.1 0.1 

N10 
pk1 med 0.1 -0.1 -0.1 

pk1 lat -0.1 0 -0.1 
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5.8.5 Musculo-tendon forces pseudo-validation using EMG data 

Surface electromyography (EMG) signals of the rectus femoris (RF), vastus lateralis (VL), 

vastus medialis (VM), tibialis anterior (TA), gastrocnemius medialis (GM), gastrocnemius 

lateralis (GL), semitendinosus (ST), and biceps femoris (BF) muscles were collected at 2 kHz 

during the gait trials using a Delsys Myomonitor system (Delsys, Inc., Boston, MA). A semi-

quantitative pseudo-validation of estimated musculo-tendon forces from the MSK model was 

performed to find the active/inactive concordance with the EMG signals (Giroux et al., 2013). 

The stance phase was divided into 4 sub-phases (i.e., loading response, mid-stance, terminal 

stance, pre-swing) during which the EMG envelope and the musculo-tendon force states could 

take active or inactive state. Muscles were defined active when the mean value during a phase 

was above 20% of the maximum of the estimated musculo-tendon force and of the EMG 

envelope reached during the whole movement, respectively (Florent Moissenet et al., 2014). 

The concordance coefficient represents the ratio of phases that indicate concordance (i.e., 

simultaneously active or inactive) during the gait trial. 

  

The average EMG coefficient of concordance showed no remarkable difference between the 

three contact point trajectory models. Five out of eight muscles indicated slightly better 

concordances using the PCP model whereas the remaining three had slightly higher values 

using the SPP model (Table 5-3).  

 

Table 5-3 Coefficient of concordance (%) for the rectus femoris (RF), vastus lateralis (VL), 
vastus medialis (VM), tibialis anterior (TA), gastrocnemius medialis (GM), gastrocnemius 
lateralis (GL), semitendinosus (ST), and biceps femoris (BF) muscles using the three contact 
point trajectory models: linear contact point (LCP), sphere-on-plane (SPP), and personalized 
contact point (PCP) models.    

Muscle LCP SPP PCP 

RF 0.56±0.05 0.52±0.07 0.60±0.06 

VL 0.69±0.05 0.68±0.07 0.75±0.08 

VM 0.70±0.12 0.66±0.14 0.72±0.09 
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Muscle LCP SPP PCP 

TA 0.63±0.09 0.60±0.09 0.65±0.11 

GM 0.56±0.13 0.66±0.12 0.54±0.13 

GL 0.48±0.08 0.49±0.14 0.44±0.12 

ST 0.75±0.13 0.74±0.14 0.78±0.13 

BF 0.57±0.13 0.60±0.18 0.59±0.13 

Average 0.62±0.09 0.62±0.08 0.63±0.11 
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6.1 Preface 

This chapter addresses the third aim of this thesis: investigate the contribution of contact point 

locations on the knee contact force distribution compared to the other mechanical and 

functional parameters.  

 

6.2 Abstract 

High prevalence of knee osteoarthritis on the medial compartment is attributed to elevated 

medial-to-total contact force ratio (MR) in the joint.  This study aimed to estimate the knee 

medial and lateral contact forces in OA and healthy subjects, and to evaluate the role of contact 

point locations in the MR. A musculoskeletal model of the lower limb with personalized 

tibiofemoral contact point trajectories was used to estimate the contact forces in ten healthy 

and twelve OA subjects during treadmill gait. Regression analyses were performed to evaluate 

the contribution of the contact point locations along with the knee adduction moment (KAM), 

knee flexion moment (KFM), frontal plane alignment, and gait speed to MR in OA and healthy 

subjects. Medial contact points location in medial/lateral direction had a significant but small 

contribution (R2=0.05) to the MR in OA subjects. Contact point location was not among the 
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significant predictors of MR in healthy subjects (p>0.05). KAM and KFM remained the best 

predictors of MR, together accounting for R2 = 0.85 and R2 = 0.79 of variation in healthy and 

OA groups, respectively. Entering the medial contact point locations to the regression model 

increased the value of R2 by 6% in OA group. Our results suggest different mechanisms of 

contact force distribution in OA joint and can help to understand the part of the variation in the 

MR of OA subjects which is not explained by the KFM and KAM.  

 

Keywords: Tibiofemoral contact force, knee load distribution, osteoarthritis, contact point, 

knee moments 

 

6.3 Introduction 

Excessive loading is believed to play a crucial role in the pathogenesis of knee osteoarthritis 

(OA) (Miyazaki et al., 2002). Knee OA is mostly developed on the medial compartment where 

a major percentage of the total contact load is transferred (Johnson et al., 1981; Miyazaki et 

al., 2002; C. C. Prodromos et al., 1985). Reducing the knee medial contact force (Fmed) has 

been the focus of many studies using osteotomy surgery (Briem et al., 2007), or noninvasive 

techniques such as using cane or shoe soles, gait modifications, and valgus braces (Erhart et 

al., 2010; Fregly et al., 2009; Kemp et al., 2008; Kutzner et al., 2011) through the variation of 

frontal plane alignment or knee adduction moment (KAM). Estimating the Fmed in OA and 

healthy knees could help clarifying the loading role in OA. Therefore, characterizing the 

parameters that contribute to the Fmed can help to find more effective therapeutic interventions 

to potentially slow down the OA progression.  

 

Due to the complexity and the limited feasibility of estimating the contact forces using either 

musculoskeletal models or instrumented implants, the KAM has been widely used as a 

surrogate for the Fmed or the medial-to-total contact force ratio (MR)  (Astephen et al., 2005; 

Butler et al., 2007; Kinney et al., 2013; Schipplein et al., 1991; Zhao et al., 2007). MR is 

particularly much better predicted by the KAM compared to the Fmed (Kutzner et al., 2013; 

Meyer et al., 2013). Despite the considerable evidence on the relationship between the KAM 
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with both Fmed and MR (Trepczynski et al., 2014), and the medial compartment OA progression 

(Bennell et al., 2011; Miyazaki et al., 2002; L. E. Thorp et al., 2006), the weight of KAM 

contribution to Fmed and MR is debated (Adouni et al., 2014). In fact, the coefficient of 

determination (R2) between KAM and Fmed from the linear regression models in previous 

studies falls in a wide range from 19% - 76% (Esculier et al., 2017; Kutzner et al., 2013; Meyer 

et al., 2013; Walter et al., 2010; Walter et al., 2015). The values of R2 were also considerably 

variable across the subjects suggesting that the KAM alone could not be generalized as the sole 

indicator of the Fmed and/or MR  (Kutzner et al., 2013). Several other parameters were 

suggested to improve the Fmed and MR predictions. Among those, the knee flexion moment 

(KFM) (Esculier et al., 2017; Kumar et al., 2013), frontal plane alignment (Adouni et al., 2014), 

and gait speed (Kutzner et al., 2013) were found to have substantial contributions to the Fmed 

and MR. Moreover, sensitivity analysis studies showed that anterior/posterior and medial/-

lateral locations of the tibiofemoral contact points had also a high impact on the contact forces 

and the forces distribution between the medial and lateral compartments (Lerner et al., 2015; 

Nissan, 1980; Saliba et al., 2017b; A Zeighami et al., 2018). For instance, Lerner et al. (2015) 

demonstrated a 6% increase in the MR per each millimeter of the contact point medial shift 

(R2 = 0.99). Since there has been no means to integrate the personalized contact point 

trajectories in the contact force estimations; no study could have tested the contribution of the 

contact point locations with respect to the other parameters. Recently, Zeighami et al. (A 

Zeighami et al., 2018) integrated personalized contact point trajectories obtained from 3D/2D 

registration techniques in the medial and lateral knee contact force estimations. This technique 

currently allows evaluating the importance of the contact point locations along with the other 

parameters to predict the MR.   

 

In addition, most of the studies on the Fmed of the knee are performed in knee arthroplasty 

subjects, and the data on the healthy and OA knees are scarce. The few available OA-control 

studies estimated the medial and lateral contact forces using a generic model of the contact 

point trajectories (Kumar et al., 2013; Sritharan et al., 2017), and therefore, did not factor in 

the inter-subject variations and the distinct patterns of the anterior/posterior and medial/lateral 
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contact point locations in healthy and OA subjects (Farrokhi et al., 2016; A Zeighami et al., 

2017). 

 

The objective of this study is (1) to estimate the medial and lateral knee contact forces in both 

healthy and OA subjects using the personalized contact point trajectories obtained from 3D/2D 

registration techniques, and (2) to analyze the impact of the medial/lateral and 

anterior/posterior contact point locations along with KAM, KFM, gait speed, and frontal plane 

alignment on the MR.  

 

6.4 Materials and methods 

6.4.1 Musculoskeletal model with personalized contact point trajectories:  

The medial and lateral knee contact forces were estimated using a musculoskeletal model of 

the lower limb with the integration of the personalized contact point trajectories (A Zeighami 

et al., 2018). The model consists of 5 segments and 5 joint degrees of freedom (DOF), with the 

hip joint modeled as a ball and socket joint (3 DOF) and the ankle modeled as a ball and socket 

joint plus two isometric ligaments (1 DOF). The tibiofemoral joint (1 DOF) is defined by 5 

kinematic constraints derived from the personalized tibiofemoral contact point trajectories: at 

each flexion angle, the femoral and tibial contact points are superimposed in the 3 spatial 

directions on the medial compartment, and in both anterior/posterior and proximal/distal 

directions on the lateral compartment. The proximal/distal constraints on each compartment 

allow for a straightforward computation of medial and lateral contact forces (A Zeighami et 

al., 2018). The musculo-tendon lever arms were adopted from Delp et al. (1990).  

 

A full description of the musculoskeletal model of the lower limb (except for the tibiofemoral 

joint) is detailed in (Florent Moissenet et al., 2014). The model estimations were previously 

validated (Florent Moissenet et al., 2014, 2016b; F Moissenet et al., 2015) compared to 

instrumented implants data. For a semi-quantitative validation of the model with the 

personalized tibiofemoral contact points, the active/inactive state of 8 muscles was compared 
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(i.e. concordance coefficients (Giroux et al., 2013)) to the EMG signals to if check the model 

predictions are realistic for 10 healthy subjects (A Zeighami et al., 2018). 

The contact forces were calculated in a one-step procedure simultaneously minimizing the 

contact and musculo-tendon forces. Internal joint moments are derived from the inter-

segmental action of muscles, ligaments, and contacts forces, and represent the action of the 

proximal onto the distal segment expressed in the joint coordinate system. The external knee 

adduction (KAM) and knee flexion moments (KFM) were obtained by reversing the 

corresponding internal moment signs. 

 

The knee contact forces were normalized to body weight (BW) and the KAM and KFM were 

normalized to BW*height.  

6.4.2 Experimental protocol: 

Ten healthy (6 men, 4 women, 55 yrs., 1.68m, 71 kg) and 12 severe OA (2 men, 10 women, 

59 yrs.1.61m, 85.53kg, K-L grade 4) subjects were asked to walk with their comfortable speed 

on an instrumented split-belt treadmill for 45 seconds (Table 6-1). Data from force platforms 

and reflective markers mounted on the kneeKGTM system (Hagemeister et al., 2005) were 

filtered using a zero-lag 2nd order Butterworth filter with cut-off frequencies automatically 

calculated using a power spectrum analysis (PSA) algorithm (Aissaoui et al., 2006).  

 

The personalized contact point trajectories introduced into the musculoskeletal model were 

approximated using a weighted center of bone-to-bone proximity algorithm during a quasi-

static squat task. The 3D models of the tibia and femur were reconstructed and registered using 

EOS® low-dose biplane X-ray images of the subjects at 0ᵒ, 15ᵒ, 30ᵒ, 45ᵒ, and 70ᵒ of knee 

flexion. The personalized tibiofemoral contact point trajectories were built as a function of the 

knee flexion angle as described earlier (A Zeighami et al., 2018). The frontal plane alignment 

was measured from the reconstructed tibia and femur of the subjects at 0ᵒ.   
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All subjects signed an informed consent form and the experimental protocol was approved by 

the ethics committees of the Centre de Recherche, Centre Hospitalier de l’Université de 

Montréal (CRCHUM) and École de Technologie Supérieure de Montréal (ÉTS). 

 

6.4.3 Statistical analysis: 

A non-parametric Mann-Whitney U-test was used to compare the gait speed, frontal plane 

alignment as well as the magnitude and ratio of the medial, lateral and total contact forces 

between OA and healthy subjects (p < 0.05). Two sets of linear regression tests, one for healthy 

and one for OA, were performed to evaluate the extent to which the independent variables were 

predictive of the MR in OA and healthy subjects, respectively. The dependant variable was 

MR at 4 peak instances being the 1st and 2nd medial and lateral peaks. The independent 

variables were the KAM, KFM, frontal plane alignment, gait speed, and positions of the medial 

and lateral contact points in the anterior/posterior (CPxmed, CPxlat), and medial/lateral 

(CPzmed, CPzlat) directions at the corresponding timing. The rationale for considering 4 peaks 

was different timings of the medial and lateral contact force peaks. The coefficients of 

determination (R2) were compared to identify the set of parameters that explains the greatest 

proportion of the variance of the dependent variable. The correlation was considered poor, 

moderate, or good if R2 ≤ 0.05, 0.5 < R2 < 0.75, and R2 > 0.75, respectively. The regression 

model was rated as significant for p < 0.05. The correlation with each variable was first 

independently tested and the variables with significant effects were selected for multiple 

regression.  

 

6.5 Results 

The contact forces in healthy subjects averaged slightly higher than the OA subjects at the 2nd 

peak medial (OA = 1.7 BW, healthy = 1.9 BW), 1st peak lateral (OA = 1.1 BW, healthy = 1.2 

BW), 2nd peak lateral (OA = 0.5 BW, healthy = 0.6 BW), 1st peak total (OA = 2.5 BW, healthy 

= 2.7 BW), and 2nd peak total (OA = 2.1 BW, healthy = 2.4 BW) contact forces, and were 

similar at the 1st medial peak (OA = healthy = 1.6 BW). However, the differences at 1st and 2nd 
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peak medial, lateral, and total contact forces were not significant (p>0.05) (Figure 6-1). 

Similarly, the mean medial and lateral contact forces over the stance phase were not 

significantly different between the 2 groups, even though the mean lateral contact force was 

0.2 BW greater in the healthy group. The average MRs at the 1st and 2nd peaks of medial and 

lateral contact forces represented no significant difference between the 2 groups (p>0.05) 

(Table 6-1). 

 

The frontal plane alignment in OA subjects (6.26°) revealed significantly greater varus than in 

the healthy subjects (0.57°, p<0.01). The groups were not matched for height, BMI (p<0.05), 

and gender (Table 6-1). Gait speed did not significantly differ between the two groups 

(p=0.11). 

 

The linear regression tests revealed that each independent variable alone was not a good 

predictor of the MR. The best-achieved coefficient of determination with a single predictor 

was R2 = 0.58 for KFM in OA subjects. None of the other parameters taken alone accounted 

for more than 50% of the variability in MR in either group (Table 6-2). The contribution of 

frontal plane alignment, gait speed, CPxmed, CPxlat and CPzlat to MR was not significant 

neither in OA nor in healthy subjects (p > 0.05). In OA subjects, the MR was significantly 

correlated with the KAM (R2 = 0.46, p<0.001), KFM (R2 = 0.57, p<0.001), and CPzmed (R2 

= 0.18, p<0.01). In healthy subjects, the MR was significantly correlated with the KAM (R2 = 

0.44, p<0.0001) and KFM (R2 = 0.40, p<0.001). This makes the KFM and KAM the best single 

predictors for OA and healthy subjects, respectively. CPzmed failed to have a significant 

contribution to MR in healthy subjects (R2 = 0.06, p=0.13).   

 

The best multiple regression models consist of KAM, KFM, and CPzmed (R2 = 0.84) for OA 

subjects; and KAM and KFM (R2 = 0.85) for healthy subjects, respectively. A regression model 

with KFM and KAM as predictors yielded R2 value of 0.78 for OA group. Adding the CPzmed 

to this regression model increased R2 by 6% in OA but had no effect in the healthy group. 
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Table 6-1 The anthropometrics, frontal plane alignment and gait speed of 12 healthy (H) and 
12 OA subjects. The medial to total contact force ratio (MR) represents the ratio of the 
medial contact force to the total contact force at 4 instants of gait being the 1st and 2nd peaks 
of the medial contact force (pk1 Med, pk2 Med), and 1st and 2nd peaks of the lateral contact 
force (pk1 Lat, pk2 Lat). Average data ± SD are provided; * denotes a statistically significant 
difference from the healthy group.    

Healthy subjects MR 

subject 
Height 

(m) 
gender 

Weight 
(kg) 

Age 
(yrs) 

BMI 
frontal plane 

alignment 
(deg) 

gait speed 
(m/s) 

timing of 
pk1 Med 

timing of 
pk2 Med 

timing of 
pk1 Lat 

timing of 
pk2 Lat 

H01 1.73 M 76.9 39 25.69 1.91 0.96 0.69 0.85 0.66 0.85 

H02 1.5 M 54 66 24 -2 0.46 0.67 0.73 0.34 0.73 

H03 1.71 M 84.5 38 28.9 0.98 0.67 0.43 0.82 0.33 0.45 

H04 1.66 F 58.1 57 21.08 3.63 0.9 0.69 0.70 0.57 0.69 

H05 1.81 M 81.9 61 25 -1.59 0.82 0.60 0.63 0.60 0.56 

H06 1.64 F 60.8 60 22.61 -1.76 0.79 0.33 0.74 0.25 0.44 

H07 1.73 M 89.8 61 30 1.67 0.57 0.91 0.91 0.89 0.86 

H08 1.56 F 58.3 60 23.96 -0.96 0.45 0.57 0.81 0.54 0.59 

H09 1.75 M 80.7 59 26.35 6.75 0.42 0.66 0.70 0.31 0.66 

H10 1.75 F 60.6 53 19.79 -2.97 0.48 0.67 0.79 0.59 0.78 
Average 

(SD) 
1.68 ± 

0.1 
  70.56 ± 

13.38 
55.40 ± 

9.49 
24.74 ± 

3.20 
0.57 ± 3.02 0.65 ± 0.20 

0.62 ± 
0.16 

0.77 ± 
0.08 

0.51 ± 
0.20 

0.66 ± 
0.15 

OA subjects MR 

subject 
Height 

(m) 
gender 

Weight 
(kg) 

Age 
(yrs) 

BMI 
frontal plane 

alignment 
(deg) 

gait speed 
(m/s) 

pk1 Med pk2 Med pk1 Lat pk2 Lat 

OA01 1.64 F 99.34 56 36.93 0.5 0.54 0.68 0.79 0.61 0.76 

OA02 1.63 F 85.8 61 32.29 3.6 0.77 0.51 0.81 0.38 0.79 

OA03 1.75 M 87 66 28.41 6.8 0.71 0.84 0.90 0.79 0.89 

OA04 1.61 F 95 56 36.65 9.8 0.5 0.47 0.60 0.29 0.61 

OA05 1.5 F 74 53 32.89 7.8 0.51 0.56 0.84 0.32 0.80 

OA06 1.63 F 81.6 52 30.71 6.95 0.49 0.93 0.94 0.79 0.55 

OA07 1.72 M 84 69 28.39 7.75 0.49 0.92 0.99 0.63 0.85 

OA08 1.63 F 91.8 58 34.55 10.03 0.34 0.44 0.49 0.44 0.46 

OA09 1.67 F 98.4 57 35.28 10.98 0.4 0.79 0.85 0.49 0.85 

OA10 1.55 F 72.57 62 30.21 -2.3 0.4 0.39 0.65 0.39 0.64 

OA11 1.58 F 74.4 64 29.8 6.61 0.31 0.91 0.76 0.52 0.72 

OA12 1.52 F 82.5 61 35.71 6.65 0.48 0.89 0.89 0.89 0.89 
Average 

(SD) 
1.62 
(0.1) 

  85.53 ± 
9.2* 

59.58 ± 
5.2 

32.65 ± 
3.1* 

6.26 ± 3.9 * 0.5 ± 0.1 
0.69 ± 
0.21 

0.79 ± 
0.15 

0.54 ± 
0.20 

0.73 ± 
0.14 
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Figure 6-1 Box and whisker plot of contact forces of the healthy (blue) and OA (red) groups 
at the 1st and 2nd peaks of medial contact force (pk1 Med, pk2 Med), 1st and 2nd peaks of the 
lateral contact force (pk1 Lat, pk2 Lat), 1st and 2nd peaks of the total contact force (pk1 T, 
pk2 T), and the average medial (mean Med) and lateral (mean Lat) contact forces during the 
stance phase. The plot represents the minimum, maximum, lower and higher quartiles, and the 
median as well as the mean value (X mark), and the outliers (o mark). 

 

6.6 Discussion 

The objective of this study was to estimate the knee contact forces in both healthy and OA 

subjects and to analyze the impact of contact point locations along with other mechanical and 

functional parameters on the medial-to-total contact force ratio (MR). For that, we used a 

musculoskeletal model with personalized tibiofemoral joint contact point trajectories to 

investigate if the personalized contact point trajectories provide extra information about the 

knee contact forces distribution in OA and healthy subjects. The external moments on the knee 

joint are thought to be counterbalanced by the musculotendon and the tibiofemoral contact 

forces. Therefore, it is conceivable that the load taken by each compartment is proportional to 

the contact point distance from the joint center as postulated by previous sensitivity analyses 

(Lerner et al., 2015; Saliba et al., 2017a). Nevertheless, a recent multifactorial study suggested 

that there are other factors which confound a strong correlation between the contact point 

location and the Fmed (A Zeighami et al., 2018). Nevertheless, the contributing parameters and 

their role in the Fmed or MR was not investigated. In the present study, the personalized contact 
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point trajectories obtained from a 3D/2D imaging technique were integrated into the contact 

force estimations. Regression analysis was performed to assess the contribution of the contact 

point locations, among other parameters (KAM, KFM, frontal plane alignment, and gait 

speed), to the knee contact force distribution.  

 

The contact point locations had no significant contribution to MR in the healthy group. The 

only significant correlation we found was between CPzmed (medial/lateral direction on the 

medial compartment) and MR in OA subjects. In a previous study on healthy subjects, we 

found that a weak correlation existed between the peaks of Fmed and the CPzmed (A Zeighami 

et al., 2018). Here we tested the correlation with MR instead of Fmed and observed that CPzmed-

MR correlation was only significant in the OA group.  

 

Table 6-2 Regression models in OA and healthy groups predicting MR and the corresponding 
independent variable (indep. Variable) combinations, (adjusted) coefficient of determination 
(adj.) R2, model significance p, the significance of the independent variables pn, and the 
regression coefficients corresponding to the independent variables and the y-intercept (y 
intcp.). Independent variables consist of the following parameters: Knee adduction moment 
(KAM), knee flexion moment (KFM), medial and lateral contact point locations in the 
anterior/posterior (CPxmed, CPxlat), and medial/lateral (CPzmed, CPzlat) directions, frontal 
plane alignment, and the gait speed (speed).  

 

 

 

OA/Healthy dep. variable indep. variable R2 adj. R2 p (model) p1 p2 p3 c1 (y intcp.) c2 c3 c4
OA MR KAM 0.46 0.45 0.000 0.000 0.590 0.126
OA MR KFM 0.57 0.56 0.000 0.000 0.773 -0.076
OA MR CPzmed 0.18 0.16 0.003 0.003 1.133 0.025
OA MR CPxmed 0.07 0.05 0.070 0.070 0.488 0.020
OA MR CPzlat 0.02 0.00 0.312 0.312 0.854 -0.010
OA MR CPxlat 0.05 0.03 0.131 0.131 0.459 0.012
OA MR frontal plane alignment 0.00 -0.02 0.925 0.925 0.696 -0.001
OA MR speed 0.03 0.01 0.252 0.252 0.568 0.250
OA MR KAM, KFM 0.79 0.78 0.000 0.000 0.000 0.683 0.092 -0.061
OA MR KAM, CPzmed 0.54 0.52 0.000 0.000 0.006 0.912 0.115 0.018
OA MR KFM, CPzmed 0.66 0.65 0.000 0.000 0.001 1.090 -0.071 0.018
OA MR KAM, KFM, Cpzmed 0.84 0.83 0.000 0.000 0.000 0.000 0.935 0.085 -0.058 0.014
Healthy MR KAM 0.44 0.43 0.000 0.000 0.667 0.136
Healthy MR KFM 0.40 0.39 0.000 0.000 0.720 -0.063
Healthy MR CPzmed 0.06 0.04 0.125 0.125 0.867 0.017
Healthy MR CPxmed 0.07 0.05 0.090 0.090 0.513 0.012
Healthy MR CPzlat 0.05 0.03 0.156 0.156 0.812 -0.009
Healthy MR CPxlat 0.08 0.06 0.068 0.068 0.605 7.402
Healthy MR frontal plane alignment 0.00 -0.02 0.666 0.666 0.636 0.004
Healthy MR speed 0.00 -0.03 0.913 0.913 0.650 -0.016
Healthy MR KAM, KFM 0.85 0.85 0.000 0.000 0.000 0.748 0.137 -0.064
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The KFM and KAM accounted for a bigger proportion of the variability in MR compared to 

the CPzmed. In OA subjects, KAM and KFM taken alone accounted for 46% and 57% of the 

MR variability, respectively. If CPzmed is added as the second variable to the KAM or KFM, 

it accounts for an additional 9% of the variability in either case. In healthy subjects, the KAM 

and KFM accounted for 40% and 44% of the variability, respectively. The KAM-KFM 

combination was a good predictor of MR in both OA and healthy groups. Entering CPzmed to 

this combination as a third variable accounted for an additional 6% of the variance in OA 

(Table 6-2), and had no significant effect in the healthy group.  

 

Regression coefficients revealed information about the magnitude and the direction of change 

in MR due to one-unit change in the predictor variable. In OA subjects, the coefficients of the 

KAM-KFM-CPzmed model were respectively 0.085, -0.058, and 0.014. Therefore, in our 

predictive model, an increase in the KAM and a decrease in the KFM (increase in knee 

extension moment) would result in greater MR values where changing KAM affects the MR 

by a higher rate. CPzmed coefficient implies that shifting the medial contact point laterally (+) 

i.e., closer to the joint center, would increase the MR by a rate of 0.014 per millimeter. In 

healthy subjects, the KAM-KFM was the best predictor model with the coefficients being 

0.137 and -.064 for KAM and KFM respectively. Again, KAM can more quickly change MR 

by a rate almost twice as high as the KFM.  

 

The KAM is sometimes considered as a surrogate of the knee medial loading (L. Thorp et al., 

2010). We found that KAM was the primary contributor to the MR (R2 = 0.44) followed by 

KFM (R2 = 0.40) in healthy subjects. However, in the OA group, the KFM accounted for a 

bigger proportion of the variance in MR (R2 = 0.57) with respect to the KAM (R2 = 0.46) 

(Table 6-2). The importance of the KFM in estimating the magnitude or variation of Fmed was 

highlighted in previous studies both in OA and healthy subjects (Creaby, 2015; Kumar et al., 

2013). Moreover, Meireles et al. (2016) performed regression tests with KFM and KAM 

inputted independently. They found that in early OA subjects, the contribution of KFM to the 

1st peak medial contact force (R2 = 62%) was close to that for KAM (R2 = 67%). They also 

reported that in healthy controls the contribution of KAM (R2 = 65%) was much greater than 
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the contribution of KFM (R2 = 21%). This shows that the contribution of sagittal and frontal 

moments to the load sharing can be affected by the knee pathology with KFM having a more 

important impact on the Fmed in OA group with respect to the healthy group. This is similar to 

the higher contribution of KFM to the MR in OA subjects in our study. Manal et al. (2015) 

reported that the KFM adds an additional 22% to the 63% of the variance in the Fmed peak 

which is explained by the KAM. Both moments together accounted for ~85% of variation 

similar to what we found in this study for OA (R2 = 79%) and healthy (R2 = 85%) subjects. It 

should be noted that in our model the knee joint equilibrium was performed in 3D, balancing 

the joint moments in the 3 planes and along with the musculotendon and contact forces 

simultaneously (Florent Moissenet et al., 2014). This shall give a higher weight to the KFM 

compared to calculating the musculotendon forces in a first step and the contact forces in a 

second step considering the joint equilibrium in the frontal plane (Lerner et al., 2015; Saliba et 

al., 2017a). In an instrumented implant study, Trepczynski et al. (2014) observed that the KAM 

alone accounted for 87% of the Fmed variation and R2 value increased by ~4% when KFM is 

added to the regression. The smaller contribution of KFM in their study could be attributed to 

the prosthetic knee which has a different joint configuration and congruence compared to the 

native knees.  

The contribution of CPxmed, CPxlat, CPzlat, frontal plane alignment, and gait speed to MR 

was not found significant (p>0.05). The correlation of frontal plane alignment with MR was 

addressed in other studies. In an FE simulation study with one subject, the frontal plane 

alignment was reported a much more effective factor in reducing MR compared to the KAM 

(Adouni et al., 2014). Nevertheless, Kumar et al. (Kumar et al., 2013) failed to find a significant 

correlation between frontal plane alignment and the Fmed peak in neither healthy (n=12) or OA 

(n=16) groups. In our study, we did not find a significant correlation between the frontal plane 

alignment and MR in the regression (p>0.05).  

 

A large body of the literature reported the contact forces using prosthetic measurements or 

musculoskeletal model estimations. Our contact force estimations (Table 6-3) falls within the 

literature range for the medial (2.1 ± 0.5 BW), lateral (0.9 ± 0.4 BW), and total (3.1 ± 0.8 BW) 

peaks of contact forces (Erhart et al., 2010; Fregly et al., 2009; Kim et al., 2009; Kutzner et al., 
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2011; Lerner et al., 2015; Lin et al., 2010; Lundberg et al., 2009; Manal et al., 2013; Florent 

Moissenet et al., 2014, 2016a; Shelburne et al., 2005, 2006; Sritharan et al., 2017; Winby et 

al., 2009; Zhao et al., 2007). However, the number of studies comparing the medial and lateral 

natural knee contact forces of OA and healthy subjects are limited. Sritharan et al. (2017) and 

Kumar et al. (2013) used musculoskeletal models with generic contact point trajectories to 

estimate the contact forces. They reported that despite the differences between the absolute 

values of the contact forces in the two groups (Table 6-3), the differences were not significant 

which is in accordance with our results. Peak of medial contact forces in both studies were 

greater than the peak of lateral contact forces (Table 6-3). Kumar et al. (Kumar et al., 2013) 

reported a lateral compartment unloading (MR ~ 100%) at the late stance phase in half of the 

OA subjects. The MRs in our study tend to achieve higher values in OA subjects at the 2nd 

peak of medial contact force; however, the near-zero lateral loading (MR = 99%) is observed 

only in one subject.  Marouane et al. (2016) used an FE model of the lower limb with the 

simulated biomechanics of OA to estimate the contact forces at the actual tibiofemoral center 

of pressure. They found that the maximum MR values at the peak contact force were between 

0.76 and 0.81 for healthy and OA models which is very close to 0.77 to 0.79 for maximum MR 

in our study. primarily due to the absence of cartilage layer and menisci in the X-ray images 

and the errors in the reconstruction and registration process (DeFrate et al., 2004; Marouane et 

al., 2016; A Zeighami et al., 2017). Finally, the number of subjects is not enough to generalize 

the conclusions made in this study. 

 

The current study has several limitations. The personalized contact point trajectories were 

measured during a quasi-static squat and may vary in different weight-bearing tasks. In 

addition, the estimation of the contact point trajectories is based on a weighted center of bone-

to-bone proximity (A Zeighami et al., 2018) and is subject to inaccuracies in approximating 

the center of pressure. This is primarily due to the absence of cartilage layer and menisci in the 

X-ray images and the errors in the reconstruction and registration process (DeFrate et al., 2004; 

Marouane et al., 2016; A Zeighami et al., 2017). Finally, the number of subjects is not enough 

to generalize the conclusions made in this study. 
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Table 6-3 The 1st and 2nd peaks of medial contact force (pk1-pk2 Med), 1st and 2nd peaks 
of the lateral contact force (pk1- pk2 Lat), and 1st and 2nd peaks of the total contact force 
(pk1-pk2 Tot) in the case-control studies with OA and healthy subjects. The contact force 
(CF) estimations (BW) were obtained using musculoskeletal (MSK) or finite element (FE) 
models. 

Study No of 
subjects 

CF estimation OA status pk1-pk2 Med pk1-pk2 Lat pk1-pk2 Tot 

Strithan 2017 19 MSK model Healthy 2.0-3.0 0.3-0.52  2.3-3.5 

Strithan 2017 39 MSK model OA  2.1-3.3 0.3-0.59  2.3-3.8 

Marouane 2016 1 FE model Healthy 3.2-3.0 2.6-0.8 4.1-3.7 

Marouane 2016 1 FE model Simulated OA 2.7-3.0 1.8-0.7 3.3-3.5 

Kumar 2013 16 MSK model Healthy 2.4-1.8 1.3-0.5 3.7-2.2 

Kumar 2013 12 MSK model OA 2.6-2.1 0.9-0.1 3.5-2.2 

This study 10 MSK model Healthy 1.6-1.9 1.2-0.6 2.7-2.4 

This study 12 MSK model OA 1.6-1.7 1.1-0.5 2.5-2.1 

 

 

As a conclusion, in the current work, we assessed the contribution of the contact point locations 

to the knee contact forces distribution. CPzmed had a significant but limited role in dictating 

the MR in OA subjects and had an inferior weight compared to the KAM and KFM. The 

combined use of the 3 parameters together provided the most accurate predictions of the MR. 

In healthy subjects, the contact point locations had no significant contribution to MR and KFM 

and KAM remained the best predictors of the contact forces distribution. KAM and KFM can 

be easily estimated from classical inverse dynamics while obtaining personalized contact 

points require more complex procedures. Therefore, the external moments represent a good 

surrogate for the MR estimation. However, the extra information provided by the shifting in 

the medial contact point closer to the joint center helps to understand partially the 15% - 20% 

of the variation that is not explained by the KAM and KFM in OA subjects. Knowledge of the 

contribution of various parameters to the knee contact forces distribution could eventually lead 

to better understand the OA progression mechanism and help better planning the most effective 

interventions to slow the disease process. 
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CHAPTER 7 
 

GENERAL DISCUSSION 

7.1 Preface 

The general objective of this thesis was to quantify the contact zones, contact forces, and their 

correlation in OA subjects when compared to healthy subjects. This goal was divided into four 

specific objectives. A summary of the results of the four chapters related to these objectives is 

presented, followed by limitations and recommendations, and the conclusion of this work. 

 

7.2 Synthesis of articles 

The aim of chapter 3 (article1) was to quantify and compare the contact point locations in 

OA and healthy knee joints. Biplane radiographs of 10 healthy and 9 OA subjects were used 

to reconstruct/register the 3D models of the tibia and femur at 5 quasi-static squat positions 

i.e., at 0ᵒ, 15ᵒ, 30ᵒ, 45ᵒ, and 70ᵒ knee flexion. The contact point locations and the quasi-static 

kinematics at each position were compared between the two groups and revealed an altered 

functional anatomy due to OA. 

 

The contact points on the medial compartment demonstrated a posterior excursion of 8.1 mm 

and 10.1 mm in OA and healthy subjects, respectively. On the lateral compartment, the 

posterior excursion was accompanied by a lateral excursion in both OA and healthy groups. 

Contact points on the lateral compartment exhibited posterior and lateral excursions of 3.6 mm 

and 7.1 mm in OA subjects and of 7.1 mm and 12.9 mm in healthy subjects. A medial shift 

was observed in the contact point location of OA subjects at all squat positions and on both 

compartments. Across all squat positions, the contact points in OA subjects were shifted 6.5 ± 

0.7 mm and 9.6 ± 3.1 mm medially with respect to those in healthy subjects on the medial and 

lateral compartments, respectively. The quasi-static kinematic analysis showed that the OA 

group had bigger adduction angles at all squat positions compared to the healthy group.  
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Therefore, while the knee joint is lateralized due to the varus (both static and dynamic) 

pathological alignment, the contact points are medialized. 

 

In addition, it can be noted that this first article also has some technical contributions: 

Use of stand-alone biplane images for contact point estimation: Biplane imaging has been 

already used in combination with CT-scan- or MRI-based reconstructions of the joint surfaces 

to study the contact point locations (Farrokhi et al., 2016; Fiacchi et al., 2014; Hamai et al., 

2009; Seungbum Koo et al., 2011; Qi et al., 2013). In this study, we used stand-alone EOS® 

biplane images to estimate the contact point locations. To minimize the reconstruction errors, 

a manual multiple view reconstruction/registration technique was used to include the 

information from all available pairs of biplane images rather than 1 pair at the reconstruction 

step. 

Pseudo-validation of estimated contact points: The accuracy of the contact points estimations 

is affected by the errors in both reconstruction and registration steps. The pseudo-validation in 

this study estimated the cumulative errors of the entire reconstruction/registration process in 

calculating the contact point locations. 

 

The aim of chapter 4 was to compare the contact point locations of OA subjects during a 

quasi-static task with and without wearing a valgus knee orthosis. Knee orthosis is one of the 

non-invasive interventions aimed at enhancing the stability and reproducing the kinematics of 

a normal knee (Martin et al., 2001). This chapter examined the feasibility of using contact point 

locations as a measure of the effectiveness of the Evoke™ knee orthosis. The kinematics 

obtained from the inertial sensors placed on shank and thigh appeared considerably biased with 

respect to those obtained from the internal landmarks due to the soft tissue artefact. This 

showed that subtle impacts of wearing the orthosis on the kinematics and on the contact point 

locations could not be reliably evaluated from the external kinematic measurements. Therefore, 

imaging techniques are required to more accurately measure these impacts directly from the 

internal kinematics. The results of the studied subject showed that wearing the orthosis shifted 

the medial contact points in medial/lateral and anterior/posterior directions in smaller knee 
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flexion angles. However, conclusions on the effectiveness of the orthosis require observing 

meaningful patterns of the contact point shift in a cohort of OA subjects.  

 

As for the chapter 4, this complementary study has a technical contribution: 

Using biplane imaging to reconstruct the orthosis and the joint: The visibility of the orthosis 

in the biplane X-ray images allowed registering the CAD model of the orthosis on the 

reconstructed bone models. Beside the possibility to examine the correctness of the orthosis 

placement with respect to the joint, it enables comparing the kinematics generated by the 

orthosis hinges with respect to the joint kinematics.  

 

The aim of chapter 5 (article 2) was to integrate the personalized contact point trajectories 

obtained from the 3D/2D reconstruction technique into the musculoskeletal model of the lower 

limb. The tibial and femoral contact points were superimposed in all directions on the medial 

compartment, and in proximal/distal and anterior/posterior directions on the lateral 

compartment to form the constraints of the knee. The contact force estimated using 

personalized contact point trajectory model was compared to the classical models of the knee 

joint. The impact of personalization of the contact point trajectory was very variable among 

the subjects. This work suggested that the medial and lateral contact forces are affected by 

multiple parameters, and the contact point trajectories alone could not explain their variation. 

On healthy subjects, no significant difference was observed between the personalized model 

and the sliding hinge model which is the most used in the literature. However, this sliding 

hinge model is more sensitive to the shift in the contact points (Lerner et al. 2015, Saliba et al. 

2016) than the personalized model and this may have an impact when studying OA subjects. 

Still, when studying OA subjects, no sliding hinge model with customized contact points has 

been reported so far.  

 

This second article has a technical contribution: 

 Introducing a versatile constraint for the knee joint: The knee joint constraint in the 

musculoskeletal model can be deduced from any knee model including personalized or 

classical joint models. This paves the way towards integration of the contact point locations 
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measured during gait using the dynamic stereo-radiography methods such as dual fluoroscopy 

or any other modality.  

 

The aim of chapter 6 (article 3) was to use the musculoskeletal model with the personalized 

contact points to investigate the contribution of contact point locations to the knee contact force 

distribution alongside the other mechanical and functional parameters. The results showed that 

the KAM and KFM were the main contributors to the MR explaining 75% and 81% of its 

variation in OA and healthy subjects, respectively. CPzmed (the medial contact point location 

in medial/lateral direction) explained 18% of the variance of MR in OA subjects but had no 

significant contribution to the MR in healthy subjects. This study showed that the KFM and 

KEM together are good predictors of the load distribution in the OA and healthy joints. 

However, the mechanism of load distribution was different in OA joints where the CPzmed 

was a significant contributor to MR and where KFM had a higher contribution than KAM 

whereas in healthy subjects KAM was the most significant contributor to the MR.  

 

7.3 Limitations and recommendations for future study: 

This thesis work has some limitations some of which have already been discussed in the articles 

while others have not yet been fully addressed. The next paragraphs present the most important 

limitations, as well as the recommendations as a continuation to this work or for future studies. 

 

7.3.1 Contact parameters not fully investigated 

The contact point location is indeed an important parameter in the study of the biomechanics 

of the joint. However, the contact mechanism of the joint is not fully described by this 

parameter. Previous studies have explored other parameters of the tibiofemoral contact. The 

excursion of contact points was used as a measure of tibiofemoral joint instability in the 

downhill gait of OA and healthy subjects (Farrokhi et al., 2016; Farrokhi et al., 2014). They 

showed that the excursion of contact points increased in OA subjects which they considered 

an indication of mechanical instability. The other important parameter in the contact 
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kinematics of the joint is the proportion of the rolling and sliding in the overall relative 

movement of the tibia with respect to the femur.  Hoshino et al. (2012) reported larger sliding 

on the medial compartment of ACL-reconstructed subjects compared to the lateral 

compartment. This can potentially induce more shear stress on the medial compartment. The 

velocity of the contact points was also considered a key parameter in the study of OA joints. 

Increased velocity of the contact points was observed in the human knee (Farrokhi et al., 2016) 

and canine stifle (Anderst et al., 2009) joints affected by OA. Large differences in the relative 

velocity of femur and tibia contact points imply a “plowing” mechanism that can create big 

tangential forces which may lead to the wear of the cartilage (Anderst et al., 2009). In the 

presence of the tangential contact force estimations from the musculoskeletal models, it is 

possible to compute the power of the personalized tangential contact forces. It should be noted 

that the above studies were performed using dynamic stereo radiography. However, it is 

possible to approximate the excursion, sliding and rolling, velocity and the power of the contact 

points from the quasi-static tasks using the interpolation functions similar to the ones used in 

chapter 5 to obtain the contact point trajectories as a function of knee flexion. Further research 

on the already existing data could be considered for future studies.   

 

The contact point trajectories are very variable among the subjects and do not follow a similar 

pattern. Figure 7-1) illustrates the individual contact point trajectories of the subjects presented 

in chapter 3. Therefore, averaging the results of a group does not provide a typical contact 

point trajectory representing the individuals in OA or healthy group, but it can rather help 

distinguishing the regions of contact in the two groups. Therefore, it is important to identify 

the factors causing the individual patterns of contact points. Parametrization of the effect of 

the 6 DOF joint kinematics and the surface geometry (convexity/concavity if the tibial plateau, 

geometry of the femoral condyles, the relative alignment of the articulating bones, etc.) on the 

contact point trajectories could be considered for future research.  
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Figure 7-1 Individual contact point trajectories of 9 OA (red) and 10 healthy (blue) subjects 
described in chapter 3 

 

7.3.2 Recommendations for further study on contact point locations 

Other recommendations for future research in this topic are automatization of the multiple view 

reconstruction/registration technique to increase the repeatability and reduce processing time, 

integration of cartilage layer from MRI to take into account the non-uniformity of cartilage 

thickness in different regions of the joint, and include more subjects at different stages of OA 

to study the changes of contact parameters during the disease progression.   

 

 

7.3.3 Further personalization of the musculoskeletal model using biplane EOS® 

images 

In this study EOS® biplane images were used to personalize the tibiofemoral contact point 

trajectories in the musculoskeletal mode. However, more parameters could have been 

personalized using these images. Raphaël Dumas et al. (2005) calculated the body segment 

inertial parameters (BSIP)  from the external envelope geometry of the subject and, extracted 
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the anatomical points and the joint lengths from EOS® biplane images. Südhoff (2007)  used 

the same approach to integrate the BSIP and the hip joint center in the musculoskeletal model 

of the lower limb.  A recent study showed that due to the soft tissue artefact, the kinematics 

obtained from the kneeKGTM system and the functional calibration of Hagemeister et al. (2005) 

could have errors up to 9.1 mm and up to 8.0° compared to those obtained from biplane EOS® 

images. Therefore, integration of anatomical points and the BSIPs from the biplane images to 

the musculoskeletal model would be beneficial. The principle of multiple calibrations of the 

KneeKGTM using a series of positions measured from EOS® biplane images could be also 

investigated (Lucchetti et al., 1998). 

 

7.3.4 EMG integration in the musculoskeletal model  

Inverse dynamic-based static optimization methods have been widely used to estimate the 

musculo-tendon and contact forces (Erdemir et al., 2007). Even though the surface EMG data 

are often collected as routine in many biomechanical experiments, they are mostly used as a 

pseudo-validation measure for the muscle activities (as done in this thesis), and they do not 

contribute to the estimation of the musculo-tendon force at the step of static optimization. On 

the other hand, the EMG-driven models also suffer from several limitations. Joint torque 

estimations require accurate estimation of all the muscle forces and it is difficult to translate 

the neural EMG commands to muscle forces for each of those muscles. Therefore, integration 

of EMG in the inverse dynamic-based models was suggested to improve the accuracy of the 

muscle force estimations during walking (Amarantini et al., 2004; Higginson et al., 2012; 

Sartori et al., 2014) and running (D. G. Lloyd et al., 2003). For the future studies, we 

recommend including the EMG data in the musculoskeletal model to have more accurate 

estimation of the musculo-tendon and contact forces. For instance, this can be done using a 

multi-objective optimisation (F Moissenet et al., 2014). 
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7.3.5 Alternative regression models for MR prediction 

In Chapter (6) two linear regression models including KAM-KFM-CPzmed, and KAM-KFM 

was suggested to predict MR in OA and healthy subjects respectively. Previous studies on the 

predictive models for Fmed or MR have used linear regression models with a variety of 

dependent variables (Table 1-4). Nevertheless, Trepczynski et al. (2014) suggested that a 

nonlinear regression with arctangent function provides better predictions for the MR compared 

to the linear regression models. In a preliminary exploratory analysis, we observed that other 

nonlinear combination of variables can appropriately follow the MR patterns in both healthy 

and OA subjects. (Figure 7-2) shows the MR and a nonlinear function of KAM and KFM, (i.e. 

( , )

max( ) (1 )
max( )

KAM
f KAM KFM

KFM
KAM

KFM

=
× +

) for two random subjects from the OA and healthy 

groups over the stance phase. The rational for this function was the assumption that the MR is 

directly correlated to KAM and inversely to KFM. This implies that the nonlinear regression 

models may offer better predictions of the MR. Finding a function that better reflects the 

biomechanics of contact force distribution and comparing them with the current linear 

regression models could be done in a future study. 
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Figure 7-2 MR and ( , )

max( ) (1 )
max( )

KAM
f KAM KFM

KFM
KAM

KFM

=
× +

 demonstrating similar patterns in 

one healthy (left), and one OA (right) subject. 

 

 





 

CONCLUSION 

 

From a biomechanical point of view, the initiation and progression of OA are associated to 

changes in the contact regions of the joint and the excessive loading of the cartilage 

(Andriacchi et al., 2015; Clements et al., 2001; Vincent et al., 2012). In this project, we focused 

on the quantification of the contact point locations, contact forces, and the distribution of the 

contact forces in both OA and healthy joints.  

 

This study revealed distinct patterns in the contact biomechanics of OA joints. The contact 

points are shifted medially in severe OA on both medial and lateral compartments. The contact 

forces are slightly lower in OA subjects but demonstrate higher media-to-total ratios. The 

media-to-total contact force ratio in OA joints is less influenced by adduction and flexion 

moments, and, contrary to healthy subjects, is influenced by the medial shift of the contact 

points in the medial condyle.  

 

To achieve the objectives of this thesis, a method was developed for low-dose assessment of 

knee contact areas during weight-bearing squat which was also used for a clinical application 

to evaluate the effectiveness of a knee orthosis. In addition, a method was presented to 

introduce the subject-specific contact points into the musculoskeletal models with the potential 

of being used in EOS-based as well as MRI- or fluoroscopy-based kinematic tracking 

techniques. 

 

The findings of this study add to our knowledge of the biomechanics of OA and introduced 

new approaches and techniques to study the biomechanical risk factors of OA and the 

mechanisms behind them.  
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ANNEX I 
 
 

CONTACT POINT TRAJECTORY POLYNOMIALS 

 

This appendix provides extra information regarding the polynomials of contact point 

trajectories as described in chapter 5. 

 

This appendix provides information to construct the contact point trajectories of the linear 

contact point (LCP), sphere-on-plane (SPP), and personalized contact point (PCP) models in 

the relevant segment coordinate systems. 

The knee kinematics constraints are based on virtual markers standing for the contact points 

and depending on the tibiofemoral extension/flexion angle θ.  

The coordinates of the jth virtual marker of the ith segment about the three axes of the segment 

coordinate system are:  

( ) ( )

( ) ( )

( ) ( )

j
i ii

j
i ii

j
i ii

s n
nV

s n
nV

s n
nV

r a

r a

r a

θ

θ

θ

=

=

=

X X

Y Y

Z Z

 

The coefficients of the polynomials for the three models are given in the following tables.  

 

 Model 
 Virtual 
marker 

X Y Z 

a2 a1 a0 a2 a1 a0 a2 a1 a0 

LCP 

1
2

s

V
r  3.33E-06 4.65E-04 9.53E-03 2.88E-07 4.10E-05 -2.02E-02 -1.04E-20 -6.60E-19 -2.00E-02 

2
2

s

V
r  3.33E-06 4.65E-04 9.53E-03 2.88E-07 4.10E-05 -2.02E-02 1.04E-20 6.60E-19 2.00E-02 

1
4

s

V
r  6.04E-06 1.02E-03 9.53E-03 2.77E-06 -1.06E-04 -2.02E-02 -1.04E-20 -6.60E-19 -2.00E-02 

2
4

s

V
r  6.04E-06 1.02E-03 9.53E-03 2.77E-06 -1.06E-04 -2.02E-02 1.04E-20 6.60E-19 2.00E-02 
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 Model 
 Virtual 
marker 

X Y Z 

a3 a2 a1 a0 a3 a2 a1 a0 a3 a2 a1 a0 

SPP 

1
2

s

V
r  

-2.99E-08 -6.16E-06 -1.14E-04 -4.97E-03 4.74E-22 1.25E-20 6.56E-19 -2.02E-02 -1.11E-08 -1.00E-06 3.74E-05 -2.23E-02 

2
2

s

V
r  

6.77E-08 9.08E-06 6.42E-04 4.96E-03 -1.57E-21 -1.47E-19 -1.31E-18 -2.02E-02 -3.84E-08 -4.21E-06 -7.15E-05 2.24E-02 

1
4

s

V
r  

-1.82E-08 -4.65E-09 3.63E-04 -4.99E-03 1.18E-08 3.86E-06 6.60E-06 -2.02E-02 4.40E-09 1.05E-07 -8.11E-05 -2.23E-02 

2
4

s

V
r  

-1.71E-08 -4.38E-09 3.42E-04 5.01E-03 1.11E-08 3.64E-06 6.22E-06 -2.02E-02 4.14E-09 9.89E-08 -7.65E-05 2.23E-02 

 

 

 Model 
 Virtual 
marker 

X Y Z 

a2 a1 a0 a2 a1 a0 a2 a1 a0 

PCP-N1 

1
2

s

V
r  

3.02E-06 3.92E-04 1.50E-02 1.38E-06 1.31E-04 -1.63E-02 2.09E-06 1.87E-04 -6.44E-03 

2
2

s

V
r  

-1.44E-06 3.21E-05 3.24E-03 -4.38E-07 7.72E-05 -1.27E-02 5.64E-07 -2.39E-04 9.20E-03 

1
4

s

V
r  

4.81E-06 7.44E-04 1.53E-02 1.78E-06 -4.90E-06 -1.99E-02 2.26E-06 2.74E-04 -5.99E-03 

2
4

s

V
r  

2.38E-06 5.25E-04 6.01E-03 1.22E-06 -4.89E-06 -1.50E-02 1.20E-06 -1.18E-04 1.02E-02 

PCP-N2 

1
2

s

V
r  

2.26E-06 3.11E-04 8.22E-03 -4.95E-07 -1.40E-05 -1.66E-02 1.28E-06 1.06E-04 -1.26E-02 

2
2

s

V
r  

7.63E-06 6.22E-04 2.66E-04 -8.43E-07 -3.98E-05 -1.92E-02 5.00E-06 2.77E-04 2.28E-02 

1
4

s

V
r  

3.07E-06 5.51E-04 8.42E-03 1.95E-06 -4.76E-05 -1.58E-02 1.79E-06 1.87E-04 -1.23E-02 

2
4

s

V
r  

4.34E-06 6.04E-04 2.44E-03 1.02E-06 -8.52E-05 -1.73E-02 4.23E-06 2.85E-04 2.37E-02 

PCP-N3 

1
2

s

V
r  

-3.48E-07 1.75E-05 1.38E-02 3.89E-07 2.72E-05 -1.71E-02 1.15E-06 6.33E-05 -9.64E-03 

2
2

s

V
r  

1.50E-06 2.45E-04 1.00E-02 4.42E-07 1.04E-04 -1.35E-02 -1.47E-06 -3.22E-04 1.03E-02 

1
4

s

V
r  

3.14E-06 6.05E-04 1.43E-02 2.73E-06 6.81E-05 -1.75E-02 1.35E-06 1.26E-04 -9.45E-03 

2
4

s

V
r  

3.12E-06 5.90E-04 1.03E-02 1.94E-06 3.29E-05 -1.42E-02 -1.65E-06 -3.09E-04 1.04E-02 
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 Model 
 Virtual 
marker 

X Y Z 

a2 a1 a0 a2 a1 a0 a2 a1 a0 

PCP-N4 

1
2

s

V
r  

6.25E-06 5.09E-04 1.79E-02 9.72E-08 2.85E-05 -1.95E-02 -1.69E-07 3.44E-05 -1.18E-02 

2
2

s

V
r  

2.78E-06 4.27E-04 1.01E-02 -8.21E-07 -1.20E-06 -1.76E-02 4.13E-06 2.97E-04 2.75E-02 

1
4

s

V
r  

4.87E-06 8.14E-04 1.79E-02 2.01E-06 1.31E-06 -1.97E-02 1.65E-07 5.40E-05 -1.26E-02 

2
4

s

V
r  

-2.05E-06 3.08E-04 9.34E-03 3.75E-06 9.64E-05 -1.90E-02 4.90E-06 2.98E-04 2.67E-02 

PCP-N5 

1
2

s

V
r  

-1.79E-06 1.11E-04 1.71E-02 -1.65E-06 -5.13E-05 -2.49E-02 -3.95E-06 -2.00E-04 -1.52E-02 

2
2

s

V
r  

6.34E-06 5.60E-04 9.00E-03 1.80E-06 1.60E-04 -2.25E-02 -2.51E-06 -3.19E-04 2.47E-02 

1
4

s

V
r  

-8.30E-09 5.43E-04 1.70E-02 6.91E-06 2.19E-04 -2.53E-02 -3.14E-06 -7.04E-05 -1.51E-02 

2
4

s

V
r  

3.76E-06 6.67E-04 1.07E-02 2.10E-06 4.06E-05 -1.97E-02 -2.77E-06 -2.57E-04 2.51E-02 

PCP-N6 

1
2

s

V
r  

1.34E-06 1.32E-04 8.63E-03 1.47E-07 1.04E-05 -2.18E-02 -9.98E-07 -6.11E-05 -1.88E-02 

2
2

s

V
r  

4.94E-06 5.17E-04 6.37E-03 5.67E-07 6.03E-05 -1.85E-02 2.68E-07 4.85E-06 1.85E-02 

1
4

s

V
r  

3.90E-06 6.59E-04 8.83E-03 1.56E-06 -1.01E-04 -2.33E-02 4.86E-07 1.46E-04 -1.73E-02 

2
4

s

V
r  

3.71E-06 6.70E-04 5.86E-03 2.17E-06 1.94E-05 -1.78E-02 8.30E-07 1.20E-04 1.97E-02 

PCP-N7 

1
2

s

V
r  

8.58E-07 1.13E-04 1.43E-02 1.66E-06 1.45E-04 -1.88E-02 3.57E-06 3.04E-04 -1.24E-02 

2
2

s

V
r  

3.33E-07 2.80E-04 7.29E-03 -7.02E-07 6.56E-05 -1.64E-02 1.28E-06 -1.74E-04 1.55E-02 

1
4

s

V
r  

3.43E-06 6.62E-04 1.33E-02 3.98E-06 1.37E-04 -1.80E-02 4.20E-06 4.17E-04 -1.29E-02 

2
4

s

V
r  

7.12E-07 4.63E-04 7.33E-03 1.55E-06 1.38E-05 -1.65E-02 1.77E-06 -1.27E-04 1.51E-02 
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 Model 
 Virtual 
marker 

X Y Z 

a2 a1 a0 a2 a1 a0 a2 a1 a0 

PCP-N8 

1
2

s

V
r  

1.11E-06 1.26E-04 1.22E-02 3.47E-07 4.35E-05 -1.82E-02 3.00E-07 4.71E-05 -1.21E-02 

2
2

s

V
r  

8.53E-06 5.44E-04 1.07E-02 5.67E-06 3.83E-04 -1.56E-02 -1.39E-05 -9.69E-04 9.25E-03 

1
4

s

V
r  

-3.68E-08 4.02E-04 1.22E-02 3.79E-06 1.26E-04 -1.89E-02 1.21E-06 1.08E-04 -1.14E-02 

2
4

s

V
r  

6.08E-06 6.75E-04 1.05E-02 5.66E-06 2.76E-04 -1.58E-02 -1.37E-05 -9.53E-04 9.80E-03 

PCP-N9 

1
2

s

V
r  

3.75E-06 4.58E-04 1.66E-02 6.11E-07 1.11E-04 -2.08E-02 8.80E-07 2.61E-04 -1.28E-02 

2
2

s

V
r  

8.74E-06 8.41E-04 9.59E-03 1.24E-06 1.27E-04 -1.74E-02 -3.19E-06 -3.42E-04 2.08E-02 

1
4

s

V
r  

6.66E-06 1.01E-03 1.74E-02 2.96E-06 -2.60E-05 -2.16E-02 2.23E-06 3.80E-04 -1.48E-02 

2
4

s

V
r  

6.88E-06 9.27E-04 8.87E-03 2.33E-06 2.27E-05 -2.05E-02 -3.08E-06 -3.18E-04 1.89E-02 

PCP-
N10 

1
2

s

V
r  

5.66E-06 5.99E-04 1.58E-02 2.47E-07 3.49E-05 -2.06E-02 7.14E-07 1.08E-06 -1.47E-02 

2
2

s

V
r  

-1.99E-07 1.46E-04 5.86E-03 -1.12E-06 -2.86E-05 -1.95E-02 2.91E-06 9.56E-05 2.08E-02 

1
4

s

V
r  

8.19E-06 1.02E-03 1.57E-02 2.77E-06 -1.05E-05 -2.09E-02 1.54E-06 1.28E-04 -1.35E-02 

2
4

s

V
r  

-1.55E-07 3.59E-04 6.17E-03 2.65E-06 4.08E-05 -1.78E-02 3.82E-06 2.23E-04 2.19E-02 
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This appendix also displays the trajectories of the contact points of all the OA and healthy 
subjects in the tibia transverse plane. For each subject, the medial and lateral contact point 
trajectories are plotted over the tibial plateau. The locations of contact points are marked at the 
following gait instances: The 1st and 2nd peaks of medial (Pk1 med, Pk2 med) and lateral (Pk1 
lat, Pk2 lat) contact forces, heel strike (HS), toe off (TO), 0° (flx0) and 70° (flx70) knee 
flexions.   
 

The contact point trajectories of all the subjects over the tibial plateau 

 
PCP-N1 
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The contact point trajectories of all the subjects over the tibial plateau 

 
PCP-N2 
 

 
PCP-N3 
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The contact point trajectories of all the subjects over the tibial plateau 

 
PCP-N4 
 

 
 
 
PCP-N5 
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The contact point trajectories of all the subjects over the tibial plateau 

 
PCP-N6 
 

 
 
PCP-N7 
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The contact point trajectories of all the subjects over the tibial plateau 

 
PCP-N8 
 

 
 
 
PCP-N9 
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The contact point trajectories of all the subjects over the tibial plateau 

 
PCP-N10 
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ANNEX II 
 
 

INTERPOLATION MATRICES 

This appendix provides interpolation matrices to express the polynomials of contact point 

trajectories presented in the annex I in the natural coordinate system to obtain the knee joint 

constraints as described in chapter 5. 

 

The contact point trajectories j
i

s

V
r  as a function of θ in shank and thigh coordinate systems are 

presented in the annex (1). Once the ( )j
iV

i θN  are found, they would be replaced in Eq. (5.1) 

to form the five kinematic constraints.  

 

 

 

( ) ( )( ) ( )( )( ) ( )( ) ( )( )3 3 3 3 3 3 3 31
j j j j j

i i i i iV V V V V
i i i i i

u v v w
n n n nθ θ θ θ θ× × × ×

 = + −  
N E E E E

 

with 3 3×E  the identity matrix. 

The other interpolation matrices in Eq (5.1) are built constant: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3x3 3x3 3x3 3x3

3x3 3x3 3x3 3x3

3x3 3x3 3x3 3x3

i i i i i

i i i i i

i i i i i

i i i i iu v v w

i i i i iu v v w

i i i i iu v v w

n n n n

n n n n

n n n n

 = − 
 = − 
 = − 

X X X X X

Y Y Y Y Y

Z Z Z Z Z

N E E E E

N E E E E

N E E E E

, 

( )( )
( )( )
( )( )

( )1

j
i

j
i

j
i

j
i

V
i

u

V s
i i Vv

V
i

w

n

n

n

θ

θ θ

θ

−

 
 
 

 =   
 
 
 

B r
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( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1

i i i

i i i

i i i

i i iu u u

i i i iv v v

i i iw w w

n n n

n n n

n n n

−

 
 
   =   
 
  

X Y Z

X Y Z

X Y Z

B  

 

The matrix Bi involved in the aforementioned interpolation matrix formulations stand for the 

orientation of the segment axes with respect to the axes of a non-orthonormal coordinate 

system based on the natural coordinates 
i i

T

i i P D i =  Q u r r w  (R. Dumas et al., 2007): 

[ ] [ ]

( )

1

2
2

1 cos cos

cos cos cos
0 sin

sin

cos cos cos
0 0 1 cos

sin

i i

i

i i i i P D i i

i i i

i i i
i i i

i

i i i
i

i

L

L

γ β
α β γγ

γ

α β γβ
γ

−
 
 = −
 
 

 
 
 
 

− =  
 
 

 − − −    

v

X Y Z u r r w B

B



, 

with αi, βi, and γi the constant angles between the axes of the segment non-orthonormal 

coordinate system and Li the constant length of the segment: 

( )
( )

( )
( )

2

1

1

1

cos

cos

cos

i i

i i

i i

i P D

P D i

i
i

i i i

i P D

i
i

L

L

L

α

β

γ

−

−

−

= −

 −
 =
 
 

=

 −
 =
 
 

r r

r r w

u w

u r r







 . 
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