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ABSTRACT: Personal care products are widely used in our daily life in considerable 19 

quantities and discharged through the down-the-drain route to the aquatic environments, 20 

resulting in potential risks to aquatic organisms. We investigated bioaccumulation and 21 

biotransformation of two widely used personal care products, triclosan (TCS) and galaxolide 22 

(HHCB) spiked to sediment, in the oligochaete worm Limnodrilus hoffmeisteri in 23 

water/sediment microcosms. After 7 days of sediment exposure to 3.1 μg TCS or HHCB /g 24 

dry weight (dw) sediment, the accumulation of TCS and HHCB in L. hoffmeisteri reached 25 

equilibrium, at which point the biota-sediment accumulation factors (BSAFs) were 2.07 and 26 

2.50 for TCS and HHCB, respectively. The presence of L. hoffmeisteri significantly 27 

accelerated the dissipation of TCS and HHCB in the microcosms, with approximately 9.03% 28 

and 2.90% of TCS and HHCB eliminated from the water-sediment systems after 14 d 29 

exposure in presence of worms, respectively. Two biotransformation products, methyl 30 

triclosan and triclosan-O-sulfate, were identified for TCS in the worm tissue, whereas only 31 

methyl triclosan was identified in the sediment. Unlike TCS, no evidence of 32 

biotransformation products was found for HHCB in either worm tissue or sediment. These 33 

experiments demonstrate that L. hoffmeisteri biotransformed TCS through methylation and 34 

sulfation, whereas HHCB biotransformation was undetectable. 35 

 36 

INTRODUCTION 37 

Personal care products (PCPs) are widely used in our daily life and can be a potential risk to 38 

the aquatic environment due to their incomplete removal in wastewater treatment plants 39 

(WWTPs) and negative effects on aquatic ecosystems.1 Sediments may act as ‘sinks’ and 40 

long-term reservoirs for hydrophobic PCPs released into the aquatic environment.2 Those 41 

hydrophobic PCPs can accumulate in aquatic organisms and may cause bio-magnification 42 

through dietary transfer in the food web,3 or may potentially be biotransformed as observed in 43 
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annelid worm Capitella teleta, important for sediment biogeochemistry and sediment-44 

associated contaminant turnover,4 exposed to sediment-associated acetyl cedrene5, thereby 45 

reducing the body burden. Oligochaete worms prevail in aquatic environments worldwide and 46 

are exposed to sediment-associated hydrophobic PCPs. However, little is known about their 47 

potential to biotransform these chemicals. 48 

 Triclosan (TCS) and galaxolide (HHCB) are two ingredients widely used in personal care 49 

products and are ubiquitous in a variety of aquatic environments.6 For example, our chemical 50 

monitoring results show that TCS and HHCB were the most frequently detected hydrophobic 51 

chemicals used in personal care products in the subtropical urban rivers, with concentrations 52 

up to 1 µg/g dw.7 With their hydrophobic nature, these two chemicals may sorb to settling 53 

particles and bio-accumulate in deposit-feeding macroinvertebrates.8, 9 To date, laboratory 54 

degradation studies of TCS and HHCB have been limited to soil bacterial cultures,10 55 

wastewater microorganisms,11 fungi,12, 13 diatom,14 algae,15 activated sludge16-19 and iron and 56 

manganese oxides.20 For example, TCS can be transformed into methyl triclosan (Me-TCS) in 57 

activated sludge under aerobic conditions16 and in biosolid-amended agricultural soil by 58 

microorganisms21 or earthworms.22 Similarly, the biological oxidation of HHCB into HHCB-59 

lactone has been reported in wastewater treatment processes23 and fish samples.24 However, 60 

little to no research has been performed to investigate their degradation under more 61 

ecologically realistic conditions, such as water/sediment systems with the presence of 62 

oligochaete worms that may efficiently biotransform organic contaminants. For example, 63 

Lumbriculus variegatus (Oligochaeta) was reported to biotransform pyrene into 1-64 

hydroxypyrene.25 65 

 Oligochaete worms are an important group of freshwater benthic macroinvertebrates, 66 

ubiquitous and abundant in sediments of freshwater ecosystems, such as rivers, ponds and 67 

lakes.26 They are thus widely used to evaluate the toxicity and accumulation of sediment-68 



4 
 

associated hydrophobic organic contaminants.27-29 Limnodrilus hoffmeisteri (Naididae, 69 

Oligochaeta) is the dominant taxon within oligochaete worms in the Pearl River (South 70 

China), and it can achieve a density of up to 50.000 ind./m2.30 Our recent biological 71 

monitoring also demonstrated that L. hoffmeisteri was the predominant benthic 72 

macroinvertebrates identified in six urban rivers of Guangzhou City, South China. As 73 

conveyor-belt feeder, L. hoffmeisteri ingests small particles in sediments and egests them as 74 

faecal pellets on the sediment surface.31, 32 Sediment-associated hydrophobic organic 75 

contaminants may go through bioaccumulation and biotransformation in the body of L. 76 

hoffmeisteri,33 thereby influencing the fate of chemicals in environment. During the 77 

biotransformation process, both more water-soluble and more hydrophobic products can be 78 

produced. For example, 2,4-dichlorophenol, a metabolite of TCS, is more water-soluble but 79 

less toxic than its parent compound.11, 34 However, Macherius et al.22 reported that Eisenia 80 

fetida can biotransform TCS into Me-TCS that is more environmentally persistent, 81 

lipophilic35, 36 and toxic to Vibrio fischeri than TCS.37 Although both TCS and HHCB are 82 

hydrophobic chemicals, they have different physicochemical properties. TCS is an ionizable 83 

compound with water solubility of 10 mg/L and a log octanol-water partition coefficient 84 

(Kow) of 4.8, whereas HHCB is a non-ionizable compound with water solubility of 1.75 85 

mg/L and a log Kow of 5.9. 38 Besides, they have different steric configuration and molecular 86 

size. As such, TCS and HHCB are likely to show different bioaccumulation and 87 

biotransformation in oligochaete L. hoffmeisteri.39, 40 This, however, has not been studied thus 88 

far, despite the importance of understanding the metabolic pathway of TCS and HHCB for 89 

evaluation of their persistence and risk in the environment. 90 

 This study aims to evaluate the importance of L. hoffmeisteri in the dissipation of 91 

sediment-associated TCS and HHCB in microcosms simulating static water systems. The 92 

microcosms were divided into two treatment groups: with and without addition of L. 93 
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hoffmeisteri. The exposures lasted for 14 d, and worms were sampled on day 1, 3, 7, 10 and 94 

14 to investigate the bioaccumulation kinetics of TCS and HHCB. Our results will improve 95 

the understanding of the dissipation kinetics of TCS and HHCB in a water/sediment system, 96 

and the accumulation and biotransformation of sediment-associated TCS and HHCB in L. 97 

hoffmeisteri. 98 

 99 

MATERIALS AND METHODS 100 

 Standards and Reagents. Standards of triclosan (TCS), methyl triclosan, 2,4-101 

dichlorophenol, 4-chlorocatechol, and d3-Tonalide (d3-AHTN) were purchased from Dr. 102 

Ehrensorfer (Germany), while triclosan-O-β-D-glucuronide sodium salt (TCSG), triclosan-O-103 

sulfate sodium salt and galaxolidone (HHCB-lactone) were obtained from TRC (Canada). The 104 

standard galaxolide (HHCB; 1,3,4,6,7,8-hexahydro-4,6,6, 7, 8, 8-hexamethyl cyclopenta (g)-105 

2-benzopyran) was kindly provided by International Flavors & Fragrances (USA), containing 106 

about 10% HHCB-lactone, a technical product.23 The internal standards 13 C12-triclosan and 13 107 

C12-methyl triclosan were obtained from Cambridge Isotope Laboratories (Andover, USA). 108 

Sylon BTZ containing trimethylchlorosilane, N,O-bis(trimethylsilyl) acetamide, and N-109 

trimethylsilylimidazole was obtained from Supelco. Further details are provided in the 110 

Supporting Information (Text S1). 111 

Test sediment and spiking. The experimental sediment was collected from an 112 

uncontaminated reservoir (113˚47'42"N, 23˚46'01"E) 7, 41, a drinking water source of 113 

Guangzhou city (South China). The natural sediment was wet-sieved (300 µm) with deionized 114 

water, and then allowed to settle overnight. After removing the overlying water, the resultant 115 

sediment was kept frozen at -20 °C until use. The sediments used in the microcosms consisted 116 

of 0.49% sand, 40.82% silt, and 58.69% clay, and they had a water content of 57% (24 h at 117 

105 °C; n = 4), an organic matter (OM) content of 20.6‰, a total nitrogen (TN) content of 118 
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1.45‰, a total phosphorus (TP) content of 0.45‰ and an ammonia (NH4
+) content of 119 

0.11‰.42 The background TCS and HHCB concentrations in the sediment were around 0.002 120 

µg/g dry weight (dw), and considered negligible for the purposes of this study. Before 121 

chemical application, sediment was thawed at 27 ± 1 °C in the dark and rinsed with Milli-Q 122 

water.  123 

To spike each test compound into sediment, 15 g wet sediment was weighed into a 124 

centrifuge tube (50 mL), producing a sediment height of approximately 2.5 cm, and amended 125 

with 10 µL of TCS or HHCB stock solution to achieve a final concentration of 3.1 µg/g dw 126 

sed. It should be noted that the presence of HHCB-lactone in the HHCB stock solution 127 

resulted in a spiked HHCB-lactone concentration of 0.34 µg/g dw in the spiked sediment. 128 

Two controls were used in the experiments: a water control and an acetone control, which 129 

were created by replacing the chemical solution with the same volume of Milli-Q water and 130 

acetone, respectively. Tubes were wrapped with aluminium foil to minimize photolysis of 131 

TCS and HHCB. After 15 min of solvent evaporation in the fume hood under darkness, each 132 

tube was vortexed for 5 min and then shaken on a horizontal shaker for 12 h in the dark at 133 

16 °C to achieve homogeneity. 134 

Test Organisms. The L. hoffmeisteri was obtained from an aquarium market (Guangzhou, 135 

South China). It was acclimatized in a 18-L glass tank containing aerated deionized water and 136 

thawed sediment (27 ± 1 °C, dark). The acclimatization phase lasted three weeks before the 137 

start of exposure. The culturing water and sediment were renewed once during the 138 

acclimatization. The total lipids were extracted with acetone/hexane (1/1, v/v) and quantified 139 

gravimetrically.43 TCS, Me-TCS, HHCB and HHCB-lactone concentrations were below the 140 

method quantification limits (MQLs) in the unexposed worm tissue. Therefore, worms used 141 

here were suitable for the purposes of this study. 142 
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Experimental Design. TCS and HHCB biotransformation experiments were performed 143 

separately in water/sediment microcosms. After sediment spiking, 30 mL of aerated Milli-Q 144 

water was gently pipetted into each glass vial along the wall, and stored at 4 °C in the dark for 145 

2 days to enable potential suspended particles to settle down. Then 30 L. hoffmeisteri (length: 146 

20.48±3.17 mm; width: 0.375±0.032 mm; wet weight: 0.0021±0.0006 g) at larval stage were 147 

introduced into each tube belonging to system with worms. A parallel set of vials without 148 

worms were also included to assess microbial degradation. Constant gentle aeration was 149 

provided through a glass Pasteur pipette in each tube of both systems at the water surface. 150 

Microcosms were incubated statically at 27±1 °C in the dark. The experiment ran for 14 d. 151 

During the exposure period, no food was added into the microcosms as worms live on the 152 

organic matter associated with the sediment particles. As such, the exposure used here cannot 153 

last for a long period. Nevertheless, 14-d exposure is enough for the purpose of studying the 154 

bioaccumulation and biotransformation of chemicals in the worm tissue, as demonstrated by 155 

the degradation of acetyl cedrene by C. teleta.5 Water evaporation was minimized by covering 156 

the tubes with parafilm during the exposure period. According to our previous experience, the 157 

evaporation was negligible after 14 d culturing. To measure the abiotic loss of TCS and 158 

HHCB during the exposure period, blanks were prepared by adding 30 mL of aerated Milli-Q 159 

water containing TCS or HHCB at concentration of 2 µg/L into microcosms. All experiments 160 

were performed in four replicates, thus there were 72 tubes in total for each experiment. To 161 

analyse bioaccumulation and dissipation kinetics of TCS or HHCB, 8 tubes were sacrificed on 162 

days 0, 1, 3, 7, 10 and 14, respectively. Blank and control vessels were sacrificed only at the 163 

start and end of exposure. The TCS and HHCB concentrations in the water phase were 164 

determined only at the start of exposure. As Me-TCS and HHCB-lactone have been reported 165 

as the main product of TCS22 and HHCB12, their concentrations were also measured on each 166 

sampling date in the worms and water-sediment phases. The pH value in the overlying water 167 
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was measured at the start and end of exposure. The biotransformation products were 168 

determined on days 0, 7 and 14 in worm tissue and in water-sediment phases.  169 

Sample Pre-treatment. Tubes from system without worms were directly frozen (-20 °C) 170 

until lyophilization. Tubes from system with worms were gently vortexed, the resultant water-171 

sediment mixture was then sieved (300 µm). Worms were transferred to glass beakers with 172 

400 mL of aerated tap water, left to depurate overnight, weighted into a 50-mL polypropylene 173 

centrifuge tube for chemical extraction. Water and sediment were separated by centrifugation 174 

at 4000 rpm. The resultant water phase was immediately filtered through 0.7-μm glass fibre 175 

filters, combined with the above tap water, diluted to 1000 mL and extracted using solid-176 

phase extraction (SPE) as previously described.44 The collected sediment and filters were 177 

frozen (-20 °C), lyophilized and stored at 4 °C in the dark until extraction. The detailed 178 

explanation for SPE is given in the supporting information (Text S2).  179 

Sediment samples were extracted by ultrasonic extraction combined with purification by 180 

SPE cartridges. Briefly, 15 mL of methanol (for TCS extraction) or acetone/dichloromethane 181 

(1:1, v/v) (for HHCB extraction) was added into each tube with dry sediment, vortexed for 5 182 

min and further shaken on a horizontal shaker for 2.5 h at 16 °C to thoroughly mix the 183 

sediment and solvent. Samples were then extracted in an ultrasonic bath for 0.5 h, and 184 

centrifuged at 3000 rpm for 10 min. The clear supernatant was transferred to a 300-mL flat-185 

bottomed flask using a glass pipette. The extraction procedure was repeated three times. For 186 

the fourth extraction of TCS, 15 mL of methanol containing 0.1 % (v/v) formic acid was used 187 

as extraction solvent. Extraction procedures for particles on the filters were the same as the 188 

sediment samples. The supernatants of the sediment and filter from the same microcosm were 189 

combined, allowed to evaporate at 37 °C to about 20 mL for TCS whereas to almost dry and 190 

reconstituted in 20-mL methanol for HHCB, and diluted with Milli-Q water to a volume of 191 
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300 mL. Each diluted extract was then purified and enriched on an Oasis HLB cartridge (200 192 

mg, 6 mL) using the same procedures for the extraction of water samples.  193 

Worms in the tubes were first spiked with 100 ng of d3-AHTN in case of HHCB samples 194 

and 100 ng of 13 C12-triclosan and 13 C12-methyl triclosan in case of TCS samples, vortexed 195 

for 30 s, and equilibrated at 4 °C for 30 min. Worm tissue was then homogenized in 4 mL of 196 

acetonitrile with two ceramic homogenizers. The homogenates were ultra-sonicated (30 min, 197 

20 °C) and centrifuged (10 min, 4000 rpm). The clear supernatants were transferred to 15 mL 198 

d-SPE tubes containing 900 mg anhydrous MgSO4, 150 mg PSA, and 150 mg C18 to remove 199 

lipids. The extraction procedure was repeated twice for each sample. In the third extraction, 200 

acetonitrile was replaced by acetonitrile containing 0.2 % acetic acid. The d-SPE tubes 201 

containing supernatants were shaken for 2 min and centrifuged (15 min, 4000 rpm). The final 202 

supernatants were transferred to 15-mL glass tubes, dried under gentle nitrogen stream, re-203 

dissolved in 1 mL of methanol, filtered through 0.22-μm membrane filters into 2-mL amber 204 

glass vials and stored at -20 °C until instrumental analysis.  205 

To identify biotransformation products of HHCB, the extracts were derivatized following 206 

the procedure described by Martin et al.12 The details of derivatization are given in the 207 

supporting information (Text S3). 208 

Instrumental Analysis. TCS in the extracts was quantified using an Agilent 1200 high 209 

performance liquid chromatograph (Agilent, USA) coupled to an Agilent 6460 triple 210 

quadrupole mass spectrometer with electrospray ionization under negative ionization modes 211 

(HPLC-MS/MS, ESI-). Me-TCS, HHCB and HHCB-lactone in the extracts were determined 212 

by an Agilent 6890N gas chromatograph (Agilent, USA) connected to an Agilent 5975B 213 

MSD mass spectrometer (GC-MS), equipped with a DB-5MS column (30 m × 0.25 mm i.d., 214 

0.25 μm film thickness, J&W Scientific Co., USA), in the selected-ion-monitoring (SIM) 215 

mode under electron-impact ionization (EI). Qualification of TCS biotransformation products 216 
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in worm tissue and sediment was performed using Waters ACQUITY UPLC-I Class with 217 

Xevo G2-XS QTOF, whereas Agilent 7250 GC/Q-TOF was used to analyse 218 

biotransformation products of HHCB. The detailed procedures used for the quantitative and 219 

qualitative analysis are provided in the supporting information (Text S4).  220 

Quality Assurance, Quality Control, and Data Analysis. Solvent blanks and procedural 221 

blanks were determined successively for each batch of samples to check background 222 

contamination and ensure the performance of the analytical procedure. The MQLs were 223 

defined as 10 times the ratio of the signal to instrument noise (Table S1). The recoveries of 224 

TCS, Me-TCS, HHCB and HHCB-lactone in each compartment were separately assessed by 225 

spiking a standard solution at three levels (0.1, 0.5, and 2) in clean Milli-Q water (µg/L), 226 

sediment (µg/g dw), sediment particles on the filters (µg/g dw) and worm tissue (µg/g ww), 227 

respectively. All recoveries were in the range of 60% to 110% (Table S2). Concentration data 228 

below MQLs were treated as not detected (ND). TCS, Me-TCS, HHCB and HHCB-lactone 229 

concentrations were below the MQLs in the clean Milli-Q water and worm tissue in the 230 

controls at the end of experiment. 231 

The dissipation kinetics of TCS and HHCB in the water/sediment systems were described 232 

using both zero-order and first-order kinetic models. For zero-order kinetic model, C (t) = C 233 

(t=0) - kt and half-life t 1/2 = C (t=0) / 2k; for first-order kinetic model, C (t) = C (t=0) × exp (-kt) 234 

and half-life t 1/2 = ln (2) / k, where C (t) (µg/g dw) is the TCS or HHCB concentration in the 235 

sediment at sampling time t (days) and k is the elimination rate constant. 236 

The biota-sediment-accumulation-factor (BSAF) was calculated at each sampling point 237 

using the following equation:45 BSAF = (Co / fl) / (Cs / fOM), where Co is the chemical 238 

concentration in the organism (µg/g wet weight (ww)) at each sampling point, fl is the lipid 239 

fraction of the organism (g lipid/g ww) at the start of exposure, Cs is the chemical 240 
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concentration in the sediment (µg/g dw) at the corresponding sampling point, and fOM is the 241 

organic matter fraction of the sediment (g organic matter/g dw) at the start of exposure.  242 

Statistical analyses were performed with the software SPSS Statistics (Ver 23.0.0). Two-243 

way ANOVA (factors: presence of L. hoffmeisteri and sampling time) with Tukey’s multiple 244 

comparison tests was used to determine the statistical differences in the chemicals 245 

concentrations between systems with and without worms or among sampling dates. Data were 246 

checked for normality and variance homogeneity with Shapiro-Wilk test and Levene's test, 247 

respectively. Statistical significance was accepted at p < 0.05 level.  248 

 249 

RESULTS 250 

Concentrations and Dissipation Kinetics of TCS and HHCB in the Microcosms. The 251 

concentrations of TCS and HHCB in the sediment were measured on days 0, 1, 3, 7, 10 and 252 

14 and are shown in Table S3 and Figure 1. TCS and HHCB concentrations in the blank 253 

samples remained at 2 µg/L during the 14 d incubation period. At the start of exposure, TCS 254 

and HHCB concentrations in the water phase were 0.59 µg/L and 0.48 µg/L, respectively. 255 

Over the course of experiment, both TCS and HHCB gradually disappeared from the 256 

microcosms. However, TCS dissipated faster than HHCB, as demonstrated by greater 257 

negative slopes of TCS relative to HHCB in the zero-order model (Figure 1A and B). After 14 258 

d exposure, the TCS concentrations decreased from 3.1 μg/g dw to 2.8 μg/g dw (9.03%) and 259 

3.0 μg/g dw (3.23%) in systems with and without worms, respectively (Table S3). The HHCB 260 

concentrations declined slightly from 3.10 µg/g dw to 3.02 µg/g dw (2.90%) and 3.08 µg/g 261 

dw (0.65%) in systems with and without worms, respectively (Table S3). Furthermore, there 262 

was a significant difference in TCS and HHCB concentrations between systems with and 263 

without worms (two-way ANOVA, p < 0.05). Compared to the original spiked concentration, 264 
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TCS and HHCB concentrations significantly decreased from day 3 and 10 onwards, 265 

respectively (two-way ANOVA, p < 0.05).  266 

Dissipation data of TCS and HHCB fitted well to both zero-order and first-order reaction 267 

kinetic models in both systems with and without worms (Figure 1). Under zero-order model 268 

(Figure 1A and B), estimated t1/2 values for TCS were 79 d and 218 d, and for HHCB were 269 

320 d and 1105 d in systems with and without worms, respectively. However, under first-270 

order model (Figure 1C and D), estimated t1/2 values for TCS were 103 d and 301 d, and for 271 

HHCB were 433 d and 1386 d in systems with and without worms, respectively.  272 

Identification of Biotransformation Products in the Sediment. The concentrations of 273 

Me-TCS increased in both systems during the exposure period, with significantly higher 274 

concentrations in systems with than without worm presence (two-way ANOVA, p < 0.05) 275 

(Table S3 and Figure 2). HHCB-lactone concentration remained at similar levels throughout 276 

the exposure period in both systems (two-way ANOVA, p > 0.05), with values around the 277 

initial spiked concentration, i.e. 0.34 µg/g dw (Figure 2). However, after 14 d exposure, the 278 

final HHCB-lactone concentration was slightly lower in the system with (~0.33 µg/g dw) than 279 

without (~0.34 µg/g dw) worms (Table S3). Me-TCS concentrations significantly increased 280 

from day 7 onwards (two-way ANOVA, p < 0.05), whereas there was no significant 281 

difference in HHCB-lactone between sampling dates (two-way ANOVA, p > 0.05). No other 282 

products were found for TCS or HHCB in the sediment by UPLC- QTOF and GC-QTOF, 283 

respectively. 284 

Bioaccumulation and Biotransformation Products of TCS and HHCB in the Worm 285 

Tissue. The lipid content of L. hoffmeisteri was 2.26% ww. During the 14 d exposure period, 286 

there was no mortality of L. hoffmeisteri in any treatments. The pH was around 6.6 in the 287 

overlying water at the start and end of exposure. TCS and HHCB concentrations showed 288 

similar change trends in the worm tissue, i.e. increasing from day 0 to day 3 and remaining 289 
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stable from day 7 onwards (Figure 3). After 1 d exposure, the TCS and HHCB concentrations 290 

were 2.4 µg/g ww and 6.5 µg/g ww, respectively. After 3 d exposure, the TCS and HHCB 291 

concentrations reached 6.5 and 8.4 µg/g ww, respectively (Table S3 and Figure 3). The BSAF 292 

values of TCS and HHCB were in the range of 0.70 to 2.07 and 1.84 to 2.50 during the 293 

exposure period, respectively (Table S3). 294 

As was observed in the sediment, Me-TCS and HHCB-lactone were also detected in the 295 

worm tissue, with concentrations in the range of 0.06-0.15 µg/g ww and 0.70-0.81 µg/g ww, 296 

respectively (Table S3 and Figure 3). Moreover, the results of mass balance show that HHCB-297 

lactone accumulation in worms was responsible for the loss of HHCB-lactone in systems with 298 

worm presence. Me-TCS and HHCB-lactone concentrations reached the steady state in L. 299 

hoffmeisteri on day 7 and day 10, respectively. 300 

In addition to Me-TCS, triclosan-O-sulfate (TCS-O-sulfate) was detected by LC-Q-TOF 301 

(Figure 4 and Figure S1). The identification of TCS-O-sulfate was further confirmed by its 302 

authentic standard. However, no biotransformation products were identified for HHCB in the 303 

worm tissue by GC-QTOF, except for HHCB-lactone.  304 

 305 

DISCUSSION 306 

This study showed that the TCS and HHCB dissipation in the microcosms fitted well to 307 

both zero-order and first-order reaction kinetics models. Likewise, fitting to both models has 308 

been reported for TCS16, 19, 46 and HHCB12 dissipation by biosolids-amended soil 309 

microorganisms and fungi, respectively. TCS dissipated slowly in systems without worm 310 

presence with a t1/2 value of 218 d (zero-order model) or 301 d (first-order model). While 311 

these values are larger than the t1/2 value of 58 d detected in the pond water-silty clay loam 312 

sediment system under aerobic conditions47, they are comparable to the t1/2 value of 239 d in 313 

the lake water-silty clay sediment system with dissolved oxygen levels above 3 mg/L.48 These 314 
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differences are likely related to different microbial communities and sediment properties 315 

including organic matter and clay content between studies.21, 49, 50 In addition, although in this 316 

study the oxygen was supplied in the overlying water during the incubation period, the 317 

sediment in systems without worms was likely under reducing condition due to the microbial 318 

respiration51 and lack of bioturbation, which might  hamper the dissipation of TCS because 319 

TCS dissipated faster under aerobic than anaerobic conditions.9, 10 The estimated t1/2 for 320 

sediment-associated HHCB were > 300 d in both systems under both kinetics models, 321 

suggesting that HHCB was persistent in the water/sediment system under the conditions in the 322 

present study. However, in the EU Risk Assessment Report (EU RAR) for HHCB, t1/2 of 79 d 323 

in the sediment was deemed most relevant for modelling the fate of HHCB in sediment using 324 

the European Union System for the Evaluation of Substances (EUSES) model.52 These 325 

differences could be attributed to differences in sediment properties, microbial communities 326 

and exposure scenarios. Under both kinetics models, the estimated t1/2 values of HHCB were 327 

∼3 and ∼4 times longer than those of TCS in systems with and without the presence of 328 

worms, respectively, indicating that HHCB was more persistent than TCS in the water-329 

sediment system. Likewise, a longer t1/2 value of HHCB (900 d53) relative to TCS (258 d53 330 

and 107 d21) has been reported in biosolid-amended soils in field. However, a faster 331 

dissipation of HHCB in biosolid-amended soils has been described by DiFrancesco et al.54 332 

The corresponding t1/2 values were 141 and 144 d in the spiked and unspiked biosolids-333 

amended soils, respectively.52 The dissipation of TCS and HHCB were faster in systems with 334 

than without worms, suggesting that L. hoffmeisteri stimulated the dissipation of the two 335 

hydrophobic compounds in the water/sediment systems in this study. This is likely to be 336 

associated with the bioaccumulation and biotransformation in L. hoffmeisteri and enhanced 337 

microbial degradation due to the sediment reworking by worms.55, 56 338 
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TCS, Me-TCS, HHCB and HHCB-lactone were detected in the worm tissue, with 339 

concentrations increasing from exposure day 1 to 7 and reaching the steady state from then 340 

onwards (Table S3), which indicates that L. hoffmeisteri can accumulate these hydrophobic 341 

compounds. Similar time to reach steady state has previously been observed for sediment-342 

associated polybrominated diphenyl ether (PBDE) accumulation in the oligochaete 343 

Lumbriculus variegatus (a similar species to L. hoffmeisteri).57, 58 The stabilized BSAF values 344 

of TCS (~2.07) in L. hoffmeisteri were larger than the 28-day BSAF value (1.4) reported by 345 

Dang et al,59 who studied the bioaccumulation of TCS in L. variegatus. However, another 346 

study has reported a greater BSAF (9.04) of TCS in L. variegatus than the present study.60 347 

These differences are most likely related to differences in sediment characteristics and species 348 

traits between the studies.60, 61 The stabilized BSAFs of HHCB were around 2.50 in L. 349 

hoffmeisteri, similar to the values (1.5-2.5) reported in carps from the Haihe River (China).62 350 

HHCB showed higher BSAF values than TCS in L. hoffmeisteri, which is likely associated 351 

with the lower metabolism and water solubility but higher log Kow value of HHCB than 352 

TCS.39, 40 353 

Me-TCS was detected in both the sediment and worm tissue whereas TCS-O-sulfate was 354 

only detected in the worm tissue. These two metabolites were products from phase II reaction, 355 

i.e., methylation and sulfation. However, no phase I (e.g., oxidation, reduction and hydrolysis 356 

reactions) products were observed in this study. This may be related to the fast transformation 357 

of phase I to phase II products, as described by Malmquist et al.63 who investigated the 358 

biotransformation of pyrene by the benthic invertebrate Nereis diversicolor. Also, analyses of 359 

the overlying water would have provided more information on the fate of phase I products. In 360 

the future work, we therefore recommend to analyse metabolites in the overlying water. Yet, 361 

the formation of Me-TCS via biological methylation has been reported for different stages of 362 

wastewater treatment plants.16, 64 Besides, Macherius et al.22 found that TCS was transformed 363 
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into Me-TCS by earthworms in biosolid-amended agricultural field. However, compared to 364 

TCS, Me-TCS is more persistent and also more prone to bio-accumulate in aquatic 365 

organisms.36 The formation of TCS-O-sulfate has been reported in activated sludge,17 plants65, 366 

rats66 and human urine67.  367 

Unlike TCS, no products were identified for HHCB. Although HHCB-lactone was 368 

detected in both sediment and worm tissue, the results of mass balance show that the presence 369 

of HHCB-lactone was due to the spiking rather than HHCB degradation by microorganisms 370 

or worms. HHCB-lactone has been reported as a HHCB degradation metabolite for activated 371 

sludge8 and cultures of fungi such as Myrioconium sp.12 and Phanerochaete chrysosporium.8 372 

However, our results demonstrate that L. hoffmeisteri and microorganisms in the sediment did 373 

not degrade HHCB or HHCB-lactone to a measurable degree. Unlike HHCB, Dai et al.5 found 374 

that after 14 days of exposure sediment-associated acetyl cedrene (another fragrance material) 375 

was reduced by 88-99% and 13-31% in the sediment with and without C. teleta, respectively. 376 

However, another study reported that acetyl cedrene in the sediment decreased 72% in both 377 

treatments with and without C. teleta after 16 days.68 One explanation for these findings is 378 

that the microbial activity was very low initially in the present study due to the freezing of the 379 

sediment, which would potentially decrease microbial degradation compared to a full-active 380 

microbial community in previous studies. In addition, it seems that macrofaunal 381 

biotransformation is both species- and chemical specific (e.g., Malmquist et al.63).  382 

In conclusion, our results demonstrate that oligochaete worm presence significantly 383 

accelerated HHCB and TCS dissipation in water-sediment systems. L. hoffmeisteri either 384 

cannot or has a very low ability to biodegrade HHCB but can biotransform TCS through 385 

methylation and sulfation. However, currently little information is available for TCS-O-386 

sulfate. Further work is therefore needed to evaluate the (eco)toxicity and persistence of TCS-387 

O-sulfate. 388 
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Figure 1. Time courses of TCS (A and C) and HHCB (B and D) concentrations in the 628 

sediment from microcosms with and without Limnodrilus hoffmeisteri. Red circle symbols 629 

and black up triangle symbols represent averages of chemical concentrations in systems with 630 

and without worms, respectively.631 
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Figure 2. Time courses of Me-TCS (A) and HHCB-lactone (B) concentrations in the sediment 633 

from microcosms with and without Limnodrilus hoffmeisteri. Red circle symbols and black up 634 

triangle symbols represent averages of chemicals concentration in systems with and without 635 

worms, respectively.636 
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Figure 3. Time courses of TCS, HHCB (A), Me-TCS and HHCB-lactone (B) concentrations 638 

(µg/g ww) in the tissue of Limnodrilus hoffmeisteri. 639 

640 



27 
 

641 

 642 

 643 

 644 

 645 

 646 

 647 

 648 

Figure 4. UPLC-Q-TOF product ion spectra and chromatogram of sulfonated metabolite of 649 

TCS in worm tissue. (A) Product ion spectra of the m/z 368.89748 peak (7.78 min), the 650 

product was identified as TCS-O-sulfate. (B) Extracted ion chromatogram of TCS-O-sulfate 651 

in the worm tissue. 652 
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Text S1 Standards and Reagents 

All solvents used for chemical analysis, including methanol, ethyl acetate, n-hexane, acetone, 

dichloromethane, and acetonitrile were of high-performance liquid chromatography (HPLC) 

grade and purchased from CNW Technologies (Shanghai, China) or Merck (Germany). 

Acetic acid and ammonium acetic were bought from Sigma-aldrich (St.Louis, USA), while 

formic acid was obtained from Tedia (USA). Oasis HLB cartridges (60 mg, 3 mL) and Oasis 

HLB cartridges (200 mg, 6 mL) were supplied by Waters Corporation (Milford, MA, USA). 

Glass fiber filters (GF/F, pore size 0.7 μm) were obtained from Whatman (Maidstone, UK). 

Ceramic homogenizer, Z-Sep tube, anhydrous magnesium sulfate (MgSO4), primary-

secondary amine (PSA) and C18 bulk sorbent were purchased from Agilent (Santa Clara, 

USA). Ultrapure water was provided by a Milli-Q system from Millipore (Watford, UK). TCS 

and HHCB were dissolved in acetone to make a stock solution of 2 g/L. The resultant stock 

solutions with concentration of 100 mg/L in methanol were individually prepared, and stored 

at -18 ˚C until use. It should be noted that HHCB stock solution contains about 10%  HHCB-

lactone. 
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Text S2 Details of solid phase extraction 

Oasis HLB SPE cartridges were preconditioned with 10 mL of methanol and 10 mL of Milli-

Q water. Samples were passed through cartridges at a flow rate of 5-10 mL/min. Each sample 

bottle was rinsed twice with 50 mL of Milli-Q water containing 5 % methanol (v/v) and 

passed through the SPE cartridge. The cartridges were then dried under vacuum for 3 h. The 

cartridges were eluted with 3×3 mL of methanol followed by 3×3 mL of ethyl acetate, 3×3 

mL of dichloromethane and 3×3 n-hexane. The eluates were dried under a gentle nitrogen gas, 

re-dissolved in 1 mL of methanol, transferred to a 2 mL amber glass vial with filtering 

through a 0.22 µm nylon membrane filter, and finally stored at -18 ˚C until analysis.  
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Text S3 Derivatization of HHCB and its biotransformation products 

The derivatization method for HHCB and its biotransformation products reported by Martin et 

al.1 was used in this study. Specifically, 100 μL of an extract in methanol was transferred to a 

2 mL amber glass vial with polytetrafluoroethylene (PTFE) screw cap and dried under a 

gentle nitrogen stream, added with 100 µL of Sylon BTZ and derivatized at 60 ˚C for 1 hour. 

Then, 200 µL of Milli-Q water at pH 3.0 was added to remove the excess derivatization 

reagent. The derivatization products were extracted with 500 µL of n-hexane, dried over 

anhydrous sodium sulfate, concentrated to a final volume of 100 µL, and analysed by GC-Q-

TOF. 
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Text S4 Details of instrumental analysis 

LC-MS/MS for TCS quantification: TCS was analysed by an Agilent 1200 rapid resolution 

liquid chromatograph coupled to Agilent G6460A triple quadrupole mass spectrometer under 

electrospray negative ionization (ESI) mode2. A 10 µL aliquot of each extract was injected 

into an Agilent SB-C18 column (3.0 mm × 100 mm ID, 1.8 μm particle size) at temperature 

of 40 °C with an RRLC in-line pre-column filter (4.6 mm, 0.2 μm filter), with Milli-Q water 

containing 0.01% acetic acid (v/v) (solvent A) and acetonitrile : methanol (1:1, v/v) (solvent 

B) as the mobile phase at a flow rate of 0.3 mL/min. The gradient program was given as 

follows: 60% B at 0 min, then increased to 90% B at 3 min and kept at 90% B for 4 min, then 

returned to the initial 60% B at 9 min and let column re-equilibrate for 6 min. The capillary 

was maintained at 3500 V. Dry and sheath gas flows were kept at 8 and 12 mL/min, 

respectively. Both dry and sheath temperatures were kept at 350 °C. 

 

GC-MS for Me-TCS quantification: Me-TCS was analysed using an Agilent 6890N GC 

interfaced to a 5975B MSD (GC-MS), equipped with a DB-5MS column (30 m × 0.25 mm 

i.d., 0.25 μm film thickness, J&W Scientific Co., USA), under electron-impact ionization (EI) 

mode. Helium (purity > 99.999%) was used as the carrier gas at a constant flowrate of 1.0 

mL/min. Splitless mode was applied for injection, with injection volume of 1 μL for each 

samples. The temperatures for the GC-MS interface, ion source, quadrupole and injector were 

kept at 300 ˚C, 230 ˚C, 150 ˚C and 250 ˚C, respectively. The column temperature was 

programmed as follows: from 100 ˚C (2 min) to 180 ˚C at 5 ˚C/min (2 min), from 180 ˚C to 

300 ˚C at 10 ˚C/min (2 min), and then to the temperature 310 ˚C at 10 ˚C/min (10 min). The 

characteristic ions were 314, 264 and 243.9 for 13C12-Me-TCS, 301.9, 251.9 and 232 for Me-

TCS.  
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ACQUITY UPLC-I Class with Xevo G2-XS QTOF: the qualification of TCS 

biotransformation products were analysed by an Waters ACQUITY UPLC-I Class with Xevo 

G2-XS QTOF under a negative ion mode. For chromatographic conditions, a 2 µL aliquot of 

each extract was injected into a HSS T3 column (2.1 × 100 mm ID, 1.8 μm particle size) at 

temperature of 40 °C, with Milli-Q water containing 10 mM ammonium acetate (solvent A) 

and methanol (solvent B) as the mobile phase at a flow rate of 0.4 mL/min. The gradient 

program was given as follows: kept 2% B from 0 to 0.25 min, increased to 98% B at 12 min 

and kept at 98% B for 3 min, then returned to the initial 2% B at 18 min and let column re-

equilibrate for 6 min. For mass spectrometry conditions, the capillary and cone voltage were 

maintained at 2500 V and 20 V, respectively. The cone gas flow was kept at 50 L/h, and the 

source temperature was 120 ˚C. The desolvation temperature and desolvation gas flow were 

set as 500 ˚C and 800 L/h. The samples were scanned using MSE scan mode at a range of 50-

1000 m/z with scan time of 0.2 s. Leucine-enkephalin was used as reference for mass 

correction. The data were processed using the UNIFI Scientific Information System to 

identify the putative compounds present in the extracts. 

 

GC-MS for HHCB and HHCB-lactone quantification: HHCB and HHCB-lactone in the 

extracts were measured using an Agilent 6890 N GC interfaced to a 5975B MSD (GC-MS), 

equipped with a DB-5MS column (30 m × 0.25 mm i.d., 0.25 μm film thickness, J&W 

Scientific Co., USA), in selected ion monitoring (SIM) mode under electron-impact ionization 

(EI). Helium (purity > 99.999%) was used as carrier gas at a constant flow of 1.0 mL/min. 

Splitless mode was used for injection, with injection volume of 2 μL for each samples. The 

temperatures for the GC-MS interface, ion source, quadrupole and injector were 280 ˚C, 250 

˚C, 150 ˚C and 280 ˚C, respectively. The GC oven temperature was programmed as follows: 
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80 ˚C for 0 min, increased to 170 ˚C at 15 ˚C/min, from 170 ˚C to 185 ˚C at 1 ˚C /min, then to 

300 ˚C at a rate of 20 ˚C /min for 5 min. 

 

GC/Q-TOF for HHCB biotransformation qualification: HHCB biotransformation products 

qualification was analysed using an Agilent 7890B GC interfaced to a 7250 QTOF, equipped 

with a HP-5MS UI column (30 m × 0.25 mm i.d., 0.25 μm film thickness, J&W Scientific 

Co., USA) under electron-impact ionization (EI). Helium (purity > 99.999%) was used as 

carrier gas at a constant flow of 1.0 mL/min. Splitless mode was applied for injection, with 

injection volume of 2 μL for each samples. The temperatures for the GC/Q-TOF interface, ion 

source, quadrupole and injector were 300 ˚C, 200 ˚C, 150 ˚C and 280 ˚C respectively. The GC 

oven temperature was programmed as follows: 80 ˚C for 0 min, increased to 170 ˚C at 15 

˚C/min, from 170 ˚C to 185 ˚C at 1 ˚C /min, then to 300 ˚C at a rate of 20 ˚C /min for 5 min. 

The samples were scanned using full scan TOF mode at a range of 50-550 m/z with scan time 

of 0.20 s.  
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Table S1 Method quantification limits of target compounds in surface water, sediment, particles and 
worms by HPLC-MS/MS or GC-MS. 

Compound Surface water (ng/L) Sediment (ng/g) Particles (ng/g) Worm (ng/g) 

Triclosan 0.08 0.10 0.14 0.16 

Methyl triclosan 0.94 1.17 1.28 1.55 

Galaxolide 1.01 1.36 1.41 1.78 

Galaxolidone 1.40 1.72 2.05 2.36 
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Table S2 Recoveries of target compounds in surface water (µg/L), sediment (µg/g dw), particles (µg/g dw) and worm (µg/g ww). 

Compounds 
Spiked concentrations in 
water 

Spiked concentrations in 
sediment 

Spiked concentrations in 
particles 

Spiked concentrations in 
worm 

0.1  0.5  2  0.1  0.5  2  0.1 0.5 2 0.1 0.5 2 

Triclosan 
105 ± 
5.31 

98.1 ± 
4.84 

94.1 ± 
4.66 

102 ± 
4.15 

95.3 ± 
5.16 

91.9 ± 
2.28 

102 ± 
4.17 

97.5 ± 
4.82 

92.5 ± 
3.94 

102 ± 
5.17 

105 ± 
4.36 

95.7 ± 
3.09 

Methyl 
triclosan 

97.0 ± 
4.19 

93.9 ± 
4.07 

85.9 ± 
5.65 

101 ± 
5.14 

90.6± 
5.38 

82.5 ± 
3.16 

103 ± 
5.43 

89.4 ± 
5.39 

80.7 ± 
4.62 

105± 
4.31 

100 ± 
4.75 

97.9 ± 
4.82 

Galaxolide 90.4 ± 
4.97 

82.4 ± 
4.11 

75.8 ± 
3.96 

79.6 ± 
4.36 

70.6 ± 
4.47 

62.7 ± 
2.43 

81.3 ± 
4.37 

74.2 ± 
4.19 

64.9 ± 
4.42 

99.3 ± 
4.97 

103 ± 
3.76 

106 ± 
4.24 

Galaxolidone 92.3 ± 
5.12 

85.7 ± 
4.65 

77.6 ± 
3.77 

82.3 ± 
4.18 

75.4 ± 
3.53 

68.1 ± 
3.16 

83.0 ± 
5.13 

77.9 ± 
5.77 

70.5 ± 
3.46 

105 ± 
4.83 

98.5 ± 
3.77 

94.7 ± 
4.98 

Three replicates were used to determine recovery.
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Table S3 TCS, Me-TCS, HHCB and HHCB-lactone concentrations in sediment (µg/g dw) and worm tissue (µg/g ww) during the exposure period. 

Exposure 
time (d) 

Sediment Worm BSAFs 

TCS Me-TCS HHCB HHCB-lactone 
TCS Me-TCS HHCB HHCB-

lactone TCS HHCB with 
worms 

without 
worms with worms without worms with worms without 

worms 
with 

worms 
without 
worms 

0 3.10±0.04 3.10±0.04 < MQL < MQL 3.10±0.02 3.10±0.02 0.34±0.01 0.34±0.01 < MQL < MQL < MQL < MQL - - 

1 3.07±0.03 3.09±0.04 0.0020±0.0003 0.0019±0.0003 3.05±0.01 3.09±0.01 0.34±0.01 0.34±0.01 2.43±0.57 0.06±0.01 6.47±0.58 0.70±0.08 0.70±0.17 1.84±0.16 

3 3.01±0.03 3.08±0.02 0.0019±0.0003 0.0020±0.0002 3.03±0.02 3.08±0.01 0.33±0.01 0.34±0.01 6.51±0.12 0.09±0.01 8.40±1.08 0.76±0.04 1.90±0.04 2.38±0.31 

7 2.94±0.03 3.06±0.01 0.0038±0.0003 0.0021±0.0003 3.02±0.03 3.08±0.01 0.33±0.01 0.34±0.01 6.52±0.13 0.12±0.02 8.81±0.44 0.81±0.03 1.95±0.04 2.50±0.12 

10 2.89±0.03 3.03±0.01 0.006±0.0004 0.0029±0.0002 3.02±0.02 3.08±0.01 0.33±0.01 0.34±0.01 6.65±0.52 0.15±0.02 8.84±0.52 0.77±0.05 2.02±0.16 2.50±0.15 

14 2.82±0.04 3.00±0.01 0.0078±0.0002 0.0050±0.0003 3.02±0.01 3.08±0.01 0.33±0.01 0.34±0.01 6.63±0.15 0.15±0.01 8.72±0.53 0.80±0.07 2.07±0.04 2.47±0.15 

MQL means method limit of quantitation. 
with and without worms represent microcosms with and without worm, respectively. 
BSAFs: biota-sediment accumulation factor.     
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Figure S1 Predicted biotransformation pathways of TCS in Limnodrilus hoffmeisteri.
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