


 

 

Propositions 

 

1. Actinomyces succiniciruminis has potential for industrial succinate production 

from starchy waste  

(this thesis) 

 

2. Knowing the relative abundance of each microbial species in a mixed rumen 

inoculum does not help to predict the fermentation products  

(this thesis) 

 

3. Phytoplanktons are the real-world savers for the global warming crisis as they are 

world’s biggest oxygen producers and carbon sequesters 

(Witman, S. (2017) World’s biggest oxygen producers living in swirling ocean waters. Eos, 98) 

 

4. The best way to protect endangered floras is to bring them into a commercial 

breeding system 
 

5. Studying abroad elevates cooking skills to the master level 
 

6. There is no real waste in our world 
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Global energy consumption and waste streams  

  

 

Global energy consumption is steadily increasing. The transportation, chemical and many 

other industry sectors are largely relying on petroleum and fossil fuels as a primary source of energy. 

In 2015, fossil fuels comprised of oil (31.7%), coal (28.1%) and natural gas (21.6%) contributed for 

more than 80% of the total energy supply (13,647 Mt) (IEA, 2017). The rate at which worldwide 

fossil fuels are consumed is increasing due to world's population increase and the rise in living 

standards in parts of the world that had consumed very little energy in the past. Fossil fuel reserves 

are limited, and exploitation will become expensive. Besides, consumption of fossil fuels results in 

pollution and carbon dioxide formation, which contributes to global warming. Therefore, the search 

for other energy sources such as natural gas, wind, nuclear and renewable organics is essential to 

guarantee energy supply.  

 

Current bio-based economy prospective  

 Fossil reserves are also important as chemicals precursors, including building blocks for the 

chemical industry. Hence, chemical technologies based on fossil (petroleum) resources are currently 

being replaced by green technologies that make use of alternative biobased resources, in the so called 

biorefinery concept.  This is often relying on microbial fermentation and when compared to chemical 

refinery processes, it is more environmental friendly and more sustainable (less pollution and no net 

CO2 emission to the atmosphere). In Table 1 the chemical and the bio-fermentation routes are 

compared. One of the guideline principles of green chemistry defined by the US Environmental 

Protection Agency (EPA) is promoting the use of renewable feedstocks (http://www.epa.gov/) 

(Fiorentino and Ripa, 2017).  

 

 

 

http://www.epa.gov/
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Table 1. A general comparison between chemical and bio-fermentative routes.  

(modified from Cukalovic and Stevens, 2008; Law and Mohammad, 2017) 

 

Parameter Chemical routes 

Non-renewable feedstocks – 

petrochemicals 

Fermentative routes 

Biobased feedstock – carbohydrates 

Price considerations Still cheaper than the renewable 

sources.  

Feedstock themselves do not contribute to 

the price as much as downstream 

processing 

Availability Availability expected to 

decrease in time 

Abundant and renewable 

Routes Developed routes, established 

technologies 

Routes under constant improvement, young 

technologies 

Yields and 

productivities 

Generally high Sometimes a large number of side products, 

diluted media, long reaction times 

Major disadvantages High energy demands (pressure 

and temperature). Catalysts 

disposal issues 

Sensitivity of microorganisms, nutrient 

requirements, complicated product 

recovery, large amounts of waste 

Environment effect Release CO2 that contributes to 

global warming   

Consume CO2 via TCA cycle 

Public awareness Decreasing popularity Increased interest in improving currently 

applied routes and innovations 

 

 Current high costs of production prevent bio-based chemicals to be widely used. Thus, 

production processes from bio-based resources need to be developed and optimized. It is estimated 

that in 2050 approximately 30% (by weight) of chemicals will be obtained from renewable biomass 

(http://www.suschem.org) (Fiorentino and Ripa, 2017). Biomass is an abundant carbon-neutral 

renewable resource that can be used as a carbon source instead of fossil feedstocks (Fiorentino and 

Ripa, 2017). Production chains resulting from biomass are considered as “short-cycle carbon 

systems”, which are more sustainable and preferable than those resulting from fossil resources, 

which are considered as “long-cycle carbon systems” (Kajaste et al., 2014; Fiorentino and Ripa, 

2017). 

 The transition from fossil based to bio-based economy needs the development of innovative 

processes to exploit the potential of biomass (Pleissner et al., 2017). Thus, utilization of food wastes 

or biomass and their conversion into valuable products require more attention as the implementation 

of such system is not yet successfully guaranteed. However, many criteria need to be considered for 

http://www.suschem.org/
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biomass utilization in the context of efficient strategies, such as the amount of biomass available for 

energy and material uses and the positive environment from renewable organic materials and 

economic feasibility (Venus et al., 2018), as well as the factors presented in Table 1.   

 At present, three biorefinery platforms are known; i) the sugar platform: using purified 

enzymes to convert biomass into five- and six-carbon sugars and then further convert these into fuels 

and chemicals by fermentation; ii) the syngas platform: using thermochemical systems to convert 

biomass into synthesis gas (a mixture of CO, H2 and CO2) and then further convert to fuels and 

chemicals by chemical or biological catalysts, and iii) the carboxylate platform: using hydrolysis 

and fermentation with often undefined mixed microorganisms to convert organic feedstocks into 

short chain carboxylates (Agler et al., 2011; Bosma et al., 2013). The differences between these 

platforms are largely based on the method of biomass conversion and the chemicals resulting from 

that. Methane is usually the expected product from anaerobic digestion process, however, not only 

methane is valuable, but the intermediate compounds as organic acids are also important. 

 

Abundance of organic waste streams 

On one hand, the increase of human population and the associated consumption of food and 

energy results in a steady increase of organic waste. Approximately one third of the global food 

production is discarded as waste per year according to the Food and Agriculture Organization of the 

United Nations (FAO). (http://www.unric.org/en/food-waste). Organic waste, such as food and fiber 

processing of fruit, vegetable waste, garbage, sewage sludge, cattle manure and/or industrial waste 

are abundant worldwide (Murto et al., 2004). The European Community Landfill Directive (EPA) 

has led to an increase in the costs of landfill and a reduction of places for landfill in many countries 

(EPA; http://ec.europa.eu/environment/waste/target_review.htm). Approximately 87.6 million 

tonnes per year of food waste are produced in Europe (Colombo et al., 2017; Stenmarck et al., 2016). 

It was predicted that the annually organic waste would be composed of 70,000 t carbohydrates 

(including 50,000 t starch), 15,000 t lipids and 7,000 t proteins based on the present composition of 
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food and the organic wastes in urban areas of Berlin (Venus et al., 2018). EU countries have 

announced the agreement on a Directive that sets a target for recycling approximately 65% of the 

municipal waste and to reduce landfilling to 10% of municipal waste by 2030 (EPA; 

http://ec.europa.eu/environment/waste/target_review.htm). With increasing disposal costs, 

alternative uses of wastes are increasingly being sought. Many waste products have the potential to 

provide new and natural sources of valuable products. The possibility of recovering the energy 

potential of biomass and wastes is a strong motivation for developing biological processes. Organic 

waste materials have no or low-value and do not compete with the food production chain (Ghaffar 

et al., 2014). Hence, notably organic waste is becoming an important source for producing novel or 

renewable energy to partially replace the use of fossil resources and closing the carbon cycle or 

reducing greenhouse gas emissions, as well as supply security, promoting rural development and 

projected long term economic savings (Clark et al., 2015; Keegan et al., 2013). Therefore, renewable 

alternative sources, such as organic waste, are of interest. Due to the huge availability of waste and 

agricultural residues, these were determined as high-potential feedstock for the sustainable biofuel 

and chemical production (Steinbusch et al., 2011). Therefore, bio-based processes should be further 

developed to conserve energy by turning waste and/or biomass into valuable products, such as 

organic acids, alcohols or methane. The organic acids for instance can be used as bio-based building-

block chemicals to replace the use of fossil resources. This process is included in the carboxylate 

platform that uses mixed microbial cultures for the conversion of organic feeds into carboxylates 

via anaerobic digestion.  

Starch waste: a promising organic waste as substrate for organic acid production   

 Starch is the second most abundant carbohydrate produced by plants after cellulose, resulting 

in a large amount of starchy waste or starchy residues worldwide (Sonnewald and Kossmann, 2013). 

For instance, in US Pacific Northwest, potatoes are a major crop with a harvest of 1.26 x 1010 kg (in 

2011) and about 40% of the potatoes are discharged (Liang et al., 2014; NPC, 2012). Approximately 



Chapter 1 
 

 

12 

 

8% of the potato weight or around 109 kg was estimated to be lost as potato peel waste (Liang et al., 

2014; NPC, 2012). Starch waste is abundant in many countries, including Thailand where potato 

and cassava are main agricultural crops. Such starch waste is used as animal feed or compost, but 

still much of it is discharged without further use (Suzuki et al., 2010). The amount of starch in raw 

materials is variable depending on the source (cassava, maize, potato, sweet potato and tapioca). 

Usually, dry starch waste contains more than 70% starch (Rakshit, 2004). Starch is mainly composed 

of amylose and amylopectin with α-1-4 glycosidic linkages, which are relatively easily hydrolyzed. 

Thus, it has an advantage over cellulose with ß-1-4 linkages that are more difficult to be broken 

down (Rakshit, 2004). As potato waste or starch waste mainly contains carbohydrates and less 

contribution of other compounds, this could lead to lower costs for downstream processing. 

Therefore, potato waste is a suitable substrate for microbial fermentation in the carboxylate platform, 

yielding organic acids, which can be converted to a variety of valuable chemicals and 

pharmaceuticals (Rakshit, 2004). This is so-called as the second-generation bio-based products, in 

which wastes, or by-products are utilized as raw material, whereas in the first-generation bio-based 

products, sugars and pure starch are utilized (Matsakas et al., 2014).   

 

Carboxylate platform for organic acids production 

 The carboxylate platform is a possibility to conserve energy from waste and/or biomass 

using anaerobic mixed cultures to produce carboxylates, including organic acids (Tamis et al., 2015; 

Agler et al., 2011) (Fig. 1). Products from the carboxylate platform have a higher value and a better 

production efficiency than, for example, biogas (methane) formation (Tamis et al., 2015). The 

composition of the organic wastes varies depending on the source of the wastes. Agricultural wastes 

such as biomass or agro-food waste from industries, normally are composed of a complex mixture 

of cellulose, fibers, starch, protein and/or lipids. Normally, a physical and/or chemical pretreatment 

step is applied to make the organic wastes or biomass ready for fermenting microorganisms that is 

depending on the type of biomass. In the carboxylate platform (Fig. 1) there are mainly two steps; 
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hydrolysis and acidogenesis (fermentation) that can be characterized into 1) separate enzymatic 

hydrolysis and fermentation (SHF) processes which complex organic matter or organic wastes is 

first hydrolyzed into soluble organic molecules (fermentable sugars) and then the soluble organic 

molecules are fermented into products (organic acids) in a separate reactor, 2) simultaneous 

saccharification and fermentation (SSF) processes where the organic matter is hydrolyzed into 

fermentable sugars and the sugars are fermented into products such as organic acids in one reactor 

(Kambam and Henson, 2010).  

         

             

      Fig. 1. Organic acid production from biobased feed stock in the carboxylate platform.  

 

However, additional hydrolytic enzymes are required in both SHF and SSF processes, while 

in the consolidated bioprocessing (CBP), the most integrated variant, microorganisms produce all 
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necessary enzymes to hydrolyze the pre-treated biomass without additional enzyme requirement 

(Bosma et al., 2013).  

In anaerobic digestion, organic waste fermentation using undefined mixed microbes, such as 

activated sludge, manure or rumen, has an advantage in terms of high capacity to utilize various 

organic wastes without the addition of hydrolytic enzymes because the microbial consortia produce 

hydrolytic enzymes. Using undefined inocula is very challenging as it usually results in mixed 

organic acids and requires downstream product purification. Therefore, a strategic choice of 

substrate and/or inocula is important. 

Organic acids can be used as biobased building-block chemicals (Agler et al., 2011; Sauer 

et al., 2008). Lactate, for instance, can be used in various applications such as an acidulant, 

chemicals, flavour enhancer or food preservative agent. As the organic acids can be applied in a 

broad range, lower market price of organic acids is desirable.  

 

Organic acid production and their market 

The market for organic acids is expanding and becomes important in chemical industry. For 

some organic chemicals more, knowledge of the microbes involved in their formation is required. 

Top 10 world chemicals are 1) succinic acid, 2) furanics, 3) hydroxypropionic acid, 4) glycerol, 5) 

sorbitol, 6) xylitol, 7) levulinic acid, 8) biohydrocarbons (such as isoprene, farnesene), 9) lactic acid 

and 10) ethanol (Sauer et al., 2008).  Some acids such as citric, itaconic, gluconic and lactic acids 

are produced at large scale, and the microbial processes involved are well understood (Sauer et al., 

2008). Beside from those category chemicals, five organic acids which have the potential to 

overcome the unsuccessful transferring from the pilot scale to commercial scale and serve as bio-

based materials to produce bioplastics and/or food additives and their application are presented in 

Table 2. These five organic acids, including lactic acid, acrylic acid, succinic acid, muconic acid 

and lactobionic acid are produced from renewable resources (Pleissner et al., 2017).  
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Table 2. Organic acids obtained from renewable resources that can serve as bio-based materials 

(modified from Pleissner et al., 2017).     

Number of 

carbon 

atoms 

 Chemical name  
Chemical 

formula 
Producer (examples) Use (examples) 

C3 
Acrylic acid 

(Prop-2-enoic acid) 
C3H4O2 

Lactobacillus plantarum, 

Candida propionicum, 

Pediococcus shermanii and 

Rhodococcus rhodochrous  

For the formulation of 

acrylate ester, detergents and 

dispersants 

C3 

Lactic acid  

(2-Hydroxypropanoic acid) 

 

C3H6O3 

Lactobacilli, Bacillus, 

Enterococcus, Lactococcus, 

Pediococcus, Streptococcus, 

Candida and Rhizopus 

groups 

Food and beverages,  

biodegradable 

polymer production 

C12 

Lactobionic acid  

(4-O-β-galactopyranosyl-D-

gluconic acid) 

C12H22O12 Pseudomonas spp. 

For pharmaceutical, food, 

cosmetic, and chemical 

industries 

C6 
Muconic acid  

((2Z,4Z)-Hexa-2,4-dienedioic acid) 
C6H6O4 

Arthrobacter sp. and 

Pseudomonas sp. 

For formation of adipic acid 

and nylon-6,6   

C4 
Succinic acid  

(Butanedioic acid) 
C4H6O4 

Recombinant E. coli, 

Actinobacillus succinogenes, 

Mannheimia 

succiniproducens, 

Corynebacterium 

glutamicum, Saccharomyces 

cerevisiae, Yarrowia 

lipolytica and Candida krusei  

Potential to replace maleic 

anhydride, be converted to 

1,4-butanediol, manufacture 

of tetrahydrofuran, polymers 

 

Lactate and succinate are promising platform chemicals (Fiorentino and Ripa, 2017) and are 

currently produced biotechnologically at commercial scale (Table 2) (Pleissner et al., 2017).  This 

thesis focuses on lactate and succinate production by mixed microbial communities using starch 

waste and other carbohydrates as substrates. 
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Bio-based lactate production 

As previously mentioned, lactate, or lactic acid (C3H6O3) has various applications. In 

addition, lactate is the base chemical for production of biodegradable plastic: polylactic acid, which 

is composed of both poly D- and L-lactate (Okano et al., 2010; Hofvendahl and Hahn–Hägerdal, 

2000). Due to the increase in demand, it was expected that the global market of lactate would exceed 

over 1-million-ton annual production by 2020, but this occurred already in 2010 (Taskila and Ojamo, 

2013). The targeted cost of lactate at industrial scale should be less than 0.8 US$.kg-1 to serve the 

poly-lactic acid production. Thus, the selling price of bio-poly-lactic acid must be less than half of 

2.2 $US.kg-1 to compete with the poly-lactic acid price derived from fossil-fuel-based plastics 

(Okano et al., 2010; Wee et al., 2006). Approximately 95% of industrial lactate production derives 

from fermentation. Several bacteria, fungi and yeasts can produce lactate, for instance, Bacillus spp., 

Enterococcus spp., Lactococcus spp., Pediococcus spp., Streptococcus spp., Candida spp. and 

Rhizopus oryzae (Pleissner et al., 2017). Microbial lactate fermentation has an advantage over 

chemical lactate synthesis as a D- or an L-form can be preferentially produced. Chemical synthesis 

always results in a racemic mixture of D- and L-lactate (Ghaffar et al., 2014; Ryu et al., 2004). There 

are still some aspects that can improve the cost-efficiency of bio-lactate production such as the 

pretreatment cost of raw materials, the separation and purification processes of lactate after 

fermentation and fastidiousness of the lactic acid bacteria (LAB) (Okano et al., 2010). Bio-lactate-

producing microorganisms are ideal for biotechnological application because they can cope with 

rough conditions such as high organic acid concentration at low pH value (Weusthuis et al., 2017). 

In 2010, Kovács and others have introduced Bacillus coagulans as a promising next-generation 

microbial production organism for building block chemicals or biofuels from renewable resources 

because it is a thermotolerant bacterium and is genetically accessible (Kovács et al., 2010). Recently, 

a new isolate of Bacillus coagulans MA-13 has been introduced as it has a potential for lactate 

production from lignocellulosic biomass (Aulitto et al., 2017). Weusthuis and others (2017) have 

first introduced a fungus; Monascus ruber as cell factory for lactate production at low pH with high 
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lactate production (190 g l-1 at pH 3.8) (Weusthuis et al., 2017). However, in their study glucose 

and/or xylose were used as substrate that have high costs in the overall production. Gao and others 

(2011) have claimed that the costs of substrate (carbon source) and the operation of the lactate 

fermentation are still the bottlenecks in the industrial scale. An alternative option to achieve the 

target cost of lactate is to reduce the production cost by either using low of zero cost substrate and/or 

processing. Lactate production by lactic acid producing bacteria has been studied using various 

substrates aiming to reduce the substrate cost (Table 3). For example, the maximum lactate 

production yield of 0.98 g. g-1 has been achieved with Lactobacillus amylophilus BCRC 14055 (Yen 

and Kang, 2010) and Lactobacillus casei NRRL B-441, respectively (Table 3). Starchy materials are 

promising raw materials as they are relatively abundant and low in price. Using the amylolytic LAB 

(ALAB) such as the Lactobacillus amylophilum which have α-amylase are able to produce lactate 

from starch materials is one of the strategies for the reduction of the pretreatment costs (Okano et 

al., 2010). 
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Table 3. Examples of lactate production by microorganisms from different substrates  

(modified from Abdel-Rahman et al., 2013) 
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Bio-based succinate production 

Succinate or succinic acid (C4H6O4) is a 4-carbon dicarboxylic acid family and one of the 

intermediates in the anaerobic metabolism of various anaerobic and facultative microorganisms. 

Succinic acid has extensive range of applications such as in food industries as acidulant, as 

flavouring and antimicrobial agent, food supplement, or as building-block to produce fuel additives, 

and other products including plastics, paints, inks, resins, coatings and pigments (Pateraki et al., 

2016; Salvachúa et al., 2016; Li et al., 2010; Cukalovic and Stevens 2008). Succinate is proposed as 

a biobased C4 platform chemical for the replacement of petrochemical building blocks such as 

maleic anhydride, an intermediate to produce many chemicals (Jang et al., 2012; Li et al., 2010a). 

For instance, succinate and its derivatives adipic acid and 1,4 butanediol can be used to produce 

some of the biodegradable polymers such as polyamides and polyesters (Pateraki et al., 2016). 

Succinate is one of the “Top 10” bio-based products from biorefinery carbohydrates and the “Top 

12” building block chemicals of the US Department of Energy’s list (Bozell and Petersen, 2010; 

Meng et al., 2016; Fiorentino and Ripa, 2017).  In 2013–2014, the annual bio-based succinate 

production was around 38,000 t or about 49% of the total product market. It is expected to reach 

600,000 t by 2020 (Pateraki et al., 2016). Currently, the bio-based marketing price is approximately 

$2.94 per kg, which is higher than the ideal cost ($1 per kg) based on the requirement to produce 

commodity chemicals by chemical production (Pateraki et al., 2016). Bio-succinate production in 

industrial fermentations mainly uses purified sugars or glucose syrup as carbon sources (Pateraki et 

al., 2016), which is costly and thus contributes to the overall succinate production price. In Table 4, 

the example of succinate production and productivity using a variety of substrates are listed. 
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Table 4. Example of succinate production by microorganisms from different substrates (modified 

from Li and Xing, 2015) 
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Anaerobic digestion  

Anaerobic digestion is a well-known process that is catalyzed by mixed microbial 

communities. There are four main metabolic stages of anaerobic digestion of bio-waste; 1) 

Hydrolysis, where exo-enzymes hydrolyze complex molecules (polysaccharides, proteins, and 

lipids) into soluble oligo/monomeric compounds (such as sugars, amino acids, fatty acids and 

glycerol), 2) Acidogenesis, where the soluble organic substances and hydrolysis products are 

fermented to organic acids, alcohols, hydrogen, and carbon dioxide, 3) Acetogenesis, where larger 

volatile fatty acids and other organic acids are converted to acetic acid, hydrogen, and carbon 

dioxide, 4) Methanogenesis, where acetic acid, hydrogen, and carbon dioxide are converted to 

methane (Schink and Stams 2006; Veeken et al., 2000). The efficiency of the anaerobic digestion 

process relies on many factors such as chemical parameters (pH, nutrient content), physical 

parameters (temperature, mixing) and biological factors (biomass type) (Comparetti et al., 2013). 

Hydrolysis often considered as the rate-limiting step for bio-waste such as lignocellulosic biomass, 

primary sludge, industrial wastes and manure (Ma et al., 2013; Vavilin et al., 2008). Although much 

research has been performed to improve the understanding of the anaerobic digestion process, 

research on anaerobic hydrolysis and its microbiology is still poorly understood (Azman et al., 

2015). Since the biogas yield is depending on the extent of hydrolysis, improvement of the 

hydrolysis step is required to enhance the overall anaerobic digestion. In the anaerobic digestion 

process, other intermediate products such as organic acids are also important, therefore, it is target 

not to convert everything to biogas. In these cases, the hydrolysis and fermentation steps need more 

attention to obtain a successful carboxylate process. Inoculum and the type of substrate as well as 

the understanding of interaction between these two parameters are important to steer anaerobic 

fermentation processes. Microorganisms are the drivers of the anaerobic digestion and research on 

the role of those microorganisms in the hydrolysis and fermentation steps is important. 
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Animal gut or rumen microorganisms and organic acid production 

The rumen, the first part of a ruminant stomach, is inhabited by complex microbiota 

consisting of bacteria, archaea, protozoa and anaerobic fungi, which interact with each other to break 

down plant derived compounds which constitute the feed of the ruminant. 

 The rumen is a living anaerobic “bioreactor”, and an important environment to study the 

microbial biodiversity and it is a large source of enzymes and novel microorganisms to produce 

organic acids. The rumen contains a large number of microorganisms with enormous diversity. At 

least 50 bacterial genera (1010 –1011 cells ml-1), 25 genera of ciliate protozoa (104–106 cells ml-1), 6 

genera of fungi (103–105 zoospores ml-1), 11 genera of methanogenic archaea (109 cells ml-1) and 

bacteriophages (108–109 phages ml-1) are present in the rumen of ruminants (Cobellis et al., 2016; 

Paul et al., 2017). The microbial diversity composition also varies depending on the type of host and 

the environmental conditions, such as domestic or wild animals and their diets (Palakawong Na 

Ayudthaya et al., 2018).    

Rumen microorganisms are naturally involved in the degradation of carbohydrates and 

lignocellulosic biomass to a variety of organic acids (Yue et al., 2013). Hydrolysis and acidification 

are important processes in the rumen. The product formation during anaerobic hydrolysis and 

acidification of especially carbohydrates and proteins is strongly influenced by the environmental 

conditions (Pitt, 1996). In the rumen, the activity of ruminal microorganisms is important to produce 

the energy and carbon sources for the ruminants. The microbial community can use various ruminal 

feedings, which can be divided in two main categories; low-grain diet and high-grain diet into 

organic acids. The low-grain diet such as hay, grasses etc. are composed of a high fiber portion 

whereas the high-grain diet such as wheat, corn etc., are high in carbohydrate and high energy 

sources that are composed of fiber, carbohydrate and/or protein (Krause et al., 1998; Krause et al., 

2003). Exploring the gut or rumen biodiversity may yield dedicated microorganisms capable of 

producing organic acids, such as succinate or lactate. 
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 The rumen or other parts of the gut contains numerous and various of microorganisms which 

can be a good source for organic acid production. The product profile using the same inoculum may 

vary with the substrate type. The type of inoculum can affect the fermentation process and the 

microbial community that becomes abundant. Bacterial diversity in rumen according to its ability 

of substrate utilization is shown in Table 5 (Kamra, 2005; Puniya et al, 2015). 

 

Table 5. Bacterial diversity of the rumen microbial ecosystem involved in complex substrate 

utilization  

             (adapted from Kamra, 2005; Puniya et al, 2015). 

 

Substrate  Bacteria 

  Cellulose Butyrivibrio fibrisolvens,  

 Clostridium cellobioparum, C. longisporum, C. lochheadii, 

Eubacterium cellulosolvens,  

 Fibrobacter succinogenes,  

  Ruminococcus flavefaciens, R. albus  

  Hemicellulose Butyrivibrio fibrisolvens,  

  Prevotella ruminicola, 

  Eubacterium xylanophilum, E. uniformis 

  Pectin Lachnospira multiparus, 

  Treponema saccharophilum 

  Starch Streptococcus bovis,  

  Ruminobacter amylophilus,  

  Prevotella ruminicola  

  Sugars/dextrins Bifidobacterium globosum, B. longum, 

 B. thermophilum, B. ruminale, B. ruminantium, 

 Lactobacillus acidophilus, L. casei,  

 L. fermentum, L. plantarum, L. brevis, L. helveticus, 

 Selenomonas ruminantium,  

  Succinivibrio dextrinosolvens, S. amylolytica  

 

Rumen fluid has been used as an inoculum in biotechnological processes to improve 

municipal solid waste treatment in anaerobic digestion (Lopes and Leite, 2004) and to increase 

hydrolysis of cellulosic organic material (Barnes and Keller, 2004; Yan et al., 2014). Using a rumen-

derived inoculum, which harbours high hydrolytic activities, could reduce the pre-treatment costs in 
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anaerobic digestion since there is little or no requirement to add hydrolytic enzymes (Thoetkiattikul 

et al., 2013).  

In the monogastric herbivore such as guinea pigs of which cellulose-rich grass and hay is the 

main natural diet, Bacteroidetes and Firmicutes are the most abundant phyla (Hildebrand et al., 

2012) as is the case for the rumen. The gastrointestinal microbiome of guinea pigs may be useful 

for studying organic acid production from plant material.  

A continued effort to culture not-yet cultivated bacteria is useful to clarify gut microbial 

functions and to obtain insights on how the microbial diversity is associated with the metabolic 

processes that take place in those habitats. In addition, obtaining novel organic acid producing 

bacteria is a challenging and rewarding task, as they can be potential candidates for biotechnological 

processes of turning waste into the valuable products.   

 

Research aim and thesis outline 

This thesis aimed to investigate microbial diversity involved in the fermentation process of 

turning organic waste such as starchy waste into valuable products such as organic acids. We also 

aimed to reduce the operational cost by using undefine-mixed microorganisms derived from guts as 

well as to isolate novel organic acid producing bacteria that might be beneficial for biotechnology 

in the future.  

In Chapter 2, starch waste from a potato factory was used as the substrate in an anaerobic 

bioreactor using rumen fluid as inoculum to produce organic acids. Two different sources of the 

inoculum, from cows in the Netherlands and Thailand, were compared and the microbial community 

composition during the fermentation in both reactors was investigated. In Chapter 3, two novel, 

organic-acid producing bacteria from two different ruminants-a dairy cow from the Netherlands and 

a sheep from the Slovak Republicwere characterized and compared. One was isolated from an 
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enrichment with amylopectin and identified as Actinomyces succiniciruminis strain Am4T, 

originated from cow rumen fluid from the Netherlands. The other was isolated from an enrichment 

with 10% of glycerol, and preliminary identified as Actinomyces strain G10T, originated from sheep 

rumen fluid from Slovak Republic. Although the two strains were isolated from different ruminal 

animals and different places, they were phylogenetically closely related based on 16S rRNA gene 

sequence identity. Biochemical, physiological and phylogenetic characteristics were analyzed to 

distinguish these two species. Multiple features of the novel strains Am4T and G10T were 

investigated, such as succinate production from poly-di saccharides and tolerance to oxygen and 

glycerol. A. succiniciruminis strain Am4T was further studied aiming to produce succinate from 

starch waste at low costs as described in Chapter 4. In Chapter 5, a different source of gut 

microorganisms, fecal samples from guinea pigs, was used to investigate the microbial community 

and its potential to produce organic acids. Bacteria were enriched with different carbon sources such 

as cellulose, starch waste and dried grass. The microbial composition from selected secondary 

enrichments was analyzed. A novel species of the genus Streptococcus, S. caviae, was enriched with 

dried grass as substrate and the bacterium was further characterized in Chapter 6. In Chapter 7, 

results are intergrated and discussed and an outlook is presented.  

 

 



 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2 

 

Organic acid production from potato starch waste fermentation by rumen 

microbial communities from Dutch and Thai dairy cows 

 

This chapter has been published as: 

Susakul Palakawong Na Ayudthaya, Antonius H. P. van de Weijer, Antonie H. van Gelder, Alfons J. M. 
Stams, Willem M. de Vos and Caroline M. Plugge (2018) Organic acid production from potato starch waste 
fermentation by rumen microbial communities from Dutch and Thai dairy cows. Biotechnology for 
Biofules 11, 13. 
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Abstract 

Exploring different microbial sources for biotechnological production of organic acids is 

important. Dutch and Thai cow rumen samples were used as inocula to produce organic acid from 

starch waste in anaerobic reactors. Organic acid production profiles were determined, and microbial 

communities were compared using 16S ribosomal ribonucleic acid gene amplicon pyrosequencing. 

In both reactors, lactate was the main initial product and was associated with growth of 

Streptococcus spp. (86% average relative abundance). Subsequently, lactate served as a substrate 

for secondary fermentations. In the reactor inoculated with rumen fluid from the Dutch cow, the 

relative abundance of Bacillus and Streptococcus increased from the start, and lactate, acetate, 

formate and ethanol were produced. From day 1.33 to 2, lactate and acetate were degraded, resulting 

in butyrate production. Butyrate production coincided with a decrease in relative abundance of 

Streptococcus spp. and increased relative abundances of bacteria of other groups, including 

Parabacteroides, Sporanaerobacter, Helicobacteraceae, Peptostreptococcaceae and 

Porphyromonadaceae. In the reactor with the Thai cow inoculum, Streptococcus spp. also increased 

from the start. When lactate was consumed, acetate, propionate and butyrate were produced (day 3– 

4). After day 3, bacteria belonging to five dominant groups, Bacteroides, 

Pseudoramibacter_Eubacterium, Dysgonomonas, Enterobacteriaceae and Porphyromonadaceae 

were detected and these showed significant positive correlations with acetate, propionate and 

butyrate levels. The complexity of rumen microorganisms with high adaptation capacity makes 

rumen fluid a suitable source to convert organic waste into valuable products without the addition 

of hydrolytic enzymes. Starch waste is a source for organic acid production, especially lactate.  
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Introduction 

Consuming fossil fuels has become a significant concern not only because resources are 

depleting but also because of the resulting pollution and carbon dioxide formation that contribute to 

global warming. However, there is also a worldwide increasing energy demand. Renewable instead 

of fossil sources for the production of energy and biochemical building blocks are thus of interest. 

Turning waste into energy carriers and valuable products is currently one of the promising 

sustainable options, especially since waste disposal requires energy (incineration) or space 

(landfills). Organic waste includes food and fiber processing by-products, fruit, vegetable waste, 

garbage, sewage sludge, cattle manure and/or industrial waste (Murto et al., 2004). All these 

materials have no or low-value and do not impact the food-value chain (Ghaffar et al., 2014). The 

possibility to conserve energy from waste and/or biomass is a strong motivation to further develop 

biobased processes and is in line with recently developed strategies that aim to use anaerobic mixed 

cultures for the conversion of organic feeds into carboxylates, including volatile fatty acids and/or 

organic acids (Tamis et al., 2015; Agler et al., 2011). Such a carboxylate platform may gain higher 

value of production efficiency than, for example, biogas (methane) formation (Tamis et al., 2015). 

Since volatile fatty acids and/or organic acids can be used as biobased building-block chemicals 

(Agler et al., 2011; Saucer et al., 2008). Demand for lactate, for instance, continuously increases due 

to its various applications as an acidulant, flavour enhancer or food preservative agent in addition to 

the production of base chemicals and for polymerization to biodegradable polylactic acid (PLA) 

(Okano et al., 2010; Hofvendahl and Hahn, 2000). PLA is a biodegradable plastic derived from 

lactate, and PLA is already available at the industrial scale. Microbial lactate fermentation has 

advantages over the chemical lactate synthesis in terms of obtaining purity where the chemical 

synthesis always results in a racemic mixture of lactate (Ghaffar et al., 2014; Ryu et al., 2004). It is 

important to select raw materials with suitable criteria such as high lactate production yield, rapid 

fermentation, low cost, low by-product formation and all-year-round availability for industrial 
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lactate production (Ghaffar et al., 2014). As the world’s second most abundant biopolymer, starch 

serves as food, feed and other industrial applications (Sonnewald and Kossmann, 2013), leading to 

a large amount of starch waste and starch residues. Starch residues from various sources, such as 

barley, cassava, corn and/or potato, can be used for volatile fatty acids and/or organic acid 

production (Ryu et al., 2004; Smerilli et al., 2015) and can meet industrial needs. Starch is the main 

component of the potato tuber with 80% of the dry solids and 20% of the total mass which can be 

used as a carbon source for microorganisms. Many studies have been conducted using potato starch 

and/or potato starch waste as a substrate in anaerobic digestion (Smerili et al., 2015; Parawira et al., 

2004; Sreethawong et al., 2010; Zhu et al., 2008). Mostly, those studies use starch waste to produce 

biogas, organic acids or animal feed components. However, little attention has been paid to the 

microbial community involved in the organic acid production from starch waste.  

The efficiency of the anaerobic digestion process (in terms of production and digestion 

yields) relies on many factors such as chemical parameters (pH, nutrient content), physical 

parameters (temperature, mixing) and biological factors (biomass) (Comparetti et al., 2013). The 

choice of inoculum is an important factor. Single or mixed cultures have been used in organic acid 

production; however, using pure culture mostly requires pre-treatment processing, including sterile 

operation, which increases the production costs.   

Rumen fluid has been used as an inoculum in biotechnological processes to improve 

municipal solid waste treatment in anaerobic digestion (Lopes et al., 2004) and to increase hydrolysis 

of cellulosic organic material (Barnes and Keller, 2004; Yan et al., 2014). Using a rumen-derived 

inoculum, which harbours high microbial hydrolytic activities, could reduce the pre-treatment costs 

in anaerobic digestion since there is little or no requirement to add hydrolytic enzymes 

(Thoetkiattikul et al., 2013). The rumen contains a large number of microorganisms with enormous 

diversity, of which includes at least 50 bacterial genera (1010 – 1011 cells ml-1), 25 genera of ciliate 

protozoa (104 – 106 cells ml-1), 6 genera of fungi (103 – 105 zoospores ml-1), 11 genera of 
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methanogenic archaea (109 cells ml-1) and bacteriophages (108–109 phages ml-1) (Cobellis et al., 

2016; Paul et al., 2017). Rumen microorganisms are naturally involved in the degradation of 

carbohydrates and lignocellulosic biomass to a variety of volatile fatty acids and organic acids (Yue 

et al., 2013). In this view, using rumen fluid as an inoculum is an attractive option for organic acid 

production.  

The microbial community composition in the cow rumen depends on the feed composition 

(Thoetkiattikul et al., 2013). In tropical countries, such as Thailand, the feed mainly consists of crop 

residues, which can be lignocellulosic agricultural by-products of rice, corn, cassava, cereal straws, 

sugarcane, groundnut and/or pineapple processing industries (Kamra, 2005). On the other hand, 

cows in temperate countries, such as the Netherlands, are regularly fed with wheat and corn silage. 

Therefore, it is interesting to investigate and compare the organic acid production profiles and the 

microbial communities from both rumen inoculum sources. 

We studied organic acid production from starch waste using rumen fluid as the inoculum and 

investigated the microbial composition shift during the process. Two different sources of rumen 

fluid obtained from fistulated cows in the Netherlands and Thailand were used.  

 

Material and methods 

Reactor setup 

Fermentations were performed in batch mode using 1-liter dished-bottom reactors 

(Applikon, Delft, The Netherlands) with a working volume of 0.9 liters and controlled by an ADI 

1010 Bio-controller and an ADI 1025 Bio-console (Applikon, Delft, the Netherlands). Temperature 

of both cow rumen-inoculated reactors was controlled at 39 °C to mimic conditions in the cow 

rumen. The pH was maintained at 7.0 + 0.4 by automatic titration with a sterile solution of 3 M 
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Na2CO3. The stirrer speed was set at 120 rpm to keep the starch waste homogeneous. The reactors 

were continuously sparged with 80:20 N2/CO2 at a flow rate of 2.6 l. h-1 to ensure anaerobic 

conditions. Typically, the reactors were operated for 8 days and daily samples were taken during the 

fermentation.          

Inoculum 

Bovine rumen fluid (500 ml) was collected from two fistulated Holstein cows from two 

different locations: The Netherlands and Thailand. The cows were aged between 4–5 years at the 

sampling period. The Dutch cows were fed with a high-grain diet with mainly corn (maize) and 

grass at Wageningen University’s research farm in the Netherlands (Table S1).  The Thai cows were 

fed with mainly pineapple peel at the Charoen Pokphand Test Farm, Chon Buri in Thailand (Table 

S1). After sampling, the rumen fluid was quickly filtered through two layers of cotton cloth in 

ambient air. The filtered rumen fluid was then transferred into a sterilised CO2-flushed anaerobic 

bottle and was kept at 4–10 oC until use. The Thai rumen fluid was shipped to the Netherlands in a 

cooled container at approximately 4 oC. Samples of both rumen fluids were used to inoculate the 

reactors (1% v v-1). 

Medium composition 

A bicarbonate buffered anaerobic mineral medium (BM) was prepared as described by 

Plugge (2005) supplemented with (l-1): 0.1 g yeast extract, 0.005 g hemin, 0.05 g vitamin K1 and 

0.5 g L-cysteine-hydrochloride (Plugge, 2005). Starch containing waste was obtained from an Avebé 

potato factory (Foxhol, The Netherlands) and was used as substrate. The starch waste was air dried 

at 80oC for 32 h, crushed to small pieces and sieved with 1 mm-pore size sieve. The dried starch 

waste contained 61% (w w-1) starch according to the analysis of Nutricontrol (Veghel, The 

Netherlands) (Table S2). Dried starch waste (7%, w v-1) was added to the reactors as carbon and 
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energy sources. After autoclaving, the sterile reactors with medium were continuously flushed with 

sterile 80:20 N2/CO2.  

 Sampling  

  As starch waste has a high viscosity, the fermentation broth was pumped through a loop with 

a butyl-rubber stopper to facilitate anaerobic sampling. Ten-milliliter liquid samples were 

aseptically collected and transferred directly into sterile-anaerobic serum bottles. Each sample was 

divided into three portions. One portion of 6 ml was transferred to a 10 ml-sterile-anaerobic serum 

bottle and stored at –20 oC for molecular analysis. A second portion of 2 ml was transferred to an 

Eppendorf tube for organic acid measurement. A third portion of 2 ml was transferred to a sterile 

anaerobic serum bottle for CFU (colony-forming units) counts.  

Deoxyribonucleic acid (DNA) extraction 

Genomic DNA was extracted from the pelleted biomass using a Fast DNA Spin kit for soil 

(MP Biomedicals Santa Ana, CA) according to the manufacturer’s instructions. DNA quantity of all 

samples was determined by a Nanodrop 1000 (Nanodrop Technologies, Wilmington, DE) and 

integrity was examined by gel electrophoresis on the 1% (w v-1) agarose gel.  

Denaturing gradient gel electrophoresis (DGGE) analysis  

 DGGE analysis was used to visualize the population dynamics in both reactors over time. 

Bacterial 16S rRNA V6–V8 regions were amplified with the universal bacterial primers GC-968F 

and 1401R (Nübel et al., 1996) using the Phire Hot start II Polymerase (Thermo Fisher Scientific, 

Waltham, MA). Bacterial amplicons were generated with a G-Storm cycler (G-storm, Essex, UK) 

using a pre-denaturing step at 95 oC for 5 min, followed by 35 cycles at 95 oC for 20 s, 56 oC for 40 

s, 72 oC for 40 s and a post-elongation step of 10 min at 72 oC. The forward primer had a GC clamp 

of 40 bp attached to the 5′-end as used by Yu et al. (Yu et al., 2008). DGGE analysis was performed 
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as described by Martín et al. (Martín, 2007) in a DCode TM system (Bio-Rad Laboratories, 

Hercules, CA) at 60 °C for 16 h with a denaturing gradient of 30:60 percent gradients according to 

Yu et al. (2008). After electrophoresis, gels were silver-stained as described by Sanguinetti et al. 

(2011) and scanned.  

Pyrosequencing analysis   

 Based on the bacterial DGGE profiles from both reactors, samples were selected to determine 

the relative abundance of the bacteria using 454-pyrosequencing analysis.  

The genomic DNA obtained from the previous step was diluted to obtain DNA 

concentrations between 10 and 20 ng µl-1 as templates. The V1–V2 regions of bacterial 16S rRNA 

genes were amplified using forward primer 27F-DegS (Van et al., 2011) and an equimolar mix of 

two reverse primers: 338R-I and 338R-II (Daims et al., 1999). The forward primer was extended 

with titanium adapter A and an eight-base specific barcode [30] at the 5′-end and the reverse primers 

were appended with titanium adapter B at the 5′-ends. The polymerase chain reaction (PCR) 

amplification and the purification of the amplicons were performed as previously described by 

Timmers et al. (2015). The DNA concentration of all PCR products was measured using Qubit 2.0 

Fluorometer (Thermo Fisher Scientific, Waltham, MA) and was then mixed together in equimolar 

amounts. Pooled samples were loaded on an agarose gel and bands were excised, purified and 

quantified using the protocol of Timmers et al. (2015). The purified pooled samples were sent to 

GATC Biotech Company (Konstanz, Germany) for pyrosequencing on the 454 Life Science GS-

FLX platform. 

Pyrosequencing data were analyzed using a workflow based on Quantitative Insights into 

Microbial Ecology (QIIME) 1.7.0 pipeline (Caporaso et al., 2010). The reads were filtered and the 

Operational Taxonomic Units (OTUs) were identified with a cut-off value of 97% identity by 

USEARCH algorithm version 6.1 (Edgar, 2010). Representative sequences from OTUs were aligned 
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using PyNAST (Caporaso et al., 2010) against with SILVA reference database version 118e 

(Kopylova et al., 2012) for taxonomic classification. Chimeric OTUs were identified and removed 

using QIIME’s ChimeraSlayer method (Haas et al., 2011). 

Bacterial CFU counts during fermentation process and isolation of fermentative bacteria   

  Total viable bacterial counts in both reactors were determined by colony-forming unit (CFU) 

plate counts over the entire incubation period. The samples were homogenised by vortexing. Next, 

tenfold dilutions in liquid Reinforced Clostridial Medium (RCM) in dilution   10-1 – 10-10 and 20 µl 

of each dilution was spread (in triplicate) on RCM agar plates (1.2% agar). The plates were incubated 

in a jar containing AnaeroGenTM sachets (Oxoid-Thermo Scientific; Hampshire, UK) to create and 

maintain anaerobic conditions and incubated at 39 oC for 3–5 days. After incubation, the colonies 

were counted and log10 CFUs ml−1 were calculated. Colonies with different morphology were 

selected and further purified using the streak plate technique on RCM agar plates until pure cultures 

were obtained. The pure cultures were then grown in the RCM liquid medium. Cell morphology of 

the cultures was observed using a light microscope (Leica DM 2000; Buffalo Grove, IL) to confirm 

the purity.  

Identification of the isolated bacteria 

Genomic DNA of each pure strain was isolated using the Fast Spin kit for soil (MP 

Biomedicals; Santa Ana, CA) following the manufacturer’s instructions. The 16S rRNA gene of 

each isolate was amplified by PCR using bacterial-universal primers 27f and 1492r (Lane, 1991). 

PCR mixture contained: 2 µl of DNA template, 0.25 µl Gotaq DNA Polymerase Kit (Promega; 

Medison, WI), 1 µl dNTPs, 1 µl of each primer, 10 µl PCR buffer and 34.75 µl PCR water. The 

PCR programme was started with a denaturing step at 95 oC for 5 min and continued with 35 cycles 

consisting of 95 oC for 30 s, 52oC for 40 s and 72oC for 90 s, and the last step of extension at 72 oC 

for 7 min. PCR products were purified and sequenced at GATC (Konstanz, Germany). The 16S 
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rRNA gene sequences of the isolates were checked for reading errors, trimmed and aligned using 

the programme DNA Baser Sequence Assembler v4 (Heracle BioSoft S.R.L, Arges, Romania), and 

then the partial sequences of 16S rRNA genes were blasted against the NCBI online database. 

Statistical analysis  

Principal Coordinate Analysis (PCoA) using weighted unifraction and Unweighted Pair 

Group Method with Arithmetic mean (UPGMA) were performed using the QIIME 1.7.0 pipeline to 

show the relationship of bacterial communities at different time points in the starch waste 

fermentation from both reactors. Multivariate analyzes were performed with the CANOCO V 5.0 

software (Šmilauer and Lepš, 2014) using the pyrosequencing results and organic acid production 

profiles from both Dutch and Thai reactors. Organic acid production profiles were used as 

‘environmental’ variables and the bacterial diversity (at genus-like level) as ‘species’ variables. 

First, principal component analysis (PCA) was used to visualise the overall correlation between all 

variables at different time points in both Dutch and Thai reactors, separately. Then, selected organic 

acids based on primary organic acids in each reactor were analyzed to reveal the relationship 

between variables using redundancy analysis (RDA). The significance test for RDA was performed 

by Monte Carlo permutation (499 times). The significant correlations between bacterial groups and 

operational conditions in each reactor were calculated with Ranked Spearman correlation by IBM 

SPSS Statistics version 23. 

Analytical methods 

During fermentations, off gas composition was automatically monitored every hour using a 

Compact GC (Interscience, Breda, The Netherlands), equipped with a Carboxen 1010 PLOT column 

and a Micro thermal conductivity detector, using helium with pressure flow 80.0 kPa as a carrier gas 

to quantify H2 and CH4 production. The production of organic acids was quantified at 24 h intervals 
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for over 16 days by HPLC (Thermo Scientific, Breda, The Netherlands), as described in (Van et al., 

2012).  

Nucleotide sequence accession numbers 

The 16S rRNA gene sequences obtained from the isolates were deposited in the NCBI 

database and are available under Accession Numbers MF581503-MF581530. The 16S rRNA NGS 

sequences were deposited at the EMBL database and are available under accession numbers 

ERS1983120 – ERS1983133.  

 

Results and discussion 

Starch waste fermentation in Dutch and Thai reactors 

The reactors were fed with starch waste and the fermentation process was followed for 16 

days, with a focus on the first 8 days. In both reactors, lactate formation immediately started after 

inoculation with rumen fluid, and gradually changed to mixed acid fermentation after a few days 

(Fig. 1).  

 Lactic acid production is common and has been shown in many starch or starchy 

fermentation studies. For instance, lactate was the major product in potato peel waste fermentation 

(Liang et al., 2014) and lactate and acetate the main products in maize silage fermentation (Sträuber 

et al., 2012). Lactic acid producing bacteria are the first and the most rapidly growing microbes in 

the starch fermentation. 

In the Dutch reactor, three stages could be identified in the fermentation (Fig. 1a and Table 

S3). During the first stage (day 0–1.33), lactate, acetate and ethanol rapidly accumulated to 148, 93 

and 73 mM, respectively. In the second stage (day 1.33–2), lactate and a part of acetate were 

consumed and converted to butyrate (112 mM). In the third stage (after day 2), butyrate and ethanol 

remained constant, whilst acetate increased further until 103 mM (at day 8). Formate also increased 
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from 22 (day 1) to 64 mM (day 3) and then decreased again to about 10 mM (day 8). Propionate 

increased from day 1 to 8 from 6 to 14 mM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 1. Production profiles in starch waste fermentation using the Dutch (a) and Thai (b) rumen fluids as 

inoculum in anaerobic reactors. H2 is shown on the secondary axis. The arrows indicate three stages in the 

fermentation. 

0

20

40

60

80

100

120

140

160

180

200

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16

mM mM.d-1 H2

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8

Lactate Acetate Butyrate Formate

Propionate Ethanol CH4 H2

mM

Time (Days)

(a) 

0

2

4

6

8

10

12

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16

mM

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8

Lactate Acetate Butyrate
Formate Propionate Valerate
Ethanol CH4 H2

Time (Days)

mM.d
-1

 H
2
 

(b) 

mM 



Organic acid production from starch waste fermentation by Dutch and Thai rumen inocula 
 

 

39 

 

Also, in the Thai reactor, three stages in the fermentation pattern could be identified (Fig. 1b and 

Table S4). During the first stage (day 0–0.5), lactate rapidly increased from 17 to 245 mM. In the second 

stage (day 0.5–3), lactate remained stable at 250 + 13 mM, whereas acetate, butyrate, propionate and 

ethanol increased further to 48, 14, 18 and 36 mM, respectively. Formate increased from 7 (day 0.5) to 32 

mM (day 1) and was completely consumed at day 3. In the early third stage (day 3–4), lactate (231 mM) 

was completely and ethanol (10 mM) was partially consumed. Increasing the levels of acetate, propionate 

and butyrate detected on day 4, 147, 102 and 63 mM respectively. From day 4 to day 16, the product 

pattern remained constant (Table S4).   

  The maximum yields of lactate were 0.3 (Dutch) and 0.6 (Thai) g g-1 starch and the highest lactate 

concentrations were 13 and 25 g l-1 (calculated using 90 g M-1 as the MW of lactate) obtained from 42 g l-1 

of starch present in the starch waste. This gave 31 and 60% lactate yield at day 1.33 and 2 in the Dutch and 

Thai reactors, respectively. In the calculations, it was considered that starch waste contains 61% starch 

(Table S2). The lactate production that was observed from the Thai reactor was somewhat higher than that 

reported in a previous study which delivered 50% lactate yield (or the yield of lactate was 0.4 g g-1 starch 

present in cassava fibrous residue), where about 30 g of lactate was produced from 60 g of starch present 

in 100 g of cassava fibrous residue using a pure culture of Lactobacillus plantarum MTCC 1407 (2% vv-1 

of the inoculum) (Juturu and Wu, 2016; Ray et al., 2009). In another study in which an undefined mixed 

culture (2% v v-1 of inoculum) was used in potato peel waste fermentation with addition of hydrolytic 

enzymes, lactate production of 14.7 g l-1 and a yield of 0.7 g g-1 starch (calculated with 34.3% starch in the 

initial substrate loading) were observed (Liang et al., 2014), which is higher than our yield. Our study was 

conducted based on using the ruminal mixed culture (1% v v-1 of inoculum) without adding any hydrolytic 

enzymes or performing a pre-treatment step. Notably, the production yield using different wastes cannot 

be accurately compared and additionally, the fermentation process has been influenced by other factors: 

fermentation conditions, type and amount of inoculum and the composition of the waste materials, for 

instance. However, this robust lactate production from starch waste challenges us to further optimise lactate 
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production in the future. Natural producers of lactate are very efficient, but pure cultures and synthetic 

communities have drawbacks such as high nutrient requirement. Efforts to further improve lactate 

yield and engineer lactate production by redirecting the carbon flow for lactate production have been 

reported. Pyruvate is the end product of glycolysis and can be further metabolised either by a 

pyruvate dehydrogenase complex (Pdh, EC 1.2.4.1) to acetyl-coenzyme A or by pyruvate 

decarboxylase (Pdc, EC4.1.1.1) to acetaldehyde and subsequently to ethanol. In previous works, it 

has been shown that the expression of a heterologous lactate dehydrogenase (Ldh, EC 1.1.1.27) gene 

introduces a new and alternative pathway for NAD+ regeneration, allowing a direct reduction of the 

intracellular pyruvate to lactate (Porro et al., 1995). CRISPR–Cas-based tools have been presented 

as the potential next-generation toolkit for prokaryotic metabolic engineering, for genome editing 

and expression control, and have enabled fast, easy and accurate strain development for established 

production platform organisms, such as Escherichia coli and Saccharomyces cerevisiae 

(Mougiakos et al., 2016). Future dedicated research could focus on development of the CRISPR–

Cas-based tools for improved lactate production. 

 In both Dutch and Thai reactors, methane was not detected in the beginning of the 

fermentation process, but only appeared in trace amounts after 7 days in the headspace (0.23 and 

0.018 mM d-1, respectively), whilst increasing after 2 weeks (4.4 and 11.1 mM per day, respectively 

at day 16: data not shown). For hydrogen, 95.6 and 9.2 mM per day out flow of the Dutch and Thai 

reactors, respectively were detected at the start (Day 0.5) of the fermentation process (Fig. 1).  

Notably, there was an unknown peak in our HPLC chromatogram (retention time 8.15), which was 

detected from both reactors and we could not identify the compound.  
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Bacterial CFUs and isolation of bacteria  

In both starch waste fermenting reactors, total bacterial counts increased up to 10.3 (+ 0.1) log10 

CFU ml-1 (standard deviation: SD) in 24 h (Table S5). From day 1 until 8, the average total bacterial counts 

were 7.6 (+ 1.1) and 8.6 (+ 1.1) [log10 CFU ml-1 (SD)] and between day 8 and 16, the total bacterial counts 

decreased to 4.8 (+ 0) and 6.4 (+ 0) log10 CFU ml-1 for the Dutch and Thai reactors, respectively.  

Ten different bacterial strains (28 in total) were isolated from both reactors based on different 

colony morphologies on RCM agar medium during the fermentation process (Table S6). Mainly, 

Streptococcus spp. were isolated from the first fermentation stage, and other fermentative bacteria 

(Enterococcus faecium, Enterococcus gallinarum, Escherichia fergusonii, Lactobacillus plantarum, 

Enterococcus durans, Clostridium sporogenes and Eubacterium limosum) were isolated from the second 

and third fermentation stages. Lactobacillus spp. were isolated only from the Thai reactor. The majority of 

these isolates are lactic acid bacteria (LAB). All of them were Gram-positive bacteria except Escherichia 

fergusonii, which was isolated at the third fermentation stage from the Dutch reactor. Lactate was the 

principal product of the first fermentation stage and is also known for its antibacterial properties. Lactate 

penetrates the cytoplasmic membrane, hence lowering the intracellular pH as well as disintegrating the 

outer-membrane in Gram-negative bacteria (Alakomi et al., 2000). Gram-positive bacteria have a thicker 

cell wall than Gram-negative bacteria, which enables them to sustain harsh conditions, such as high 

concentrations of lactate in the medium, which explains why mostly Gram-positive bacteria were isolated 

from this fermentation. 
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Bacteria (DGGE) profiles 

 Bacterial DGGE profiles from the Dutch reactor could be grouped into three patterns (Fig. 2a). 

These patterns matched the three stages of the fermentation profiles (Fig. 1a). In the first stage (day 0–

1.33), bands were visible with increasing intensity. The band pattern then shifted during stage 2 (day 1.33–

2). Finally, in the third stage, the number of bands increased further, which indicated an increased bacterial 

diversity. Then, the microbial diversity remained stable until the end of the run (day 16).  

  Also in the Thai reactor, the bacterial DGGE profile could be grouped into three patterns that 

matched the three stages of the fermentation (Fig. 2b). In the first stage (day 0–0.5), one very dense band 

was visible amidst a variety of bands. In the second stage (day 0.5–3), banding patterns were less diverse, 

and one band appeared with high intensity (Fig. 2b). Finally, in the third stage, the number of bands 

increased, and then remained stable until the end of the run (day 16). 

 Notably, the intense bands from both reactors lined in the same position, which might possibly 

represent Streptococcus spp. since only this member shared the same OTU and was highly abundant during 

the fermentation process (Figure S1).  
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(b) 

Fig. 2 . 16 rRNA based DGGE profiles of bacteria involved in starch waste fermentation in reactors with a) 

Dutch and b) Thai cow rumen fluids. ‘M’ refers to marker. Asteriks (   ) indicate samples that were used for 

NGS analysis. The arrows indicate three stages in the fermentation. 
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Bacterial community analysis  

16S rRNA gene amplicon pyrosequencing of the V1–V2 regions of the 16S rRNA gene of 

selected samples (based on the different pattern on DGGE profiles) from both reactors was used to 

analyze the bacterial communities during starch waste fermentation. After quality control, 228,106 

sequence reads could be translated into 253 OTUs (Table S7). OTUs were then identified with a cut-

off value of 97% identity and were assigned to 30 phyla, 53 classes, 101 orders, 155 families and 

253 genera. Taxa with relative abundance < 1% and unclassified groups were termed as ‘others’. 

Comparing the bacterial composition between two inocula 

At phylum level, Bacteroidetes was the most abundant (66% relative abundance) in the 

Dutch rumen inoculum, followed with Firmicutes and Cyanobacteria (22 and 6% relative 

abundances, respectively), whereas Firmicutes was the most abundant (41% relative abundance) 

followed with Bacteroidetes and Proteobacteria (34 and 10% relative abundances, respectively) in 

the Thai rumen inoculum (Figure S2).  

At genus level, the microbial diversity in the Thai rumen inoculum was higher (3 orders, 7 

families and 12 genera) compared to the Dutch rumen inoculum (1 phylum, 2 orders, 6 families and 

7 genera) (Fig. 3). In Dutch rumen inoculum, Prevotella was the most abundant (58 relative 

abundance) followed by Ruminococcaceae and Clostridiales (8 and 7% relative abundance, 

respectively) (Fig. 3). In the Thai rumen inoculum, Prevotella was also the most abundant (20% 

relative abundance) followed by members of Bacteroidales, Clostridiales and Lactobacillus (12, 10 

and 10% relative abundance, respectively) (Fig. 3b). Notably, the relative abundance of Prevotella, 

which is commonly known as the dominant amylolytic species in rumen of the high-grain diet fed 

cows (Pitta et al., 2014), was rather different between Dutch and Thai inocula (58 and 20% relative 

abundances, respectively). This can be explained by the difference in feed composition as the Dutch 

cows were fed 6.5 kg dry matter intake per day of maize silage, and no maize diet was fed to the 
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Thai cows (Table S1). On the other hand, Lactobacillus and Acetobacter (10 and 6% relative 

abundances, respectively) were only detected in the Thai rumen inoculum, of which the cows were 

fed with 3.3 kg dry matter intake per day of pineapple peel (Fig. 3 and Figure S1). Indeed, 

Lactobacillus was only isolated from the Thai reactor. Various LAB, especially Lactobacillus were 

isolated from pineapple (Garcia et al., 2016) and one of the common diseases in pineapple is 

‘marbling disease’ which is caused by acetic acid bacteria such as Acetobacter spp. (Sipes and 

Wang, 2017). These results show that the microbial community composition in the rumen is strongly 

dependent on the feed composition (Thoetkiattikul et al., 2013) and may affect the fermentation 

profiles in a reactor.  
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Fig. 3. Relative abundance of bacterial communities (genus-like level) in the starch waste fermentation using 

Dutch (a) and Thai (b) cow rumen. Taxa with relative abundance < 1% in all samples were grouped into the 

category ‘others’. P; phylum, O; order, F; family, G; genus. The arrows indicate three stages in the 

fermentation. 
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Comparing the bacterial composition between the two reactors during the fermentation process 

The bacterial community composition at the phylum level from both reactors is shown in 

Figure S2. Bacteroidetes and Firmicutes were most represented in both communities. The work of 

Gou et al. (2016) revealed that in a starch-fed reactor, two bacterial phyla, Spirochaetes and 

Firmicutes (Streptococcus), were mainly responsible for starch degradation (Gou et al., 2016). 

Interestingly, in the Thai rumen community, Proteobacteria remained in the community throughout 

the reactor run. In the Dutch reactor, OTUs affiliated with Proteobacteria were detected in stage 3 

(day 10), albeit at low levels.   

The Dutch reactor 

In the Dutch reactor, Prevotella spp. (58% relative abundance) were dominant, but gradually 

decreased to less than 3% relative abundance at day 4 (Fig. 3a). At day 0.25, genus: Streptococcus 

(18%), Paenibacillus (34%) and Bacillus (13%) increased in relative abundances, but after day 0.25 

to 2, Streptococcus spp. became dominant (~80% relative abundance). From day 1.33 until day 2 

(second stage), Streptococcus spp. decreased to 67%, whereas the relative abundance of Clostridium 

and Peptostreptococcaceae (18 and 10%, respectively) increased. In the third stage (day 4), the 

relative abundance of Clostridiales member remained stable with Clostridiaceae (13%) and 

Clostridium (8%). On day 4, Porphyromonadaceae appeared and remained until day 10 with 34% 

relative abundance. From this family at genus level, Parabacteroides was also detected, and its 

relative abundance increased 3% at day 4 to 35% at day 10. The remaining fraction of 

Porphyromonadaceae (35% relative abundance) could not be identified to a deeper phylogenetic 

level.  

The Thai reactor 

As observed in the Dutch reactor, Prevotella (18% relative abundance) members were also 

abundant in the Thai reactor at day 0 and decreased to less than 1% relative abundance at day 2 (Fig. 

3b). At day 2, Streptococcus spp. (~90% relative abundance) were highly abundant and remained 
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dominant until day 4 (38% relative abundance). At day 2, the second-most abundant group was 

members of Enterobacteriaceae (8%), in which Enterococcus had 3% relative abundance. From day 

3 to 4, the relative abundance of Pseudoramibacter_Eubacterium spp. increased (19%), whereas 

Streptococcus spp. gradually decreased (35%) until day 16 (2%). After day 4, Bacteroides (27%), 

Pseudoramibacter_Eubacterium (15%) and Porphyromonadaceae (17.4%) became dominant. In the 

family Porphyromonadaceae, only one genus, Dysgonomonas, was identified and its relative 

abundance (9%) was highest at day 7. Porphyromonadaceae members gradually increased and 

became the most abundant group (31%) in the reactor at day 16. 

 

The relationship between starch waste fermentation and bacterial communities 

Organic acid production profiles mainly depend on the type of substrates and source of the 

microbial inoculum (Parawira et al., 2004; Liang et al., 2015). Using activated sludge from three 

different municipal wastewaters and potato peel wastes as substrates, lactate production was 

observed, and bacteria of the genus Lactobacillus prevailed (>96%) in all three incubations, even 

though they were not abundant (0.1%) in the seed sludges (Liang et al., 2015). 

 In our study, Streptococcus was detected only in small amounts in Dutch and Thai rumen 

inocula (0.03 and 0.3% relative abundances, respectively), but became highly abundant (84 and 89% 

relative abundances, respectively) during starch waste fermentation. Streptococcus was important 

for fast and efficient lactate (up to 250 mM) production during the first stage (0–1.33 days) in both 

reactors. Lactate was then the substrate for secondary fermentation to produce acetate, butyrate and 

propionate. Organic acid production profile and bacterial composition of both reactors were different 

in the second part of the fermentation.  

Principal component analysis (PCA) using a weighted Unifrac plot and grouping tree 

analysis revealed that all time points separated the Dutch and Thai bacterial communities (Figure 

S3a). During the first stage of the fermentation process (day 0–2), the Dutch reactor communities 
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clustered closely together. In stage 3 (day 4 and 10), they clearly developed into different 

communities. Communities from the Thai reactor directly separated from the inoculum and day 0, 

indicating growth of a dedicated bacterial community after the starting point of the fermentation 

process (Figure S3b).  

The abundance of the top 33 bacterial OTUs from the two reactors was also plotted in a heat 

map (Figure S1). Overall, the OTUs from both reactors were different and only the genera Prevotella 

and Streptococcus were shared. Prevotella members were abundant at the start of the fermentation 

and decreased in time. Members from three families: Porphyromonadaceae, Peptostreptococcaceae 

and Enterobacteriaceae were shared and became abundant in the last stage of both reactors. 

The CANOCO (multivariate analysis) software programme was used to reveal the relation 

between the 16 most dominant bacteria (genus-like level) and the fermentation patterns in both 

reactors. First, PCA analysis (unweighted) was used to visualise the overall relationship of those in 

the Dutch and Thai reactors (Figure S4). Then, the relationship between those top 16 bacteria and 

main products during the fermentation was analyzed using RDA analysis and a correlation matrix 

(Spearman's Rank Order Correlations statistics) (Fig. 4, 5 and Table S8).  

In the Dutch reactor, the relationship between the bacterial composition and lactate, acetate 

and butyrate could be explained by first two canonical differentiation axes with 69% of all total 

datasets (p = 0.04) (Fig 4). The results showed that in the first stage (day 0–1.33), the relative 

abundance of Bacillus and Streptococcus positively correlated with increasing lactate concentration 

(r = 0.860, p < 0.05 and r = 0.778, p < 0.05, respectively). In the second stage (day 1.33–2) (Table 

S8a), lactate was consumed whilst butyrate was mainly produced. Mainly Streptococcus were 

present in this stage. The correlation results showed that Parabacteroides (r = 0.883, p < 0.01), 

Sporanaerobacter (r = 0.867, p < 0.05), Helicobacteraceae (r = 0.802, p < 0.05), 

Peptostreptococcaceae (r = 0.852, p < 0.05) and Porphyromonadaceae (r = 0.867, p < 0.05) positively 

correlated with butyrate production, whereas these members showed a negative correlation with 
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lactate concentration (Fig. 1, 2, 4 and Table S8a). Moreover, members of Clostridiaceae, known as 

butyrate-producing bacteria, showed a significantly negative correlation with the lactate 

concentration (r = –0.889, p < 0.01) and a positive correlation with the butyrate concentration (r = 

0.607). In the late stage of the fermentation (day 4–10), acetate concentration increased and 

positively correlated with Parabacteroides (r = 0.775, p < 0.05) and this genus showed a positive 

correlation with butyrate as well (Fig. 4 and Table S8a). Members of the family Lachnospiraceae, 

known for their ability to convert lactate to butyrate or propionate (Flint et al., 2012), had a negative 

correlation (r = –0.667) to lactate, but a positive correlation with butyrate (r = 0.393) and acetate (r 

= 0.286) in the Dutch reactor.   

                         

 

 

 

 

 

 

 

 

 

Fig. 4. Redundance analysis triplot showing the relationship between the top sixteen genus-like level 

phylogenetic groupings of the OTUs and the environmantal variables explaining the variance with time in 

the Dutch reactor. Sampling day are shown as fill circles (●). Environmental variables or selected 

fermentation products are represented by red arrows. Bacterial community at genus-like groups with the level, 

i.e. phylum (P), order (O), family (F) or genus (G) are represented as blue arrows. The arrows indicate the 

direction, in which the relative abundance increases. Length of arrows is measure of fit. The environmental 

variable arrows (in red) approximated the correlation between species and an environmental variable. The 

further a product falls in the direction indicated by an arrow, the higher the correlation. Both axes together 

explained 69% of the total variance in the dataset.  
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In the Thai reactor, the relationship between the bacterial composition and lactate, acetate, 

propionate and butyrate were explained by two canonical differentiation axes with 91.8% of all total 

datasets (p = 0.01) (Fig. 5). The results revealed that in the first two stages: stage 1; 0–0.25 and stage 2; 

0.25–3 (day 0 – 3), the relative abundance of genus Streptococcus increased in the same direction of 

increasing lactate. However, there was no significant correlation between bacterial community shift and 

lactate production (Table S8b). In the late stage of the fermentation (day 4–16), a variety of bacteria were 

involved in acetate, butyrate and propionate formation (Fig. 5). Members of the genera Bacteroides (r = 

0.964, p < 0.01), Dysgonomonas (r = 0.929, p < 0.01) and Pseudoramibacter_Eubacterium (r = 0.821, 

p < 0.05), and families Enterobacteriaceae (r = 0.857, p < 0.05) and Porphyromonadaceae (r = 0.821, p 

< 0.05) had significantly positive correlations with acetate, butyrate and propionate production (Table 

S8b). Members of Bacteroides in general are known to produce acetate, succinate and propionate 

(Macfarlane and Macfarlane, 1993). It was reported that the family Porphyromonadaceae, which 

includes the genus Dysgonomonas, possesses three butyrate synthesis pathways (Vital et al., 2014) and 

our findings support the relationship between this taxon and butyrate formation. Eubacterium spp. are 

known as butyrate-producing bacteria (Flint et al., 2012) and probably responsible for the conversion of 

lactate and acetate to butyrate. Remarkably, the Lachnospiraceae family had a negative correlation with 

lactate and a positive correlation with acetate and butyrate (r = 0.286 and r = 0.393, respectively) in the 

Dutch reactor but a positive correlation (r = 0.473) with lactate and a negative correlation with acetate, 

butyrate and propionate (r = –0.929, p < 0.01) in the Thai reactor. In the Dutch reactor, Lachnospiraceae 

members may have been responsible for the conversion of lactate to acetate and/or butyrate. This is well 

known for bacteria from the Clostridium cluster XIVa group in the Lachnospiraceae family, which are 

acetate plus lactate-converting butyrate producers (Van et al., 2013). Besides, there are other 

Lachnospiraceae members such as Eubacterium rectale and Roseburia inulinivorans which are also 

known to produce butyrate, formate and lactate (Flint et al., 2015). The other, Eubacterium hallii 

consumed lactate and acetate and produced butyrate (Flint et al., 2015). In the Thai reactor, 
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Pseudoramibacter_Eubacterium had 18% relative abundance at day 4 and may also have been involved 

in butyrate formation from lactate plus acetate. 

     

       

 

 

 

 

 

 

      

 

 

 

Fig. 5. Redundance analysis triplot showing the relationship between the top sixteen genus-like level 

phylogenetic groupings of the OTUs and the environmantal variables explaining the variance with time in 

the Thai reactor. Sampling day are shown as fill circles (●). Environmental variables or selected fermentation 

products are represented by red arrows. Bacterial community at genus-like groups with the level, i.e. phylum 

(P), order (O), family (F) or genus (G) are represented as blue arrows. The arrows indicate the direction, in 

which the relative abundance increases. Length of arrows is measure of fit. The environmental variable 

arrows (in red) approximated the correlation between species and an environmental variable. The further a 

product falls in the direction indicated by an arrow, the higher the correlation. Both axes together explained 

91.8% of the total variance in the dataset.    

 

Lactate is produced by a broad range of microorganisms such as bacteria and/or fungi. 

Currently, available lactate-producing strains still have advantages and disadvantages, for instance, 

the fungus Rhizopus oryzae is used to commercially produce L (+) lactate because it can directly 
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been reported that its mycelium caused turbidity and disturbed the reactor (Ghaffar et al., 2014). 

LAB produce lactate from glucose that mostly originate from corn syrup. As such, this feed stock 

competes with food and feed. Due to the increasing demand of lactate, further development of a 

lactate production platform is needed. As only a few LABs can meet the strict industrial 

requirements, such as capability to ferment low cost materials rapidly, less requirement of 

nitrogenous nutrients, and high yields with small amounts of other by-products, there is a need for 

novel strains (Ghaffar et al., 2014; Juturu and Wu, 2016).  

Amylolytic lactic acid bacteria (ALAB) such as Enterococcus faecium, E. durans, 

Lactobacillus spp. and Streptococcus spp., which are capable of utilising starchy materials, are of 

biotechnological interest because of their potential to directly convert starchy biomass to lactate 

(Velikova et al., 2016; Reddy et al., 2008). This group (ALAB) produces lactate more effectively 

than LAB because they combine pre-treatment by enzymatic hydrolysis of carbohydrate and glucose 

fermentation to lactate in one step. In our study, various species of ALAB were detected and isolated 

from both reactors including Enterococcus faecium, E. durans and Lactobacillus plantarum (Table 

S6). The Streptococcus members were the most successful due to their rapid and high lactate 

production from starch waste fermentation, increasing in relative abundances (from <1% up to 86%) 

in both reactors. The majority of the isolates (D0, D0.25, D0.5, T0-3, T0.25, T0.5, T1 and T3-3) 

were Streptococcus members (Table S6) and their 16S rRNA gene sequences showed 100% identity 

to the most abundant OTUs (pyrosequencing results), which play an important role in lactate 

production in both reactors. The BLASTN analysis of the 16S rRNA gene sequences of those 

isolates (ca. 1400 bp) showed ca. 99% identity to Streptococcus lutetiensis, a strain able to degrade 

starch (Poyart et al., 2002; Schlegel et al., 2003). In 2013, Jiang et al. studied the fermentation of 

amylopectin and resistant starch (RS2) using colonic inocula of pigs and found that there was 4% 

relative abundance of S. lutetiensis detected from total lactic acid producing bacteria in the early 

stage of the fermentation (Jiang et al., 2013). This result together with our findings suggests that S. 

lutetiensis plays an important role in starch waste fermentation in our reactors. In general, using a 
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single LAB strain for lactate production from glucose has some disadvantages because it lacks 

several biosynthetic pathways and therefore requires addition of costly nitrogen sources (yeast 

extract and/or peptone) and sterile conditions (Juturu and Wu, 2016). In this aspect, starchy waste 

as substrate becomes an advantage from an economical point of view because it contains crude 

proteins and various sources needed for the ruminal microorganisms and/or ALAB.  

Importantly, using a rumen-derived inoculum, high concentrations of lactate and other 

organic acids can be reached from starch waste without the addition of hydrolytic enzymes. To 

produce other organic acids (acetate, butyrate and/or propionate), prolonged fermentation is 

required. Therefore, undefined mixed cultures originating from rumen are attractive for the 

production of organic acids, but specifically lactate, from starch waste.  

 

Conclusions 

Our study confirms that the substrate (waste) composition and source of inoculum play 

important roles in organic acid production, and the microbial community development in anaerobic 

digestion is reflected by changes in product profile. Starch waste or starchy materials are an 

alternative source for lactate production and Streptococcus spp. are key microorganisms in this 

context. Using rumen fluid or isolated ALAB such as Streptococcus spp. in starch waste-reactors to 

produce lactate is a promising approach. Different inoculum sources affected the secondary 

fermentation product profile. Rumen fluid is a suitable inoculum source because it contains various 

microorganisms with high capacity to convert organic waste to valuable products without the 

requirement of addition of hydrolytic enzymes. Due to the complexity of the rumen microbiota, it 

has also potential to produce products from other complex organic waste sources, such as kitchen 

waste and agricultural or industrial wastes containing cellulose and/or lignocellulosic materials. 
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Supplementary data 

Table S1. Composition of the diets of Dutch and Thai cows 

Location of the cows 

Dutch cow: Carus house, Department of Animal Sciences, Bornse Weilanden 5, Wageningen University, 

Wageningen, 6708 WG The Netherlands 

Thai cow: CP Test Farm Highway 3138 Road, Tambon Khlong Kio, Amphoe Ban Bueng, Chon Buri 

20220, Thailand 

 

Feed composition 
Dry matter intake 

per cow per day (kg) 

Dutch cow  

Pelleted feed (20% protein; 25% starch) 

Maize silage (7-7.5% protein; 35-40% starch) 

Grass silage (15% protein; 0% starch) 

 

7.0 

6.5 

6.5 

Thai cow  

Pelleted feed (14% protein; 30% starch) 

Pineapple peel (0% starch) 

 

3.52 – 4.40  

3.25 

 

Table S2. Composition of the dried starch waste used in this study 

Starch waste was obtained from Avebe Potato factory (Foxhol, The Netherlands) and the starch waste 

composition was analyzed at Nutricontrol (Veghel, The Netherlands)  

 

Composition    Percent (% w w-1) 

Starch 

Crude protein 

Fiber 

Crude ash 

Sugar 

Fat 

Others  

61 

1.1 

0.8 

0.4 

0.3 

0.01 

36.39 
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Table S3. Production profiles of starch waste fermentation using the Dutch rumen fluid as inoculum 
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Table S4. Production profiles of starch waste fermentation using the Thai rumen fluid as inoculum  
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Table S5. Total bacterial counts (log10CFU/ml) at different time point in during starch waste fermentation 

in the Dutch and Thai reactors  
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Table S6. Pure cultures isolated from the starch waste fermentation process. Ten different strains are in Bold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R
e
a
c
to

r 
S

a
m

p
li

n
g

 t
im

e
 

(D
a

y
s)

 
S

a
m

p
le

 n
a

m
e 

C
lo

se
st

 c
u

lt
u

r
e 

re
la

ti
v
e
 

G
r
a

m
 

r
ea

ct
io

n
 

Id
e
n

ti
ty

 (
%

) 
N

º 

is
o
la

te
 

A
c
c
. 
n

u
m

b
e
r
 o

f 

is
o
la

te
 

S
e
q

u
e
n

c
e
 l

e
n

g
th

 

 
0
 

D
0

 
S

tr
e
p
to

co
cc

u
s 

e
q

u
in

u
s 

+
 

9
9
 

1
 

M
F

5
8

1
5
0

3
 

1
4
2

2
 

 
0

.2
5
 

D
0

.2
5
 

S
tr

ep
to

co
cc

u
s 

eq
u

in
u
s 

+
 

9
9
 

1
 

M
F

5
8

1
5
0

4
 

1
4
2

2
 

D
u

tc
h

 
0

=
0

.2
5

=
0
.5

 
D

0
, 
0

.2
5

, 
0

.5
 

S
tr

e
p
to

co
cc

u
s 

lu
te

ti
e
n

si
s 

 
+

 
9

8
 

1
 

M
F

5
8

1
5
0

5
 

1
2
2

1
 

 
0

.5
 

D
0

.5
 

E
n

te
ro

c
o
c
c
u

s 
fa

ec
iu

m
 

+
 

9
9
 

1
 

M
F

5
8

1
5
0

6
 

1
4
4

0
 

 
1
 

D
1

.1
 

E
n

te
ro

co
cc

u
s 

fa
ec

iu
m

 
+

 
9

9
 

1
 

M
F

5
8

1
5
0

7
 

1
4
2

9
 

 
1
 

D
1

.2
 

E
n

te
ro

co
cc

u
s 

fa
ec

iu
m

 
+

 
9

8
 

1
 

M
F

5
8

1
5
0

8
 

1
4
5

6
 

 
8

=
1

0
 

D
8

, 
1

0
 

E
n

te
ro

c
o
c
c
u

s 
g
a

ll
in

a
ru

m
 

+
 

9
9
 

1
 

M
F

5
8

1
5
0

9
 

1
4
3

5
 

 
9

  
D

9
-1

 
E

n
te

ro
co

cc
u

s 
fa

ec
iu

m
 

+
 

9
9
 

1
 

M
F

5
8

1
5
1

0
 

1
4
4

0
 

 
9
 

D
9

-2
 

E
sc

h
e
ri

c
h

ia
 f

e
rg

u
so

n
ii

 
- 

9
9
 

1
 

M
F

5
8

1
5
1

1
 

1
4
1

5
 

 
0
 

T
0

-1
 

L
a

c
to

b
a

ci
ll

u
s 

g
h

a
n

e
n

si
s 

+
 

9
9
 

1
 

 M
F

5
8
1

5
1

2
 

1
4
4

3
 

T
h

a
i 

0
 

T
0

-2
 

E
n

te
ro

co
cc

u
s 

fa
ec

iu
m

 
+

 
9

9
 

1
 

 M
F

5
8
1

5
1

3
 

1
4
3

5
 

 
0
 

T
0

-3
 

S
tr

ep
to

co
cc

u
s 

lu
te

ti
en

si
s 

+
 

9
8
 

1
 

M
F

5
8

1
5
1

4
 

1
4
3

0
 

 
0

=
0

.2
5

=
0
.5

 
T

0
, 

0
.2

5
, 
0

.5
 

L
a

c
to

b
a

ci
ll

u
s 

p
la

n
ta

ru
m

  
+

 
9

9
 

1
 

M
F

5
8

1
5
1

5
 

1
4
4

3
 

 
0

.2
5
 

T
0

.2
5
 

S
tr

ep
to

co
cc

u
s 

lu
te

ti
en

si
s 

+
 

9
9
 

1
 

M
F

5
8

1
5
1

6
 

1
4
1

8
 

 
0

.5
 

T
0

.5
 

S
tr

ep
to

co
cc

u
s 

lu
te

ti
en

si
s 

+
 

9
9
 

1
 

M
F

5
8

1
5
1

7
 

1
4
2

3
 

 
1
 

T
1

 
S

tr
ep

to
co

cc
u
s 

lu
te

ti
en

si
s 

+
 

9
9
 

1
 

M
F

5
8

1
5
1

8
 

1
4
1

9
 

 
2
 

T
2

-1
 

E
n

te
ro

co
cc

u
s 

fa
ec

iu
m

 
+

 
9

9
 

1
 

M
F

5
8

1
5
1

9
 

1
4
2

8
 

 
2
 

T
2

-2
 

E
n

te
ro

co
cc

u
s 

g
a

ll
in

a
ru

m
  

+
 

9
9
 

1
 

 M
F

5
8
1

5
2

0
 

1
4
3

0
 

 
3
 

T
3

-1
 

E
n

te
ro

c
o
c
c
u

s 
d

u
ra

n
s 

 
+

 
9

7
 

1
 

M
F

5
8

1
5
2

1
 

1
2
0

5
 

 
3
 

T
3

-2
 

E
n

te
ro

co
cc

u
s 

g
a

ll
in

a
ru

m
  

+
 

9
9
 

1
 

M
F

5
8

1
5
2

2
 

1
4
2

5
 

 
3
 

T
3

-3
 

S
tr

ep
to

co
cc

u
s 

lu
te

ti
en

si
s 

+
 

9
9
 

1
 

M
F

5
8

1
5
2

3
 

1
4
2

8
 

 
8

=
1
0
 

T
8

, 
1
0

-1
 

E
n

te
ro

co
cc

u
s 

fa
ec

iu
m

 
+

 
9

8
 

1
 

M
F

5
8

1
5
2

4
 

1
4
4

3
 

 
8

=
1
0
 

T
8

, 
1
0

-2
 

E
n

te
ro

co
cc

u
s 

g
a

ll
in

a
ru

m
  

+
 

9
9
 

1
 

M
F

5
8

1
5
2

5
 

1
4
2

8
 

 
1

2
 

T
1

2
-1

 
C

lo
st

ri
d

iu
m

 s
p

o
ro

g
e
n

e
s 

+
 

9
9
 

1
 

M
F

5
8

1
5
2

6
 

1
3
8

4
 

 
1

2
 

T
1

2
-2

 
E

n
te

ro
co

cc
u

s 
fa

ec
iu

m
 

+
 

9
9
 

1
 

M
F

5
8

1
5
2

7
 

1
4
3

4
 

 
1

2
 

T
1

2
-3

 
E

n
te

ro
co

cc
u

s 
fa

ec
iu

m
 

+
 

9
9
 

1
 

M
F

5
8

1
5
2

8
 

1
4
1

7
 

 
1

2
 

T
1

2
-4

 
E

u
b

a
c
te

ri
u

m
 l

im
o
su

m
  

+
 

9
9
 

1
 

M
F

5
8

1
5
2

9
 

1
4
0

3
 

 
1

2
 

T
1

2
-5

 
L

a
ct

o
b
a

ci
ll

u
s 

g
h

a
n
en

si
s 

 
+

 
9

9
 

1
 

M
F

5
8

1
5
3

0
 

1
4
4

4
 

 



Organic acid production from starch waste fermentation by Dutch and Thai rumen inocula 
 

 

61 

 

Table S7. The number of reads and OTUs per sample generated using 16S rRNA gene amplicon 

pyrosequencing from both reactors. 
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Table S8. Correlation matrix (Spearman's Rank Order Correlations statistics) between Bacterial OTUs at 

genus-like level and the operational data from the Dutch reactor (a) and Thai reactor (b). Green colors indicate 

positive correlations, whereas red colors indicate negative correlations. Correlation is significant at the p = 

0.05 level (2-tailed) for the groups in the solid parentheses, whereas the dashed parentheses indicate the 

significant correlations at p = 0.01 (2-tailed) and both font types are italic. 
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Fig. S3. Grouping tree of the bacterial communities from both reactors (a). PCA plot weighted unifraction 

of the relative abundance of the bacterial communities at different time points in the starch waste 

fermentation using the Dutch rumen fluid (red dots) and Thai rumen fluid (blue dots) (b).  

 

 

 

 

 

 

 

 

 

 

(a) (b) 

 Thai0

 ThaiRum0

 DutchRum0

 Dutch0.25

 Dutch2

 Dutch0.5

 Dutch1.33

 Thai2

 Thai3

 Thai16

 Thai4

 Thai7

 Dutch4

 Dutch10

0.1



Organic acid production from starch waste fermentation by Dutch and Thai rumen inocula 
 

 

67 

 

                                            

                                  

Fig. S4. Principal component analysis (PCA) with unconatrained ordination triplot between the top 16 genus-

like level phylogenetic groupings of the OTUs and the environmantal variables explaining the variance with 

time in the Dutch (a) and Thai (b) reactors. Time points are indicated the sampling point (days) during the 

starch waste fermentation and shown as filled circles (●). Environmental variables or selected fermentation 

products are represented by red arrows. Bacterial community at genus-like groups with the level i.e. phylum 

(P), order (O), family (F) or genus (G) are represented as blue arrows. The direction of the species, in which 

the species abundance increases. Length of arrows is a measure of fit. The environmental variable arrows (in 

red) approximated the correlation between species and an environmental variable. The further a product falls 

in the direction indicated by arrow, the higher the correlation. Both axes together explained 73% and 92.3% 

of the total variances in the datasets from the Dutch (a) and Thai (b) reactors, respecitvely. 

 



 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 

 

Actinomyces succiniciruminis sp. nov. and  

Actinomyces glycerinitolerans sp. nov., two novel organic acid-

producing bacteria isolated from rumen 

 

This chapter has been published as: 

Susakul Palakawong Na Ayudthaya, Peter Pristaš, Ludmila Hrehová, Peter Javorský, Alfons 

J.M. Stams and Caroline M. Plugge (2016) Actinomyces succiniciruminis sp. nov. and 

Actinomyces glycerinitolerans sp. nov., two novel organic acid-producing bacteria isolated from 

rumen. Systematic and Applied Microbiology 39, 445–452.    
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Abstract 

Two bacterial strains, Am4 and G10 were isolated from rumen fluid of different ruminants: 

cow (Holstein-Friesian) and sheep (Slovenskè merino), respectively. They were isolated from 

different hosts and regions but showed 99.2% similarity of the 16S rRNA genes. Both strains are 

versatile and ferment various sugars to mainly succinate and lactate and small amounts of acetate 

and formate. The 16S rRNA sequences of Am4 and G10 revealed that they belonged to the 

genus Actinomyces and are related to Actinomyces ruminicola JCM 13352T with 97.0 and 97.4% 

similarity, respectively. DDH showed strain Am4 and G10 had only 55.8 and 43.3% similarity with 

the Actinomyces ruminicola JCM 13352T and had 69.9% similarity among each other. Comparing 

strain Am4 and G10, gANI value and dDDH were 92.9 and 68.6%, respectively. Additionally, AAI 

between the strains was 95.8%. MLSA of housekeeping genes showed difference of metG and pheS. 

The G + C% contents of strain Am4 and G10 were 69.8 and 68.5%, respectively. MK-10(H4) was 

the principal quinone for strain Am4 (82%) and G10 (91%) with small amounts of MK-10(H8) and 

MK-10(H6) for both strains. Only MK-9(H4) was detected in strain Am4. MALDI-TOF analysis of 

protein profiles also revealed that Am4 and G10 are different from each other and from Actinomyces 

ruminicola JCM 13352T.  

Based on phylogenetic and physiological characteristics, together with genome comparison 

and MLSA we propose two novel species in the genus Actinomyces: Actinomyces 

succiniciruminis sp. nov. (type strain Am4T = TISTR 2317T = DSM 10376T) and Actinomyces 

glycerinitolerans sp. nov. (type strain G10T = TISTR 2318T = DSM 10377T). 

In recent years, organic acids production by microbes has gained interest as organic acids 

can be used as building-blocks for chemicals and can be converted to biofuels to replace fossil fuel. 

Anaerobic digestion is a well-known fermentation process that is catalyzed by microorganisms. 

Various products, including organic acids such as lactate, acetate, butyrate, and succinate and the 
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biofuel methane are formed in anaerobic digestion. Succinate is high in demand for chemical and 

industrial purposes as it is a precursor for several chemicals including butanediol, γ-butyrolactone, 

tetra-hydrofuran, and maleic anhydride, the latter being produced from petroleum and used in 

chemical synthesis processes (Sauer et al., 2008). 

The rumen is an anaerobic “bioreactor”, containing a multitude of microorganisms that efficiently 

converts complex organic compounds. Polymeric compounds are first hydrolyzed and then further 

digested to organic acids. Therefore, exploring the rumen biodiversity may yield dedicated 

microorganisms capable of producing certain organic acids, such as succinate, which is an important 

fermentation product in the rumen. 

Actinomyces is an important genus within the order Actinomycetales, class Actinobacteria, 

and phylum Actinobacteri (Schaal and Yassin, 2012). This genus currently contains 47 recognized 

species and 2 subspecies (see http://www.bacterio.net/a/actinomyces.html: 17-07-2016). 

Characteristics are high G + C content, Gram-positive, pleomorphic, varying from coccoid, 

diphtheroid-like to long branched filaments with swollen ends, non-motile and anaerobic, facultative 

anaerobic or aerotolerant (Schaal and Yassin, 2012). Actinomyces are widely distributed in nature 

such as in the mucous membranes of humans, animals, and intestinal guts, including rumen. They 

naturally produce organic acids such as acetate, formate, lactate, and/or succinate from glucose 

fermentation (Skyes and Skinner, 1973). This characteristic makes Actinomyces species interesting 

candidates for dedicated organic acid production (Saini et al., 2015). To date, most species in this 

genus were isolated from mucosal surfaces of animals and humans, except Actinomyces 

naturae CCUG 56698T, isolated from chlorinated solvent-contaminated groundwater (Rao et al., 

2012), and only one strain, Actinomyces ruminicola JCM 13352T has been isolated from the 

rumen (An et al., 2006).  
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Here, we describe the properties of two novel organic acid producing strains, G10 and Am4, 

originating from the rumen. Strain G10 was isolated from sheep rumen fluid (Slovenskè merino 

breed) as previously described by Vandžurová et al. (Vandžurová et al., 2013). Strain Am4 was 

isolated from rumen fluid of a fistulated Friesian Holstein cow housed at Wageningen University 

Research Farm, The Netherlands. 

For isolation of strain Am4, bovine rumen fluid (500 ml) was sampled through the rumen 

fistula. The rumen fluid was collected in a sterilized CO2-flushed anaerobic bottle (Hijazin et al., 

2012) and brought to the laboratory, where it was blended for 10 s using a sterile blender and filtered 

through two layers of sterile cotton cloth. The filtered fluid was injected in sterillized-N2-flushed 

anaerobic bottles and kept at 4 °C until use. Rumen fluid (1%, v/v) was used as inoculum in a 

bicarbonate-buffered anaerobic medium (BM), which was prepared as previously 

described (Plugge, 2005). The medium was supplemented (per liter) with 0.1 g yeast extract, 5 mg 

hemin, 0.1 ml vitamin K1, and 0.5% (w/v) amylopectin was added as carbon source. The final liquid 

volume was 50 ml in 117 ml serum bottles sealed with butyl rubber stopper containing 80:20 (v/v) 

N2/CO2 at 1.7 atm (172 kPa) gas phase. The pH of the medium was 7.2. The primary enrichments 

were incubated while shaking (50 rpm) at 39 °C in the dark. Further enrichment was performed by 

consecutive transfers to the same medium and isolation was by serial dilution using Reinforced 

Clostridial Medium (RCM), and finally plating on BMY (BM with 0.1 g l−1 yeast extract), 

supplemented with 0.5% amylopectin, 5 mg hemin, 0.1 ml vitamin K1 and 1.5% (w/v) agar. The 

plates were placed in an anaerobic jar, which was the pressurized with N2/CO2 to contain 80:20 (v/v) 

at 1.7 atm (172 kPa) gas phase. Single colonies were further purified on the same agar medium by 

the streak plate method, followed by serial dilution in BM liquid medium as described above for 

three times to obtain a pure culture that was termed strain Am4. 

Strains Am4 and G10 were routinely grown with 20 mM glucose in a bicarbonate-buffered 

anaerobic medium (Plugge, 2005) supplemented (per liter) with 0.1 g yeast extract (BMY). The 
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purity of strains Am4 and G10 were checked routinely by phase-contrast microscopy (Leica DM 

2000; Wetzlar, Germany). Organic acids were determined by high-performance liquid 

chromatography (HPLC) and gas production by gas chromatography (GC) as described in (Gelder 

et al., 2012). 

Genomic DNA of strain Am4 was isolated and purified from glucose grown cells (BMY 

with 20 mM glucose) using the Fast DNA™ Spin Kit for Soil (MP Biomedicals, Santa Ana, CA) 

following the manufacturer's instruction. DNA was amplified to obtain almost full-length 16S rRNA 

gene sequences (1429 bp) by PCR with bacterial-universal primers 27f (5′-

AGAGTTGATCCTGGCTCAG-3′) and 1492r (5′-TACCTTGTTACGACTT-3′) (Lane et al., 1991). 

The PCR program was started with a denaturing step at 95 °C for 5 min and continued with 35 cycles 

consisting of 95 °C for 30 s, 52 °C for 40 s, and 72 °C for 90 s, and the last step of extension at 72 °C 

for 7 min. PCR products of strain Am4 were purified and sequenced at GATC Biotech Company 

(Konstanz, Germany). The DNA sequence was checked for reading errors and aligned using the 

program DNA Baser Sequence Assembler v4 (Heracle BioSoft S.R.L, Arges, Romania). The partial 

sequences were blasted with the NCBI online database. The 16S rRNA gene sequence of strain G10 

(1519 bp.) was obtained from the NCBI website KC866613 (Vandžurová et al., 2013). The 16S 

rRNA gene sequences were checked for chimeras using DECIPHER's Find Chimeras web 

tool (Wright et al.,2012) before comparison with BLASTN search online program 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi: 03-02-2016) and EzTaxon 2.1 (Chun et al., 2007) and 

EzTaxon-e server (Kim et al., 2012). The phylogenetic position of strain Am4 and G10 was studied 

by comparison with 16S rRNA gene sequences of other related strains in the Actinomycesgenus, 

using Bifidobacterium bifidum ATCC 29521T as an out group, all obtained from NCBI online 

database. All 16S rRNA genes were aligned using a CLUSTAL_X program (Thompson et al., 

2009) with Kimura's two-parameter model (Kimura, 1980). Then, a phylogenetic tree was 

constructed and implemented on the MEGA 5 programs (Tamura et al., 2011) using the neighbor-
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joining, maximum-parsimony (Saitou and Nei, 1987), and maximum-likelihood (Felsenstein, 

1981) methods. Tree topologies were performed by using bootstrap analysis with 1000 

repeats (Felsenstein, 1985) (Fig. 1). The 16S rRNA gene sequences of the Am4 and G10 strains 

revealed that they belonged to the genus Actinomyces with 97.0 and 97.4% similarity, respectively, 

to the closest cultured relative, Actinomyces ruminicola JCM 13352T, and were 99.2% similar to 

each other. The tree showed that rumen Actinomyces are separated and phylogenetically different 

from other Actinomyces species, pointing at a correlation between phylogeny and origin of the 

strains. 

As the 16S rRNA gene sequence similarity between strain Am4 and strain G10 was higher 

than 99%, genome-based comparison tools (Rosselló-Móra and Amann, 2015) such as ANI and 

dDDH (in silico) were used to elucidate difference between the two strains. Genomic DNA of strain 

Am4 and G10 were extracted from glucose grown cells (BMY with 20 mM glucose) using the 

MasterPure™ Complete DNA and RNA Purification Kit (Epicenter, Madison, WI) following the 

manufacturer's instruction. The genome of strain Am4 and G10 were sequenced at GATC-Biotech, 

Konstanz, Germany. The draft genomes were assembled at WUR using in-house pipeline 

protocol (Strepis et al., 2016). The draft genomes (Am4 and G10) were then analyzed using gold 

standard analysis. 

 

 

 

 

 

http://www.sciencedirect.com/science/article/pii/S072320201630073X#fig0005
http://www.sciencedirect.com/science/article/pii/S072320201630073X#bib0400
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Fig. 1. Neighbour-joining tree, based on 16S rRNA gene sequences, showing the phylogenetic 

relationship of strain Am4, strain G10, and related species in the genus Actinomyces. Bootstrap 

values, which were higher than 50% based on 1000 replications, are shown at the branching points. 

Bifidobacterium bifidum ATCC 29521T was used as an out group. Filled circles were used to indicate 

identical nodes generated by three methods (neighbor-joining, maximum-likelihood and maximum-

parsimony). In parentheses the Gen Bank accession number of each strain is listed. Bar 2% sequence 

divergence.   

 

The ANI calculation was performed using MiSI (Microbial Species Identifier: MiSI) method 

version 0.3 from JGI website to calculate genome-wide Average Nucleotide Identity (gANI) 

complementary analysis with the fraction of orthologous genes (Alignment Fraction, AF) using 

threshold values of gANI and AF values with 96.5 and 0.6, respectively (Varghese et al., 2015). 
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The average reciprocal values of gANI and AF values between strain Am4 and G10 were 

92.94% and 0.24, respectively, which were lower than the cut-off values (96.5% and 0.6, 

respectively). Other ANI methods were used: ANI BLAST (ANIb) and ANI MUMmer (ANIm) 

methods using JSpecies software tool (Richter and Rosselló-Móra, 2009) and Average Nucleotide 

Identity by Orthology (OrthoANI) measuring only orthologous fragment pairs between two 

fragmented genomes (Lee et al., 2016) (Table S1). 

Average amino acid identity (AAI) between strain Am4 and G10 was also calculated by 

using AAI calculator at Kostas lab (http://enve-omics.ce.gatech.edu/aai/) and the AAI result was 

95.8% from 2249 proteins which was below the 96% threshold that was suggested to 

delineate Vibrio sp. (Thompson et al., 2009). 

Recently, dDDH has been implemented by Genome Blast Distance Phylogeny (GBDP) and 

provides better correlation result than ANI (regarding to JSpecies) (Meier-Kolthoff et al., 2013). The 

dDDH comparing the whole genomes using Genome-to-Genome Distance Calculator (GGDC) web 

browser at DSMZ (Braunschweig, Germany) between strain Am4 and G10 was performed and 

compared with the wet-lab DDH results. The wet-lab DDH was done in parallel with their closest 

relative A. ruminicola JCM 13352T type strain (provided by Prof. Xiuzhu Dong, Chinese Academy 

of Sciences, Beijing, China via JCM-Japan Collection of Microorganisms) at the Deutsche 

Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ) (Braunschweig, Germany) as 

described by De Ley et al. (1970) with modifications described by (Huss et al., 1983) using a model 

Cary 100 Bio UV/VIS-spectrophotometer equipped with a Peltier-thermostatted 6 × 6 multi cell 

changer and a temperature controller with in situ temperature probe (Varian, Inc., Palo Alto, CA). 

According to the recommendations by the ad hoc committee a threshold value of 70% DNA-DNA 

similarity of the definition of bacterial species is decisive to designate novel species (Rosselló-Móra 

and Amann, 2015; Wayne et al., 1987; Moore et al., 1987). The DNA-DNA hybridization result 

(wet-lab) confirmed that both strains (Am4 and G10) are different from A. ruminicola JCM 13352T 
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with the average DDH values (mean value of two replications) between strain Am4 and A. 

ruminicola JCM 13352T was 55.8 and between strain G10 and A. ruminicola JCM 13352T were 

43.3%, respectively. 

The mean value of DNA-DNA hybridization between Am4 and G10 from both digital and 

wet-lab were 68.6 and 69.9%, respectively, which were lower than the threshold value of the 70% 

DNA-DNA similarity cut-off (Wayne et al., 1987). Additional genome-based comparison between 

strain Am4 and G10 is shown in Table S1. 

Multilocus sequence analysis (MLSA) with ten housekeeping genes: atpA (ATP synthase 

F1, alpha subunit), atpD (ATP synthase beta chain), gltA (citrate synthase (si)), gyrA (DNA gyrase, 

subunit A), metG (methionyl-tRNA synthetase), pheS (phenylalanyl-tRNA synthetase alpha 

chain), pgi (glucose-6-phosphate isomerase), rpoA (DNA-directed RNA polymerase alpha 

subunit), rpoB (DNA-directed RNA polymerase beta subunit), and soda (superoxide dismutase 

(Mn)) were also compared between strain Am4 and G10. Eight of the genes had only 1% difference 

between the two strains using BLASTN analysis (Table S2). However, metG and pheS had 3 and 

4% differences, respectively (Table S2). MLSA-based phylogenetic trees of metG (A) and pheS (B) 

genes revealed the relationship between strain Am4 and G10 and 17 other Actinomyces species in 

Fig. S1. All these genomes-based comparisons reveal that strain Am4 and G10 are different. 

However, additional chemotaxonomical, biochemical and physiological analysis were performed. 

The DNA base composition (G + C content) of strain Am4 and G10 was analyzed by 

HPLC (Tamaoka and Komagata, 1984) at the Identification Service of the DSMZ (Braunschweig, 

Germany). Strain Am4 and G10 were grown in modified BM with 20 mM glucose and extra yeast 

extract (5 g l−1) at 37 °C for 48 h. The cell biomass was harvested by centrifugation at 4 °C at 

15,317 × g for 10 min. The DNA G + C content of strain Am4 was 69.8 and 68.5% for strain G10. 

The %G + C content of the strain Am4 and G10 obtained from genome calculation (JSpecies tool) 
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was 68 and 66.88%, respectively. These values are in line (55–71%) with that of known species 

within the genus Actinomyces. 

Fatty acid and quinone composition of the cell wall of strain Am4 and strain G10 were also 

carried out at the DSMZ. The cultures and the cell biomass were obtained as described above for 

the G + C content analysis. The fatty acid composition of the closest relative, Actinomyces 

ruminicola JCM 13352T, was grown and analyzed in parallel with the two strains. The cellular fatty 

acids of strain Am4 were mainly composed of (>10% of the total) C16:0 FAME (40.06%), 

C18:1 CIS9 FAME (31.20%) and C18:1 CIS9 DMA (8.49%), and those of strain G10 were C16:0 FAME 

(38.02%), C18:1 CIS9 FAME (33.53%), and C18:1 CIS9 DMA (6.99%), and were different from the 

fatty acids composition of Actinomyces ruminicola JCM 13352T (Table S3). The respiratory 

quinones of strain Am4 and strain G10 were mainly unsaturated tetrahydrogenated menaquinones 

(MK-10(H4)) 82% for Am4 and 91% for G10 and small amounts of MK-10(H8), MK-10(H6) for 

both strains, but only MK-9(H4) was found in strain Am4. Actinomyces ruminicola JCM 

13352T contained only MK-10 (70%) and MK-9 (30%) as shown in Table S4. These characteristics 

of the strains Am4 and G10 are similar to the principal respiratory quinones of other species in 

genus Actinomyces, that have menaquinones with eight, nine, ten or eleven isoprene units (MK-8, 

MK-9, MK-10, and MK-11), tetrahydrogenated menaquinones with nine [MK-9(H4)] or ten [MK-

10(H4)] isoprene units (Schaal and Yassin, 2012). The quinones of A. ruminicola JCM 13352T were 

quite different between strain Am4 and G10, however, inconsistant quinones systems from 

four Actinomycetes (A. viscosus, A. israelii, A. bowdenii and A. ruminicola) were reported (Hijazin 

et al., 2012). The first three strains contained dominantly MK-10(H4) whereas A. 

ruminicola contained MK-10 and MK-9 (7:3) (Hijazin et al., 2012). Moreover, Hijazin and co-

workers also reported the different major quinone was found in the same species of A. bovis (Hijazin 

et al., 2012). A. bovis DSM 43014T contained mainly MK-9 quinone, which was different from the 
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previous report of Hess et al., that the major quinone of A. bovis CCUG 1430 was MK-10 (Hijazin 

et al., 2012; Hess et al., 1979).  

MALDI-TOF-MS is a rapid and simple method used to identify bacteria mainly of clinical 

importance (Schumann and Maier, 2014; Biswas and Rolain, 2013). Recently, the method was 

successfully applied to identify oral Actinomyces species cultivated from subgingival biofilm as 

well (Stingu et al., 2015). Therefore, protein patterns of strain Am4 and G10 were analyzed using 

MALDI-TOF-MS, to further study the similarities between the two strains. In parallel, related type 

strains Actinomyces ruminicola JCM 13352T, A. oricola CCUG 46090T, A. massisliensis CCUG 

53522T, and A. dentalis CCUG 48064T (all obtained from DSMZ, Braunschweig, Germany) were 

included. Biomass for the MALDI-TOF analysis of all strains was grown in BM with 1 g l−1 yeast 

extract and 20 mM glucose at 37 °C for 48 h. The cultures were harvested by centrifugation at 

13,000 × g for 2 min and the pellets were washed with PBS buffer and dissolved in 300 μl sterile 

de-ionized H2O before adding 900 μl of absolute ethanol to precipitate the proteins. The mixture 

was centrifuged at 13,000 × g for 2 min and the supernatant was discarded. Thirty microlitre of 

formic acid (70% v/v) was added to the pellet and thoroughly mixed by pipetting before addition of 

30 μl of acetonitrile to the mixture. The mixture was centrifuged at 13,000 × g for 2 min and the 

supernatant was analyzed as previous described (Ferreira et al., 2011) using a Microflex LT 

instrument (Bruker Daltonics GmbH, Leipzig, Germany) with FlexControl software (version 3.0) as 

described in (Ferreira et al., 2011). The raw spectra obtained for each isolate were imported into 

BioTyper software-version 3.0 (Bruker Daltonics GmbH, Leipzig, Germany, database version 

3.3.1.0) and analyzed by standard pattern matching with default settings. High quality spectra were 

obtained for all Actinomyces species tested. The normalized spectra were different for A. 

ruminicola JCM 13352T, Am4 and G10 isolates (Fig. S2) indicating that Am4 and G10 are different 

from other Actinomycesspecies. While A. ruminicola JCM 13352T and strain G10 showed well 

defined spectra with over 40 peaks in m/z ratios from 3,000 to 15,000, strain Am4 had a very simple 
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spectrum with a dominant peak at m/z ratio 4,093. Each MALDI-TOF MS spectrum obtained was 

matched against all spectra of the analyzed set and a matrix of matching scores was calculated. 

Dendrograms were calculated using the Biotyper MSP dendrogram creation standard method using 

the MALDI Biotyper 3.0 software (Fig. 2). The spectra comparison placed Am4 and G10 in a 

separate branch along with A. ruminicola JCM 13352T.  

All rumen Actinomyces species separated well from mainly oral Actinomycetes and the 

comparison indicated that Am4 and G10 isolates differ significantly from A. ruminicola JCM 

13352T. A distance level over 250 was observed between strains Am4 and G10. For the delineation 

of species using MALDI-TOF-MS, a distance level 500 is arbitrary set as a distance limit for the 

secure species identification (Saucer et al., 2008). For closely related species however, lower 

distance limits have been observed (Christensen et al., 2012). In a recent paper (Vanikova et al., 

2015), distance levels as low as 50 were observed between closely related Microbacterium spp. 

belonging to the Actinomycetales order. The MALDI-TOF-MS analyzes indicate that Am4 and G10 

are different species. 

        

Fig. 2. Relationship between strain Am4, strain G10, and related Actinomyces sp. in a dendrogram 

of similarity (A) and MALDI-TOF MS spectra (B).  

 

Both strains grew well on 1.5% RCM agar medium and colonies of both strains were round, 

with smooth margins, and convex with ivory color and reached a size of 0.1–0.2 mm after 3 days. 

http://www.sciencedirect.com/science/article/pii/S072320201630073X#fig0010
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Am4 and G10 cells were non-motile, pleomorphic, branched, with swollen ends, and commonly 

present as rods with size of 0.2–0.5 μm by 0.9–2.8 μm (Am4) and 0.4–0.6 μm by 1.5–7 μm (G10) 

(Fig. 3). Gram staining was examined using standard methods (Plugge et al., 2005). Spore formation 

was determined with Schaeffer and Fulton Spore Stain Kit (04551) following the manufacturer's 

instructions (Sigma–Aldrich Chemie GmbH, St. Louis, MS). Both strains were Gram positive, non-

spore-forming bacteria and catalase, oxidase, and acid-fast negative. 

                

Fig. 3. Micrograph of Actinomyces strain Am4 (A) and Actinomyces strain G10 (B) using phase-

contrast microscopy. Cells were grown for 24 h. in BMY with 20 mM glucose. Bar represents 2 µm.  

 

The optimum conditions for growth of strain Am4 and G10 were determined using turbidity 

measurements for 4 weeks. The optimum pH was tested in Wilkins-Chalgren Broth (Oxoid) and the 

pH values of the medium were adjusted with NaOH and/or HCl. Duplicate bottles were used and 

incubated at 37 °C at a pH range of 4.0–12.0 at intervals of 0.5. The optimum temperature was 

determined in BMY containing 20 mM of glucose at temperature range of 4–65 °C at intervals of 

5 °C, including 37 °C. Strain Am4 and strain G10 could grow between pH 5.5 and 8.5, with an 

optimum at 7.5. Both strains could grow between 25 and 45 °C but their optimal temperature was 

different 30 °C (G10) and 37 °C (Am4). 

Yeast extract (0.1 g), L-cysteine (0.5 g), hemin (5 mg), vitamin K1 (0.1 ml) per liter were 

separately tested as a growth factor for strains Am4 and G10 in BM with 20 mM glucose at 37 °C 

(A) (B) 
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for 14 days in duplicated bottles. Both strain Am4 and G10 could grow without L-cysteine, hemin 

and vitamin K1 but not without yeast extract.  

The generation time of the strains when grown in BMY with 20 mM glucose at 37 °C and 

pH 7.2 was 5.3 h for Am4 and 7.0 h for G10.  

Fermentation products and carbon balances were determined for both strains growing on BMY with 

20 mM glucose.  

The glucose fermentation stoichiometry of strain Am4 was: 

1 glucose + 0.7 CO2 → 0.7 succinate + 0.7 lactate+0.3 acetate+0.2 formate.  

For strain G10 the stoichiometry was:  

1 glucose + 0.7 CO2 → 0.7 succinate + 0.7 lactate + 0.2 acetate + 0.2 formate.   

No H2 gas was detected. The redox balance was used to calculate the CO2. The calculated 

carbon recoveries, without biomass, were 85% and 82% for strain Am4 and strain G10, respectively. 

Oxygen-tolerance of strain Am4, G10 and Actinomyces ruminicola JCM 13352T was determined by 

growing them in BMY with 20 mM glucose without reducing agent. Sterile oxygen was injected in 

the head space to provide 20% of oxygen. Two percent of each active inoculum was added and 

incubated at 37 °C. Growth was monitored using turbidity (OD600) measurements. All three strains 

grew well in the medium, indicating that Am4, G10, and Actinomyces ruminicola JCM 13352T can 

be termed oxygen-tolerant, as they could grow with ≥5% oxygen as described by Tally et al. (Tally 

et al., 1975). 

As strain G10 was described to be glycerol tolerant (Vandžurová et al., 2013), this 

characteristic was tested for both strains and Actinomyces ruminicola JCM 13352T. All strains were 

grown in BMY with 20 mM glucose at 37 °C for 30 days in the presence of various concentrations 
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of glycerol (0, 5, 7.5, 12.5, 25 and 50 (% w/v)) and triplicate bottles were tested. Growth was 

measured by increase in turbidity at 600 nm. Actinomyces ruminicola JCM 13352T could grow in 

the presence of up to 12.5% glycerol. Strain Am4 and G10 could grow in the presence of glycerol 

up to 25%, but not at 50%. Strain G10 could grow in the presence up to 25% glycerol after 14 days 

and was slower than strain Am4 (growth was observed within 7 days). Only succinate and lactate 

were formed when glycerol was present. Glycerol tolerance was recently reviewed by 

Sharma (Sharma, 2014), describing that Actinomycetes have the capability to live in oily 

environments, typical high in glycerol. This feature is an advantage when using these two strains to 

produce organic acids at high glycerol concentrations. 

Physiological and biochemical characteristics of strain Am4 and G10 were determined and 

compared with closely related Actinomyces: A. ruminicola JCM 13352T, A. oricola CCUG 

46090T, A. massisliensis CCUG 53522T and A. dentalis CCUG 48064T. All cultures were grown in 

BMY with 20 mM glucose at 37 °C for 24 h before testing with commercial API identification (test 

kits) systems (bioMérieux, France). Carbon assimilation and acid production from different 

carbohydrates were examined using API 50 CHB and API 20A kits. Enzyme activities were assayed 

using API ZYM and API Rapid ID 32A kits. All tests were performed in duplicate following the 

manufacturer's instruction. Selected results that differentiate the strains are shown in Table 1. 

Additionally, D-arabinose, D-arabitol, cellobiose, D-glucose, D-mannose, D-mannitol, 2-methyl 

glucopyranoside, potassium gluconate, D-ribose, D-sorbitol, sodium pyruvate, amylopectin, 

cellulose, inulin, pectin, soluble starch and xylan were tested under growing conditions in liquid 

cultures with BMY medium to confirm the results from API test kits. 

 

 

 

http://www.sciencedirect.com/science/article/pii/S072320201630073X#tbl0005
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Table 1. Selected characteristics that differentiate strain Am4 and strain G10 from Actinomyces 

ruminicola JCM 13352T, A. oricola CCUG 46090T, A. massiliensis CCUG 53522T and A. dentalis CCUG 

48064T 

 

 

All data were obtained in this study except †) taken from; a, (Vandzurová et al., 2013); b, (An et al., 2006); c, (Hall et al., 2003);  

d, (Renvoise et al., 2009); e, (Hall et al., 2005).  

 +, positive; –, negative; W+, weakly positive; ND, not determined; NR, not reported 

#) S, Succinate; L, Lactate; A, Acetate; F, Formate (small letter indicates minor amount)  

Characteristic 
Strain 

Am4 
Strain G10 

A. 

ruminicola 
A. oricola A. massiliensis A. dentalis 

Origin  
Cow 

rumen 

Sheep 

rumena† 

Cattle 

rumenb† 

Human 

teethc† 
Human bloodd† 

Human 

dental 

abscesse† 

Gram reaction + +a† +b† +c† +d† +e† 

Cell size (µm) 
0.2-0.5 x 

0.9-2.8 

0.4-0.6 x 

1.5-7.0 

 0.5-1.0 x 

2.5-4.0 b† 
NR 

0.35-0.74 x 0.5-

1.7d† 
NR 

Temperature range/ 

Optimum (oC) 
25-45/37 25-45/30 20-55/46b† NR 25-50/37d† NR 

pH range/ Optimum 5.5-8.5/7.5 5.5-8.5/7.5 
 6.5-9.0/8.0-

8.5b† 
NR/NR NR/NR NR/NR 

G+C content (%) 69.8 68.5 68.06 b† NR NR 62e† 

Fermentation products from 

glucose#) 
S, L, a, f S, L, f, a S, l, a, f s, L, f, s, L, a, f L 

Nitrate reduction + - + + + - 

Urease - - + - - - 

Growth in present of 25% 

glycerol 
+ W+ - ND ND ND 

Assimilation of substrates: 

Myo-Inositol + - + ND ND ND 

 D-Mannitol  + W+ - - + - 

 Methyl-ßD- 

 xylopyranoside 
- + + - - - 

 Methyl-αD-  

 glucopyranoside 
- + + ND ND ND 

 Potassium gluconate + - - - - - 

 Potassium 5- 

 ketogluconate 
+ - - - + - 

 D-Raffinose + + + - + + 

 D-Sorbitol  + W+ - - + - 

Enzyme activities: 

Esterase (C4) - - + + + - 

Esterase lipase (C8) - - + + + - 

Lipase (C14) - - + + - - 

Valine arylamidase - - + + - - 

ß-Galactosidase + + + - + + 

α-Glucosidase - + - + + + 

 ß-Glucuronidase + + W+ - - - 
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Strain G10 and strain Am4 converted a wide range of substrates including starch waste, 

obtained from a potato factory (Aviko-Rixona, Warffum, Groningen, the Netherlands), to mainly 

succinate and lactate and small amounts of acetate and formate. Both strains could grow on 

20 mM D-arabinose, 20 mM D-arabitol, 20 mM myo-inositol, 20 mM D-mannitol, 20 mM D-

sorbitol, and 20 mM D-ribose as well as amylopectin, soluble starch, pectin, inulin, and xylan. The 

organic acids produced differed depending on the substrates (Table S5) Strain Am4 could use 

potassium gluconate but could not use methyl-α-D-glucopyranoside, whereas the strain G10 could 

utilize methyl-α-D-glucopyranoside, but not potassium gluconate. 

Based on the biochemical, physiological, chemotaxonomic, and phylogenetic characteristics 

(Table 1 and Table S1), strain Am4 and G10 can be distinguished from each other and other 

members of the genus Actinomyces. We propose strain Am4 and G10 as novel species in the 

genus Actinomyces, family Actinomycetaceae and order Actinomycetales and the 

name Actinomyces succiniciruminis and Actinomyces glycerinitolerans are proposed, respectively. 

 

Description of Actinomyces succiniciruminis sp. nov. 

Actinomyces succiniciruminis [suc.ci.ni.ci.ru’mi.nis. N.L. n. acidum succinicum, succinic 

acid; L. gen. n. ruminis, of the rumen; N.L. n. succiniciruminis originating from the rumen and 

producing succinic acid]. 

Cells are 0.2–0.5 μm in diameter and 0.9–2.8 μm long with pleomorphic forms: rod, branch, or 

irregularly shaped with sometimes showing swollen ends (Fig. 3A). Colonies on RCM agar medium are 

white, circular, smooth, and have convex margins with 0.1–0.2 mm in diameter after 72 h of growth. 

The strain is Gram positive, non-motile, non-spore-forming and catalase and oxidase negative. Strain 

Am4 can grow between 25–45 °C (optimum at 37 °C) and pH 5.5–8.5 (optimum at 7.5). The generation 

time of this strain when grown in BMY at 37 °C and pH 7.2 is 5.3 h. The strain requires yeast extract 

http://www.sciencedirect.com/science/article/pii/S072320201630073X#tbl0005
http://www.sciencedirect.com/science/article/pii/S072320201630073X#fig0015
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(0.1 g l−1) for growth. Strain Am4 is an oxygen-tolerant anaerobic bacterium, which can grow in the 

presence of oxygen up to 20%. 

Strain Am4 produced organic acids from amylopectin, D-arabinose, D-arabitol, D-

cellobiose, D-glucose, myo-inositol, inulin, D-mannitol, D-mannose, pectin, potassium gluconate, D-

ribose, soluble starch, D-sorbitol, and xylan but could not use crystal cellulose, methyl-αD-

glucopyranoside, sodium acetate and sodium pyruvate as substrates in anaerobic bottles (Table S5). 

Moreover, in the API 50 CHB test kit, it could also use N-acetyl glucosamine, amygdalin, L-

arabinose, arbutin, D-fructose, esculin, D-galactose, gentiobiose, glycogen, D-lactose, D-lyxose, D-

melibiose, D-maltose, D-melezitose, potassium 5-ketogluconate, D-raffinose, L-rhamnose, D-

saccharose, salicin, D-tagatose, D-treharose, D-turanose, xylitol, and D-xylose (Table S6). The 

esculin hydrolysis and nitrate reductase tests were positive. Enzyme activities in the API ZYM tests, 

strain (Am4) tested positive for β-glucosidase and leucine arylamidase and weak positive for, β-

galactosidase, β-glucuronidase, and napthol-AS-BI-phosphohydrolase (Table S7). The DNA G + C 

of the type strain is 69.8 mol%. 

The type strain, Am4T (=TISTR 2317T = DSM = 10376T) was isolated from the rumen of a 

Holstein-Friesian cow in the Netherlands. 

 

Description of Actinomyces glycerinitolerans sp. nov. 

Actinomyces glycerinitolerans [gly.cer.in.i.to’le.rans. N.L. n. glycerinum, glycerol; L. part. 

adj. tolerans, enduring, tolerating; N.L. part. adj. glycerinitolerans glycerol tolerating]. 

Cells are 0.4–0.6 μm in diameter and 1.5–7 μm long with pleomorphic forms: rod, branch, 

irregularly shaped with sometimes swollen ends (Fig. 3B). Colonies on RCM agar medium are 

white, circular, smooth, and have convex margins with 0.1–0.2 mm in diameter after 72 h of growth. 

http://www.sciencedirect.com/science/article/pii/S072320201630073X#fig0015
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The strain is Gram positive, non-motile, non-spore-forming and catalase and oxidase negative. 

Strain G10 can grow between 25–45 °C (optimum at 30 °C), and pH 5.5–8.5 (optimum at 7.5). The 

generation time of this strain when grown in BMY at 37 °C and pH 7.2 was 7.0 h. The strain requires 

yeast extract (0.1 g l−1) for growth. Strain G10 is an oxygen-tolerant anaerobic bacterium, which can 

grow in the presence of oxygen up to 20%. 

Strain G10 could produce organic acids from amylopectin, D-arabinose, D-arabitol, D-

cellobiose, D-glucose, inulin, D-mannose, methyl-αD-glucopyranoside, D-mannitol, pectin, D-

ribose, soluble starch, D-sorbitol, and xylan but could not use crystal cellulose, myo-inositol, 

potassium gluconate, sodium acetate and sodium pyruvate as substrates in anaerobic bottles (Table 

S5). Moreover, it could also utilize amygdalin, L-arabinose, arbutin, D-fructose, esculin, D-

galactose, gentiobiose, glycogen, D-lactose, D-lyxose, D-melibiose, D-maltose, D-melezitose, 

methyl-βD-xylopyranoside, D-raffinose, L-rhamnose, D-saccharose, salicin, D-tagatose, D-

treharose, D-turanose, xylitol, and D-xylose in the API 50 CHB test kit (Table S6). The result of 

esculin hydrolysis was positive, but nitrate reductase was negative. Enzyme activities from API 

ZYM tests, the strain (G10) tested positive for β-galactosidase, α-glucosidase, β-glucosidase, β-

glucuronidase, leucine arylamidase, and napthol-AS-BI-phosphohydrolase, (Table S7). The DNA 

G + C of the type strain is 68.5 mol%. 

The type strain, G10T (=TISTR 2318T = DSM = 10377T) was isolated from the rumen of 

sheep (Slovenské merino breed) in Slovak Republic (Vandžurová et al., 2013). 

Strain Am4 was isolated from Holstein cow rumen at Carus houses; part of Department of 

Animal Sciences and Agro technology and Food Sciences Group, Wageningen University, the 

Netherlands, whereas the strain G10 was isolated from sheep (Slovenskè merino breed) rumen 

fluid (Vandžurová et al., 2013). Interestingly, both of them produce succinate from starch waste and 

can hydrolyze many complex substrates such as inulin, pectin, xylan, and starch. Succinic acid is 
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one of the important organic acids used as a building block in the chemical industry that can generate 

standard substances such as butanediol, tetrahydrofuran, and g-butyrolactone as well as 

biodegradable aliphatic polyester bionolle (Saucer et al., 2008). Moreover, these novel strains are 

rather robust as they tolerate up to 20% of O2 and high level of glycerol (up to 25% w/v). For that 

reason, stain Am4 and strain G10 are potential candidates in biotechnological process that convert 

waste to product such as succinic acid, which in the future partially can replace the use of fossil 

fuels. 
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Supplementary data 

Table S1: Characteristic comparison between Actinomyces strain Am4 and G10 (data from genomes in bold) 

 

 

Characteristics Actinomyces strain 

Am4 

Actinomyces strain 

G10 

Origin Cow Sheep 

Country The Netherlands Slovakia 

Cell size 0.2–0.5 by 0.9–2.8 µm 0.4–0.6 by 1.5–7 µm 

G+C content (DSMZ) 69.8% 68.5% 

G+C content (JSpecies) 68% 67% 

DDH (wet-lab: DSMZ) 69.9% 

dDDH (GGDC 2.1) (GLM-based) 68.6% (65.6 and reciprocal 71.4) 

Genome size (bp.) 3,336,700 3,695,248 

(%genome coverage) 99.9% 100% 

Genome function analysis; genes present 

in one genome but not in the other 
46 63 

Ortho ANI (OAT version 0.93) 96.4% 

average ANIb with TETRA (JSpecies) 96.26% (96.19-96.32) with Tetra 0.99892 

average ANIm (JSpecies) 96.6 (96.6-96.6) 

average gANI (Threshold; 96.5%) 92.9% (89.7, 96.9) 

AAI (Two-way; Kostas lab) 95.8% (SD: 8.99%), from 2249 proteins 

Presence of quinone  MK-9(H4) - 

Quinone cofactors + - 

The CRISPR/Cas system  

(CRISPR-Cas1, Cas2 and Cas3) 
- + 

Phages, Prophages + - 

MALDI-TOF analysis of protein profiles  Simple pattern Complex pattern 

Distance level from MALDI-TOF MS  >250  

Optimal temperature (range) 37oC (25–45oC) 30oC (25-45oC) 

Nitrate reductase (nitrate to nitrite) + - 

Nitrate reductase cluster genes 

(NarG, NarH, NarJ, and NarI) 
+ - 

Arylsulfatase and sialidase genes - + 

Growth in presence of 25% glycerol + Weak 

Myo-Inositol fermentation + - 

Inositol catabolism genes + - 

Methyl-αD-glucopyranoside fermentation  - + 

Methyl-ßD-xylopyranoside fermentation - + 

Potassium gluconate fermentation + - 

Potassium 5- ketogluconate fermentation + - 

α-Glucosidase - + 

 

+, positive; –, negative 

 

 

 



Chapter 3 
 

 

90 

 

Table S2.  Blastn and blastp of 10 housekeeping genes from Actinomyces strain Am4 and G10  

(Genes that differed between Am4 and G10 in Bold) 
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Table S3.  Cellular fatty acid composition of strain Am4, strain G10 and Actinomyces ruminicola JCM 

13352T. Values are percentages of total fatty acids. Fatty acids present at less than 0.5% in all strains are not 

shown. Major fatty acids (>5%) are in bold. FAME, fatty acid methyl ester; DMA, dimethyl acetal; ALDE, 

aldehyde 

Cellular fatty acids (%) Strain Am4 Strain G10 A. ruminicola 

Saturated acids       

 C10:0 FAME 1.28 2.89 1.93 

 C12:0 FAME 3.32 4.79 6.71 

 C14:0 FAME 3.35 4.43 3.45 

 C16:0 FAME 40.06 38.02 34.6 

 C16:0 DMA 0.59 0.61 0.79 

 C18:0 FAME 1.7 1.27 1.6 

 C18:0 DMA 0.58 0.45 0.62 

Unsaturated acids    

 C16 :1CIS 7 FAME  3.02 3.68 3.78 

 C18 :1CIS 9 FAME 31.2 33.53 37.97 

 C18 :1CIS 9 DMA 8.49 6.99 6.3 

 C19 CYC 9,10/:1 FAME 1.82 0.48 - 

 C19 CYC 9,10/ DMA 0.92 0.29 - 

Summed feature*    

 7 2.12 1.63 1.57 

  

*Summed feature refers to chromatographic peaks of fatty acids groups that were not separated. Summed feature  

   7 contained C17 :2 FAME@16.760/C17:1 CIS 8 FAME 

 

Table S4.  Respiratory quinones of strain Am4, strain G10, and Actinomyces ruminicola JCM 13352T 

Strain 
Respiratory quinones (%) 

MK-9 MK-10 MK-9(H4) MK-10(H4) MK-10(H6) MK-10(H8) 

Strain Am4  

Strain G10 

A. ruminicola 

- 

- 

70* 

- 

- 

30* 

6 

- 

- 

82 

91 

- 

2 

2 

- 

2 

4 

- 
 

*Data obtained from An et al., 2006 
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Table S5. Organic acid production of strain Am4, strain G10 and Actinomyces ruminicola JCM 13352T 

from different substrates. 

 

Characteristic / Strain Strain Am4 Strain G10 A. ruminicola 

Amylopectin S, l, a, f S, l, a, f ND 

D-Arabinose S, a, f S, l, a, f ND 

D-Arabitol S, l, a, f S, l, a, f A 

D-Cellubiose S, L, A, f S, l, a, f ND 

Cellulose - - ND 

D-Glucose S, L, a, f S, L, a, f S, l, a, f 

Myo-inositol S, a, f - S, a 

Inulin s, l, a, f S, L, a, f  S, l, a, f 

D-Mannitol S, l, a, f s, a S, a, l 

D-Mannose S, L, a, f S, L, a, f ND 

Methyl-αD-

glucopyranoside - s, l, a S 

Pectin s, a, f s, a, f ND 

Potassium gluconate s, a, f - S 

D-Ribose S, a, f S, a, f ND 

Sodium Acetate - - ND 

Sodium pyruvate - - - 

D-Sorbitol S, l, a, f s, a ND 

Soluble starch S, l, a, f S, l, a, f ND 

Starch waste  S, l, a, f S, l, a, f ND 

Xylan S, a, f S, A, f ND 

    

 

All data were obtained in this study in duplication 

+, positive; –, negative; W+, weakly positive; ND, not determined  

S; Succinate, L; Lactate, A; Acetate, F; Formate (small letter indicates minor amount of product) 
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Table S6. Characteristics of strain Am4, strain G10, and related strains in the genus Actinomyces:  A. 

ruminicola JCM 13352T, A. oricola CCUG 46090T, A. massiliensis CCUG 53522T and A. dentalis CCUG 

48064T 

 

Characteristic / Strain Strain Am4 Strain G10 A. ruminicola A. oricola A. massiliensis A. dentalis 

   Catalase - -a -b -c -d -e 

   Nitrate reduction + - + - + - 

   Esculin hydrolysis + + + + + + 

   Starch hydrolysis + + + - + - 

   Urease - - + - + - 

Assimilation of substrates:  
      

   D-Arabinose  - - - - W+ - 

   L-Arabinose  + + + -  W+  - 

   D-Arabitol  + + + - W+ - 

   Amygdalin  + + + + - + 

   Arbutin + + + + - + 

   D-Cellobiose  + + + + + + 

   D-Fructose  + + + + + + 

   D-Galactose + + + + + + 

   D-Glucose  + + + + + + 

   Gentiobiose + + + + + + 

   Glycogen  + + + - W+ - 

   Inositol  + - + - + - 

   Inulin + + + - + - 

   D-Lactose  + + + - + - 

   D-Lyxose + + + - + - 

   D-Mannitol  + W+  - - + - 

   D-Mannose  + + + + W+ + 

   D-Maltose + + + - + + 

   D-Melibiose  + + + - + + 

   D-Melezitose  + + + - + - 

   Methyl-αD-glucopyranoside - + + - - W+ 

   Methyl-ßD-xylopyranoside - + + - - - 

   N-acetylglucosamine + W+ - - - - 

   Potassium gluconate + - - - - - 

   Potassium 5-ketogluconate + - - - + - 

   D-Raffinose  + + + - - + 

   L-Rhamnose  + + + - W+ W+ 

   D-Ribose + + + - + + 

   D-saccharose  + + + + + + 

   Salicin  + + + + + + 

   Sodium pyruvate - - - ND ND ND 

   D-Sorbitol  + W+ - - + - 

   D-Tagatose W+ W+ - - W+ - 

   D-Treharose + + + + + + 

   D-Turanose + + + + + + 

   Xylitol + + - - - - 

   D-Xylose  + + + - + - 
 

All data were obtained in this study in duplicate except the data were taken from: a (Vandžurová et al., 2013), b (An et al., 2006),  

c (Hall et al., 2003), d (Renvoise et al., 2009), e (Hall et al., 2005) 

+, positive, –; negative, W+; weakly positive, ND; not determined  
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Table S7. Overview of biochemical characteristics and enzyme activities of strain Am4, strain G10 and 

related type strains in the genus Actinomyces:  A. ruminicola JCM 13352T, A. oricola CCUG 46090T, A. 

massiliensis CCUG 53522T and A. dentalis CCUG 48064T 

 

Characteristic / Strain 
Strain 

Am4 

Strain 

G10 
A. ruminicola A. oricola A. massiliensis A. dentalis 

 

API ZYM: 

      

Esterase (C4) - - + + + - 

Esterase Lipase (C8) - - + + + - 

α-Galactosidase - - + + - + 

ß-Galactosidase + + + + + + 

α-Glucosidase - + - + + + 

ß-Glucosidase + + + + - + 

ß-Glucuronidase W+ + W+ - - - 

Lipase (C14) - - + + - - 

Leucine arylamidase + + + + + + 

Napthol-AS-BI-

phosphohydrolase 

W+ + + + + + 

Valine arylamidase - - + + - - 

       

Rapid API 32A: 
      

N-acetyl-ß-glucosaminidase - - - - - - 

α-Arabinosidase + + + - - + 

Arginine dihydrolase - - + + + - 

α-Galactosidase - - + + - + 

ß-Galactosidase + + + + + + 

ß-Glucosidase + + + + - + 

ß-Glucuronidase W+ + W+ - - - 

Histamine arylamidase - - - - - + 

Raffinose fermentation + + + - - + 

Indole production - - - - - - 
 

All data were performed in this study 

+, positive; –, negative; W+, weakly positive  
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Fig. S1. Neighbour-joining trees, based on metG gene sequences (A) and pheS gene sequences (B) showing 

the phylogeny of strain Am4, strain G10 and 17 other Actinomyces species. Bootstrap values, which were 

higher than 50% based on 1000 replications, are shown at the branching points. Bars indicate 2 and 5% 

sequence divergence for metG gene and pheS gene, respectively.   
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Fig. S2. Normalized MALDI-TOF-MS spectra of Actinomyces ruminicola JCM 13352T, strain Am4  

and strain G10. The m/z ratio of dominant peaks is shown. 
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Abstract 

 

Actinomyces succiniciruminis is a fast-growing fermentative succinate-producing bacterium 

that is tolerant to glycerol and oxygen. It can ferment a range of plant mono- and disaccharides, 

including starch. The optimization of succinate production from starch waste by A. succiniciruminis 

was studied in batch incubations in bottles and in bioreactors. Addition of phosphate and bicarbonate 

to the growth medium enhanced succinate production from starch waste. Oxygen, sulfate and nitrate 

did not affect the succinate yield. Nitrite had a negative effect on the succinate production. The 

succinate production was highest (118 mM) in batch reactors with 8% (w/v) dried starch waste in a 

mineral salt medium supplemented with 150 mM bicarbonate, 12 mM phosphate buffer, and 0.1 g 

l-1 yeast extract (as growth factor) and a headspace of 20% CO2:79% N2:1% O2. The succinate 

production yield was highest (4.52 mmol succinate/ gram STARCH) (60% Starch content in starch 

waste) in batch reactors with 4% (w/v) dried starch waste in a mineral salt medium supplemented 

with 150 mM bicarbonate, 30 mM phosphate buffer, and 0.1 g l-1 yeast extract (as growth factor) 

and a headspace of 20% CO2:79% N2:1% O2. 

The high succinate yields indicate that A. succiniciruminis is a promising candidate for 

succinate production from organic waste. 

Introduction 

Succinate (SA) and its deprotonated form succinate has a range of applications as an 

acidulant in food industries, a flavoring and antimicrobial agent, and a food supplement, as well as 

in the production of other products, including plastics, paints, inks, resins, coatings, and pigments 

(Pateraki et al., 2016; Salvachúa et al., 2016; Li et al., 2010; Cukalovic and Stevens 2008; Zeikus et 

al., 1999). Succinate is proposed as a bio-based C4 platform chemical for the replacement of 

petrochemical building blocks such as maleic anhydride, the intermediate compound to produce 
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many chemicals (Jang et al., 2012; Li et al., 2010). Succinate and its derivatives, such as adipic acid 

and 1,4 butanediol, can be used to produce biodegradable polymers, for example, polyamides and 

polyesters (Pateraki et al., 2016). Therefore, succinate is registered in the “Top 10” bio-based 

products from biorefinery carbohydrates and the “Top 12” building block chemicals of the US 

Department of Energy’s list (Bozell and Petersen, 2010; Meng et al., 2016).  

To date, succinate is produced chemically by the hydrogenation of maleic anhydride to form 

succinic anhydride, followed by hydration to succinate (Ventorino et al., 2017). However, succinate 

can also be produced by microbial fermentation, and this has advantages over chemical production 

since it can be produced by organic materials which are abundant and does not rely on fossil fuels. 

Moreover, the process of bio-based succinate fermentation consumes CO2 resulting in reduction of 

the greenhouse gas (Pateraki et al., 2016). In 2013–2014, the annual bio-based succinate production 

was around 38,000 t (about 49% of the total product market) and this is expected to reach 600,000 t 

by 2020 (Pateraki et al., 2016). At present, the market price for both bio-based and chemical (fossil)-

based succinate is around $2.5 per kg, and the bio-based succinate alone is approximately $2.94 per 

kg, which it is still higher than the ideal cost ($1 per kg) based on the requirement to produce 

commodity products by the chemical industry (Pateraki et al., 2016).   

Currently, succinate production in industrial fermentations mainly uses purified sugars or 

glucose syrup from corn as carbon sources (Pateraki et al., 2016). Turning agricultural by-products 

or organic waste (such as vegetable wastes or potato pulps) into valuable materials has been a 

particular focus of recent strategy developments (Dahiya et al., 2018). The use of by-products and 

waste does not interfere with food production and is environmentally friendly.  

Starch is the world’s second-most abundant sugar polymer, after cellulose. A large amount 

of starch waste or starch residues are available worldwide. Starch waste is used as animal feed or 

compost, but still much of it is discharged as waste (Suzuki et al., 2010). The amount of starch in 

raw materials is variable, depending on the source (maize, potato, tapioca, or sweet potato). 
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Typically, starch waste contains more than 70% dry weight starch (Rakshit, 2004). Starch is mainly 

composed of amylose and amylopectin with α-1-4 glycosidic linkages, which are easily hydrolyzed. 

This has an advantage over cellulose with ß-1-4 linkages, which are more difficult to break down 

(Rakshit, 2004). Therefore, starch waste is a suitable substrate for microbial fermentation to produce 

organic acids (Rakshit, 2004).  

Bio-based succinate is mostly produced in a monosaccharide-based biorefinery platform, 

using microorganisms such as Actinobacillus succinogenes, Anaerobiospirillum 

succiniciproducens, Mannheimia succiniciproducens, and a recombinant Escherichia coli strain 

(Bozell and Petersen, 2010; Li et al., 2010; Rakshit, 2004). Succinate production from cassava starch 

has been tested using metabolically-engineered Escherichia coli KJ122, but a biological pre-

treatment by adding hydrolytic enzyme was required (Khor et al., 2016). So far, succinate production 

from biomass-derived hydrolysates has not been established (Salvachúa et al., 2016). Some lactic 

acid bacteria can utilize starch through simultaneous saccharification by amylolytic enzymes 

(Rakshit, 2004). Microorganisms that have amylolytic activity are of interest in the carboxylate 

platform because they can directly convert carbohydrate materials to sugar and further fermentation 

to organic acids or volatile fatty acids without addition of enzymes. 

More research on succinate biorefinery technology is needed to improve bioconversion of 

carbohydrates (Bozell and Petersen, 2010). Actinomyces succiniciruminis strain Am4, isolated from 

the cow rumen, is an efficient succinate producer (Palakawong Na Ayudthaya et al., 2016). A. 

succiniciruminis produces succinate from a wide range of carbon sources, including poly- and di-

saccharides (cellobiose, saccharose, inulin, pectin, xylan, starch, starch waste, etc.) as well as 

monosaccharides. The fermentation products of this strain from glucose are succinate, lactate, 

formate and acetate (Palakawong Na Ayudthaya et al., 2016). A. succiniciruminis tolerates oxygen 

(up to 20%) and glycerol (up to 25% (w/v)) (Palakawong Na Ayudthaya et al., 2016). These 

characteristics are valuable in anaerobic fermentation systems. Based on the genome of the A. 
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succiniciruminis, succinate is produced via the reductive branch of the tricarboxylic acid cycle. 

Optimization of the dosing of chemicals and process parameters may increase succinate production 

rate and yield and/or production cost from starch waste fermentation (Palakawong Na Ayudthaya et 

al., 2017b).  In this research, we investigated the effect of various conditions on succinate production 

from starch waste by A. succiniciruminis.  

 

Material and methods 

Organism growth conditions 

Actinomyces succiniciruminis strain Am4 (DSM 10376T) was routinely batch-cultured with 

20 mM glucose in a bicarbonate-buffered anaerobic medium supplemented with 0.1 g l-1 yeast 

extract (BMY) without L-cysteine at 37oC (Plugge, 2005; Stams et al., 1993). BMY medium with 

20 mM glucose (G) (BMY-G) or 0.5% starch waste with a headspace of CO2:N2 of 20:80% at 37oC 

were used as the control condition for all glucose or starch waste experiments. The strain was 

routinely checked to confirm the purity by phase-contrast microscopy (Leica DM 2000; Wetzlar, 

Germany). The strain was kept active by weekly sub-culturing in BMY-G medium. For all 

experiments, a 24 h pre-culture grown on BMY-G was used as inoculum.  

 Either glucose (Sigma) or starch waste (STW), obtained from a potato factory (Aviko-

Rixona, Warffum, the Netherlands), was used as a substrate. The starch waste was air dried at 80oC 

for 32 hours, crushed to small pieces, and sieved with sieve with a pore size of 1 mm. The dried 

starch waste contained 61% (w/w) starch according the analysis of Nutricontrol (Veghel, The 

Netherlands) (Palakawong Na Ayudthaya et al., 2018). 
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Optimization of succinate production from glucose and/or potato starch waste  

 An active strain Acitomyces succiniciruminis was first tested in batch experiments 

(anaerobic-serum bottles) using glucose and/or starch waste as substrate with various conditions 

such as the headspace gas, bicarbonate, phosphate, nitrate and sulfate as shown in Table 1. Later, 

the result from the batch experiments was analyzed and applied in the reactor experiments (Table 

1).  

1. Batch experiments 

 The following parameters were tested in 120-mL serum bottles with 50-mL standard medium 

(BMY) and 67-mL (gas) headspace containing CO2:N2 of 20:80%. All experiments were conducted 

in triplicate in BMY medium and incubated under anaerobic conditions at 37oC, unless stated 

otherwise.  

1.1 With (20 mM) glucose as carbon source 

1.1.1)   Substrate concentration: 10, 15 and 30 mM glucose.  

1.1.2)   Initial organic acid concentration: 5 mM acetate, formate, lactate, and 10 mM  

            of lactate 

1.1.3)   Headspace composition: modified from CO2:N2 of 20:80% (control) 

1.1.3.1) CO2: 0% (N2 100%) 

1.1.3.2) O2: 1 and 5%  

      Reducing agent (Na2S) was omitted for the oxygen experiment. 

1.1.4)   Bicarbonate (NaHCO3): 0, 100 and 150 mM  

1.1.5)   Phosphate (KH2PO4/Na2HPO4): 30 and 50 mM 

1.1.6) Nitrate (NaNO3): 5 mM 

1.1.7) Nitrite (NaNO2): 5 mM 

1.1.8) Sulfate (Na2SO4): 5 mM (without addition of Na2S) 

1.2 With 0.5% w/v starch waste as carbon source 
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1.2.1) Substrate concentration 0.25, 1, 2, 3 and 4% (w/v) starch waste.  

1.2.2)   Headspace composition: reducing agent (Na2S) was omitted  

-  O2: 1, 5, and 10% (v/v) 

1.2.3)   Phosphate (KH2PO4/Na2HPO4): 12 mM 

1.2.4) Yeast extract: without yeast extract  

1.2.5) Nitrate (NaNO3): 10 mM  

1.2.6) Sulfate (Na2SO4): 10 mM (without addition of Na2S) 

1.2.7) Other compounds: 

1.2.7.1) Na-Aspartate: 0.6 mM 

1.2.7.2) Na-Glutamate: 10 mM 

1.2.7.3) Dithiothreitol (DTT): 1, 5 and 10 mM 

1.3 Type of substrate 

  0.5% (w/v) soluble starch (Sigma) and 2% (w/v) fresh starch waste (equal to  

             0.5% (w/v) dried starch waste) were tested on BMY medium. 

1.4 Medium composition: 

A. succiniciruminis was tested for its ability to grow on starch waste (dried and fresh) 

without mineral medium, vitamins and trace elements; only a buffering agent (50 mM NaHCO3) 

was supplemented to the starch waste slurries. 

 

Sampling 

  Two-mL liquid samples were aseptically collected and divided into two portions. One 

portion of 1 mL was transferred to an Eppendorf tube and stored at -20oC for organic acid 

measurement. The second portion of 1 mL was used to determine pH and bacterial growth.  
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2. Reactor experiments  

 Reactor experiments were performed on starch waste fermentation on BMY medium, unless 

stated otherwise, and incubated under the setting conditions at 37oC. 

Reactor set-up 

The fermentations were performed in a batch mode using DASbox® Mini Bioreactor System 

(Eppendorf, Germany) with an 0.5-liter working volume controlled by DASWare Control 4.0 and 

DASGIP Control 4.0 (Eppendorf, Germany). Temperature was controlled at 37°C. The pH was 

controlled at 7 or 7.5 by automatic titration with a sterile solution of 3 M potassium hydroxide and 

0.5 M sulfuric acid. The stirrer speed was set at 200 rpm to keep the starch waste homogeneous. The 

reactors were continuously sparged with 79:20:1 N2:CO2:O2 at a flow rate of 1 l.h-1. The reactors 

were operated for 5 or 8 days and daily samples were taken.  

 2.1 Substrate concentration 

4% and 8% (w/v) starch waste was used in modified BMY medium supplemented with 6 

mM KH2PO4, 6 mM Na2HPO4∙2 H2O, and 150 mM NaHCO3 to study the effect of substrate 

concentration. The reactor was operated at pH 7.5 for 8 days.  

2.2 Phosphate concentration 

4% (w/v) starch waste was used as the carbon source to investigate the effect of phosphate. 

12 and 30 mM phosphate was studied in the modified BMY medium supplemented with 150 mM 

of bicarbonate. The reactor was operated at pH 7.0 for 5 days. This experiment was performed in 

two runs as there was a second batch of starch waste used. Therefore, the runs with the new starch 

waste were done in duplicate reactors.  

Reactor sampling  

4-mL liquid samples were aseptically collected and stored at -20˚C for the organic acid 

measurement. 

 A summary of all experimental tests in this study is shown in Table 1. 
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Table 1. Schematic overview of experiments with Actinomyces succiniciruminis strain Am4T 

 

 

*STW: starch waste 

Substrate 
Experiment 

no. 
Tested conditions Medium 

Batch experiment: 

Glucose 1.1.1 Glucose concentration BMY 

20 mM      10, 15 and 30 mM  

(unless otherwise stated) 1.1.2 Initial organic acid concentration BMY 

 
      5 mM acetate  

 
      5 mM formate  

 
      5 and 10 mM lactate  

 1.1.3.1 Headspace BMY 

 
    CO2 0% (100% N2)  

 

 1.1.3.2 Initial O2 BMY without Na2S  

 
      1 and 5% (v/v)   

 1.1.4 Bicarbonate BMY 

       0, 100 and 150 mM NaHCO3   

 1.1.5 Initial phosphate  BMY 

 
      30 and 50 mM KH2PO4/Na2HPO4 

 

   Nitrate and Nitrite BMY 

 1.1.6     5 mM NaNO3 
 

1.1.7     5 mM NaNO2 
 

 1.1.8 Sulfate BMY without Na2S 

 
      5 mM Na2SO4 

 

Dried STW* 1.2.1 STW concentration BMY 

 0.5% (w/v)       0.25, 1, 2, 3 and 4% (w/v)  

(unless otherwise stated) 1.2.2 O2 BMY without Na2S 

 
      1, 5 and 10% (v/v)   

 1.2.3 Phosphate (4% STW) BMY 

 
      12 mM KH2PO4/Na2HPO4 

 

 1.2.4 Without yeast extract BM  

 
      no yeast extract  

 1.2.5 Nitrate and Nitrite BMY 

      10 mM NaNO3 
 

 1.2.6 Sulfate BMY without Na2S 

 
      10 mM of Na2SO4  

   Other compounds BMY 

 1.2.7.1      0.6 mM Na-aspartate       

 1.2.7.2      10 mM Na-glutamate  

 1.2.7.3      1, 5 and 10 mM Dithiotreitol (DTT)  

 1.3 Soluble starch versus dried STW   

       0.5% (w/v) soluble starch BMY 

 

      0.5% (w/v) dried STW 
50 mM NaHCO3 (no 

BMY) 

Fresh STW 1.4      2% (w/v) of fresh STW (= 0.5% dried STW) BMY 

         2% (w/v) of fresh STW (= 0.5% dried STW) 
50 mM NaHCO3 (no 

BMY) 

Reactor experiment: 

Dried STW 2.1 STW concentration 
modified BMY (12 

KH2PO4/Na2HPO4  
      4 and 8% (w/v) dried STW and 150 mM NaHCO3) 

 2.2 Phosphate (4% STW) 
modified BMY (150 
mM NaHCO3)  

        12 and 30 mM KH2PO4/Na2HPO4   
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Analytical methods 

Fermentation products were quantified by high-performance liquid chromatography 

(Thermo Scientific, Breda, The Netherlands), as previously described (Van Gelder et al., 2012). The 

bacterial growth was monitored using turbidity measurements (Optical density at 600 nm.: OD) 

using a spectrophotometer (Hitachi U-1500, Japan) and pH was measured using a pH meter (Proline 

b210, Netherlands) for the batch cultures. In the reactor, off-gas composition was automatically 

monitored every hour using a Compact GC (Interscience, Breda, The Netherlands), equipped with 

a Carboxen 1010 PLOT column and a Micro-thermal conductivity detector, using helium with 

pressure flow 80.0 kPa as a carrier gas to quantify H2 and CH4.  

 

Results 

Genome-based analysis 

 Using the genome of A. succiniciruminis (strain Am4) (Palakawong Na Ayudthaya et al., 

2017b) the metabolic pathways involved in succinate production and other organic acids were 

determined (Fig. 1). Compounds including phosphate, CO2 are involved in succinate production and 

may influence the succinate yield of the strain Am4. 

 

 

The effect of substrate concentration  

  

 

Different glucose concentrations (10, 15 and 30 mM) and starch waste concentrations (0.25, 

1 and 2%) were tested. A. succiniciruminis was able to grow on all substrate concentrations of both 

glucose and starch waste.  

Growth rates on 10, 15 and 30 mM glucose were similar (0.042, 0.051 and 0.045 h-1, 

respectively) compared with the 20-mM control (0.048 h-1), but optical densities were different (Fig. 

1a). Succinate production (10.7 mM) in the control (20 mM glucose) was slightly higher than in the 
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other incubations. The highest succinate yield (0.8 mol mol-1) was obtained with 10 mM glucose 

(Table 2). 

On starch waste, succinate increased when the % starch waste increased (0.25, 0.5 and 1%) 

(Table 3). After 10 days 1, 2, 3 and 4% starch waste produced a similar amount of succinate (Table 

3). The highest succinate yield (3.24 mmol succinate/ gram starch waste) was obtained when 0.25% 

starch waste was used, (Table 3). During fermentation, the pH had dropped to 5.0 with 4% starch 

waste at day 5 and 4.8 at day 10 (Figure 1c). 
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Fig. 1. Model for succinate production in A. succiniciruminis (Am4) 1: Beta/alpha-amylase (EC 3.2.1.1), 2: Glycogen 

phosphorylase (EC 2.4.1.1), 3: Oligo-1,6-glucosidase (3.2.1.10), 4:Glycogen debranching enzyme (EC 3.2.1.33, 

2.4.1.25), 5: UDP-galactopyranose mutase (EC 5.4.99.9), 6: Phosphoglucomutase (EC 5.4.2.2) and 

Phosphoglucomutase-3 (EC 5.4.2.2 or 5.4.2.10),7: GlcK:Glucokinase (EC 2.7.1.2), 8: PPgK: Polyphosphate 

glucokinase (EC 2.7.1.63), 9: ADP-specific phosphofructokinase/glucokinase (EC 2.7.1.147), 10: Hexokinase, 1-

phosphofructokinase, 11: Pgi: Glucose-6-phosphate isomerase  (EC 5.3.1.9), 12: PfK1: 6-phosphofructokinase (3) (EC 

2.7.1.11), 13: FBA1:Fructose-bisphosphate aldolase class I (EC 4.1.2.13), 14: FBA_A:Fructose-bisphosphate aldolase, 

archaeal class I (EC 4.1.2.13), 15: Glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), 16: PgK: 

Phosphoglycerate kinase (EC 2.7.2.3), 17: Phosphoglycerate mutase (EC 2.7.2.3), 18: EnO: Enolase (EC 4.2.1.11), 19: 

Phosphoenolpyruvate carboxykinase [GTP] (4.1.1.32), 20: Malate dehydrogenase (EC 1.1.1.37), 21: Fumarate hydratase 

class II, 22: Succinate dehydrogenase/fumarate reductase Fe-S protein, 23: Succinate dehydrogenase/fumarate reductase 

iron-sulfur subunit, 24: PpD: Pyruvate, phosphate dikinase (EC 2.7.9.1), 25: PyK: Pyruvate kinase (EC 

2.7.1.40:AAM4_2415), 26: LDH: L-lactate dehydrogenase EC 2.3.1.54 (EC 1.1.1.27), 27: Pyruvate dehydrogenase E1 

component (EC 1.2.4.1, 2.2.1.7), 28: PAT: Phosphate acetytransferase (EC 2.3.1.8), 29: ACK: Acetate kinase (EC 

2.7.2.1), 30: Formate acetyltransferase 1, 31: Formate acetyltransferase 2 (EC 2.3.1.54), 32: Pyruvate formate-lyase-

activating enzyme (EC 1.97.1.4), 33: Pyruvate formate-lyase 2-activating enzyme, 34: Anaerobic C4-dicarboxylate 

transporter DcuA. 
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                                        ATP 
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Dextrin 

1,3-Bisphospho-D-glycerate 
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5: AAM4_2065 
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 CO

2
 

D-Glycerate-2P 

NAD
+
 

         
NADH 

         ADP 

   
ATP 

         ATP 

  
 ADP 

26: AAM4_2157  

12: AAM4_1106, 2217 

 

7: AAM4_0425, 1109,  

8:AAM4_2015,  

9: AAM4_0628,  

10: AAM4_2571 

 

 

19: AAM4_2536 

3: AAM4_1092, 1104, 
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          Pi 
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     H2O 

22: AAM4_2690  

23:AAM4_0998 
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+
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18: AAM4_2820 

 

2: AAM4_1228 
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2: AAM4_1228 

 

 

30: AAM4_2493,  

31: AAM4_1226,  

32: AAM4_2491,  

33: AAM4_1224 

 

 

NAD(P) 

     
 NAD(P)H 

17: AAM4_2686 

28: AAM4_2750 

20: AAM4_1213 

6 : AAM4_1817, 0958 

 

 

34: AAM4_0343 

4: AAM4_1562 
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24: AAM4_1063,  

25: AAM4_2415 
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2
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Acetyl-CoA 
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Acetate 

Formate 
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ADP 

  
 

ATP 

11: AAM4_2355 

13: AAM4_1834, 0629, 2512, 0076, 

14: AAM_1977 

 

 
15: AAM4_1321, 2369 

Lactate 

29: AAM4_2751 

21: AAM4_1493 

Succinate Acetate 

Formate 
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The effect of added organic acids 

  

 Addition of acetate (5 mM), formate (5 mM), or lactate (5 or 10 mM) to the bottles prior to 

glucose fermentation showed no effect on succinate production compared with the control (20 mM 

glucose). The yields of succinate were not different from the control (Table 2). There was no effect 

on the pH and the growth performance.  

The effect of O2 or CO2   

 One of the features of A. succiniciruminis is that it is not sensitive to O2, and therefore, the 

media for its growth are easier and less costly to prepare. Therefore, the effect of different 

percentages of oxygen in the headspace (1 and 5%) on glucose and (1, 5 and 10%) on starch waste 

fermentation was investigated. No clear effect on succinate production was observed when the 

concentration of oxygen was 1%, both with glucose as well as with starch waste. Succinate yield 

decreased when O2 was higher (5 and 10%) for both carbon sources (Table 2 and 3).  

Omitting 20% carbon dioxide by supplying 100% N2 in the head space was tested to study 

its effect on succinate production from 20 mM glucose. The results showed small differences in 

succinate production and yield between the bottle with 0% CO2 and the 20% CO2 as control (Table 

2).   

The effect of added bicarbonate (NaHCO3)  

 The effect of bicarbonate on succinate production with 0, 50 (control), 100 and 150 mM was 

tested without bicarbonate the succinate yield was considerably lower (0.5 mol/mol) than when 

bicarbonate was added to the media. (Table 2). 

The effect of different concentrations of phosphate 

 Two concentrations of phosphate (30 and 50 mM) were tested with 20 mM glucose in BMY 

medium, compared to the control (6 mM of phosphate). An increased phosphate concentration had 

no effect on glucose conversion, but succinate production decreased when the phosphate 
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concentration increased (Table 2). However, the succinate yield decreased slightly. Therefore, 12 

mM of phosphate was further used in tests with 4% (w/v) starch waste. Succinate production slightly 

increased when the phosphate concentration increased from 6 to 12 mM for starch waste 

fermentation (Table 3). Yet, the succinate yield remained the same. 

Table 2. Succinate production from glucose by A. succiniciruminis under different conditions in batch 

cultures 

 

 

*) SA: succinate; AA: acetate; FA: formate; LA: lactate 

 

Experiment 

no. 
Tested conditions Medium 

Fermentation 

time (day) 

Succinate 

(mM) 

Succinate 

yield (mol 

mol-1 

glucose) 

SA:AA:FA:LA 

(mol/mol*) 

1.1.1     Control (BMY-G) 

BMY 

8 10.7 0.6 1:0.6:0.7:0.9 

     10 mM Glucose 8 6.9 0.8 1:0.6:0.6:0.7 

     15 mM Glucose 8 9.2 0.7 1:0.5:0.4:0.7 

     30 mM Glucose 8 10 0.6 1:0.4:0.4:0.8 

1.1.2     Control (No addition) 

BMY 

10 3.6 0.7 1:0.6:0.6:0.8 

     5 mM acetate 10 3.6 0.7 1:0.6:0.5:0.7 

     5 mM formate 10 3.9 0.7 1:0.6:0.5:0.8 

     5 mM lactate 10 3.4 0.7 1:0.7:0.5:0.9 

      10 mM lactate 10 3.4 0.8 1:0.7:0.5:0.9 

1.1.3.1     Control (N2/CO2 80:20% (v/v); BMY-G) 
BMY 

7 7.1 0.7 1:0.2:0.5:0.2 

     0% CO2 (v/v) (N2 100% (v/v)) 7 6.6 0.9 1:0.2:0.4:0.3 

1.1.3.2     Control (0% O2 (v/v))  
BMY 

without 
Na2S  

7 6.6 0.9 1:0.2:0.5:0.3 

     1% O2 (v/v)  7 6 1 1:0.3:0.6:0.0 

      5% O2 (v/v)  7 3.2 0.6 1:0.2:0.5:0.4 

1.1.4     Control (50 mM NaHCO3; BMY-G)  

BMY 

10 4.2 0.8 1:0.7:0.5:0.7 

     0 mM NaHCO3  10 2.1 0.5 1:0.7:0.5:2.1 

     100 mM NaHCO3  10 4.8 0.8 1:0.6:0.4:0.8 

     150 mM NaHCO3  10 4.6 0.8 1:0.6:0.4:0.8 

1.1.5    Control (6 mM KH2PO4/Na2HPO4; BMY-G) 

BMY 

7 6.6 0.9 1:0.2:0.5:0.3 

    30 mM KH2PO4/Na2HPO4 7 5.7 0.8 1:0.2:0.2:0.5 

     50mM KH2PO4/Na2HPO4 7 4.2 0.8 1:0.2:0.2:0.6 

     Control BMY-G) 

BMY 

7 6.6 0.9 1:0.2:0.5:0.3 

1.1.6    5 mM Na-nitrate 7 6.2 0.8 1:0.3:0.5:0.1 

1.1.7    5 mM Na-nitrite 7 0 0 0 

1.1.8    5 mM Na-sulfate 

BMY 

without 

Na2S  

7 6.8 1 1:0.1:0.5:0.2 
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The effect of nitrate, nitrite, or sulfate addition  

No effect on the succinate and other organic acid production in the fermentation with glucose 

was observed when 5 mM of sulfate or nitrate were added compared with the control (Table 2). 

Nitrite (5 mM) was detected when nitrate was added. No organic acid production, no growth, and 

no pH change were observed when 5 mM of nitrite was added. 

Table 3. Succinate production from starch waste by A. succiniciruminis under different conditions in batch 

cultures 

Experiment 

no. 
    Tested conditions*)****) 

Medium 

/substrate 

Succinate 

(mM) 

Succinate 

yield 

(mmol SA/ 

gram 

STW)**** 

Succinate yield 

(mmol SA/ gram 

STARCH) (60% 

Starch content in 

STW)**** 

SA:AA:FA:LA 

(mol/mol)**) 

1.2.1     Control (0.5% STW w/v) 

BMY 

15.7 3.14 5.23 1:0.8:0.8:0.0 

     0.25% STW (w/v) 8.1 3.24 5.4 1:0.8:0.7:0.0 

     1% STW (w/v) 18.7 1.87 3.12 1:0.8:0.8:0.3 

     2% STW (w/v) 17 0.85 1.42 1:0.9:0.8:0.6 

     3% STW (w/v) 18.2 0.61 1.01 1:0.9:0.8:0.8 

      4% STW (w/v) 18 0.45 0.75 1:1.0:0.7:0.9 

1.2.2     Control (0% O2 v/v; 0.5% STW w/v) 

BMY without 
Na2S  

16.9 3.38 5.63 1:0.8:0.8:0.0 

     1% O2 (v/v)  17.2 3.44 5.73 1:0.8:0.7:0.0 

     5% O2 (v/v)  13.8 2.76 4.6 1:1.0:0.9:0.0 

      10% O2 (v/v)  11.5 2.3 3.83 1:1.1:0.9:0.1 

1.2.3     Control (6 mM KH2PO4/Na2HPO4) 4% STW, 

BMY   

17.8 0.45 0.74 1:0.4:0.8:1.0 

      12 mM KH2PO4/Na2HPO4 18.7 0.47 0.78 1:0.4:0.8:0.9 

1.2.4     Control (0.1 g l-1 yeast extract) BMY 12.1 2.42 4.03 1:0.1:0.9:0.1 

     No yeast extract BM 13.4 2.68 4.47 1:0.2:0.9:0.1 

     Control (0.5% STW w/v) 
BMY 

16.6 3.32 5.53 1:0.8:0.8:0.0 

1.2.5    10 mM Na-nitrate 6 1.2 2 1:1.2:0.8:1.1 

1.2.6    10 mM Na-sulfate 
BMY without 

Na2S  
16.5 3.3 5.5 1:0.8:0.8:0.1 

    Control (0.5% STW w/v) 

BMY 

14.2 2.84 4.73 1:0.4:0.7:0 

1.2.7.1     0.6 mM Na-aspartate 12.9 2.58 4.3 1:0.4:0.7:0 

1.2.7.2     10 mM Na-glutamate 13.4 2.68 4.47 1:0.4:0.7:0 

1.2.7.3    Control (0.5% STW w/v) 

BMY 

15.4 3.08 5.13 1:0.3:0.9:0.1 

    1 mM Dithiotreitol (DTT) 15.8 3.16 5.27 1:0.3:0.8:0.1 

    5 mM Dithiotreitol (DTT) 16.3 3.26 5.43 1:0.3:0.7:0.1 

     10 mM Dithiotreitol (DTT) 16.8 3.36 5.6 1:0.2:0.7:0.1 

*) Batches were incubated for 10 days at 37oC 

**) SA: succinate; AA: acetate; FA: formate; LA: lactate 

***) Batches were incubated for 7 days at 37oC 

****) STW: starch waste  
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No effect on succinate and other organic acid production was observed when 10 mM of 

sulfate was added to the starch waste fermentation, but there was a negative effect on succinate 

production when 10 mM nitrate was added (Table 3). Further, succinate, acetate and formate 

concentrations were lower in the presence of 10 mM nitrate, whereas lactate production was higher 

than the control and nitrite was also detected (data not shown).  

The effect of other compounds 

Other compounds tested (aspartate, glutamate and dithiothreitol) had no significant effect on 

starch waste fermentation and succinate production. When yeast extract was omitted from the starch 

waste fermentation, succinate yield was not affected (Table 3). 

The effect of substrate type (soluble starch, dried and fresh starch waste) (Experiment no. 1.3 and 

1.4) 

Dried and fresh starch waste and soluble starch were used to investigate growth and succinate 

and organic acid production of A. succiniciruminis. The strain could grow and ferment both starch 

sources (Figs. 2a, 2b and 2d). Succinate and organic acids were highest with fresh starch waste 

compared to dried starch waste and soluble starch (Figs. 2a, 2b and 2d).  

A. succiniciruminis was also grown in fresh and dried starch waste without addition of 

mineral medium (BMY). Only 50 mM bicarbonate (NaHCO3) was added to a 0.5% w/v starch waste 

slurry (Figs. 2c and 2e). Here, succinate and organic acid production on fresh starch waste was 

higher than on the dried starch waste; the succinate yield was also higher (Figs. 2c and 2e).  
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Fig. 2. Organic acid production by A. succiniciruminis in batch cultures from 0.5% (w/v) soluble starch (2a) 

0.5% (w/v) dried starch waste (2b), 0.5 % (w/v) dried starch waste without BMY medium only supplemented 

with 50 mM NaHCO3 (2c), 0.5% (w/v based on dry weight) fresh starch waste (2d), and 0.5% (w/v based on 

dry weight) fresh starch waste (with equal final concentration) without BMY medium only supplemented 

with 50 mM of NaHCO3 (2e). 

 

Succinate production in reactor experiments   

 Based on the results from the batch experiments, the factors that positively influenced 

succinate production, or made the fermentation conditions more robust, were tested in reactor 

experiments. 

Effect of substrate (starch waste) concentration 

Succinate was the major product in a pH-controlled (pH =7.5) batch reactor from starch 

waste, followed by acetate, formate and lactate (Fig. 3, Table 4). Succinate production doubled (from 

61 mM up to 118 mM) when starch waste was increased from 4 to 8% (w/v). The succinate yield, 

however, remained in the same range (2.46–2.55 mmol succinate/ gram starch) (Table 4).  
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Table 4. Succinate production from starch waste by A. succiniciruminis under different conditions in a pH-

controlled reactor****) 

 

 

Experiment 

no. 
Test conditions Medium 

Succinate 

(mM) 

Succinate 

yield (mmol 
SA/gram 

STW) 

Succinate yield 

(mmol SA/ gram 

STARCH) (60% 

Starch content in 

STW) 

SA:AA:FA:LA 

(mol/mol)**) 

2.1 4% (w/v) dried STW 

modified 
BMY, pH = 

7.5, 8 days 

fermentation 

61.3 1.53 2.55 1:0.1:0.5:0.6 

 

12 mM KH2PO4/Na2HPO4 
 

150 mM NaHCO3; 
 

8% (w/v) dried STW 

118 1.48 2.46 1:0.1:0.4:0.7 

 

12 mM KH2PO4/Na2HPO4 

  150 mM NaHCO3 

2.2 4% (w/v) dried STW 

modified 
BMY, pH = 

7.0, 5 days 

fermentation 

80 2 3.33 1:0.7:0.4:0.2  12 mM KH2PO4/Na2HPO4 

 150 mM NaHCO3; 

 4% (w/v) dried STW 

108.4 2.71 4.52 1:0.6:0.4:0.4  30 mM KH2PO4/Na2HPO4 

 150 mM NaHCO3 

 4% (w/v) dried STW-

NEW*) 

modified 
BMY, pH = 

7.0, 5 days 

fermentation 

62 1.55 2.58 1:0.7:0.5:0.6  12 mM KH2PO4/Na2HPO4 

 150 mM NaHCO3 

 4% (w/v) dried STW-

NEW*) 

95.4 2.39 3.98 1:0.6:0.5:0.1  30 mM KH2PO4/Na2HPO4 

  150 mM NaHCO3 

 

*) new batch of STW was used. Therefore, both runs were done in duplicate 

  **) SA: succinate; AA: acetate; FA: formate; LA: lactate 

***) 60% Starch in STW) 

****) STW: starch waste 

 

Effect of pH 

The succinate yield was affected when the pH of the reactor was changed from pH 7.5 to pH 

7.0 (4% starch waste). Yields increased from 1.53 to 2.0 mmol succinate/gram starch waste (2.55 to 

3.33 mmol succinate/ gram starch). 
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Fig. 3. Organic acid production from starch waste fermentation by A. succiniciruminis in a pH-controlled 

reactor. STW: starch waste 

 
 
Effect of phosphate concentration 

 Succinate production from starch waste (4% w/v) increased when the concentration of 

phosphate increased from 12 mM to 30 mM in duplicate reactor runs (Figs. 4, Table 4). Succinate 

production increased rapidly after day 1 and increased until the end (day 5), along with acetate, 

formate and lactate production. The highest concentration of succinate was at day 5, when 30 mM 

of phosphate was provided in the modified BMY medium (150 mM bicarbonate) with 108 mM and 

95 mM from the starch waste batch 1 (Fig. 4b) and 2 (Fig. 4d), respectively and succinate production 

increased ca. 45% (in average) when 12 mM of phosphate was used, compared to 80 mM and 62 

mM from the starch waste batch 1 (Fig. 4a) and 2 (Fig. 4c), respectively. The succinate yield after 5 

days fermentation was highest with 30 mM phosphate (4.52 and 3.98 mmol succinate/gram starch 

waste). 
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Fig. 4. Organic acid production by A. succiniciruminis from starch waste 4% (w/v) fermentation in pH-

controlled reactor  
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Discussion 

 Succinate production from glucose by A. succiniciruminis strain Am4 differed, for instance, 

with respect to the ratio of production of succinate and the other products as well as the effect of 

process conditions on succinate production (Table 2 and 3). Bicarbonate showed a positive effect 

on succinate production in glucose fermentation (Table 2). The concentration of substrate, 

phosphate, dithiothreitol, with no addition of yeast extract and no medium, had a positive effect on 

succinate production from starch waste, but not directly on the succinate yield (Table 3). Based on 

this the effect of the substrate concentration, phosphate and bicarbonate on starch waste fermentation 

was further tested in a batch bioreactor.  

Bicarbonate has a positive effect on succinate production because it provides the CO2 that is 

needed in the formation of succinate in the step from phosphoenolpyruvate to oxaloacetate (Fig. 1), 

which is in agreement with other studies (Tan et al., 2017; van der Werf et al., 1997; Ohta et al., 

1989). Providing CO2 gas can be costly on an industrial scale. Instead, sodium bicarbonate or 

calcium carbonate, which are relatively cheap, can reduce the cost of succinate production. 

Increasing the amount of bicarbonate also increases the buffering capacity of the medium.  

Succinate production and succinate yield did not increase when the phosphate concentration 

increased in the starch waste fermentation in the batch bottles. However, in the reactor experiment 

in which the pH was controlled, phosphate had a positive effect on succinate production. Therefore, 

our assumption is that phosphate may help in the starch waste degradation step that is involved in 

starch phosphorylase: [glucosyl]n + phosphate = [glucosyl]n-1 + glucose-1-phosphate (Lamed and 

Zeikus, 1980) (Fig. 1). Genes encoding the starch phosphorylase enzyme (AAM4_1228: EC 2.4.1.1) 

and starch/glycogen debranching enzymes (AAM4_1562: EC 3.2.1.33 or EC 2.4.1.25) were 

detected in the A. succiniciruminis genome. The Am4 genome also contains the gene-encoding 

phosphoglucomutases (AAM4_1817 and 0958: EC 5.4.2.2), enzymes that convert glucose-1-
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phosphate into glucose-6-phosphate (Fig. 1). However, a high concentration of phosphate may also 

inhibit bacterial growth (Takahashi et al., 1995). Some bacteria, such as E. coli, use inorganic 

pyrophosphatase to decrease the pyrophosphate (PPi) level in their cells, while Actinomyces species 

remove the PPi by the coupling of PPi as a phosphoryl donor to glycolysis through 

phosphofructokinase (Takahashi et al., 1995), which probably helps Actinomyces to tolerate higher 

phosphate concentrations. The A. succiniciruminis genome also has genes encoding both inorganic 

pyrophosphatase (AAM4_1072; EC 3.6.1.1) and 6-phosphofructokinase (AAM4_1106, 

AAM4_2217; EC 2.7.1.11), which could help the strain to cope with high phosphate concentrations, 

because toxicity of phosphate was not observed. In batch experiment, 30 mM phosphate showed a 

negative effect on succinate production in glucose fermentation. While, in the starch waste 

fermentation from reactor experiment, a positive effect on succinate production occurred when 

increasing the concentration of phosphate from 12 mM to 30 mM (Figs. 4b and 4d, Table 4). A 

similar result was noted for substrate inhibition on succinate production that occurred during glucose 

fermentation, but not in the starch waste fermentation. Our hypothesis is that starch waste may 

contain some compounds that prevent this inhibition, or that the structure and viscosity of starch 

waste may prevent or decrease the toxicity of phosphate. 

The two phosphate (12 and 30 mM) concentrations (Fig. 4) were tested in the reactor with 

two different batches of starch waste and the results were slightly different in terms of organic acid 

production. This is probably due to a small variation in the starch waste composition, because two 

batches of starch waste were collected and prepared in a different period (for the first batch, see 

Figs. 4a and 4b; for the second batch, see Figs. 4c and 4d).  

The stoichiometry of glucose fermentation by A. succiniciruminis in BMY medium 

supplemented with L-cysteine was 1 glucose + 0.7 CO2 → 0.7 succinate + 0.7 lactate + 0.3 acetate 

+ 0.2 formate (Palakawong Na Ayudthaya et al., 2016). In this study, no L-cysteine (0.5 g l-1) was 

added to the medium because preliminary experiments showed that succinate production increased 
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when L-cysteine was not added to the medium (data not shown). However, in the absence of L-

cysteine growth of strain Am4 was less (Palakawong Na Ayudthaya et al., 2016). L-cysteine is an 

amino acid, which is as a reducing agent and a sulfur source for bacteria, and this may explain the 

unfavorable effect on growth of strain Am4.   

A small amount of oxygen (1%) in the head space did not affect the succinate production of 

strain Am4. The genome of strain Am4 has genes coding for oxidative-stress enzymes, including 

superoxide dismutase (Mn) (AAM4_0808), NADH oxidase (AAM4_1060 and AAM4_1376), and 

NADH:flavin oxidoreductase/NADH oxidase (AAM4_1585). These genes were also found in other 

anaerobes such as Desulfovibrio, in −Proteobacteria, and in other Actinomyces species such as A. 

naeslundii and A. odontolyticus and were reported to help these microorganisms to tolerate low 

oxygen levels (Gregory et al., 1978; Lin et al., 2004; Palakawong Na Ayudthaya et al., 2017b).  

An interesting characteristic of strain Am4 is that in the glycolytic pathway, instead of using 

ATP-dependent glucokinase to convert glucose into glucose-6-phosphate, a gene that encodes for 

an ADP-dependent glucokinase or ADPGK gene (AAM4_0628: EC 2.7.1.147) that uses ADP to 

convert glucose into glucose-6-phosphate (ADP + D-glucose => AMP + D-glucose-6-phosphate) 

(Fig. 1). This gene so far has only been reported in archaea or eukaryotes and there is no report that 

it occurs in bacteria. Using ADPGK instead of ATPGK in this step may help the cell to conserve 

energy. 
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Conclusions  

A. succiniciruminis (Am4) is a fast-growing, natural succinate-producing bacterium that can 

tolerate oxygen. A. succiniciruminis can also ferment a broad range of plant mono- and 

disaccharides, including starch waste. The highest succinate production achieved was 118 mM, 

obtained in the fermentation of 8% (w/v) of dried starch waste in a modified BMY medium without 

L-cysteine and sulfide, but supplemented with 150 mM bicarbonate and 12 mM phosphate and with 

79:20:1 of N2:CO2:O2 at a flow rate of 1 l.h-1. The highest succinate yield obtained were 2.39 – 2.71 

mmol succinate/gram starch waste with 4% starch waste in the same conditions as above but 

supplemented with 30 mM phosphate. When taken into account that the starch content of the starch 

waste is 60%, succinate yields were 3.98 – 4.52 mmol succinate/gram starch.  

None of the in batch-tested compounds significantly increased the yield of succinate from 

glucose and starch waste. However, in the starch waste reactor fermentations with 1% oxygen, the 

yield did not decrease, nor was it affected when mineral salts, trace elements and vitamins were 

omitted from the culture fluid, indicating the robustness of strain Am4. 

Based on the observed characteristics A. succiniciruminis strain Am4 may be an interesting 

candidate for succinate production in the carboxylate platform, particularly for starch waste 

degradation.   
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Fig. S1. Growth curves of A. succiniciruminis at different glucose concentration (S1a); pH profiles at 

different glucose concentration (S1b) and pH profiles at different starch waste concentration (S1c).     
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Abstract  

 The guinea pig (Cavia porcellus) or cavy is a grass-eating rodent. Its main diet consists of 

grass or hay, which comprises cellulose, hemicellulose, lignin and their derivatives. Here, the 

microbial diversity of fecal samples of two guinea pigs and microbial enrichments made with 

substrates, including starch waste and dried grass, were investigated along with organic acid 

production profiles. The microbial communities of the fecal samples were dominated by the phyla 

Bacteroidetes (40%) and Firmicutes (36%). Bacteroidales S24-7 (11% in Cavy 1 and 21% in Cavy 

2) was the most abundant order. At genus level, many microorganisms remained unclassified. 

Different carbon-sources were used for organic acid production in fecal enrichments. The dominant 

bacterial groups in the secondary enrichments with dried grass, starch waste, and xylose were closely 

related to Prevotella and Blautia. Acetate was the predominant organic acid from all enrichments. 

The organic acid production profiles corresponded to a mixed acid fermentation but differed 

depending on the type of substrate. Eight phylogenetically different isolates were obtained, including 

a novel Streptococcus species, strain Cavy grass 6. This strain had a low abundance (1%) in one of 

the fecal samples but was enriched in the dried grass enrichment (3%). Cavy grass 6 is a fast-growing 

heterolactic bacterium that ferments cellobiose to lactate, acetate, formate and ethanol. Our results 

show that cavy fecal samples can be applied as the microbial source of microorganisms for organic 

acid production from complex organic substrates. The cavy gut contains many as-yet-uncultivated 

bacteria which may be appropriate targets for future studies. 
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Introduction  

Guinea pigs (Cavia porcellus) are rodents belonging to the family Caviidae and are native 

to South America (Sakaguchi and Nabata, 1992). They are well known as experimental models for 

humans and have been used in medical research since the 19th century (Hildebrand et al., 2012). In 

gastrointestinal research, guinea pigs are considered suitable models for humans because they have 

human-like E-cadherin on their intestinal surface (Hildebrand et al., 2012). To date, limited studies 

have been performed on the microbial composition of the guinea pig gut. In 2012, the intestinal 

microbiota of guinea pigs was studied using a metagenomic approach, revealing a higher abundance 

of Akkermansia spp. and methanogens (Methanobrevibacter spp.) compared to the human gut 

(Hildebrand et al., 2012). Recently, the microbial population from domesticated guinea pigs and 

rabbits was compared (Crowley et al., 2017). Differences were detected between samples from 

rabbit and guinea pig feces, suggesting that there is no a microbial community common in 

coprophagous (feces-eating) animals. Those animals eat their own feces to maintain their intestinal 

microbes and recover nutrients and vitamins (Richardson, 2000). Bacteroidetes and Firmicutes 

together formed most of the population in the guinea pig fecal samples, according the results of two 

studies (Crowley et al., 2017; Hildebrand et al., 2012). The two most abundant bacterial phyla in 

guinea pig guts relate to the typical vertebrate gut microbiome, including the human intestine. 

However, at genus level the microbiome composition was different between humans and guinea 

pigs (Hildebrand et al., 2012).   

The guinea pig is a monogastric herbivore (Sakaguchi and Nabata, 1992) and its diet mainly 

consists of grass or hay of timothy, oat, wheat, pasture, meadow and/or ryegrass. Grass-eating 

rumen mammals such as cows and sheep have a long digestive tract or diet re-chewing system to 

digest and obtain nutrients, whereas guinea pigs have a relatively short digestive tract, therefore 

they maintain their vitamins and nutrition by re-eating their own feces. Consuming large quantities 

http://en.wikipedia.org/wiki/South_America
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of plant polymers suggests that its gastrointestinal microbiome generates (hemi-) cellulolytic 

enzymes. The corresponding microbes may be useful for biotechnological applications.   

The most abundant sources of organic carbon in global ecosystems are complex 

polysaccharides of plant cell walls that are difficult to degrade (Lewin et al., 2016). Cellulose 

degradation is usually driven by complex microbial communities such as bacteria and fungi, which 

use cellulolytic enzymes, 1,4-β-endoglucanase, 1,4-β-exoglucanase and/or β-glucosidase, that 

hydrolyse cellulose to cellobiose and/or to glucose which can then be further metabolized (Kumar 

et al., 2008). The microorganisms involved in cellulose degradation from the cavy gut are 

understudied (Lewin et al., 2016; Wilson, 2011). 

Organic acids such as acetate, lactate and succinate are common fermentation products of 

plant polysaccharides. Organic acids can be used as biobased building-block chemicals in chemical 

and other industrial processes; therefore, the production of chemicals from renewable resources is 

considered an attractive green alternative (Agler et al., 2011; Sauer et al., 2008). Investigating the 

microbial diversity and organic acid production of guinea pig fecal samples could also be 

instrumental in revealing the mechanism of the guinea pig fiber digestion system and may lead to 

the discovery of novel bacteria capable of converting cellulose to organic acids. To date, no research 

has been performed using guinea pig fecal samples as a source for organic acid production.  

In this study, the microbial diversity of guinea pig fecal samples was analyzed. Organic acid 

production profiles from cellulose, dried grass, glucose, starch waste, xylan and xylose by guinea 

pig fecal enrichment cultures were studied. Moreover, the microbial community composition of 

selected enrichments was revealed, and several pure cultures were isolated.   
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Material and Methods 

Sampling, screening and enrichment of cavy fecal samples with various substrates 

A schematic overview of the experiments performed in this study is shown in Fig. 1.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Schematic overview of the experiments  
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Source of inoculum 

Fresh fecal droppings were collected from two adult-male pet guinea pigs (four- and three-

year-old; Cavy 1 and Cavy 2), in Renkum, The Netherlands. The fecal samples were placed into 

anaerobic sterile bottles and directly transferred to the Laboratory of Microbiology (Wageningen 

University & Research, Wageningen, NL), where the entire experiment was performed. 

Approximately one gram of the fecal samples was dissolved in anaerobic phosphate buffered saline 

(PBS) using a sterile spatula and gentle vortexing in an anaerobic chamber. The guinea pig fecal 

slurry (1% v/v) was then used as an inoculum for enrichment with various substrates.  

Substrate preparation 

 Cellulose, dried grass (commercial cavy grass feeding), glucose, soluble starch, starch waste, 

xylan and xylose (0.5% w/v) were used as carbon sources to selectively enrich bacteria from guinea 

pig feces. The dried grass was cut into small pieces using scissors (1–3 mm). The starch waste (80% 

dry matter and 20% water) obtained from Avebe Potato factory (Foxhol, The Netherlands) was air 

dried at 80 oC for 32 h, crushed and sieved to obtain small pieces (< 1 mm). The composition of the 

starch waste containing 61% starch was analyzed at Nutricontrol (Veghel, The Netherlands) (Table 

S1). 

Medium composition and cultivation 

 A bicarbonate-buffered anaerobic medium (BM) was used in this experiment and prepared 

as previously described (Plugge, 2005). The medium was supplemented (per liter) with 0.1 g yeast 

extract, 5 mg hemin, 0.05 g vitamin K1 and 0.5 g L-cysteine-hydrochloride. Then, 0.5% (w/v) of 

each substrate was added into serum bottles (duplicate bottles for each enrichment) before 

autoclaving. Bottles without substrate were used as controls. The final liquid volume was 50 ml in 

117 ml serum bottles sealed with butyl rubber stoppers and aluminum crimp caps containing N2/CO2 

(80:20; v/v) and 1.7 atm (172 kPa) gas phase. The pH of the medium was 7.2.  
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One percent (v/v) (pooled fecal samples) was inoculated in the anaerobic bottles and bottles 

were incubated at 37 oC in the dark for 14 days. Growth, pH and organic acid production of the 

enrichments were measured to determine microbial activity. The primary enrichments were 

transferred (4% v/v) to medium with the same substrate as previously described and termed 

secondary enrichments. After 5 days of incubation at 37 oC, the secondary enrichments were used 

for further analysis.   

DNA extraction 

Genomic DNA from fresh feces of each guinea pig, from selected secondary enrichment 

samples and the isolates was extracted using Fast Spin kit for soil (MP Biomedicals; Santa Ana, CA) 

following the manufacturer’s instructions. Genomic DNA yields were measured with a Nanodrop 

ND-1000 spectrophotometer (Nanodrop Technologies, Wilmington, DE). DNA quality was 

analyzed using OD 260/280 ratio and the integrity was determined by gel electrophoresis on a 1% 

(w/v) agarose gel. The extracted genomic DNA was then kept at –20 oC for further analyzes.  

16S rRNA amplicon sequencing analysis 

The extracted genomic DNA was diluted to obtain DNA concentration between 10 – 20 ng/µl 

as a template for PCR amplification. Microbial 16S rRNA V4 regions were amplified using a two-

step PCR protocol. PCR amplifications were carried out in technical duplicates. The first PCR was 

performed with universal primers 515f (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806r (5′-

GGACTACHVGGGTWTCTAAT-3′) (Caporaso et al., 2011) and the second PCR was carried out 

to extend eight-base specific barcodes to the amplicons as previously described (Hamady et al., 

2008) using Phusion Hot Start II High-Fidelity DNA polymerase (Themo Fisher Scientific; 

Waltham, MA). PCR amplification was performed using a G-Storm cycler (G-storm; Essex, UK). 

The first PCR was performed in a total volume of 50 µl containing 2.5 µl of each forward and reverse 

primer, 0.5 µl (2 unit) of the DNA polymerase, 10 µl of 5 x HF-buffer, 1 µl (200 µM) dNTP mix, 1 
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µl of DNA template and 32.5 µl of nuclease-free sterile water using the PCR program as follows: a 

pre-denaturing step at 98 oC for 3 min, followed by 25 cycles at 98 oC for 10 s, 50 oC for 20 s, 72 oC 

for 20 s and a post-elongation step of 10 min at 72 oC. After amplification, the second PCR was 

done in 100 µl containing 10 µl of the barcoded primer mix, 1 µl (2 units) of the DNA polymerase, 

20 µl of 5 x HF-buffer, 2 µl (200 µM) dNTP mix, 5 µl of DNA template and 62 µl of nuclease-free 

sterile water with the PCR program as follows: a pre-denaturing step at 98 oC for 30 s, followed by 

5 cycles at 98 oC for 10 s, 52 oC for 20 s, 72 oC for 20 s and a post-elongation step of 10 min at 72 

oC. The size of PCR products was expected to be 291 bp. Barcoded PCR products were examined 

for positive amplification on agarose gel and were then purified using the CleanPCR kit system 

according to the manufacturer’s instruction (CleanNA Alphen aan den Rijn, The Netherlands). The 

DNA concentration was quantified using Qubit® dsDNA BR Assay Kit (Invitrogen) and DeNovix 

DS-11 FX Spectrophotometer/Fluorometer (DENovix Inc.; Wilmington, DE). All purified PCR 

products were pooled in equimolar amounts (200 ng of DNA per sample) to create a library which 

was then purified again with the CleanPCR kit to a final volume of 35 µl. The library was sent for 

paired-end Illumina MiSeq sequencing at GATC Biotech (Konstanz, Germany). 

16S rRNA gene MiSeq sequencing data were analyzed with NG-Tax version 1.0 (Ramiro-

Garcia et al., 2016) using default settings apart from a read length of 200 bp and a 93% identity 

threshold for taxonomic assignment (‘error correction’ in NG-Tax). Paired-end libraries were 

filtered to obtain only read pairs with perfectly matching barcodes and those barcodes were then 

used to demultiplex reads by samples. Taxonomic assignment was performed with the SILVA 16S 

rRNA reference database (release version 128) using an open reference approach as described by 

Quast et al. (Quast et al., 2013). 

Denaturing gradient gel electrophoresis (DGGE) analysis  

DGGE was used to compare secondary enrichments. Bacterial 16S rRNA V6 – V8 regions 

were amplified with the DGGE Universal primers GC-968F (5′-CGCCCGGGGCGC 
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GCCCCGGGCGGGGCGGGGGCACGGGGGGAACGCGAAGAACCTTAC-3′) and 1401R (5′-

CGGTGTGTACAAGACCC-3′) (Nübel et al., 1996) using the Phire Hot Start II High-Fidelity DNA 

Polymerase (Thermo Fisher Scientific; Waltham, MA). Bacterial amplicons were produced with a 

G-Storm cycler (G-storm; Essex, UK) using a pre-denaturing step at 95 oC for 5 min, followed by 

35 cycles at 95 oC for 20 s, 56 oC for 40 s, 72 oC for 40 s and a post-elongation step of 10 min at 72 

oC. The forward primer had a GC clamp of 40 bp attached to the 5′ end as used by Yu et al. (2008). 

DGGE analysis was performed as described previously (Martin et al., 2007) using a DCode TM 

system (Bio-Rad Laboratories; Hercules, CA) at 60 °C for 16 h with a denaturing gradient of 30:60 

percent for bacterial profiles (Yu et al., 2008).  

Clone library construction   

 The secondary enrichments (dried grass, starch waste and xylose) were further analyzed 

using a clone library approach. Almost full-length 16S rRNA genes were amplified using bacterial-

universal primers 27f (5′-AGAGTTTGATCCTGGCTCAG-3′) and 1492r (5′-

TACCTTGTTACGACTT-3′) (Lane, 1991). PCR amplification was performed with the GoTaq 

Polymerase kit (Promega; Madison, WI) using a G-Storm cycler (G-storm; Essex, UK). The PCR 

program was started with a denaturing step at 95 oC for 5 min and continued with 35 cycles 

consisting of 95 oC for 30 s, 52 oC for 40 s and 72 oC for 90 s and the last step of extension at 72 oC 

for 7 min. PCR products were purified using the PCR Clean & Concentrator kit (Zymo Research 

Corporation; Irvine, CA). Amplicons were ligated into a pGEM-T Easy vector kit (Promega; 

Madison, WI) and transformed into E. coli XL1-Blue Competent Cells (Agilent Technologies; Santa 

Clara, CA). Both ligation and transformation were conducted according to the manufacturer’s 

instruction following the blue-white screening technique. White colonies were randomly selected 

and transferred to a 96-well Masterblock plate (Greiner Bio-One; Netherlands). 16S rRNA genes 

were sequenced using primer SP6 (5′-ATTTAGGTGACACTATAG-3′) (Promega Corp.; Madison, 

WI) at GATC Biotech (Konstanz, Germany). DNA sequences were trimmed by removing the primer 
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using the program DNA Baser Sequence Assembler v4 (Heracle BioSoft S.R.L; Arges, Romania). 

Chimeras were identified using DECIPHER's Find Chimeras web tool (Wright et al., 2012) and were 

removed. The 16S rRNA sequences were blasted with the NCBI online database.  

Isolation and identification of fast-growing bacteria 

 Each of the secondary enrichment was diluted 10-fold using liquid Reinforced Clostridial 

Medium (RCM) and plated on modified BMY (BM with 0.1 g l-1 yeast extract), supplemented with 

5 mg l-1 hemin, 0.05 g l-1 vitamin K1, 0.5 g l-1 L-cysteine-hydrochloride and 15 g l-1 agar (Difco) and 

the same carbon source as the original enrichment. The plates were incubated under anaerobic 

conditions with N2-H2 (96:4 v/v) gas at 37 oC for 5 days. Single colonies were picked and further 

purified on the same agar medium by the streak plate method, followed by serial dilution in the 

modified BMY liquid medium with the same substrate as described above for three times to obtain 

pure cultures. The pure cultures were grown in anaerobic bottles with BMY media with 20 mM 

glucose and analyzed routinely by phase-contrast microscopy (Leica DM 2000; Wetzlar, Germany).  

 Genomic DNA of the isolated strains was amplified to obtain almost full-length 16S rRNA 

gene sequence using the same PCR primers and PCR protocol as previously described in the clone 

library analysis or by Palakawong Na Ayudthaya et al. (2017a). 16S rRNA gene sequencing was 

performed at GATC Biotech (Konstanz, Germany). The 16S rRNA gene sequences were checked 

for reading errors and aligned using the program DNA Baser Sequence Assembler v4 (Heracle 

BioSoft S.R.L; Arges, Romania) and were then searched against the NCBI database using the 

BLASTN search online program (http://blast.ncbi.nlm.nih.gov/Blast.cgi: 21-12-2016) 

Analytical methods 

Growth was monitored by measuring the turbidity at 600 nm using a spectrophotometer for 

enrichments with soluble substrates (glucose and xylose). The organic acid production was 

measured by high-pressure liquid chromatography (HPLC) as previously described (Van Gelder et 
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al., 2012). Methane and hydrogen were quantified using gas chromatography (GC) as described by 

Van Lingen et al. (Van Lingen et al., 2017). 

Nucleotide sequence accession numbers  

              The 16S rRNA gene MiSeq sequences from the cavy fecal samples and the secondary 

enrichments and the 16S rRNA gene sequences of clone library from the secondary enrichments 

were deposited at the EMBL database and are available under accession numbers ERS1974899 – 

ERS1974908 (PRJEB21993) and LT708382 – LT08474, respectively. The bacterial 16S rRNA gene 

sequences of the isolates were deposited to NCBI and EMBL databases and are available under 

accession numbers MF579703-MF579713 and LT546457, respectively.  

 

Results and discussion 

 

Microbial community composition of guinea pig fecal samples  

 In total, 536,464 high-quality sequences were obtained from the fresh fecal samples of ‘Cavy 

1’ and ‘Cavy 2’, which clustered into 78 operational taxonomic units (OTUs) at genus level. Of 

those 78 OTUs, 34 were shared between both animals and 44 were unique OTUs, distributed over 

14 OTUs in Cavy 1 and 30 OTUs in Cavy 2. Numbers of OTUs for each sample at phylum level are 

shown in Table 1.  

 

Table 1. Total number of OTUs detected in each Cavy fecal sample 
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 The phyla Firmicutes (42% and 31%), Bacteroidetes (35% and 45%), Actinobacteria (13% 

and 2%) and Verrucomicrobia (1% and 9%) had a high relative abundance in both fecal samples 

(Cavy 1 and 2, respectively) whereas Fibrobacteres, Cyanobacteria and Spirochaetae represented 

together around 11% in both samples (Data not shown). Concerning the phylum Fibrobacteres, our 

results are in agreement with previous work where this phylum was obviously detected in one of six 

guinea pigs (Crowley et al., 2017). However, the proportions of Bacteroidetes and Firmicutes in our 

cavy samples were different from the Crowley et al. study (Crowley et al., 2017). The Euryarchaeota 

phylum was detected in both samples with low relative abundance with Methanobrevibacter as the 

only archaeal representative detected (1.5 and 0.6% in Cavy 1 and Cavy 2, respectively) (Fig. 2). 

The 16S rRNA gene sequence of this archaeon OTU showed 99% identity to Methanobrevibacter 

smithii, a dominant archaeon in the human gut (Samuel et al., 2007).  

 The MiSeq sequencing result at genus-like level revealed a variety of bacteria, but most of 

them had low abundances (<1%), as listed as in “others” (Fig. 2). Sequences that could not be 

assigned at six different identity-threshold levels (100, 98, 97, 95, 92 and 90%) and two taxonomic 

(family and genus) levels as described by Ramiro-Garcia et al. (Ramiro-Garcia and Amann, 2015) 

were grouped as “Unclassified”. On average, about 4% of the total OTUs from both samples could 

not be assigned, indicative of an unknown microorganism as shown in ‘unclassified’ (Fig. 2). At 

family level (in both Cavy 1 and 2), Bacteroidales S24-7 group (11 and 21%, respectively) was most 

abundant, followed by Prevotellaceae (5 and 11%, respectively) (Fig. 2). In Cavy 1, the genus 

Allobaculum had a very high relative abundance (31%), while only 1% was detected in the sample 

from the Cavy 2. Allobaculum spp. was previously identified as the most active glucose utiliser in 

mice (Herrmann et al., 2017). About 5.7% relative abundance of Allobaculum was previously found 

in guinea pig gut (Neuendorf et al., 2015) and was also detected in other animals’ guts, including in 

dogs Greetham et al., 2004), mice and hamsters (Martínez et al., 2009). Bifidobacterium, a probiotic 

species in the phylum Actinobacteria that is believed to be important to the host health, was highly 

abundant (12% relative abundance) in Cavy 1 but not in Cavy 2 (1% relative abundance). On the 
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other hand, Fibrobacter, a fiber-degrading species, and Ruminococcus were found in Cavy 2 with 

relative abundances of 6 and 3%, respectively, and were not detected in Cavy 1. Crowley et al. 

(2017) similarly reported that the genus Fibrobacter was detected in high abundance (11%) in only 

one of six guinea pigs. The researchers suggested that in the cavy gut, organisms other than the 

Fibrobacteres must be responsible for fiber digestion (Crowley et al., 2017).  

 The results of both fecal samples suggested that each guinea pig has its own microbiome 

even when living together and eating the same diet (Fig. 2). Nguyen et al. (Nguyen et al., 2015) also 

reported that the core gut microbiota of mice accounted for only 13% of the genera (44 out of 352 

genera) that were shared in three murine datasets. Moreover, about 68% (in average or 57 and 78%, 

respectively) from both cavy fecal samples could not be assigned at the genus level (Fig. 2). It seems 

a general observation in all cavy microbiome studies, including our study, that a substantial 

percentage of the population remains unclassified at the genus level, indicative of novel biodiversity 

(Neuendorf et al., 2015). 
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Product profiles  

 In all primary enrichments, mixed acid fermentation to acetate, butyrate, lactate, 

propionate, succinate and ethanol occurred with the following substrates; cellulose, dried grass, 

glucose, starch waste, xylan and xylose (Fig. 3). Glucose was degraded most rapidly (within one 

day; Fig. 3E) with simultaneous acidification (Fig. 3A), followed by starch waste, xylose, xylan, 

cellulose and dried grass (Fig. 3). The highest total organic acid production was reached at different 

time points depending on the substrate type. For instance, the maximum was reached at day 1 in the 

glucose enrichment (48 mM total organic acids), at day 3 in the starch waste enrichment (38 mM) 

and at day 7 in the xylan and xylose enrichments (40 and 39 mM) (Fig. 3 and Table S2). 

Fermentation of cellulose and dried grass was slower with total organic acid production of 22 mM 

and 31 mM at day 9 and day 14, respectively. In general, acetate was the main product in all of the 

enrichments, with xylan yielding the highest acetate concentration (32 mM at day 7). The highest 

succinate concentration (11 mM) was measured in the xylose enrichment (Fig. 3B – 3H) and Table 

S2). Lactate was mainly formed during glucose and starch waste enrichments (11 and 5 mM, 

respectively) and trace amounts were detected with other substrates. organic acid concentration 

decreased by the end of the fermentation period, particularly in the case of succinate. As these were 

all primary enrichments, some or many bacteria (slow and fast growing) might have contributed to 

the dynamic fermentation (Fig. 3C, 3E, 3F, 3G and 3H and Table S2).  
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Fig. 3.  pH profile of all fermentations in (3A). Guinea pig fecal slurry fermentation profiles from 

different carbon sources of the primary enrichments incubated at 37 oC for 14 days (3B– 3H). The 

error bars indicate the standard deviation. 
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 In the secondary enrichments, mixed acid fermentation again occurred, and acetate, 

butyrate and propionate were produced with all substrates (dried grass, starch waste and xylose). 

Formate, lactate, succinate and/or ethanol were produced in some substrates, indicating that different 

microbial communities developed (Table S3). Acetate was still the primary fermentation product 

from all substrates, being the highest in the xylose enrichment with 27 mM (Table S3). Butyrate was 

detected in small amounts (0.5 – 1.8 mM) in all enrichments. Formate and lactate were detected only 

in the secondary enrichment of starch waste with 3.7 and 0.5 mM, respectively.  

 At the start of the primary enrichments, small amounts of hydrogen were detected with 

glucose, cellulose and xylose substrates with 1.3, 1.1 and 1.9 mM (at day 3), respectively. In 

addition, traces of hydrogen were detected from dried grass, starch waste and xylan (Fig. 3). 

Although cavies are known to contain methanogens in their gut (Franz et al., 2011), methane has 

never been detected in any of the here-described incubations. From this, we concluded that 

methanogens were not active in the enrichments for organic acid production. Their absence could 

be explained by the rapidly decreasing pH (Fig. 3A), since most gut methanogens are neutrophilic 

(pH range 6.0– 8.0) and sensitive to low pH (Serrano-Silva et al., 2014; Zhang et al., 2016)  

 Taken together, the different substrates yielded different mixed acid profiles, with acetate 

as the main product. All complex substrates (cellulose, dried grass and starch waste) were fermented 

by the microbial community from guinea pig fecal samples. Based on the organic acid production 

profiles, the succinate production and the efficiency of the substrate utilisation, dried grass, starch 

waste and xylose enrichments were selected for further analysis.   
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Microbial community profiling of secondary enrichments 

Major groups detected 

Bacterial DGGE profiles of guinea pig fecal samples from the secondary enrichments of 

dried grass, starch waste and xylose are shown in Fig. S1. Based on the obtained DGGE profiles, 

three bacterial 16S rRNA gene clone libraries were constructed to identify the phylogenetic 

affiliation of the dominant bacteria. Additionally, a microbial 16S rRNA gene MiSeq analysis was 

used to investigate the relative abundance of the microorganisms from the secondary enrichments. 

Three clone libraries of dried grass (38 clones), starch waste (37 clones) and xylose (20 clones) 

secondary enrichments were constructed. After chimera screening, 36, 37 and 20 clones passed the 

quality control and represented the bacterial community from the enrichments of dried grass, starch 

waste and xylose, respectively (Table 2).  In the clone library of all enrichments, most of the clones 

were distantly related to cultured relatives and may represent novel genera or species, according to 

the respective 16S rRNA gene sequence identity thresholds of 94.5% (Yarza et al., 2014) and 98.7% 

(Stackebrandt and Ebers, 2006) respectively. About 60% of all clones had less than 94% identity to 

their closest cultured relative (Table 2), again indicative of the presence of multiple novel genera in 

the cavy gut.  
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Table 2. Phylogenetic affiliation and frequency of cloned bacterial 16S rRNA gene ampliconsa 

from the secondary enrichments of cavy fecal samples  

Enrichment 

(No. of clones) 
Closest cultured relative 

No. of 

clones 

Identity 

(%) 
%  

Dried grass (36) 

Acetanaerobacterium elongatum   

1 93% 3 

Anaerovorax odorimutans  2 93% 6 

Bacteroides xylanisolvens  2 99% 6 

Blautia marasmi  4 98% 11 

Blautia producta   4 98% 11 

[Clostridium] cochlearium  1 99% 3 

Clostridium fimetarium   1 95% 3 

Prevotella copri  3 91% 8 

Prevotella dentalis  9 92-94% 25 

Prevotella veroralis   9 91-92% 25 

Starch waste 

(37) 

Bacteroides coprosuis   1 89% 3 

Bacteroides xylanisolvens 1 99% 3 

Blautia marasmi 4 96-98% 11 

Blautia producta  5 98% 14 

Clostridium cochlearium   2 
99% 5 

[Clostridium] indolis 2 95-99% 5 

Defluviitalea saccharophila   1 97% 3 

Prevotella bryantii 1 95% 3 

Prevotella copri   1 91% 3 

Prevotella dentalis   10 93-95% 27 

Prevotella histicola   2 91-92% 5 

Prevotella maculosa   1 91% 3 

Prevotella veroralis   4 91% 11 

Ruminococcus gauvreauii   1 96% 3 

Sporanaerobacter acetigenes  1 99% 3 

Xylose (20) 

Bacteroides coprosuis  2 89% 10 

Bacteroides eggerthii   1 89% 5 

Bacteroides xylanisolvens  1 90% 5 

Blautia marasmi 3 98-99% 15 

Blautia producta   1 96% 5 

Clostridium cochlearium  3 99% 15 

Defluviitalea saccharophila  1 93% 5 

Eubacterium oxidoreducens  1 93% 5 

Oscillibacter valericigenes   1 92% 5 

Prevotella dentalis   2 94% 10 

Prevotella veroralis  2 91% 10 

Ruminococcus gauvreauii  

 

2 

 

96-98% 

 

10 

 

 

                             a 16S rRNA gene sequences were deposited in genbank with the accession numbers LT708382-LT0847 

https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_343202572
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_265678606
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_631252072
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_631251828
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_219857405
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_631252213
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_485099085
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_631251926
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_631251736
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_631251749
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_631252072
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_631252072
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_631251828
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_219846901
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_645320791
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_265678562
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_631252213
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_485099085
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_343198994
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_631251926
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_343205824
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_219857563
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_631251736
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_631251737
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_631251749
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_631252072
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_645322477
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_631251828
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_645320791
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_559795150
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_444439478
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_485099085
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_631251926
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_343205824
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The 16S rRNA gene MiSeq results revealed no archaea in the enrichments, confirming the 

earlier conclusion that methanogenic archaea were absent. The highest bacterial diversity was found 

in the dried grass enrichment while the lowest was detected in the xylose enrichment. These results 

were supported by the DGGE profiling as represented by the number of bands on the DGGE gel 

profiling (Fig. S1). These revealed and confirmed that the substrate not only drove the fermentation 

pattern profile (Fig. 3) but also the bacterial composition. Firmicutes were the most abundant in the 

dried grass enrichment with 67%, whereas Bacteroidetes were the most abundant in the starch waste 

and xylose enrichments (61 and 64%, respectively). Actinobacteria were detected in all enrichments 

with a low abundance (3% on average). 

In the microbial community analyzes of the secondary enrichments, the two approaches 

(clone library and MiSeq sequencing analyzes) revealed slightly different compositions. This could 

be due to the different primers used and to the statistical power of the clone library analysis which 

may have been somewhat limited by the small library size (Dishaw et al., 2014; Kiely et al., 2011). 

Moreover, the different lengths of the amplified sequences from both methods resulted in varying 

% identification comparing to the database (200 bp was used for MiSeq and on average 721 bp was 

used for the clone library). Both approaches detected Prevotella spp. in all enrichments (Table 2, 

Fig. 4). However, the clones were only distantly related to Prevotella spp. (< 95%) and represent 

either novel genera or species. The two approaches revealed Prevotella as being the core of the 

microbial community in the secondary enrichments, although the proportion was different between 

the two methods. Therefore, our hypothesis is that the genus Prevotella may play an important role 

in the fiber degradation in the guinea pig gut since this genus was detected in both fecal samples and 

involved in fiber degradation in many organisms. Members of the genus Prevotella, known to carry 

genes for cellulose and xylan hydrolysis (Ivarsson et al., 2014), can efficiently convert xylan, xylose 

and/or carboxymethylcellulose into short-chain fatty acids (De Filippo et al., 2010). Prevotella 

enterotypes were also dominant in the gut of mice and humans that had carbohydrate- and fiber-rich 
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diets (De Filippo et al., 2010; Nguyen et al., 2015). Prevotella spp. has also been reported to show 

a positive correlation with xylose in pig guts and it is known as an acetate-producing bacterium 

(Ivarsson et al., 2014). The Genus Prevotella is known as a dietary fiber-fermenting bacterium (Chen 

et al., 2017) and recently it was shown that it became dominant in the calve gut upon a change to 

fiber diets (Jami et al., 2013). Moreover, the phylum Bacteroidetes (Prevotella) was the most 

abundant group and is postulated to have a positive relationship with the diet containing fiber in 

guinea pigs (Crowley et al., 2017). 

Blautia was the most abundant OTU (41% relative abundance) in the dried grass enrichment, 

while less than 1% was detected in the starch waste enrichment and it was not detected at all in the 

xylose enrichment (Fig. 4). However, Blautia was detected in all clone libraries of the three 

enrichments (dried grass, starch waste and xylose) with 22, 24 and 20% abundances, respectively 

(Table 2). We conclude that Blautia is present in all secondary enrichments. Acetate was the main 

fermentation product of Blautia producta (formerly Ruminococcus productus) (Liu et al., 2008). In 

our study, B. producta related clones (96–98% identity) were abundant in the dried grass (11%), 

starch waste (14%) and xylose (5%) enrichments (Table 2).  
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The second most abundant group in the dried grass enrichment by MiSeq sequencing 

analysis belonged to genus Bacteroides (16% relative abundance). Bacteroides was also present in 

the enrichment of starch waste (8% relative abundance) but was not detected in the xylose 

enrichments. Bacteroides-related clones were detected in all enrichments. Clone sequences related 

to Bacteroides xylanisolvens (99% 16S rRNA gene sequence identity) were detected in the 

enrichments of dried grass and starch waste with 6 and 3% relative abundances, respectively, and 

the clone sequences related to B. xylanisolvens (90% 16S rRNA gene sequence identity) were also 

detected with 5% relative abundance in the xylose enrichment. B. xylanisolvens is known to degrade 

xylan and xylose to mainly acetate, propionate and succinate, but cannot utilise starch (Chassard et 

al., 2008). The starch waste contains various compounds such as sugar, protein and/or other 

substances that bacteria can use for growth, as well as the benefit of mixed cultures in the enrichment 

that the bacteria can share their products. The 90–99% 16S rRNA gene sequence identity points to 

the possibility of a different Bacteroides strain. 

The second most abundant bacteria detected in the xylose enrichment by MiSeq sequencing 

analysis was related to Ruminococcus gauvreauii (35% relative abundance). R. gauvreauii was 

mainly detected in the xylose enrichment and only less than 1% was found in the dried grass and 

was not detected in the starch waste enrichments. In the clone library, the sequences related to this 

member were detected in both in xylose and starch waste enrichments with 10 and 3% relative 

abundances with 96–98 and 96% 16S rRNA identity, respectively (Table 2). Ruminococcus 

gauvreauii (CCRI-16110T) has been reported not to produce acid from L-xylose or starch (Domingo 

et al., 2008). However, in our experiment, we used D-xylose and starch waste in which the 

composition of xylose and starch were different from the previous study. Based on the 16S rRNA 

gene sequence identities of our clones (96–98%) to that of R. gauvreauii CCRI-16110T, we enriched 

one or more novel species of the genus Ruminococcus.  
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Isolation and identification of fast-growing bacteria 

The secondary enrichments of dried grass, starch waste and xylose were selected to isolate 

potential novel species based on the organic acid profiles and the clone library results. A variety of 

isolates was obtained from dried grass (5), starch waste (6) and xylose (1) secondary enrichments. 

The 12 isolates were identified based on 16S rRNA gene sequence analysis which resulted in eight 

unique isolates (Table 3), from which four isolates belonged to genus Clostridium and the others 

belonged to genus Streptococcus, Actinomyces, Lactobacillus and Staphylococcus. Clostridium spp. 

were isolated from all enrichments and they are well known as acetate- and/or butyrate-producing 

bacteria. One of the isolates, strain Cavy grass 6, obtained from dried grass, had only 96% 16S rRNA 

identity to Streptococcus devriesei CCUG 47155T (Table 3). Less than 1% of the OTU obtained 

from the Miseq sequencing approach belonged to the genus Streptococcus was detected in Cavy 2 

and absent in Cavy 1 fresh fecal samples (data not shown). Streptococcus sp. strain Cavy grass 6 

was enriched in dried grass and increased to 3% relative abundance in the secondary enrichment 

from which it was isolated (Fig. 2). Strain Cavy grass 6 is a novel species and it is a facultative 

anaerobe, fast-growing bacterium that converts cellobiose mainly to lactate (Palakawong Na 

Ayudthaya et al., 2017a).  
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Table 3. Pure cultures obtained from guinea pig fecal samples. 
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Conclusion 

 

We investigated the microbial community of fecal samples from two domesticated guinea 

pigs using MiSeq sequencing analysis and found that 68% of the community could not be classified 

to genus level. The microbial composition of the two fecal samples was quite different at the genus 

level (Fig. 2), indicating that despite identical diets for several years, the two guinea pigs each have 

their own microbiomes.   

This was the first study in which guinea pig fecal samples were used for organic acid 

production and microbial enrichments with various substrates. Acetate was the main organic acid 

produced from all substrates. Prevotella and Blautia were the most abundant microbial groups in 

the secondary enrichments of dried grass, starch waste and xylose. The microbial enrichment 

strategy is an efficient approach for obtaining novel organic acid-producing bacteria. The microbial 

diversity analysis of the guinea pig intestine has been reviewed, and many unknown bacteria are 

waiting to be cultured and characterized. Therefore, guinea pig fecal samples are an interesting 

source for further microbial exploration and could lead to the isolation of dedicated acetate or lactate 

producers and/or starch waste, grass or cellulose degraders in the future. 
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Supplementary data 

Table S1. Composition of the dried starch waste used in this study 

Starch waste was obtained from Avebe Potato factory (Foxhol, The Netherlands) and  

the starch waste composition was analyzed at Nutricontrol (Veghel, The Netherlands)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Composition    Percent (% w w-1) 

Starch 

Crude protein 

Fiber 

Crude ash 

Sugar 

Fat 

Others  

61 

1.1 

0.8 

0.4 

0.3 

0.01 

36.4 
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Table S2. Fermentation profiles in the primary enrichments 

 
Substrates Incubation 

time (days) 
Glucose 

 Products (mmol l-1)  

(0.5 % w/v) Acetate Butyrate Formate Lactate Propionate Succinate Ethanol 

No substrate 

0 0 0 0 0 0 0 0 2.2 (+ 0.0) 

1 0 0 0 0 0 0 0 2.2 (+ 1.7) 

3 0 3.5 (+ 0.4) 0 1.3 (+ 0.0) 0 0 0.2 (+ 0.2) 2.0 (+ 0.6) 

7 0 4.7 (+ 0.2) 0.7 (+ 0.0) 0 0 0 0.3 (+ 0.0) 2.8 (+ 0.4) 

9 0 4.7 (+ 0.4) 0.2 (+ 0.3) 0 0 0 0.1 (+ 0.2) 0 

14 0 5.0 (+ 0.6) 0.2 (+ 0.3) 0 0 0 0 1.9 (+ 2.7) 

Cellulose 

0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 2.5 (+ 0.4) 

3 0 3.2 (+ 1.0) 0.7 (+ 1.0) 0.7 (+ 1.0) 0 0 0.2 (+ 0.2) 5.6 (+ 0.5) 

7 0 11.4 (+ 0.4) 2.1 (+ 0.5) 0 0 0 7.0 (+ 0.8) 0 

9 0 12.0 (+ 0.1) 1.9 (+ 0.4) 0 0 0 7.9 (+ 0.8) 0 

14 0 14.5 (+ 0.7) 2.7 (+ 0.9) 0 0 0 1.3 (+ 1.9) 0 

Dried grass 

0 0.5 (+ 0.0) 0 0 0.8 (+ 1.2) 0 0 0 1.5 (+ 2.2) 

1 0 4.2 (+ 0.1) 0.8 (+ 0.1) 0 2.1 (+ 0.1) 0 0.6 (+ 0.1) 2.2 (+ 0.1) 

3 0 10.4 (+ 0.1) 2.1 (+ 0.3) 0 0.3 (+ 0.0) 1.3 (+ 0.1) 0 0 

7 0 17.5 (+ 1.6) 3.3 (+ 0.0) 0 0 3.8 (+ 0.1) 0 0 

9 0 17.6 (+ 0.0) 2.9 (+ 0.1) 0 0 4.4 (+ 0.3) 0 0 

14 0 21.3 (+ 0.4) 3.4 (+ 0.0) 0 0 6.6 (+ 0.2) 0 0 

Glucose 

0 
25.8 (+ 

1.1) 
0 0 0 0 0 0 0 

1 0.7 (+ 1.1) 14.9 (+ 1.1) 0.7 (+ 0.1) 16.5 (+ 5.4) 11.0 (+ 3.0) 3.0 (+ 1.0) 1.7 (+ 0.0) 8.9 (+ 1.6) 

3 0 15.8 (+ 0.6) 5.3 (+ 0.9) 16.3 (+ 5.4) 0 6.0 (+ 0.1) 2.1 (+ 0.3) 2.9 (+ 2.8) 

7 0 16.4 (+ 0.9) 5.6 (+ 0.5) 16.7 (+ 6.1) 0 7.0 (+ 1.8) 1.2 (+ 1.8) 2.4 (+ 0.8) 

9 0 14.8 (+ 0.6) 5.1 (+ 0.5) 14.6 (+ 4.9) 0 6.8 (+ 0.8) 0.6 (+ 0.9) 3.2 (+ 2.7) 

14 0 14.8 (+ 0.7) 5.4 (+ 0.1) 14.5 (+ 5.5) 0 7.6 (+ 0.0) 0 1.8 (+ 2.6) 

Starch waste 

0 0 0 0 0 1.5 (+ 0.1) 0 0 0.7 (+ 1.0) 

1 0.5 (+ 0.3) 17.5 (+ 1.0) 0.7 (+ 0.1) 6.3 (+ 0.8) 4.6 (+ 0.6) 1.4 (+ 1.1) 4.4 (+ 0.0) 1.0 (+ 1.4) 

3 0 23.3 (+ 2.0) 3.0 (+ 0.2) 3.4 (+ 0.2) 0 8.6 (+ 0.2) 0 1.3 (+1.8) 

7 0 22.2 (+ 0.8) 3.2 (+0.1) 2.6 (+ 0.5) 0 8.4 (+0.1) 0 2.2 (+3.1) 

9 0 22.9 (+ 1.9) 3.0 (+0.2) 2.6 (+ 0.4) 0 8.8 (+0.3) 0 1.2 (+1.7) 

14 0 24.1 (+ 0.9) 3.4 (+0.3) 2.7 (+ 0.7) 0 9.8 (+0.4) 0 0 

Xylan 

0 0 0 0 0 0 0 0 2.0 (+ 0.8) 

1 0 13.7 (+ 0.27) 0 1.4 (+ 0.0) 1.2 (+ 0.1) 0 0.6 (+ 0.1) 0.6 (+ 0.9) 

3 0 31.4 (+ 6.01) 0.9 (+ 0.0) 0 0 2.9 (+ 0.0) 2.3 (+ 0.4) 0.6 (+ 0.9) 

7 0 32.1 (+ 0.84) 1.3 (+ 0.2) 0 0 4.0 (+ 0.6) 2.1 (+ 1.4) 0.8 (+ 1.2) 

9 0 29.7 (+ 3.23) 1.2 (+ 0.0) 0 0 5.6 (+ 0.9) 0 0.9 (+ 1.3) 

14 0 29.9 (+ 2.66) 1.3 (+ 0.1) 0 0 5.8 (+ 0.9) 0 0.8 (+ 1.2) 

Xylose 

0 0 0 0 0 0 0 0 1.0 (+ 1.4) 

1 0 8.7 (+ 0.40) 0.5 (+ 0.1) 1.3 (+ 1.8) 0.6 (+ 0.0) 1.2 (+ 0.0) 6.1 (+ 0.3) 2.4 (+ 0.1) 

3 0 14.5 (+ 0.98) 3.9 (+ 1.1) 4.0 (+ 3.1) 0 3.4 (+ 0.5) 10.1 (+ 0.1) 1.9 (+ 2.7) 

7 0 16.1 (+ 1.03) 4.9 (+ 0.2) 4.1 (+ 3.2) 0 3.2 (+ 0.1) 10.6 (+ 0.5) 1.1 (+ 1.6) 

9 0 16.2 (+ 2.37) 3.8 (+ 0.2) 3.8 (+ 3.2) 0 2.7 (+ 0.4) 10.8 (+ 0.9) 2.3 (+ 0.0) 

14 0  13.6 (+ 2.74) 3.7 (+ 1.0) 2.6 (+ 3.6) 0 7.0 (+ 4.7) 4.7 (+ 5.9) 1.5 (+ 2.1) 



Microbial diversity and organic acid production of guinea pig fecal samples 
 

 

151 

 

Table S3. Fermentation profiles in the secondary enrichments 

 

Substrates Incubation 

time 

(days) 

Glucose 
Products (mmol l-1) 

(0.5 % w/v) Acetate Butyrate Formate Lactate Propionate Succinate Ethanol  

Dried grass 5 0 10.5 (+ 1.7) 0.5 (+ 0.1) 0 0 0.3 (+ 0.4) 0.5 (+ 0.7) 1.0 (+ 1.4) 

Starch waste 5 0 17.0 (+ 1.9) 1.5 (+ 0.5) 3.7 (+ 5.2) 0.5 (+ 0.6) 10.1 (+ 1.9) 0 5.0 (+ 0.9) 

Xylose 5 0 27.0 (+ 19.4) 1.8 (+ 0.7) 0 0 2.3 (+ 3.2) 10.9 (+ 1.4) 0 

 

 

 

                                                            

 

 

 

 

 

 

 

 

 

Fig. S1. Bacterial 16S rRNA-DGGE profiles of the secondary enrichments with dried grass (D), 

starch waste (STW), and xylose (X).  M is the marker. 
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Abstract 

A novel cellobiose-degrading and lactate-producing bacterium, strain Cavy grass 6T, was 

isolated from fecal samples of guinea pigs (Cavia porcellus). Cells of the strain were ovalshaped, 

non-motile, non-spore-forming, Gram-stain-positive and facultatively anaerobic. The strain grew at 

25–40 °C (optimum 37 °C) and pH 4.5–9.5 (optimum 8.0). Phylogenetic analysis based on 16S 

rRNA gene sequences showed that strain Cavy grass 6T belongs to the genus Streptococcus with its 

closest relative being Streptococcus devriesei CCUG 47155T with only 96.5 % similarity. 

Comparing strain Cavy grass 6T and Streptococcus devriesei CCUG 47155T, average nucleotide 

identity and level of digital DNA–DNA hybridization dDDH were only 86.9 and 33.3 %, 

respectively. Housekeeping genes groEL and gyrA were different between strain Cavy grass 6T and 

other streptococci. The G+C content of strain Cavy grass 6T was 42.6±0.3 mol%. The major (>10 %) 

cellular fatty acids of strain Cavy grass 6T were C16:0, C20 : 1ω9c and summed feature 8 

(C18 : 1ω7c and/or C18 : 1ω6c). Strain Cavy grass 6T ferment a range of plant mono- and disaccharides 

as well as polymeric carbohydrates, including cellobiose, dulcitol, d-glucose, maltose, raffinose, 

sucrose, l-sorbose, trehalose, inulin and dried grass extract, to lactate, formate, acetate and ethanol. 

Based on phylogenetic and physiological characteristics, Cavy grass 6T can be distinguished from 

other members of the genus Streptococcus. Therefore, a novel species of the genus Streptococcus, 

family Streptococcaceae, order Lactobacillales is proposed, Streptococcus caviae sp. nov. (type 

strain Cavy grass 6T=TISTR 2371T=DSM 102819T). 

Cellulose is a homo-polysaccharide with repetitive units of β- d-glycopyranose that are 

coupled via β-glycosidic linkages and estimated to be the most abundant organic compound on earth 

(Kumar et al, 2008). It can be degraded by micro-organisms such as bacteria and fungi. Those micro-

organisms produce exocellular cellulolytic enzymes such as 1, 4-β-endoglucanase, 1, 4-β- 

exoglucanase and/or β-glucosidase (cellobiase) that can hydrolyse cellulose to cellobiose and/or 

glucose, which can be further metabolized (Kumar et al, 2008). 
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Guinea pigs (Cavia porcellus) are rodents located in the genus Cavia, family Caviidae, and 

native to South America (Sakaguchi and Nabata, 1992). The guinea pig is a monogastric herbivore 

and grass is its natural diet (Sakaguchi and Nabata, 1992). The fact that guinea pigs consume major 

quantities of plant polymers suggests that its large gastrointestinal microbiome makes it a useful 

model to study the production of organic acids, such as acetate, lactate and succinate. Comparative 

metagenome studies have shown that the most abundant bacterial phyla in the guinea pig gut are 

the Bacteroidetes and Firmicutes (Hildebrnd et al., 2012). Investigating the microbial diversity and 

organic acid production using guinea pig fecal samples could be instrumental in revealing the 

mechanism of fiber digestion in the guinea pig and leading to the discovery of novel bacteria that 

are capable of degrading cellulose or its components to valuable organic acids. 

Currently, the genus Streptococcus includes 117 recognized species 

(www.bacterio.net/streptococcus.html) and this number is continuously increasing, for example 

with the recent addition of Streptococcus pantholopis DSM 102135T (Bai et al., 2016). Historically, 

the genus Streptococcus is one of the earliest groups of bacteria described and includes pathogens 

such as Streptococcus pyogenes and Streptococcus pneumoniae, reported by Rosenbach and Klein 

in 1884 (Clavel et al., 2013). Streptococcus species have been isolated from a broad range of 

habitats, including the gastrointestinal tracts of humans and animals. Streptococci are chemo-

organotrophs with a fermentative metabolism and are often referred to as lactic acid (-producing) 

bacteria. Their nutritional requirements are complex and variable, they are mostly facultatively 

anaerobic, and some species require additional CO2 for growth (Whiley and Hardie, 2009). 

Streptococcus cells are normally spherical or ovoid shaped, less than 2 µm in diameter and occur in 

chains or in pairs when grown in liquid medium. Cells are Gram-stain-positive, non-motile and non-

spore forming. The optimum growth temperature is usually about 37 °C, but minimum and 

maximum growth temperatures vary among the species (Whiley and Hardie, 2009). 

https://doi.org/10.1601/nm.7927
https://doi.org/10.1601/nm.3874
http://www.bacterio.net/streptococcus.html
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In this work, we describe the isolation, phylogenetic analysis, phenotypic characterization 

and physiological properties of a novel lactic acid-producing strain, Cavy grass 6T, originating from 

domestic guinea pig feces. 

Approximately, 1 g of fresh fecal sample was dissolved in anaerobic PBS and used as an 

inoculum. Dried hay was cut with scissors into small pieces (1–3 mm) and 0.5 % (w/v) was used as 

the sole carbon source. The guinea pig fecal slurry (1 %, v/v) was inoculated in a bicarbonate-

buffered anaerobic medium (BM), which was prepared and supplemented as previously described 

by Plugge (2005) and Palakawong Na Ayudthaya et al. (2016). Further enrichment and pure culture 

isolation was performed as described previously using 0.5 % (w/v) dried grass as carbon source to 

obtain a pure culture that was termed strain Cavy grass 6T (Palakawong Na Ayudthaya et al., 2016). 

Pyrosequencing results of the 16S rRNA genes (data not shown) from two guinea pig fecal samples 

showed similar microbial profiles as reported previously with the most abundant phyla being the 

Bacteroidetes (41–50 %) and Firmicutes (42–37 %) (Hildebrand et al., 2012). The relative 

abundance of the genus Streptococcus in the guinea pig fecal samples was <1 %. 

Strain Cavy grass 6T was routinely grown with 20 mM glucose in BM with 0.01 % (w/v) 

yeast extract (BMY-G). The purity of strain Cavy grass 6T was checked routinely by phase-contrast 

microscopy (Leica DM 2000). Production of organic acids was analyzed by HPLC and gas 

production by GC as described by van Gelder et al. (2012). 

Genomic DNA of strain Cavy grass 6T was isolated and purified from glucose-grown cells 

(BMY-G) using the Fast DNA Spin Kit for Soil (MP Biomedicals) following the manufacturer’s 

instructions. An almost full-length 16S rRNA gene sequence (1412 bp) of strain Cavy grass 6 T was 

amplified by PCR using bacterial-universal primers 27f (5′-AGAGTTGATCCTGGCTCAG-3′) and 

1492r (5′-TACCTTGTTACGACTT-3′) (Lane, 1991). The PCR programme was started with a 

denaturing step at 95 °C for 5 min and continued with 35 cycles consisting of 95 °C for 30 s, 52 °C 

for 40 s and 72 °C for 90 s, and the last step of extension at 72 °C for 7 min. PCR products were 
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purified and sequenced at GATC Biotech. The 16S rRNA gene sequence of Cavy grass 6 T was 

checked for reading errors and aligned using the program DNA Baser Sequence Assembler v4 

(Heracle BioSoft). The 16S rRNA gene sequence was used to search the DNA database employing 

the online blastn program, EzTaxon 2.1 (Chun et al., 2007) and EzTaxon-e server (Kim et al., 2012). 

The partial sequence of the 16S rRNA gene was blasted with the NCBI online database. The level 

of 16S rRNA gene sequence similarity between strain Cavy grass 6T (1412 bp) and the closest 

strain Streptococcus devriesei CCUG 47155T (1439 bp), obtained from the NCBI database, was 

calculated using the Bioedit sequence alignment editor (version 7.2.5) program (Hall, 1999). The 

two sequences were then aligned based on 1000 replications of the neighbour-joining tree using 

the clustal w multiple alignment option (Thompson et al., 1994). Following this, the sequences were 

trimmed, and later, the curated sequences (1387 bp) of both strains were used to calculate the 

sequence identity matrix, resulting in a 16S rRNA gene sequence similarity of 96.5 % to S. devriesei. 

The phylogenetic position of strain Cavy grass 6 T was studied by comparison with 16S rRNA gene 

sequences of related strains in the genus Streptococcus, using Enterococcus faecalis ATCC 

19433T as an outgroup, all deposited in the NCBI database. The 16S rRNA genes were aligned using 

the Clustal x program (Thompson et al., 1997) with Kimura’s two-parameter model (Kimura, 1980). 

The phylogenetic tree based on 16S rRNA gene sequences was reconstructed and implemented in 

the mega 5 programme (Tamura et al., 2011) using the neighbour-joining, maximum-parsimony 

(Saitou ans Nei, 1987) and maximum-likelihood (Felsenstein, 1981) methods as shown in Fig. S1. 

Tree topologies were determined using bootstrap analysis with 1000 repeats (Felsenstein, 1985) 

(Figs. 1 and S1). 
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Fig. 1. Phylogenetic relationships between strain Cavy grass 6T and related species in the 

genus Streptococcus based on 16S rRNA gene sequences (approximately 1360 nt) by the neighbour-

joining method. Bootstrap values, which were higher than 50 % based on 1000 replications, are 

shown at branch points. Filled circles indicate identical nodes generated by three methods 

(neighbour-joining, maximum-likelihood and maximum-parsimony). GenBank accession numbers 

of each strain are given in parentheses. Bar, 0.5 % sequence divergence. The tree presented is 

extracted from an extended version (Fig. S1). 

 

Phylogenetic analysis based on 16S rRNA gene sequence characterization showed that strain 

Cavy grass 6T belongs to the genus Streptococcus with its closest relative being S. devriesei CCUG 

47155T at only 96.5 % 16S rRNA gene sequence similarity, which was lower than the species 

delineation value of 98.65 % (Kim et al., 2014). 

Genome-based comparison tools (Rosselló-Móra and Amann, 2015) were applied to confirm 

the difference between strain Cavy grass 6T and the closest relative strain S. devriesei. We used the 

genome sequence of S. devriesei CCUG 47155T (Accession no. AUIN00000000) and the draft 

genome sequence of strain Cavy grass 6T (Accession no. MOWR00000000). 

ANI and dDDH values were calculated using the ANI and AAI calculators at http://enve-

omics.ce.gatech.edu/ani/ and Genome-to-Genome Distance Calculator (GGDC) web browser from 
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the DSMZ (Braunschweig, Germany), respectively. The ANI and dDDH values between strain Cavy 

grass 6T and S. devriesei CCUG 47155T were 86.8 and 33.3 %, lower than the cut-off values (95 and 

70 %, respectively) for species delineation (Rosselló-Móra and Amann, 2015; Goris et al., 2007). 

MLSA with two housekeeping genes, groEL (Chaperonin GroEL) and gyrA (DNA gyrase, 

subunit A), was performed between strain Cavy grass 6T and other Streptococcus species. MLSA-

based phylogenetic trees of both groEL and gyrA genes revealed the relationship between strain 

Cavy grass 6T and other Streptococcus species (Figs S2 and S3). All these genome-based 

comparisons reveal that strain Cavy grass 6T can be differentiated from other Streptococcus species. 

However, additional chemotaxonomic, biochemical and physiological analysis were performed. 

The DNA base composition (G+C content) of strain Cavy grass 6T was analyzed by HPLC 

(Tamaoka and Komagata, 1984) at the Deutsche Sammlung von Mikroorganismen und Zellkulturen 

GmbH (DSMZ). Strain Cavy grass 6T was grown in BMY-G at 37 °C for 48 h. Cell biomass was 

harvested by centrifugation at 4 °C at 15 317 g for 10 min. The DNA G+C content of strain Cavy 

grass 6T was 42.6±0.3 mol%. The DNA G+C content of strain Cavy grass 6T obtained from a genome 

calculation (RAST Server) was 42.3 mol%. This value lies within the range (33–46 mol%) of DNA 

G+C contents that have been described for other species within the genus Streptococcus (Whiley 

and Hardie, 2009). 

Cellular fatty acid and quinone composition analyzes of the cell wall of strain Cavy grass 

6 T were also carried out at the DSMZ. The cultures and cell biomass were obtained as described 

above for the G+C content analysis. The fatty acid composition of the closest relative, S. devriesei 

CCUG 47155T, was determined in parallel with Cavy grass 6T. The predominant cellular fatty acids 

of strain Cavy grass 6T (>10 % of the total) were C 16 : 0 (32.5 %), summed feature 8 (C 18 : 1ω7 c and/or 

C 18 : 1ω6 c) (30.3 %) and C 20 : 1ω9 c (12.6 %), similar to those of S. devriesei CCUG 47155T (Table 

S1). These patterns of major fatty acids were also found in other species of the genus such 

as Streptococcus downei and Streptococcus vestibularis (Whiley and Hardie, 2009). No respiratory 

https://doi.org/10.1601/nm.5605
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quinones were detected in strain Cavy grass 6T, which is also characteristic for the genus 

Streptococcus (Whiley and Hardie, 2009). 

The strain grew well on Reinforced Clostridial Medium (RCM; Difco) agar (1.5 %, w/v) 

medium and colonies of the strain were white, round with smooth margins, convex and 1–2 mm in 

diameter after 2 days at 37 °C under anaerobic conditions. Cell morphology was examined using 

phase-contrast microscopy (Leica DM 2000) and scanning electron microscopy (FEI Magellan 400). 

Cells were non-motile, oval-shaped and commonly present in pairs or chains, with single cells 

0.5×0.5–0.8 µm in size (Fig. S4). Gram staining was examined using standard methods (Plugge et 

al., 2000). Spore formation was determined with a Schaeffer and Fulton Spore Stain Kit (Sigma-

Aldrich) following the manufacturer’s instructions. Cells of strain Cavy grass 6T were Gram-stain-

positive and non-spore-forming. 

To determine the optimum pH, strain Cavy grass 6T was inoculated in Wilkins-Chalgren Broth 

(Oxoid) and the pH values of the medium were adjusted with NaOH and/or HCl. Triplicate bottles 

were used and incubated at 37 °C at a pH range of 4.0–10.0 at intervals of 0.5 pH units. Bottles were 

incubated for 2 weeks. The optimum temperature was determined in BMY-G at a temperature range 

of 4–60 °C with intervals of 5 °C, including at 37 °C. Bottles were incubated for 2 weeks. Strain 

Cavy grass 6 T was able to grow between pH 4.5 and 9.5 with an optimum at 8.0. The strain grew 

between 25 and 40 °C with an optimal temperature of 37 °C. 

Yeast extract (0.1 g l–1), l-cysteine (0.5 g l–1), haemin (5 mg l–1) and vitamin K 1 (0.05 g l–1) 

were tested separately as growth factors for strain Cavy grass 6T in BM-G at 37 °C for 14 days in 

duplicate bottles. Strain Cavy grass 6T grew without L-cysteine, haemin, vitamin K1 and yeast 

extract, but yeast extract at 0.1 g l–1 accelerated growth. The generation time of the strain when grown 

in BMY-G at 37 °C and pH 7.2 was 2.6 h. 
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Fermentation products and carbon balance were determined in cultures growing in BMY-G. 

The glucose fermentation molar stoichiometry of strain Cavy grass 6T was: 1 glucose → 1.1 lactate 

+ 0.7 formate + 0.3 acetate + 0.4 ethanol [concentrations of reactants (mM): 19.1 glucose → 21.2 

lactate + 12.5 formate + 5.7 acetate + 6.8 ethanol]. Carbon recovery was 90 % (without biomass). 

When calculating carbon recovery, we assumed no net CO2 is produced as the amount of formate 

matched the sum of acetate and ethanol. No H2 gas was detected. 

Oxygen tolerance was tested by growing strain Cavy grass 6T in BMY-G without reducing 

agent under aerobic conditions and with a cotton stopper. Two per cent of active inoculum (18–24 h) 

that was pre-grown in BMY-G was added and incubated at 37 °C. Growth was monitored using 

turbidity (OD600) measurements. Strain Cavy grass 6T was able to grow under these aerobic 

conditions after 3 days. This was confirmed by growing the strain on RCM agar plates under aerobic 

conditions. After 5 days, colonies of strain Cavy grass 6T appeared, which indicated that the strain 

was able to grow under aerobic conditions but slower than under anaerobic conditions and no 

respiration occurred. Therefore, we conclude that strain Cavy grass 6T is a facultatively anaerobic 

bacterium, and this is a characteristic of most streptococci. 

Salt tolerance of strain Cavy grass 6T was determined by growth in BMY-G with increasing 

salt concentrations of 0–7 % (w/v) NaCl at intervals of 0.5 %. The inoculated medium was incubated 

at 37 °C and the experiment was performed in triplicate. Growth was monitored using turbidity 

(OD600) and organic acid production. Strain Cavy grass 6T tolerated up to 4.5 % (w/v) NaCl. 

Haemolytic activity was determined on trypticase soy agar (TSA) medium supplemented 

with 5 % sterile horse blood (added after autoclaving). A culture of strain Cavy grass 6T was tested 

and incubated under both aerobic and anaerobic conditions at 37 °C for 2–5 days. Colonies 

developed normally, and no haemolysis was observed. 



Chapter 6  
 

 

162 

 

Lancefield grouping of streptococci was performed using PathoDxtra Strep Grouping Kit 

(Thermo Scientific) at Medisch Microbiologisch Laboratorium (MML) of Hospital ‘de Gelderse 

Vallei’ (Ede, The Netherlands). Strain Cavy grass 6T tested negative for all Lancefield group antisera 

(groups A, B, C, D, F and G). This negative result also confirmed that strain Cavy grass 6T does not 

belong to the beta-haemolytic streptococci. 

The three most closely related species (based on 16S rRNA gene sequence 

comparisons), Streptococcus devriesei CCUG 47155T, Streptococcus ratti ATCC 19645T and   

Streptococcus ursoris NUM 1615T, together with strain Cavy grass 6T, were grown in BMY-G at 

37 °C for 24 h before testing with commercial API identification (test kits) systems (bioMérieux). 

Carbon assimilation and acid production from different carbohydrates were examined using API 50 

CH and Rapid ID 32 STREP kits. Enzyme activity was profiled using Rapid ID 32 STREP and API 

ZYM kits. All tests were performed in duplicate following the manufacturers' instructions. Selected 

results that differentiate the strains are shown in Table 1. Additionally, fermentation tests of 20 mM 

cellobiose, d-glucose, 0.5 % (w/v) CM-cellulose, cellulose (CC41; Whatman), crystalline cellulose, 

dried grass, inulin, laminarin, lignin, pectin, soluble starch and xylan were tested with strain Cavy 

grass 6 T and the type strains of S. devriesei, S. ratti and S. ursoris in liquid culture with BMY 

medium. With strain Cavy grass 6T and S. devriesei, 20 mM d-arabinose, d-arabitol, l-arabitol, 

dulcitol, d-fructose, d-galactose, dl-lactate, maltose, d-mannitol, d-mannose, raffinose, d-ribose, 

sucrose, d-sorbitol, l-sorbose, trehalose, xylitol, d-xylose and starch waste were tested in liquid 

culture with BMY. Cellulose-degrading properties, which we were looking for by studying guinea 

pig fecal samples, have not been found in this strain, nor in the three reference strains. The primary 

enrichment was performed with dried grass as the sole carbon source, and therefore strain Cavy 

grass 6T most probably uses the extracted products from the process of either cutting or autoclaving 

the grass as it could also grow in the grass extract after cutting and filtration through a 0.2 µm sterile 

filter (Table S2). 
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Strain Cavy grass 6T was able to grow on 20 mM d-arabitol, cellobiose, dulcitol, d-

fructose, d-galactose, d-glucose, maltose, d-mannitol, d-mannose, raffinose, sucrose, d-sorbitol, l-

sorbose and trehalose, and 0.5 % dried grass extract and inulin. The nature and ratio of organic acids 

produced differed depending on the substrate (Table S2). Results of API 50 CHB tests are shown in 

Table S3. 

Based on the biochemical, physiological, chemotaxonomic and phylogenetic characteristics, 

strain Cavy grass 6T can be distinguished from other members of the genus Streptococcus. We 

suggest that strain Cavy grass 6T represents a novel species of the genus Streptococcus, 

family Streptococcaceae, order Lactobacillales, for which the name Streptococcus caviae sp. nov. is 

proposed. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6  
 

 

164 

 

Table 1. Selected characteristics that differentiate strain Cavy grass 6T from related species strains: 

1, Cavy grass 6T; 2, S. devriesei CCUG 47155T; 3, S. ratti ATCC 19645T; 4, S. ursoris NUM 1615T. 

All data were obtained in this study except where indicated. +, Positive; –, negative; w+, weakly 

positive; nr, not reported. 

 

Characteristic Cavy grass 6T S. devriesei S. ratti S. ursoris 

Origin  Guinea pig 

feces 

Horse teetha† Rat, human 

mouthb† 

Bear mouthc† 

Gram-stain  + +a† +b† +c† 

Cell size (µm) 0.2 x 0.2-0.7 nr 0.5b† 0.5-0.7c† 

Temperature range/ Optimum (oC) 25-40/37 nr/nr nr/nr nr/nr 

pH range / Optimum 4.5-9.5/8.0 nr/nr nr/nr nr/nr 

G+C content (mol%) 42.6+0.3 42.0 a† 41-43 b† 34 c† 

Urease + - w+ w+ 

Fermentation products from glucose# L, A, F, E L, A, F, E L, a, f, e L, a, F, E 

Fermentation of substrates:      

   D-Arabitol + + w+ - 

   Dulcitol + + - - 

   Methyl-αD-mannopyranoside - - w+ - 

   Potassium gluconate + + - - 

   D-Ribose - - w+ - 

   L-Sorbose + - - - 

Acidification from:     

   D-Arabitol + -  - - 

   D-Melibiose + - - -  

   D-Melezitose + -  -  -  

   Methyl-βD glucopyranoside + + + -  

   D-Sorbitol + + -  -  

Enzyme activities:     

   α-Glucosidase + - + + 

   β-Mannosidase w+ w+ - - 

   Lipase (C14) + + - - 

 

All data were obtained in this study except †) taken from; a, Collins et al., 2004; b, Whiley & Hardie, 2009; c, 

Shinozaki-Kuwahara et al., 2011.  

 +, positive; –, negative; w+, weakly positive; nr, not reported #, L, Lactate; A, Acetate; F, Formate; E, Ethanol (small 

letter indicates minor amount (< 1 mM)) 

 

Description of Streptococcus caviae sp. nov. 

Streptococcus caviae (ca′vi.ae. N.L. gen. n. caviae of Cavia or a guinea pig). 

Cells are 0.5×0.5–0.8 µm in size and appear coccus- or oval-shaped (Fig. S4). Colonies on 

RCM agar are white, circular, convex, with smooth margins and 1–2 mm in diameter after 48 h of 
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growth. Gram-stain-positive, non-motile, non-spore-forming, and catalase- and oxidase-negative. 

Grows at 25–40 °C (optimum 37 °C) and at pH 4.5–9.5 (optimum 8.0). The generation time is 2.6 h 

in BMY-G at 37 °C and pH 7.2. Facultatively anaerobic. Able to ferment d-arabitol, cellobiose, 

dulcitol, d-fructose, d-galactose, d-glucose, maltose, d-mannitol, d-mannose, raffinose, sucrose, d-

sorbitol, l-sorbose, trehalose, dried grass extract and inulin, but could not use d-arabinose, l-

arabitol, dl-lactate, d-ribose, xylitol, d-xylose, CM-cellulose, cellulose (CC41), crystalline cellulose, 

laminarin, lignin, pectin, soluble starch, starch waste or xylan as substrates in anaerobic bottles 

(Table S2). In API 50 CHB tests, produces acid from N-acetylglucosamine, amygdalin, d-arabitol, 

arbutin, dulcitol, aesculin ferric citrate, d-fructose, gentiobiose, d-lactose, melibiose, potassium 

gluconate, salicin and d-tagatose (Table S3). In Rapid ID 32 STREP tests, positive for α-

galactosidase, β-glucosidase, alanyl-phenylalanyl-proline arylamidase, arginine dihydrolase, 

acetoin production (Voges–Proskauer reaction), melezitose and methyl β -d-glucopyranoside and 

weakly positive for β-mannosidase and hydrolysis of hippurate (Table S4). In API ZYM tests, also 

positive for α-glucosidase, acid phosphatase, cystine arylamidase, esterase (C4), esterase lipase 

(C8), lipase (C14), leucine arylamidase and naphthol-AS-BI-phosphohydrolase, and weakly positive 

for valine arylamidase (Table S5). 

The type strain, Cavy grass 6T (= TISTR 2371T = DSM 102819T), was isolated from fecal 

samples of guinea pigs in the Netherlands. The DNA G+C content of the type strain is 42.6±0.3 

mol%. 
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Supplmentary data 

 Table S1.  Cellular fatty acid composition of strain Cavy grass 6T and Streptococcus devriesei CCUG 47155T. Values 

are percentages of total fatty acids. Fatty acids present at less than 0.5% in both strains are not shown. Major fatty 

acids (>10%) are in bold.  

Cellular fatty acids (%) Cavy grass 6T S. devriesei 

Saturated acids     

 C12:0  0.7 0.2 

 
C14:0  2.8 0.8 

 
C16:0  32.5 27.0 

 
C18:0 7.8 9.3 

      C20:0 0.5 0.6 

Unsaturated acids   

 C16 :1ω5c 0.9 0.7 

 C16 :1ω9c 3.1 2.8 

 C18 :1ω5c 1.2 1.3 

 
C18 :1ω9c 4.8 5.3 

 
C20 :1ω7c 1.1 1.5 

 
C20 :1ω9c 12.6 15.3 

Summed features*   

 3  - 0.8 

  8  30.3 33.7 

 

*Summed features refer to chromatographic peaks of fatty acids groups that were not separated.  

  Summed features 3 contained C16:1ω7c and/or C16 isoω6c and summed features 8 contained C18:1ω7c and/or C18:1ω6c. 
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Table S2. Physiological characteristics of strain Cavy grass 6T, Streptococcus devriesei CCUG 47155T, Streptococcus 

ratti ATCC 19645T, and Streptococcus ursoris NUM 1615T from different substrates.  

Characteristic / Strain Cavy grass 6T S. devriesei S. ratti S. ursoris 

    Carboxymethyl cellulose - - - - 

    Cellulose (CC41) - - - - 

    Crystalline cellulose - - - - 

    Dried grass extract l, a, f# l, a, f l, a, f l, a, f 

    Inulin L, A, F, E L, a, F, E L, a, e L, A, F, E 

    Laminarin  - - - - 

    Lignin - - - - 

    Pectin - - - - 

    Soluble starch - - - - 

    Starch waste - - nd nd 

    Xylan - - - - 
     

    D-Arabinose - - nd nd 

    D-Arabitol L, A, F, E L, A, F, E nd nd 

    L-Arabitol - - nd nd 

    D-Cellobiose L, A, F, E L, a, F, e L, A, F, e L, A, F, e 

    Dulcitol l, a, F, E l, A, F, e nd nd 

    D-Fructose  L, a, f L, a, f nd nd 

    D-Galactose  L, A, F, E L, A, F, E nd nd 

    D-Glucose L, A, F, E L, A, F, E L, a, f, e L, a, F, E 

    D, L-Lactate - - nd nd 

    D-Maltose  L, a, F, e L, F nd nd 

    D-Mannitol L, A, F, E L, a, F, E nd nd 

    D-Mannose L, A, F, E L, A, F, e nd nd 

    D-Raffinose  L, a, F, e L, a, f, e nd nd 

    D-Ribose  - - nd nd 

    D-Saccharose  L, a, F, e L, f nd nd 

    D-Sorbitol L, A, F, E L, a, F, E nd nd 

    L-Sorbose L, A, F, E - nd nd 

    D-Trehalose L, a, f  L, f nd nd 

    Xylitol - - nd nd 

    D-Xylose - - nd nd 

 

All data were obtained in this study.   –, negative; nd, not determined 

#, L, Lactate; A, Acetate; F, Formate; P, propionate; E, ethanol (small letter indicates minor amount (<1 mM)) 
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Table S3. Characteristics of strain Cavy grass 6T, Streptococcus devriesei CCUG 47155T, Streptococcus ratti ATCC 19645T and 

Streptococcus ursoris NUM 1615T from the API 50 CH test. Differences between the strains are highlighted. 

Characteristic / Strain Cavy grass 6T S. devriesei   S. ratti S. ursoris  

Fermentation of substrates:     

N-Acetylglucosamine + + + + 

D-Adonitol - - - - 

Amygdalin + + + + 

D-Arabinose - - - - 

L-Arabinose - - - - 

D-Arabitol w+ w+ w+ - 

L-Arabitol - - - - 

Arbutin + + + + 

D-Cellobiose + + + + 

Dulcitol + + - - 

Esculin ferric citrate + + + + 

Erythritol - - - - 

D-Fucose - - - - 

L-Fucose - - - - 

D-Fructose + + + + 

D-Galactose + + + + 

Gentiobiose + + + + 

D-Glucose + + + + 

Glycerol - - - - 

Glycogen - - - - 

Inositol - - - - 

Inulin - + - - 

D-Lactose + + + + 

D-Lyxose - - - - 

D-Maltose + + + + 

D-Mannitol + + + + 

D-Mannose + + + + 

D-Melezitose - - - - 

D-Melibiose + + + + 

Methyl-αD-glucopyranoside - - - - 

Methyl-αD-mannopyranoside - - w+ - 

Methyl-βD-xylopyranoside - - - - 

Potassium gluconate + + - - 

Potassium 2-ketogluconate - - - - 

Potassium 5-ketogluconate - - - - 

D-Raffinose + + + + 

L-Rhamnose - - - - 

D-Ribose - - w+ - 

D-Saccharose (sucrose) + + + + 

Salicin + + + + 

D-Sorbitol + + + + 

L-Sorbose w+ - - - 

Starch - - - - 

D-Tagatose + + + + 

D-Trehalose + + + + 

D-Turanose - - - - 

Xylitol - - - - 

D-Xylose - - - - 

L-Xylose - - - - 

 

All data were obtained in this study.  +, positive; –, negative; w+, weakly positive 
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Table S4.  Characteristics of strain Cavy grass 6T, Streptococcus devriesei CCUG 47155T, Streptococcus ratti ATCC 

19645T and Streptococcus ursoris NUM 1615T from the Rapid ID 32 STREP test.  

Differences between the strains are highlighted.  

 

Characteristic / Strain Cavy grass 6T S. devriesei   S. ratti  S. ursoris 

α-Galactosidase + + + + 

ß-Galactosidase  - - -  -  

(2-naphthyl- ßD-galactopyranoside)    

ß-Galactosidase  - - -  -  

(resorufin-ßD-galactopyranoside)     

ß-Glucosidase + + + + 

ß-Glucuronidase - - - - 

β-Mannosidase w+ w+ - - 

N-acetyl-ß-glucosaminidase - - - - 

Alanyl-phenylalanyl-proline 
arylamidase 

+ + + + 

Alkaline phosphatase  - - - - 

Arginine dihydrolase + + + + 

Glycyl-tryptophan arylamidase -  - - - 

Pyroglutamic acid arylamidase - - - - 

Acetoin production             
(Voges Proskauer) 

+ + + + 

Hydrolysis of hippurate w+ + w+ w+ 

Urease + - w+ w+ 

Acidification from:     

   D-Arabitol + -  -  -  

   L-Arabinose    - - -  - 

   α-Cyclodextrin  -  - -  - 

   Glycogen  - - - -  

   D-Lactose  + + + + 

   D-Maltose  + + + + 

   D-Mannitol  + + + + 

   D-Melibiose  + -  -  -  

   D-Melezitose + -  -  -  

   Methyl-βD glucopyranoside  + + +                  -  

   Pullulan -  -  -  -  

   D-Raffinose  + + + + 

   D-Ribose - - - - 

   D-Saccharose (sucrose)  + + + + 

   D-Sorbitol + + - - 

   D-Tagarose -  + w+ + 

   D-Trehalose + + + + 

 

All data were obtained in this study.  +, positive; –, negative; w+, weakly positive 
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Table S5. Characteristics of strain Cavy grass 6T, Streptococcus devriesei CCUG 47155T, Streptococcus ratti ATCC 

19645T and Streptococcus ursoris NUM 1615T from the API ZYM test. Differences between the strains are highlighted.  

Characteristic / Strain Cavy grass 6T S. devriesei   S. ratti S. ursoris  

α-Chymotrypsin - - - - 

α-Galactosidase - - - - 

ß-Galactosidase - - - - 

α-Glucosidase + - + + 

ß-Glucosidase + + + w+ 

ß-Glucuronidase - - - - 

α-Fucosidase - - - - 

α-Mannosidase - - - - 

N-acetyl-β-glucosaminidase - - - - 

Acid phosphatase + + + + 

Alkaline phosphatase - - - - 

Cystine arylamidase + + w+ w+ 

Esterase (C4) + + + w+ 

Esterase lipase (C8) + + + w+ 

Lipase (C14) + + - - 

Leucine arylamidase + + + + 

Naphthol-AS-BI-phosphohydrolase + + + + 

Trypsin - - - - 

Valine arylamidase w+ + w+ w+ 

 

All data were obtained in this study.   +, positive; –, negative; w+, weakly positive 
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Fig. S1. Phylogenetic relationships between strain Cavy grass 6T and related species in the genus Streptococcus based on 16S rRNA 

gene sequences (approx. 1360 nucleotides) by the neighbor-joining method. Bootstrap values, which were higher than 50 % based on 

1000 replications, are shown at the branching points. Enterococcus faecalis ATCC 19433T was used as an out group. Filled circles 

indicate identical nodes generated by three methods (neighbor-joining, maximum-likelihood and maximum-parsimony). Gen Bank 

accession numbers of each strain are given in parentheses.  Bar, 1 % sequence divergence.   
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Introduction  

       

       There is considerable interest in the anaerobic digestion of organic waste into biogas 

and/or other economically relevant compounds, such as organic acids and biofuels, to close the 

carbon cycle. The hydrolysis step in this process is considered to be the rate-limiting step and hence 

substantial attention has been given to pre-treatment methods of physical, chemical, thermal and/or 

biological or enzymatic nature. These are applied to increase the hydrolysis rate, the overall biogas 

yield, and to increase the surface area accessibility of substrates for fermentative microorganisms as 

well as the anaerobic digestion efficiency (Monlau et al., 2013). Pre-treatment methods are applied 

depending on the different types of biomass and also result in different costs (Bosma et al., 2013). 

Organic acids, such as lactate, succinate, ethanol and acetate, are intermediate fermentation products 

that are formed after the acidogenesis step. The use of mixed microbial cultures for the fermentation 

of biopolymers into organic acids may also reduce the pre-treatment and hydrolysis costs. These 

strategies are embedded in the carboxylate platform which converts waste and/or biomass to produce 

carboxylates, including organic acids using anaerobic mixed cultures (Tamis et al., 2015; Agler et 

al., 2011).The carboxylate platform is environmental friendly not only helping to manage the organic 

waste problem by using as substrates but also producing organic acids which can further be applied 

to form chemicals and fuels to replace the use of fossil reserves and consequently lowering CO2 

emission to the atmosphere. A similar system has been developed in nature in the rumen of cows 

and other herbivores and it has been established that the rumen is an excellent source of fermentative 

microorganisms with high hydrolytic activity.  

In Chapter 2 starch waste and rumen fluid inocula were applied to investigate the conversion 

of organic waste to valuable products such as organic acids without a pre-treatment step. Organic 

acid production was studied in ex-situ conditions by using two different types of inoculum: i) rumen 

fluid from dairy cows from the Netherlands and Thailand and ii) fecal samples from two male 

domestic guinea pigs (Chapter 2 and 5). Foregut and hindgut animals in general have similar diets 
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(grass or hay) but have a difference in the anatomy of their digestive track. Three novel gut bacteria 

(originating from cow, sheep and guinea pig) have been characterized and identified by the 

morphological, physiological chemical and genomic characteristics. Actinomyces succiniciruminis 

and Actinomyces glycerinitolerans were distinguished and presented in Chapter 3 and 

Streptococcus caviae was described in Chapter 6. The three novel bacteria that were obtained may 

be used for biotechnological organic acid production from organic materials in the future. 

Especially, the ability of A. succiniciruminis to form succinate as a main product in the fermentation 

of starch waste offers perspectives, when through genetic engineering the succinate yield can be 

further enhanced (Chapter 4).   

 

Substrate and inoculum in anaerobic reactor 

The type and the composition of the diet have a large impact on the microbial composition 

in the rumen as shown by the different microbial community of the Dutch and Thai rumen inoculum 

(Chapter 2). Similarly, the substrate determines the microbial community in the reactors as shown 

in Chapter 2 where starch waste enhanced the growth of lactic acid bacteria (LAB) especially 

members of the genus Streptococcus in the first stage of the fermentation resulting in lactate 

production. The microbial community changed in the second stage of the fermentation for both 

rumen inocula and the organic acid production profiles in both reactors were different.  

The source of inoculum is also very important as shown in the Chapters 2 and 5 where two 

sources of gut inocula (rumen fluids and guinea pig fecal samples) were enriched on starch waste 

(0.5% w/v). We observed lactate to be the first primary product of starch waste fermentation by 

rumen microorganisms (Chapter 2). In contrast, acetate was the primary product of hindgut 

(caecum) microorganisms when degrading the same starch waste (Chapter 5). In another recent 

study with granular sludge from up-flow anaerobic sludge blanket (UASB) reactor treating potato 

factory waste, acetate was the major product formed from starch waste (Arslan et al., 2017). Our 
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results show that it is feasible to obtain robust lactate production from starch waste by rumen 

microorganisms. However, it is challenging to further optimize this lactate production (Chapter 2).  

 When we analyzed the microbial communities involved in these starch waste and dried grass 

conversions, marked differences were observed that may explain the observed different key 

metabolites (Fig. 1). In the Fig. 1, the dominant microbial groups obtained from two different type 

inocula (rumen fluids and guinea pig fecal samples) are presented and the enrichment of selected 

substrates as well as the routes of isolated novel bacteria. This relates to the microbial inocula that 

are different and the microbial composition in the inocula were related to their animal feeds. For 

example, we only found Acetobacter and Lactobacillus members in the Thai rumen sample as the 

cows were fed with pineapple peel but was not detected in the Dutch rumen fluid. Various lactic 

acid bacteria including Lactobacillus were isolated from pineapple and acetic acid bacteria such as 

Acetobacter spp. are the cause of marbling disease; one of the common diseases in pineapple (Sipes 

et al., 2017) (Chapter 2). Members of the genus Fibrobacter, a well-known of cellulose degrader, 

were highly presented in the guinea pig fecal inoculum and the guinea pigs were fed mainly with 

fiber materials. In the starch waste enrichment, this substrate enriched lactic acid bacteria especially 

Streptococcus in both reactors (Dutch and Thai) even though it was abundant only less than 1% in 

both inocula.  
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Fig. 1. Relationship of animal feed and principal microbial composition in guts (cow rumen and 

guinea pig fecal samples) and in the substrate enrichments (starch waste, amylopectin or dried grass). 

Capital letters mean taxonomic rank: P; phylum, C; class, O; order, F; family and G; genus.  

 

In conclusion, substrate or diet drives the microbial community and the microbial community 

determines the organic acid production profile in the fermentation process and later the products 

regulate the microbial composition in the habitat. Therefore, substrate and inoculum selection are 

important factors in the carboxylate platform. This confirms an earlier suggestion that selection of 
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substrate and microbial inoculum are important to achieve the efficient fermentation of turning 

renewable materials to valuable products (Wang et al., 2015).  

Starch waste as source for organic acid production 

Lactate has been produced by microorganisms at industrial scale for many years. It has been 

reported that the costs of raw materials contribute for approximately one third of the total 

manufacturing cost of bio-based lactate (Wang et al., 2015). In the current first-generation bio-

lactate processes, edible biomass such as corn, tapioca, sugar cane and sugar beet are used as 

substrates to generate fermentable sugars (glucose and sucrose) for lactic acid bacteria (Bosma et 

al., 2013). Lactic acid bacteria are very efficient lactate producers, but they are usually fastidious 

and require mono-sugars which come from the biomass after the pre-treatment method. Renewable 

materials such as lignocellulose and starch are considered as an attractive substrate for organic acid 

production as they have zero or low value. Pre-treatment steps either by physical and/or chemical 

for lignocellulose for instant, is needed to make the (hemi) cellulose available for the 

saccharification step.  Later the (hemi) cellulose polymers will be saccharified to monomeric sugars 

by enzymes and then will be fermented by microorganisms into products. In the case that that 

saccharification and fermentation occur in the same reactor these processes can be characterized into 

consolidated bioprocessing (CBP) or simultaneous saccharification and fermentation (SSF) (Bosma 

et al., 2013). In CBP microorganisms produce all necessary enzymes to hydrolyze the pre-treated 

biomass without additional enzyme requirement, whereas in SSF saccharification and fermentation 

are carried out in one reactor but requires addition of the hydrolysis enzymes to hydrolyze the 

biomass into mono-sugars (Bosma et al., 2013). The advantage of starchy waste over cellulose 

materials is that it is easier hydrolyzed to glucose. Starch is the world’s second-most abundant 

carbohydrate, after cellulose, resulting in a large amounts of starch waste or starch residues 

worldwide. Various plants contain mainly starch such as potatoes and cassava, or seeds of grains 

such as wheat, corn and rice. Potato waste is used as animal feed or to produce compost, but still 
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much of it is discharged as waste (Suzuki et al., 2010). Starchy waste contains high amounts of 

carbohydrates (Chapter 2) which are suitable as growth substrate for microorganisms (Rakshit, 

2004). In many starch fermentation studies using undefined mixed cultures, lactate is often reported 

as main product. For instance, in potato peel waste fermentation (Liang et. al, 2014; Liang et. al, 

2015) and maize silage fermentation (Sträuber et. al, 2012). As previously mentioned, the often-

encountered bottleneck for bio-based lactate production from renewable materials is the costs of 

pre-treatment (Wang et al., 2015). We demonstrated that starch waste from a potato factory is 

suitable as an alternative substrate for fast organic acid production, especially lactate production, 

which occurs within one day using rumen inocula in batch reactors without the pre-treatment 

(Chapter 2). Lactate in nature, occurs in two optical isomers; D (-)- and L (+)- forms. Bio-lactate 

from microbial fermentation method is preferable over the synthesized lactate derived from 

petroleum resources due to the purity of lactate as the chemical synthesis always results in a racemic 

mixture of DL-lactate whereas optically pure D (-)- or L (+)-lactate can be obtained from the 

microbial fermentation (Wang et al., 2015). Among these two racemic forms, L (+)-lactate is 

preferred for the food and drug industries as only this isomer is adapted to be assimilated by the 

human body (Wang et al., 2015). Besides using mixed microorganisms to reduce the pre-treatment 

cost, exploring the microorganism that can directly utilize the biomass and/or less growth 

requirement is desirable. For example, in Chapter 4, Actinomyces succiniciruminis that isolated 

from the enrichment of amylopectin as shown in Fig. 1, could produce succinate directly from fresh 

starch that was only supplemented with some bicarbonate.  

Organic acid production from three sources: rumen of Thai and Dutch cows and guinea pig 

guts 

 Herbivorous mammals including ruminants and rodents consume plant material as their main 

feed. Mammalian themselvescannot the complex substances, and therefore rely on the 

microorganisms in their gut to digest the food for survival (Flint et al., 2012).  Foregut fermenters 
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(ruminants) such as cows and sheep gain energy by consuming the microbial protein and organic 

acid produced by the anaerobic microorganisms in their guts (Flint et al., 2012). Hindgut fermenters 

or monogastric herbivores, such as horses and rodents benefit from the digestion and fermentation 

by microbes in their guts located in the enlarged cecum and proximal colon. Those microorganisms 

in foregut and hindgut digest and ferment the feed (plant cell walls) and form mainly organic acids 

such as acetate, lactate, propionate and butyrate. Yu et al. (2000) reported that the pattern of organic 

acids obtained from fecal and colon-rectal contents of ten guinea pigs was similar to that of rumen; 

acetate was the main product followed by propionate and then butyrate (Table 1) (Yu et al., 2000). 

However, this pattern is different for rodents (rats, hamsters and rabbits) where butyrate was higher 

than propionate (Yu et al., 2000). The difference of the major microbial groups between these two 

animals could not be traced back, because there was no microbial analysis in this work. In the 

bioreactors (ex-situ conditions) described in Chapter 2, the acetate:propionate:butyrate molar ratio 

(mol %) from both reactors at day 1 are shown in Table 1 comparing with those ratio obtained from 

cow fed with high and low grain diets (Yu et al., 2000) and the from two fermented positions of 

guinea pig gut (Sofyan et al., 2017). The acetate:propionate:butyrate ratio  in the reactor with Thai 

rumen fluid was similar to the percent ratio of the cows fed with grain diet as reported with 40:37:20 

and when the cows were fed with hay diet the ratio was 65:20:12 (Chiba, 2014).  

Table 1 Comparison of the organic acids (mol %) production in reactors, foregut and hindgut  

Mole % of 

organic acid 

Starch waste fermentationa Dairy cows (Foregut)b Guinea pigs (Hindgut)c 

Dutch 

reactor  

Thai 

reactor 

Low-yield 

rumen 

High-yield 

rumen Caecum 

 Colonic-

rectum 

Acetate (C2) 89.2 + 0.1 71.0 + 0.1 69.5 + 3.8 71.0 + 2.1 57.1 + 3.4 58.3 + 10.1 

Propionate (C3) 6.7 + 0.1 15.7 + 0.1 18.2 + 1.2 17.6 + 1.0 24.3 + 3.2 20.9 + 4.8 

Butyrate (C4) 4.0 + 0.1 13.3 + 0.1 12.3 + 2.7 11.4 + 1.6 16.1 + 1.9 17.8 + 7.7 

 

a, b and c obtained from Palakawong Na Ayudthaya et al., 2018 (Chapter 2), Sofyan et al., 2017 and 

Yu et al., 2000, respectively.   
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 There are many factors that determine the organic acid production profiles such as the animal 

diet, the type of animal, animal individuality and food digestion system. Cows or ruminants re-chew 

by re-taking their diet from their stomach back in their mouth, whereas guinea pigs eat their own 

feces (coprophagy). One of the main factors that determines the organic acid production profiles is 

the microbial community in those habitats. Please note that it is likely that calves are first inoculated 

the microbial community by their mother (de Vos 2013).  

At the phylum level, the microbial community of all three studied gut microbiomes shared 

three phyla; Firmicutes, Bacteroides and Cyanobacteria, and these three phyla together was the 

majority of the microbiome (93%, 78%, 78% and 84% relative abundances in Dutch rumen fluid, 

Thai rumen fluid, Guinea pig fecal sample 1 and Guinea pig fecal sample 2, respectively) (Fig. 2). 

Unclassified groups (in average 4% relative abundance) were detected only in the guinea pig fecal 

samples indicating that as-yet-uncultivated bacteria are present in this source. On the other hand, 

Candidate division TM7 was detected in the rumen fluid in small amount (in average 0.9% relative 

abundance).  

The organic acid production profiles resulting from starch waste fermentation by rumen and 

guinea pig fecal samples were different. These may be the result of the different microbial 

community in rumen and guinea pig fecal samples. In the starch waste fermentation using rumen 

fluid as inoculum, lactic acid bacteria especially belonging to the genus Streptococcus played an 

important role in lactate production (Chapter 2) whereas using guinea pig fecal samples as 

inoculum, members of Bacteroides, Prevotella and Blautia were abundant. These may be 

responsible for the observed acetate production (Chapter 5). 
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Fig. 2 Relative abundance of gut microorganisms (at phylum level). Note: The microbial 

composition in Dutch and Thai rumen fluid was determined by 16S rRNA amplicon pyrosequencing 

(Chapter 2) whereas the microbial composition of Guinea pig fecal sample 1 and 2 was determined 

by 16S rRNA amplicon Miseq sequencing (Chapter 5). Capital letters mean taxonomic rank: K; 

Kingdom and P; phylum. The major phylum-level phylogenetic groupings from all samples were 

alphabetically listed as a – g. 
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in the Fig. 1. Two strains belonging to the genus Actinomyces are described: A. succiniciruminis 

strain Am4T isolated from Holstein cow rumen fluid in the Netherlands with amylopectin as 

K__Archaea; P__Euryarchaeota K__Bacteria; P__Actinobacteria

K__Bacteria; P__Bacteroidetes K__Bacteria; P__Chloroflexi

K__Bacteria; P__Cyanobacteria K__Bacteria; P__Elusimicrobia

K__Bacteria; P__Fibrobacteres K__Bacteria; P__Firmicutes

K__Bacteria; P__Lentisphaerae K__Bacteria; P__Planctomycetes

K__Bacteria; P__Proteobacteria K__Bacteria; P__Spirochaetes

K__Bacteria; P__Tenericutes K__Bacteria; P__Verrucomicrobia

TM7 Phylogenetic groups that contribute less than 1%

Unclassified

Dutch rumen fluid      Thai rumen fluid    Guinea pig fecal sample 1    Guinea pig fecal sample 2  

a 

b 

e 

a 

a 
a 

b 

b b 

(b) 

(c) 

(f) 

c 

(a) 

(e) 

(d) 

(g) 

(h) 

d f 

h 

g g 



General discussion 
 

 

183 

 

substrate and A. glycerinitolerans strain G10T isolated from sheep (Slovenskè merino breed) with 

glycerol (Chapter 3). The third novel strain belongs to the genus Streptococcus and was named S. 

caviae (Cavy grass 6T). It was isolated from guinea pig fecal samples and enriched with dried grass 

as substrate (Chapter 5 and 6). As previously mentioned, bio-based succinate is one of the top 10 

important organic acids for further use in the chemical industry. Both Actinomyces strains are rather 

robust as they tolerate adverse conditions such as at high level of O2 (20% v/v) and glycerol (up to 

25% w/v) and they are to convert starch waste to succinate as product without pretreatment 

(Chapter 3). Therefore, A. succiniciruminis was further studied to optimize succinate production 

from starch waste (Chapter 4). S. caviae strain Cavy grass 6T, a facultatively anaerobic bacterium 

utilizes and ferments a range of plant mono- and disaccharides as well as polymeric carbohydrates, 

including cellobiose, dulcitol, inulin, and dried grass extract. It forms lactate, formate, acetate and 

ethanol as main products (Chapter 6). All three novel isolated species directly converted the 

complex polymeric substrates to organic acids in one-step fermentation and no requirement of 

additional hydrolytic enzymes are required. Therefore, the novel strains are promising to consider 

as catalysts for biotechnological applications.  

The genus Actinomyces and A. scucciniciruminis 

It has been well acknowledged of the many remarkable characteristics of Actinobacteria such 

as production of antibiotics and/or secondary metabolites. Genus Actinomyces is a member of the 

Actinobacteria phylum and has many interesting characteristics for future application. For instance, 

A. succiniciruminis could utilize various substrates such as mono- di- and poly substrates including 

amylopectin, cellobiose, inulin, pectin, soluble starch, starch waste and xylan to mainly succinate, 

lactate and small amount of formate and acetate. However, not all members of Actinomyces can 

utilize the variety of carbohydrate, it is depended on the species differences. Genus Actinomyces is 

a mixed acid-producing bacterium. Not all Actinomyces spp. can utilize starch to organic acids and 

the end fermentation products from glucose are vary in the type and amount of acids (Schaal, 
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and Yassin, 2012). For instant, Woo et al. reported that A. hongkongensis cannot produce acid from 

glucose and seems to be completely an asaccharolytic species (2003). The other example is A. 

nasicola that can produce acid from cellobiose, fructose and glucose but not form a large variety of 

carbohydrates (Hall et al., 2003). Moreover, we found an ADP-dependent glucokinase or ADPGK 

gene that uses ADP to convert glucose into glucose-6-phosphate encodes in the genome of strain 

Am4. Normally, other bacteria use ATP to convert glucose into glucose-6-phosphate. We also found 

this gene in the closely related Actinomyces such as in A. glycerinitolerans, A. ruminicola, A. israelii 

and A.  massiliensis but the percent of sequence similarity are quite low (91, 81, 64 and 62%, 

respectively). Using ADPGK instead of ATPGK in this step may help the cell to conserve energy. 

Chapter 4 describes that the strain in this genus could utilize starch waste and result mainly 

succinate in the conditions without medium (only supplemented with phosphate and bicarbonate) 

that is an interesting feature for biotechnological approach. Since the strain Am4T is 

heterofermentative, genetic engineering is an interesting approach to further optimize SA production 

by block or reduce other organic acid products. Based on our knowledge, there is no genetic system 

reported for any Actinomyces species up to now. In 2015, Tong and others successfully developed a 

CRISPR-Cas 9 system to engineer the Actinomycetal genomes (Actinomycetales is the taxonomic 

order level of genus Actinomyces) (Tong et al., 2015). Moreover, other studies of Cobb and others 

and Huang and others proved that CRISPR/Cas9-mediated genome editing could be applied for 

multiplex editing of the Streptomyces genome and is promising for genome-modified application in 

Actinomyces species (Cobb et al., 2014; Huang et al., 2015). The development of these genome 

editing systems may accelerate genetic engineering in the genus Actinomyces and lead to an 

engineered A. succiniciruminis strain Am4T to give even higher succinate yields from starch waste 

fermentation.  
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The genus Streptococcus and S. caviae  

More than 100 species are presently included in the genus Streptococcus. Members of this 

genus have been found in broad habitats including human and many other animals where they reside 

notably in the oral or gastrointestinal (GI) tract. The predominant fermentation product from 

carbohydrate of all streptococci is lactate while small amounts of acetate, formate, ethanol and CO2 

are produced (Whiley and Hardie, 2009). Not all Streptococcus species can utilize cellebiose, such 

as S. downei, S. oligofermentans and S. oralis (Whiley and Hardie, 2009), while S. caviae and other 

species such as S. devriesei, S ratti and S. ursoris can utilize the cellebiose to organic acids (Chapter 

6). Moreover, S. caviae could utilize L-sorbose which most of the Streptococcus members could not 

utilize, only some variations of S. devriesei have been reported (Whiley and Hardie, 2009). 

Degrading and fermentation capacity are vary within the genus depending on the individual species.  

 

Conclusion remarks and future perspectives 

 The carboxylate fermentation (using mixed cultures) is more attractive than pure culture 

fermentation as previously mention. The substrate costs are lower, no expensive sterilization process 

is required (Arslan et al., 2017) and no hydrolytic-enzymes need to be added which can be 

characterized as consolidated bioprocessing and has an advantage over the simultaneous 

saccharification and fermentation that needs the addition of the hydrolytic enzymes. Using a rumen-

derived inoculum, which harbours high microbial hydrolytic activities and has a very high microbial 

diversity, could reduce the pre-treatment costs in anaerobic digestion and utilizes a variety of organic 

wastes. In this study, the selection of starch waste and rumen fluid was successful especially in 

lactate production. High lactate concentrations were achieved in a short time period. Further 

optimization by changing fermentation parameters and investigate the product profile will result in 

the optimum conditions for the production of each organic acids. A challenging task is how to make 
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rumen microorganisms as the commercial seed for industrial application. Synthetic microbial-

mixture seed may be the other challenging option which is more advantageous than authentic 

microbial-mixture seed in terms of its reproducibility, controllability and safety (de Vos, 2013). 

Moreover, a single culture that owns the hydrolytic enzymes which are needed to utilize the biomass 

together with the ability to ferment the result to products is also attractive.
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Summary 

Global warming and depleting resources are currently main issues in our society. Consuming 

fossil fuels has become a significant concern not only because resources are depleting, but also 

because of the resulting pollution and carbon dioxide formation that contribute to the global 

warming. There is also a worldwide increasing energy demand as the world’s population increases. 

Renewable instead of fossil resources to produce energy and biochemical building blocks are thus 

of interest. One the most important building blocks is succinate and its production is a process that 

uses carbon dioxide. Turning organic waste to valuable products such as organic acids including 

lactate and succinate is a promising strategy. Starch waste has no, or low-value and it does not 

compete with sources that can also be used for food production. Therefore, in Chapter 1, general 

information related to this approach is introduced and bio-based organic acids such as lactate and 

succinate are reviewed. The efficiency of the anaerobic digestion process (in terms of production 

and digestion yields) relies on many factors such as chemical parameters (pH, nutrient content), 

physical parameters (temperature, mixing) and biological factors (biomass). The choice of organic 

waste and substrate inoculum are also important factors. Rumen “a bioreactor” becomes an 

interesting source as it contains extreme high numbers and various degrading microorganisms. In 

this thesis, various materials and gut microorganisms were selected as substrate and inoculum to 

study organic acid production and the choices were presented in Chapter 2 and 5. In Chapter 2, 

starch waste from potato factory as the substrate and two different sources of rumen fluids (from 

Dutch and Thai dairy cows) as inoculum were investigated on the possibility of organic acid 

production. Organic acid production profiles and the microbial community change during the 

fermentation process from two rumen-fluid inoculum reactors were investigated and compared. 

Lactate is the first primary organic acid fermentation product (within one day) from both reactors 

and Streptococcus spp., amylolytic lactic acid bacteria, play an important role in this process as their 

relative abundance is 89%. In the second fermentation stage, the community in both reactors 
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changed and that resulted in different organic acid production profiles as result of the different origin 

of the inoculum. In the Dutch-rumen inoculum reactor, butyrate production coincided with a 

decrease in relative abundance of Streptococcus spp. and an increase in relative abundance of 

Parabacteroides, Sporanaerobacter, Helicobacteraceae, Peptostreptococcaceae and 

Porphyromonadaceae. In the Thai-rumen inoculum reactor (after day 3), acetate, propionate and 

butyrate were produced and showed significant positive correlations with bacteria belonging to five 

dominant groups, Bacteroides, Pseudoramibacter / Eubacterium, Dysgonomonas, 

Enterobacteriaceae and Porphyromonadaceae. In Chapter 5, a different gut-microbial source 

(guinea pig fecal samples) was tested as inoculum with various substrates including dried grass and 

starch waste. This is the first study in which guinea pig fecal samples have been used for organic 

acid production and microbial enrichments. Acetate was the predominant organic acid in all 

enrichments. Microbial community analysis of guinea pig fecal samples revealed that ~68% of the 

community could not be classified at genus level, when using 16S rRNA amplicon sequencing. This 

reveals that the guinea pig gut contains many as-yet-uncultivated bacteria that may be an appropriate 

target for future microbial studies. Eight phylogenetically different isolates were obtained, including 

a novel Streptococcus species, strain Cavy grass 6T. Strain Cavy grass 6T was isolated from the dried 

grass enrichments (Chapter 6). This strain can utilize a range of plant mono- and disaccharides as 

well as polymeric carbohydrates including cellobiose, dulcitol, d-glucose, maltose, raffinose, 

sucrose, l-sorbose, trehalose, inulin and dried grass extract, and forms lactate, formate, acetate and 

ethanol as products. The strain Cavy grass 6T was characterized and registered as a novel cellobiose-

degrading and lactate-producing bacterium and named Streptococcus caviae. Two more novel 

organic acid producing bacteria belonging to genus Actinomyces were described in Chapter 3. 

Strain Am4T (Actinomyces succiniciruminis) and strain G10T (Actinomyces glycerinitolerans) were 

isolated from rumen fluid of different ruminants: cow (Holstein-Friesian) and sheep (Slovenskè 

merino), respectively. They were isolated from different hosts and regions but showed 99.2% 

similarity of the 16S rRNA genes. Therefore, different techniques such as 16S rRNA gene sequence 
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analysis, ANI, DDH, dDDH, AAI and MLSA, but also substrate utilization were applied to 

distinguish between these two species. One of the interesting characteristics that they can ferment 

starch waste forming succinate, which is an important organic acid in bio-based economy. Succinate 

production from starch waste by the strain Am4T was further optimized in anaerobic bottles and 

bioreactors under various conditions as shown in Chapter 4. Addition of phosphate and bicarbonate 

to the growth medium enhanced succinate production from starch waste. No effect of oxygen, sulfate 

and nitrate on the succinate yield was observed. Nitrite completely inhibited the growth of the strain 

Am4T. Succinate production was highest (118 mM; 1.48 mmol succinate g starch waste-1) in batch 

reactors fed with 8% (w/v) dried starch waste in a mineral-salt anaerobic medium supplemented 

with 150 mM bicarbonate, 12 mM phosphate buffer and 0.1 g l-1 yeast extract and a headspace of 

20% CO2 : 79% N2 : 1% O2. The findings of this thesis were discussed in Chapter 7 and future 

perspectives were presented.  

In summary, starch waste and rumen fluid are the suitable for lactate and succinate 

production. Moreover, based on the number and diversity of rumen or hindgut microorganisms, 

these are good choices as the microbial source for organic acid production especially from organic 

waste. Three novel organic acid producing bacteria were obtained and some of them may have 

potential for applications in the future.  
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