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Chapter 1 

General Introduction 

  



| Chapter 1 

Seed quality 

Over the coming decades, major predicted changes in the climate conditions will 

result in changes in plant growth and development as well as seed quality which is 

acquired during seed development on the mother plant (Walck et al. 2011). Such 

changes will have an impact on plant’s life history traits but also consequences for 

seed companies whose main business is to provide high quality seeds to the 

growers. 

In this thesis, I aimed to extent the understanding of interactions between the 

maternal environment and genetic factors that regulate seed performance. For this 

purpose, I used a combination of genetic and ~omics approaches. A detailed 

description of the biological and technical aspects related to this aim and approach 

are now being further detailed. 

Seed quality is a generic term which definition is a rule-of-thumb determined by the 

end-user (Ligterink et al. 2012). For instance, quality requirements will differ 

depending on the if the seeds are intended to be used for consumption or 

propagation purposes. In agriculture, seed high genetic purity, the absence of seed-

borne diseases, low post-harvest dormancy and high storability are often used as 

quality criteria. Seed performance is also used as a surrogate of seed quality that 

refers to the germination potential of the seed in terms of rate, speed and 

uniformity of seed germination. Another key aspect of seed performance is seed 

vigour which is the ability of the seed to germinate under a wide range of 

environmental conditions (Dickson 1980; Finch-Savage and Bassel 2016). 

Seed quality essentially relies on the inherent properties of the seed acquired during 

seed development on the mother plant. Seed development is characterized by two 

main phases; embryogenesis and maturation (Harada 1997; Goldberg et al. 1994). 

During embryogenesis, the zygote undergoes a series of cell divisions and 

differentiations. Seed maturation marks the arrest of embryogenesis. Seed 

maturation is an important phase of seed development. The embryo stops it growth 

and start accumulating storage products that will be mobilized upon imbibition to 

support the high energy demanding early phases of seed germination and seedling 

establishment (Weitbrecht et al. 2011). Seed maturation is also characterized by the 

acquisition of important seed properties such as dormancy and desiccation 

tolerance (Goldberg et al. 1994). The dry and dormant state of the seeds provides 

them an advantage to sustain extended periods of unfavourable conditions and 

optimize their germination time (Bentsink 2008). Genetic and molecular studies 

have provided large insights into the regulatory mechanisms associated with seed 

maturation (Holdsworth et al. 2008; Bentsink and Koornneef 2008; Gutierrez et al. 

2007). Important regulators of seed maturation include the LAFL (LEC1, ABI3, FUS3 
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and LEC2) which can be used to modify seed quality (Fatihi et al. 2016). The 

hormonal balance between abscisic acid (ABA) and gibberellins (GA) also plays an 

important role in the control of dormancy and seed germination. ABA is a positive 

regulator of dormancy while GA counteracts the effect of ABA to release dormancy 

and to promote germination (Holdsworth et al. 2008). Insights into seed maturation 

processes have also been gained from omics studies. The different phases of seed 

development are characterized by specific metabolic signatures (Fait et al. 2006; 

Angelovici et al. 2010). A high number of changes in gene expression has also been 

observed during seed development and seed after-ripening (Bassel et al. 2011; Le et 

al. 2010; Carrera et al. 2008). Further understanding of the control of seed 

maturation, dormancy and germination is essential to further improve seed quality 

traits.  

Environmental regulation of seed performance  

Seed germination is a critical stage in respect to its role in supporting plant fitness. 

Inopportune environmental conditions can prevent seedling establishment if the 

timing of germination is not appropriate. Therefore, the sensing and integration of 

environmental cues by the mother plant as well as the developing seed plays an 

important role in adjusting the timing of germination (Springthorpe and Penfield 

2015). Seed dormancy is a well-known mechanism that contributes to the 

adaptation of plants to their environment by regulating the timing of germination 

(Donohue et al. 2005b). The level of seed primary dormancy is largely modulated by 

genetic and environmental factors (Bentsink et al. 2010; He et al. 2014). The 

maturation environment of the seed, also called maternal environment, can 

modulate dormancy and germination in a genotype-dependent manner (He et al. 

2014) resulting in genotype-by-environment interactions, further explained. For a 

wide range of species, as well as Arabidopsis, warmer maternal environments often 

result in lower seed dormancy as compared to lower temperatures (Fenner 1991; 

He et al. 2014). The maternal environment also affected other seed traits. For 

instance, in several studies, high light resulted in an increased seed size (Fenner 

1991; He et al. 2014). The nutrient availability, such as nitrate and phosphate, to the 

mother plant also affect the offspring performance (Galloway 2001; He et al. 2014). 

It is not well understood how environmental cues are sensed are integrated. Several 

studies showed the implication of the flowering pathway in integrating 

environmental cues transmitted to the developing seeds (Penfield and MacGregor 

2017). Additionally, phytochromes can also act as important mediators of 

environmental cues (Donohue et al. 2008). Several other studies indicated that the 

effect of the maternal environment can be mediated via seed provisioning 
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(Zas et al. 2013), the maternal tissues such as the seed coat (MacGregor et al. 2015; 

Chen et al. 2014b) as well as the accumulation of compounds such as storage 

proteins, metabolites and transcripts (Rosental et al. 2016; He et al. 2016; de Souza 

Vidigal et al. 2016).  

The successful execution of the germination program does also depend on 

environmental conditions encountered by the seed shed from the mother plant. 

Light, low temperatures and nitrate are known environmental factors that elicit 

germination (Holdsworth et al. 2008). Primary dormancy can be alleviated by 

stratification which consists in imbibing seed in cold and dark prior to germination or 

by dry natural storage, a process termed ‘after-ripening’ (Bewley 1997). 

Unfavourable germination conditions can suspend the germination process and can 

also induce secondary dormancy (Finch-Savage and Footitt 2017). Germination at 

high temperature can induce thermo-inhibition that is the inability of the seeds to 

germinate under high temperature (Hills et al. 2003). Germination in ABA also 

results in the reversible arrest of germination by preventing water uptake to the 

embryo (Lopez-Molina et al. 2001). Water availability is essential for seeds to 

commit germination. Water availability and thus intake becomes limiting under 

osmotic stress conditions which can be induced by the presence of NaCl, mannitol 

or Polyethylene glycol in the germination environment (Edwards et al. 2016; Joosen 

et al. 2012).  

Genotype-by-environment interactions  

Plants are sessile organisms and must therefore adopt mechanisms enabling them 

to face fluctuations in their direct environment. One major mechanism to cope with 

rapid changes is the plant phenotypic plasticity. Phenotypic plasticity which is 

defined as the ability of plants to produce a range of phenotypes under diverse 

environmental conditions (Nicotra et al. 2010). The reaction norm, which can be 

seen as a response to stress, is used as a measure of plasticity and describes the 

phenotypic expression of a given genotype across a range - or generally two - of 

environments. Another mechanism of adaptation to environmental fluctuations is 

genotype-by-environment (G x E) interactions. G x E is the result of differences in 

plasticity observed across genotypes (El-Soda et al. 2014). Two genotypes can show 

plasticity, without G x E. This is the case when the reaction norm of these two 

genotypes is the same. Both plasticity and G x E play an important role in phenotypic 

diversity and can be used to determine the maximal potential of a given genotype. 

G  x E suggests that the phenotypic variation observed is caused by the effect of the 

environment on the gene(s) controlling the trait. The mapping of quantitative trait in 

different environments is a common approach used to identify the genetic basis of 
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G x E. Knowledge of the molecular basis of G x E can provide insights into underlying 

mechanisms of plant adaptation (Josephs 2018). Traits providing a fitness advantage 

in a specific environment might be deleterious in another one and thereby fitness 

trade-offs can be identified (El-Soda et al. 2014). G x E is of eminent importance in 

breeding. Multiple-environment testing of the genotypes is needed to identify 

genotypes suitable for multiple environments (van Eeuwijk et al. 2010). 

The genetic basis of such interactions is not well-known. Determining the genetic 

and molecular mechanisms that give rise to genotype-by-environment interactions 

is important with many implications in the field of evolutionary ecology (Josephs 

2018) and agriculture (breeding) (El-Soda et al. 2014). 

Linkage mapping  

Genetic traits can be classified as mono-genic, oligo-genic or complex depending on 

whether these traits are controlled by one, several or multiple genetic factors. 

Where the genetic factors responsible for regulating mono-genic and oligo-genic 

traits can be determined with traditional mutant screens, this doesn’t work for 

complex traits because they are quantitative which means that they are affected by 

many genes with possibly small effects and often subjected to environmental 

variation. Therefore, quantitative trait locus (QTL) analysis using linkage mapping is 

the common tool for determining the genetic factors controlling complex traits. 

Linkage mapping is a powerful tool to provide insights into the genetic architecture 

of segregating genetic traits in many types of mainly bi-parental populations. The 

power of the QTL mapping relies on three major factors: The complexity of the 

segregating trait under study, the type and size of the mapping population and the 

availability of a dense and reliable genetic map (Glazier et al. 2002; Keurentjes et al. 

2011). With the advances in high-throughput molecular techniques, such as DNA 

microarrays and next generation sequencing technologies, it has become feasible to 

identify a large number of markers distributed across the genome and to genotype 

these markers for a large sample of individuals, facilitating QTL mapping approaches 

in many species (Schmidt et al. 2017; Gupta et al. 2008). Recombinant inbred line 

(RIL) populations are widely used for QTL analyses. This type of population is derived 

from the F1 of two contrasting parental lines by single seed descend. At the end of 

several generations (F6-F8), each final recombinant inbred line has a different 

genotype which consists of a mosaic of parental inherited chromosomal fragments, 

as a result of meiotic recombination events. The high level of homozygosity of these 

lines makes them ‘immortal’ and the population suitable to measure multiple traits 

under different conditions, with no need to genotype them anew. In combination 

with the high degree of mapping resolution, this type of populations is widely used 
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for QTL mapping. Such populations have been used to investigate natural variation 

in seed traits such as seed dormancy (Bentsink et al. 2010), longevity (Nguyen et al. 

2012) and germination (Joosen et al. 2012). 

Other populations that can be used for QTL mapping are F2, double haploid or 

backcross populations. Genome-wide association studies (GWAS) are also 

performed to identify genetic factors based on the historical linkage disequilibrium 

observed in a panel of genetically diverse accessions (Atwell et al. 2010). Many of 

such mapping populations have been developed using the plant science pioneer 

plant model Arabidopsis thaliana (Alonso-Blanco and Mendez-Vigo 2014).  

In this thesis, I used an Arabidopsis thaliana Bayreuth-0 (Bay-0) x Shahdara (Sha) 

core collection of 165 RILs developed by (Loudet et al. 2002). Bay-0 and Sha were 

originally selected for their known geographical, ecological and genetic distance 

(Loudet et al. 2002). Bay-0 originates from the low lands and has been collected in 

Germany, whereas Sha was collected in Central-Asia from the mountains in 

Tajikistan. The RIL population has been used to identify QTLs for many traits, such as 

flowering (Botto and Coluccio 2007), root and shoot mass (Bouteille et al. 2012), 

stress tolerance (Jimenez-Gomez et al. 2010) and seed germination (Joosen et al. 

2012).  

From G x E to QTL x E 

Genotype-by-environment interactions occur when the response to the 

environment differs across genotypes. To understand the underlying genetics, G x E 

studies have shifted towards QTL x E, where genotype-by-environment interactions 

are explained by differences in the expression of the QTLs in relation to the 

environmental conditions (Boer et al. 2007; van Eeuwijk et al. 2010). Scenarios 

illustrating such QTL-by-environment interactions are shown in Figure 1.  

For the expression of the phenotype, the contribution of genotype-by-environment 

interactions can be estimated using a simple model. This model includes the 

expression of a genotype i in an environment j as Pij = µ + Gi + Ej + G x Eij + Ɛij where 

Pij is the expression of the phenotype, µ is the general mean, Gi is the main 

genotypic effect, Ej is the effect of the environment, G x Eij the genotype-by-

environment interaction term and Ɛij the random effects. In QTL studies, the 

growing interest for investigating the genetic basis of G x E has challenged the 

development of new QTL mapping approaches. The estimation of the genetic effects 

can be improved by including multiple environments and also multiple traits in a 

single QTL analysis. Several mixed models have been suggested that maximize the 

information gained from genotype-by-environment interactions for multi-traits and 
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multi-environments studies (Malosetti et al. 2013; Boer et al. 2007; van Eeuwijk et 

al. 2010).  

The genetics of ~ omics  

QTL mapping and GWAS are commonly used methods to identify genetic loci in bi- 

and multi-parental populations or in panel of accessions. The advent of high-

throughput technologies has granted access to whole biological levels ending in 

~omics, which combined with these classical mapping approaches, can speed-up 

biological insights and gene discovery. These omics data are of various kinds, 

including metabolomics, transcriptomics, proteomics, methylomics and 

epigenomics. The major advancements in the metabolic and transcriptomic 

platforms and analytical methods have promoted their application in plant science.  

 

 

 
 

Figure 1: Possible scenarios of G x E associated with QTL x E. The simplified figures depict the allelic effect 

of the QTL in response to changing environments, from E1 to E2, with in blue and red the allelic effects of 

two different alleles. In scenario 1, genotypes are plastic but the difference in the allelic effects remains 

the same; the QTL is consistent across environments; there is no QTL-by-environment interactions (QTL x 

E). Scenarii 2, 3 and 4 depict cases of QTL x E interactions. In the second scenario, no QTL is identified in 

E1, while the differences in the allelic effect in E2 indicates an environment specific QTL. In the third 

scenario, variation in the sensitivity of the alleles to the environment results in exacerbated differences in 

allelic effects in E2, although the same allele confers higher phenotypic values under both environments. 

In the final scenario, antagonistic effects are indicated by a change in allele governing higher phenotypic 

values (modified from (El-Soda et al. 2014)). 

Metabolomics 

Plants constitute an important source of metabolites. There are two types of 

metabolites. Primary metabolites include for example organics acids, sugars, and 

amino acids, all of which are considered essential for the plant and involved in 

growth and developmental processes. On the other hand, secondary metabolites 

are considered end-products of primary metabolites and are known to play a major 

role in the defence mechanisms of plants against their environment, although they 
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have a broader functional range. Currently, several methods are available to detect 

these metabolites, which opened the door towards comprehensive metabolomics 

(Carreno-Quintero et al. 2013). Gas chromatography time-of-flight mass 

spectrometry (GC-TOF-MS) is a powerful tool to study primary metabolites (Lisec et 

al. 2006). In addition, the possibility of conducting untargeted metabolomics has 

enabled the simultaneous study of a wide range of metabolites, providing a global 

view of metabolic changes. The variation in the composition, but also abundance of 

metabolites is often observed in plants during development, in response to stress, 

across different organs as well as across genotypes (Kooke and Keurentjes 2012). In 

seeds, comprehensive metabolic studies have revealed large metabolic changes 

(Fait et al. 2006). The qualitative and quantitative variation of these metabolites has 

led to the investigation of the underlying genetic basis. The idea of combining 

classical QTL analysis with ~omics data was first introduced in 2001 and was termed 

‘genetical genomics’ (Jansen and Nap 2001). In this approach, the quantitative 

variation of metabolites measured in a segregating mapping population is 

considered as an ‘endo’- or ‘molecular phenotype’ which is used as a variable for the 

QTL analysis. The QTL analysis will result in the identification of genomic regions 

associated with variation for specific metabolites (metabolite QTLs, mQTLs). The co-

localization of mQTL might indicate the co-regulation of the metabolic compounds 

caused by an underlying causal gene(s) (Keurentjes et al. 2006). For Arabidopsis, 

genes involved in many biosynthetic pathways have been identified (Kanehisa and 

Goto 2000). Mapping QTLs for metabolites enables to uncover the dynamics of their 

regulation under different conditions. 

Transcriptomics 

The transcriptome corresponds to the ensemble of mRNAs present in an organism, 

organs, tissue or cell. The transcriptome is highly dynamic across tissues, organs, in 

response to abiotic stresses and across genotypes. Microarrays have been 

extensively used to simultaneously measure a large number of transcripts matching 

designed probes. More recently, the advent of high-throughput technologies in 

combination with their continuously decreasing costs has promoted the use of RNA-

sequencing for gene expression profiling (Wang et al. 2009). 

In seeds, major shifts in gene expression have been identified between dormant and 

non-dormant seeds (Bassel et al. 2011; Dekkers et al. 2013), during seed desiccation 

(Maia et al. 2011; Costa et al. 2015), during seed imbibition and seed germination 

(Dekkers et al. 2013), (Joosen et al. 2012) and during seedling establishment (Silva et 

al. 2016). 
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A popular approach to identify coordinated changes in gene expression is the use of 

co-expression networks (Bassel et al. 2011; Costa et al. 2015; Silva et al. 2016). 

These networks are built on the pairwise correlation of genes which expression is 

measured in a wide range of conditions or time points. The properties of the 

networks can be exploited to derive biological hypotheses. Highly correlated 

transcripts cluster together and form modules of co-regulated genes. In these 

modules, highly connected genes (Hubs) can be identified as master regulators. In a 

recent study by Silva et al. (2016), a co-expression network was built from gene 

expression data obtained from several time points during seed germination and 

seedling establishment. In parallel, dominant patterns of gene expression were 

identified. By overlaying these dominant patterns on the co-expression network, an 

homeodomain leucine zipper 1 transcription factor ATHB13 could be identified as 

regulator involved in the transition from seed to seedling (Silva et al. 2016). 

 

Often changes in gene expression are measured in response to environmental 

perturbations and limited to a few genotypes. Genetical genomics studies allow the 

investigation of the effect of genetic perturbations on gene expression. In these 

studies, variation of transcript abundance in a segregating mapping population is 

used for mapping expression QTLs (eQTLs). The eQTLs can be classified as cis or 

trans eQTLs, depending on whether the SNP causal for the eQTL is inside or outside 

the gene under study, respectively (Figure 2a,b) (Rockman and Kruglyak 2006). eQTL 

hotpots are prominent features of eQTL studies and offer a great starting point to 

investigate regulatory interactions (Breitling et al. 2008). eQTL hotspots suggest the 

presence of a master regulator that potentially affects the expression of multiple 

genes in trans which can further lead to the construction of regulatory networks 

(Figure 2c) (Keurentjes et al. 2007b). Several studies in yeast, nematodes, humans 

and plants (West et al. 2007; Schadt et al. 2003; Brem et al. 2002) have shown that 

typically expression of a large proportion of genes is influenced by eQTLs.  

Generalized genetical genomics 

Plants, challenged by their surrounding environments, undergo remarkable changes 

in their metabolome and transcriptome. Understanding the influence of the 

environmental variation on the genetic architecture of these traits can bring further 

insights into the dynamic of gene expression regulation. In contrast to the large 

QTL x E studies of classical phenotypic QTLs, QTL x E in the field of ~omics often 

remains limited to one or a few conditions because of the substantial costs 

associated with molecular profiling of large segregating mapping populations. In the 

effort to reduce these costs, while optimizing the detection of ~omics QTL x E, (Li et 
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al. 2008b) proposed a generalized genetical genomics (GGG) (Figure 3, GGG) set-up. 

From an initial mapping population replicated in four conditions, this design consists 

of selecting equal subsets of non-overlapping RILs for each of the four conditions. In 

addition, the RILs are partitioned in such a way that there is a balanced allele 

distribution within each RIL sub-population which allows the newly designed sub-

populations to be analysed separately or combined. Separately, the genetic effect is 

assessed under each condition, while combining the RILs allows including the 

environment and genotype-by-environment interaction terms in the mapping 

model. This design was recently applied to investigate changes in the genetic 

architecture of the seed metabolome at different germination stages in Arabidopsis 

and tomato (Joosen et al. 2013; Kazmi et al. 2017). 

 

 

 

Figure 2: Regulation of gene expression. The circles on the chromosome indicate the physical position of 

the genes and their respective LOD curves are shown with matching colours. Arrows are draw from the 

gene with variants to the gene(s) it regulates. Several eQTL patterns can be observed. A) A cis eQTL is an 

eQTL detected at the physical position of the gene. B) A trans eQTL is an eQTL detected at a distant 

location of the physical position of the gene, which suggests that its regulation is governed by another 

gene (green circle) underlying the trans eQTL. C) Cis and trans eQTLs co-locate and form hotspots when 

the number of co-locating eQTLs reaches a certain significance threshold. The discovery of hotspots can 

be useful to identify sets of co-regulated genes.  

Systems genetics  

QTL analyses enable the identification of genomic regions controlling trait variation 

while the identification of the underlying candidate genes through fine mapping 

remains a difficult task. Linking genetic components identified by QTL analysis to 

genomics information can provide deeper insights into the molecular basis of 

quantitative traits (Paran and Zamir 2003). Genetical genomics studies have paved 
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the way for systems genetics approaches (Hansen et al. 2008). The combination of 

phenotypic and molecular data generated in similar genetically and environmentally 

disturbed systems can provide a global and integrative view of the genetic 

architecture of complex traits (Civelek and Lusis 2014; Ligterink et al. 2012).  

 

The relation between the different phenotypic and ~omics data can be examined 

using several approaches (Civelek and Lusis 2014), which include correlation analysis 

of the different traits (Carreno-Quintero et al. 2012) or the identification of genetic 

markers that affect several traits (co-locating QTLs) (Wentzell et al. 2007). Handling 

such large data sets makes it difficult to prioritize important links between 

phenotypes and molecular data, which thus requires the use of appropriate 

visualization methods. In this respect, correlation and co-expression network 

analysis provides a useful approach to display, organize, integrate and eventually 

identify biologically meaningful entities for further in-depth investigations 

(Langfelder and Horvath 2008). 

Arabidopsis thaliana 

In many ways, Arabidopsis thaliana is an ideal organism for dissecting complex traits. 

This small flowering plant belongs to the Brassicacea family. It’s genome was the 

first plant genome sequenced in 2000 (Analysis of the genome sequence of the 

flowering plant Arabidopsis thaliana 2000). It has a diploid genome which is 

distributed over five chromosomes spanning 120 Mb and counting approximately 

30.000 protein-coding genes. Arabidopsis thaliana offers unique possibilities for 

genetic studies due to its wide distribution of natural habitat, the great genetic 

variation and because it is predominantly a self-pollinating plant (Koornneef et al. 

2004; Alonso-Blanco et al. 2016). In addition to its broad natural variation, 

Arabidopsis is also very suitable for linkage mapping. The self-fertilizing nature of the 

plant facilitates the construction and maintenance of different types of genetic 

material such as recombinant inbred lines (RILs) (Alonso-Blanco and Koornneef 

2003), heterozygous inbred families (HIFs) (Tuinstra et al. 1997) and near-isogenic 

lines (NILs) (Keurentjes et al. 2007a). In addition to that, the relatively high 

recombination rate makes it possible to map QTLs to a relatively fine scale with a 

relative small population as compared to other species (Glazier et al. 2002). Another 

advantage of using Arabidopsis is that a large number of plants can be grown and 

replicated under uniform conditions. In combination to this, the plant has a short life 

cycle (approximately 3 months) which generally ends in a large seed output. These 

criteria have motivated the use of this plant as a model system in plant science 

(Koornneef and Meinke 2010). Since its adoption as a model plant, extensive studies 
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using Arabidopsis have generated a wealth of molecular tools and resources to 

dissect complex traits in Arabidopsis and other species. In the present thesis, 

another advantage of using Arabidopsis is the availability of, the GERMINATOR, a 

high-throughput phenotyping method to score germination (Joosen et al. 2010). 

This method is based on image analysis and relies on the colour contrast between 

the seed coat and the protruding radicle which marks seed germination (Bewley 

1997). The data provided by image analysis are used as input for a curve-fitting 

module which returns quantitative parameters that describe the germination 

behaviour of a seed batch. These parameters include the t10 and t50, the time 

needed to reach 10% and 50% of seed germination, respectively; Gmax, the 

maximum germination percentage and the AUC, the integration of the area under 

the germination curve (Joosen et al. 2010). This method has been used previously to 

investigate the genetic basis of seed performance in large populations (Joosen et al. 

2012; Vidigal et al. 2016). 
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Scope of the thesis 

The research presented in this thesis aimed at understanding to what extent the 

seed maternal environment influences the genetic control of seed performance. In a 

systems genetics approach, I investigated environmentally and genetically induced 

changes at the metabolome and transcriptome levels. This work lays the foundation 

in view of ultimately integrating the different biological scales to provide a system 

understanding of the control of seed performance.  

Chapter 1 introduces the definition and the importance of seed quality and 

performance. Particular emphasis is given to the environmental regulation of seed 

performance. Natural variation represents a valuable resource to explore the 

genetic basis of complex traits. I highlight the potential of genetical genomics to 

elucidate changes in seeds at the molecular level to ultimately, in a systems genetics 

approach, get better insights into the control and regulation of seed performance. 

The general approach I used is summarized in Figure 3 and detailed below.  

In Chapter 2, I show that the QTL mapping resolution can be improved by high-

density genetic maps. Polymorphic markers were derived from RNA-seq data 

generated from the RILs (Chapter5). As a result I provided a new high-density 

genetic map for the Arabidopsis RIL Bay-0 x Sha RIL population that is subsequently 

used for the mapping analyses in the following chapters.  

Chapter 3 sheds light into the interplay of genetic and environmental factors 

determining seed performance. The identified QTLs showed significant QTL x E 

interactions with both germination and maternal environment contributing to the 

explained phenotypic variance. The combined analysis of HIFs and expression data 

was used to narrow down an environment specific QTL and to suggest potential 

candidate genes.  

In Chapter 4, I investigated the changes occurring in the seed metabolome of the 

RILs in response to changes in the maternal environment. This study shows that 

correlation networks combined to QTL mapping analyses can bring substantial 

insights into genetically coordinated metabolic changes reflecting metabolic 

investment strategies in response to stress.  

Chapter 5 provides a preview on the dynamics of the genetic basis of gene 

expression. Using the generalized genetical genomics design, RNA-seq was 

performed on the dry seed of RILs grown under different conditions. Differential 

gene expression analysis and eQTL mapping revealed large genotype-by-

environment interactions. Comparison of the eQTL features under each condition 

indicated a highly environment-dependant genetic control of gene expression.  

Co-expression networks are an attractive approach to integrate and visualize large 

data sets. 
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In Chapter 6, I review how co-expression networks can be used to explore and 

integrate large data sets to address biological questions.  

In the general discussion (Chapter 7), I summarize and integrate the key findings of 

this research in a general discussion providing directions for further investigations. 

 

 

 
 

Figure 3. Graphical representation of the approaches used in the different chapters of this thesis aiming 

at investigating changes at the phenotypic, genetic and molecular level in dry mature seeds of an 

Arabidopsis RIL population grown under standard (ST), high temperature (HT), high light (HL) and low 

phosphate (LP) conditions. The circled numbers refer to the corresponding chapters. In Chapter 2, I build 

a new genetic map for the Bay-0 x Sha RIL population. This map was used in Chapter 3 to identify QTLs 

with varying effects across conditions (QTL x E) for seed performance. I next use the generalized genetical 

genomics design (GGG) to perform mQTL analyses in Chapter 4 and eQTL analyses in Chapter 5. In 

Chapter 6, I review current applications of co-expression networks to integrate large datasets and address 

biological questions. 
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Abstract  

High-density genetic maps are essential for high resolution mapping of quantitative 

traits. Here, we present a new genetic map for an Arabidopsis Bayreuth × Shahdara 

recombinant inbred line (RIL) population, built on RNA-seq data. RNA-seq analysis 

on 160 RILs of this population identified 30,049 single-nucleotide polymorphisms 

(SNPs) covering the whole genome. Based on a 100-kbp window SNP binning 

method, 1059 bin-markers were identified, physically anchored on the genome. The 

total length of the RNA-seq genetic map spans 471.70 centimorgans (cM) with an 

average marker distance of 0.45 cM and a maximum marker distance of 4.81 cM. 

This high resolution genotyping revealed new recombination breakpoints in the 

population. To highlight the advantages of such high-density map, we compared it 

to two publicly available genetic maps for the same population, comprising 69 PCR-

based markers and 497 gene expression markers derived from microarray data, 

respectively. In this study, we show that SNP markers can effectively be derived 

from RNA-seq data. The new RNA-seq map closes many existing gaps in marker 

coverage, saturating the previously available genetic maps. Quantitative trait locus 

(QTL) analysis for published phenotypes using the available genetic maps showed 

increased QTL mapping resolution and reduced QTL confidence interval using the 

RNA-seq map. The new high-density map is a valuable resource that facilitates the 

identification of candidate genes and map-based cloning approaches. 

 

Keywords: Arabidopsis, Genetic map, Genotyping-by-sequencing, QTL mapping, RIL 

population, Resolution, RNA-seq 
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Introduction 

Quantitative Trait Locus (QTL) analysis has successfully identified a large number of 

genetic loci that contribute to the regulation of quantitative phenotypes. The advent 

of -omics data has extended the range of usual mapping traits to molecular 

phenotypes offering new approaches for bridging the gap between genes and their 

function (Keurentjes et al. 2008). The idea that variation in gene expression can be 

treated as a quantitative trait, gave rise to the concept of genetical genomics 

(Jansen and Nap 2001). In combination with a genetic map, quantitative variation in 

gene expression measured in a segregating population enables the identification of 

expression QTLs (eQTLs). Many eQTL studies have contributed to our understanding 

of the genetic architecture of regulatory variation of intricate traits in Arabidopsis 

(West et al. 2007; Keurentjes et al. 2007b; Lowry et al. 2013; Cubillos et al. 2014; 

Terpstra et al. 2010; Snoek et al. 2012) (for review see (Joosen et al. 2009)), poplar 

(Drost et al. 2015), tomato (Ranjan et al. 2016), as well as in other organisms (Li et 

al. 2006; Li et al. 2010; Vinuela et al. 2010; Rockman et al. 2010; Aylor et al. 2011; 

King et al. 2014; Sterken et al. 2017; Snoek et al. 2017b). 

In essence, the success of QTL mapping is determined by the mapping resolution 

which mainly depends on the size of the population (and thus the number of 

recombination events), the complexity of the phenotype and the number of 

available markers. High-density genetic maps are thus instrumental for accurate 

mapping of QTLs. Traditional methods used to obtain molecular markers were 

mainly PCR based (SSR, AFLP, RFLP). New methods to derive molecular markers have 

recently emerged, together with the advancement of high-throughput technologies. 

Particularly, single nucleotide polymorphisms (SNPs), represent a rich source of 

potential markers due to their abundance (Alonso-Blanco et al. 2016). Differences in 

gene expression measured with microarrays as a result of probe hybridization 

sensitivity to underlying sequence polymorphisms have been used to derive SNP-

based markers (West et al. 2006; Zych et al. 2015; Zych et al. 2017). More recently, 

next generation sequencing technologies for transcriptome analysis (RNA-seq) have 

provided unprecedented opportunities for quantitative genetics in plants (Jimenez-

Gomez 2011). Becoming a standard for gene expression profiling, RNA-seq has also 

proven to be an efficient and cost-effective method to identify genome-wide SNPs 

(Piskol et al. 2013; Markelz et al. 2017). In the context of genetical genomics, RNA-

seq on a segregating population can simultaneously provide the molecular 

phenotype and the sequence information for molecular markers that subsequently 

provide genotyping information for the population. 
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Segregating bi-parental populations such as recombinant inbred line (RIL) 

populations are powerful tools for QTL analysis (Koornneef et al. 2004). These 

immortal populations capture frequent recombination events in a relatively small 

sized population, thereby conveniently reducing the costs for genotyping. In this 

study, we utilized an Arabidopsis thaliana Bayreuth x Shahdara population that has 

been used extensively for genetic (Loudet et al. 2002; Jimenez-Gomez et al. 2010) 

and eQTL studies (West et al. 2007; Keurentjes et al. 2007b). The original genetic 

map for this population consists of 69 markers segregating in 420 F6 RILs (Loudet et 

al. 2002). Further genotyping efforts on a subset of these RILs have introduced 

markers derived from gene expression data with microarrays, saturating the original 

map (West et al. 2006; Zych et al. 2015; Salathia et al. 2007). Here, we present the 

construction of a high-resolution genetic map from RNA-seq data of 160 RILs. We 

validate and show the improvements of this new map by performing a QTL analysis 

with publicly available phenotypic data (Joosen et al. 2012). 

Materials and Methods 

Plant growth and sample preparation 

Seeds from the Arabidopsis thaliana accessions Bayreuth (Bay-0) and Shahdara (Sha) 

and a Bay-0 x Sha RIL population consisting of 165 lines were used. This population 

was initially developed by Loudet et al. (2002). As part of a larger experiment aiming 

to investigate genotype x environment interactions, the parental lines and the RILs 

were grown under standard and controlled mild stress conditions. In the standard 

condition, plants were grown under long day (16h light / 8h dark) at 70% RH and 

22°C / 18°C (day/night) under artificial light (150 μmol m-2 s-1). The plants were 

watered with a standard nutritive solution (see supplemental table 1 in He et al. 

(2014)) three times a week by flooding cycles. The same conditions were used for 

the stress environments, except for the varying parameter as indicated hereafter: 

high temperature (25°C day / 23°C night), high light (300 μmol m-2 s-1) and low 

phosphate (12.5 μM phosphate instead of 0.5 mM in the standard nutritive 

solution). 

The RILs and the parental lines were first grown with three to four plants per 

environment in a single climate cell under the control conditions mentioned above. 

When most of the plants flowered, the main stems of all plants were removed to 

increase the numbers of side branches and thereby seed production, and to ensure 

that all seeds would complete their development under the specific conditions. 

Subsequently the plants were transferred to different climate cells to continue their 

growth under the specific stress conditions. At the time all plants in a given 
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condition produced a sufficient amount of fully matured seeds; the seeds were bulk 

harvested from the 3-4 plants per line. After drying, a fraction of the freshly 

harvested seeds were stored at -80°C in sealed 2 ml tubes until RNA-seq library 

preparation. 

RNA isolation and sequencing 

RNA was isolated from 4-5 mg of fresh harvested dry seeds that were stored at -

80°C. Each of the parents was measured in triplicate per condition i.e. 4x3 = 12 

replicates per parent. RNA was extracted from the seeds of 160 RILs selected in 

conformity to the generalized genetical genomics strategy (GGG, Li et al. (2008b) 

and Table S1). RNA was isolated using the NucleoSpin RNA plant isolation kit 

(Macherey-Nagel 740949) but adding Plant RNA isolation Aid (Life technologies) 

according to the manufacturer’s protocol and instructions. 

RNA-seq reads processing 

Strand specific RNA-seq libraries were prepared from each RNA sample using the 

TruSeq RNA kit from Illumina according to manufacturer’s instructions. Poly-A 

selected mRNA was sequenced using the Illumina HiSeq2500 sequencer, producing 

strand-specific single-end reads of 100 nucleotides. Reads were trimmed using 

Trimmomatic (version 0.33, Bolger et al. (2014)) to remove low quality nucleotides. 

Trimmed reads were subsequently mapped to the Arabidopsis thaliana TAIR10 

reference genome (Lamesch et al. 2012) using the HISAT2 software (version 2.0.1, 

(Kim et al. 2015)) with the “transcriptome mapping only” option. SNPs were called 

using the mpileup function of samtools (version 0.1.19, Li et al. (2009b)) and 

bcftools. 

SNP identification and RIL genotyping 

Variant call format (VCF) files were generated for each of the samples. Since not all 

SNPs are found in all genotypes, all vcf files were merged to generate a list with all 

variants present in at least one sample. From this unique list, information regarding 

the position in base pairs and the chromosome location of each SNP was retrieved 

and filtered for being consistent across the sequencing data of the parental lines. In 

order to get a more reliable genotypic score, cancelling out any SNPs miscalls, and to 

reduce the overall number of markers, SNPs were grouped into bins. 1059 equal size 

artificial bins of 100 kbp were created along the whole genome. The scoring of the 

genotype was obtained based on the SNP information within each bin. For regions at 

the transition between two genotypic blocks, the bin score was rounded up and 
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assigned to the closest genotypic score. The quality of the genotype scoring of the 

bins was assessed by correlation analysis. 

Nomenclature 

The bins are ordered based on the genome sequence, thus the unit distance is not 

expressed in centimorgans (cM) but in bins of 100 kbp. Each bin is used as a marker 

and the midpoint position of the 100 kbp bin is used as the marker position. Markers 

were named RSM for RNA-seq markers, followed by the chromosome number of 

their location and their physical position in mega base pairs (Mbp). As an example 

RSM_1_0.05 corresponds to the marker at 0.05 Mbp on chromosome 1.  

Genetic map construction 

The genetic distances in centimorgans of the 1059 markers for 160 RILs were 

estimated in order to describe and compare the new genetic map to previous maps. 

The genetic distances were estimated using the “est.map” function with “kosambi” 

distance from the R/qtl package (Broman et al. 2003)(Arends et al. 2010). The 

correct order of the markers was verified by pairwise marker linkage analysis using 

the “est.rf” function. The recombination rate was determined based on the linear 

relation between the genetic and the physical positions of the marker. The 

segregation pattern was tested for all markers to identify markers that show 

significant distortion at the 5% level, after a Bonferroni correction for multiple 

testing. The statistical programming language R (version 3.3.2) (Team 2008) was 

used for all analyses. The genetic map and genotypic data are available in table S2. 

QTL comparison 

To test the effect of increased marker coverage on QTL mapping, we re-mapped 510 

published phenotypic traits using the RNA-seq (1059 markers), the pheno2geno 

(497 markers) (Zych et al. 2015) and the original map (69 markers) (Loudet et al. 

2002). In order to compare the mapping resolution, the genetic distances were re-

estimated for each map using 145 RILs common to the three studies (Supplemental 

table 1). The scanone function in R/qtl was used with the default settings for the QTL 

mapping. LOD score peaks were called by chromosome for each trait, resulting in a 

total of 2550 (510*5) peak LOD scores. The LOD threshold for the genome-wide 

significance at the level of 5% was determined after 1000 permutations using each 

map. The LOD thresholds obtained were 2.36, 2.64 and 2.76 using the original, 

pheno2geno and RNA-seq map, respectively. The increased LOD thresholds for the 

Pheno2geno and the RNA-seq map can be explained by the larger number of 
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markers which will result in a larger multiple testing corrections. We used a stringent 

LOD threshold of 3 to identify and compare significant QTLs for all maps. The LOD 

score comparison was performed in a similar way as described in Zych et al. (2015). 

To be more confident about the comparison, QTLs were considered to have a higher 

or lower LOD score if the difference between the compared LOD scores was larger 

or equal to 0.5. The mapping resolution of the RNA-seq map was investigated by 

comparing the confidence intervals (CIs) of QTLs for the RNA-seq and the original 

map. LOD-1 CIs were determined for all significant QTLs (LOD >3) for both maps. The 

genomic positions of the lower and upper limit of each CI were estimated from the 

equation of the linear relation between genetic and physical position of the markers. 

Subsequently, the CI width was determined for each QTL in Mbp. The analyses and 

figures were generated using Microsoft Excel, R/qtl and the R ggplot2 package.  

The cross object containing all data for the 510 phenotypes in the 160 RILs for the 

QTL analysis is available in supplemental table 3. The QTL results for the comparison 

of the LOD scores and confidence intervals are provided in supplemental table 4 and 

5. QTL profiles of the re-mapped 510 traits are available for interactive analysis in 

AraQTL (www.bioinformatics/araqtl.org, Nijveen et al. (2017)). 

 

Results  

Genotyping the RIL population using a SNP binning approach 

SNP calling resulted in 185,354 SNPs distributed over the five chromosomes, ranging 

from 26,514 SNPs for chromosome 2 to 48,151 SNPs for chromosome 1 (Figure 1). 

Regions with a few or no SNPs correspond to centromeric regions, known to have 

lower transcriptional density and expression activity (Schmid et al. 2005). Filtering 

and quality check of the SNPs (as described in Material and Methods) resulted in a 

final number of 30,049 SNPs covering the whole genome. 

 

The 100 kbp binning approach used, collapsed the 30049 SNPs into 1059 bins 

distributed over the five chromosomes. Each bin contained on average ~24 SNPs, 

with a minimum of 2 and a maximum of 130 SNPs per bin (Supplemental figure 1). 

Overall, 96.7% of the bins could unambiguously be assigned to one of the parental 

genotypes.  
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Figure 1. Raw SNP distribution from all genotyped RILs. A. Total SNP count and B. coverage counts of each 

SNP at each physical position on the chromosome in mega base pairs (Mbp) are displayed for each of the 

five chromosomes of Arabidopsis thaliana as well as the mitochondrial (Mt) and plastid (Pt) genomes. 

 

Population-based SNPs segregated at the expected allele frequencies as global allelic 

equilibrium was observed with 49.3 % Bay-0 alleles and 50.7 % Sha alleles. Bias in 

the segregation ratio between the parental alleles was analysed along the 

chromosomes (Figure 2). Statistically significant distortion of segregation was 

observed for 29 consecutive markers on chromosome 4, representing 2.78% of the 

total number of markers. These distorted markers correspond to the region 

comprised between the markers RSM_4_12.05 and RSM_4_14.85. The highest 

distortion was observed at the marker RSM_4_13.05 with 41 (25.6%) lines 

representing the Bay-0 allele versus 114 (114/160 = 71.25%) lines representing the 

Sha allele. This deviation from the allelic equilibrium at the chromosome 4 was also 

reported by Loudet et al. (2002).  

 

 

28



A new genetic map from RNA-seq data | 

 

 

Figure 2. Allele distribution for the 1059 markers along the five chromosomes. Blue and red colors 

indicated the Bay-0 and the Sha allele percentages, respectively. The black horizontal bar indicates the 

region on chromosome 4 with 29 markers showing significant segregation distortion (p-value < 0.05 after 

Bonferroni correction). 

 

RNA-seq genotyping identifies new introgressions 

Visually, the binning method resulted in the identification of clear genotype blocks 

(Figure 3). Breakpoints were identified as the point of transition between two 

genotype blocks. In total, 1455 crossovers were identified with an average of 291 

crossovers per chromosome (Table 1). To identify introgressions that were 

previously not detected, the 1059 new markers together with the 69 ‘old’ markers 

were first ordered based on their physical positions.  

New introgressions were then identified in the RILs as double recombination events 

occurring within a region spanned by two ‘old’ flanking markers and of a minimum 

size of 200 kbp (2 bins) (supplemental figure 2). We could identify 80 unambiguous 

introgressions with sizes ranging between 200 kbp and 3 Mbp, increasing the 

number of recombination events detected within the RIL population. 
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Figure 3. Haplotype representation of the 160 RILs. Each row corresponds to a RIL. Columns represent 

the 1059 genetic markers physically anchored on the 5 chromosomes. Blue boxes indicate Bay-0 

genotype and yellow boxes indicate Sha genotypes.  

 

Table 1: Characteristics of the 1059 marker genetic map using 160 RILs. 

 

Chr Markers 
Total 

length(cM) 

Average 
marker 

distance 
(cM) 

Maximum 
gap (cM) 

Cross-
overs 

Recombination 
rate (kbp/cM) 

chr 1 275 117.87 0.43 2.87 364 258.34 

chr 2 171 76.29 0.45 3.23 236 257.58 

chr 3 207 82.61 0.40 2.72 255 283.85 

chr 4 163 92.12 0.57 4.81 281 201.36 

chr 5 243 102.81 0.42 2.34 319 262.13 

Total Total 
1059 

Total 
471.70 

Average 
0.45 

Max 
4.81 

Total 
1455 

Average 
252.63 
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High-density genetic map 

Using each bin as a marker, the linkage map was calculated in order to validate the 

order of the markers and evaluate the accuracy of the new map. The characteristics 

of the new map are reported in Table I. The total length of the genetic map was 

471.70 cM. The average genetic distance between two adjacent markers of 0.45 cM 

represents a great increase in marker density as compared to the 6.1 cM of the 69 

markers map for 420 RILs (Loudet et al. 2002). In the new map, the largest gap 

between two markers is 4.81 cM between the markers RSM_4_1.55 and 

RSM_4_1.85 on chromosome 4.  

Overall, the order of the markers on the genetic map conforms to the physical 

position of the marker and is also supported by the pairwise marker linkage analysis 

(Figure 4). The recombination rate was calculated as the relation between the 

physical and genetic distances. Low recombination was observed at the centromeric 

regions where the physical distance was greater relative to the genetic distance. On 

the upper arm of chromosome 3, no recombination events occurred between the 

markers RSM_3_2.65 and RSM_3_5.25. This was also observed in the 69-markers 

map as well as in a Sha x Col-0 RIL population 

(http://publiclines.versailles.inra.fr/page/33). A Sha specific chromosomal inversion 

in this region was suggested (Figures 4 and 5). The global recombination rate is 

252.65 kbp / cM, i.e. 4.01 cM per 1 Mbp (Figure 5). This rate is consistent with 

previously reported recombination rate of 246 kbp / cM (Loudet et al. 2002).  
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Figure 4. Pairwise marker linkage analysis. The estimated recombination fraction and LOD scores for all 

pairs of markers are shown in the upper-left and lower-right triangle, respectively. High correlation 

between markers indicates marker linkage (yellow) while the blue colour shows low correlation values 

indicating unlinked markers. The grid delineates the five chromosomes. The red dotted frame indicates 

the region at the top of chromosome 3 with the probable occurrence of an inversion. 

 

 

Figure 5. Relation between the genetic length in centimorgans (cM) and the physical length in Mbp for 

the 1059 markers along the five chromosome using 160 RILs of the Bay-0 x Sha RIL population. The red 

dotted frame indicates the region on the upper arm of chromosome 3 without recombination events.  
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QTL mapping comparison 

The original genetic map for the analysed Bay x Sha population developed by Loudet 

et al (2002) comprises 69 PCR-based markers. Recently, Zych et al. (2015) saturated 

the original map with 497 markers derived from microarray expression data 

(pheno2geno map). To compare the published maps to the RNA-seq map, the 

genetic distances were re-estimated using 145 RILs common to the three studies 

(Table S1). 

The RNA-seq map reduces the average distance between markers from 7,5 cM for 

the 69 marker map and 1 cM for the pheno2geno map to 0.6 cM (Table 2), closing 

many existing gaps in marker coverage (Figure 6). In addition, the RNA-seq map 

captures 1297 crossovers as compared to 1137 in the original map. The number of 

crossovers observed with the pheno2geno map (1366 cross-overs) is likely inflated 

due to the imputation of the genotypic data to 100% (% genotyped in table 2). 

 

 
Table 2. Summary of genetic maps for the Bay-0 x Sha RIL population based on 145 RILs 
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Figure 6. Saturation of the original map (69 PCR-based markers) with RNA-seq derived markers. The 

position of the original markers is represented on the left of each chromosome in grey and linked to their 

position in the saturated map (green markers). 

 

QTL mapping was performed to evaluate the mapping resolution of the RNA-seq 

map as compared to the two other maps. Using a genome-scan single QTL model 

analysis, 510 published phenotypes were re-mapped using the three maps. The QTL 

analysis with the RNA-seq map resulted in 754 significant QTLs (LOD > 3), while 684 

and 568 significant QTLs were detected using the pheno2geno and the original map, 

respectively (Table 3, Figure 7). QTLs were considered to have a higher or lower LOD 

score if the difference between the compared LOD scores was larger than or equal 

to 0.5. Respectively, 223 and 183 of the total number of significant QTLs in the 

original map did show an increased LOD score in the pheno2geno map and RNA-seq 

map (Figure 7A-B, Table 3). When compared to the pheno2geno map, the RNA-seq 

map resulted in 180 QTLs with a higher LOD score (Figure 7C, Table 3). The 

pheno2geno map identified 139 new QTLs compared to the original map, while the 

RNA-seq map added 208 new QTLs. 125 new QTLs were detected in the RNA-seq 

map as compared to the pheno2geno. In addition, an increase in the LOD scores was 

observed using the RNA-seq map as compared to the original map (average LOD 

score differences of 1.74) and the pheno2geno map (1.66) than for the pheno2geno 

compared to the original map (1.15) (Table 4). Together, these results indicate that 

the higher marker density of the RNA-seq map provides additional power to detect 

QTLs. 
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Table 3. Comparison of LOD scores using the different maps 

Genetic map
1 

(/compared to)
 

Significant 
QTLs 

(LOD>3) 

“New” and 
“lost” QTLs

2 
Higher 

LOD 
QTLs

3 

Lower LOD 
QTLs

4 

Original 568 - - - 

Pheno2geno/original 684 
139/23 

(24%/0.4%) 
223 (39%) 54 (9.5%) 

RNA-seq/original 754 
208/22 

(30%/0.4%) 
183 (32%) 97 (17%) 

RNA-seq/pheno2geno  
125/55 

(18%/8%) 
180 (26%) 185 (27%) 

 

1The new maps used for the comparison are indicated in bold. 2New QTLs are the number of QTLs with a 

LOD score above 3 in the new map and below 3 in the compared map (bold numbers). These numbers 

are compared to the number of significant QTLs in the compared map “lost” in the new map. 3Higher LOD 

QTLs is the number of QTLs with a higher LOD score in the new map with a difference in LOD score equal 

or larger than 0.5. 4Lower LOD QTLs is the number of significant QTLs with a higher LOD score in the new 

map with a difference in LOD scores equal or larger than 0.5. Percentage of new, lost and lower LOD QTLs 

in relation to the total number of significant QTLs in the compared map are shown in brackets. 

 

 

 

Figure 7. LOD score comparison of QTLs for 2550 QTL peaks of 510 published phenotypes using the 

original (A, B), the pheno2geno (B, C) and the RNA-seq map (A, C). The significance threshold is indicated 

by a dashed horizontal and vertical black line. “Stronger” LOD scores are plotted in red. Red and blue 

numbers correspond to the number of significant QTLs identified on the x-axis map with increased or 

decreased LOD scores in the y-axis map, respectively. 
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Table 4. Average LOD score differences across the different maps 

  A 

Genetic maps Original Pheno2geno RNA-seq 

B Original - 1.15 (0.04) 1.74 (0.10) 

 Pheno2geno 1.45 (0.19) - 1.66 (0.12) 

 RNA-seq 0.98 (0.04) 1.2 (0.04) - 
 

Numbers indicate the average LOD score difference for QTLs with higher LOD score using map 

A as compared to map B. Standard errors are indicated in brackets. The numbers of QTLs used 

for the analysis are reported in Table 3 (see higher and lower LOD QTLs). 

 

 

A main factor for the success of QTL experiments is the precision in the estimation 

of the position of the QTL. We assessed the RNA-seq map resolution by comparing 

the confidence interval (CI) of QTLs detected in the original map and the RNA-seq 

map. The CI of 546 QTLs significant in both maps was calculated (LOD >3). 457 (84%) 

of the QTLs showed a reduced interval in the RNA-seq map (Figure 8). The difference 

in interval width ranged from 0.08 Mbp to 25.58 Mbp. For example, the QTL for 

seed circularity at the top of chromosome 5 was delimited to a genomic region of 

less than 1.12 Mbp using the RNA-seq map compared to more than 26 Mbp using 

the original map (Figure 9). To verify the consistency of these results, the analysis 

was also conducted with a LOD threshold of 2 and for QTLs with higher LOD scores 

using the original map (Supplemental figure 3). 81% (770/952) of the QTLs showed a 

reduced CI using the RNA-seq map when the significance threshold was lowered to 

LOD > 2 (supplemental figure 3A). Analysis of 233 significant QTLs in both maps for 

which the LOD score was higher in the original map as compared to the RNA-seq 

map, resulted in 72% (169/233) of these QTLs showing a reduced CI using the RNA-

seq map (supplemental figure 3B). These results clearly show that the accuracy of 

the QTL mapping is improved by using the high density SNP bin map.  

 

36



A new genetic map from RNA-seq data | 

 

 

Figure 8. Comparison of the QTL mapping resolution using the original and the RNA-seq map. Confidence 

intervals (in Mbp) of QTLs detected in the original and the RNA-seq map are shown. Red and blue 

dots/values indicate the number of significant QTLs (LOD >3) with reduced and increased confidence 

interval in the RNA-seq map, respectively.  

 

 

 

Figure 9. Gain in QTL mapping precision using the RNA-seq map. The figure illustrates the differences in 

LOD score and confidence interval of the QTL for the trait “Size_circ_D_mei.10” located on the top of 

chromosome 5 using the original (black line) and the RNA-seq map (blue line). The physical position of the 

markers in the original and RNA-seq map are represented on the x-axis with black (17) and blue (243) tick 

marks, respectively. The QTL significance threshold is indicated by a horizontal dashed red line. The grey 

and blue vertical bars in the region of the QTL of interest indicate the confidence interval of the QTL in 

the original and RNA-seq map, respectively. 
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Discussion  

High-density genetic map 

In this study we showed that RNA-seq data can effectively be used for SNP calling, 

RIL genotyping and the development of a high-density genetic linkage map. The 

used binning approach resulted in 1059 high-quality multi-SNP based markers, 

providing a dense and equal coverage of markers physically anchored to the 

genome. The high marker density enabled more precise identification of 

recombination breakpoints and revealed unknown recombination breakpoints 

within the RIL population (Table 2). As a result, the mapping resolution is no longer 

limited by the number of markers but rather depends on the number of 

recombination events captured by the mapping population. This means that the 

advantages of high-density genetic maps in respect to mapping resolution will be 

considerably improved in combination with larger and/or more advanced designed 

populations (Balasubramanian et al. 2009; Kover et al. 2009; Liu et al. 2016). In 

comparison to the available genetic maps, the RNA-seq map could substantially 

increase QTLs linkage, eventually resulting in the identification of new QTLs (Table 

3). Although, the pheno2geno map showed a larger number of QTLs with higher 

LOD scores compared to the original map (Table 3), the RNA-seq map considerably 

increased the LOD scores of significant QTLs compared to both the original and the 

pheno2geno map (Table 4). Although we focussed in this study on the highest QTL 

per chromosome and per trait, we expect the RNA-seq map to also increase the 

overall number of QTLs after a more comprehensive analysis.  

Gain in QTL mapping resolution 

The detection power and resolution of QTL mapping is significantly improved by high 

density genetic maps as compared to traditional markers (Yu et al. 2011). With the 

RNA-seq map, a major improvement was observed in the reduction of the LOD-1 

confidence intervals for 74% of the investigated QTLs. As a QTL CI in general 

encompasses a large number of genes, reduced confidence intervals is of great 

benefit to narrow down the number of candidate genes for further investigation. In 

genetical genomics experiments, eQTLs can be identified as being either cis- or 

trans-regulated. Commonly, the distinction of both is made based on the distance, 

in cM or Mbp, between the gene and the eQTL peak or from the confidence interval 

of the eQTL (West et al. 2007; Keurentjes et al. 2007b; Lowry et al. 2013; Cubillos et 

al. 2014; Terpstra et al. 2010; Snoek et al. 2012; Drost et al. 2015; Ranjan et al. 2016; 

Li et al. 2006; Li et al. 2010; Vinuela et al. 2010; Rockman et al. 2010; Aylor et al. 
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2011; King et al. 2014; Sterken et al. 2017; Snoek et al. 2017b). Therefore, gain in 

mapping precision is also likely to contribute to a more accurate identification of cis- 

versus trans-eQTLs. 

Advantages and limitations of using RNA-seq data 

The use of RNA-seq presents several advantages over other methods. Our results 

show that RNA-seq data is a convenient and cost-effective source of SNP discovery , 

especially when a population is anyhow subjected to an eQTL analysis with the help 

of RNA-seq. RNA-seq can also overcome shortcomings identified from expression 

arrays based studies: while the effect of a SNP on the probe has enabled the 

identification of new sequence polymorphisms, weakened hybridization on 

microarrays based on expression studies can also cause the detection of false cis-

eQTLs (Alberts et al. 2007; Chen et al. 2009). Furthermore, RNA-seq has the 

potential to study more complex levels of the genetic control of gene expression, for 

instance by quantification of alternative splicing (Filichkin et al. 2010; Yoo et al. 

2016).  

SNPs that are found with RNA-seq are inherently restricted to expressed exons, thus 

dependent on the developmental stage of the sequenced material and the 

experimental conditions. This restriction can also cause regions with low gene 

density or lowly expressed genes to be under represented. However, these 

disadvantages will often not affect the mapping due to the high number of 

intermediate to highly expressed genes in any tissue and the SNPs present in those 

genes. Although our approach finds variants that affect protein-coding sequences, it 

is largely blind to SNPs in promoters, introns and intergenic regions. Since exons are 

under high purifying selection pressure, they are evolutionary more conserved than 

intronic and intergenic regions and therefore harbour less polymorphisms. However, 

SNPs that are causal for phenotypic variation will often be found in or close to genes 

and therefore, SNPs in large non-genic regions will hardly result in improvements of 

quantitative traits mapping (Li et al. 2012). In view of the abundance and saturation 

of SNPs that were discovered in this study, this does not cause a disadvantage, but 

might limit SNP detection for crosses from nearly identical parents. 
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Conclusion 

This study demonstrates that RNA-seq data can effectively be used for SNP 

discovery and the development of high-density genetic linkage maps. Here we 

provide a new SNP based saturated genetic map for a Bay x Sha RIL population. This 

saturated genetic map resulted in higher precision QTL mapping with more QTLs 

and considerably reducing the QTL confidence intervals. Such improvements are of 

great benefit for the accurate mapping of more complex traits and the identification 

of causal genes. 

 

 

The Supplementary material for this chapter can be found online at: 

https://www.frontiersin.org/articles/10.3389/fgene.2017.00201/full#supplementary

-material
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Abstract 

 

High quality seeds are required to meet optimal conditions for plant survival. A 

seed’s innate quality is determined during seed development, tightly controlled 

by the mother plant’s genetic make-up and affected by the environment. The 

interaction between genotype and environment results in substantial 

phenotypic variation in seed performance. Using natural variation, we aimed to 

unravel the effect of the seed production environment on the genetic 

architecture of seed quality traits. An Arabidopsis thaliana Bay-0 x Shahdara 

recombinant inbred line population was grown in four different seed 

production environments: standard, high temperature, high light and low 

phosphate conditions. The seeds harvested were used for an extensive 

germination phenotyping assay under standard and mild stress conditions. 

Quantitative trait loci (QTL) analyses identified many environmental sensitive 

QTLs (QTL x E).Variation in the QTL effects was largely determined by the 

germination conditions and the effect of the maternal environment was 

observed at the individual germination QTL level. Using heterogeneous inbred 

families, we confirmed one QTL strongly affected by high temperature 

maternal environment and suggested potential candidate genes. Together, our 

findings highlight the extensive environmental modulation of the genetic 

influence on seed performance. These data provide a system view of the seed’s 

complex genetic architecture underlying genotype-by-environment 

interactions. 

 

 

Keywords: Arabidopsis thaliana, maternal environment, QTL x E, seed 

performance 
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Introduction 

Seed performance can be defined as the timing and level of seed germination, 

critical in the early stages of the plant’s life cycle as it ultimately determines the 

survival of the species (Postmaa 2016). Seed performance relies on the quality 

of the seeds defined by the seed physical and physiological attributes. These 

attributes are acquired during seed development on the mother plant. 

Essential seed quality characteristics are the ability of the seed to germinate 

fast and uniformly under a wide range of conditions (vigour), to possess high 

genetic purity, to be stored for a long period of time without losing viability and 

the capability to establish a healthy seedling (Dickson 1980). The timing of 

germination is also controlled by seed dormancy which allows the seed to 

overcome unfavourable periods for seedling establishment (Bentsink and 

Koornneef 2008). Through this mechanism, germination can be put on hold for 

long periods of time (Finch-Savage and Footitt 2015). Primary dormancy can be 

released by a period of dry storage termed after-ripening. A quick release of 

dormancy can be accomplished by stratification which is a dark and cold 

treatment applied to imbibed seeds prior to germination. Another determinant 

of the success of germination is the post-dispersal environments of non-

dormant seeds. Unfavourable germination conditions can reduce, delay or 

prevent seed germination (Joosen et al. 2012).  

Plants are sessile organisms constantly challenged by fluctuations in their 

environment and need therefore to adjust their phenotype and/or evolve 

adaptive mechanisms (Walck et al. 2011). Seed set is a crucial phase in plant’s 

life cycle, yet particularly sensitive to environmental stresses (Springthorpe and 

Penfield 2015; Bac-Molenaar et al. 2015). Both at the vegetative and 

reproductive stage, the mother plant as well as the developing zygote process 

these environmental cues (Penfield and MacGregor 2017). Environmental 

factors such as temperature (Kendall and Penfield 2012; Penfield et al. 2005; 

Fenner 1991; Huang et al. 2014), light quality and intensity (Vayda et al. 2018; 

He et al. 2014; Contreras 2008), photoperiod (Munir et al. 2001) and nutrient 

availability (He et al. 2014; Hacisalihoglu et al. 2018) have been shown to affect 

many plant and seed traits. Several studies suggested that the maternal 

environment provides a mean to adjust the timing of germination (Donohue 

2009; He et al. 2014; Leverett et al. 2016; Edwards et al. 2016). As example, 

high temperature during seed development resulted in reduced seed 

dormancy (Fenner 1991), while seed maturation under cold conditions can 

induce strong dormancy (Chiang et al. 2011; Donohue 2009). 
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The existing natural variation has resulted in many studies investigating the 

genetic basis of dormancy in Arabidopsis (Bentsink et al. 2010; Silady et al. 

2011) and seed germination in Arabidopsis (Joosen et al. 2012; Laserna et al. 

2008; Meng et al. 2008; Ren et al. 2010; Vallejo et al. 2010) as well as in other 

crops (Basnet et al. 2015; Kazmi et al. 2012). Genetic variation was also 

observed for the effect of the maternal environment in panels of different 

genotypes (Munir et al. 2001) and the detection of significant genotype-by-

environment interactions (He et al. 2014; Nicotra et al. 2010; El-Soda et al. 

2014). A few studies have brought insight in G x E at the QTL level, showing that 

the maternal environment could interact with the QTLs (Postma and Agren 

2015; Kerdaffrec and Nordborg 2017). The focus of these studies was mainly on 

seed dormancy in view of the trait’s ecological implications (Donohue 2009). 

Additional knowledge on seed vigour would provide a more comprehensive 

understanding of seed performance and its plasticity (Finch-Savage and Bassel 

2016; Nicotra et al. 2010; El-Soda et al. 2014). 

The genetic and environmental components of seed performance can be 

determined by replicating genotypes under uniform environments. In classical 

linkage analysis, the natural variation comprised in recombinant inbred 

populations is a powerful tool to detect quantitative trait loci (QTLs) (Koornneef 

et al. 2004). In addition, tools to maximize the information about the 

environment in large multi-trait and multi-environment experiments can bring 

substantial insight into QTL x E (Malosetti et al. 2013; Joosen et al. 2012; Boer 

et al. 2007). 

In this study, we used the Arabidopsis recombinant inbred line (RIL) population 

derived from two Arabidopsis ecotypes: Bayreuth (Bay-0) and Shahdara (Sha) 

(Loudet et al. 2002). The different natural habitat of these two ecotypes 

confers those differences in stress sensitivity making the derived Bay-0 x Sha 

RIL population suitable to investigate the genetic basis of stress responses. The 

parental lines and the RIL population were grown under standard and different 

mild stress conditions, from flowering until seed harvested. The conditions 

tested were high temperature, high light and low phosphate which were shown 

to significantly affect plant and seed traits (He et al. 2014). The harvested seeds 

were phenotyped for germination characteristics under a wide range of 

conditions. 

 

Many of the germination QTLs identified showed QTL x E which was consistent 

with the large G x E effect observed at the phenotypic level. We used 

heterogeneous inbred families (HIFs) and RNA-seq expression data to narrow 
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down the region of an interesting environment specific QTL and suggest 

potential candidate genes. 

Material and methods 

Plant and growth conditions 

In this study, we used the 165 lines of the Arabidopsis Bayreuth (Bay-0) x 

Shahdara (Sha) recombinant inbred line core collection (Loudet et al. 2002). 

These RILs, as well as the parental lines, were sown on imbibed filter paper 

placed in individual petri dishes and stratified (4 days at 4°C in the dark). The 

sowing of the seeds differed in time based on an estimated flowering time of 

the RILs from previous experiments (Joosen et al. 2012) in an attempt to 

synchronize flowering. The seeds were then left to germinate in incubators 

with continuous light at 22°C. At radicle protrusion, 16 seeds per line were 

transferred to Rockwool blocks, with one seed per block. The plants were 

further grown in a controlled climate cell with a day/night cycle of 16h/8h at 

22°C/18° with a light intensity of 150 μmol m–2 s–1 and 70% relative humidity 

The blocks were placed on an ebb and flow table that dispensed standard 

nutrient solution (Supplemental Table S1) to the plants three times a week.  

When all plants reached flowering, their stems and branches were cut short in 

order to ensure the complete development of the seeds under each controlled 

mild stress condition. 3 to 4 plants per line were transferred to different 

climate cells. The controlled stresses applied were high temperature (HT) 

(25°C/23°C), high light (HL) (300 μmol m–2 s–1) and low phosphate nutritive 

solution (LP) (12,5 mM). The plants were allowed to grow under the different 

conditions until seed harvest. At the time all plants in a given condition 

produced a sufficient amount of fully matured seeds, seeds were bulk 

harvested from 3-4 plants per line. A fraction of the fresh harvested seeds was 

dried and stored at -80°C in sealed 2 ml tubes, while the remaining seeds were 

stored in paper bags placed in a cupboard at ambient room temperature for 

after-ripening. 
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Phenotyping  

Seed phenotyping was performed as described previously in He et al. (2014). 

Seed size was determined by taking pictures of approximately 500 seeds on 

white filter paper using a Nikon D80 camera. Pictures were analysed using 

ImageJ. The same seeds were carefully transferred into weighing cup and 

weighed with an AD-4 Autobalance (PerkinElmer, Inc.). Single seed weight was 

determined by dividing the total weight by the number of seeds.  

Germination experiments were performed using the GERMINATOR set-up 

described in Joosen et al. (2010). Seeds were sown on two layers of blue filter 

paper (Anchor paper company, St Paul, MN, USA; www.seedpaper.com) with 

48 ml of demi-water. Up to 6 seed batches were sown on the same filter paper. 

Automatic scoring of seed germination was performed using a mounted 

camera system. Pictures were taken one to three times a day for 5 up to 10 

days after sowing, until green cotyledons became visible.  

The curve fitting module of the GERMINATOR was used to analyse the general 

cumulative germination data. Gmax was measured as the total seed 

germination percentage. The time needed to reach 10 or 50 % of total 

germination (t10, t50) were calculated when more than 10% of germination 

was reached. The calculation of the area under the germination curve (AUC) 

was extended to 300 hours in order to capture the phenotypic variation under 

all germination conditions. The germination tests were performed using 

approximately 50 seeds per experiment. Two independent experiments were 

performed to obtain replicated phenotypic values. 

The germination potential of the fresh harvested seeds (Gmax fresh) and 

release of primary dormancy were determined by performing weekly 

germination experiments. Seeds were considered fully after-ripened if the 

percentage of germination reached more than 90% in two consecutive 

germination experiments. Fully after-ripened seeds were transferred to sealed 

Eppendorf tubes and stored at -80°C to prevent loss of viability during storage. 

The DSDS50 was calculated as the number of days of seed dry storage required 

to reach 50% germination (Bentsink et al. 2010).  

The vigour of the seeds was assessed on fully after-ripened seeds by 

germinating the seeds in twelve different germination conditions. These 

germination experiments to test seed vigour were started when more than 

80% of the lines were fully after-ripened, as described above. Seeds were 

germinated in demineralized water in standard germination condition. 

Germination experiments in sub-optimal conditions were conducted at high 
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(32°C) and low (10°C) temperatures, under osmotic stress (-0.6 MPa mannitol; 

Sigma Aldrich); under salt stress (100 mM NaCl; Sigma Aldrich) and in ABA (0.25 

µM ABA, Duchefa Biochemie). Germination experiments in these conditions 

were performed with and without stratification. Stratification consisted of 

storage of the sowed imbibed seeds in the dark for 4 days at 4°C prior to 

germination. Since the stratification effect can induce variation in stress 

sensitivity, we adjusted the concentrations for the NaCl and ABA treatments to 

125 mM NaCl and 0.5 µM ABA for the experiments with stratification. NaCl, 

mannitol and ABA stress treatments were performed by adding solutions of the 

indicated concentrations to the filter paper instead of demi-water prior to 

stratification.  

Seed longevity was assessed by a controlled seed deterioration test. Dry seeds 

were incubated at 40°C at 85% relative humidity in a closed tank in the 

presence of a saturated ZnSO4 solution. After five days, seeds were removed 

and germinated in standard conditions as described above. 

Data analysis 

Previous studies showed no difference in the QTL mapping performed using 

transformed and non-transformed germination data (Joosen et al. 2012). 

Therefore, due to the large number of traits, all analyses were performed on 

untransformed data. Boxplots were generated with the standard R boxplot 

function. Spearman correlation coefficients between traits were calculated and 

displayed in heatmaps using R. 

ANOVA analyses 

ANOVA analysis was performed for phenotypic mean comparison of the seed 

traits measured in the RILs grown under the four maternal environments. Post-

hoc Tukey test was then used at the confidence level of 0.95 to determine 

pairwise group significant differences. 

Genotype-by-environment interactions 

For each germination environment, the extent of the effect of the genotype, 

maternal environment and genotype-by-environment interaction on the 

phenotypic variation was determined using the linear model:  

Y = µ + G + ME + (G x ME) + ɛ 

Where Y is the individual performance, µ is the general mean, G is the effect of 

the genotype, ME is the fixed effect of the maternal environment, G x ME is the 
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genotype by maternal environment interaction and ɛ the residual error. The 

relative contribution of the variance components to the total phenotypic 

variation was determined as the ratio of the sum of squares of each 

component to the total sum of squares. 

Mapping plasticity QTLs 

Trait plasticity was determined as the response to germination in sub-optimal 

conditions as (germination in standard + stratification) – (germination in stress 

+ stratification) or (germination in standard – germination in stress). For these 

traits, we mapped plasticity QTLs. The QTL mapping was performed on these 

values by fitting the following model: 

Y = µ + G + (G x ME) + (G x GE) + (G x S) + (G x ME x GE) + (G x ME x S) + (G x GE 

x S) + (G x ME x GE x S) + ɛ 

Where Y is the performance at each marker, µ the phenotypic mean, G is the 

effect of the genotype, ME is the effect of the maternal environment, GE is the 

effect of the germination environment, (ME x GE) is the interaction between 

the maternal and the germination environment, S is the effect of the 

stratification treatment and ɛ is the residual error. Terms in brackets 

correspond to interactions between the components of the model. 

Heritability  

For each trait in each maternal environment (ME), the broad-sense heritability 

(H2) was calculated from estimated variances as H2 = σ
2
G / (σ

2
G+ σ

2
E) where 

σ2G is the genetic variance and σ2E is the environmental variance. The 

variance component analysis was analysed using a two-step mixed model 

approach (REML) from the preliminary single environment analysis in Genstat 

(18th Edition). Genotype and replicate were set as random effects in the 

model.  

QTL analysis 

The mapping was performed using a genetic map for the Bay-0 x Sha 

population derived from RNA-seq data (Serin et al. 2017). Briefly, the 

genotyping of 160 RILs resulted in the identification of 1059 polymorphic 

markers between the two parental lines. In total, the map spans 471 cM. To 

reduce the computational time and model complexity of the multiple 

environments QTL x E analysis, the number of markers was reduced to 221 

markers (Supplemental Table S1). 
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QTL x E mapping was performed with the mean phenotypic values per RIL of 

the seed and germination traits. In order to maximize QTL effect and QTL x E 

detection, single trait multiple-environments linkage analysis was used. 

Germination conditions were defined as the different environments tested 

within each maternal environment. The QTL x E analyses were conducted in 

Genstat (18th edition). For each analysis, the best variance-covariance model 

fitting the data was automatically selected. The best model was then used for 

an initial scan in simple interval mapping. The maximum step size along the 

genome was set to 5 cM and the minimum cofactor proximity and minimum 

distance for QTL selection were set to 20 cM. The threshold for the genome-

wide significance level was set at α = 0.05. After this first run, markers 

associated to candidate QTLs were automatically set as cofactors for a 

composite interval mapping. Resulting QTLs were tested for their interaction 

with the environment (QTL x E) by selecting the final QTL model. 

HIFs 

Available heterogeneous inbred lines (HIFs) were selected to validate the 

strong effect and the high temperature specific QTLs on top of chromosome 1. 

The HIF198 carrying the Bay-0 (HIFBay-0) or Sha (HIFSha) allele as well as the 

parental lines were grown under standard and high temperature maternal 

environments. HIFs were grown under 100 µmol m-2 s-1 light intensity for both 

ST and HT environments instead of the standard 150 µmol m-2 s-1 reported 

previously. 

Seeds were harvested and stored until primary dormancy was released. After-

ripened seeds were used for germination at 32°C with two lines per genotype 

and two technical replicates. After one week germination at 32°C, Gmax_32 

was scored. The germination trays were transferred to 4°C in the dark for four 

days (stratification), followed by incubation in continuous light at 22°C, to 

assess the full germination potential of the seeds (Gmax_22). The sensitivity of 

the genotype to the high temperature germination condition was measured as 

the difference between Gmax_22 and Gmax_32 (as delta Gmax = Gmax_22-

Gmax_32). Paired sample Student’s t-test was performed on the replicated 

phenotypic values of HIFBay-0 and HIFSha. 

RNA-seq 

Seed RNA isolation and RNA-seq processing is as described in (Serin et al. 

2017). Briefly, RNA was isolated in triplicate from fresh harvested and freeze 
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stored seeds of the parental lines matured under the four environments. RNA 

was isolated using the NucleoSpin RNA Plant isolation Kit (Macherey-Nagel 

740949) according to the manufacturer’s protocol and instructions. 

RNA-seq libraries were prepared from each RNA sample using the TruSeq RNA 

Kit from Illumina according to the manufacturer’s protocol and instructions. 

Poly-A mRNA was sequenced using the Illumina HiSeq2500 sequencer. Reads 

were processed using Trimmomatic (Bolger et al. 2014).  

Differential gene expression analysis 

All reads were mapped to the Arabidopsis thaliana TAIR10 reference genome 

(Lamesch et al. 2012) using HISAT2 with the ‘transcriptome mapping only’ 

option (Kim et al. 2015). The expression levels were normalized using Kallisto 

(Bray et al. 2016). The edgeR bioconductor package (Robinson et al. 2009) was 

used to measure differential gene expression between the parental lines in 

each environment and the response of the genotype to the environment.  

Results 

To identify the genetic basis of performance of seeds produced under different 

maternal environments (ME), the Bay-0 x Sha recombinant inbred line (RIL) 

population was grown in standard (ST) and three controlled mild stress 

environments: high temperature (HT), high light (HL) and low phosphate (LP) 

from flowering until seed harvest. 

We performed an extensive screening of seed traits. Seed dormancy was 

measured as the days of seed dry storage required to reach 50% germination 

(DSDS50, (Bentsink et al. 2010). We measured the germination percentage 

after a controlled seed deterioration test (Gmax CDT) as a proxy for seed 

longevity. Seed vigour was assessed by germinating the seeds under 12 

different germination environments (GE). Seed performance for each GE was 

quantified using several parameters: the germination rate (Gmax), the 

germination speed (t10 and t50) and the area under the germination curve 

(AUC), summarizing the previous mentioned germination parameters. We 

report the results of the AUC while data for the other germination traits are 

available in Supplemental Table S2. 
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Phenotypic variation of seed traits 

Overall, large phenotypic variation was observed for the RILs as a result of 

differences between the parental lines. Under all maternal environments, Sha 

had a higher level of dormancy indicated by a lower percentage of germination 

for fresh harvested seeds (Figure 1A) and higher DSDS50 values (Figure 1B) as 

compared to Bay-0. Sha had smaller imbibed seed size as compared to Bay-0 

(Figure 1F), while Bay-0 was more sensitive to the deterioration treatment as 

compared to Sha (Figure 1C). In general, seed maturation under the different 

environments resulted in significant phenotypic differences for seed and 

germination traits. Maturation under HT resulted in significantly smaller seeds 

with a lower dormancy levels (Figure 1 A, B, E), while HL increased dormancy as 

compared to the ST maternal environment (Figure 1 A, B). The HL maternal 

environment resulted in an increase in dry seed size, dry seed weight and 

imbibed seed size (Figure 1 D, E, F) as well as significantly higher Gmax CDT 

indicating a higher tolerance of the RILs to controlled deterioration treatment 

(Figure 1C). The LP maternal environment resulted in increased dormancy 

(Figure 1B) and significantly smaller dry seeds (Figure 1 E).  

Large phenotypic variation was observed for the parental lines and the RILs for 

the seed germination phenotypes (Figure 2). For most of the traits, the Bay-0 

parent had lower phenotypic values as compared to Sha, indicating higher seed 

vigour for the Sha parent. This was in line with the higher stress sensitivity 

reported for Bay-0 as compared to Sha (Joosen et al. 2012; Vallejo et al. 2010). 

Since the seeds used in the experiments were fully after-ripened, we found, as 

expected, that most of the lines (> 80%) did germinate at a high percentage in 

water (‘standard’ germination condition), while germination in sub-optimal 

conditions resulted in larger phenotypic variation. Under some conditions, 

transgression was observed, where substantial parts of the segregating 

progenies were performing worse or better than both of the parental lines 

(Figure 2). 
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Figure 1. Effect of the seed maturation environment on seed traits. Boxplot shows the distribution 

of the RILs with significant difference between the maturation environments for several seed traits: 

A. Fresh Gmax is the maximum of germination of freshly harvested seeds. B. Dormancy is measured 

as the number of days of storage of dry seeds to reach 50% of dormancy (DSDS50). The values of 

DSDS50 as show in the plot were square root transformed to fit the scale C. Gmax after controlled 

deterioration test measured as a proxy for seed longevity. D. The average dry seed weight of 1000 

seeds. E. Dry seed size as the average projected seed size of 1000 seeds. F. The average projected 

size of imbibed seeds. The phenotypic values of the parental lines, Bay-0 and Sha are indicated in 

blue and red, respectively. Significant differences between maturation environments are indicated 

by letters above the plots from the ANOVA with post-hoc Tukey HSD test results (p-value < 0.05). 
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Figure 2. AUC distribution across the germination environments for the parental lines and RILs 

grown under the four maturation environments. Single environments are represented on the x-axis 

with the germination condition followed by ‘strat’ to indicate prior stratification and the maternal 

environment. Grey colour shades indicate the maternal environments, standard (ST), low 

phosphate (LP), high temperature (HT) and high light (HL). Center lines show the medians and 

outliers are represented by dots. The AUC values of the parental lines, Bay-0 and Sha under each 

condition are indicated by blue and red dots, respectively. 

 

G x E for seed germination traits 

As a result of genotype by environment interactions, genotypic values can 

increase or decrease from one environment to another, which causes the 

genotypes to rank differently between the environments (El-Soda et al. 2014). 

This re-ranking eventually results in differences in the correlation coefficients 

for the same trait measured across different conditions. Considering, each 

combination of ME and GE as a single environment, spearman correlation 

analysis of germination traits across the multiple single environments was 

performed to estimate G x E. Overall, positive correlation of AUC across 

environments was observed with variation in the correlation values across 

conditions (Figure 4). The hierarchical clustering of correlated traits indicated 

the presence of a substantial common genetic basis. The traits were largely 

clustered based on the germination conditions (e.g. germination in ABA; cluster 

53



| Chapter 3 

1) but the clustering was also driven by the maternal environment (e.g. HT 

maternal environment; cluster 2), suggesting additional effects of the maternal 

over the germination environment. 

 

Figure 4. Heatmap of spearman correlations for the AUC measured for the whole population under 

different maturation environments and germinated in a wide range of conditions. The 48 

germination conditions are reported on the y-axis. The name of the germination condition and the 

maturation environment are concatenated with a “_” symbol and colour coded according to the 

legend on the x-axis.  

 
To further assess the effect of the ME in each GE, the phenotypic variance was 

decomposed into the main genetic and maturation environment effect and 

their interaction. For all germination conditions, a strong effect of the genotype 

was observed explaining more than 40% of the variance. The phenotypic 

variance explained by the ME ranged from 0.98 to 26.94% across the different 

GEs. The largest effect of the ME was observed for germination in mannitol, as 

expected (Figure 2). Under all conditions, except for germination under 
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mannitol, the effect of G x ME was significant and larger than for the effect of 

ME alone. The percentage of phenotypic variation explained by G x ME ranged 

from 16 to 43% across the germination conditions (Table 1).  

 

Table 1. Variance partitioning and heritability for AUC across germination conditions  

For each germination condition with (“_strat”) or without stratification, the 

results of the two-way ANOVA analysis are shown as variance partitioning 

where the percentage of the total phenotypic variance (σ2P) explained by the 

variance components of Genotype (σ2G), the maternal environment (σ2ME) 

and the interaction between genotype and maternal environment (σ2G x ME) 

is shown. P-values of the variance analysis < 0.05 *, 0.01 **, 0.001***, ns: not 

significant. The broad sense heritability (H2) was calculated as the ratio of the 

genetic variance over the total phenotypic variance. The heritability was 

calculated for the AUC measured in different germination conditions in the 

standard (ST), high temperature (HT), high light (HL) and low phosphate (LP) 

maternal environments.  

 

The strong effect of the genetic component was supported by the overall high 

heritability values (Table 1). The lowest heritability values were obtained for 

seed germination in ABA. These low values can be explained by the lack of 

reproducibility of the ABA treatment, i.e. high environmental variation over the 

genetic variation. Variation in heritability was also observed across the different 

 

Variance components  Heritability (H2) 

Germination  

conditions 
σ

2
G/ σ

2
P 

(%) 
  

 
σ

2
ME/ σ

2
P 

(%) 
  

 
σ

2
G x ME/ σ

2
P 

(%)   

 

ST HT HL LP 

Standard_strat 46.04 *** 

 

3.56 *** 

 

42.95 *** 

 

0.87 0.83 0.85 0.89 

Standard 49.67 *** 

 

8.37 *** 

 

33.43 *** 

 

0.84 0.80 0.90 0.90 

NaCl_strat 73.74 *** 

 

4.16 *** 

 

16.17 *** 

 

0.78 0.85 0.77 0.72 

NaCl 68.73 *** 

 

7.60 *** 

 

17.18 *** 

 

0.83 0.85 0.78 0.81 

Mannitol_strat  52.56 *** 

 

10.71 *** 

 

27.88 *** 

 

0.87 0.85 0.89 0.89 

Mannitol  45.79 *** 

 

26.94 *** 

 

21.93 *** 

 

0.83 0.88 0.86 0.85 

Heat_strat 60.81 *** 

 

1.99 *** 

 

27.57 *** 

 

0.85 0.84 0.81 0.87 

Heat  54.17 *** 

 

11.48 *** 

 

29.51 *** 

 

0.85 0.86 0.79 0.85 

Cold_strat  53.08 *** 

 

5.24 *** 

 

27.89 *** 

 

0.87 0.83 0.93 0.90 

Cold 50.23 *** 

 

5.62 *** 

 

35.28 *** 

 

0.86 0.80 0.91 0.88 

ABA_strat  39.79 *** 

 

1.37 *** 

 

13.62 ns 

 

0.00 0.25 0.09 0.30 

ABA 17.90 ns 

 

0.98 * 

 

5.12 ns 

 

0.16 0.10 0.00 0.12 
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MEs, showing that the maternal environment could affect heritable 

germination traits.  

 

Correlation between seed performance and seed traits 

Overall, moderate correlation between seed traits and seed performance was 

observed (Figure 5). In the four populations, dormancy (DSDS50) was 

negatively correlated with several germination traits. This negative correlation 

was exacerbated under LP. The positive correlation between Gmax CDT and 

seed performance was exacerbated under HT. As expected, strong negative 

correlation was observed between dormancy and the maximum of germination 

of fresh harvested seeds with different levels of primary dormancy. Despite the 

strong effect of the environment on dry seed size (Figure 1 E), no clear 

correlation was observed between dry seed size and seed performance. Across 

all environments, negative correlation was observed between imbibed seed 

size and germination in ABA with stratification specifically. The Sha parent 

carries a natural mutation in the MUM2 gene (Macquet et al. 2007) involved in 

seed mucilage production. This absence of mucilage was associated with 

smaller imbibed seed size (Joosen et al. 2012). The same authors suggested 

that the absence of mucilage would reduce the water uptake and thus also 

possibly the sensitivity to germination in ABA. 
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QTL mapping with QTL x E  

Two QTL mapping approaches were used to explore QTL-by-environment 

interactions (QTL x E) for seed germination phenotypes. Single trait multiple-

environments linkage analysis was performed on the mean phenotypic values 

of the AUC across germination conditions, for each maternal environment 

(phenotypic QTLs). In the second approach, QTL mapping on the response 

values measured as the difference between seed performance under stress as 

compared to its appropriate control. In addition, the plasticity traits were used 

in the model to identify QTL associated with the genotype main effect as well 

as the interaction of the genotype at the marker with the germination (G x GE), 

maternal (G x ME), stratification (G x S) and other possible interactions. 

The single trait multiple-environments mapping for the seed germination traits 

revealed a large number of QTLs distributed over the five chromosomes (Figure 

6). The QTLs identified were clustered in distinct regions of the chromosomes, 

resulting in 15 main QTL clusters. The direction of the QTLs within these QTL 

clusters was largely consistent across the environments and QTLs with both 

Bay-0 and Sha as high value allele were identified. Variation in the number of 

QTLs and the percentages of explained variances of the individual QTLs within 

these clusters across ME was a first indication for QTL x E. Furthermore, 

differences observed across the QTL clusters, indicated varying degree of 

sensitivity of the genetic variants to the environment along the genome. 

Germination QTLs with certain environment specificity were identified. In HT, a 

large number of QTLs were identified on top of chromosome 1 and 

chromosome 3, while QTLs at the bottom of chromosome 1 and top 

chromosome 5 seem to be specific to LP (Figure 6). 

 

 

 

 

 

 

 
◄Figure 5: Heatmap of spearman correlation coefficients of seed and germination traits (AUC) 

under different germination conditions for the RILs grown in standard (ST), high temperature (HT), 

high light (HL) and low phosphate (LP). Dry SS: dry seed size; imb. SS: imbibed seed size; DSDS50 is 

a measure of dormancy and Gmax CDT is the percentage of germination after controlled 

deterioration test and is a proxy of seed longevity 
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Figure 6: Heatmap of QTL profiles for AUC in a single trait multiple environments linkage analysis 

approach. The 12 germination conditions are indicated in the rows for each maternal environment 

(ST: standard, LP: low phosphate, HT: high temperature, HL: high light). The direction and effect of 

the QTLs is indicated by the gradient false colour scale. Yellow to red indicates QTLs with a higher 

trait value associated with the Sha allele and blue to dark blue indicates higher allelic effect 

triggered by the Bay-0 allele. The vertical dashed lines delineate the chromosomes. The upper 

panel represents the –log(P-value) profile for the different components of the mixed model 

mapping approach: Geno: genotype, ME: maternal environment, GT: germination environment, S: 

stratification. Grey dotted lines at the bottom of the figure indicate the position of the QTL clusters 

identified. The exact position of the QTL clusters is reported in Supplemental Table S3. 
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Figure 7: Summary of the effect of the maternal environment on germination QTLs. Individual QTLs 

within the 15 QTL clusters for AUC were investigated for each germination condition and 

categorized into ’specific’ and ‘interacting’ and ‘sensitive’ QTLs according to the significance of the 

QTLs in respect to the maternal environments. QTLs with a significant effect (p< 0.05) in only one 

maternal environment (ME) were considered as ‘environment specific’ germination QTLs. QTLs 

with significant effect in several (2 to 3) MEs were categorized as ‘interacting’; QTLs with varying 

but significant effect under all MEs were categorized as ‘sensitive’. For each box, the highest 

explained variance of the QTL(s) is indicated with negative values for Sha and positive values for 

Bay-0. The colour of the boxes for the environment specific QTLs corresponds to the specific ME in 

which the QTL is identified. For the interacting QTLs, the colour code corresponds to the highest 

explained variance found for the QTLs. 
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Effect of the maternal environment on germination QTLs 

To further understand the nature of the effect of the maternal environment on 

the germination QTLs identified, an overview of QTL clusters with significant 

QTL x E for AUC is shown in Figure 7. For each germination condition, the QTLs 

were classified in three classes according to the significance of the QTL effect 

(p< 0.05) in the different MEs. The QTLs were ‘environment specific’ when the 

QTL was detected in only one of the four MEs, ‘interacting’ when the QTL 

effect was significant in several MEs and ‘sensitive’ when the QTL effects were 

variable but significant across all MEs. A large number of germination QTLs 

were specific to one ME. Most of these QTLs display low explained variance 

compared to the ‘interacting’ and ‘sensitive’ QTLs. For the ‘sensitive’ QTLs, the 

explained variance of the QTL could vary between 5 and 24, showing the large 

effect of the ME on individual germination QTLs.  

Plasticity QTLs 

Another approach to investigate the sensitivity of the QTLs to the environment 

consisted of mapping QTLs for plasticity. The plasticity of a genotype 

corresponds to the reaction norm which is the response of a given genotype 

under varying environments. Here, the plasticity was measured as the 

difference between seed performance in stress conditions and the respective 

standard (for instance AUC for germination under ABA with stratification was 

subtracted from AUC for germination in water with stratification). Plasticity QTL 

results are available in AraQTL(Nijveen et al. 2017). Furthermore, QTL x E was 

assessed by obtaining QTL profiles for the different components explaining the 

variation (ANOVA). The QTLs for the different components largely 

corresponded to the QTL clusters previously identified (upper panel Figure 6). 

In particular, strong linkage was observed for the genotype and genotype x 

germination components (upper panel Figure 6). The low linkage for the effect 

of the maternal environment can be explained by the nature of the plasticity 

calculation. In the situation where genetic variation for the maternal 

environment is observed under both standard and stress conditions, calculating 

the difference between the two germination environments cancels out this 

variation. 
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Confirmation of an environment specific QTL 

Several germination QTLs with large explained variances were detected on top 

of chromosome 1 specifically for the HT population (QTL 1) (Figure 6). In 

addition, a HT specific dormancy QTL co-located with these germination QTLs 

(Supplemental Table S4). The Sha allele at the position of QTL 1 conferred 

higher tolerance to germination in sub-optimal germination conditions and 

lower seed dormancy. For germination at 32°C (AUC_heat), the QTL explained 

up to 23.5% of the phenotypic variance. To validate this QTL, the parental lines 

and the HIF198 carrying the parental alleles, HIFBay-0 or HIFSha at the top of 

chromosome 1, were grown in similar ST and HT maternal environments. 

Harvested seeds were stored for a few months and germinated at 32°C. To 

assess the full potential of seed germination, once the germination plateau was 

reached under germination at 32°C, the seeds were stratified and transferred 

to 22°C. The difference between the final Gmax and the Gmax under 32°C for 

the different lines, delta Gmax, is shown in Figure 8. For the seeds grown under 

ST, the lower delta Gmax for Bay-0 and high delta Gmax for Sha (indicating no 

germination), likely reflected the degree of primary dormancy of the seeds. 

Nonetheless, germination at 32°C of the HIFs carrying either parental allele 

showed significant differences when grown under HT (Figure 8).  

 
◄Figure 8. Confirmation of an 

environment specific QTL with a 

HIF approach. Analysis of 

HIF198 (top of chromosome 1) 

carrying the Bay (HIFBay) or the 

Sha (HIFSha) allele. Error bars 

represent the standard error of 

2 and 4 replicates for the 

parental and HIF lines, 

respectively. The delta Gmax is 

shown as the difference of full 

germination potential and 

germination at 32°C, as 

described in the main text. 

A higher delta Gmax indicates thus a higher sensitivity of the line to germination at 32°C. T-test was 

performed between the HIFs carrying the Bay-0 or Sha allele grown under standard (ST) and high 

temperature (HT). * indicates a significant difference by Student t-test (p-value < 0.05). 

 

* 
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Mining candidate genes using expression data 

The identification of environment specific QTLs suggests the sensitivity of the 

alleles to the environment. We used gene expression data obtained by RNA-seq 

on fresh dry seeds of the parental lines, Bay-0 and Sha, grown in the different 

maternal environments (Serin et al. 2017) Chapter 5), to shortlist candidate 

genes based on their differential expression. 

Overall, the transcriptome of the seeds showed distinct profiles as a result of 

the difference in their genetic background and the maturation environments 

(Chapter 5). We focused on the high temperature specific QTL identified on top 

of chromosome 1 confirmed by the HIF approach (Figure 8). The genomic 

region defined by the HIF (1.45 – 3.45 Mb) included 578 genes. These genes 

were stringently filtered for being significantly (p-value after FDR correction < 

0.0001) and specifically differentially expressed between Bay-0 and Sha under 

high temperature and not under the other conditions. The filtering step 

reduced the initial list to 10 potential candidate genes (Table 2). 

 

Among these genes, the highest fold change was observed for At1g09570 

encoding phytochrome A. The known role of phytochromes in the temperature 

regulation of seed germination strengthens its significance as a candidate gene 

(Dechaine et al. 2009; Heschel et al. 2007; Donohue et al. 2008; Donohue et al. 

2012). The difference in expression is explained by the increased expression of 

PHYA in Bay-0 in response to HT maternal environment as compared to Sha 

(Figure 9). 

 
◄Figure 9: Genotype and 

environment dependent 

gene expression variation. 

Gene expression levels are 

shown for Phytochrome A 

in the dry seeds of the 

parental lines, Bay-0 and 

Sha, matured under 

standard (ST), high 

temperature (HT), high light 

(HL) and low phosphate (LP) 

environments. Significant 

differential gene expression 

between the parental lines 

is indicated by (*) for FDR < 

0.0001. 

* 
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Table 2. List of genes differentially expressed (DEGs) between Bay-0 and Sha underlying the high 

temperature specific germination QTL on top of chromosome 1. The expression log fold change 

(logFC) between Bay-0 and Sha under HT and ST are indicated. Negative values indicate higher 

expression levels in Sha and positive values, higher expression in Bay-0.  

 

 

 

  

Genes logFC  

HT 

FDR p-
value 

logFC  

ST 

FDR p-
value 

Description 

AT1G09070 -1.18 7E-19 -0.28 0.12 Soybean gene regulated by cold-2 

AT1G05120 -0.98 1E-17 -0.23 0.15 Helicase protein with RING/U-box 
domain 

AT1G07645 -0.70 1E-07 -0.18 0.40 Desiccation-induced 1VOC 
superfamily protein 

AT1G04560 -0.58 9E-10 -0.04 1.00 AWPM-19-like family protein 

AT1G06570 0.53 3E-06 0.17 0.37 Phytoene desaturation 1 

AT1G07615 0.68 4E-06 0.35 0.07 GTP-binding protein Obg/CgtA 

AT1G09640 0.77 2E-12 0.21 0.20 Translation elongation factor EF1B, 
gamma chain 

AT1G07770 1.19 9E-06 0.51 0.19 Ribosomal protein S15A 

AT1G07590 1.26 2E-08 0.08 1.00 Tetratricopeptide repeat (TPR)-like 
superfamily protein 

AT1G09570 1.50 3E-05 0.64 0.19 Phytochrome A 
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Discussion 

It is established that the environment experienced during seed development 

affects seed traits such as dormancy and germination (Penfield and MacGregor 

2017). The genotype-dependent response to these effects has further led to 

the investigation of the interaction between maternal environment and 

genotype and its effect on seed phenotypes (He et al. 2014; Burghardt et al. 

2016; Munir et al. 2001; Edwards et al. 2016). Only a few studies have 

harnessed natural variation to identify the extent and effect of the maternal 

environment at the genetic level. Postma and Agren (2015) and Kerdaffrec and 

Nordborg (2017) identified changes in the effect of QTLs associated to seed 

dormancy in Arabidopsis populations grown in native field experiments. 

However, various factors, such as photoperiod and temperature vary 

simultaneously in the field and therefore experiments under controlled 

conditions in which individual factors are investigated separately are needed to 

disentangle these effects. In this study, we grew an Arabidopsis recombinant 

inbred line (RIL) population under four controlled conditions from flowering 

until seed harvest. Extensive phenotyping and QTL mapping for the seeds 

produced under the different conditions revealed the effect of the maternal 

environment at the phenotypic and genetic level. We further used HIFs and 

gene expression of the parental lines to narrow down the number of candidate 

causal genes for an environment sensitive QTL. 

 

Overall, considerable phenotypic variation was observed between the parental 

lines as well as in the RIL population in response to both the germination and 

maternal environments. The effect of the maternal and germination 

environments on seed traits was in line with previous studies. Temperature is a 

key determinant in the timing and duration of key developmental phases 

including flowering. Plant morphology and reproductive development are also 

strongly influenced by temperature (Wigge 2013; Quint et al. 2016). Warmer 

temperature leads to earlier flowering and subsequently earlier seed set 

(Balasubramanian et al. 2006; Springthorpe and Penfield 2015). In line with 

other studies, high temperature maturation environment promoted 

germination by reducing dormancy levels (Figure 1) (Kendall and Penfield 2012; 

Huang et al. 2014). The temperature regulation of seed germination is largely 

influenced by the key hormones, ABA and GA. Kendall et al. (2011) reported 

that low temperatures during seed development increased abscisic acid (ABA) 

content and reduced gibberellic acid (GA) levels.  
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Larger seed size and seed weight was observed under HL as found by (He et al. 

2014; Contreras 2008) in different genotypic backgrounds. In several studies, 

seed size has been associated with seedling vigor and faster germination 

(Fenner 1991). The low correlation between seed weight and seed 

performance found in this study shows that this relation is not always verified 

(Figure 5). We observed that the RILs that matured under HL showed lower 

AUC under several germination conditions (NaCl, Mannitol and heat). These 

lower AUC for larger seeds could also be explained by a higher water 

requirement of these seeds to complete germination compared to smaller 

seeds for which water absorption can occur faster. These hypotheses are in line 

with the observation of (Galloway 2001) who found that an increase in 

resources in the maternal environment, such as high light, decreases the 

fraction of seeds with early germination. The low phosphate environment also 

affected seed traits, such as AUC in mannitol (Figure 2), which resulted in LP 

sensitive QTLs at the top of chromosome 5 (Figure 6). Phosphorus (P) is an 

essential nutrient that is required for all major developmental processes and 

reproduction in plants. P can be stored in the plant or mobilised throughout 

the plant to provide the energy blocks for further reactions, as in the form of 

ATP. Common responses to P deficiency include delayed plant maturity, 

reduced leaf size and reduced root growth, which can limit nutrient uptake. 

Under P starvation conditions, the allocation of P might thus occur at the 

expense of P storage in seeds, although studies have reported that yield rather 

than seed quality is affected under resource limiting environments 

(Hacisalihoglu et al. 2018). Besides the effect on the mean phenotypic values, 

the effect of the maternal environment also resulted in differences in the 

response of the RILs, indicating genotype-by-environment (G x E) interactions 

(Figure 4, Table 1). Such interactions were largely reported in other studies 

(Munir et al. 2001; Kerdaffrec and Nordborg 2017; He et al. 2014) and 

supported in this study by the analysis of variance, which estimated that overall 

approximately 40% of the seed germination variation in the RILs was due to G x 

E (Table 1). Together, these results show that the maternal environment can 

effectively modulate the expression of genetic variation. In general, increased 

variance of AUC values was observed for germination in sub-optimal conditions 

(Figure 2). These variances reflect differences in the timing of germination of 

individual seeds in a seed batch. In nature, varying timing of seed germination 

can be seen as a strategy to ensure the success of seed germination; while in 

agriculture, seed companies put major efforts to deliver uniformly germinating 

seed batches. 
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The quantitative genetic study identified a large number of QTLs detected 

across multiple environments. Most of these QTLs could be grouped into 15 

main QTL clusters. Several studies previously identified common QTLs 

controlling germination under standard and stress conditions (Foolad et al. 

2007; Joosen et al. 2012), suggesting partly shared physiological regulation of 

seed germination under these conditions. The observed QTL clusters largely 

corresponded to the major germination QTLs identified in a previous study in 

the same population (Joosen et al. 2012). The high level of consistency 

between the previous and present study indicates the reliability of the 

identified QTLs. 

The significant QTL x E corroborated the G x E observed at the phenotypic level. 

The effect of the environment was mostly observed as a change in allele 

sensitivity of the QTLs, which is the most common type of interaction for QLT x 

E (El-Soda et al. 2014). For marker-assisted selection, such QTLs present the 

advantage of enhancing germination under several conditions. Six QTLs clusters 

(QTL4, QTL7, QTL9, QTL12, QTL14 and QTL15) were identified with a higher 

effect provided by the allele of the generally slow and or lower germinating 

parent, Bay-0. This indicated that alleles promoting germination can also be 

queried in the parent of apparent opposite phenotype. The presence of QTLs in 

the direction of both parental alleles is also likely to explain transgressive 

phenotypes in the RIL populations (Figure 2). Several QTL clusters showed 

certain specificity to the maternal environments (Figure 6). For instance, QTL 1 

was identified for several germination conditions under HT, QTL11 and QTL15 

were found mainly in HL, while QTL4, QTL5, and QTL12 showed higher 

sensitivity to the LP maternal environment. The maternal and germination 

conditions showed a significant effect on the magnitude change of the QTL 

effects. Common germination QTLs across maternal environments showed 

higher LOD scores. ME specific QTLs had generally lower LOD scores. The 

absence of the germination QTL under the other maternal environments could 

be due to not reaching the significance threshold (Figure 7).  

 

Despite the use of RILs and a dense genetic map, the identified QTLs had large 

confidence intervals encompassing a high number of genes. Further strategies 

need thus to be employed to narrow down these genomic regions and 

establish a manageable list of potential causal genes. When readily available, 

heterogeneous inbred lines (HIFs) provide a fast method to validate QTLs 

(Tuinstra et al. 1997; Joosen et al. 2012). Using this approach, we showed that 

the effect of the maternal environment on QTLs can be reproduced under 
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controlled conditions, as shown for high temperature ME (Figure 8). The HIFs 

allowed narrowing down the QTL region although further efforts are necessary 

to identify the causal gene. With the advent of high-throughput technologies, 

another popular approach to the identify candidate genes is to combine QTL 

mapping and gene expression analysis (Wayne and McIntyre 2002; 

Kloosterman 2010; Albert et al. 2016). In the recent years, RNA-seq has 

become widely used for transcriptome studies (Wang et al. 2009) presenting 

many advantages over other methods, such as the large and dynamic range of 

expression level quantification. In this study, we used RNA-seq data obtained 

from the mature dry seeds of the parental lines grown under the different 

maternal environments. The transcriptome of the seeds was largely modulated 

by the genotypic background and the environment (Figure 9) (He et al. 2016; 

Chiang et al. 2011). The effect of the maternal environment is likely influenced 

by gene expression changes and thus we investigated differentially expressed 

genes between the parental lines matured under high temperature, within the 

confidence interval validated by the HIF. Using this approach, we drastically 

reduced the list of candidate genes to 10 genes. Among these genes, we 

identified At1g07430 encoding for phytochrome A (PHYA). Phytochromes play 

a known role in regulation of seed germination (Heschel et al. 2007) and can 

also act as mediator of the environmental cues experienced by the seed during 

seed maturation (Botto 1996; Dechaine et al. 2009). PHYA is involved in the 

regulation of germination and dormancy via the ABA/GA hormonal balance 

(Finch-Savage and Footitt 2017; Cadman et al. 2006), although the effects of 

PHYA have been shown to vary across genotypes and conditions (Donohue et 

al. 2008; Donohue et al. 2012; Dechaine et al. 2009). The negative regulation of 

PHYA on GA levels (Jordan et al. 1995) could be a plausible explanation to link 

the higher expression of PHYA and the lower seed performance in Bay-0 in HT 

associated with this QTL. Another study in Arabidopsis showed that an increase 

in phyA signalling augmented the ABA-mediated inhibition of root growth 

(Chen et al. 2014a). 

 

Although PHYA is an interesting candidate for the causal gene for this QTL, 

other genes within the QTL interval are also still candidates. Here we used a 

stringent threshold (p< 0.0001) to establish a manageable list of candidate 

genes. In addition, differential expression is not a prerequisite of causality. A 

QTL in the same region was also identified for germination in ABA and salt in 

the Ler x Sha population (Ren et al. 2010). The cloning of the QTL led to the 

identification of RAS 1 (At1g09950). RAS1 has a premature stop codon in Sha 
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which causes a truncated RAS1 protein and improved tolerance to germination 

in salt conditions (Ren et al. 2010). In our study, analysis of the HIFs showed the 

HT specificity of the QTL, thus it is likely that besides RAS1, which didn’t show 

HT specific expression, other genes control seed germination at the position of 

this QTL.  

In conclusion, we showed that the maternal environment prominently affects 

seed germination. The extent of QTL x E observed as a result of genetic 

interaction with the maternal and germination environments, strengthen the 

need of multi-environment studies to reveal the genetic mechanisms 

underlying phenotypic plasticity. Such studies are particularly relevant in a 

context of climate change (Walck et al. 2011; Huang et al. 2018) to understand 

plant adaptation. The combined effect of the maternal and germination 

environment may as well provide a mean to life history evolution (Donohue 

2009). From a breeding perspective, the maternal environment should be 

taken into consideration in order to better predict and fully exploit seed 

performance potential under either a targeted or wide range of environments.  

 

List of supplemental data  

Supplemental Tables below can be found at:  

http://www.wageningenseedlab.nl/thesis/earserin/SI/chapter3  

 

Supplemental Table S1: Element concentrations in the standard nutrient 

solution. 

Supplemental Table S2: List of 221 SNP markers used for the QTL x E analysis. 

Supplemental Table S3: Average phenotypic values for all seed and germination 

traits measured in the parents and recombinant inbred lines grown under 

standard, high temperature, high light and low phosphate. 

Supplemental Table S4: output files that summarize the results of the QTL x E 

analyses for the germination traits.  

Supplemental Table S5: output files that summarize the results of the QTL x E 

analysis for the seed traits.
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Abstract 

Seed set is a crucial event in a plant’s life cycle that ultimately determines the 

plant’s fitness. The environment experienced by the mother plant and embryo 

during seed development is shaping the seed metabolome in a genotype-

dependent manner. In seeds, several loci controlling metabolite variation have 

been identified although only a few studies have investigated the underlying 

genetic architecture in response to changes in the seed production 

environment. In the present study, we used an Arabidopsis RIL population 

grown under different environments to investigate the effect and genetic basis 

of genotype-by-environment interactions (G x E) on the seed primary 

metabolism and associated seed germination characteristics. The primary 

metabolites of the dry seeds of the parental lines and the RILs produced under 

four contrasting environments were investigated using an untargeted GC-TOF-

MS metabolomics approach in a generalized genetical genomics design. A large 

set of metabolites were affected by G x E. The combined use of network-based 

metabolite correlation analysis and mQTL analysis indicated an environment-

dependent genetic regulation of the dry seed primary metabolome. Overall, 2 

known and 2 novel hotspots of metabolic regulation were identified. Although, 

limited co-locating phenotypic and metabolic QTLs were observed, we found 

that different sets of metabolites across the environments correlated with seed 

performance traits, showing that the seed maternal environment can modulate 

the relation between metabolites and phenotypes. 

 

Keywords: Genetical metabolomics, maternal environment, network analysis, 

primary metabolism, seeds.  
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Introduction 

Intrinsic seed properties, such as the ability to germinate, are acquired during 

seed development on the mother plant. Throughout seed development, a sink-

source connection between the mother plant and the seeds exists. This 

connection allows the plant to allocate available resources to support seed 

growth and the synthesis of seed storage compounds (Ruuska 2002; Baud et al. 

2008). Primary metabolites such as sugars and organic and amino acids are key 

compounds of the metabolic shifts that occur during seed maturation, 

desiccation and germination (Fait et al. 2006; Angelovici et al. 2010; Galili et al. 

2014). Tricarboxylic acid contents decrease during seed maturation while seed 

desiccation is characterized by an increase in free amino acids (Fait et al. 2006), 

(Angelovici et al. 2009). At the end of desiccation, fully mature seeds enter a 

quiescent state nearly devoid of metabolic activity. Upon imbibition, metabolic 

activity resumes, mobilizing stored metabolites to provide the basis for seed 

germination; an energy demanding process. As a result, the compounds stored 

in dry mature seeds reflect the process of seed maturation and can be linked to 

seed performance (Rosental et al. 2014; Rosental et al. 2016). 

Throughout their life cycle, plants experience fluctuating conditions, requiring 

coordinated changes at the transcriptome, proteome and metabolome levels 

to adjust the biochemical pathways to facilitate their physiological response. 

During seed set, changes in the maturation environment of the seed 

substantially affect seed performance in Arabidopsis (He et al. 2014)(Chapter 3) 

which is reflected by the metabolome level in a genotype dependent manner 

(He et al. 2016). Seeds that matured under high light conditions had a higher 

accumulation of galactinol, which has been shown to positively correlate with 

Arabidopsis seed longevity (He et al. 2016; de Souza Vidigal et al. 2016). In 

contrast, low temperature and low nitrate maturation environments resulted in 

a decrease of nitrogen-metabolism compounds such as GABA, asparagine and 

allantoine (He et al. 2016). Although fundamental molecular mechanisms of 

seed maturation have been described (Holdsworth et al. 2008; Gutierrez et al. 

2007), more work is needed to understand how environmental factors interact 

with these processes. Increasing our understanding of the genetic and 

molecular mechanisms controlling seed metabolome variation in response to 

stress will provide valuable insights in this direction.  

The advancement of tools in metabolomics and genomics has enabled 

untargeted and large scale exploration of metabolome composition and 

variation (Kooke and Keurentjes 2012). In particular, GC-MS based methods 
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have largely contributed to the profiling of primary metabolites (Lisec et al. 

2006). The extensive diversity in metabolites and their high interconnectivity 

has led to large metabolite variation revealing the large plasticity and 

complexity of metabolic networks (Obata and Fernie 2012; Sulpice et al. 2013). 

Identifying the factors controlling these intricate networks remains an 

important challenge.  

Quantitative trait locus (QTL) analysis is a powerful tool to identify genes 

responsible for variation in a segregating population. For molecular traits, such 

as transcript levels, genetical genomics was proposed (Jansen and Nap 2001) 

and successfully applied (Cubillos et al. 2012; Lowry et al. 2013; Keurentjes et 

al. 2007b). Since metabolite levels can also be treated as quantitative traits, 

quantitative trait mapping of metabolite variation enables the identification of 

metabolic QTLs (mQTLs) (Keurentjes et al. 2006). This “genetical 

metabolomics” approach has been successfully employed to dissect the genetic 

basis of metabolism in plant systems (Keurentjes et al. 2006; Knoch et al. 2017; 

Toubiana et al. 2012; Carreno-Quintero et al. 2012; Wen et al. 2015).  

Commonly, the effect of environmental perturbations on the genetic basis of 

metabolome variation has been resolved by comparing mQTLs of the same 

population exposed to contrasting conditions (Kliebenstein et al. 2002; 

Rosental et al. 2016; Wu et al. 2018). Although this kind of approach provides 

full power for the genetic analysis, often only a few conditions are tested due 

to practical reasons, consequently limiting insights into the extent of 

metabolome genetic regulation in response to environmental variation. 

Recently, the generalized genetical genomics (GGG) design (Li et al. 2008b) was 

introduced to investigate mQTL x E for metabolome variation at different 

stages of the seed germination process (Joosen et al. 2013). In this study, 

several mQTLs controlling seed metabolism were identified. 

To extent our understanding on the genetic control of the seed metabolome, 

we queried the effect of the maturation environment on the genetic 

architecture of the seed metabolome in an Arabidopsis thaliana Bayreuth-0 

(Bay-0) x Shahdara (Sha) recombinant inbred line (RIL) population (Loudet et al. 

2002). A core population of 165 RILs and the parental lines were grown in four 

contrasting environments, including standard, high light, high temperature and 

low phosphate from flowering until seed harvest. Metabolic profiling of dry 

harvested seeds of the RILs and the parental lines was performed by GC-TOF-

MS in a GGG design. Using metabolite correlation network and mQTL analyses, 

we shed light on key genetic features of maternal environment induced 

changes in dry seed metabolome regulation.  
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Material and Method 

Plant Material 

Seeds from an Arabidopsis thaliana Bayreuth (Bay-0) x Shahdara (Sha) 

recombinant inbred line (RIL) population (Loudet et al. 2002) were used in this 

experiment. Plants were grown on 4x4 cm Rockwool blocks (MM40/40, Grodan 

B.V.) in a fully randomized set up. In the standard condition, plants were grown 

under long day (16h light / 8h dark) at 70% RH and 22°C / 18°C (day/night) 

under artificial light (150 μmol m-2 s-1). The plants were watered with a 

standard nutritive solution (see Supplemental table 1 in (He et al. 2014)) three 

times a week by flooding cycles. When all lines reached flowering, the main 

stem of all plants was cut short to synchronize the developmental stage of the 

plants prior to stress exposure and to collect only seeds developed under the 

different conditions. Three to four plants per RIL were transferred to different 

climate cells with controlled environmental conditions. The same conditions as 

standard were used for the stress environments, except for the varying 

parameter as indicated hereafter: high temperature (25°C day / 23°C night), 

high light (300 μmol m-2 s-1) and low phosphate (12.5 μM phosphate instead 

of 0.5 mM in the standard nutritive solution). Fully mature seeds from 3-4 

plants per RIL were bulk harvested. A fraction of fresh harvested seeds was 

stored at -80°C one week after harvest. The remaining seeds were stored at 

room temperature and ambient relative humidity for after-ripening. Fully after-

ripened seeds were used to perform germination experiments (Chapter 3). 

Metabolites profiling based on GC-TOF-MS 

Prior to the measurements, the RILs were selected following the Generalized 

Genetical Genomics design as used in (Joosen et al. 2013). This resulted in a 

total of 160 RILs in sub-populations of 41, 40, 39 and 40 RILs for ST, HT, HL and 

LP conditions respectively. Metabolite abundance was measured in triplicate 

for the parental lines from all four conditions. Metabolites for GC-TOF-MS were 

extracted according to the following procedure.  

Metabolite extraction 

Primary metabolites were extracted as described by Roessner (2000) with 

minor modifications. In brief, 10 mg seeds for each RIL were taken from freshly 

harvested seeds which were store in -80°C. Extraction was done in 2mL 

Eppendorf Safe-lock tubes. Samples were frozen in liquid nitrogen and 
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homogenized with 2 iron balls (1.25mm) using a dismembrator (Retch MM200) 

at 1500 rpm. A solution of 350µL MeOH/CHCl3 (4:3) was added to the samples 

followed by 75µL filtered water (MilliQ, Millipore) containing 0.133mg/mL 

Ribitol as internal standard. After 10 minutes sonication 100µL MilliQ was 

added, followed by mixing and centrifugation. After centrifugation the 

water/methanol phase was transferred to a new clean Eppendorf tube and the 

remaining extract was extracted again with 250µL MeOH/CHCl3 (1:1). After 10 

minutes incubation on ice, 100µL MilliQ was added. After centrifugation the 

water/methanol phase was taken again and combined with the previously 

collected phase and mixed. Hundred µL of this mix was dried overnight in a 

speedvac (35°C, Savant SPD121) in a vial with insert (06090357, Grace). The 

next day the vials were crimp capped with magnetic caps (8618261, Grace) in 

the presence of argon. The GC-TOF/MS procedure was previously described by 

Carreno-Quintero et al. (2012). Detector voltage was set at 1900 V. 

Data processing 

Raw data was processed using the ChromaTOF software to produce netCDF 

files. A signal to noise ratio of 2 was used. Further processing was done by 

Metalign sofware (Lommen 2009). First a baseline correction was done with a 

peak slope factor (x noise) set to 1 and a peak threshold factor (x noise) of 2. All 

mass signals below 25 were discarded. Different chromatograms were aligned 

with a maximum shift of 75 scans. This resulted in 66665 mass signals. These 

mass signals were further processed using Metalign output transformer 

(METOT, Plant Research International, Wageningen). Mass signals that were 

present in less than three RILs were discarded. Mass signals that were below 

background were randomized between 50% and 100%. This resulted in 39418 

mass signals. From these mass signals centrotypes were constructed by using 

the MSClust software (Tikunov et al. 2012) with the following parameters: 

correlation threshold 0.8 with 0.02 margin and PD reduction 0.9 with 0.01 

margin. Criterion was stopped at 3 masses. This resulted in 172 unique 

centrotypes from which we could identify 71 by comparing the mass spectra in 

the NIST software (NIST Mass Spectral Search Program version 2.0) to an in-

house constructed library and to the Golm library (http://gmd.mpimp-

golm.mpg.de/). This identification is based on spectral similarities and 

comparing the retention indices calculated by using a third polynomial function 

on the alkanes that were added to the samples (Strehmel et al. 2008). 
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Statistical analyses 

Log10 transformation allows scaling of the variation and making the 

metabolites comparable. Therefore, all metabolites were log10 transformed 

before further analysis in order to improve normality (Ursem et al. 2008). Two-

way ANOVA was performed on the parental lines, Bay-0 and Sha, grown in each 

environment. False discovery rate (FDR) correction was applied for multiple 

testing. FDR < 0.05 was used as a threshold for corrected p-values. Analyses 

were performed in Metaboanalyst 3.0 (Xia and Wishart 2016).  

Principal component analysis was performed on the log10 scaled and centred 

metabolic values of the RILs and parental lines. Analysing the samples by the 

batches used for the GC-TOF-MS measurements did not reveal any batch 

effects.  

Correlation analyses 

Correlation analysis was conducted for the 71 annotated metabolites in each 

RIL sub-population, separately; as well as on the combined RIL for the 172 

metabolites (Supplemental Table 7). Spearman metabolite correlation was 

obtained using the rcorr R package.  

RV coefficient analysis 

RV coefficients were used to calculate the degree of similarity between 

metabolite correlation matrices. The CoeffRV function of the FactoMineR 

Rpackage (Husson et al. 2008) was used to statistically compare the correlation 

matrices for each condition. The RV coefficient varies between 0 and 1, with 

lower values indicating matrix dissimilarities. The associated p-values provided 

statistical support to the analysis. 

Correlation network construction and analysis 

The correlation p-values were converted into q-values, a measure of 

significance in terms of the false discovery rate (FDR). FDR < 0.05 was applied 

to identify statistically significant correlations which were used as input for the 

network. Correlation networks were visualized with Cytoscape v.3.3.0 (Shannon 

et al. 2003). Significance of the network clustering coefficient was evaluated by 

comparing the clustering coefficient of the network to the clustering 

coefficients of 10.000 random networks. Highly clustered metabolites were 

identified using the walktrap community detection algorithm (igraph, R 

package). Network properties were calculated using the NetworkAnalyser tool 
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in Cytoscape. Pathway enrichment analysis was performed for the metabolites 

of the metabolic clusters using Metaboanalyst 3.0 with the default parameters 

(Xia and Wishart 2016). Pathways with p-value < 0.01 were considered 

significantly enriched. 

mQTL analysis 

A high-density genetic map derived from the same population was used for 

QTL analysis (Serin et al. 2017). The QTL analysis was performed as described in 

(Joosen et al. 2013). The approach consists of using two models to identify 

genetic determinants of genetic (G) and genetic x environment (G x E) control 

of metabolite variation. The single marker model, Y = G + Ɛ was used to 

determine the genetic component on the metabolic profiles of the RILs in the 

sub-populations. In this model, the phenotypic variance Y is explained by the 

genetic (G) and residual (e) variations. The full marker model was used on the 

combined sub-populations for Y = G + E + G x E + Ɛ to determine the effect of 

the genetic background and the interaction between genetic background and 

the maternal environment on the mQTL profiles. Log10 transformed data were 

used for the mapping. Thousand permutations were used to estimate the 

significance threshold at an alpha level of 0.05 for each separate mapping. 

mQTL analyses were performed with Rqtl v3.3.1 (Broman et al. 2003; Arends et 

al. 2010). 

mQTL hotspot identification 

mQTL hotspots were identified using the permutation procedure as described 

and implemented by Breitling et al. (2008). The genotypic data were 

permutated between the RILs while conserving their mutual correlation. 

Metabolic data of the RILs remained unchanged. For each of the 1000 

permutations, the number of mQTLs per marker with a LOD score higher than 3 

was counted. The maximum number of mQTLs co-locating by chance was 

determined for each marker across the permutation sets. The distribution of 

the maximum values enabled the identification of mQTL counts at 95% of the 

distribution which was used as a threshold for the identification of significant 

mQTL hotspots. As a result 15, 19, 13, 14, 11 and 11 mQTLs at the same 

markers for the ST, HT, HL, LP, G and G x E models respectively, were used as 

significance thresholds.  
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Results and discussion 

In this study, the metabolite profiles of the parental lines and 160 recombinant 

inbred lines (RILs) of the Bay-0 x Sha population were measured in freshly 

harvested dry seeds matured under different maternal environments. The RIL 

population was grown, from flowering until seed harvest, in standard 

conditions and either kept under these conditions or further exposed to high 

temperature (HT), high light (HL) or low phosphate (LP) conditions. 

In order to determine the metabolic status of the seeds, GC-TOF-MS analysis 

was performed on the parental and RILs in a generalized genetical genomics 

set-up (GGG, see material and methods). This design provides RIL sub-

populations of equal genetic variation and size for each of the maternal 

environments studied (Supplemental Figure 1). The samples were analysed in a 

random order interspaced by controls consisting of pooled samples. In total, 

172 primary metabolites were detected. Normalized metabolite data for the 

parental lines and RILs under the different environments are provided in 

Supplemental Table 1. Among those, 71 metabolites could unambiguously be 

identified using in-house available libraries of known metabolites based on 

their centrotypes and retention times. Most of these metabolites could be 

classified as organic acids, sugars or amino-acids (Supplemental Table 2). 

Natural variation in primary metabolites 

Large quantitative differences in metabolite abundance were observed in the 

seeds of the parental lines, Bay-0 and Sha, matured under the different 

environments (Figure 1). For the Sha parent grown under different 

environments, higher levels of sugars (fructose, mannose) were observed 

compared to Bay-0. In contrast, the Bay-0 parent showed higher levels of 

amino acids in comparison to Sha. For the parental lines measured in triplicate, 

variance analysis showed that 113 of the 172 metabolites were significantly 

(FDR < 0.05) affected by the genotype and 105 were significantly affected by 

the maternal environment. For 49 metabolites, a significant effect of the 

genotype, environment and genotype x environment interactions was 

observed, while 36 metabolites were not affected by any of the genetic or 

environmental factors (Supplemental Table 2). Metabolite levels in the 

different RIL subsets showed large variation as well as transgressive 

segregation, where the metabolite levels were higher or lower than the 

parental lines (Supplemental Table 2). 

77



| Chapter 4 

Principal component analysis (PCA) was conducted on the data of the 71 

identified metabolite levels of the RILs to further explore the effect of the 

maternal environment (Figure 2). Together, the first two principal components 

(PCs) explained 34.79% of the total variance. A clear separation of the HT sub-

population from the other sub-populations was observed based on PC1. Among 

the main variables contributing to this component were tricarboxylic acid (TCA) 

cycle intermediates such as succinate, fumarate, amino acids such as GABA, 

alanine and glycine, as well as other organic acids (Supplemental Table 3). 

Similar results were obtained when all 172 metabolites were analysed 

(Supplemental Figure 2). PCA was also performed on the sub-populations 

separately (Supplemental Figure 3). 
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Figure 1. Heatmap showing the major changes in primary metabolites as a result of genotype-by-

environment interactions in Bay-0 and Sha. Row scaled and centred Log10 values of the averaged 

abundance over the three replicates are shown in false colour code for the parental lines, Bay-0 

and Sha, grown under standard (ST), high light (HL), high temperature (HT) and low phosphate (LP) 

conditions. Colour code is assigned to the metabolites according to the significance of the effect of 

the environment (E), genotype (G), genotype-by-environment interactions (I) by ANOVA. Details of 

the ANOVA results are available in Supplemental Table 2. 
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Figure 2. Principal Component Analysis (PCA) of 71 seed metabolites identified in the Bay-0 x Sha 

RIL population grown under different environments. A) The scores plot indicates differences in the 

metabolome profiling of the RILs and the parental lines. The data points of the same colour 

represent RILs from the same maturation environment; standard (ST), high temperature (HT), high 

light (HL) and low phosphate (LP). B) The loadings plot indicates the contribution of the metabolites 

to the two first components of the PC plot. Colours of the metabolites correspond to the class of 

the compounds as indicated in the legend. Loading values for the PCA are available in Supplemental 

Table 3. 

 

Network correlation analysis reveals metabolic patterns 

regulated by G and G x E  

Metabolite correlation networks are an attractive approach to visualize and 

investigate coordinated metabolic changes. Several studies have used network 

approaches to investigate metabolome plasticity and to identify coordinated 

metabolic changes across different time points, tissues and environmental 

conditions (Ursem et al. 2008; Toubiana et al. 2013; Fukushima et al. 2011). 

To investigate patterns of dynamics of metabolite levels in response to the 

different maternal environments, correlation networks of metabolites for each 

RIL set were made. We used condition specific networks to investigate the 

changes of metabolite patterns as a result of genotype-by-environment 

interactions. Using this approach, we reasoned that metabolic clustering within 

a network is driven in part by genetics, while differences in network topologies 

across conditions would bring insights into G x E. 

Pairwise Spearman correlations were calculated between the 71 annotated 

metabolites for each condition. Across all conditions, the metabolite 

correlations ranged from |r| = 0.42 to |r| = 0.99. The RV coefficient was used 
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to estimate the degree of similarity between two correlation matrices (Sulpice 

et al. 2013; Josse and Holmes 2016). Typically the RV coefficient varies 

between 0 and 1, with an RV of 1 indicating identical matrices. For all matrix 

comparisons, the RV coefficients varied between 0.43 and 0.59 indicating 

significant changes in metabolite correlations across conditions (Table 1). 

 

Table 1. Analysis of the RV coefficients between matrices RV coefficients were calculated for each 

matrix comparison. The RV coefficients vary between 0 (completely different matrices) and 1 

(identical matrices). The RV coefficients and their respective p-values are indicated in the upper 

and lower part of the result matrix, respectively.  

 

 
We further explored these changes by building condition-specific correlation 

networks with only the significant pairwise metabolite correlations (FDR 

corrected p-values < 0.05). The four networks differed in many aspects 

(Supplemental Table 4), ultimately leading to different network topologies 

(Figure 3). The highest number of edges was found for the HT network (320), 

followed by that of HL (280) and ST (248). LP was the sparsest network with 65 

nodes and 210 edges. By comparing the networks we found that overall an 

average of 60% of the correlations was shared in at least two networks. 

Metabolites of the same pathway were found highly correlated in all networks. 

This was for example observed for glycerol and glycerol-3-P as well as myo-

inositol and galactinol suggesting a strong effect of the genetic component. The 

correlation between succinate and fumarate, two TCA cycle intermediates, was 

significant in all networks while their correlation coefficients varied from 0.51 

in HL to 0.80 in HT, showing that the metabolite correlations are modulated by 

the maternal environment.  

 
ST HT HL LP 

ST 1 0.59 0.52 0.57 

HT 2.27E-19 1 0.43 0.51 

HL 2.02E-16 1.54E-12 1 0.49 

LP 3.34E-20 5.84E-17 7.81E-16 1 
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To further investigate metabolic changes, cluster analysis was performed on 

the different networks. Non-random metabolite clustering was observed in the 

different networks (not shown). The metabolic clusters were shown to be 

environment specific and enriched for specific metabolic pathways 

(Supplemental Table 5). 

The cluster of amino acids was rather consistent across all maternal 

environments. In the HT network, the largest cluster was enriched for 

metabolites related to the tricarboxylic acid (TCA) cycle (succinate, citrate, 

fumarate and malate) and glyoxylate pathway metabolites (GABA, 4-

Hydroxybutanoate, alanine)(Supplemental File 1, Supplemental Table 4). The 

clustering of these metabolites was also observed when considering pairwise 

correlations between all 172 metabolites (Supplemental Figure 3). The TCA 

cycle plays a pivotal role in metabolism as a central hub providing the energy 

necessary to sustain biochemical processes (Sweetlove et al. 2010). The amine 

compounds GABA, glycine and alanine were found in the same cluster. GABA is 

a key compound of the GABA shunt that bypasses two steps of the TCA cycle. 

The close clustering of alanine and GABA, suggests that alanine might be 

catabolized by GABA transaminase using pyruvate as a co-substrate. In the 

same cluster, other sugars and organic acids such as fructose, myo-inositol and 

glycerol were identified, suggesting a close link between the TCA cycle and 

other pathways of the carbon metabolism. Clustering of these metabolites in 

response to high temperatures has been observed before (Caldana et al. 2011). 

In the HL network, one of two largest cluster identified comprised mostly 

carbohydrates, such as arabinose, fructose, glucose and mannose. Myo-inositol 

was also found in this cluster, as opposed to its clustering with TCA cycle 

intermediates under HT. 
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Figure 3. Condition specific correlation networks for A) standard condition (ST), B) high 

temperature (HT), C) high light (HL) and D) low phosphate (LP). Only significant spearman 

correlations with FDR corrected p-value < 0.05 were used to build the networks. In the networks, 

each metabolite is represented as a node and linked to other metabolites by edges; node colours 

refer to the class of the metabolites with amino acids in red, organic acids in green and sugars in 

purple. Diamond and triangle shaped nodes indicate membership of the first and second largest 

detected cluster, respectively. Darker node colour indicates larger node connectivity. Some 

metabolite names are abbreviated. Ala: alanine, Asn: asparagine, Asp: aspartate, Gln: glutamine, 

Ile: isoleucine, Leu: leucine, Lys: lysine, Phe: phenylalanine, Pro: proline, Ser: serine, Thr: threonine, 

Tyr: tyrosine, Val: valine, Eta: ethanolamine. The cytoscape file of these networks is provided as 

Supplemental File 1. 

Genetic basis of the dry seed metabolome 

To identify the loci involved in dry seed metabolome variation, mapping of 

QTLs associated with primary metabolites (mQTLs) in the RIL sub-populations in 

the aforementioned conditions was performed. For this, two models were 

used. The single environment, single marker model includes the genetic 

variation within each sub-population with Y = G + ɛ. The full environment single 

marker model Y = G + E+ G x E + ɛ was used for the combined set of RILs to 
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identify mQTLs explained by the main genetic (G) and the genotype by 

environment interaction (G x E) components and random effects (ɛ) of the 

model.  

 

Table 2. Summary of the mQTLs identified in the separate and combined RIL datasets 

 

A large number of mQTLs was identified (Table 2). In ST, HT, HL and LP, 

127,161,162 and 168 mQTLs were identified for 86, 91, 80 and 85 metabolites 

respectively. The number of mQTLs for each metabolite ranged from 1 to 7 

with an average of 1.48 (ST) to 2.03 (HL) across the different environments. 

Little overlap of mQTLs identified for each metabolite across environments was 

observed (Supplemental Table 6). Across all conditions, more than 90% of the 

mQTLs had a LOD score lower than 5. A higher number of mQTLs was identified 

for the QTL mapping on the combined set of RILs (440 mQTLs) with an average 

of 3.52 mQTLs per metabolite. For the G x E component, 81 mQTLs for 42 

metabolites were identified. The mQTLs detected for the main G effect are 

shown in Figure 4. The details of the results of all mQTL analyses are given in 

Supplemental Table 6. 

Genetic control of coordinated metabolic changes 

Under the four conditions, a high number of mQTLs co-located on the top of 

chromosome 4 and 5 (Figure 4). In other regions of the genome, mQTLs were 

identified for specific environments, suggesting distinct genetic basis and 

metabolic pathways across the different conditions (Figure 4, upper panel).  

Conceptually, highly correlated metabolites are likely to share mQTLs (Matsuda 

et al. 2012; Carreno-Quintero et al. 2012). The high connectivity of the 

metabolites observed in the different networks lead us to investigate 

environment specific co-locating mQTLs. We thus investigated whether co- 

     Combined RILs  

 ST HT HL LP G GxE 

Metabolites with at least 1 mQTL 86 91 80 85 125 42 

Total number of mQTLs 127 161 162 168 440 81 

Range of mQTLs per metabolite 1-6 1-7 1-7 1-6 1-12 1-5 

Average nr of mQTLs per metabolite 1.48 1.77 2.03 1.98 3.52 1.14 
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locating mQTLs did correspond to the clustered metabolites identified in the 

correlation networks (Figure 5). mQTLs for galactinol and myo-inositol co-

located on chromosome 2 in ST and HL conditions. In LP, putative mQTLs for 

these compounds were found in the same region, although these did not reach 

the significance threshold (LOD > 3.09). In HT, an mQTL for myo-inositol co-

located with several mQTLs for TCA cycle intermediates (succinate, fumarate) 

as well as alanine. These metabolites were found clustered in the HT network 

(Figure 3), showing that besides their shared pathway they also have a shared 

genetic architecture. Another significant mQTL for myo-inositol was specifically 

identified for HL on chromosome 1. This mQTL co-located with several other 

mQTLs associated with sugar metabolites (mannose, fructose, fructose 

bisphosphate) and gluconic acid. Their shared genetic basis supported their 

clustering observed in the HL network (Figure 5). Although the clustering of 

several amino acids was observed under different conditions (Figure 3, 

Supplemental Table 5), shared mQTLs for these were only observed under ST.  
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Figure 4. Heatmap showing the position of the mQTL for the G component. The mQTL profiles for 

metabolites with at least one mQTL are shown in the heatmap. The LOD scores of the identified 

mQTLs are coloured according to a false colour code with blue indicating higher effect of the Bay-0 

allele while yellow and red colours indicate higher effect of the Sha allele. Black vertical lines 

delineated the five chromosomes. Metabolites are indicated on the left row and ordered by 

clustering. The vertical coloured bars with grey for unknown metabolites, magenta for sugars, 

green for organic acids and red for amino acids. The upper panel shows the frequency of the 

mQTLs across the genome for the different mapping analyses. The black dotted line corresponds to 

the frequency of the phenotypic plasticity QTLs as reported in Chapter 3. Significant mQTL hotspots 

above the threshold (dashed red line) are marked with an asterisk.  
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Hotspots of metabolic regulation  

The distribution of the mQTLs for the 172 metabolites was biased towards 

specific regions in the genome (Figure 4). These so-called “hotspots” count a 

higher number of co-locating mQTLs than expected by chance and point 

toward genomic factors likely to directly or indirectly influence a large range of 

metabolites (Breitling et al. 2008; Keurentjes et al. 2006; Fu et al. 2009; Rowe 

et al. 2008). 

In total 4 distinct significant mQTL hotspots were identified (Figure 4). These 

hotspots were identified on chromosome 1, 2, 4 and 5. The highest numbers of 

co-locating mQTLs were observed on top of chromosomes 4 and 5 with 59 and 

40 overlapping mQTLs, respectively. These two hotspots have been previously 

identified for both primary and secondary metabolites measured in Arabidopsis 

seeds and seedlings (Rowe et al. 2008; Joosen et al. 2013; Keurentjes et al. 

2006) (Chan et al. 2011). They correspond to the transcript QTL hotspots of 

AOP (AOP3, chromosome 4) and Elong (MAM2, chromosome 5) that are 

involved in the biosynthesis of glucosinolates (Rowe et al. 2008; Wentzell et al. 

2007; Chan et al. 2011; Keurentjes et al. 2006). This example of co-location of 

mQTLs of primary and secondary metabolites might suggest a cross-talk 

between primary and secondary metabolism regulation (Joosen et al. 2013). In 

this study, we found a large number of mQTLs for unknown metabolites 

mapping to these two major hotspots. The other hotspots identified on 

chromosome 1 and 2 counted 12 and 24 mQTLs respectively, of which 

respectively 8 and 17 mQTLs were associated with annotated metabolites. 

mQTLs for several TCA cycle intermediates such as malate, citrate and 

fumarate clustered in both regions. We noted that a certain number of mQTLs 

for the G x E component also co-located in the region of the hotspot on 

chromosome 2, indicating the particular sensitivity of this genomic region for 

environmental changes (Figure 4, upper panel). 

Correlation network predicts common genetic factors 

The major cluster in the HT network comprised 25 metabolites which mostly 

were carbohydrates. In the HT mQTL analysis, 6 of these metabolites co-

located on chromosome 2, while for the G analysis mQTLs for 17 of these 

metabolites co-located in the same region (Supplemental Figure 5). This 

suggested that the correlation network-based approach on 40 RILs could seize 

subtle genetic variation, recovered when using large statistical mapping power 

provided by a large RIL population size. 
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Several lines of evidence indicate that the G mQTL hotspot on chromosome 2 

was driven by the HT RIL dataset. The main G effect QTL analysis excluding the 

RIL set grown under HT failed to identify this mQTL hotspot. The PCA of the 

metabolite profiling of the RILs also indicated the remarkable effect of the HT 

maternal environment on the dry seed metabolome (Figure 2). This was best 

captured by the first two components of the PCA. QTL mapping using the 

projected scores for PC1 identified a PC1-QTL coinciding with the position of 

the mQTL hotspot on chromosome 2 (Supplemental Figure 6). Together, these 

results indicate that correlation network analysis, even in a context of limited 

resolution (40 RILs) could help to predict common genetic factors prior to QTL 

analysis.  

Several studies have used network properties to enhance our knowledge of the 

landscape of metabolic regulation. For instance, other than abundance of the 

metabolites, variables for mQTL mapping can also be derived from the known 

inter-relation of the metabolites in a pathway. The mapping is then performed 

using metabolic ratio or the sum of the metabolites belonging to a same 

pathway (Kliebenstein et al. 2001; Wentzell et al. 2007; Angelovici et al. 2013). 

Since, the pathway structure causes metabolites to correlate; using this 

correlation can facilitate the linkage of metabolic shifts to the impact of the 

different biochemical pathways (Weckwerth et al. 2004; Steuer et al. 2003). In 

a recent study, (Angelovici et al. 2017) used network topological properties to 

derive new metabolic variables. Their approach resulted in the identification of 

new loci associated with the free amino acid pathways in seeds, showing that 

network properties can complement classical variables for the identification of 

genetic variants.  
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Figure 5. Relation between mQTLs and metabolic correlation networks. The five chromosomes (I-

V) are represented in the grey horizontal bars. Bins of 10 markers are represented for each 

chromosome. The mQTLs identified are linked to their related metabolites on the correlation 

networks, with the colour of the edges indicating the direction of the additive effect (blue for Bay-0 

and red for Sha). The size of the marker is proportional to the number of co-locating mQTLs. 

Metabolite correlations in each network are represented by grey edges. In each network, 

metabolites clustering together are grouped and identified by their shared node shape. The 

Cytoscape file of this network is available in Supplemental File 2. 

 

mQTL hotspot on chromosome II governs coordinated stress 

responses 

The effect of high temperature on physiological and molecular processes in 

plants is well established (Wahid et al. 2007; Kaplan et al. 2004). In addition, 

several metabolite profiling studies have also reported changes in the amino 

acid and carbohydrate metabolisms in response to high temperature (Kaplan et 

al. 2004; Obata and Fernie 2012).  

The mQTL hotspot identified on chromosome II and essentially driven by the 

high temperature maternal environment, comprised 24 co-locating mQTLs for 

TCA cycle intermediates (fumarate, succinate), N-compounds (GABA, alanine, 

glycine) as well as sugars and sugar alcohols (raffinose, galactinol, myo-

inositol).  

Co-locating mQTLs for fumarate, succinate, GABA, alanine and glycine indicate 

genetically driven metabolic changes in the TCA cycle and the GABA shunt. The 
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TCA cycle plays a central role in energy metabolism (Araujo et al. 2012). Under 

normal conditions, the TCA cycle is used to release stored energy from glucose, 

fatty acids or amino acids into chemical energy to support other metabolic 

activities. The GABA shunt bypasses two steps of the TCA cycle; the conversion 

of 2-oxoglutarate to succyl-coA and subsequently succinate. Instead, 2-

oxoglutarate is converted into glutamate and subsequently to GABA. Through 

the action of a transaminase, GABA is converted into succinate semi-aldehyde 

which re-enters the TCA cycle in the form of succinate. The accumulation of 

GABA in response to abiotic stresses has been reported in several studies 

(Kinnersley and Turano 2000). Although its physiological role remains unclear, 

GABA has been associated with many physiological responses including stress 

signalling (Bouche and Fromm 2004). Moreover, a recent study has shown that 

stress altered function of the TCA cycle can be alleviated by the GABA shunt 

(Fait et al. 2008). This alternative metabolic route might represent an adaptive 

mechanism to maintain the metabolic balance under stress conditions.  

The co-location of mQTLs for myo-inositol, galactinol and raffinose also 

suggested coordinated metabolic changes in the regulation of the raffinose 

family oligosaccharides (RFOs) pathway. In the first step of this pathway, myo-

inositol is converted in galactinol and through subsequent steps to raffinose 

and stacchyose. Several functional roles for these oligosaccharides have been 

reported. RFOs can act as osmo-protectants of cellular structures to protect the 

embryo during seed development and in particular seed desiccation (Taji 

2002). RFOs are also involved in stress defence mechanisms (reviewed by 

(ElSayed et al. 2014) by protecting plants from reactive oxygen species (ROS) 

produced under stress. 

For most of these co-locating mQTLs, higher metabolite levels were governed 

by the Bay-0 allele (Figure 4). Bay-0 and Sha display contrasting sensitivity 

responses. Sha appears more stress tolerant, while Bay-0 is more sensitive to 

stresses during seed germination (Chapter 3, (Joosen et al. 2012; Vallejo et al. 

2010). Higher temperature is associated with physiological changes such as 

reduction in plant growth, increased growth rate, earlier flowering and earlier 

seed set (Springthorpe and Penfield 2015; Wahid et al. 2007). Higher 

temperature also result in increased respiration and metabolic rate (Wahid et 

al. 2007). The increase of the TCA cycle intermediates suggests that Bay-0 shift 

the pool of metabolites towards higher carbohydrate levels and higher energy 

metabolism to adjust growth and developmental processes to higher 

temperatures. Under stress conditions elevated cellular metabolic rate can lead 

to an excessive production of ROS, which are normal products of plant cellular 

90



G x E shape the dry seed metabolome| 

 

metabolism. ROS can serve as signalling molecules, but also cause oxidative 

damages, which likely depends on the equilibrium between ROS production 

and ROS scavenging. The enhanced biosynthesis of RFOs, known osmo-

protectant molecules, can prevent such oxidative damages.  

MIPS2 as a potential candidate for causing the mQTL hotspot on 

chromosome 2 

The mQTL with the highest LOD score (-16.51) under the hotspot on 

chromosome 2 was observed for myo-inositol. Myo-inositol is a versatile 

compound which endorses various roles in plants such as in phytic acid 

biosynthesis, cell wall biosynthesis and the production of stress-related 

proteins (Meng et al. 2009), reviewed by Valluru and Van den Ende (2011). 

Genes underlying the mQTL hotspot were scrutinized for their direct link with 

the above mentioned metabolic pathways. One of the most likely candidates 

underlying this hotspot is myo-inositol-1-phosphate synthase 2 (MIPS2, 

At2g22240) which catalyses the conversion of D-glucose 6-phosphate to 1L-

myo-inositol-1-phosphate. MIPS2 is found highly expressed in seeds and in 

particular during late seed maturation (Supplemental Figure 7). Myo-inositol 

mQTL co-located with an eQTL for MIPS2 (Nijveen et al. 2017) 

(http://www.bioinformatics.nl/AraQTL/). Further investigations are needed to 

measure the impact of MIPS2 on myo-inositol and other metabolite levels, in 

particular in response to stress conditions. 

Maternal environment modulates the metabolite-phenotype 

relation 

In view of the extensive changes occurring at the metabolic level, the question 

remains whether these changes can explain phenotypic differences. In several 

studies, the shared genetic basis between metabolic and phenotypic QTLs has 

been observed (Carreno-Quintero et al. 2012), (Kazmi et al. 2017). Comparison 

of the mQTL and phQTL distributions was performed with all traits measured 

for germination in Chapter 3.  

Overall, the main mQTL hotspots showed limited overlap with the major 

hotspots for phQTLs (Figure 4, upper panel). An example of a co-locating mQTL 

and phQTL was observed on top of chromosome 1. The mQTL hotspot on that 

chromosome comprising TCA cycle intermediates mQTLs, with higher effect 

triggered by Bay-0, co-located with a large number of phQTLs. Many of these 

phQTLs were specific for the population grown under high temperature for 
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several germination conditions (Chapter 3). Higher germination (AUC value) 

was observed for the Sha allele, suggesting that the higher amounts of TCA 

cycle intermediates in Bay-0 would negatively affect seed performance. This 

negative correlation between TCA cycle intermediates and seed performance 

was also observed for seeds matured under low and high light seed maturation 

conditions in Arabidopsis (He et al. 2016). On the other hand, low temperature 

maturation environment altered TCA cycle activity with a significant decrease 

of fumarate and succinate contents and showed a positive correlation with 

seed performance traits (He et al. 2016).  

Correlation between seed performance and metabolites 

The limited overlap between mQTLs and phQTLs lead us to also investigate the 

relation between metabolic changes and seed performance (AUC under 

different conditions) by correlation analysis. Overall, intermediate Spearman 

correlations were observed between metabolite and seed performance 

(Supplemental Table 8). Nonetheless, we found different sets of metabolites 

significantly correlated with seed performance traits across the four conditions. 

Under HT, negative correlations were observed between metabolites of the HT 

cluster (glycerate, glycine, glycerol-3-P) and several seed performance traits. 

Under HL, significant positive correlations were observed between metabolites 

of the cluster HL (mainly sugars) and seed performance in particular with 

germination under cold or heat with stratification. This observation is in line 

with the aforementioned properties of sugars and inositol compounds to act as 

osmolytes and provide stress protection to ensure germination. In ST, 

galactinol, myo-inositol and glycerol-3-phosphate were negatively correlated 

with seed performance. Galactinol synthase (GolS) is considered to be a key 

regulator of the biosynthesis of Raffinose family oligosaccharides (RFOs) and 

the accumulation of RFOs has been reported to play a role in protection against 

abiotic stresses. A recent study showed that the expression of AtGOLS1, 

encoding a galactinol synthase, decreases when conditions are favourable for 

seed germination, indicating a negative regulation of seed germination by 

AtGOLS1 (Jang et al. 2018). Under ST, malate, citrate and sugars (mannose and 

glucose) and key compounds of the TCA cycle were positively correlated with 

seed performance supporting the role of the TCA cycle in the control of the 

energetic status of the seeds as well as the link with seed performance. 

Together, these results show that the maternal environment can modulate 

seed metabolism and its link to seed phenotypes. 
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Conclusion 

In this study, we used untargeted GC-TOF-MS metabolite profiling of an 

Arabidopsis RIL population to explore the effect of genotype and maturation 

environment on the dry seed metabolism and the implication for seed 

germination. Our results show that changes in the maturation environment 

markedly affect the dry seed metabolome in a genotype-dependent manner. 

The topological relationships among the metabolites extracted from the 

condition specific networks, combined with mQTL analyses showed that 

coordinated metabolic changes are environment specific and genetically 

controlled. A major mQTL hotspot on chromosome 2 was identified and 

provided insights into the adaptive metabolic responses to stress conditions. 

The role of MIPS2, identified as a potential candidate underlying this mQTL 

hotspot, needs to be further investigated. Together, these approaches bring 

new insights into the understanding of the genetic regulation of dry seed 

metabolome under stress conditions and its effect on seed performance.  
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List of supplemental data  

If not found below, supporting information can be downloaded from:  

http://www.wageningenseedlab.nl/thesis/earserin/SI/chapter4  

 

Supplemental Table 1: Raw data for metabolites measured in the dry seeds of 

parents and RILs grown under the different maternal environments. 

Supplemental Table 2: ANOVA and summary statistics for the metabolite data 

of parents and RILs. 

Supplemental Table 3: Loadings for the principal component analysis on the 71 

annotated metabolites from the combined RILs. 

Supplemental Table 4: Condition specific metabolite correlation network 

properties. 

Supplemental Table 5: Pathway enrichment analysis for the two largest clusters 

identified in the condition specific correlation networks. 

Supplemental Table 6: Results of the mQTL analyses in a GGG design. 

Supplemental Table 7: Spearman correlation r and associated p-values for all 

pairwise correlations between all 172 metabolites from each condition.  

Supplemental Table 8: List of significant correlations between seed 

performance phenotypes and metabolites for the different conditions. 

 

Supplemental Figure 1: Allele distribution across markers for the RILs in the 

GGG design. 

Supplemental Figure 2: PCA with score and loading plots for all 172 metabolites 

from the combined RILs. 

Supplemental Figure 3: PCA of the 71 annotated metabolites measured in the 

RILs grown under the different maternal environments. 

Supplemental Figure 4: Metabolite correlations for all 172 detected metabolites 

under high temperature. 

Supplemental Figure 5: Link between mQTL hotspot on chromosome 2 and the 

HT correlation network. 

Supplemental Figure 6: Heatmap for the mapping of the principal components. 

Supplemental Figure 7: Expression profile of MIPS2 at several developmental 

stages using the eFP browser from the Bio Analytic Resource for Plant Biology. 

 

Supplemental File 1: Cytoscape files for the condition specific correlation 

networks. 
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Supplemental File 2: Cytoscape file for the link between mQTL mapping and 

correlation networks. 
 

Supplemental Figure 1: GGG design for different RIL subsets (ST, LP, HT and HL). The number of RILs 

(n) in each subset is indicated above each plot. The distribution of the Bay-0 and Sha alleles across 

the 662 markers used in the analysis is shown in the different barplots. 

 

 
 
 
Supplemental Figure 2: Principal component analysis for all 172 metabolites in a GGG design A. 
score plot showing the RILs from the four environments (HL: high light, HT: high temperature, LP: 
low phosphate, ST: standard). B. Loading plot showing all the 172 metabolites and their 
contribution to the first two principal components. 
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Supplemental Figure 3: PCA for the 71 annotated metabolites measured in the RILs grown under A. 

standard (ST) B. high temperature (HT) C. high light (HL) and D. low phosphate (LP). Filled symbols 

correspond to the parental lines. 
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Supplemental Figure 4: Metabolite correlations for all 172 detected metabolites under high 

temperature. The heatmap shows the pairwise spearman correlations between all 172 metabolites 

measured in the HT-RILs. Hierarchical clustering was performed based on the distance dissimilarity 

matrix. The colour code indicates low (blue) to high (red) correlation values. The two frames 

indicate clusters of highly correlated sugars and organic acids (green) and amino acids (dark red) as 

observed in the HT network for the 71 annotated metabolites.  
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Supplemental Table 4: Condition specific metabolite correlation network properties 

 
 

  

 

Network Standard 
High 

temperature 

High 

light 

Low 

phosphate 

Number of 

RILs 
41 40 39 40 

Total Number 

of nodes 
68 68 68 65 

Total Number 

of edges 
248 320 280 210 

Range Node 

degree 
1-20 1-26 1-20 1-15 

Unique edges 

(%) 
29.4 40.9 36.1 21.9 

Network 

density 
0.109 0.140 0.123 0.101 

Clustering 

coefficient 
0.414 0.477 0.431 0.431 

Average 

number of 

neighbours 

7.294 9.412 8.235 6.462 

Number of 

communities 

(>4 nodes) 

12 (4) 14(5) 9(3) 21(7) 

modularity 0.42 0.43 0.41 0.48 

Top 5 high 

degree nodes 

(degree) 

- Leucine (20) 

- Alanine (17) 

- Proline (16) 

- Threonine 

(15) 

- 4-

Hydroxybutano

ate (14) 

- Alanine (26) 

- Malate (20) 

- GABA (20) 

- Succinate (19) 

- Glyceric acid (18) 

- Glycerate (20) 

- Sorbitol/Galactitol (19) 

- Alanine (18) 

- Glycerol (17) 

- Fructose (16) 

- Aspartate (15) 

- Glutamic acid 

(15) 

- Proline (14) 

- Threonine (14) 

- Asparagine (14) 
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Supplemental Table 5. Significantly enriched pathways for metabolic clusters of condition specific 

correlation networks. Pathway enrichment analysis was performed for the two largest clusters 

found in each network. Cluster 1 corresponds to diamond shaped metabolites and cluster 2 

corresponds to triangle nodes as depicted in Figure 4. Only clusters with significantly enriched 

pathways (p-value < 0.01) are shown. Pathways are ranked based on the p-value and n is the 

number of metabolites in the cluster compared to the total number of metabolites from the 

pathway, N.  

 

 
 

 

 

 

 

  

Network Cluster pathway name n N p < 0.01

Cluster 1 Glycerolipid metabolism 2 13 0.007996

Aminoacyl-tRNA biosynthesis 9 67 9.90E-10

Arginine and proline metabolism 5 38 1.85E-05

Valine, leucine and isoleucine biosynthesis 4 26 8.27E-05

Alanine, aspartate and glutamate metabolism 3 22 0.001109

Valine, leucine and isoleucine degradation 3 34 0.004015

Lysine biosynthesis 2 10 0.004046

Nitrogen metabolism 2 15 0.009174

Aminoacyl-tRNA biosynthesis 12 67 2.41E-10

Alanine, aspartate and glutamate metabolism 5 22 3.09E-05

Arginine and proline metabolism 5 38 4.82E-04

Valine, leucine and isoleucine biosynthesis 4 26 0.001056

Galactose metabolism 4 26 0.001056

Nitrogen metabolism 3 15 0.002236

Citrate cycle (TCA cycle) 4 20 1.13E-04

Glyoxylate and dicarboxylate metabolism 3 17 0.001381

Alanine, aspartate and glutamate metabolism 3 22 0.002993

Alanine, aspartate and glutamate metabolism 5 22 8.94E-06

Citrate cycle (TCA cycle) 4 20 1.42E-04

Arginine and proline metabolism 4 38 0.001819

Carbon fixation in photosynthetic organisms 3 21 0.003064

Glycine, serine and threonine metabolism 3 30 0.008596

cluster 2 Galactose metabolism 3 26 0.001084

Aminoacyl-tRNA biosynthesis 12 67 2.11E-12

Alanine, aspartate and glutamate metabolism 5 22 6.66E-06

Arginine and proline metabolism 5 38 1.11E-04

Valine, leucine and isoleucine biosynthesis 4 26 3.30E-04

Nitrogen metabolism 3 15 9.40E-04

Carbon fixation in photosynthetic organisms 3 21 0.002607

Glycine, serine and threonine metabolism 3 30 0.007354

Lysine biosynthesis 2 10 0.007772

Cyanoamino acid metabolism 2 11 0.009421

cluster 2 
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Supplemental Figure 5. Link between the mQTL hotspot detected on chromosome 2 and the 

metabolite correlations under high temperature. The mQTL hotspot is represented as the blue 

square and is linked to metabolites/nodes in the HT specific network that have an mQTL at the 

position of the hotspot. The colour of the nodes indicates the class of the metabolites - with red for 

amino acids, green for organic acids and pink for sugars and sugar alcohols. The network is 

displayed with a forced configuration based on the detected metabolite clusters. Most of the 

metabolites in the largest cluster have co-locating mQTLs. 

 

 

 

Supplemental Figure 6. Heatmap of the LOD scores for the 10 first components of the PCA including 

all annotated metabolites. The heatmap shows for each principal component (1 to 10) the LOD 

profile along the chromosomes indicated by romans numerals (I – IV). Yellow to red colour indicate 

significant QTLs with higher effect in Bay-0 while blue to red indicate significant QTls with a higher 

effect in Sha. A pcQTL is identified on chromosome II for the highest explanatory component, PC1. 
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Supplemental Figure 7. Expression pattern of MIPS2 (At2g22240) in the developmental series of 

Arabidopsis thaliana from the eFP browser from the Bio Analytic Resource for Plant Biology. 
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Abstract  

Gene expression is largely influenced by environmental and genetic factors. 

The environment experienced during seed development results in 

transcriptomic changes in a genotype-dependent manner. A deeper 

investigation of the genetic basis of these changes and the extent of genotype 

by environment interactions is needed for a comprehensive understanding of 

seed quality and its control. In this study, an Arabidopsis Bay-0 x Sha RIL 

population, consisting of 165 lines, was grown under four different 

environments; standard, high temperature, high light and low phosphate from 

flowering until seed harvest. RNA-seq was performed on the dry seeds of the 

parental and 160 recombinant inbred lines produced under the different 

environments using a generalized genetical genomics set-up.  

A large number of genotype-by-environment interactions (G x E) were 

identified in the parental lines which were reflected in the RILs. Overall, a large 

number of eQTLs was identified. Their profile substantially differed between 

conditions, indicating eQTL x E interactions. Consistent with previous studies, 

local eQTLs largely overlapped between environments while distant eQTLs 

were highly variable across environments. The eQTL distribution along the 

genome showed environment-specific genetic hotspots of transcript regulation 

enriched for different specific biological processes. 

With this study, we show that transcriptional changes found in dry seeds are 

largely caused by genotype-by-environment interactions. These datasets 

represent a valuable resource for further research towards understanding the 

dynamics and mechanisms of gene expression regulation in seeds in response 

to environmental changes and their link with seed performance. 

 

Keywords: Arabidopsis thaliana, eQTL, G x E, maternal environment, RNA-seq, 

seed performance 
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Introduction  

During seed development, seeds accumulate various macro-molecules, such as 

proteins and mRNAs. These molecules contribute to seed developmental 

processes such as seed maturation, desiccation tolerance and dormancy, while 

others can remain stored in dry seeds for a role during germination. The role of 

these stored mRNAs in germination has been highlighted by studies showing 

that germination can take place in the absence of de novo transcription (Rajjou 

et al. 2004; Kimura and Nambara 2010). This suggests that the early initiation 

of molecular and physiological processes essentially relies on the activity of 

stored proteins, enzymes as well as on the translation of these stored mRNAs 

(Rajjou et al. 2004; Kimura and Nambara 2010). Genome-wide profiling of 

these mRNAs in Arabidopsis seeds identified more than 10 000 stored mRNAs 

associated with several biological processes (Dekkers et al. 2013; Nakabayashi 

et al. 2005; Belmonte et al. 2013). A recent study showed that this pool of 

stored mRNAs is modulated by the seed production environment in a 

genotype-dependent manner (He et al. 2016). 

Genome wide expression analyses in Arabidopsis seeds have brought large 

insights into the dynamics of the transcriptome during seed development 

(Ruuska 2002; Belmonte et al. 2013), dormancy (Bassel et al. 2011), desiccation 

tolerance (Costa et al. 2015), germination (Dekkers et al. 2013) and seedling 

establishment (Silva et al. 2016). Naturally occurring genetic variation for seed 

traits has been largely studied in Arabidopsis. The genetic basis of such 

variation can be explored using quantitative trait locus (QTL) analysis. Gene 

expression can be treated as a quantitative trait and thus combining QTL 

analysis with large scale expression profiling can provide insights into the 

genetic determinants of gene expression (Jansen and Nap 2001). This genetical 

genomics approach has revealed the genetic architecture of gene expression 

variation in plants as well as in other organisms (Joosen et al. 2009; Li et al. 

2006; Brem et al. 2002; Schadt et al. 2003). Several eQTL studies have also 

investigated changes in the eQTL landscape in response to perturbations such 

as across different populations (Cubillos et al. 2012), in time (Vinuela et al. 

2010), in response to abiotic stresses (Snoek et al. 2017b; Cubillos et al. 2014; 

Lowry et al. 2013) and across different tissues (Drost et al. 2015).  

A promising application of eQTL analysis is the insights into regulatory 

mechanisms that can be gained from the identification of two types of eQTLs 

regarding their mapping position (Kliebenstein 2009; Rockman and Kruglyak 

2006). These are often reported as cis and trans-eQTLs in the literature. We 
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prefer to refer to local versus distant eQTLs since their categorization is based 

on genomic distances between the position of the eQTL and the physical 

position of the genes which leave an uncertainty regarding their true nature. 

Local eQTLs correspond to eQTLs that map at the physical position of the gene 

investigated. In this case, the local regulation of gene expression can be 

explained by a sequence polymorphism in the gene itself or in physically 

neighbouring regions (Rockman and Kruglyak 2006). On the other hand, distant 

eQTLs map at other positions on the same or on another chromosome. In this 

case, the distant regulation occurs as a result of a gene’s polymorphic variant 

affecting the expression of one or several other genes (Rockman and Kruglyak 

2006). The non-random accumulation of eQTLs in genomic regions leads to the 

identification of eQTL hotspots. Often observed in eQTL studies, these hotspots 

may suggest the large pleiotropic effect of an underlying polymorphic variant 

(Breitling et al. 2008). These hotspots provide a good starting point to identify 

groups of co-regulated genes with shared biological functions. For Arabidopsis, 

the extensive knowledge on gene function and pathways (Lamesch et al. 2012; 

Kanehisa and Goto 2000) provides valuable input to drive such investigations.  

The elucidation of the genetic control of genotype-by-environment interactions 

(G x E) is crucial to understand the regulation of gene expression and ultimately 

seed performance. In this study, we used an Arabidopsis thaliana recombinant 

inbred line (RIL) population of 165 lines grown under standard, high 

temperature, high light and low phosphate environments to provide a genome-

wide view of the plasticity of gene expression regulation. We used a 

generalized genetical genomics (GGG) design to investigate the effect of 

genetic and multi-environment perturbations on gene expression in a cost-

efficient manner (Li et al. 2008b). In such a design, complementary and equal 

subsets of lines are drawn from the initial population while maintaining a 

balanced allele distribution in each subset. Subsequently different treatments 

and/or developmental stages can be used for the different subsets. In contrast 

to previous eQTL studies in plants using microarrays (Cubillos et al. 2014; Snoek 

et al. 2012) we use for the first time RNA-seq on dry seeds matured under 

different conditions to perform eQTL analysis in a GGG design. We showed that 

the dry seed eQTL landscape is largely influenced by the maternal 

environment, resulting in several environment-specific eQTL hotspots. In 

addition, we provide a glimpse on the potential of these datasets to enhance 

gene discovery in relation to seed performance.  
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Material and Methods 

Plant Material  

Plants from the Arabidopsis thaliana Bay-0 x Sha recombinant inbred line 

population (165 RILs) (Loudet et al. 2002) were grown in standard (ST) 

conditions, namely long day (16h light / 8h dark) and 22°C/18°C (day / night) 

under artificial light (150 µm m-2 s-1) in a climate chamber until flowering. 

Once all plants flowered, the stems were cut short to ensure complete seed 

development under the four environments. Four plants per RIL as well as the 

parental lines were transferred to high light (HL)(300 µm m-2 s-1) and high 

temperature (HT)(25°C/23°C) conditions in different climate cells. RILs grown 

under standard and low phosphate (LP)(12.5 µM) conditions remained in the 

same climate cell, with an adjustment of the nutritive solution for RILs grown in 

the LP condition on a separate flooding table. Once sufficient amounts of fully 

matured seeds were produced under each environment, fresh dry seeds were 

bulk harvested from 3-4 plants, dried and stored at -80°C until RNA-seq library 

preparation.  

 

Sample preparation  

The population was divided in four sub-populations optimized for the 

distribution of the parental alleles as previously described (Serin et al. 2017). 

Four mg of fresh dry seeds of the parental lines and the RILs grown under the 

different environments in a GGG design were used to extract total RNA. RNA 

was isolated using the NucleoSpin RNA plant isolation kit (Macherey-Nagel 

740949) adding Plant RNA isolation Aid (Life technologies) according to the 

manufacturer’s protocol and instructions. RNA from three replicates was 

isolated for the parental lines, Bay-0 and Sha, grown under the different 

conditions.  

 

RNA-seq analysis 

The processing of the RNA-seq is described in (Serin et al. 2017). Strand-specific 

RNA-seq libraries were prepared from each RNA sample using the TruSeq RNA 

kit from Illumina according to manufacturer’s instructions. Poly-A-selected 

mRNA was sequenced using the Illumina HiSeq2500 sequencer, producing 

strand-specific single-end reads of 100 nucleotides. Reads were trimmed using 
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Trimmomatic (version 0.33, (Bolger et al. 2014) to remove low quality 

nucleotides. Trimmed reads were subsequently mapped to the Arabidopsis 

thaliana TAIR10 reference genome (Lamesch et al. 2012) using the HISAT2 

software (version 2.0.1, (Kim et al. 2015) with the “transcriptome mapping 

only” option. 

 

Differential gene expression analysis 

The quantification of the transcripts was done using ‘Kallisto’ (Bray et al. 2016). 

The Bioconductor package ‘edgeR’ (Robinson et al. 2009) was used to perform 

the differential gene expression analysis at the isoform level. Transcripts were 

considered differentially expressed for an FDR corrected p-value < 0.05. 

 

ANOVA analysis 

ANOVA was performed for each transcript measured in the parental lines using 

the model:  

Pij = Gi + Ej + GEij + Ɛij 

where Pij is the transcript abundance level, Gi is the effect of the genotype i , Ej 

is the effect of the maternal environment j and GEij the interaction between 

genotype and environment and Ɛij, the residuals. The sum square of the 

variance for each component was calculated as a percentage of the total sum 

of the variances explained by the different terms of the model. Only transcripts 

for which the summed explained variance for the G, E and G x E components 

exceeded 50% and with a significant effect (p-value < 0.05) of at least one 

component were selected for the ternary plot representation (Figure 1B).\ 

 

eQTL mapping 

For eQTL mapping, we used the 1059 bin based markers derived from the eQTL 

data as described in (Serin et al. 2017). The eQTL analysis was performed on 

the combined environments to identify genetic (G) main effect eQTLs. eQTL 

mapping was also done for the separate environments corresponding to 

approximately 40 RILs each. The QTL mapping was conducted in R using a 

single marker analysis. The permutation LOD score at 0.05 FDR (LOD = 4.1) was 

set as the significance threshold for the eQTL significance for all datasets. The 

eQTL data were stored in AraQTL to facilitate the exploration of the eQTL data 

(Nijveen et al. 2017),http://www.bioinformatics.nl/AraQTL/). 
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Definition of local and distant eQTL peaks 

For each gene with at least one significant eQTL, peak detection was 

performed. The position and marker associated with the highest LOD scores 

were considered as the peak location for the eQTL. The physical position of the 

genes were obtained from the TAIR10 database (Lamesch et al. 2012) and 

compared to the peak location of the eQTLs. A 1Mb cut-off distance was set 

between the eQTL peak and the physical position of the gene to distinguish 

between local versus distant eQTLs. eQTLs within this cut-off distance were 

classified as ‘local’ (cis-eQTLs) while eQTLs outside this range were considered 

as ‘distant’ (trans-eQTLs). We noted that the peak detection procedure we 

used sometimes resulted in several local eQTLs per genes. This might be due to 

the detection of two close peaks, which might also be a single QTL. We 

concede that this might lead to a slight over-estimation of the reported 

number of both local and distant eQTLs.  

 

GO enrichment analysis 

Gene ontology enrichment analysis was performed using the BiNGO plugin 

(Maere et al. 2005) in Cytoscape (Shannon et al. 2003). Using the Arabidopsis 

Genemodel TAIR10 as a reference (Lamesch et al. 2012), hypergeometric 

testing was performed with a Benjamini & Hochberg False Discovery Rate (FDR) 

correction at a significance level of 0.01. 

 

Results and discussion 

To investigate the effect of the seed maternal environment on the seed 

transcriptome, an Arabidopsis Bay-0 x Sha RIL population was grown under 

different environments. Gene expression data were obtained using RNA-seq for 

fresh dry seeds of the parental lines and 160 RILs grown under the different 

environments in a generalized genetical genomics design (Li et al. 2008b; Serin 

et al. 2017)(Supplemental Table 1). The RIL set up used for the transcriptomics 

was the same as previously used for the metabolomics analysis (Chapter 4).  

The main goal of the analysis was to identify genes that change expression in 

response to seed maternal environments in the parental lines and to map 

changes in the eQTL landscape across environments and ultimately connect 

these to differences in seed performance. 
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Gene expression variation  

Gene expression was quantified in the RILs grown under the different 

environments to explore changes in gene expression in response to genetic and 

environmental perturbations. Overall 35.386 transcripts were identified, 

representing 27.416 unique gene models.  

In order to get more insights into stress specific responses, we examined the 

genes differentially expressed between the seeds from the parental lines 

grown under each environment and within each accession between the 

different environments (Supplemental Table 2). A large number of transcripts 

was found differentially expressed (FDR< 0.05) in Bay-0 in response to stress as 

compared to control conditions. The largest number of differentially expressed 

genes (DEGs) was observed in response to high temperature (HT) (4402) and 

the lowest for low phosphate (LP) (144). Only a few genes were differentially 

expressed in Sha in response to stress, ranging from 18 to 10 for the different 

environments. Large differences in terms of DEGs were observed between the 

seeds of the parental lines grown under the different conditions ranging from 

5443 (LP) to 7799 (HT), showing that the genetic background has a huge effect 

on transcript levels. Similar numbers of genes were found up and down 

regulated for each condition. 

To better understand the effect of the genetic background and transcriptional 

response to environmental variation an ANOVA was performed for each 

transcript measured in the parental lines. Transcripts with more than 90% of 

missing data were removed prior the analysis, resulting in 25971 filtered 

transcripts. Overall a large number of transcripts (13,861/25,971 ≈ 50%) was 

significantly (p< 0.05) affected by the environment (Figure 1 A). As expected, a 

large fraction of the transcripts showing both G and E effects did also show G x 

E effects (≈ 58%). The strong effect of the environment was supported by the 

overall large proportion of gene expression variance influenced by the 

environment (50%) (Figure 1 B). 
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Figure 1. A. Overlap of the transcripts for which the expression levels are significantly (p < 0.05) 

affected by the genotype (G), the maternal environment (E) of the parental lines or their mutual 

interaction (G x E) B. Composition of the proportion of variance explained by the genetic (G), 

environment (E) and genotype-by-environment interaction (G x E) components. Transcripts for 

which summed explained variance for the G, E and G x E components exceeded 50% and with a 

significant effect (p< 0.05) for at least one component were plotted. This corresponded to ≈ 56% 

(14.574 / 25 971) of all transcripts. The average values of the proportions are indicated in bracket 

next to their corresponding components. 

 

The recombination of the parental genetic background in interaction with the 

maternal environment resulted in large differences among the transcriptomes 

of the RILs (Figure 2). Similar to the metabolome profiling of the RILs shown in 

Chapter 4, a clear separation was observed for the population grown under 

high temperature by the first component of the principal coordinate analysis. 

The clustering in the vicinity of the HT Bay-0 parent might indicate dominant 

effects of this genotype on the gene expression values of the RILs. A similar 

pattern was observed for the RILs grown under high light (HL) for which the 

expression profile resembled the Sha parent. These profiles are in line with the 

mQTL study (Chapter 4), showing that mQTLs for TCA cycle intermediates are 

largely driven by the Bay-0 parent in the HT condition while mQTLs associated 

with sugar metabolites under HL were driven by the Sha parent. Differences in 

the RIL expression profiling indicate the potential of the dataset to further 

explore the genetic basis of G x E. 
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Figure 2. Principal coordinates analysis (PCoA) plot for the whole genome transcriptome in dry 

seeds of the parental and recombinant inbred lines grown A) under the different environments and 

B) for each environment separately. 

 

Main effect eQTLs 

In a genetical genomics framework, transcript abundance can be treated as a 

quantitative variable. Linkage analysis of the expression values of the combined 

set of RILs was performed to identify main effect eQTLs (Supplemental Table 3, 

4). A large number of eQTLs was identified (Figure 3). The linkage analysis 

produces two types of eQTLs classified according to the position of the 

detected eQTLs compared to the position of the gene investigated. Local eQTLs 

map to the location of the affected genes and are thought to be caused by 

polymorphic cis-acting elements, for instance in the promoter of the affected 

gene (Snoek & Terpstra 2017, Keurentjes et al. 2007). On the other hand, 

distant eQTLs are regulated by trans-acting elements on other locations in the 

genome, such as transcription factors that can affect the expression of other 

genes. The position of the eQTLs with regard to the physical position of the 

gene affected is shown in figure 3, where local eQTLs are typically found on the 

diagonal, while off-diagonal points are distant eQTLs. Vertical bands of points 

indicate a large number of co-locating eQTLs. These ‘hotspots’ show loci at 

which a polymorphic regulator is likely affecting the expression of many genes 

and that can be seen as a master regulator (Breitling et al. 2008). Several 

regions in particular on chromosome I, IV and V accumulate a high number of 

eQTLs. 

A B 
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Overall, large numbers of eQTLs were identified along the genome. In AraQTL, 

for different FDR/LOD thresholds, the number of eQTLs detected was larger 

than reported in a previous study on the same population based on microarray 

data (Nijveen et al. 2017). This might indicate the increased power of RNA-seq 

based eQTL mapping as compared to previous micro-array based eQTL studies. 

 

 

Figure 3. Distribution of eQTLs along the genome. A) Local - distant eQTL plot for the genetic (G) 

component at LOD > 5 for multiple environments. The x-axis shows the position of the eQTL on 

each of the five chromosomes; the y-axis indicates the location of the affected gene. Blue dots 

(eQTLs) indicate that the Bay-0 allele has a positive effect on the expression level of the gene at the 

position of the eQTL, while red dots indicate eQTLs where the Sha allele has a larger effect. 

Numbers correspond to the chromosomes. B) The distribution of the local (dark blue) and distant 

(light blue) eQTLs across the markers.  
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Environment-specific eQTL hotspots 

We also investigated the eQTL distribution for the four environments 

separately (Supplemental Table 3, 4). For each environment, we represented 

the significant eQTLs in a histogram showing the physical position of the 

markers and the number of associated eQTLs (Figure 4). Peaks that did not 

obviously coincided across conditions are highlighted as condition-dependent 

eQTL hotspots. These hotspots resulted from the higher accumulation of 

distant eQTLs.  

 

 

Figure 4. Frequency and distribution of eQTLs associated to the markers along the genome. The 

distribution of the local and distant eQTLs along the genome is shown for the RILs grown in the four 

environments. The colour code indicates the direction of the effect (Bay-0 or Sha) and the nature 

(local versus distant) of the eQTLs. Grey coloured regions indicate regions of the genome with 

environment dependent eQTL profiles. 
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Comparison of eQTL landscapes across environments 

In total, 8313 to 9977 significant eQTLs were identified in the different 

datasets. These eQTLs were associated with approximately 6000 genes for each 

environment. The average number of eQTLs per gene varied between 1.34 and 

1.72 showing that often more than one locus controlled the expression level of 

a single gene. Genes with an eQTL largely overlapped across conditions as 

indicated by the low number of environment-specific genes (Table 1). 

 

Table 1. Summary of genes with an eQTL.  

ST: standard, HL: high light, HT: high temperature, LP: low phosphate 

 

Distribution of local and distant eQTLs  

The eQTL mapping showed overall similar eQTL features for the separate 

environments (Table 2) (Supplemental Table 5). Across all conditions, a slightly 

higher number of distant eQTLs as compared to local eQTLs was identified with 

a ratio of the number of distant to local eQTLs varying between 1,0 and 1,27. 

The direction of the eQTL effects was observed in equal proportion for the Bay-

0 and Sha alleles (Table 2). 

We found that local eQTLs were highly replicable across the environments, 

since only ~29% of the eQTLs was specific for one environment (Figure 5). In 

contrast, a large proportion of distant eQTLs was specific for a single 

environment (Figure 5). This was in line with several eQTL studies reporting the 
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plastic nature of distant eQTLs in response to environmental fluctuations (Li et 

al. 2006; Smith and Kruglyak 2008; Vinuela et al. 2010; Cubillos et al. 2014; 

Cubillos et al. 2012; Snoek et al. 2017b; Drost et al. 2010; Lowry et al. 2013)  

 

Table 2. local and distant eQTLs across the different environments. 

ST:standard, HL: high light, HT: high temperature, LP: low phosphate 

 

 

 

Figure 5. Overlap of genes with local or distant eQTLs across the different environments. Barplot 

showing the percentage of genes with local or distant eQTLs that are unique (E1) or found for 2 

(E2), 3 (E3) or all (E4) environments. The total number of genes with local or distant eQTLs is 

indicated above their respective columns. 

  

  

Number of 

eQTLs ST 

Fraction 

(%) HT 

Fraction 

(%) HL 

Fraction 

(%) LP 

Fraction 

(%) 

local Bay  2137 51.7 1918 49.6 2183 52.8 2284 52.1 

  Sha 2047 47.9 1952 50.4 1954 47.2 2106 48 

  total  4184  3870  4137  4390  

distant Bay 2333 44.4 2286 47.25 2310 51 2555 46 

 
Sha 2925 55.6 2552 52.7 1871 44.7 3032 54.3 

 
total 5258  4838  4181  5587  

 

Distant/local 

ratio  
1.26  1.25  1.0  1.27 

 

total nr of eQTLs 9442  8708  8318  9977  
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Effect of the environment on regulation of gene expression  

We performed a genome wide comparison of the eQTL effect profile of 

each gene across the different environments. A strong correlation 

between eQTL profiles would indicate that the gene is regulated by the 

same loci while differences in the number, type and effect of the eQTLs 

would result in lower correlation values. Overall intermediate 

correlation coefficients were observed, suggesting high frequency of 

changes in response to the environment (Figure 6).  

 

 

Figure 6. Distribution of correlation coefficients for the genome wide comparison of the eQTL 

profiles of each gene across environments. Correlation coefficients were calculated for 10,913 

genes that had at least one significant eQTL in one condition, by comparing their eQTL profiles 

between standard (ST) and A) high temperature (HT) B) high light (HL) and C) low phosphate (LP). 

The red line indicates the median value.  

 

In order to examine the nature of the changes more closely, we investigated 

changes in the direction (Bay-0 versus Sha) and magnitude of the effect of the 

eQTLs across conditions. We first examined 2088 genes for which a local eQTL 

was detected across all environments. For all these eQTLs, we found that the 

directions (for either Bay-0 or Sha) as well as the magnitude of the effect were 

highly correlated and thus consistent across all conditions (Figure 7).  

The comparison of the distant eQTLs is more delicate, since several distant 

eQTLs mapping to different regions of the genome can be detected per gene. 

Therefore, we selected a subset of genes to analyse the dynamics of changes 

between the type of eQTL (local versus distant) and the direction of the effect 

(Bay-0 versus Sha) at the individual gene level. To keep the comparison simple, 

we selected 769 genes showing a single eQTL under each environment. Most of 

these eQTLs (77%) were consistent in their effect and type. For only three 

117



| Chapter 5 

(distant) eQTLs, the direction of the effect changed between environments. 

Variation in local versus distant eQTL was observed for 162 genes while the 

direction of their effect was consistent across environments. Fourteen eQTLs 

showed variation in the type of eQTL and the direction of the effect across the 

different conditions (Table 3).  

 

 

Figure 7. Consistency in the direction and magnitude of the effect of local eQTLs across 

environments. The effect of 2085 local eQTLs in standard environment (ST) was plotted against 

their corresponding effect in A) high temperature (HT) B) high light (HL) and C) low phosphate (LP) 

environments. Positive and negative values correspond to eQTL effects in the Bay-0 and Sha 

direction, respectively. Extreme values were left out for clearer graphical representation. 

 

For 8 of these 14 genes, the HT maternal environment explained the change in 

the type and direction of the eQTL, which is in line with the strong effect of the 

HT environment on the transcriptome profile of the RILs (Figure 2). Among 

these genes were isocitrate dehydrogenase (At4g35260) and alanine glyoxylate 

aminotransferase (At4g39660). These two genes encode enzymes that are 

involved in the tricarboxylic acid cycle and glyoxylate pathway, respectively. 

These observations were in line with the metabolic changes in response to HT, 

since HT specifically resulted in coordinated changes of metabolites enriched 

for the TCA cycle and glyoxylate pathway in the mQTL study (Chapter 4). 

One compelling example of a gene showing G x E in its eQTL profiles is shown in 

Figure 8. Under ST, expression of At2g24570 is regulated by a significant local 

eQTL with a larger allelic effect for the Bay-0 allele, while under HT, the 

expression of the gene is regulated by a significant distant eQTL detected on 

chromosome IV. The Sha allele at the eQTL on chromosome 2 for LP and on 
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chromosome 5 for HL, resulted in higher expression levels of At2g24570 

(Figure 8).  

Table 3. List of 14 genes with one eQTL peak showing different effects (Bay-0 vs Sha) and type of 

eQTL (local (L) vs distant (D)) across different environments. ST: standard, HT: high temperature, 

HL: high light, LP: low phosphate. 
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Figure 8. eQTL profile for At2g24570 for the different environments. The y-axis shows the LOD 

score. Positive and negative LOD score values indicate the direction of the effect for Bay-0 and Sha 

respectively. The x-axis represents the genomic position in Mbp. Dotted lines indicate the 

significance threshold for eQTL detection (LOD = 4.1, FDR corrected p-value < 0.05). The colour of 

the eQTL profile refers to the environment as indicated in the legend where ST is standard, HT is 

high temperature, HL is high light and LP is low phosphate. The physical position of the gene 

investigated on chromosome 2 is indicated by an arrow. 

GO enrichment analysis 

In order to investigate the biological function of the genes affected by the 

environment-specific eQTL hotspots, a gene ontology enrichment analysis was 

performed for single marker hotspots identified in Figure 4 containing more 

than a 100 genes (Table 4) (Supplemental Table 6). The large hotspot on 

chromosome 1 in LP was enriched for the GO terms ‘seed development’ and 

‘translation’. The translation GO term includes essentially ribosomal proteins. 

During seed development, the precise control of the mRNA translation is also 

fundamental to cell homeostasis in particular in response to physiological 

stress. In dry seeds, ribosomes are inactive, but they can form polysomes upon 

water uptake when they are recruited to translate stored mRNAs (Bai et al. 

2017). Translation of stored mRNA plays an important role in the completion of 

germination (Rajjou et al. 2004; Galland and Rajjou 2015; Kimura and Nambara 

2010). Proteomic profiling of dormant and non-dormant imbibed seeds showed 

that maintenance of dormancy is associated with the repression of germination 

related processes to maintain dormancy (Arc et al. 2012). The enrichment for 

the translation machinery might thus reflect the need for selective mRNA 

translation of genes involved in stress response as well as the maintenance of 

seed dormancy, for which higher levels were observed for the RILs grown 

under LP (Chapter 3). 
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In HL, the major hotspot on chromosome 1 was enriched for ‘polysaccharide 

biosynthetic process’, which includes genes involved in cell wall synthesis 

(Table 5). The differential expression of cell wall genes was also observed in a 

previous study in response to a high light maternal environment (He et al. 

2016). We also noted that this eQTL hotspot (with a peak at marker 

RSM_1_19.65) was identified in the vicinity of the dry seed size phenotypic QTL 

(peaking at marker RSM_1_24.25). Therefore this eQTL hotspot might have a 

function in regulating seed size, but further investigations are needed to 

understand the effect of high light during seed development, the role of the 

cell wall in interaction with the environment and their possible involvement in 

regulating seed size.  

 

Table 4. GO terms associated with environment specific eQTL hotspots  

 

Hypergeometric test was performed for the genes of the hotspots against the Arabidopsis TAIR10 
genome database using FDR corrected p–values. Only the most significant (corrected p-values < 
0.01) and representative GO terms are reported in the table. Full results of the GO enrichment 
analysis and associated lists of genes are available in Supplemental Table 6. 
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Table 5. Description of the genes associated with the ‘Cellular polysaccharide biosynthetic process’ 

GO term for the HL specific eQTL hotspot on chromosome 1. 

 a Bay-0 and Sha indicate the direction of the eQTL effect (higher expression value at the 

position of the eQTL for the Bay-0 or Sha parental allele). Distant and local refer to the type of 

eQTL identified under HL for the corresponding gene.  
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Conclusion and future prospects 

In this study, we investigated changes in the genetic control of gene expression 

measured in dry seeds of an Arabidopsis thaliana Bay-0 x Sha RIL population 

grown in different maternal environments. A high number of genes were found 

differentially expressed between the parental lines and in response to the 

different environments. This led us to investigate changes in the genetic 

architecture of gene expression.  

Large numbers of eQTLs were identified for each environment. Interestingly, 

genes with eQTLs largely overlapped across conditions, indicating that the 

environment essentially changes the regulation of a defined set of genes rather 

than triggering the expression of new genes (Table 1). This was also observed 

for other organisms such as C.elegans (Snoek et al. 2017a). A slightly higher 

number of distant eQTLs over local eQTLs were identified in all environments. 

Furthermore, consistent with other studies, we found that local eQTLs were 

consistent across environments, while distant eQTLs showed a high degree of 

environment specificity which is likely due to their versatile nature (Snoek et al. 

2017a; Cubillos et al. 2014). 

These variable distant eQTLs led to the identification of several environment-

specific eQTL hotspots which we found enriched for specific biological 

processes. For a high light specific hotspot, we found a subset of genes 

enriched for cell wall synthesis. Although the role of these genes in mediating 

high light cues in seeds remains to be investigated, this example shows that 

without prior knowledge on the trait investigated, eQTL studies can be used to 

enhance gene discovery for complex traits.  

In this study, the threshold applied for eQTL significance (FDR < 0.05, LOD = 

4.1) resulted in eQTL hotspots of around a hundred co-locating eQTLs. To 

further investigate these hotspots, one might consider relaxing this threshold 

to increase the number of genes (Keurentjes et al. 2007b) or to expand this 

number of genes by including genes with eQTLs peaking at neighbouring 

marker bins. Such approach could lead to the identification of master 

regulators within eQTL hotspots (Wu et al. 2008). For this purpose, gene co-

expression networks can be used to prioritize candidate genes as it was shown 

in several studies (van Muijen et al. 2016; Basnet et al. 2016; Drost et al. 2010) 

and partly reviewed in Chapter 6. 
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These data complement previous phenotypic (Chapter 3) and metabolic 

(Chapter 4) datasets derived from the same plant material using the same GGG 

set-up. Similar effects of the maternal environment, in particular for HT, on the 

metabolome and transcriptome (Chapter 4 and Figure 2, Table 3) indicated that 

these eQTL data are a valuable source for further investigations in a systems 

genetics approach, to the extent to which transcriptomic changes can explain 

metabolic and ultimately phenotypic differences.  

 

List of supplemental data 

Supporting information can be downloaded from: 

http://www.wageningenseedlab.nl/thesis/earserin/SI/chapter5  

 

Supplemental Table 1: Gene expression data for the parental and recombinant 

inbred lines in a generalized genetical genomics set-up 

Supplemental Table 2: Lists of differentially expressed genes in the parental 

lines 

Supplemental Table 3: eQTL LOD scores for the separate and combined 

environments 

Supplemental Table 4: eQTL effects for the separate and combined 

environments 
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Abstract 

Plants are fascinating and complex organisms. A comprehensive understanding 

of the organization, function and evolution of plant genes is essential to 

disentangle important biological processes and to advance crop engineering 

and breeding strategies. The ultimate aim in deciphering complex biological 

processes is the discovery of causal genes and regulatory mechanisms 

controlling these processes. The recent surge of omics data has opened the 

door to a system-wide understanding of the flow of biological information 

underlying complex traits. However, dealing with the corresponding large data 

sets represents a challenging endeavor that calls for the development of 

powerful bioinformatics methods. A popular approach is the construction and 

analysis of gene networks. Such networks are often used for genome-wide 

representation of the complex functional organization of biological systems. 

Network based on similarity in gene expression are called (gene) co-expression 

networks. One of the major applications of gene co-expression networks is the 

functional annotation of unknown genes. Constructing co-expression networks 

is generally straightforward. In contrast, the resulting network of connected 

genes can become very complex, which limits its biological interpretation. 

Several strategies can be employed to enhance the interpretation of the 

networks. A strategy in coherence with the biological question addressed 

needs to be established to infer reliable networks. Additional benefits can be 

gained from network-based strategies using prior knowledge and data 

integration to further enhance the elucidation of gene regulatory relationships. 

As a result, biological networks provide many more applications beyond the 

simple visualization of co-expressed genes. In this study we review the different 

approaches for co-expression network inference in plants. We analyse 

integrative genomics strategies used in recent studies that successfully 

identified candidate genes taking advantage of gene co-expression networks. 

Additionally, we discuss promising bioinformatics approaches that predict 

networks for specific purposes. 

 

Keywords: co-expression, gene expression, gene networks, gene prioritization, 

transcriptomics  
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Introduction 

In plants, the age of systems biology has accelerated the investigation of 

complex molecular mechanisms underlying intricate developmental and 

physiological processes. Since plants are anchored to their environment, they 

cannot escape from stresses by simply moving away. Instead, plants have 

developed a wide range of mechanisms to cope with environmental 

fluctuations. This plasticity generally involves changes at the level of DNA, RNA, 

protein and metabolites, resulting in complex phenotypes governed by multiple 

genes. Advanced genetic and molecular tools have led to tremendous progress 

in revealing the genetic architecture but also the regulatory mechanisms of 

complex traits (Mochida and Shinozaki 2011). The development of molecular 

profiling techniques nowadays enables the high-throughput and affordable 

acquisition of large omics data sets, such as for transcriptomics, proteomics 

and metabolomics. 

While substantial efforts are being made to generate large omics data sets, 

there is a growing need to develop platforms to integrate these data and derive 

models describing biological interactions in plants. In this context, networks 

have rapidly become an attractive approach to manage, display and 

contextualize these large data sets in order to obtain a system level and 

molecular understanding of biological key processes (Costa et al. 2015)(Silva et 

al. 2016; Barabasi and Oltvai 2004; Usadel et al. 2009). 

Biological networks are generally classified by the nature of the compounds 

and interactions involved. These networks can be derived from various 

molecular data resulting in, e.g., gene expression networks (correlation or co-

expression networks), protein-protein interaction (PPI) networks, metabolic 

networks and signaling networks. Graphically, networks are represented as an 

ensemble of components (nodes or vertices) and interactions depicted by links 

(edges) connecting pairs of nodes. Such interaction maps provide an attractive 

framework to study the organizational structure of complex systems and have 

found many applications in plants (Jiménez-Gómez 2014). 

The fast development of transcriptomic technologies, as compared to other 

analytical platforms, has supported a range of studies on genetic and 

environmental perturbations at the transcriptome level in many organisms. Co-

expression networks have grown in popularity in the last years as they enable 

the integration of large transcriptional data sets (Li et al. 2015)(Liseron-Monfils 

127



| Chapter 6 

and Ware 2015). Co-expression network analysis allows the simultaneous 

identification, clustering and exploration of thousands of genes with similar 

expression patterns across multiple conditions (co-expressed genes). The main 

procedure for co-expression network inference is explained in Box 1 and 

illustrated in Figure 1. Briefly, a similarity score (i.e., correlation coefficient) is 

calculated from the pairwise comparison of the gene expression patterns for 

each possible pair of genes. Above a certain threshold, genes and gene pairs 

form a list of nodes and corresponding edges from which the network is 

constructed. As a rule, the guilt-by-association principle is applied stating that 

genes sharing the same function or that are involved in the same regulatory 

pathway will tend to present similar expression profiles and hence form 

clusters or modules in the network (Wolfe et al. 2005). Thus, within the same 

module, genes of known function can be used to predict the function of co-

expressed unknown genes (Rhee and Mutwil 2014). 
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The two main applications for co-expression network analysis are to find novel 

genes involved in the biological process under investigation and to suggest the 

biological process a gene is involved in. Intuitively, reliable networks are 

needed to infer meaningful gene function predictions. Such networks heavily 

depend on a combination of decisions taken throughout the network inference 

process. From the quality, type and availability of the input data, the 

correlation coefficient and inference algorithm used, to the prior knowledge, 

the experimental and computational resources, any negligence can result in 

unreliable networks and subsequent misleading biological interpretations. 

Caveats and opportunities of co-expression network analyses have been 

discussed previously (Usadel et al. 2009). When handling large data sets, co-

expression networks can become very complex which limits their biological 

interpretation (Usadel et al. 2009). In addition, in contrast to regulatory 

networks, and because of their static representation, co-expression networks 

do not provide per se information on the nature of the regulatory relationship 

of connected genes (Stuart et al. 2003). Careful application of network analysis 

tools and strategies is thus important to maximize the information extraction, 

to disentangle reliable network connections and to infer true biological 

meaning. 
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Figure 1. Co-expression network inference pipeline. The biological question addressed drives the 

strategy for the co-expression network analysis: prior knowledge can be used to identify guide-

genes and co-expression databases can be queried to investigate gene co-expression patterns 

across multiple conditions. Similarity in gene expression patterns is calculated using correlation 

coefficients (Pearson, Spearman…). A user defined threshold (in this example set at 0.8) enabled 

the selection of genes with high co-expression scores. Significantly co-expressed genes are 

reported in the binary adjacency matrix as 1. A clustering algorithm is applied on the adjacency 

matrix to infer networks of significantly co-expressed genes. In the resulting network, significantly 

co-expressed genes are depicted as numbered nodes (vertices) linked by edges (links). The length 

of the edges is relative to the expression similarity of the connected gene, with a short edge 

corresponding to high co-expression value. A “path” corresponds to the number of edges 

connecting two nodes (the shortest path from node 9 to 4 is 4 edges). Hubs are identified as highly 

connected nodes (node 1) and group of connected genes from modules (nodes 1-7). Network 

properties can be described by different parameters such as:  

 The connectivity of a network corresponds to the total number of links in the network 

 The node degree corresponds to the number of connections of a node with other nodes 

in the network (node 4 has a node degree of 3). 

 The betweenness of a node corresponds to the sum of the shortest paths connecting all 

pair of nodes in the network, passing through that specific node. The betweenness of 

node 8 corresponds to the sum of the shortest path connecting the nodes 10-9,3-9,4-9, 

etc…). 
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In this review, we aim to provide an overview of the different strategies to 

employ during or after the co-expression network construction with the 

common aim of exploiting the full predictive potential of co-expression 

networks. The application of these strategies is illustrated by examples of 

recent studies. Particular attention is given to available and promising 

bioinformatics tools. Finally, we will speculate on network aspects worth 

developing in the near future to strengthen their inference power for a 

comprehensive understanding of the regulation of important biological 

processes. 

 
Table 1: Overview of available resources for co-expression network analysis
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Data availability for co-expression network analyses 

In the post-genomic era, the reduction of costs for large scale and high-

throughput measurement technologies, such as for transcriptomics, has to the 

extensive collection of gene expression profiles capturing changes in gene 

expression during development, between different treatments or tissues, etc. 

DNA-microarrays are widely used to measure simultaneously the expression 

level of a large number of genes in species with a genome sequence available. 

In addition, the sequenced genomes of model plants (e.g., Arabidopsis, 

medicago, and poplar) and economically important crops (e.g., tomato, potato, 

tobacco, rice, and soybean) strongly improve our understanding of 

transcriptional dynamics.  

The compendia of generated data led to the development of publicly available 

gene expression databases (Table 1). These databases still largely contain 

microarray data and many of them are related to the model plant Arabidopsis. 

In recent years, RNA-sequencing, using next- generation high-throughput 

sequencing technologies (RNA-seq) has proven to be a powerful tool for whole 

transcriptome profiling with enhanced sensitivity for the discovery of new 

transcripts and enhanced specificity such as for the examination of allele-

specific expression. The power of these sequencing technologies has enabled 

co-expression network analysis in species without a sequenced genome and, as 

a result, has opened the way for new applications (see Section Comparative Co-

expression Network Analysis). RNA-seq based co-expression network 

construction is still in its infancy (Iancu et al. 2012; Ballouz et al. 2015) but the 

foreseen predominance of next generation sequencing tools in the coming 

years will certainly enrich existing databases for the benefit of network studies. 

Microarrays are still commonly used for transcriptome analysis because they 

are relatively cheap and their analysis is highly standardized. Comprehensive 

microarray gene expression sets are available in public repositories such as the 

Gene Expression Omnibus (GEO, (Edgar et al. 2001), Genevestigator (Hruz et al. 

2008) or Array Express (Parkinson 2004). Other tools, such as the online bio-

analytical resource for plant biology (BAR, (Winter et al. 2007), provide 

interactive interfaces for the exploratory visualization of gene expression 

variation. 

Co-expression networks allow the simultaneous investigation of multiple gene 

co-expression patterns across a wide range of conditions. As a result, publicly 

available transcriptome data sets represent valuable resources for such 
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analysis. It has been reported that nearly one in four studies uses public data to 

address a biological problem without generating new raw data. The reuse of 

such data strengthens the need for reliable expression studies. A correct 

experimental design, the proper execution of the wet lab experiments and 

thorough annotation of the data are essential prerequisites for successful 

subsequent reuse (Brazma 2003).  

Several gene co-expression databases are available to help researchers in their 

investigations (reviewed in (Brady and Provart 2009) and (Usadel et al. 2009) 

(Table I)). These databases provide user-friendly interfaces to facilitate access 

to the data and most of them also offer integrated data processing tools. 

ATTED-II (Obayashi et al., 2007, 2014) allows condition specific searches for co-

expressed genes in several plant species. For Arabidopsis, CressExpress 

(Srinivasasainagendra et al. 2008) in addition allows selection of data sets 

based on a quality score to filter out “bad” microarrays. GeneMANIA (Warde-

Farley et al. 2010) uses a large set of functional data of various types (predicted 

interactions, correlations, physical interactions and shared protein domains) to 

display all predicted interactions for a query gene list in an interactive network. 

The probabilistic functional gene network AraNet (Lee et al. 2015b) provides a 

measure to assess the connectivity of the query genes used in regard to the 

generated network. Additionally, AraNet integrates enrichment analysis tools 

for network components for gene ontology terms and biochemical pathways 

(Mapman, BioCyc and KEGG) (see section “Gene prioritization”). A popular 

platform for network inference is Cytoscape (Shannon et al. 2003). This open 

source program with its many plugins and apps allows the integration, 

visualization and analyses of network data (Saito et al. 2012). 

Data selection for co-expression network analyses 

Publicly available gene expression databases can be queried using two main 

approaches. These approaches are reported in the literature as “non-targeted” 

(or “global”) and “targeted” (or “guided-gene”) approaches (Aoki et al. 2007). 

The use of one or the other approach is largely determined by the biological 

question addressed and the available knowledge.  

The non-targeted approach provides a global overview of co-expression 

patterns of multiple genes across many conditions. This approach is also 

termed knowledge-independent or condition-independent, as no a priori 

information is used to construct the network. As an example, Mao et al. (2009) 
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built an Arabidopsis gene co-expression network using gene expression data 

from 1094 non-redundant Affymetrix ATH1 arrays from the AtGenExpress 

consortium. This data set represented nine categories of experimental 

conditions, such as environmental stresses, hormonal treatments and 

developmental stages. The resulting network consisted of 6206 nodes and 

512,936 edges. These “global” networks are generally used to describe the 

overall set of connections predicted to occur between gene pairs. Separated 

modules of functionally related genes can be identified and enable further 

gene prioritization (see Section Gene Prioritization).  

In these global networks, also designated as condition- independent, weak 

interactions or interactions only occurring under specific conditions are easily 

missed. This can be circumvented by specifically selecting data from 

experiments that are relevant to the biological question addressed (Saito et al. 

2008; Usadel et al. 2009). The resulting condition-dependent networks provide 

insights on specific biological processes (Atias et al. 2009). Illustratively, by 

selecting 138 samples from publicly available gene expression data sets 

exclusively from mature imbibed Arabidopsis seeds, Bassel et al. (2011) 

established a seed specific network. This SeedNet enabled the identification of 

modules associated with seed traits such as germination and dormancy. Childs 

et al. (2011) reported the improved predictive power for gene functional 

annotation of such condition-dependent networks. One of the limits of this 

approach is that the elucidation of system wide properties, such as intersecting 

biological pathways and genes exhibiting pleiotropic effects, might be 

overlooked. 

An alternative approach allows to mimic condition-dependent data set 

selection, while using the full potential of gene expression data sets. This 

approach consists of pre-clustering the samples prior to network construction. 

In this case, a clustering algorithm is directly applied to the normalized 

expression matrix (genes × conditions) to partition the input samples into a 

defined number of groups based on their overall expression similarity. Co-

expression networks are then built from each of the clusters obtained. Using 

this technique, Feltus et al. (2013) have shown that such an unsupervised pre-

clustering approach improved capturing of co-expressed genes and the 

representation of unique biological terms in the derived network modules. 

When experimental data have elucidated key components of specific pathways, 

a guide-gene approach can help to identify novel members of the same 
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pathway in a more targeted manner (Itkin et al. 2013). These known genes, 

also called bait or seed genes, are used as input genes to build a seeded co-

expression network. For example, Yang et al. (2011) used this approach to 

identify new candidate genes involved in cell-wall biosynthesis. They first 

established a list of 121 genes known to be involved in cell-wall biosynthesis 

and by querying available data sets with these seed genes, the initial list was 

extended to 694 potential candidate genes. 

Strategies combining guide-gene queries and condition-dependent approaches 

may empower the predictive power of co-expression networks. For instance, Li 

et al. (2009a) implemented a pipeline based on QUBIC, a QUalitative 

BIClustering algorithm, to select the conditions under which seed genes of the 

plant cell-wall biosynthesis pathway in Arabidopsis were found to be co-

expressed among a total set of 351 conditions. These conditions were then 

used to generate networks of co-expressed gene modules. 

Gene prioritization 

Once a co-expression network is obtained, biological relevant information can 

be mined by gene prioritization. This process consists of integrating diverse 

data sources to allow the ranking of the nodes in the network and to identify 

groups of functionally related genes, down to important putative regulatory 

genes. A panel of databases and tools are available to facilitate the integration 

of gene information in the network (Table 1). 

In nature, a variety of biological networks have displayed evidence of scale-free 

behaviour (Barabasi and Oltvai 2004; Albert 2005; Atias et al. 2009). Such 

networks are characterized by a distribution of nodes following a power law 

distribution. Graphically, this type of network displays a relatively large number 

of low-connected nodes and a few nodes with a high connectivity, the so called 

“hubs.” Even though, the assumption of a power law distribution is stated in 

numerous studies, statistical analyses have also refuted this approach (Khanin 

and Wit 2006; Lima-Mendez and van Helden 2009). 

The network topology encodes preliminary evidences for the understanding of 

the underpinning biological organization and reveals biological relevant 

information on the functional importance of individual nodes (Atias et al. 

2009). Parameters derived from network local properties such as clustering 

coefficient, node degree (number of connected nodes), betweenness and 
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centrality are commonly used for node ranking (Pavlopoulos et al. 2011). Nodes 

with a higher rank, i.e. with a high degree of connection and a high clustering 

coefficient, are identified as major hubs and are also likely associated to 

essential genes in the network (Provero 2002; Carlson et al. 2006). The 

phenomenon, describing the link between connectivity and essentiality, is 

termed the ‘lethality-centrality rule’ (Jeong et al. 2001). Several studies have 

associated the non-trivial topological features of scale free networks to an 

essential buffering system for biological networks robustness and 

environmental responses (Levy and Siegal 2008; Fu et al. 2009; Lachowiec et al. 

2015). 

Groups of highly connected genes in a network tend to form modules. 

Extracting modules from the network is thus a commonly used approach to 

generate manageable graph subunits for further study (Aoki et al. 2007; Mao et 

al. 2009). For this purpose, several clustering algorithms are available. These 

algorithms can be categorized into hierarchical and non-hierarchical 

algorithms. Hierarchical clustering algorithms identify clusters by iteratively 

assigning nodes to clusters. In a first step, weights are assigned to the network 

vertices, using for instance the calculated correlation coefficient. Clusters are 

then built from high weight vertices and progressively expanded by including 

neighboring vertices. The number of final clusters varies, for instance 

depending on a chosen threshold. A variety of hierarchical clustering methods 

are available including Weighted Gene Correlation Network Analysis (WGCNA) 

(Langfelder and Horvath 2008), Markov Cluster Algorithm (MCL) (Enright et al. 

2002; Mao et al. 2009), Normalization Engine for Matching Organizations 

(NeMo) (Rivera et al. 2010) and Improved Principal Component Analysis (IPCA) 

(Li et al. 2008a; Fukushima et al. 2012). Mutwil et al. (2010) suggested a novel 

Heuristic Cluster Chiseling Algorithm (HCCA). For each node in the network, this 

algorithm generates node vicinity networks by collecting all nodes within n 

steps away from the seed node. Non-hierarchical approaches, such as K-mean 

clustering (Stuart et al. 2003), identify a certain number of modules given the 

input cluster criteria instead. 

The performance of the different clustering algorithms can be assessed by 

evaluating the functional coherence of the predicted modules and inform, in 

return, the user on the best clustering algorithm to use (Lysenko et al. 2011). 

MORPH, an algorithm developed by (Tzfadia et al. 2012), combines a guide-

gene approach with data set selection and clustering to enable finding the best 
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combination of gene expression data and network clustering to optimally 

associate candidate genes with a given target pathway. 

Modules are often used as the starting point for more detailed studies as they 

considerably reduce the global network complexity. A panel of tools can be 

employed to further mine these modules (Table 1). These tools enable the 

functional annotation of nodes and modules and to unravel the nature of the 

gene-gene relationships. 

Enrichment analysis for the genes within a module is the most widely used 

technique to associate modules with particular functions. Under the ‘guilt-by-

association’ rule, these functional modules provide a powerful framework for 

the identification of new genes relevant to biological processes and their 

functional annotation in the absence of strong a priori knowledge. These 

enrichment analyses mostly rely on annotation databases (Table I). The most 

popular ones are the gene ontology (GO) database (Ashburner et al. 2000) and 

manually curated databases for metabolite pathways such as the Kyoto 

Encyclopedia for Genes and Genomes (KEGG) (Kanehisa and Goto 2000), 

Mapman (Thimm et al. 2004), or BioCyc (Caspi et al. 2014). 

Phenotypic data can also be used with the a priori expectation that clustered 

genes collaborate to control the same phenotypic trait. For example, Mutwil et 

al. (2010) successfully associated an individual cluster with a specific biological 

function using phenotypic data and tissue-dependent expression profiles for 

each gene in the cluster. Similarly, Ficklin et al. (2010) used phenotypic 

information of rice mutant lines to identify clusters of genes enriched for 

mutant phenotypic terms such as “sterile” or “dwarf”. In another study, Lee et 

al. (2010) showed that genes whose disruption is associated with embryonic 

lethality and pigmentation were significantly more interlinked in the AraNet 

network than expected by chance, corroborating the aforementioned 

centrality-essentiality theory. 

Other available data can help to unravel the nature of the links connecting 

genes in the network. Co-expression networks are undirected networks as the 

edges between two genes do not indicate the direction of the interaction. 

Additionally, the co-expression link between two connected genes might also 

indicate an indirect interaction. To further unravel the gene regulatory 

dynamics in such modules, known gene-gene interactions can be displayed on 
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the network and help to identify gene regulatory relationships (Ulitsky and 

Shamir 2009). 

One of the common approaches to identify regulatory relationships is to focus 

on known transcription factors and their known targets in the network. As 

transcription factors regulate the expression of many genes in the genome, one 

might also expect to find them as highly connected nodes in the network or 

connected to hub genes. The range of interactions of a transcription factor is 

defined by its binding capacity to specific cis-regulatory elements (motifs) 

identified in the promoter region of its target genes. Consequently, the search 

for such motifs in the nodes located in the vicinity of identified transcription 

factors can be a complementary source to functionally annotate genes and 

infer potential gene regulatory relationships (Vandepoele et al. 2009). 

In their approach, Ma et al. (2013) used a bottom-up approach by first creating 

sub networks of genes based on motif enrichment for specific cis-regulatory 

elements and then identifying co-expression modules in those sub-networks. 

Gene interaction information can also be retrieved from other data sources. 

The development and application of genome-wide methods for detecting 

protein-protein interactions, such as yeast two-hybrid (Bruckner et al. 2009) or 

affinity purification methods coupled to mass spectrometry (Morris et al. 2014) 

have increased available interactome data. The InterProScan (Quevillon et al. 

2005) or STRING (Szklarczyk et al. 2014) databases can be investigated to 

retrieve known physical interactions, both structurally resolved and 

experimentally validated. Knowledge on genetic interactions enables further 

inferring of functional relationships between genes and pathways. Besides data 

storage in databases, information on gene function and interactions can also be 

found embedded in textual data (Hakala et al. 2015). Text mining methods 

applied to literature resources, such as PubMed articles, help to extract 

additional information using manual curation efforts (Szakonyi et al. 2015) or 

semi-automated tools such as PubTator (Wei et al. 2012). 

Previously mentioned data mining approaches essentially rely on available 

knowledge. Ample knowledge is available for Arabidopsis, but for other less 

well-studied plant species, the lack of knowledge regarding gene annotation 

and interactions severely limits network analysis using gene prioritization. 

Comparing networks from different species can provide an additional source of 

knowledge for gene functional annotation and gene connectivity using gene 

139



| Chapter 6 

orthologs information and network alignment (see Section Comparative Co-

Expression Network Analysis). As an example, Lee et al. (2015a) used conserved 

functional gene associations from networks inferred for Arabidopsis, worm, 

human and yeast as an additional source of data for the RiceNet, which was 

initially limited to rice-specific data sets. 

The availability of these complementary data has opened the way to integrated 

approaches for function prediction studies. Multiple independent lines of 

evidence provide confidence for network functional gene associations. 

Kourmpetis et al. (2011) employed the Bayesian Markov Random Fields (BMRF) 

model to integrate protein sequence information, gene expression and protein-

protein interaction data in their function prediction approach in Arabidopsis. 

They demonstrated that the model for network integration had the best 

performance when all of these data sources were used. One of the best 

examples of data integration is provided by GeneMANIA. This prediction server 

relies on a Gaussian Markov Random Fields-based method for protein function 

prediction combining multiple networks (Warde-Farley et al. 2010). Together 

with computational methods, these tools, mobilizing and integrating prior 

knowledge and network features, have contributed to the establishment of 

diverse strategies to prioritize candidate genes for further experimentation 

(Table 2).  
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Co-expression network applications 

eQTL Based Co-Expression Networks 

Advances in “genetical genomics” have greatly benefited the elucidation of the 

genetic loci controlling transcription and the inference of regulatory 

mechanisms underlying complex phenotypic traits. The concept of ‘genetical 

genomics’ was first introduced by Jansen and Nap in 2001 (Jansen and Nap 

2001), marking a new turn in genetic studies. The basic idea of this approach is 

to join classical genetic linkage analysis (Quantitative trait Loci (QTL) analysis) 

with gene expression studies (Keurentjes et al. 2007b). The variation in gene 

expression is regarded as a quantitative trait for which the genetic basis 

(expression QTL, eQTLs) is investigated in mapping populations, such as 

recombinant inbred line (RIL) populations. In plants, “genetical genomics” has 

proven to be a successful strategy to dissect complex traits in a number of 

studies (for reviews see (Joosen et al. 2009; Kliebenstein 2009; Ligterink et al. 

2012)). 

Detected eQTLs for a specific gene can be classified into “local” or “distant” 

eQTLs depending on whether they co-localize with the physical position of the 

studied gene or are located elsewhere in the genome, respectively (Rockman 

and Kruglyak 2006). eQTLs can also be classified as cis- or trans-acting based on 

the location of the associated causal polymorphism in the gene under study or 

elsewhere in the genome, respectively. Consequently, distant eQTLs are always 

trans-acting, while local eQTLs can be cis-acting, if the associated causal 

polymorphism resides in the gene under study, or trans eQTLs when they are 

caused by a closely linked allelic variation in a trans-acting factor. Allele specific 

expression analysis can specifically determine whether a local eQTL is trans or 

cis-acting (for review see (Kliebenstein 2009)). 

A common feature of global eQTL studies is the identification of trans eQTL 

hotspots (West et al. 2007; Keurentjes et al. 2007b). These eQTL hotspots 

correspond to a high number of co-locating trans eQTLs in one region of the 

genome, indicating a hotspot for transcriptional regulation (Kliebenstein 2009). 

Due to their analogy to high degree nodes in a network, cis eQTLs located in 

these hotspots are sought as candidate master regulators affecting the 

expression of genes with a trans eQTL in that same region (West et al. 2007). A 

regulatory relationship can be inferred by correlating gene expression profiles 

between the cis eQTL candidate regulators and their potential downstream 
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trans regulated genes. An iterative group analysis can be used to detect 

significant associations (Breitling et al. 2004; Keurentjes et al. 2007b; Wang et 

al. 2014). Keurentjes et al. (2007b) established a regulatory network for genes 

involved in the transition of flowering based on eQTL data. The GIGANTEA (GI) 

protein, known to be involved in the circadian clock controlled flowering time 

pathway, was identified as a regulator. Phenotypic QTLs associated with 

flowering and the circadian clock were also identified at the genetic locus of GI. 

Similarly, Wang et al. (2014) identified eight regulatory groups and their target 

genes for heading time in rice RILs. One regulatory group centered on Ghd7, an 

important regulator in heading time and yield potential in rice, was identified 

with a cis eQTL connected to nine genes with trans eQTLs. The network was 

validated by inspecting the transcript abundance of downstream-regulated 

targets and supported by co-localizing phenotypic QTLs for yield and heading 

time. These studies illustrate the usefulness of eQTL based co-expression 

analysis to guide the identification of candidate genes controlling quantitative 

traits. Other studies combined eQTL with co-expression analysis to identify 

regulator candidates underlying eQTLs (Terpstra et al. 2010; Flassig et al. 2013). 

Interestingly, eQTL studies have also reported noteworthy properties of eQTLs 

in regard to their regulatory and evolutionary significance. Cis eQTLs were 

found to be highly inheritable with a larger genetic effect when compared to 

trans eQTLs (West et al. 2007; Petretto et al. 2006; Kloosterman et al. 2012). 

Cis eQTLs were also found to be more consistent across different genetic 

backgrounds (Cubillos et al. 2012) and more robust to environmental 

perturbations (Cubillos et al. 2014), while genes with trans eQTLs were more 

frequently reported as tissue or organ specific (Drost et al. 2010; Kloosterman 

et al. 2012). 

QTLs tend to cover large regions of the genome, typically spanning hundreds of 

genes, and finding the actual gene that causes the observed trait variation is a 

formidable task. The capacity of gene co-expression networks to handle 

genome-wide data and filter out genes based on their correlation coefficients 

offers an attractive approach to prioritize genes. This strategy was successfully 

applied in the identification of EARLY FLOWERING 3 (ELF3), and its implication 

in shade avoidance response (Jimenez-Gomez et al. 2010). In this study, a 

network was built for each of the 363 candidate genes underlying the main 

phenotypic QTL for shade avoidance, connecting each candidate gene to co-

expressed genes across 1.388 (selected) experiments. The eQTLs available for 
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the investigated RIL population allowed pruning of the networks to keep only 

the co-expressed genes with a cis eQTL, which is indicative of a regulatory 

relationship (Hansen et al. 2008). In a similar approach, Chan et al. (2011) used 

co-expression analysis to prioritize candidate genes resulting from a genome 

wide association study (GWAS). Alternatively, co-expression networks can be 

used prior to eQTL analysis (Kliebenstein et al. 2006; Kerwin et al. 2011). 

Kliebenstein et al. (2006) implemented an a priori network eQTL approach by 

calculating the mean expression value of the genes within each pre-determined 

network and using this as a quantitative trait in a subsequent QTL analysis.  

One main advantage of eQTL analysis is that regulatory insights can be gained 

without prior knowledge. Information on the nature of the inferred interaction 

in such an approach, combined with co-expression network analysis, can 

substantially accelerate understanding of molecular regulatory interactions 

(Figure 2). However, the link between phenotype and transcript variation is not 

always straightforward as changes are also likely to occur at the protein or 

metabolite levels. The additional integration of other omics data available as 

QTLs for protein (pQTL) or metabolite (mQTL) variation (Wentzell et al. 2007; 

Kerwin et al. 2011) can bridge the gap between genotype and phenotype, 

providing an in-depth understanding of causal mechanisms. As an example, 

Kerwin et al. (2011) identified overlapping eQTLs and mQTLs for circadian time 

and glucosinolate variation in Arabidopsis. Specifically, AOP2, a 2-oxoglutarate-

dependent dioxygenase, was identified as a potential regulator. Altered AOP2 

function resulted in changes in expression of clock output genes, suggesting a 

causal relationship between changes in clock function and metabolite content. 

High resolution co-expression networks  

Co-expression networks offer a conceptual framework to study gene 

interactions. However, their static representation does not capture all possible 

gene relationships as these do not operate simultaneously due to spatial and 

temporal variation in gene expression. 

 

Temporal Resolution for Dynamic Co-Expression Networks 

 

In response to developmental or environmental stimuli, plants undergo global 

transcriptional reprogramming. Monitoring transcriptional changes over time 

can provide more insight into the cascade of biological processes involved in 

the signal perception, transduction and final response. Using time series data 
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sets throughout seed development, Le et al. (2010) identified seed specific 

transcription factors active in different compartments and tissues of the seed 

at unique moments of seed development, suggesting a chronology of specific 

regulatory programs triggering seed development.  

Time series experiments are often used to examine the dynamics of gene 

expression. Wei et al. (2013) used six time points during growth of poplar roots 

in low nitrogen conditions. GO categories associated with signal transduction 

were identified for differentially expressed gene sets in the early time points of 

the response (6h and 24h), while categories associated with organ 

morphogenesis were prevalent throughout the later time points (48 and 96h). 

 

 

 
 

Figure 2: Schematic representation of gene prioritization strategies. Gene sets of different 

expression values (Shades of green) are used to co-expression network inference. Genes with co-

expression values above a user define threshold (dark green nodes) form nodes and edges in the 

network. Various additional data can then be used to enrich and extract biological relevant 

information from the network. Enrichment analysis tools such as gene ontology terms (pink 

contour nodes) can be used to functionally annotate unknown genes (question marked genes) 

clustered in the vicinity. Prior knowledge can also help to highlight known gene-gene interactions 

(dotted line) and cis-regulatory motif (purple flags) can suggest local regulatory interactions 

(arrows) between transcription factors (TF node) and their target genes (flagged nodes). Gene 
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regulatory relationships can also be extracted from time series data. Algorithms can extract causal 

regulatory relationship between genes with a cis-eQTL (orange contour node) and genes with 

trans-eQTLs (blue contour node). Additionnal information can be gained from comparisons with 

networks of other species (yellow node) by onthology and network alignment (dotted lines). 

 

By reducing the time scale to minutes, Krouk et al. (2010) observed that within 

three minutes following nitrate addition in Arabidopsis, functional categories 

such as ribosomal proteins were over-represented, suggesting the rapid 

activation of key elements of the translation machinery to synthesize proteins 

required for nitrogen acquisition.  

Combining time series and co-expression network analysis can unveil gene 

interactions associated with the dynamics of transcriptional programs. Global 

expression patterns can be obtained from the expression similarity calculated 

across samples collected at different time points. This approach is well suited 

to find modules of simultaneous expressed genes and gene interactions but is 

not well suited for time lagged regulations since all genes influencing the 

expression of downstream target genes are not necessarily captured within a 

same time point (experiment). This results in complex relationships between 

co-regulated genes, including co-expression, time shifted and inverted 

relationships (Zhang et al. 2005): an activated transcription factor gene first has 

to be transcribed and the resulting mRNA translated before it in turn can 

activate its downstream targets. The delay further depends on the dynamics of 

the regulation, and for instance the presence of network motifs like feed 

forward or negative feedback loops (Alon 2007). 

Windram et al. (2012) dissected the infection response of Arabidopsis to 

Botrytis cinerea using 48 time points with 2h intervals. To capture the 

chronological establishment of the associated transcriptional events and to 

predict their regulation, the differentially expressed genes were first clustered 

based on the similarity of gene expression patterns over time or based on the 

timing of differential expression of each gene. Regulatory predictions were 

made using a discrete-time causal structure identification algorithm. The 

expression means of the clusters and Botrytis cinerea growth information were 

used to build a regulatory network. In this network, a NAC transcription factor 

identified in one cluster connected to two downstream clusters enriched for 

the NAC binding motif in their promoter sequence, suggesting a regulatory 

relationship. 

This example shows that causality information of time series on a fine temporal 

scale can provide valuable information on the directionality of gene 
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interactions. Several algorithms have been proposed to perform time delayed 

correlation analysis in time series data (De Smet and Marchal 2010). For 

instance, Lavenus et al. (2015) proposed a time delay correlation algorithm 

(TDCor) that includes minimal prior knowledge on the nature of the genes, with 

transcription factors categorized as repressor, activator, regulator or non-

regulator, to build a network of plausible interactions from time series data. 

Krouk et al. (2010) used a noise reduction state-space modeling algorithm to 

build a dynamic linear model defining the rate of change in expression between 

time points t and t + 1. This model was then used to predict the influence of 

transcription factors on the genes they regulated (influential rate). The authors 

reasoned that the observed low influential rate of the transcription factors 

could be due to the functional redundancy that is often observed in biological 

networks and is consistent with a proposed global buffering system 

counteracting stresses and evolutionary forces (Fu et al. 2009). Polanski et al. 

(2014) suggested a module identification procedure based on the Wigwams 

algorithm capable of mining multiple time series for condition dependent co-

expression across a subset of time series. Using such an approach, the 

reconstruction of co-expression networks can be directed to time specific 

modules of co-regulated genes. 

Together, these studies suggest that new regulatory insights can be gained 

from integration of co-expression networks with data from time series, for the 

identification of “subtle” gene clusters, showing condition dependent 

regulation. Time series are valuable for further disentangling of real co-

regulatory gene relationships from co-expression links. For application in more 

studies, new challenges have to be addressed such as the judicious selection of 

time points (Vashishtha et al. 2015), the development of performant inference 

algorithms, the reliable detection of direct and indirect gene interactions and 

most importantly the connection with their real biological meaning (reviewed 

by (Bar-Joseph et al. 2012). We believe that this approach will offer new venues 

for deeper insights into the fine-tuned regulation and predictive analysis of 

gene expression behavior in future studies. 

 

Spatial Resolution for Dynamic Co-Expression Networks 

Plants are multicellular organisms whose vegetative and reproductive organs 

are composed of complex tissues and cell types. Cell differentiation is a 

fundamental process required to acquire cell identity and consequently ensure 

the correct execution of essential structural and biological functions. Genome-

wide transcriptome and gene network analyses have mostly been conducted 
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on whole plant organs, severely limiting the identification of more specific 

regulatory interactions occurring at the tissue or single cell level. The 

development of new highly selective methods has enabled the collection of 

expression profiles at unprecedented resolution (Nelson et al. 2008; Tang et al. 

2011; Belmonte et al. 2013) offering new insights into the various biological 

levels of transcription regulation. As an example, laser capture microdissection 

(LCM) enables isolation of specific tissues at cell level while fluorescent 

activated cell sorting (FACS) allows separation of specific cell types expressing 

green fluorescent protein (GFP) under control of cell specific promoters. 

These techniques were used to get insight into single cell transcriptomic data 

for well-studied and specialized organs such as roots or pollen (Becker et al. 

2014; Slane et al. 2014; Aya et al. 2011; Efroni et al. 2015). 

A fluorescent cell sorting technique was used to obtain a high-resolution map 

of spatiotemporal expression profiles of Arabidopsis roots (Brady et al. 2007). 

In this study, transcriptome analysis of root transverse sections revealed 51 

dominant root radial expression patterns among which 17 showed enrichment 

in a single cell type, whereas 34 expression patterns were found across 2–5 cell 

types to 5 cell types (Brady et al 2007). In the same study, the longitudinal root 

section expression profiling to analyse different developmental stages in root 

cell-type formation, enabled the identification of specific expression patterns. 

Transcriptional changes may also occur in response to environmental shifts. 

Interestingly, a close link was observed between development and stress 

responses at the cell-type specific level in the Arabidopsis root showing 

developmental plasticity (Gifford et al. 2008) while adding a layer of 

complexity, i.e. environment specific effects, to an already intricate system. 

Together, these results highlight the spatiotemporal transcriptional complexity 

down to the cellular level and suggest cell-specific transcriptional programs. 

Integrating tissue- or cell-type specific high-resolution datasets by co-

expression network analysis is a promising approach for the regulatory 

dissection of specific biological functions. Illustratively, Zhan et al. (2015) 

combined LCM and RNA-seq to isolate and profile filial and maternal cell types 

of maize kernels at eight days after pollination. From the resulting gene co-

expression network, 18 endosperm-associated co-expression modules were 

identified among which 10 were found to be highly compartment- or cell-type-

specific. The comparison of these spatial co-expression modules with 

temporally upregulated gene data sets showed that genes within co-expression 

modules are regulated both in time and space. Collectively, these results 
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support the effectiveness of co-expression networks analysis to uncover the 

temporal and spatial organization of specific differentiation processes. 

On-going developments to further improve single-cell RNA-seq analysis 

(Buettner et al. 2015) should strongly benefit the establishment and 

interpretation of specialized co-expression networks in the coming years. 

Furthermore, the advancement of computational tools able to manage the 

increasing amount of data as well as the development of robust and efficient 

algorithms to analyse large-scale data will be needed to tackle the increasing 

complexity added to gene regulatory networks. 

 

Comparative co-expression network analysis 

Classic research in evolutionary developmental biology (“evo-devo”) has 

focused on comparative analysis with the help of mutant analysis, heterologous 

mutant complementation, comparative gene expression studies and 

phylogenetic analysis. These analyses mostly rely on gene and protein 

sequence information; however the increasing number of gene expression data 

in many different species is opening up new perspectives. Cross-species 

comparison of co-expression networks is a promising approach to understand 

the interplay between regulatory function and evolution (Movahedi et al. 2012; 

Hansen et al. 2014). 

There are several advantages of cross-species network comparisons. Networks 

of well-studied plants such as Arabidopsis can enrich sparse networks, such as 

for crops, reducing the need of extensive functional genomic and phenomic 

resources. Cross-species comparison can accelerate the functional annotation 

of genes and the discovery of gene-gene interactions, consequently hastening 

the gene prioritization process for targeted mutational studies. 

There is evidence that networks are shaped by major evolutionary features, 

such as by neo- or sub-functionalization following whole genome duplications 

(Conant and Wolfe 2006; De Smet and Van de Peer 2012). These adaptive 

processes may result in an evolutionary functional gene network partitioning 

associated with a rewiring in the gene regulatory circuitry (Conant and Wolfe 

2006). In this context, co-expression network comparison can be used to 

identify functionally conserved network patterns and to study their evolution. 

Different methods have been proposed to compare co-expression networks. 

Leal et al. (2014) compared gene co-expression networks obtained for several 

plant species in response to different pathogens using a multivariate analysis. 

Each network was characterized by eight graph variables which were then 
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summarized in a principal component analysis. Clustered networks identified in 

the principal component analysis plot suggested similar pathogen specific 

responses across species. 

An obvious method to align networks and to get better insight into the degree 

of network conservation is to link orthologous genes between different species. 

The effectiveness of such comparative analysis essentially relies on the 

consistency of the orthologous information as well as the quality of the 

underlying co-expression networks. Orthologous gene information can be 

obtained through various methods (Kuzniar et al. 2008). Simple approaches use 

best Blast hits or reciprocal hit blast (RHB) for closely related species (Yang et 

al. 2011). More advanced tools such as the OrthoMCL clustering algorithm (Li 

et al. 2003) or OrthoFinder (Emms and Kelly 2015) enable differentiation of 

true orthologous from paralogous genes. Zarrineh et al. (2011) proposed a 

cross-species co-clustering approach (COMODO). Network comparisons can be 

done at the global scale or focused on specific gene modules. In a global 

approach, Ficklin and Feltus (2011) used an alignment algorithm, IsoRank, that 

incorporates both gene homology and network topology to compare networks 

in rice and maize. They identified aligned modules enriched for similar 

functional terms, suggesting their potential evolutionary conservation. 

In another study, Obertello et al. (2015) used orthologous information from 

OrthoMCL and BlastP, to align genes between Arabidopsis and rice co-

expression networks. The authors observed that integrating rice data in an 

Arabidopsis network did not improve the available interaction knowledge, 

while Arabidopsis could substantially enrich rice network interactions. This 

study illustrates the usability of network comparisons to promote translational 

discoveries. It shows that well-known networks, such as those from model 

plants like Arabidopsis, can enrich more sparse networks of crops, such as rice, 

although Lee et al. (2011) demonstrated a higher accuracy for a rice network, 

RiceNet, derived from data of diverse species (with 15.5% of true positive 

linkages) than for a rice network derived solely from orthology with AraNet, the 

Arabidopsis network (with 6.5% true positive linkages). 

In a more targeted approach, Yang et al. (2011) investigated conserved co-

expression of cell-wall associated genes between Arabidopsis and poplar. An 

initial list of known cell-wall related genes was used to build a co-expression 

network with 22 clusters. The orthologous clusters of co-expressed genes 

identified in poplar did not all correlate in gene expression pattern with the 

clusters in Arabidopsis (gene expression pattern correlated for 9 of 22 clusters). 

Additionally, conserved co-expression clusters referred to plant essential 
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biological functions, such as cell-wall formation. More comprehensively, 

Movahedi et al. (2011) implemented an expression context conservation score 

(ECC) to quantitatively estimate the degree of conservation of expression 

similarity between orthologous genes and their co-expression partners. The 

overall ECC scores revealed that for 4.630 orthologs in rice-Arabidopsis gene 

pairs, 77% had a conserved expression context. In another study, Netotea et al. 

(2014) performed an extensive examination of network properties, like node 

degree distribution and gene centrality, to compare co-expression networks of 

Arabidopsis, poplar and rice. They analyzed the degree of conservation of gene 

co-expression links and neighborhood (connected genes) among all orthologs 

in the three networks and showed that genes with high centrality, typically 

hubs, were significantly conserved while local regulatory motifs were relatively 

less well conserved across species. 

Additionally, they noted that sequence similarity did not always predict gene 

regulation conservation. Beyond simple gene sequence comparison, the 

integration of co-expression networks to cross-species data provides a new 

dimension in evolutionary studies, revealing conservation and divergence in the 

regulation of genes. 

At the moment, several integrative platforms are available to enquire, display 

and compare co-expression networks. Examples of these are PLANEX (Yim et al. 

2012) , ComPLex (Netotea (Netotea et al. 2014), CoExpNetViz (Tzfadia et al. 

2015), PLAZA (Proost et al. 2015) and the “NetworkComparer” pipeline on the 

PlaNet platform (Mutwil et al. 2011) that integrates genomics, transcriptomics, 

phenomics and ontology analyses to compare seven plant species. 

 

Conclusion and perspectives 

Co-expression networks are a powerful approach to accelerate the elucidation 

of molecular mechanisms underlying important biological processes. 

Importantly, network based strategies are largely determined by the biological 

question addressed and the prior knowledge available. 

We anticipate that the increase in available experimental data, driven by new 

molecular techniques, will enrich existing databases. In addition, the shift from 

microarrays to next generation high-throughput sequencing technologies will 

provide further insights into genome scale functional networks of many 

species. Together with the increased sensitivity of high-resolution technologies 

enabling the acquisition of cell-specific transcriptome profiles, novel biological 

insights can be gained. The extensive accumulation of data will require further 
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efforts for their storage, accessibility and processing. One of the common 

strategies for all co-expression network studies is the integration of disparate 

data sources for the biological interpretation of networks. As a result, the 

development of integrative web interfaces such as CressInt (Chen et al. 2015) 

are needed to facilitate the integration of available genomics data. 

Furthermore, the development of computational tools, such as machine 

learning based algorithms, although computationally intense, will support the 

optimal integration and exploitation of prioritization strategies (Radivojac et al. 

2013). In such a scenario, the collaboration of bio-informaticians and biologists 

is highly desirable and will become increasingly important. 

To fully describe the link between genotype and phenotype and to understand 

the underlying gene regulation, coordination of networks at different molecular 

levels (gene, protein, metabolite) is needed (Gaudinier et al. 2015). 

Additionally, genetically anchored gene expression profiles (eQTLs) have 

proven to be powerful tools to reveal causal regulatory variants. The genetical 

genomics approach provides a multifactorial design to study the simultaneous 

effect of gene perturbations. (Kliebenstein 2012) demonstrated that shallow 

sequencing depth in transcriptomics experiments enables capturing most of 

their genomic information. The result of their study suggested that 10% of the 

transcripts would detain more than 80% of the information present in a variety 

of transcriptomics experiments. In another study, Li et al. (2008b) introduced 

the generalized genetical genomics design to optimally study genetic by 

environment interactions. These findings suggest that there is room for 

improvement in the design of transcript sequencing for large-scale factorial 

analysis in which the size of the population studied or the number of conditions 

to be tested can be increased in a cost-effective manner. 

Co-expression networks are an attractive framework for gene interaction 

analysis and offer a diverse range of applications, from the gene functional 

annotation to the comparison of co-expression networks across species. 

Improved and enriched co-expression network analyses will further empower 

the predictive power of networks and their translational application by 

circumventing the need of additional extensive functional genomic and 

phenomic resources. This approach will further contribute to the elucidation of 

important biological processes and provide a valuable predictive tool for 

contemporary molecular breeding and crop engineering strategies. 
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Introduction 

In the coming years as a result of climate change, plants will experience shifts 

in developmental phase transitions with consequences for their life history 

strategies. Fundamental knowledge of the factors and mechanisms influencing 

these shifts can help to understand the importance of these changes in a 

biological, agricultural and ecological context. Environmental factors influence 

vegetative aspects of plant development as well as the transition to 

reproductive development, namely flowering. Beyond flowering, 

environmental factors can be experienced by the developing offspring and as a 

result, influence the intrinsic properties of the seeds produced. At the stage of 

seed dispersal or harvest, the quality of the seeds is instrumental for the 

reproductive success of the plant or for seed companies to obtain a marketable 

product. 

Seed quality is a generic term, since it describes many seed characteristics, 

including seed size, seed weight, as well as the seed performance traits 

associated with the rate, percentage, uniformity and vigour of germination. In 

nature, the timing of germination is critical for the success of seedling 

establishment. One of the well-known mechanisms controlling the timing of 

germination is seed dormancy. Seed dormancy is influenced by genetic loci as 

well as environmental factors (Bentsink et al. 2010; He et al. 2014; Donohue et 

al. 2005a). The response to the environmental cues during seed development, 

also termed ‘maternal environment’, has been described for several seed traits 

including dormancy and germination in Arabidopsis (He et al. 2014; Donohue et 

al. 2005a). These effects also differ across genotypes, suggesting genotype-by-

environment interactions (G x E). In spite of the potential phenotypic plasticity 

induced by maternal environments and the large genetic variation reported for 

seed traits (Bentsink et al. 2010; Joosen et al. 2012), only a few studies have 

investigated the influence of the maternal environment on the genetic basis of 

seed quality traits (Postma and Agren 2015; Kerdaffrec and Nordborg 2017). 

The advent of high-throughput of post-genomics technologies can provide in-

depth insights in the plastic, genetic and molecular bases of the process of seed 

germination.  

The work presented in this thesis aimed to extend studies on the effect of 

maternal environments by providing insights into the genetic basis of seed 

performance at the phenotypic, metabolic and transcriptome levels and the 

changes induced by different seed maturation environments. For this purpose, 

I used an Arabidopsis thaliana Bay-0 x Sha recombinant inbred line population 
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of 165 lines which was grown under controlled standard (ST), high temperature 

(HT), high light (HL) and low phosphate (LP) conditions from flowering until 

seed harvest. A classical quantitative trait locus (QTL) mapping approach was 

used to investigate changes in the genetic architecture of phenotypic and 

molecular traits in response to the maternal environment. I generated a new 

saturated genetic map (Chapter 2) which was subsequently used to identify a 

large number of QTLs displaying significant QTL-by-environment interactions 

for seed quality traits (Chapter 3). In Chapter 4 and 5, in a genetical ~omics 

approach, I showed that the maternal environment triggers profound changes 

in the genetic basis of the dry seed metabolome and transcriptome. This 

thesis’s research lays the foundation for seed systems genetics studies towards 

the future integration of the separate studied biological strata. In this respect, 

networks represent an attractive approach to reduce data complexity and 

reflect on the underlying molecular mechanisms (Chapter 6). In this last 

chapter, I discuss the importance and implications of the maternal 

environment in an evolutionary, ecological and breeding context. I further 

elaborate on tools and methods that are beneficial for gene discovery and the 

understanding of the regulation of complex traits. 

 

Plasticity of seed performance 

The adaptive significance of maternal environments 

Changes in the environmental conditions are expected to be more common as 

a result of climate change. Organisms can respond to these fluctuations in 

several ways such as shifting their distribution, adaptation to new 

environments or acclimating via plasticity. Phenotypic plasticity is the result of 

the expression of a genotype in response to environmental variation, and 

enables plants to cope with fast changing environments. Such plasticity brings 

the opportunity for individuals to reach phenotypic optima in novel 

environments and is thereby likely to contribute to genetic adaptation of a 

species in the long term (Donohue et al. 2005). As for many organisms, early 

life history stages of plants are the most sensitive to environmental cues. In the 

plant life cycle, seed germination is a critical phase determining the success of 

the establishment of the next generation. Plasticity for seed germination has 

been largely investigated in the immediate environment, i.e. within one 

generation (Joosen et al. 2012). Environmental cues experienced by the 

environment of the parental plants can also alter seed traits. Arguably, the 
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influence of the maternal environment is often referred to as a form of trans-

generational plasticity (Vayda et al. 2018). However, in this set-up, the 

maternal environment is concomitant with the environment experienced by 

the mother plant and the developing seed itself. The maternal environment is 

often viewed as a key for promoting offspring performance against adverse 

environmental cues. However, upon seed dispersal, germination frequently 

occurs under a wide range of conditions (Bewley 1997; Baskin and Baskin 2014) 

and thus differences between the maternal and offspring environments may 

result in unpredictable phenotypic performance (Leverett et al. 2016), Chapter 

3) questioning the adaptive significance of the maternal environment. Two 

types of strategies might explain the response to the maternal environment. 

Early seed germination response in adverse environments can be seen as a 

competitive advantage that allows the young plant to outgrow potential 

competitors or overcome temporary unfavourable germination conditions. On 

the other hand, a reduced germination rate can be viewed as a strategy aiming 

to delay the timing of germination by promoting prolonged primary dormancy, 

germination arrest or facilitated induction of secondary dormancy. In Chapter 

3, I investigated germination performance, measured as the area under the 

germination curve (AUC), as a response to both maternal and germination 

environments. Under most adverse germination conditions, an increased 

variation in the AUC values was observed across the lines, suggesting non-

uniformity of germination in the seed batch. In nature, non-uniformity of 

germination can be seen as a bet-hedging strategy to scatter germination in 

time thereby providing a mean to better cope with uncertain and fluctuating 

germination environments (Springthorpe and Penfield 2015). The ecological 

importance of non-uniform germination contrasts with the quest for uniformity 

of germination and seedling establishment in the selection process of high 

quality seeds for agricultural practices. 

In this thesis, I investigated the effect of the maternal environment 

experienced by the mother plant and developing seeds from flowering until 

seed harvest. However, the sensing and signalling of environmental cues at the 

vegetative stage, i.e. before flowering, also determines seed quality 

characteristics, such as seed dormancy (Springthorpe and Penfield 2015). 

Flowering marks an important transition from the vegetative to the 

reproductive stage. The major regulator of flowering, FLOWERING LOCUS C 

(FLC) operates in one of the best characterized molecular pathways with known 

pleiotropic effects. Several studies have reported relations between the 

flowering-FLC pathway and the control of seed germination (Blair et al. 2017; 
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Huo et al. 2016; Chiang et al. 2009). A recent study brought mechanistic 

insights on how FLC affects seed dormancy in response to high temperature 

(Chen and Penfield 2018). It would be interesting to further investigate how 

regulatory mechanisms, e.g. associated with flowering, integrate 

environmental cues and interact with regulatory mechanisms acting during 

seed development and maturation. 

 

Implications for breeding 

The fact that performance of seeds in response to the maternal environment 

affects final seed quality is of eminent importance for breeding purposes 

(Chapter 3). In seed companies, large variation in quality of seed lots is 

expected, since the production sites are often located in different countries 

around the world. One way to alleviate such hindrances could be to establish a 

growing protocol based on the predicted environmental effects in such a way 

that the effect of the environment is stabilized across generations. 

Alternatively, knowing about the effects of a given growing environment could 

also be exploited to manipulate seed production environments to predict and 

improve seed quality. 

Since it is not always possible to control greenhouse conditions or even use 

greenhouses, so far major efforts to improve seed quality have been carried 

out using post-harvest treatments. The downside of such treatments, such as 

seed priming, is the often drastic reduction of storage time of the seeds 

(Hussain et al. 2015). In addition, such treatments remain expensive, crop 

specific and subjected to trial and error for the optimization of protocols. 

Including the genetic components of seed quality in breeding programs might 

thus provide an upstream solution to improve seed quality. In Chapter 3, I 

found that the maternal environment largely interacts with the genetic basis of 

seed performance. One of the most striking examples was observed for a high 

temperature specific QTL identified on the top of chromosome 1 and validated 

using a heterogeneous inbred families (HIFs) approach. From a breeder’s 

perspective, selecting varieties that show a stable response to different 

maternal cues can ensure certain stability in the quality of the seed produced. 

Alternatively, genotypes could be selected for their predicted performance in 

terms of seed quality traits for targeted growing environments. The large 

variation in the effect of seed performance QTLs under the different maternal 

environments emphasizes the need to consider maternal environments in 

genetic studies. In general, knowing the potential consequences of maternal 
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environments might help in the development of tools to accurately predict 

crop performance.  

 

Closing in on complex traits 

Complex traits are influenced by the natural variation within multiple genes in 

interaction with the environment. The study of natural variation continues to 

reveal new biology (Weigel 2012). In parallel, the recent advances in 

sequencing technologies and high-throughput phenotyping facilities for 

phenomics, transcriptomics, proteomics and metabolomics have enabled plant 

biologists to elucidate genetic and molecular mechanisms of complex traits 

(Keurentjes et al. 2008). Below I discuss in more detail the methods and tools 

that can help to identify causal variants of complex traits. 

 

QTL mapping 

Many tools for quantitative genetics have been developed aiming at studying 

the genetic architecture of quantitative traits. Quantitative trait locus (QTL) 

analysis remains among the most popular approaches. The success of QTL 

mapping relies on the power and the resolution of the QTL analysis, mainly 

determined by the type and size of a population as well as on the availability of 

a dense genetic map (Chapter 2). In this thesis, I used an Arabidopsis Bay-0 x 

Sha core population of 165 recombinant inbred lines (RILs) to investigate the 

genetic basis of seed performance. RILs have proven useful for QTL analyses. 

The number of generations created to obtain the RILs, results not only in 

almost completely homozygous lines, but also in the accumulation of 

crossovers. RILs provide thus material for high resolution QTL mapping, 

although QTLs often still include a large number of genes (Chapter 2, Chapter 

3). A limitation of QTL analyses in bi-parental populations is that only the 

genetic variation present between the two parents and that segregates in the 

derived population can be investigated. Several strategies exist to increase the 

genetic variation under study. One approach is the generation and 

investigation of artificial populations with multiple parents, the so-called Multi-

parent Advanced Generation Inter-Cross (MAGIC) populations (Cavanagh et al. 

2008; Kover et al. 2009). In contrast, genome-wide association studies (GWAS) 

use historical recombination events in a large panel of natural accessions to 

identify marker-trait associations. GWAS can overcome the limitations of 

traditional bi-parental populations and dissect complex traits with high 
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mapping resolution at the SNP level (Atwell et al. 2010). Therefore, several 

studies combine QTL and GWAS approaches to validate their results and 

identify potential causal genes (Mammadov et al. 2015).The GWA approach 

has been used to investigate the genetic basis of seed traits in Arabidopsis as 

well as in other species (Yan et al. 2017). In Chapter 3, the QTL x E approaches 

resulted in a high number of QTL showing certain sensitivity to the maternal 

and germination environments. Kerdaffrec and Nordborg (2017) investigated 

the genetic basis of dormancy under two different environments using GWA 

approach. The power of GWAS relies on the allele frequency in the population 

and in a GWA x E set-up, a main limitation is that low frequency in the 

population of QTL alleles with substantial G x E might not be captured (Korte 

and Farlow 2013; Asimit and Zeggini 2010; El-Soda et al. 2014). The high 

plasticity of seed traits in particular in response to maternal environments 

makes such genetic studies particularly challenging. 

The advancement in sequencing technologies has provided many possibilities 

to explore genetic variation. Single nucleotide polymorphisms (SNPs) are 

commonly identified from genomic data as costs of available technologies are 

constantly decreasing. In Chapter 2, I showed that RNA-seq, commonly used 

for the quantitative measurement of gene expression, can also be used to 

identify SNPs. The discovery of SNPs using RNA-seq data is useful for several 

reasons. First, by targeting the transcriptome, RNA-seq reduces the search of 

causal variants of complex and/ or unsequenced genomes. Furthermore, the 

SNPs identified are located in genic regions. These regions are the most likely 

to be involved in the regulation of complex traits. Lastly, RNA-seq provides a 

representation of the transcriptome that can be useful for other analyses as 

shown in Chapter 5 where I used the same RNA-seq data to identify expression 

QTLs (eQTLs). In Chapter 2, the SNPs identified from the RNA-seq data were 

used to saturate the initial map of the Bay-0 x Sha population. The comparison 

of different available genetic maps showed that increasing the numbers of 

markers provided higher mapping resolution by reducing the size of the QTL 

intervals. The ability to derive exponential numbers of markers, through 

sequence data, shows that the availability of genotypic data no longer 

represents a limiting factor for QTL studies, thus shifting efforts to enhance QTL 

mapping towards the use of efficient mapping population designs exploiting 

large genetic variation, such as the previous mentioned multi-parental 

populations (Wijnen and Keurentjes 2014). A major challenge in multiple 

environment studies remains that a large number of plants need to be 
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accurately phenotyped in order to have the statistical power to identify 

marker-trait associations. The success of these methods thus also requires 

advanced methods that provide high-throughput phenotyping, which is 

currently recognized as a major bottleneck in genetic studies. 

Phenotypes 

Another major aspect for the success of QTL approaches relies on the input 

data, capturing essential stages of phenotypic variation. In Chapter 3, I used a 

high-throughput phenotyping method, the GERMINATOR (Joosen et al. 2010), 

that enables fast and standardized scoring of germination for a large number of 

seed batches. I also generated omics data to investigate changes at the 

metabolome (Chapter 4) and transcriptome levels (Chapter 5) in dry mature 

seeds coming from plants grown under different maternal environments. The 

large number of mQTLs and eQTLs identified showed that molecular traits can 

effectively be used for the molecular dissection of complex traits (Chapter 4, 5). 

These new, also called intermediate, phenotypes increase the chance of finding 

marker-trait associations, while providing substantial biological insights.  

For practical reasons, namely the study at the population level and, thus, the 

large number of lines to phenotype, I made the choice of investigating omics 

changes in dry mature seeds. Dry mature seeds are the end product of seed 

development, thus providing suitable biological material to investigate and 

compare changes at the genetic and molecular levels in response to 

environmental variation. Apart from these considerations, the choice for dry 

mature seeds was supported by the hypothesis that dry seeds are packaged 

with all components needed to initiate germination. At the end of seed 

development seeds enter a dry and quiescent enzymatic and metabolic state, 

accumulating all components (proteins, enzymes, mRNA, metabolites, etc.) 

that will support the start of the germination machinery. As a result, I expected 

that differences in seed performance could be related to the seed content at 

the dry mature state. However, metabolic and transcriptional shifts are also 

observed during the course of seed imbibition, germination and seedling 

establishment (Silva et al. 2017; Joosen et al. 2013; Rosental et al. 2014). 

Therefore, it can be argued that insights into molecular changes occurring at 

later stages might be more closely related to differences in seed germination.  

In a broader prospect, the development of tools and methods that enable high-

throughput and high-dimensional acquisition and modelling of phenotypic data 
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will play an important role in identifying the underlying genetic structure of 

complex traits. For certain visible traits for which the phenotyping methods are 

limited, the development of ‘phenomics’ will provide a better definition of the 

investigated phenotype (Houle et al. 2010). The efforts put in developing 

imaging systems to provide automated, quantitative and non-destructive 

phenotyping for a large number of plants, can be exploited to effectively 

combine genetics and phenomics approaches (Cooper et al. 2014). 

For complex traits controlled by multiple small effect genes, the use of the final 

phenotype might limit the power of classical genetic approaches in identifying 

all marker-trait associations. In these cases sub-phenotypes can be used as 

traits and enhance the chance on finding associations. The access to the 

phenome – which refers to the ensemble of a plant’s phenotypes - will provide 

these sub-phenotypes. These combined sub-phenotypes can provide better 

understanding of functional relationship between plant physiology and 

environment and this information can be used to increase the accuracy of 

whole genome prediction methods (Technow et al. 2015). Additionally sub-

phenotypes can also be derived from molecular data, such as omics data, to 

understand the functioning of the genes underlying complex traits. Sub-

phenotypes, such as metabolic profiles, can increase the chances of finding 

marker-trait associations. This approach was taken in Chapter 4 and Chapter 5. 

Nonetheless, often knowledge about and detailed study of the function of 

individual genes will also be needed to identify the right combination of genes 

explaining specific phenotypes. 

From QTL to causal variants 

QTL analyses often result in large genomic regions, harbouring a large number 

of genes. Therefore additional strategies are needed to validate and fine map 

QTLs and to identify causal genes. In Chapter 3, I used a heterogeneous inbred 

family (HIF) approach (Tuinstra et al. 1997) to validate a high temperature QTL. 

Although this approach narrowed down the QTL, many candidate genes 

remained. For QTLs of reasonable size, gene expression data can also provide a 

fast approach for mining causal genes for QTLs (Chapter 3) (Wayne and 

McIntyre 2002). Genes in the region of the QTL can be scrutinized for 

differences in their expression level (Price 2006) (Chapter 3).  

Using these strategies, the region of a high temperature QTL identified on 

chromosome 1 was refined and the number of candidate genes was reduced to 
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10 candidate genes. PHYA was identified as a specifically interesting candidate. 

Despite several indications for the role of PHYA in mediating environmental 

cues, the role of PHYA in response to high temperature remains unclear. 

Further studies would be needed to confirm the possible role of PHYA. Gene 

expression difference is however not a pre-requisite of gene causality, since 

mutations that induce protein modifications might also result in a QTL and such 

differences are mostly not captured at the transcriptional level. Protein 

modification may also result in expression differences due to feedback 

regulation. For this reason, the functional validation of the candidate gene with 

help of genetic mutants remains the strongest evidence to prove causality. 

These mutants can be made by knocking-out genes through mutagenesis or 

lately by genome-editing technologies such as CRISPR-CAS (Bortesi and Fischer 

2015), by ectopic/over-expression approaches or ideally by expressing the gene 

variant from one parent in the background of the other parent with its own 

gene variant knocked-out. 

Generalized genetical genomics 

The emergence of the ~omics technologies has offered new venues to study 

complex traits. The concept of genetical genomics proposed by (Jansen and 

Nap 2001) is a useful approach that can effectively capture the effect of genetic 

perturbations on biological systems at the molecular level (Joosen et al. 2009). 

Initially applied to transcriptomic (Jansen and Nap 2001) and further to 

metabolomic and proteomic data sets (Keurentjes 2009), genetical genomics 

has brought new insights into the genetic basis of complex traits (Joosen et al. 

2009). Genetical genomics studies have also been successfully applied to 

enhance a direct strategy to identify causal relationships (Jimenez-Gomez et al. 

2010). 

For a comprehensive understanding of biological systems, additional 

knowledge of the effect of environmental perturbations is needed. To address 

this, Li et al. (2008b) proposed a generalized genetical genomics (GGG) design 

for cost-efficient multi-environment genetical genomics studies (Li et al. 2008b; 

Joosen et al. 2013; Kazmi et al. 2017). In this design, a RIL population is divided 

into several complementary subsets of equal size and with equal allele 

distribution (Li et al. 2008b). I used this design to split the RIL population into 

four subsets to explore the influence of the maternal environment on the 

genetics of seed performance through omics datasets and linking them to 

phenotypic differences. Although not fully explored in this thesis, another 
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advantage of the GGG design is to compare the direction of changes at the 

metabolic, transcriptomic and phenotypic levels across the conditions. For 

instance, one would expect the direction of changes across environments at 

the phenotypic level to be reflected in the corresponding datasets. Overall, I 

found that the maternal environment caused tremendous perturbations at the 

molecular level (Chapter 4, 5). In the next paragraphs, I discuss the findings of 

both approaches and the potential of combining these datasets to obtain a 

seed systems perspective. 

Re-programming of the metabolome 

In Chapter 4, large scale untargeted profiling of the dry seed primary 

metabolome was performed in a GGG design using GC-TOF-MS. In total, 172 

metabolites were identified of which 71 could be annotated. The levels of the 

metabolites were predominantly influenced by the genotypic background and 

the maternal environment. The genotype-by-environment interactions were 

further explored with condition-specific correlation networks. These networks 

revealed genetically and environmentally coordinated metabolic changes 

(Chapter 4). Specifically under the high temperature maternal environment, 

coordinated changes in metabolites associated with the tricarboxylic acid cycle 

(fumarate, succinate, citric acid) and GABA pathway (GABA, alanine), suggested 

the role of energy status of the seed metabolism in response to abiotic 

stresses. A large number of mQTLs associated with metabolite changes were 

identified under several conditions. The largest power for detecting mQTLs was 

obtained by combining the different datasets. A large number of co-locating 

mQTLs were identified pointing at genomic regions involved in the control of 

metabolites of similar metabolic function or involved in shared metabolic 

pathways. The uneven distribution of the mQTLs along the genome resulted in 

four major mQTL hotspots, indicating that the response to environmental cues 

triggers targeted genomic regions, likely master regulators, to provide a 

coordinated metabolic response.  
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Re-programming of the transcriptome 

In contrast to previous eQTL studies in Arabidopsis using microarrays, I 

performed gene expression profiling of the parental lines and the RILs using 

RNA-seq. At the transcriptional level, changes in the maternal environment 

resulted in distinct seed transcriptomes across genotypes with up to hundreds 

of genes differentially expressed ((He et al. 2016)Chapter 3, Chapter 5). I used 

the same GGG design as for the metabolomics study to investigate the genetic 

control of gene expression variation. The large number of eQTLs and the 

overall high LOD scores reflected the accuracy of RNA-seq in determining the 

expression levels of specific genes. The plasticity of the genetic control of gene 

expression in response to the maternal environment was assessed by 

comparing eQTL features across the four environments. I found that genes with 

eQTLs were highly consistent across conditions. However, distant eQTLs were 

more specific to the environment in contrast to local eQTLs that were overall 

consistent across conditions. This suggested that in response to environmental 

cues, a core set of genes is evoked by condition specific regulatory 

mechanisms. Several ‘obvious’ environment-specific eQTL hotspots were 

identified which were enriched for specific biological processes (Chapter 5). In 

this explorative study, such enrichments were rather limited and decreasing 

the stringency of the threshold for eQTL identification might provide greater 

biological insights. Nonetheless, these hotspots are also easy targets as starting 

point for further analysis which can be enhanced by the integration of different 

datasets as discussed in the next section.  

Data integration 

The functional relation between different biological layers remains the greatest 

challenge to meet the high expectations of systems approaches. In this study, 

substantial interactions between genotype and environment were observed at 

the different molecular levels. Efforts to link these datasets to the phenotype 

were made by investigating genetic correlations between traits, resulting in co-

locating QTLs. Overall, there was limited overlap between the hotspots 

observed at the molecular (Chapter4, 5) and phenotypic level (Chapter 3) 

(Figure 1). However, the functional link between the different datasets was 

suggested by several indications. In Chapter 4, the hotspot mQTL on 

chromosome 2, including an mQTL for myo-inositol, co-located with a local-

eQTL for myo-inositol phosphatase (MIPS2). In addition, I found that different 
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sets of metabolites were significantly correlated with seed phenotypic traits in 

response the different maternal environments. In Chapter 5, changes in eQTL 

profiles under HT were observed for genes involved in the TCA cycle, which 

coincided with a metabolic shift for the same pathway under the same 

conditions (Chapter 4). Data mining remains an arduous task and therefore 

there is an evident need for tools to assist this endeavour. During my PhD, the 

AraQTL workbench was developed which provides a user-friendly interface for 

the navigation through the integrated datasets (Nijveen et al. 2017). The 

development of statistical methods will enhance the integration of large-scale 

biological data sets into relevant biological networks that will eventually lead to 

new biological insights (Chapter 6). 

An instrumental tool for these gene discovery approaches is the availability of 

prior information. In Chapters 3, 4 and 5, available gene annotation was used 

to identify candidate genes from transcriptomic to metabolomics and allowed 

the identification of over-represented gene ontology terms and metabolic 

pathways. In this direction, further efforts to increase metabolite annotation 

will contribute to a better representation of underlying metabolic networks. 

Years of research on Arabidopsis have provided comprehensive gene 

annotation information that can be investigated by identifying correlation 

across the omics data types. This will certainly uncover many more links 

between the different biological levels (Figure 1). In the last decades, the 

unprecedented growth in type, size and complexity of the biological datasets 

has brought along new challenges for data integration. Adjustments to this 

data overload require the development of advanced data integration methods, 

to tackle the complexity and high dimensionality of the multi-level and multi-

environment datasets (Chapter 6). Multivariate analyses are now accessible 

and open the way towards omics data integration (Rohart et al. 2017). 
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Figure 1. Heatmap representing the frequency of QTLs identified along the genome for the 

different biological levels and under the different conditions, ST: standard, HT: high temperature, 

HL: high light, LP: low phosphate. The five vertical blocks represent the five Arabidopsis 

chromosomes. The three horizontal blocks represent eQTLs, mQTLs and phenotypic QTLs 

respectively. 

Further considerations 

Transcript and metabolite accumulation, investigated in this thesis, are not the 

only regulatory levels affecting the phenotype of an individual. The vast field of 

omics can be further explored and the combined use of structural genomic, 

proteomic, translatomics and epigenetic analyses is expected to be required to 

gain a full understanding of causes of phenotypic variation. To gain a better 

understanding of the mechanisms responsible for seed performance, the 

different regulatory levels that lead to the phenotype need to be assessed by 

integrating these ‘omics’ approaches. 

Fine-tuning environmental cues 

The response to the maternal environment can be spatially and temporally 

resolved. In this study, we investigated the effect of the maternal environment 

in dry mature seeds, reflecting changes that occurred during seed development 

in response to environmental cues. It would be interesting to dissect these 

effects, by applying the stress at different stages of seed development, to 

identify the most sensitive stages or to investigate changes in the metabolome 

and transcriptome during seed development. Additionally, since seeds are 

composed of several tissues, including maternal tissues, identifying the 

sensitivity of the separate tissues to environmental cues would provide deeper 

insight into the nature of the response. This approach can also be done at the 

cellular level. A recent study used reporter constructs and a digital single-cell 

atlas of the Arabidopsis embryonic radicle to investigate the spatial distribution 

of hormone responsive components in response to temperature variation 

(Topham et al. 2017).  
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Leveraging the power of RNA-seq data 

To take a step further in the understanding of the molecular regulation of 

complex traits, it would be interesting to further exploit the potential of the 

generated RNA-seq data. The sensitivity of the RNA-seq technology for gene 

expression quantification provides the advantage to distinguish known as well 

as new splicing forms and thus provide insights into the effect of the maternal 

environment on alternative splicing events. The splicing machinery contributes 

to the re-arrangement of introns and exons creating the opportunity for the 

mRNA transcripts to be translated into different proteins. In Arabidopsis, 

alternative splicing is widespread with 42% up to 61% of intron containing 

genes exhibiting alternative splice isoforms (Filichkin et al. 2010; Reddy et al. 

2013; Laloum et al. 2018). These splicing events represent an important post-

transcriptional regulatory mechanism in response to different environmental 

conditions (Laloum et al. 2018). In seeds, several splicing forms for genes 

involved in developmental processes have been reported. For instance, the two 

variants of PIF6 expressed during seed development showed opposite effects 

on the regulation of seed dormancy (Penfield et al. 2010). I expect that changes 

in splicing machinery would also occur in seeds in a genotype-by-environment 

fashion.  

Another application of RNA-seq is the study of allele-specific expression (ASE). 

ASE uses fully heterozygous F1 background to assess the differential transcript 

abundance in an allelic specific manner. In an eQTL approach, the local or 

distant type of regulation of the eQTL is estimated based on genomic distance 

of the detected eQTL with the physical position of the gene, while ASE can 

reveal true cis eQTLs. Several studies have reported little overlap between ASE 

and local eQTLs, suggesting that local eQTLs might actually often be local trans-

acting eQTLs (Hasin-Brumshtein et al. 2014). The differences between the two 

types of eQTL approaches might thus facilitate sorting local eQTLs into true cis 

and trans eQTLs. During my PhD study, RNA-seq data for F1 Sha x Bay-0 seed 

embryos were generated and further efforts are needed to compare the ASE 

and eQTL results.  

RNA-seq can also be used to study long non coding RNAs (lncRNAs). These 

lncRNAs have gained attention in the last years as a potential new layer of 

biological regulation. This class of transcripts has been suggested to play a role 

as regulator of transcriptional control in response to stress (Nejat and Mantri 

2018). This was recently demonstrated by a study showing that the regulation 
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of seed dormancy by FLC in response to temperature occurs through the action 

the FLC antisense lncRNA COOLAIR (Chen and Penfield 2018). Further 

investigations will contribute to our understanding of the range of actions of 

these lncRNAs. 

Post-transcriptional regulation 

Some seed mRNAs produced during seed development are stored in the dry 

seed. Upon seed imbibition, the stored mRNAs undergo translation. The 

importance of these mRNA has been demonstrated by the indispensable 

commitment of translation, while transcription can be inhibited without 

affecting germination (Rajjou et al. 2004). Since gene expression can be 

regulated at the point of mRNA translation, it would also be interesting to 

investigate the dynamics of the ‘translational status’ of the transcriptome in 

response to the different maternal environments. Translatomics studies exploit 

genome-wide polysome occupancy on the mRNA as an indicator of mRNA 

translation. In seeds, extensive translational dynamics has been observed 

during seed imbibition and seed germination in Arabidopsis (Bai et al. 2017) 

indicating another layer of regulation in respect to seed performance. Further 

insights could be gained from proteomics studies and in this respect it would 

be interesting to investigate changes at the proteome level. However, 

proteomic studies remain scarce because of the limited output and technical 

limitations as compared to the metabolomic and transcriptomic approaches. 

Using big data approaches, methods are being developed to predict protein 

structure (Soeding 2017). Protein structure often determines its function. Thus, 

the information derived from predicted protein structure could in turn be used 

for proteomic QTL mapping and complete the picture together with eQTL, 

mQTL and in the future maybe translatomics QTL data.  
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Epigenetic regulation 

The role of epigenetics in the regulation of phenotypic plasticity is attractive, 

since epigenetic modifications are more versatile than DNA sequence variation 

and thus also reversible (Kooke et al. 2015). It is known that epigenetic 

regulation proceeds during the seed life span (Wollmann and Berger 2012). In 

plants, more than 130 gene encoding proteins involved in epigenetic regulation 

have been identified (Pikaard and Mittelsten Scheid 2014). In this study, many 

of these genes (~50%) were found differentially expressed in the dry seeds of 

the parental lines, Bay-0 and Sha, grown in the different environments. This 

indicates that epigenetic regulation is also likely to take place in mediating 

environmental cues. It would thus be interesting to pursue investigations in the 

direction of the effect of environmental signals perceived during seed 

maturation on epigenetic mechanisms.  

From model to crop 

An instrumental tool for gene discovery approaches is the availability of prior 

information which facilitates the validation of the findings. In chapter 3, 4 and 

5, gene annotation enabled the identification of candidate genes and allowed 

the identification of over-represented gene ontology terms and metabolic 

pathways. In this direction, further efforts on increasing metabolite annotation 

will contribute to a better representation of underlying metabolic networks. 

Years of research on Arabidopsis have provided comprehensive gene 

annotation information which can be queried through several databases, such 

as TAIR. This provides a clear advantage for using Arabidopsis as a model for 

proof-of-concept approaches. Nonetheless, the increasing availability of 

sequenced genomes and other resources for other species will enlarge their 

toolbox. Genetical ~omics approaches have most often been applied to model 

species for which the availability of molecular and genetic data facilitates the 

approach and the validation of the findings (Rowe et al. 2008; Keurentjes et al. 

2006; Morreel et al. 2006; Keurentjes et al. 2007b; Terpstra et al. 2010). 

However, this approach is not limited to model species and has also been 

applied in several economically important species as, among others (Joosen et 

al. 2009), melon (Galpaz et al. 2018) and lettuce (Harper et al. 2012). 

Undeniably, the increasing power of next generation sequencing will unlock 

genomic sequence information for a large number of species and increase 

regulatory insights gained from identification of local and distant eQTLs. 
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Making sense of the data at the system level remains however largely driven by 

prior knowledge and thus validation of the findings through physiological and 

wet lab experiments remains essential. 

Concluding remarks 

In this thesis, I showed that the maternal environment plays an important role 

in modulating the genetic basis of seed performance. The combination of 

genetic and omics approaches provided insight into changes at the molecular 

level. The different datasets generated provide a basis for many opportunities 

for further research. The influence of the maternal environment is largely 

acknowledged, although limited studies have identified the mechanisms 

mediating these effects. The integration of the data generated in this thesis will 

provide deeper insights of the molecular networks underlying seed phenotypic 

plasticity. The last section of the discussion suggests also lines of research as 

follow-up of this work to ultimately lead to a comprehensive understanding of 

molecular mechanisms, the function of the genes and their biological role in 

the control of seed quality aspects. 
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| Summary 

Seed traits are largely influenced by the maternal environment and differences 

across genotypes in the response to the maternal environment suggest 

significant genotype-by-environment interactions. Genetic variation for such a 

response has been reported, however only a few studies have investigated the 

genetic basis of seed traits in response to the maternal environment. This 

thesis aimed at providing an overview of changes occurring at the phenotypic 

and molecular level in response to different maternal environments. This 

plasticity was investigated at the genetic level in a quantitative trait locus (QTL) 

x environment (E) approach. The results obtained, the tools developed and 

insights gained in this thesis are briefly summarized below. 

 

In Chapter 1, I provide a general introduction to this thesis and review current 

knowledge on seed quality and resources available to get a better 

understanding of the molecular networks controlling seed quality traits with an 

emphasis on the influence of the maternal environment.  

 

In Chapter 2 we used RNA-seq data from the parental lines and recombinant 

inbred lines (RILs) of an Arabidopsis Bay-0 x Sha population to identify 

sequence polymorphisms. The filtering and binning of the detected single-

nucleotide polymorphisms (SNPs) resulted in 1059 genetic markers. These 

markers were used to establish a new genetic map for the population. The new 

saturated genetic map was compared to two previous genetic maps and it 

showed an increased mapping resolution. We showed that RNA-seq data can 

effectively be used to derive new markers and at the same time for eQTL 

analysis (Chapter 5). This new map was then used in Chapter 3, 4 and 5 to 

investigate the genetic basis of dry seed phenotypic, metabolic and 

transcriptomic changes in response to different maternal environments. 

 

In Chapter 3 the performance of seeds from the parental lines and RILs grown 

under four different maternal environments (standard (ST), high temperature 

(HT), high light (HL) and low phosphate (LP)) was assessed under several 

germination conditions. Significant interactions were observed between 

genotype, maternal and germination conditions. We identified a large number 

of QTLs which displayed significant QTL-by-environment interactions. Overall, 

this study showed that the maternal environment plays an important role in 

the genetic control of seed performance. We further used heterogeneous 

inbred families (HIFs) to validate a QTL specific for the high temperature 

maternal environment. In addition, we used expression data for the parental 
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lines to mine for potential candidate genes in the region of the QTL. 

Phytochrome A (PHYA) was found specifically differentially expressed between 

Bay-0 and Sha under high temperature. Its known role in the control of 

germination and in mediating environmental cues highlighted it as an 

interesting candidate for this QTL. Using this approach we showed that 

expression data can be used to efficiently narrow down the number of 

candidate causal genes for QTLs. 

 

In the following chapters, we investigated changes in the dry seed metabolome 

and transcriptome in response to the maternal environment.  

 

In Chapter 4 we explored the dry seed primary metabolome of the parental and 

RILs in a generalized genetical genomics (GGG) design. G x E interactions were 

investigated using correlation network analysis which revealed condition 

specific and coordinated metabolic changes. These genetically driven changes 

were linked to mQTLs. A novel mQTL hotspot was found on chromosome 2. 

This hotspot indicated a high level of genetic control over carbohydrate 

metabolism, with changes in the raffinose oligosaccharides families and TCA 

cycle intermediates in the dry seed metabolism in response to stress. We 

identified MYO-INOSITOL PHOSPHATASE 2 (MIPS2) as a strong candidate causal 

gene for the QTL hotspot involved in myo-inositol synthesis. Overall, the main 

mQTL hotspots identified showed limited overlap with the clusters of 

phenotypic QTLs identified in Chapter 3. However, the maternal environment 

resulted in differences in correlation between phenotypes and metabolites, 

suggesting a relation between seed metabolome changes and phenotypic 

expression in response to the maternal environment. 

 

Using the same GGG design as in Chapter 4, the transcriptome profiling of the 

mature dry seeds of parental lines and RILs was performed by RNA-seq. The 

further analysis of this RNA-seq data is described in Chapter 5. Significant G x E 

interaction was observed for the transcripts in the parental lines. eQTL analysis 

was performed on each RIL subsets defined by the GGG design. The eQTL 

features were compared across conditions and we found that local eQTLs were 

largely consistent, whereas distant eQTLs were more versatile across 

conditions. We noted that the eQTLs, in general, were identified for the same 

set of genes across conditions. In addition we found that many eQTL hotspots 

were specific for a certain condition. GO enrichment analysis for the set of 
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genes with an distant eQTL within these hotspots revealed over-represented 

biological processes, which could be linked to seed phenotypic differences.  

 

In Chapter 6, I provide a survey of the literature and discuss the use of co-

expression networks as tool to complement genomics studies and for faster 

discovery of genetic variants. The application of this method is promising for 

the integration and visualization of high-dimensional datasets as the one 

generated in this thesis. 

Finally, in Chapter 7, I integrate and discuss the findings of this research with a 

particular emphasis on the influence of the maternal environment, the 

mechanisms and implications. I also discuss new possibilities for research as 

well as the use of additional data to get a more comprehensive understanding 

of molecular mechanisms underlying seed traits plasticity in the future.
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