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Summary

Over the last two decades, terrestrial light detection and ranging (LiDAR), also known

as terrestrial laser scanning (TLS) has become a valuable tool in assessing the woody

structure of trees, in a method that is accurate, non-destructive, and replicable. This

technique provides the ability to scan an area, and utilizes specialized software to create

highly detailed 3D point cloud representations of its surroundings. Although the original

usage of LiDAR was for precision survey applications, researchers have begun to apply

LiDAR to forest research. Tree metrics can be extracted from TLS tree point clouds,

and in combination with structure modelling, can be used to extract tree volume, above-

ground biomass (AGB), growth, species, and to understand ecological questions such as

tree mechanics, branching architecture, and surface area. TLS can provide a robust and

rapid assessment of tree characteristics. These characteristics will improve current global

efforts to measure forest carbon emissions, understand their uncertainties, and provide

new insight into tropical forest ecology. Thus, the main objective of this PhD is to explore

the use of 3D models from terrestrial laser scanning point clouds to estimate biomass and

architecture of tropical trees. TLS-derived biomass and TLS-derived architecture can

potentially be used to generate significant quality data for a better understanding of

ecological challenges in tropical forests.

In this thesis, a dataset of forest inventory with TLS point clouds and destructive tree

harvesting were created from three tropical regions: Indonesia, Guyana, and Peru. A

total of 1858 trees were traditionally inventoried, 135 trees were TLS scanned, and 55

trees were destructively harvested. In this thesis, procedures to estimate tree metrics

such as tree height (H), diameter at breast height (D), crown diameter (CD), and the

length and diameter of individual branches were developed using 3D point clouds and 3D

modelling. From these tree metrics, I infer AGB, develop allometric models, and estimate

metabolic plant scaling of individual tropical trees. All these metrics are validated against

a traditional forest inventory data and destructively harvested trees.

Chapter 2 presents a procedure to estimate tree volume and quantify AGB for large

tropical trees based on estimates of tree volume and basic wood density. The accurate

estimation of AGB of large tropical trees (diameter > 70 cm) is particularly relevant due

to their major influence on tropical forest AGB variation. Nevertheless, current allometric
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models have large uncertainties for large tree AGB, partly due to the relative lack of large

trees in the empirical datasets used to create them. The key result of this chapter is

that TLS and 3D modelling are able to provide individual large tree volume and AGB

estimates that are less likely to be biased by tree size or structural irregularities, and are

more accurate than allometric models.

Chapter 3 focuses on the development of accurate local allometric models to estimate tree

AGB in Guyana based solely on TLS-based tree metrics (H, CD, and D) and validated

against destructive measurements. Current tropical forest AGB estimates typically rely on

pantropical allometric models that are developed with relatively few large trees. This leads

to large uncertainties with increasing tree size and often results in an underestimation of

AGB for large trees. I showed in Chapter 2 that AGB of individual large trees can be

estimated regardless of their size and architecture. This chapter evaluates the performance

of my local allometric models against existing pantropical models and evidenced that

inclusion of TLS-based metrics to build allometric models provides as good as, or even

better, AGB estimates than current pantropical models.

Chapter 4 provides an insight into the architecture and branching structure of tropical

trees. In Chapter 2, I demonstrated the potential of TLS to characterize woody tree

structure as a function of tree volume, but little is known regarding their detailed ar-

chitecture. Previous studies have quantitatively described tree architectural traits, but

they are limited to the intensity of quantifying tree structure in-situ with enough detail.

Here, I analysed the length and diameter of individual branches, and compared them to

reference measurements. I demonstrated that basic tree architecture parameters could

be reconstructed from large branches (> 40 cm diameter) with sufficient accuracy. I also

discuss the limitations found when modelling small branches and how future studies could

use my results as a basis for understanding tree architecture.

Chapter 5 describes an alternative approach to estimating metabolic scaling exponents

using the branching architecture derived from TLS point clouds. This approach does

not rely on destructive sampling and can help to increase data collection. A theory on

metabolic scaling, the West, Brown & Enquist (WBE) theory, suggests that metabolic

rate and other biological functions have their origins in an optimal branching system

network (among other assumptions). This chapter demonstrates that architecture-based

metabolic scaling can be estimated for big branches of tropical trees with some limitations

and provides an alternative method that can be implemented for large-scale assessments

and provides better understanding of metabolic scaling.

The results from this thesis provide a scientific contribution to the current development

of new methods using terrestrial LiDAR and 3D modelling in tropical forests. The results

can potentially be used to generate significant quality data for a better understanding

of ecological challenges in tropical forests. I encourage further testing of my work using

more samples including other types of forests to reduce inherent uncertainties.



Resumen

Por más de dos décadas, “terrestrial light detection and ranging” o LiDAR (por su

acrónimo en inglés), conocido también como escáner de laser terrestre (TLS) se ha con-

vertido en una herramienta valiosa en la evaluación de la estructura leñosa de árboles

de una manera precisa, no destructiva y replicable. Esta técnica me permite capturar

el entorno que escanea y utiliza software especializado para crear una representación en

tres dimensiones muy detallada del mismo entorno en forma de una nube de puntos.

Aunque el uso original del LiDAR fue para topograf́ıa de precisión, investigadores em-

pezaron a utilizar LiDAR en la investigación forestal. De esta nube de puntos, puedo

extraer métricas de árboles y, en combinación con modelamiento de estructuras, inferir el

volumen del árbol, la biomasa aérea (AGB), el crecimiento del árbol, la identificación de

especies y comprender los retos ecológicos como la mecánica de árboles, la arquitectura de

ramas y el área de la superficie leñosa. El TLS puede proveer de una evaluación robusta

y rápida de las caracteŕısticas del árbol, lo que mejorará los presentes esfuerzos globales

para medir las emisiones de carbono de los bosques, sus incertidumbres y proporcionar

nuevos conocimientos sobre la ecoloǵıa de los bosques tropicales. Por lo tanto, el objetivo

principal de esta tesis doctoral es explorar el uso de modelos tridimensionales a partir

de nubes de puntos del TLS para estimar la biomasa y la arquitectura de árboles trop-

icales. La biomasa y arquitectura derivada del TLS se podrán utilizar potencialmente

para generar suficientes datos cuantitativos para una mejor comprensión de los desaf́ıos

ecológicos en los bosques tropicales.

Para esta tesis, fue elaborado un repositorio de inventario forestal que contiene nubes de

puntos de TLS y cosecha destructiva de árboles de tres regiones tropicales: Indonesia,

Guyana y Perú. Un total de 1858 árboles se inventariaron, 135 árboles se escanearon

con el TLS y 55 árboles se talaron. En esta tesis, usé la nube de puntos para desarrollar

métodos para estimar las medidas de árboles, como la altura (H), el diámetro a la altura

del pecho (D), el diámetro de la corona (CD), la longitud y el diámetro de ramas indi-

viduales y el volumen de árboles de manera individual. A partir de estas métricas, puedo

inferir biomasa aérea (AGB), modelos alométricos y calcular el escalamiento metabólico de

plantas en árboles tropicales de manera individual. Todas estas métricas están validadas

con el inventario forestal tradicional y los árboles talados.
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El Caṕıtulo 2 presenta un procedimiento para estimar el volumen de los árboles y cuan-

tificar el AGB de árboles tropicales grandes en base a estimaciones de volúmenes de

árboles y la densidad de madera espećıfica. La estimación precisa del AGB de árboles

tropicales grandes (con diámetro > 70 cm) es importante debido a su gran influencia en la

variación del AGB en bosques tropicales. Sin embargo, los modelos alométricos actuales

presentan grandes incertidumbres en la estimaćıón del AGB en árboles grandes, en parte

debido a la relativa falta de información de árboles grandes en los datos emṕıricos uti-

lizados para crearlos. El resultado clave de este caṕıtulo es que el TLS y el modelado en

3D pueden proporcionar estimaciones individuales de volúmenes de los árboles grandes y

que el AGB estimado tiene menos probabilidades de ser sesgadas por el tamaño del árbol

o irregularidades estructurales y ser más precisas que los modelos alométricos.

El Caṕıtulo 3 se centra en el desarrollo de modelos alométricos precisos a nivel local

para estimar el AGB de árboles en Guyana basándose únicamente en las mediciones de

los árboles escaneados con el TLS (H, CD, y D) y validado con las mediciones de los

árboles talados. Las estimaciones actuales del AGB en bosques tropicales generalmente

se basan en modelos alométricos pantropicales que se desarrollan con relativamente pocos

árboles grandes. Esto conduce a grandes incertidumbres con el aumento del tamaño de los

árboles y, a menudo, da como resultado una subestimación del AGB en árboles grandes.

Demostré en el Caṕıtulo 2 que el AGB de árboles grandes se puede estimar independi-

entemente de su tamaño y arquitectura. Este caṕıtulo evaluó el rendimiento de nuestros

modelos alométricos locales frente a los modelos pantrópicales existentes y demostró que

la inclusión de métricas basadas en TLS para construir modelos alométricos proporciona

tan buenas, e incluso mejores, estimaciones del AGB que los modelos pantrópicos ac-

tuales.

El Caṕıtulo 4 brinda una idea de la arquitectura y la estructura de las ramas en árboles

tropicales. En el Caṕıtulo 2 demostré el potencial del TLS para caracterizar la estruc-

tura de los árboles leñosos en función del volumen del árbol, pero poco se sabe sobre

su detallada arquitectura. Estudios previos han descrito cuantitativamente los rasgos

arquitectónicos de los árboles, pero se encuentran limitados debido a la dificultad en la

cuantificación de la estructura del árbol in-situ con suficiente detalle. Aqúı, analicé la

longitud y el diámetro de ramas individuales y las comparé con medidas de referencia. De-

mostré que los parámetros básicos de arquitectura de árbol se pueden reconstruir a partir

de ramas grandes (con diámetro > 40 cm) con suficiente precisión. También discut́ı las

limitaciones encontradas al modelar ramas pequeñas y cómo los futuros estudios podŕıan

usar nuestros resultados como base para entender la arquitectura de los árboles.

El Caṕıtulo 5 describe un enfoque alternativo para estimar los exponentes de escala

metabólica utilizando la arquitectura de ramas derivadas de las nubes de puntos TLS.

Este enfoque no se basa en el muestreo destructivo y puede ayudar a aumentar los datos

recopilados. Una teoŕıa sobre la escala metabólica, la teoŕıa de West, Brown & Enquist
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(WBE) sugiere que la tasa metabólica y otras funciones biológicas tienen su origen en un

óptimo sistema de ramificaciones (entre otras suposiciones). Este caṕıtulo demuestra que

la escala metabólica basada en la arquitectura puede estimarse para las grandes ramas de

árboles tropicales con algunas limitaciones. Aunque nuestra muestra fue pequeña, pro-

porciona un método alternativo que puede implementarse para evaluaciones a gran escala

y proporciona una mejor comprensión del metabolismo de escala.

Los resultados obtenidos en esta tesis doctoral proveen una contribución cient́ıfica al

presente desarrollo de nuevos métodos usando el LiDAR terrestre y el modelamiento en

3D en bosques tropicales. Los resultados de esta tesis doctoral pueden potencialmente

ser usados para generar información con suficiente calidad que puede ser usada para el

mejor entendimiento de los retos ecológicos en bosques tropicales. Aliento que se realicen

más pruebas de mi trabajo con más muestras en otros tipos de bosques para reducir la

incertidumbre inherente del análisis.
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Chapter 1

Introduction



2 Introduction

1.1 Background

Tropical forests cover only 7 % of Earth’s land surface (Zuidema et al., 2013); yet, they

are one of the most biologically diverse ecosystems on Earth (Lewis et al., 2009). Trop-

ical forests play an important role in carbon exchange with the Earth’s atmosphere via

photosynthesis, growth, respiration, death, and decay (Goodman & Herold, 2014). Trees

use the energy from the sun and water from the soil to convert carbon dioxide (CO2)

from the atmosphere into sugars, water, and oxygen via photosynthesis. These sugars

are used by trees for respiration or are converted to more complex molecules. These

complex molecules are used later for the growth of woody tissues, such as leaves, stem

or roots, often referred to as “biomass”. Trees also respire, releasing CO2. This process

is inverse to photosynthesis and; while photosynthesis occurs when specific conditions

are satisfied (enough light and soil moisture), respiration always occurs. Photosynthesis

usually exceeds respiration, making trees a natural net carbon sink (Goodman & Herold,

2014).

Photosynthesis and respiration are also influenced by the three-dimensional organization

of the tree (Rosell et al., 2009; Malhi et al., 2018). The architecture form of a tree is

a combination of its genetics and its adaptive response to its environment (Malhi et al.,

2018), and can lead to changes in carbon and water storage within the tree. The combined

structure of the trees within a forest influence the temporal distribution of light in the

stand, affecting ecological processes within the tree (Seidel et al., 2011) and with their

environment. Metabolic scaling theories suggest general underlying principles that govern

and link these processes (West et al., 1997; West, 1999a). Therefore, an accurate descrip-

tion of the architecture of trees is key for understanding these processes (Kempes et al.,

2011; Malhi et al., 2018) and the magnitude of carbon stored (Saatchi et al., 2011).

Tropical trees in forests serve as a global carbon sink, accounting for 55 % of global stocks

in forests (Doetterl et al., 2015). When forests are cleared or degraded, their carbon stocks

are released as CO2 to the atmosphere (Gibbs et al., 2007). Tropical trees deforestation

accounts for 6 % to 17 % of global anthropogenic CO2 (Baccini et al., 2012). The protection

of current carbon stocks contained in tropical forests and its potential as future carbon

sink made their preservation a global policy priority (Mitchard et al., 2014). Mechanisms

like Reducing Emission from Deforestation or Degradation (REDD) are a step forward

towards the development of a mechanism to reduce emissions from deforestation and forest

degradation (De Sy et al., 2012). For that, data and methodologies to estimate greenhouse

gas are key for REDD (De Sy et al., 2012) and considerable efforts have been made to

quantify accurately the AGB in tropical forests (Saatchi et al., 2011; Baccini et al., 2012;

Avitabile et al., 2016). Nevertheless, large uncertainties remain in the quantification of

AGB at different spatial scales (Baccini et al., 2012; Molto et al., 2013).
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1.2 How do we measure trees?

To understand the role of tropical forests in global carbon storage, assessing deforestation

emissions, land-use planning, and its response to climate change, an accurate quantifica-

tion of the carbon stocks is needed (Zhao et al., 2012; Mitchard et al., 2014). Currently,

carbon stocks are not measured directly, but derived from AGB estimates in forest inven-

tory plots (without accounting belowground biomass due to the difficulty of quantifying

it in the field; Djomo & Chimi, 2017) or from remote sensing estimates calibrated with

plot-based AGB (Gibbs et al., 2007). Allometric models are regression models that con-

vert the tree parameters from the forest inventory plots into an estimate of AGB (Chave

et al., 2005; Clark & Kellner, 2012).

The relevance of an allometric model relies on the empirical data used for its development,

as it can potentially be the biggest source of uncertainty (Chave et al., 2004). Measure-

ments are limited by the method available and the efficiency with which it can be taken

(Newnham et al., 2015). Thus, most allometric models are based on easy-to-measure at-

tributes, such as diameter at breast height (D) and wood density (WD). Although recent

studies have shown the importance of other tree attributes, such as height (H; Feldpausch

et al., 2012) and crown diameter (CD; Goodman et al., 2014); these attributes are not

widely used due to the difficulty to measure them in the field.

Figure 1.1: Direct measurement of tree stem in Indonesia (left), tree destructive sampling

in Guyana (centre), and weighing fresh biomass in Indonesia (right).

For other tree attributes, such as volume, canopy, or whole tree structure, there is no direct

measurement. Currently, volume assessments are mainly based on destructive sampling

(Thies et al., 2004; Saatchi et al., 2011). Destructive sampling is time-consuming, requires

heavy manual labour (Figure 1.1), and requires a qualified team to sample large quantities

(Henning & Radtke, 2006). Moreover, some tree species cannot be destructively sampled,

because it is illegal, costly or non-practical in-situ. Canopy assessments are very difficult

because sampling the spatial characteristic of the canopy cannot be done with direct

measurements nor with indirect approaches (Seidel et al., 2011). Finally, to determine

tree structure, destructive sampling is not a practical approach. Destructive sampling
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implies the modification of branch and crown structure due to the felling process, thus

detailed measurements of tree structure could be compromised.

1.3 Terrestrial laser scanning and 3D modelling of

trees

Terrestrial Light Detection and Ranging (LiDAR), also known as terrestrial laser scan-

ning (TLS) is a non-destructive, remote sensing technique that measures distances (Rosell

et al., 2009). This active remote sensing technique is based on the emission and reception

of a monospectral laser beam pulse, mostly in the near-infrared or visible part of the spec-

trum (Grau et al., 2017; Malhi et al., 2018). Hundreds of thousands of pulses are being

emitted per second and propagated hundreds of meters from the instrument. When the

pulse hits a target and is reflected back to the instrument, its sensors record the reflected

signal and the processor calculates the distance between the target and the instrument

in a three-dimensional space (Malhi et al., 2018). All TLS datasets in this thesis were

acquired using a RIEGL VZ-400® terrestrial LiDAR (RIEGL Laser Measurements Sys-

tems, GmbH, Horn, Austria; Figure 1.2). This scanner is a discrete multiple-return laser

scanner with a 1550 nm wavelength beam. The scan range is 360° in the azimuth and

100° in the zenith.

Figure 1.2: RIEGL VZ-400 terrestrial LiDAR mounted on a tripod surrounded by 5 cm

cylindrical reflectors in Madre de Dios, Peru.
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The TLS instruments were originally developed for urban and mining surveys, where a

precise mapping of a target or an area is needed (Malhi et al., 2018). With time, TLS

instruments became more robust, lighter, and smaller with improved range precision and

accuracy. Moreover, with a wide range of commercial TLS available, instruments became

cheaper, which facilitated the adoption of TLS by foresters, remote sensing scientists, and

ecologists as part of their research (Malhi et al., 2018; Wilkes et al., 2017; Disney et al.,

2018). TLS has become an automated, accurate, non-invasive, objective, and replicable

option to assess forest structure, and eventually, individual tree stands (Calders et al.,

2015b; Newnham et al., 2015). In the field, a forest plot can be scanned from multiple

locations to acquire point clouds that can be co-registered into a highly detailed 3D

point cloud of the instrument’s surrounding using specialized software (Wilkes et al.,

2017).

A 3D point cloud is a high dense uninterpreted collection of points and structural at-

tributes (either at plot-level or tree-level) that cannot be directly extracted (Bremer et al.,

2013). Several approaches initially aimed to extract plot-level attributes (Côté et al., 2012;

van Leeuwen et al., 2011; Dassot et al., 2011; Newnham et al., 2015). At tree-level, several

approaches were developed to reconstruct the detailed structure of trees (Pfeifer et al.,

2004; Thies et al., 2004; Dassot et al., 2012; Raumonen et al., 2013; Hackenberg et al.,

2015a). Among these, TreeQSM - a 3D quantitative structure model (QSM) reconstruc-

tion method (Raumonen et al., 2013; Åkerblom, 2017) - has been valued as a promising

tool for topological and structural assessment of individual trees (Calders et al., 2015b;

Disney et al., 2018).

TreeQSM is a quick and automatic approach to reconstruct tree trunks and branches

from point clouds and record topological branching structures (Raumonen et al., 2013).

TreeQSM fits multiple cylinders of varying length and diameter to an individual tree

point cloud (Figures 1.3a and 1.3b) and reconstructs the whole tree topological structure

and shape (Figure 1.3c). From these cylinders, one is able to calculate surface, volume,

and reconstruct topology. The output, a QSM, is a hierarchical collection of enclosed

connected cylinders that closely resemble the tree point cloud it was based on. TLS,

in combination with TreeQSM, evidenced to be an accurate method to estimate tree

attributes, such as diameter at breast height (Burt et al., 2013), tree height (Krooks

et al., 2014), and indirect parameters such as stem volume, (Burt et al., 2013; Saarinen

et al., 2017) and AGB (Calders et al., 2015b; Stovall et al., 2017). Other studies focused

on root reconstruction, (Smith et al., 2014a; Paynter et al., 2016), tree species recognition,

(Åkerblom et al., 2017), AGB comparison (Kaasalainen et al., 2014), and canopy change

if the same area is scanned in different period (Olivier et al., 2017).
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Figure 1.3: Parkia pendula tree scanned in Guyana. Tree point cloud from (a) side view,

(b) bottom view and coloured by height from bottom (black) to top (light grey), and (c) Top

view of TreeQSM modelled after the point cloud and coloured by branching order from low

(blue) to high (red).

1.4 Research gaps

The approaches for estimating tree attributes mentioned above were mostly based on

temperate trees in leafless conditions and comparative low canopy height. Few publica-

tions have been published reviewing their initial experience with TLS in tropical forests

and discussing the opportunities and challenges of bringing TLS instruments into tropical

and temperate forests (Wilkes et al., 2017; Rahman et al., 2017; Momo Takoudjou et al.,

2018; Disney et al., 2018; Malhi et al., 2018). Nevertheless, research regarding estimating

tree attributes such as diameter, height, crown diameter, and tree volume from tree point

clouds of tropical trees remains very limited.

TLS, along with 3D modelling, can be useful tools in estimating these tree attributes in an

objective and replicable approach without the need for destructive sampling. These TLS-

derived attributes would increase the present collection of available tropical tree datasets.

Moreover, TLS and 3D models can be helpful to estimate AGB from large trees (D >

70 cm). As of 2014, only 7 % of the total available pantropical biomass datasets were

related to large trees (Chave et al., 2014). Despite studies indicating that AGB estimates

vary greatly with tree size (Goodman et al., 2014; Calders et al., 2015b); there is lack of

harvested data due to the difficulty of harvesting large trees.

Scanning in tropical environments is challenging (Wilkes et al., 2017) and the information

regarding an efficient scanning methodology is limited. The experience and knowledge

about the potential of scanning with TLS and its limitations has improved with the

efforts from the “Terrestrial LiDAR Scanning Research Coordination Network - TLSRCN”

(http://tlsrcn.bu.edu) to connect TLS researchers. There are many unknowns about

TLS being used in the tropics and the methods used to estimate tropical tree parameters

http://tlsrcn.bu.edu
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remain open among the TLS-related scientific community.

1.5 Research objective

The main objective of this thesis is to explore the use of 3D models from TLS point

clouds to estimate above-ground biomass and architecture of tropical trees. TLS-derived

AGB and TLS-derived architecture can potentially be used to generate significant quality

data for a better understanding of ecological challenges in tropical forests. For that, I

developed procedures to estimate accurate tropical tree information using terrestrial laser

scanning. To achieve this objective, I asked the following research questions:

1. How accurately can above-ground biomass of tropical trees be estimated from TLS

point clouds?

2. What is the capability of non-destructive TLS-based methods to derive allometric

models for tropical trees?

3. Can the branching architecture of tropical trees be linked to 3D models using their

topological features?

4. Does TLS-based branching architecture relate to metabolic scaling in tropical trees?

1.6 Thesis overview and fieldwork campaigns

This thesis consists of six chapters, including this introductory chapter. Chapters 2 to 5

address the research questions presented in section 1.5 and the outline of the chapters is

presented in Figure 1.4.

Chapter 2 introduces an approach to estimate tree volume and quantify AGB for large

tropical trees based on estimates of tree volume and basic wood density in Peru, Indonesia,

and Guyana. I estimated AGB using tree point clouds from TLS and 3D modelling. This

approach was tested on 20 tropical trees and validated with nine trees from three different

regions (Research Question 1).

Chapter 3 adapts the methodology from Chapter 2 to estimate AGB from point clouds.

With tree metrics (D, H, and CD) estimated from 72 trees point clouds; five allometric

models are developed without any prior tree information. The AGB estimated from the

TLS-based allometric models are compared against AGB from 26 destructively harvested

trees and pantropical biomass models. This chapter is of relevance because allometric

models can be built from terrestrial LiDAR point clouds without the need of destructively

harvesting any tree (Research Question 2).
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Figure 1.4: Flowchart for the chapters of this thesis in relation to the main objectives and

the research questions (RQ).

Chapter 4 investigates the architecture and branching structure of tropical trees. Chap-

ters 2 and 3 demonstrated the potential of TLS to characterize tree structure as a function

of tree volume, but not much is known regarding their detailed architecture. This chap-

ter presents a method to estimate basic branching architecture metrics, such as branch

diameter, branch length, and branching order from TLS point clouds. Then, the TLS-

derived metrics were compared against 279 branches from 10 destructively harvested trees

(Research Question 3).

Chapter 5 describes an alternative approach to estimate metabolic scaling exponents

using the branching architecture derived from TLS point clouds. A theory on metabolic

scaling, the West, Brown & Enquist (WBE) theory suggests that metabolic rate and other

biological functions have their origins on an optimal external branching network. I used

the radius and length of TLS-derived measurements from Chapter 4 to estimate radius
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and length scaling exponents and from these exponents, derived metabolic scaling rate. To

validate these, I compared the TLS-derived scaling exponents against scaling exponents

from field measurements and theoretical values (Research Question 4). This chapter is

of relevance because estimating metabolic scaling exponents is key to understand the

ecological processes of plant metabolism.

Chapter 6 presents the major findings of this thesis, addresses the findings in relation

to the research questions above, proposes a reflection of this thesis, and an outlook of

present and future developments.

My research involved four TLS fieldwork campaigns across three tropical regions (Figure

1.5; Wilkes et al., 2017). The first one, in the southwest region of Madre de Dios in

Peru is featured in Chapter 2. This area is a lowland tropical moist terra firme forest.

Here, I inventoried a total of 763 trees and destructively harvested 9 trees. The second

fieldwork campaign, also featured in Chapter 2, is located in a peat swamp forest in

central Kalimantan, Indonesia. Here, I inventoried 381 trees and destructively harvested

10 trees. The third fieldwork campaign is located in a lowland tropical moist forest in

central Guyana. In this fieldwork campaign, I inventoried 608 trees and destructively

harvested 10 trees. This fieldwork campaign is featured in Chapters 2, 4 and 5. The

last study area, on which Chapter 3 is based, was located also in Guyana, in the East

Berbice-Corentyne Region. In this mixture of white sand and mixed forest, I inventoried

and scanned 106 trees, and destructively harvested 26 trees. Specific characteristics on

the study sites are explained further in their respective chapters.

Figure 1.5: Location of TLS fieldwork campaigns for this thesis.



Tambopata National Reserve, Peru 



Chapter 2

Estimation of above-ground biomass

of large tropical trees with

Terrestrial LiDAR

This chapter is based on:

Gonzalez de Tanago, J., Lau, A., Bartholomeus, H., Herold, M., Avitabile, V., Raumo-

nen, P., Martius, C., Goodman, R. C., Disney, M., Manuri, S., Burt, A. and Calders,

K. Estimation of above-ground biomass of large tropical trees with Terrestrial LiDAR.

Methods in Ecology and Evolution. 2017, 1-12. DOI: 10.1111/2041-210X.12904.

Supplementary materials to this chapter can be found in the online publication.
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Abstract

Tropical forest biomass is a crucial component of global carbon emission estimations.

However, calibration and validation of such estimates require accurate and effective meth-

ods to estimate in-situ above-ground biomass (AGB). Present methods rely on allometric

models that are uncertain for large tropical trees. Terrestrial laser scanning (TLS) tree

modelling has demonstrated to be more accurate than allometric models to infer forest

AGB in temperate forest. Nevertheless, applying TLS methods on tropical large trees

is still challenging. We propose a method to estimate AGB of large tropical trees by

3D tree modelling of TLS point clouds. Twenty-nine plots were scanned with a TLS

in three study sites (Peru, Indonesia and Guyana). We identified the largest tree per

plot (mean diameter of 73.5 cm, extracted its point cloud and calculated its volume by

3D modelling its structure using quantitative structure models (QSM) and converted to

AGB using species-specific wood density. We also estimated AGB using pantropical and

local allometric models. To assess the accuracy of our and allometric methods, we har-

vested the trees and took destructive measurements. AGB estimates by the TLS-QSM

method showed the best agreement in comparison to destructive harvest measurements

(28.37 %) CV-RMSE and Concordance Correlation Coefficient (CCC) of 0.95, outper-

forming the pantropical allometric models tested (35.6 % to 54.95 % CV-RMSE and CCC

of 0.89 to 0.73). TLS-QSM showed also the lowest bias (overall underestimation of 3.7 %)

and stability across tree size range, contrasting with the allometric models that showed

a larger bias (overall underestimation ranging 15.2 % to 35.7 %) systematic linearly in-

creasing with tree size. The TLS-QSM method also provided accurate tree wood volume

estimates (CV RMSE of 23.7 %) with no systematic bias regardless of the tree structural

characteristics. Our TLS-QSM method accounts for individual tree biophysical structure

more effectively than allometric models, providing more accurate and less biased AGB es-

timates for large tropical trees, independently of their morphology. This non-destructive

method can be further used for testing and calibrating new allometric models, reduc-

ing the current under-representation of large trees in, and enhancing present and past

estimates of forest biomass and carbon emissions from tropical forests.
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2.1 Introduction

The above-ground carbon in tropical forests represents 40 % of the total carbon stocked

in forests globally (Gibbs et al., 2007). However, the estimation of tropical forest carbon

stocks presents large uncertainties (Mitchard et al., 2013, 2014). Forest carbon stocks

are not measured directly, but derived either from interpolation or extrapolation of point

estimates of the above-ground biomass (AGB) contained in forest inventory plots, or from

measurements of remote sensing proxies calibrated with plot-based AGB estimates (Gibbs

et al., 2007).

The only way to truly and directly measure forest AGB implies cutting and weighing the

mass of all trees in the plot, which is costly and causes a negative impact, and is thus sel-

dom executed (Clark & Kellner, 2012). Instead, plot AGB is estimated from aggregation

of individual tree AGB estimates. These tree AGB estimates are indirectly derived from

easily measured tree parameters (diameter at breast height (D), height and wood density

derived from tree species identification) by means of allometric models, which relate these

tree parameters with real tree AGB measured in destructive sampling studies (Chave

et al., 2005). This indirect estimation approach introduces an error propagation chain.

The biggest source of error is derived from the allometric models, hence its appropriate

selection is the most important aspect to improve the accuracy of AGB estimates (Molto

et al., 2013).

The uncertainty in the tree AGB estimation is even greater for large tropical trees (D

> 70 cm because AGB in large trees varies more than in small trees (Chave et al., 2005;

Slik et al., 2013; Goodman et al., 2014; Ploton et al., 2016), and due to the presence

of buttresses is prone to larger measurement error (Chave et al., 2014). Moreover, it is

particularly relevant to accurately estimate AGB of large trees because of their major

influence on the tropical forest AGB variation (Stegen et al., 2011; Slik et al., 2013).

As an alternative, remote sensing systems can be used to estimate tropical forest carbon

stocks. One of the most promising remote sensing approaches to estimate forest AGB

is via light detection and ranging (LiDAR), either via spaceborne platforms (e.g. ICE-

Sat), airborne laser scanning (ALS) or terrestrial laser scanning (TLS). Laser pulses from

LiDAR instruments can penetrate the forest canopy providing good estimates of forest

canopy heights and structure, from which AGB along the vertical profile and canopy cover

can be estimated (Goetz & Dubayah, 2011).

TLS data provide the highest level of three-dimensional (3D) detail of forest and tree

structure (Newnham et al., 2015). Currently, TLS data are being used to model 3D

structure of individual trees allowing direct measurements of forest and tree structural

parameters such as D (Bauwens et al., 2016), tree height (Király & Brolly, 2007), crown

dimensions (Holopainen et al., 2011) and individual branches (Raumonen et al., 2011).
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Several review articles provide additional information about the characteristics of TLS

and its use for forestry surveying (Newnham et al., 2015).

Several approaches estimate forest AGB by exploiting the capability of TLS data to

characterize forest structure at tree level. A simple approach is to measure tree structural

parameters from a TLS 3D point cloud and apply allometric models to relate the measured

parameters with AGB (e.g. Yao et al. 2011). However, this method still relies on allometric

models. A different kind of approach has been developed to reconstruct the complete

3D tree architecture from TLS data rather than a single or few structural parameters.

Quantitative structure models (QSMs; Raumonen et al., 2013; Delagrange et al., 2014;

Hackenberg et al., 2015b) are architectural tree models reconstructed from the TLS point

cloud of individual trees and allow volume measurements. The estimated tree volume is

converted to tree AGB by multiplying it by the specific wood density (Hackenberg et al.,

2015b; Calders et al., 2015b). Thus, this method estimates AGB based on the biophysical

modelling of specific tree structure rather than the allometric models which are based

on empirical relationships from a sample of trees and rely on a limited number of tree

structural parameters.

The QSM reconstruction method developed by Raumonen et al. (2013) has been applied

for wood volume estimation and AGB estimation in boreal and temperate forest (Raumo-

nen et al., 2015) and in more structurally complex tropical forests in Gabon (Disney et al.,

2014). AGB estimates derived from this approach in Australia showed a higher agree-

ment with reference values from destructive sampling (CV RMSE = 16.1 %) compared

to AGB estimates derived by allometric models (CV RMSE = 46.2 % to 57 %; Calders

et al., 2015b). However, the accuracy of AGB estimates in tropical forest trees has not

been investigated yet with reference data.

Several challenges arise when one wants to estimate tree AGB in a tropical forest using

QSM. First, for very large and complex trees there is a lack of reference data to validate

the 3D reconstruction models from TLS. Further, the structural complexity of a tropical

forest can potentially have a large influence on acquired TLS data. This requires careful

design of an appropriate scanning pattern to diminish vegetation occlusion and to allow

accurate reconstruction of the 3D structure of trees (Wilkes et al., 2017).

Here, we assess the potential and accuracy of volume reconstruction using QSMs for

estimating AGB of large tropical forest trees. For this, 29 plots were scanned with TLS and

one large tree per plot was destructively sampled afterwards. With the TLS data acquired,

we (i) optimized the QSM tree volume reconstruction method based on a subsample of

nine of the 29 trees. After each tree was scanned and harvested, we (ii) performed in situ

destructive measurements to independently estimate tree volume for comparison with

model estimates and calculate their accuracy. Finally, using the independent tree dataset

(remaining 20 trees non-used in point i) we (iii) compared the accuracy of the AGB

estimates based on QSMs with the accuracy of the AGB estimates based on pantropical
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and local allometric models.

2.2 Material and methods

2.2.1 Study area

We acquired field data from 29 plots across three tropical forest sites in: Peru, Indonesia

and Guyana. Table 2.1 shows the description of each site.

Table 2.1: Study sites description.

Site

Description

Peruvian

Site

Indonesian

Site

Guyanese

Site

Number of plots 9 10 10

Forest type
Lowland tropical moist

terra firme forest
Peat swamp forest

Lowland tropical

moist forest

Region
Madre de Dios.

South western Amazon

Mentaya River

(Central Kalimantan)

Vaitarna Holding’s

concession

Lat/Long −12.27 lat, −69.10 long −2.41 lat, 113.13 long 6.04 lat, −58.70 long

Mean elevation 312 masl 22 masl 117 masl

Mean yearly rainfalla 2074 mm 2616 mm 2195 mm

Mean stem density

(trees with density >10cm)
565 stem ha−1 1314 stem ha−1 516 stem ha−1

Mean D harvested tree

(standard deviation)
90.0 cm (22.2 cm) 58.4 cm (18.2 cm) 73.7 cm (12.0 cm)

afrom Muñoz & Grieser (2006)

2.2.2 TLS sampling and field data collection

Plots were established around a tree to be harvested after the laser scanning. Plot spatial

design and tree selection are detailed in Supporting Information (S1). Once the plots

were set up, we scanned the plot with TLS, performed a forest inventory, harvested the

selected tree, and measured the geometric structure of the harvested tree.

TLS data acquisition

TLS datasets were acquired using a RIEGL VZ-400® 3D terrestrial laser scanner. This

scanner is a discretized multiple-return LiDAR scanner and its specifications are shown

in Table 2.2. Details of the sampling design are described in the Supporting Information

(S2).
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Table 2.2: Terrestrial laser scanning specifications.

Wavelength 1550 nm

Beam divergence 0.35 mrad

Scan range
360° in azimuth

100° in zenith

Scan resolution 0.06°

Forest inventory data collection

For each tree we measured D (or diameter above buttresses), tree height, height of first

branch and crown width. We measured D with a forestry tape and tree height with a

Nikon “Forestry-Pro” laser hypsometer with precisions of 0.01 m and 0.2 m respectively.

An experienced taxonomist (specialist of the local flora) identified the trees at species

level.

Harvested tree reference measurements

We measured the geometry of the stem, buttresses, and branches of each harvested tree.

As in Figure 2.1.1, tree stem diameters (1a) were measured at every meter along the

stem (1b) following the approach of Kankare et al. (2013). For trees with buttresses or

major irregularities we measured as in Figure 2.1.2. Finally, we measured all branches

until tapered diameter ≤ 10 cm by measuring each internode independently as in Figure

2.1.3.

2.2.3 Volume and biomass estimation

Tree wood volume estimation from 3D QSM

We co-registered each individual TLS scan into a single plot point cloud using RiScan Pro

software [RIEGL Laser Measurement Systems GmbH, Horn, Austria, www.riegl.com,

version 2.0] and the accuracy of our co-registration was kept below 1 cm.

We reconstructed the woody structure of trees using the QSM method developed by

Raumonen et al. (2013) and further developed by Calders et al. (2015b) and Raumonen

et al. (2015). The method first segments the TLS point cloud reconstructing the whole

tree topological branching architecture and then reconstructs the surface and volume of

the segments by fitting cylinders to each of the segments (Figure 2.2). The resulting

cylinder models are used for automatic calculation of the volume of the whole woody

www.riegl.com
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Figure 2.1: Tree geometry measurements. (1) Stem diameter (1a) every meter (1b) until

start of first branch. For trees with buttresses (2): diameter in two orthogonal directions (2a)

and for each buttress horizontal length (from the furthest point to the stem, (2b), width (mean

width between the tip and the buttress intersection with the stem, (2c), and height (from the

ground to the highest insertion point of the buttress into the stem, (2d). For branches (3):

proximal diameter at the base of each internode and above flaring (3a), distal diameter at the

tip of each internode and below flaring of the next node (3b) and branch length from the base

to the tip of each internode (3c).

fraction of individual trees (trunk and branches). More details are provided in Supporting

Information (S3).

We filtered out cylinders with diameter < 10 cm from resulting QSMs to be consistent

with the reference volume estimation and we calculated the total tree volume by summing

the volume of all remaining cylinders. Due to the random generation of the QSM patches

(point cloud partition into small segments; Raumonen et al., 2015; Calders et al., 2015b),

for each parameter set used we reconstructed 20 QSM’s and averaged the volume of the

20 model realizations.
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Figure 2.2: Example of one tree TLS point cloud from Guyana dataset (left, in dark red),

and the same tree modelled by QSM (right, in green). Figure from (Gonzalez de Tanago et al.,

2016).

Sensitivity analysis and independent estimation of QSM accuracy.

We split our tree population into two independent sub-datasets using stratified random

sampling without replacement: a tree dataset of nine trees (three from each study area)

for the sensitivity analysis of a QSM parameter value, and a second tree dataset of 20 trees

(the remaining six trees for Peru and seven for Guyana and Indonesia) for independent

estimation of tree volume and AGB estimates accuracy.

The reconstruction of the QSMs requires a few input parameters, of which the size of

the point cloud segments -expressed by the “surface patches diameter” (hereafter “Patch-

Diam”)- had the most influence on the outcome (Calders et al., 2015b). A detailed ex-
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planation of the QSM parameters and QSM sensitivity to them is provided in Supporting

Information and in Raumonen et al. (2013, 2015) and Calders et al. (2015b).

Our sensitivity analysis consisted on the evaluation of the QSMs optimal PatchDiam

value, which gives the most accurate volume estimate among the different PatchDiam

values tested (1 cm, 2.5 cm, 5 cm, 7.5 cm, 10 cm and 15 cm). For each tree in the sensi-

tivity analysis tree dataset we compared the mean estimated volume (from the 20 QSM

realizations per PatchDiam) against the tree volume obtained from the destructive mea-

surements. We computed tree volume estimation Root Mean Square Error (RMSE). The

optimal PatchDiam was chosen as the one that minimized the RMSE.

Once the optimal PatchDiam was found, we assessed the stability of the optimization

procedure. We replicated the stratified random sampling 1000 times and analysed the

frequency of optimal PatchDiam’s obtained (the one providing the smallest RMSE in

each of the 1000 samples) as well as the variability of the RMSE results (range, mean and

standard deviation) for all samples with a given optimal PatchDiam.

Finally, the optimized PatchDiam was used to run QSM for the independent estimation

dataset (20 trees) and to calculate the tree volume following the same procedure described

above. We used MATLAB (The MathWorks Inc., 2014) for QSM reconstruction and “R”

(R Core Team, 2017) for further calculations.

Tree volume estimation from reference measurements

We used the reference geometric measurements (section 2.2.2) from each harvested tree to

determine the tree reference volume. We applied the Smalian formula as in Nogueira et al.

(2005) to estimate volume of stem sections and individual branches until 10 cm diameter

while for the buttresses we applied a general prism volume formula. Detailed information

can be found in Supporting Information (S4). Total tree wood volume was calculated as

the sum of volumes of main stem, large branches (> 10 cm), and buttresses.

As in Berger et al. (2014), any misrepresentation of the main stem and branches volumes

by the Smalian approximation and any measurement error taken were considered negligi-

ble and ignored. Further, the sum of all cylinders was assumed to represent the true tree

volume with no error and that the wood volume was measured without error.

Tree AGB estimation from volume models and wood density

We calculated individual tree above-ground biomass by multiplying individual tree wood

volume estimates by the specific basic wood density (ρ). Values of ρ were assigned to the

finest taxonomic level possible (species, genus, or family) according to the Global Wood

Density Database (Zanne et al., 2009; Chave et al., 2009) and tree species identified in the
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field. We applied an expansion factor accounting for small branches (≤ 10 cm diameter).

The expansion factor related the volume of small branches to the one of large branches

(> 10 cm diameter). We calculated an expansion factor of 0.255 using data from biomass

destructive sampling of 51 trees in a nearby Peruvian Amazon forest site (Goodman et al.,

2013, 2014). We used the same value for Peru and Guyana (0.255) while we calculated the

expansion factor for Indonesia (0.28) from our own collected data. The final contribution

of small branches to tree volume was 10 %, 14 % and 7 % for Guyana, Peru and Indonesia

respectively.

Tree AGB estimation from allometric models

We estimated AGB using 12 allometric models, of which 8 were locally-calibrated and

4 pantropical (See Supporting Information S5). The pantropical allometric models used

were developed by Chave et al. (2005), which have been recently improved Chave et al.

(2014).

The local allometric models used for the Peruvian trees were developed by Goodman et al.

(2014) while allometric models for Indonesian trees were developed by Manuri et al. (2014)

and Jaya et al. (2007). No suitable local allometric model could be found for Guyana.

The details of the allometric models used to estimate AGB for the harvested trees are

described in the Supporting Information.

2.2.4 AGB estimation models accuracies and uncertainty assessment

We used the 20 trees in the dataset reserved for the independent estimation to compare

the accuracy of AGB estimates from our TLS-QSM approach (against reference AGB)

versus the accuracy obtained from allometric models (against reference AGB). The model

error was calculated for each tree and for the mean of the 20 trees using several metrics.

The AGB estimation error (Residual, in Mg; Equation 2.1) and Individual tree Relative

Error (in %; Equation 2.2) were calculated for each tree while model bias (in %; Equation

2.3) was calculated as the mean of the Estimation Errors divided by the mean of reference

AGB.

AGBestimation error(Mg) = AGBmodel − AGBref (2.1)

Erelative(%) =

(
AGBmodel − AGBref

AGBref

)
· 100 (2.2)

Modelbias(%) =

(∑n
1 AGBestimation error · n−1

MeanAGBref

)
· 100 (2.3)

Where AGBmodel is the AGB estimated by the model and AGBref is the AGB observed

(AGB calculated from destructive measurements).
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As general indicators of model accuracy, RMSE (in m3 and Mg), Coefficient of Variation

of RMSE (CV RMSE, in %) and Mean Relative Error (in percent) were calculated. Slope

and Intercept values of orthogonal regression models between AGB modelled and reference

values were used to identify departure from the 1:1 line, and the R-squared (hereafter R2)

was used to judge the fitting of these regressions. Finally, the Concordance Correlation

Coefficient (CCC) was calculated to compare agreement of AGB model estimates with

AGB reference and to previously reported agreement using the QSM method (Calders

et al., 2015b).

To assess the uncertainty in the tree AGB estimations, we used the error propagation

approach (Equation 2.4) to account for the uncertainties in the models components. We

combined them and assumed that the uncertainties were statistically independent (not

correlated and with a Gaussian distribution). We used Equation 2.4 expressing model

uncertainties in percentage terms:

U total =
√
U2
1 + U2

2 (2.4)

Where U total is the propagated uncertainty (as percentage) from the model components,

U1 and U2 are the uncertainties (as percentage) from each component (IPCC, 2006).

For AGB estimations from QSM volume models, the model uncertainty components con-

sidered were the wood volume and wood density. The uncertainty in tree wood volume by

QSM is provided by the standard deviation of the 20 QSM realizations per tree. For the

estimation of wood densities uncertainties, we assumed for all species the same standard

deviation of 10 % of the mean as used by Chave et al. (2004). Likewise, to assess the

uncertainty in the tree AGB estimation from allometric models, we used the uncertainties

reported for each model (See Supporting Information S5). To assess the uncertainty in

the tree AGB estimation from reference volume estimates we considered two components:

wood density (as described for QSM) and expansion factor. For the expansion factor we

assumed an error of 12.5 % as reported in Segura & Kanninen (2005).

2.3 Results

2.3.1 Tree volume estimation with QSM

The results of the tree volume modelling with the TLS-QSM approach are divided in

two steps: (i) QSM sensitivity analysis with 9 trees to determine QSM optimal parame-

ters and (ii) an independent assessment of the tree volume estimation accuracy with an

independent sample of 20 trees.
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Sensitivity analysis of QSM tree volume modelling

The TLS-QSM tree volume estimation error (RMSE) when compared with the reference

volume measurements decreased with decreasing PatchDiam (Table 2.3) until it reached

a minimum error for PatchDiam of 2.5 cm, and then it increased again for smaller Patch-

Diam. This is in line with the results of the sensitivity analysis in Calders et al. (2015b).

Therefore, 2.5 cm was considered the optimal PatchDiam, and thus selected for the tree

volume estimation of the remaining tree dataset.

Table 2.3: QSM volume sensitivity analysis.

PatchDiam

(cm)

RMSE

(m3)

CV RMSE

(%)

Mean Relative

Error (%)

1.0 3.42 27.56 10.31

2.5 2.98 23.92 17.67

5.0 4.60 36.97 31.87

7.5 7.11 57.17 49.42

10.0 9.06 72.81 65.07

15.0 13.32 107.09 98.05

The stability assessment of PatchDiam optimization procedure showed that in 75 % of

the 1000 random sampling replicates the optimal PatchDiam was 2.5 cm . Despite the

relatively small sample reserved for the sensitivity analysis (9 out of 29 trees), the optimal

PatchDiam was relatively stable regardless of the characteristics of the randomly selected

trees.

Independent assessment of tree volume estimation from TLS-QSM

To assess the accuracy of the tree wood volume estimation by the TLS-QSM we com-

pared the volume estimates by the TLS-QSM with the reference volume estimates from

destructive measurements (Figure 2.3).

The R2 of the linear model describing the agreement of both datasets (Figure 2.3 blue

line) was 0.9. Its slope was 0.93 indicating that the QSMs slightly underestimated the

tree volume for the largest trees. The RMSE was 3.29 m3, compared with the mean tree

volume of 15.13 m3, leading to a CV RMSE of 23.7 %. Figure 2.3 shows that the TLS-

QSM performed similarly throughout the three different sites, despite the three study

areas contained different tree species, sizes and shapes. Results differ between “small

trees” (D ≤ 70 cm, corresponding approximately with 9 Mg, hereafter small trees) and

“large tree” (D > 70 cm, hereafter large trees). For small trees -which were mostly part
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Figure 2.3: Scatterplot of tree volume estimation by TLS-QSM (y axis) against reference

measurements (x axis). The solid black line depicts the 1:1 line. Error bars are the standard

deviation of the 20 QSM model realizations per tree. Symbols and colours denote values per

study site. The blue line depicts the fitted linear regression model between QSM volume

estimates and reference volume estimates, and grey bands show the 95 % confidence interval

of this regression. Coefficient a denotes tree with buttresses and b tree with no buttresses.

of the Indonesian dataset- TLS-QSM models showed less uncertainty and less deviation

from the reference compared to large trees.

On the other hand, the analysis of the residuals (Figure 2.4) reveals that for small trees

and large trees the model did not systematically tend to overestimate nor underestimate
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the volume. Despite the larger uncertainty in the volume estimation for large trees, there

was no large systematic bias for larger tree size (Figure 2.4).

Figure 2.4: Analysis of volume estimation residuals. Trees with D ≤ 70 cm were classified

as small size trees (red colour) and trees with D > 70 cm were classified as large trees (blue

colour). Coefficient a denotes tree with buttresses while coefficient b denotes absence of tree

buttresses.

Buttresses were predominately absent in small trees, which had a better agreement with

the reference data than trees with buttresses. Our QSM modelling did not perform a

detailed buttress modelling, but a cylinder fitting, which might be the cause of the higher

residuals in the trees with buttresses.

2.3.2 Comparison of AGB estimation accuracies: TLS-QSM vs. Allometric

models

Overall accuracy across study sites: TLS-QSM vs. Pantropical allometric models

Figure 2.5 shows the agreement between the AGB estimates by TLS-QSM and allometric

models (modelled) and derived from the destructive measurements (reference) for the

independent assessment tree dataset. The high level of agreement with the AGB-reference

provided by the TLS-QSM approach (CCC = 0.95) contrasts with the systematic AGB

underestimation of the allometric models for large trees (CCC = 0.73 – 0.89).

Table 2.4 shows the statistical indicators of the accuracy of AGB estimations based on

the TLS-QSM approach and pantropical allometric models for the mean of the 20 trees

in the independent assessment dataset.
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Figure 2.5: Scatterplot of AGB estimates by TLS-QSM approach and pantropical allometric

models (Y axis) against the AGB reference values (X axis). The 1 : 1 line is depicted as a black

solid line. The dashed lines represent the fitted orthogonal models between AGB estimates by

TLS-QSM or pantropical allometric models and AGB reference, with colours corresponding the

colour used for the model estimates. Vertical bars show the estimated uncertainty (standard

deviation) for each model estimate and horizontal bars show the uncertainty for the reference

AGB estimates.

The TLS-QSM method had the lowest RMSE, which was respectively 20 % and almost

50 % lower than the most accurate (Chave05.m.1.3) and the least accurate allometric

model (Chave14.eq.4). The TLS-QSM approach also had the lowest bias, 75 % and 90 %

lower than the most and the least accurate allometric models respectively. The TLS-QSM
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Table 2.4: Accuracies of AGB estimations across sites by the TLS-QSM approach and by

pantropical allometric models (n = 20).

Model
RMSE

(Mg)

CV RMSE

(%)

Bias

(%)

Relative

error (%)
R2 Slope

Intercept

(Mg)
CCC

TLS-QSM 2.89 28.37 −3.68 −0.33 0.90 1.06 −1.03 0.95

Chave05.m.1.3a 3.63 35.60 −15.22 −0.76 0.88 0.77 0.82 0.89

Chave14.eq.7 4.52 44.35 −24.50 −10.49 0.88 0.66 0.94 0.82

Chave05.m.1.6 5.47 53.65 −34.99 −24.91 0.85 0.62 0.33 0.75

Chave14.eq.4b 5.60 54.95 −35.67 −24.41 0.85 0.60 0.49 0.73
amost accurate allometric model
bleast accurate allometric model

AGB estimates also showed the most consistent agreement with the reference AGB (CCC

= 0.95) along the range of AGB reference values with no major systematic deviation to

the 1:1 line (slope of 1.06), whereas the best allometric model (slope of 0.77) showed

a systematic increasing underestimation of AGB for large trees and a lower agreement

with reference AGB (CCC = 0.89). The trend of systematic increasing underestimation

of AGB for larger trees was even more pronounced for less accurate allometric models

(slopes ranging from 0.66 to 0.60) showing a lower agreement compared to reference AGB

(CCC = 0.73 – 0.82).

Overall accuracy within study sites: TLS-QSM vs. Local allometric models

Figure 2.6 displays the agreement between the AGB-modelled based on the TLS-QSM

approach and local allometric models (Y axis) against AGB-reference (X axis) for the

sites where local allometric models were available.

For the Peruvian study area the TLS-QSM approach is the closest to the 1 : 1 line,

whereas the deviation from the 1 : 1 line is clearly larger for the three local allometric

models tested, which systematically underestimate the AGB of large trees. The TLS-

QSM approach showed 10 % and 50 % lower RMSE and 80 % and 85 % lower bias than

the most- and least- accurate local allometric model. The agreement between TLS-QSM

estimates and reference values expressed as CCC is higher (0.96) compared to the most-

and least- accurate allometric model (0.76 to 0.92).

For the Indonesian study area, unlike for the Peruvian site, the local allometric models

showed lower RMSE and bias than the TLS-QSM for this particular subset of trees. The

best local allometric model had a 44 % smaller RMSE than the TLS-QSM, was closer to

the 1:1 line and had a higher agreement with reference values (CCC = 0.96) than our

approach (0.92).
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Figure 2.6: Scatterplot of AGB estimates by TLS-QSM approach and local allometric models

(Y axis) against the AGB reference values (X axis) for Peruvian study site (left) and Indonesian

study site (right). The 1 : 1 line is depicted as a black solid line. The dashed lines represents

the fitted orthogonal models between AGB estimates by TLS-QSM or local allometric models

and AGB reference, with colours corresponding the colour used for the model estimates.

Vertical bars show the estimated uncertainty (standard deviation) for each model estimate

and horizontal bars show the uncertainty for the reference AGB estimates. Grey box on the

left graph shows where the Indonesian values would fit in the Peruvian Graph

Table 2.5: Accuracies of AGB estimations for Peruvian trees, by the TLS-QSM and by Local

allometric models (n = 6).

Model
RMSE

(Mg)

CV RMSE

(%)

Bias

(%)

Relative

error (%)
R2 Slope

Intercept

(Mg)
CCC

TLS-QSM 3.68 24.27 −3.72 −3.87 0.93 1.16 −1.84 0.96

Goodman.II.1a 4.09 26.97 −18.37 −16.87 0.97 0.78 0.54 0.92

Goodman.I.1.CRb 7.27 47.98 −26.20 −6.42 0.94 0.54 3.19 0.76
amost accurate allometric model
bleast accurate allometric model

2.4 Discussion

2.4.1 Consistent and accurate AGB estimation of tropical trees from

QSMs

We found that the TLS-QSM approach can provide reliable and accurate AGB estimates

for large tropical trees (D > 70 cm), outperforming the accuracy of all the pantropical
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Table 2.6: Accuracies of AGB estimations for Indonesian trees, by TLS-QSM approach and

by local allometric models (n = 7).

Model
RMSE

(Mg)

CV RMSE

(%)

Bias

(%)

Relative

error (%)
R2 Slope

Intercept

(Mg)
CCC

TLS-QSM 1.67 37.13 21.36 19.08 0.96 1.29 −0.34 0.92

Manuri.D.WD.H.mixa 0.94 20.82 0.63 11.88 0.94 0.88 0.58 0.96

Jaya07b 1.52 33.93 −19.33 −12.12 0.95 0.71 0.41 0.89
amost accurate allometric model
bleast accurate allometric model

allometric models tested. To the best of our knowledge, this is the first study assessing

the accuracy of tropical trees AGB estimates using QSMs from TLS point clouds of trees

across different tropical forest regions. A previous study by Disney et al. (2014) presented

a proof of concept for the use of TLS-QSM for tree AGB estimation of tropical trees in

Gabon, but in their research no tropical trees were harvested, thus the accuracy of its

AGB estimates could not be assessed but only compared to the AGB estimates provided

by allometric models. Our study showed that AGB estimations by allometric models

often are not a reliable indicator of AGB for large tropical trees. This issue was also

addressed by Clark & Kellner (2012), Calders et al. (2015b) and Ploton et al. (2016).

Clark & Kellner (2012) and Calders et al. (2015b) both noted that large trees are under-

represented in calibration of allometric models, therefore these models may produce large

absolute errors for large trees, which is supported by our findings. Ploton et al. (2016)

identified an increase in the estimation error of pantropical allometric models with the

increase of tree mass. Clark & Kellner (2012) also point out that large trees inherently

span a larger range of AGB values for a given D, thus exacerbating this problem of under

sampling.

AGB estimations by TLS-QSM vs pantropical allometric models

Across the three sites the TLS-QSM method to estimate AGB was more accurate than

the most accurate pantropical allometric model evaluated (Chave05m1.3, in Supporting

Information S5), with an absolute improvement of 7.2 % less CV RMSE (Table 2.4). This

accuracy improvement, was even more pronounced in terms of bias reduction. Moreover,

TLS-QSM showed a higher agreement with reference values (CCC = 0.95) compared to

the most accurate pantropical allometric model (CCC = 0.89). Calders et al. (2015b)

found a comparable trend of higher accuracy for their TLS-QSM method in relation to

allometric models for estimating AGB of eucalyptus trees in Australia. The accuracy of

the AGB estimates by TLS-QSM in our study was lower than the accuracy reported by

Calders et al. (2015b), and our agreement (CCC = 0.95) was lower than the agreement
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found by Calders et al. (2015b) (CCC = 0.98). This is likely due to the greater structural

complexity and vegetation occlusion of the tropical very dense forest in our study areas

compared to the open eucalyptus forest studied by Calders et al. (2015b). In relation to

the updated and widely-used pantropical allometric models of Chave et al. (2004), our

method achieved an absolute improvement of 16 % and 27 % lower CV RMSE, which is

comparable to the error decrease reported by Calders et al. (2015b).

It should be noted that the models accuracies were estimated by comparing each model

AGB estimates with AGB reference estimates derived from destructive geometric mea-

surements, rather than with AGB weighted. The uncertainties introduced in measuring

stems, buttresses, and branches volumes were taken into account, but —as in Kankare

et al. (2013) and Berger et al. (2014)— the uncertainty due to the use of Smalian formula

for estimating true volume was assumed to be negligible. Furthermore, the uncertainty

introduced in the correction factor for small branches volume, and in the application of

a single species-specific wood density value for each tree instead of discriminating wood

density for different woody fractions, both were not measured but taken from literature.

Moreover, models uncertainties increasing with tree size indicates heteroscedasticity ef-

fects, which should be considered with caution when developing allometric models. This

reinforces the need for improved methods for estimating large trees biomass, and for

further research with larger datasets to assess the uncertainty on large trees biomass

estimation.

AGB estimations by QSM models vs local allometric models in Indonesia and Peru

The TLS-QSM method also produced AGB estimates more accurate than the local al-

lometric models for the Peruvian dataset, with a higher agreement (CCC = 0.96) with

reference data than the local allometric models in Peru (CCC = 0.76 to 0.92). However,

several local allometric models outperformed our method for the Indonesian dataset, which

trees were predominately smaller than 10 Mg. In this case, several local allometric mod-

els had better agreement, ranging from 0.89 to 0.96, while TLS-QSM approach had an

agreement of 0.92.

For both cases, at pantropical or regional-local level, there are large implications related

to the choice of which allometric model one should use for AGB estimation of tropical

trees. While some allometric models presented here performed with similar accuracy than

our method for some trees; other allometric models proposed for the same region and by

the same authors provided significantly larger errors on the same trees.
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2.4.2 Reconstructing 3D woody structure of tropical forest trees using

QSMs

We showed that the TLS-QSM method can be used to accurately estimate volume from

3D reconstructed structure of large tropical trees from scans in very dense forest with

leaf-on conditions. The tree structure reconstructions for these large tropical trees con-

tained larger uncertainty (higher variance on the QSM outcomes) than in previous studies

(Calders et al., 2013, 2015b; Raumonen et al., 2015) which evaluated smaller trees and

were located in more open forest conditions and less occluded trees. For the smallest trees

in our study, the 3D reconstruction uncertainty values were closer to those previously re-

ported by Calders et al. (2015b).

Consistent with previous QSM studies (Calders et al., 2013, 2015b; Raumonen et al.,

2015; Disney et al., 2014) we optimized the reconstruction process based on the PatchDiam

parameter, which was reported to be the most influential parameter (Calders et al., 2013).

The main difference compared to Calders et al. (2015b) is in the method for judging the

optimal reconstruction.

Our sample of tropical trees was characterized by being among the most challenging

conditions for a 3D tree reconstruction method because the target trees were among

the tallest trees in each plot and having the largest crown size and complexity. The

combination of these limiting factors contributes to increased occlusion, in combination

with very dense understory, resulting in under-sampled areas in the tree crowns, and larger

uncertainties in the QSM reconstructions. For these low density point cloud areas the

QSM’s presented some unrealistic branching reconstructions. The low density point cloud

issue was also addressed by Raumonen et al. (2011) and Raumonen et al. (2013). They

stated that the reconstruction method was quite sensitive to low point cloud density

and therefore, reliability of cylinders reconstructing small branches could be very low.

Therefore, we discarded all branches with a diameter < 10 cm and applied the expansion

factor to account for their volume.

Alternatively, Calders et al. (2015a) recently proposed an automated method for QSM

parameterization. This method optimized the PatchDiam value based on the maximum

match of QSM cylinders diameter with point cloud circle fitting diameter at four different

heights along the main trunk. This approach focuses on comparing the reconstructed

main trunk, regardless of the quality of the reconstructed tree crown. However, recent

studies (Goodman et al., 2014; Ploton et al., 2016) showed the important contribution

of the crown biomass to the total tree biomass for large tropical trees. Similarly, for the

trees in our study, the crown contribution to the total tree biomass was 50 % on average

and even larger for the trees above 10 Mg (60 % of the total tree biomass). Therefore, we

decided not to implement the method of Calders et al. (2015b) for our study.

Future research should focus on developing an automated QSM optimization which op-
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timizes the reconstruction of the entire tree and does not focus on the tree trunk alone.

Automated optimization of this sort might enable to improve even further the accuracy

of tree volume and AGB estimates of tropical trees from TLS data at large scale without

harvesting trees.

2.5 Conclusions

We present an approach to estimate tree wood volume and AGB for large tropical trees

that relies on estimates of tree volume based on 3D data from Terrestrial Laser Scanner

(TLS) and basic wood density. We show that tree volume estimation of these large

tropical trees based on TLS data and Quantitative Structure Models (QSM) provided

a CV RMSE of 23.7 % in comparison to destructive harvest measurements. Tree AGB

estimates derived from TLS-QSM provided better agreement with AGB reference data

(28.4 % CV RMSE, CCC = 0.95) than AGB estimates based on traditional forest inventory

data and pantropical allometric models (33.5 % to 54.9 % CV RMSE, CCC = 0.73 to 0.82).

The allometric models considered in this study showed a systematic underestimation for

large trees (D > 70 cm), increasing with tree size, contrasting with the largely smaller

and non-systematic deviation for the TLS-QSM.

This approach can be further used for testing and calibrating new allometric models,

since allometric models often have large absolute errors for large trees, which are usually

underrepresented in destructive sampling studies. This opens up the opportunity for

QSMs derived from TLS measurements to be used in the future for building improved

allometric models that might enhance present and past estimates of forest biomass and

carbon emissions from tropical forest.
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Abstract

Large uncertainties in tree and forest carbon estimates undermine national efforts, such

as Guyana’s, to accurately estimate aboveground biomass (AGB) for their national mon-

itoring, measurement, reporting and verification system. Although biomass estimates

have improved, they still rely on destructive sampling, large trees are under-represented

in datasets, crown diameter parameters are not considered, and allometric models cannot

be easily transferred between regions. These factors lead to uncertainties and systematic

errors in biomass estimations. We developed local allometric models to estimate tree

AGB in Guyana based on tree parameters (diameter, height, crown diameter) obtained

from terrestrial laser scanning (TLS) point clouds from 72 tropical trees and wood den-

sity. We validated our methods and models with data from 26 destructively harvested

trees. We found that our best TLS-derived allometric models included crown diameter,

provided more accurate AGB estimates (R2 = 0.92 – 0.93) than traditional pantropical

models (R2 = 0.85 – 0.89), and were especially accurate for large trees (diameter > 70 cm).

The assessed pantropical models underestimated AGB by 4 % to 13 %. Nevertheless, one

pantropical model (Chave et al. 2005; without height) consistently performed best among

the pantropical models tested (R2 = 0.89) and predicted AGB accurately across all size

classes. Our study shows that TLS-derived AGB estimates were unbiased compared to

destructively harvested samples. Our methods also demonstrate that tree height is dif-

ficult to measure, and the inclusion of height in allometric models consistently worsens

AGB estimates. Our TLS approach shows potential to be used as unbiased calibration

data to test the suitability of existing allometric models and for remote sensing missions

(such as the upcoming GEDI or BIOMASS missions), thereby improving tropical forests

biomass estimates.
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3.1 Introduction

Guyana is one of the first countries to establish a national REDD+ program (Butt et al.,

2015) and has been developing annual REDD+ performance reports based on a nation-

ally agreed reference level since 2010. Guyana’s REDD+ activities include the design

and implementation of a national monitoring, measurement, reporting and verification

(MMRV) system, which should be able to assess and reduce aboveground biomass (AGB)

uncertainties within the country’s capacities and capabilities (Henry et al., 2015).

AGB is typically estimated with allometric models built from empirical data. The ap-

plicability of any allometric model is thus largely dependent on the data used for its

development and can produce systematic over- or under-estimations of the true AGB

when applied to other regions or areas where no data were included (Alvarez et al., 2012;

Goodman et al., 2014; Manuri et al., 2014). Since the performance of a country’s MMRV

program will be based on the quantification of emission reduction (Gibbs et al., 2007; Ma-

nuri et al., 2014), Guyana seeks to test the accuracy of pantropical models and develop a

country-specific allometric model.

Current AGB allometric models of tropical forests are commonly based on diameter at

breast height (D; which can be measured in the field) and wood density (WD). In recent

decades, the inclusion of other parameters such as height (H) and regional attributes

(Feldpausch et al., 2012), crown diameter (CD; Goodman et al., 2014), and climate vari-

ability (Chave et al., 2014) have been shown to improve prediction of AGB at pantropical

level in some cases (Alvarez et al., 2012; Fayolle et al., 2016; Blanchard et al., 2016).

However, due to the difficulty of measuring tree heights, the pantropical allometric mod-

els developed by Chave et al. (2005) are still widely used because they do not require tree

heights (e.g. Fayolle et al., 2016; Sullivan et al., 2018).

Large trees (diameter > 70 cm) are particularly important for both forest biomass and

forest biomass estimates. They account for ca. 75 % of total forest AGB variations

(Slik et al., 2013; Ploton et al., 2016; Meyer et al., 2018) and the error of AGB estimates

increases with size (Goodman et al., 2014; Calders et al., 2015b; Gonzalez de Tanago et al.,

2017). Despite their relevance, large trees make up only 7 % of available tropical biomass

data (as of 2014; Chave et al., 2014), and the lack of inclusion of large tree biomass data

in the development of allometric models is increasingly viewed as problematic (Clark

& Kellner, 2012; Goodman et al., 2012; Sheil et al., 2017; Disney et al., 2018). AGB

error varies greatly with increasing tree size, and pantropical allometric models often

underestimated large tree biomass (Goodman et al., 2014; Calders et al., 2015b; Gonzalez

de Tanago et al., 2017).

Terrestrial Light Detection And Ranging (LiDAR), also known as terrestrial laser scanning

(TLS), has been proven to be a valuable tool to assess the woody structure of trees (Wilkes
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et al., 2017; Gonzalez de Tanago et al., 2017; Malhi et al., 2018). Several studies have

successfully taken TLS from its original utility —precision surveying applications— to

tropical forests (Gonzalez de Tanago et al., 2017; Wilkes et al., 2017; Momo Takoudjou

et al., 2018; Rahman et al., 2017; Disney et al., 2018; Paynter et al., 2018; Stovall et al.,

2018) and extracted tree parameters such as tree diameter (Calders et al., 2015b), height

(Burt et al., 2013; Krooks et al., 2014), and crown width (Holopainen et al., 2011). In

combination with quantitative structure modelling —e.g. TreeQSM (Raumonen et al.,

2013) or SimpleTree (Hackenberg et al., 2015a)— 3D tree point clouds were used to infer

parameters such as total volume, AGB (Burt et al., 2013; Calders et al., 2015b; Gonzalez

de Tanago et al., 2017; Momo Takoudjou et al., 2018; Disney et al., 2018), AGB change

(Kaasalainen et al., 2014), and tree species (Åkerblom et al., 2017), as well as ecological

questions such as tree mechanics, branching architecture and surface area scaling (Malhi

et al., 2018).

This study assesses the potential of TLS and TreeQSM -method to develop allometric

models to estimate AGB in forest trees of Guyana. We produced a unique tropical tree

mass dataset of traditional inventory and TLS scans of 106 tropical trees; 26 of these trees

were destructively harvested and weighed to estimate aboveground biomass. The objec-

tives of this study are: (i) to model tree volume and estimate tree AGB from TreeQSM

models of tree point clouds, (ii) to build allometric models based on TLS parameters for

Guyana, and (iii) to evaluate the performance of these TLS-derived data and allomet-

ric models against destructively-harvested reference data and estimates from pantropical

models.

3.2 Material and methods

Study area

Field work was conducted in January and February 2017 inside an active logging operation

company near the Berbice river, in the East Berbice-Corentyne Region of Guyana (Table

3.1).
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Table 3.1: Study site description (Muñoz & Grieser, 2006).

Location 4.48 to 4.56 latitude and -58.22 to -58.15 longitude

Forest type Mixture of white sand forest and mixed foresta

Altitude 106 masl

Rainfall 3829 mm yr-1

Temperature 22.5 to 30.5 Celsius

Humidity 86 %
afrom Guyana Lands and Surveys Commission (2013)

Tree selection and data collection

Tree inventory

An exploratory survey of the area was performed as a guide to sample the species compo-

sition of the forest (Appendix 3.B). We grouped our trees into five diameter size classes

(10 ≤ D < 30, 30 ≤ D < 50,. . . , D ≥ 90 cm) and inventoried 16 to 23 trees per size class.

We measured D and point of measurement (POM), total H, CD, and recorded species,

stem damage, and any irregularities. An experienced local taxonomist matched reported

local names with scientific names (Appendix 3.B).

TLS data acquisition

All TLS datasets were acquired using a RIEGL VZ-400 3D terrestrial laser scanner

(RIEGL Laser Measurement Systems GmbH, Horn, Austria). We scanned at each position

with a resolution of 0.04° (Appendix 3.C).

From our full field inventory, 26 trees were destructively sampled trees and removed

from the TLS dataset to serve as validation data. We inspected the point clouds of the

remaining 80 trees and discarded 8 trees whose point clouds were poor due to occlusion.

Thus, 72 trees were used in our TLS database to build allometric models.

Destructive harvesting and fresh mass sampling

Our AGB reference data were selected based on diameter class, species, and wood density

to maximize the number of species sampled and avoid biases; all other characteristics

were ignored —following Goodman et al. (2014). After felling each tree, we re-measured

D and H and weighed each part in-situ (Appendix 3.B).
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Laboratory analysis

We transported all samples to the laboratory at the Guyana Forestry Commission

(Georgetown, Guyana) for species identification, drying, and storage. Samples were oven

dried (101 ◦C to 105 ◦C until they reached a constant mass; Williamson & Wiemann, 2010)

and re-weighed. Wood density was obtained as dry mass per fresh volume, and dry mass

fraction (dmf ) was the ratio dry to fresh mass (Appendix 3.B).

Tree above-ground biomass estimation from pantropical allometric mod-

els

Structural (D and H) and WD data from the 26 harvested trees were used to estimate

AGB from pantropical allometric models (Appendix 3.E). We estimated AGB and its

error using the most widely used pantropical allometric models (Eqn. Ch05.II.3, Ch05.I.5,

Cha14.H and Ch14.E) for moist forests (Chave et al., 2005, 2014) and an updated version

of Ch14.E. This revised version (Eqn. Rj17.E) is a direct model fit equation, while the

original equation Ch14.E was obtained by merging two equations (Réjou-Méchain et al.,

2017).

Tree parameters extraction and biomass estimation from TLS data

Diameter, tree height and crown diameter from TLS data

TLS-derived D was calculated from cross sectional point clouds (6 cm width) taken at

every 10 cm on the Z-axis up to 6 m height. Least square circle approach was used to

fit circles in each cross sectional point cloud. We automatically determined POM by

analysing the angle between two consecutive diameters, starting from the bottom. The

first angle within 1° of 90° (i.e., vertical) was considered as the POM. Total height was

estimated as the distance between the maximum and the minimum point in the Z-axis

from each tree point cloud. Finally, crown diameter was estimated as the average of two

horizontal distances between the maximum and the minimum point in the X- and Y-axis

from each tree point cloud.

Tree volume and biomass from TLS data

We estimated tree wood volume from 3D quantitative structure models (TreeQSM version

2.0; Raumonen et al. 2013; Calders et al. 2015b; Gonzalez de Tanago et al. 2017) from

our reconstructed 72 trees. WD values were assigned to each species or genus according

to Global Wood Density Database (Zanne et al., 2009; Chave et al., 2009). To obtain

tree volume, we had two main components: (i) semi-automatic individual tree extraction
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from TLS plots (Fig. 3.1a-c) and (ii) 3D reconstruction of QSMs for individual extracted

trees (Fig. 3.1d and Appendix 3.D).

Figure 3.1: (a) Vitex spp. tree point cloud, (b) down-sampled tree point cloud, (c) soft

tissues (green) and hardwood (black) separated point cloud, and (d) TreeQSM modelled after

the hardwood point cloud (See details in Appendix 3.D).

Once we extracted the trees, we reconstructed their volume with cylinder features using

the automated framework presented in Calders et al. (2015a) to optimize QSMs. We

optimized cover patch size (d) by reconstructing the volume using a d range from 0.02 m

to 0.09 m with a 0.005 m increment and a minimum number of points per cover patch

nmin of 4. The optimization process returned the most suitable d for each tree based

on least square fit process and 20 models were reconstructed on average. The heuristic

decision to accept/reject was taken based on analyst’s experience and judgement (Fig.

3.1d; Calders et al., 2015a; Gonzalez de Tanago et al., 2017).

For 43 trees with large buttresses, a triangular mesh was used for the volume modelling

in the bottom part of the stem rather than cylinders (Fig. 3.2; see Disney et al. 2018).

The volume of the mesh replaced the volume of the cylinders on the total tree volume

estimation.

Finally, to estimate AGB, we multiplied the total tree volume with the corresponding wood

density. As an indicator of the reconstruction accuracy of the TreeQSM, root mean square

error (RMSE) was calculated to measure the difference between the reference and modelled

AGB; R2 was used to judge the fit of the TreeQSM models; concordance correlation

coefficient (CCC) was calculated to compare the agreement of the AGB estimates; and

coefficient of variation of RMSE (CV RMSE) was calculate to measure the difference

between our TLS-derived AGB and reference AGB (Calders et al., 2015b; Gonzalez de

Tanago et al., 2017).



40 TLS-derived allometric equations in Guyana

Figure 3.2: Buttresses modelling of a Hymenolobium flavum tree. The bottom part of the

stem was modelled with a triangular mesh instead of cylinders. The mesh volume replaced

the volume of the cylinders.

TLS-derived allometric models

We examined five model forms (Table 3.3) based on previous forms developed by Chave

et al. (2005) and Goodman et al. (2014) using TLS-derived parameters (D, H, and CD)

and WD to test the relevance of these variables to predict AGB. To build the allometric

models, all data were transformed to the natural logarithm to comply with allometric

theory and meet the assumptions of linear regression (Appendix 3.F). Moreover, the

models were built using multiple regression and the coefficient estimation is based on least

squares. Model error (ε) was estimated as the 95 % confidence interval of the regression

model.

Model assessment for biomass allometric models

We made two types of assessment. First, we evaluated the log-transformed models based

on the fit of the data used to build the models. For that, we evaluated the models by using

a penalized likelihood criterion on the number of parameters: adjusted R-square (R2), cor-

rected Akaike’s information criterion (AICc), and the residual standard error (RSE). The

best fitted allometric model had highest R2 and lowest AICc and RSE. To estimate AGB

values (in Mg) a correction factor (CF = exp[RSE2/2]) was applied to backtransform

predicted values and remove bias from the log-transformed data (Baskerville, 1972).

Second, we assessed the ability of our allometric models to predict AGB (Table 3.3) and
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compared them to five pantropical allometric models (Appendix 3.E). We validated these

AGB estimates with field-measured reference AGB using the metrics listed below: model

error (Eqn. 3.1) and relative error (Eqn. 3.2).

AGBerror(Mg) = AGBest − AGBref (3.1)

AGBrelative error(%) =
AGBest − AGBref

AGBref

· 100 (3.2)

where AGBest is AGB predicted by each model, AGBref is the AGB calculated from our

destructive sampling, meanerror is the average of AGBerror for all 26 trees, and meanref is

the average of AGBref . We calculated these metrics for our entire harvested tree dataset

(n = 26) and subsequently split this data into small (D ≤ 70 cm; n = 17) and large (D

> 70 cm; n = 9) trees. We used both assessments to identify our “best” model(s).

3.3 Results

Tree parameters and estimated biomass

A total of 106 trees were inventoried and scanned across a large range of tree sizes (D

11.20 cm to 149.80 cm). Of these, 26 were destructively sampled and used as test or

validation data, 8 were discarded due to low quality point clouds, and the remaining 72

trees were used to build allometric models based on TLS-derived data (Table 3.2 and

Appendix 3.G). Six harvested trees had hollow sections in the bole.

Table 3.2: Pre- and post-harvested field measured parameter and TLS-derived parameter

ranges for diameter (D), height (H), crown diameter (CD), wood density (WD; from direct

measurements for measured trees in reference dataset and from GWDD for all others) and

AGB.

Parameters
Allometric model dataset (n = 72) Validation dataset (n = 26)

Measuredpre TLS-derived Measuredpost TLS-derived

Diameter (cm) 12.9 – 134.0 13.3 – 126.2 16.7 – 128.7 16.7 – 130.2

Tree height (m) 14.0 – 43.0 16.9 – 51.8 16.4 – 51.6 16.6 – 49.1

Crown diameter (m) 4.4 – 42.6 2.5 – 42.9 3.4 – 30.8 pre 4.6 – 30.2

WD (g cm−3) 0.4 – 1.0 0.4 – 1.0 0.4 – 0.9 0.4 – 1.0

AGB (Mg) NA 0.2 – 28.5 0.9 – 21.8 0.2 – 27.4

Our study found a systematic difference between the three measurements for D in our

dataset of 26 validation trees (p-value < 0.05; Table 3.2): mean values were 59.4, 57.7,
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and 55.2 cm for pre-harvest, post-harvest, and TLS-derived diameters, respectively. Using

post-harvest field measurements as the reference data, we calibrated the TLS-derived D

estimate. Neglecting to adjust the systematically lower TLS-derived D would result in

a systematic overestimation of the AGB when applying TLS-derived allometric models

with field measurements diameters. The other TLS-derived parameters (H, CD, and

AGB) were not significantly different from our reference data. However, post-harvest

H measurements were significantly taller than H measurements taken on standing trees

(p < 0.05; 11 %; n=26). WD values from our measurements and the GWDD were

similar (our values were 1 % greater; Appendix 3.H). Finally, there was no systematic

difference between AGB estimated from QSM and our reference data. AGB estimates

from TreeQSM, destructive sampling, and the pantropical models had a high level of

agreement (CCC = 0.96, R2=0.92, CV RMSE=33 %), but TreeQSM outperformed the

pantropical models. Pantropical models showed slightly lower level of agreement (CCC

= 0.92–0.94); with a R2 ranging 0.85–0.89 and CV RMSE ranging 37 %–44 %.

Allometric models using TLS-derived measurements

We created five allometric models using combinations of the TLS-derived parameters D,

H and CD and WD from the GWDD (Table 3.3). In the models where the intercept

was removed, R2 was not calculated (Table 3.3). For models using CD (m4 and m5) we

found that the residuals were not normally distributed using Anderson-Darling test. Upon

further visual inspection of normal quantile-quantile plots, we considered the residuals to

be reasonably normally distributed and that these models are reliable (Appendix 3.I). For

model forms m2 and m3, models built using field and TLS-derived data were significantly

different (p < 0.05), thus we applied RDVC to the TLS models (Table 3.3).
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Table 3.3: Models description for the TLS-derived above-ground biomass estimations in-

cluding diameter (D), wood density (WD), height (H), crown diameter (CD), Reference

Dummy Variable Corrector (RDV C) and associated statistical parameters based on 72

trees.

Model Type Form

m1 D ln(AGB) = a + b · ln(D)

m2 D.WD ln(AGB) = a + b · ln(D) + c · ln(WD) +RDV C

m3 D.WD.H ln(AGB) = b · ln(D) + c · ln(WD) + d · ln(H) +RDV C

m4 D.WD.H.CD ln(AGB) = b · ln(D) + c · ln(WD) + d · ln(H) + e · ln(CD)

m5 D.WD.CD ln(AGB) = a + b · ln(D) + c · ln(WD) + e · ln(CD)

Notes: df are degrees of freedom of the model, RSE is residual standard error of esti-

mates, R2 is adjusted R2, AICc is the corrected Akaike’s information criterion and NA

is not applicable.

Table 3.3: (continued).

Model a b c d e RDVC df RSE adj-R2 AICc

m1 0.6788 1.9337 . . . . . . . . . . . . 70 0.360 0.90 61.52

m2 0.6765 2.0246 1.0932 . . . . . . −0.1968 69 0.274 0.94 23.61

m3 . . . 1.9091 1.0978 0.3224 . . . −0.2138 69 0.266 NA 19.48

m4 . . . 1.7282 0.2603 1.1522 0.3698 . . . 68 0.240 NA 6.23

m5 0.5366 1.8124 1.1512 . . . 0.3878 . . . 68 0.246 0.96 9.28

Evaluation of allometric models

We assessed how well the five TLS-derived allometric models developed in this study and

five pantropical allometric models estimate AGB of our destructively-harvested reference

data on the original scale (in Mg; Fig. 3.3 and Table 3.4). Results were similar to the

assessment done on the log-transformed scale, and our models including CD estimated

AGB better than all other models. On the original scale (Table 3.4), AGB estimates from

TLS-derived allometric models were slightly better (R2 0.87–0.93; CCC 0.89–0.96) than

the pantropical models assessed (R2 0.85–0.89; CCC 0.92–0.94).
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Table 3.4: Summary of AGB estimates from TLS-derived and pantropical allometric models

—R2, RMSE, CCC, sum of errors (sum, mean, standard deviation [SD]), mean percent error

and relative error (n = 26). Models are arranged based on the statistical parameters from the

best model to the worst model.

Model Type R2 RMSE CCC
Error (Mg) Relative error (%)

Sum Mean SD Mean SD

m5 D.WD.CD 0.93 1.91 0.96 1.03 0.04 1.95 28.25 61.35

m4 D.WD.H.CD 0.92 1.99 0.96 1.36 0.05 2.03 28.33 57.91

Ch05.II.3 WD.D.D2.D3 0.89 2.32 0.94 −7.49 −0.29 2.35 5.54 48.26

Ch05.I.5 D2.WD.H 0.85 2.75 0.92 −9.86 −0.38 2.78 7.35 41.98

Ch14.H (D2.WD.H) 0.85 2.67 0.92 −11.89 −0.46 2.69 9.59 43.31

m1 D 0.87 2.52 0.93 13.65 0.53 2.51 68.01 105.95

Rj17.E D.WD.E 0.88 2.43 0.93 −19.28 −0.74 2.36 −1.62 44.04

Ch14.E D.WD.E 0.88 2.49 0.93 −21.56 −0.83 2.39 −3.62 43.52

m3 D.WD.H 0.88 2.92 0.89 −32.11 −1.23 2.69 14.80 60.97

m2 D.WD 0.89 2.96 0.92 32.21 1.24 2.74 73.80 98.95

Our TLS-derived allometric models with CD performed better than all other models in

terms of producing the lowest absolute errors (Table 3.4 and Fig. 3.3). The pantropical

models tended to underestimate AGB but had lower relative errors (Table 3.4 and Fig.

3.3). In contrast to the model evaluation with the 72 TLS-trees on the logarithmic scale,

m5 (without H) performed slightly better than m4 (with H). By several metrics, model

m2 and m3 performed the worst of all models evaluated. Adding WD and H to the

model did not definitely improve estimates over m1 with only D. In fact, adding these

parameters increased overall error. However, adding CD to models with WD and H

improved estimates by all metrics. Adding H to models did not improve their accuracy.

In both cases, models m5 vs. m4 and m3 vs m2, the model without H performed better

than the counterpart model with H.
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Figure 3.3: Relationship between reference AGB (harvested trees; n = 26) and AGB esti-

mated by TLS-derived and pantropical allometric models. Black solid line is 1:1 relationship,

dashed coloured lines depicts linear fit, and dotted grey lines indicate 95 % confidence interval

for the linear fit.

Among the pantropical models, Ch05.II.3, with just D and WD, had the highest R2,

CCC and the lowest RMSE, but slightly underestimated AGB (Table 3.4 and Fig. 3.3).

The two models including the “environmental stress” (E) parameter (Ch14.E and Rj17.E)

produced the largest underestimates of AGB in absolute terms but lowest relative error

(Appendix 3.K). Models including H (Ch05.I.5 and Ch14.H) also underestimated AGB

and were, by several metrics, the least accurate among all models evaluated (lowest R2,

lowest CCC, highest RMSE).

Because allometric models often over- or under-estimate AGB differently systematically
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with tree size, we also assessed the performance of the TLS-derived and pantropical mod-

els for small trees (D ≤ 70 cm; n = 17) and large trees (D > 70 cm; n = 9) separately

(Appendix 3.J and 3.K). The inclusion of CD in the models reduced error in AGB esti-

mates for both size classes, but the effect was much more substantial in large trees. The

mean error of TLS-derived models m4 and m5 is very close to zero for both small and large

trees, but mean relative error is very high for small trees (44 %). The inclusion of H in

TLS-derived models improved AGB estimations for small trees but reduced the accuracy

of AGB estimates for large trees when compared to their counterpart model without H.

All pantropical models underestimated AGB, and the underestimation is greater for large

trees (Appendix 3.K).

For the most accurate AGB estimates in Guyanese forests, we recommend model m5

(Equation 3.3), especially for large trees. AGB is measured in kg dry mass, D in cm, H

and CD in m and WD in g cm−3. The back-transformation correction factor has been

incorporated:

AGB = exp[0.5669 + 1.8124 · ln(D) + 1.1512 · ln(WD) + 0.3877 · ln(CD)] (3.3)

3.4 Discussion

This study presents the first assessment of the potential of TLS and TreeQSM to develop

TLS-derived allometric models to estimate AGB for trees in Guyana and takes Guyana

one step closer to its aim of developing a national MMRV system. In a similar assessment,

Stovall et al. (2018) reconstructed 329 trees in Virginia, USA and found that TLS-derived

allometric models predicted AGB better than the equivalent national models. Our results

showed better results for TLS-derived allometric models that include CD compared to

the pantropical models from Chave et al. (2005, 2014) and Réjou-Méchain et al. (2017),

which included trees from the same region (French Guiana, n ≈ 390 trees). In the absence

of CD data, the oldest and simplest of the pantropical models (Ch05.II.3) provides the

most accurate AGB estimates in this region. This is one of the first studies to have

explicitly used TLS-derived parameters and wood density to develop allometric models

to estimate AGB of tropical trees. A similar study, by Momo Takoudjou et al. (2018),

calibrated an allometric model from Chave et al. (2014) using TLS tree point clouds from

a semi-deciduous forest in Cameroon and yielded a good fit (R2 = 0.95).

Recent studies have highlighted the relevance of including crown dimension in allometric

models (Goodman et al., 2014; Jucker et al., 2017; Ploton et al., 2016). Models including

CD had the highest R2 in Goodman et al. (2014); Jucker et al. (2017) and lower bias

(−4.5 %) in Jucker et al. (2017). These authors had independently agreed that CD

improves tropical tree biomass estimates, especially for large trees (D > ca. 100 cm in
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Goodman et al. 2014; Ploton et al. 2016; and ≥ 10 Mg for Jucker et al. 2017). From our

results we can assure that allometric models using CD provides better AGB estimates

for trees in Guyana especially for large D size classes (Appendix 3.J). However, obtaining

crown diameter is time-consuming, and hence often avoided during fieldwork.

Our study reveals that AGB estimates from allometric models with H general performed

worse than their counterparts without H, for both TLS-derived and pantropical allometric

models. Goodman et al. (2014) also found that models including H underestimated

AGB and suggested the inclusion of CD instead of H in allometric models. Our results

contrast those of Feldpausch et al. (2012), in which their models with H performed better

estimating AGB than models without H, and agree with Goodman et al. (2014), which

found that pantropical models that include H tend to be systematically inaccurate when

applied to other locations.

We found significant differences in the pre-, post-harvest and TLS-derived D and H val-

ues, demonstrating the difficulty and ambiguity of measuring the diameter and height of

tropical trees. Although it is nearly impossible to say what “true” and repeatable diam-

eter above buttresses and total H are, TLS offers new insights. For example, even with

rigorous protocols determining the top of buttresses is a judgement call, and our data show

variation in measurements on standing and felled trees. Pre-harvest D measurements were

significantly higher, reflecting the difficulty of measuring high above the ground; and post-

harvest measurements were much more conservative. Our novel methods of determining

D from TLS point clouds to the point where taper reduced 4 % on average was perhaps

too conservative but probably more repeatable. It is important to note that conserva-

tive D measurements yield conservative AGB estimates from allometric equations, but

the opposite is true when building allometric models. Measuring tree height in tropical

forests is notoriously difficult, especially for trees above forest canopy. The precision of re-

peated height measurements from the ground ranged from 3 % to 20 % of the total height,

leading up to 16 % mean error for AGB estimates Hunter et al. (2013). In our study we

did not record repeated measurements, but our pre-harvest height measurements were

on average 10 % lower and TLS-derived measurements were on average only 2 % lower

than our reference (post-harvest) heights. Pre-harvest measurements had a greater vari-

ation and greater underestimation than our TLS-derived height. Our data show that H

measurements are smallest on standing trees measured with a laser rangefinder (probably

because either the highest point is not visible and/or the laser did not hit the highest

point), highest on harvested trees (perhaps because trees stretch or break during the fall),

and intermediate from TLS scans of standing trees. Thus, it is quite possible that TLS

provides the most accurate H measurements.

We also estimated AGB for our trees using five well-known pantropical models (Appendix

3.E) showing that all five models underestimated AGB. Our results contrasts with some

studies and support others. In Colombia, Alvarez et al. (2012) found that using Chave
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et al. (2005) moist pantropical equations (with and without H) all overestimated AGB

(with relative errors up to 52.8 %); while Gonzalez de Tanago et al. (2017) found that AGB

was underestimated 15.2 % to 35.7 % when compared to estimated AGB from TreeQSM

models in Guyana, Indonesia and Peru. As in Alvarez et al. (2012), Kuyah et al. (2012)

found that AGB in Kenya was overestimated in 22 % using Chave et al. (2005) moist forest

equation (with H) and suggested that overestimations were due to the dominance of small

trees (D < 10 cm) and lack of larger trees in their plots. We theorized that with more

trees scanned, we could understand the reasons for these differences. When disaggregating

by diameter size, we found that pantropical models tended to overestimate small trees

and underestimate large trees (Appendix 3.J). This contrasts Chave et al. (2005), whose

models tended to underestimate small trees. Our results are more aligned with Chave

et al. (2014), insofar as their models tended to overestimate small trees, be fairly accurate

with medium size trees, and underestimate larger trees.

Scanning tropical trees in-situ remains challenging, not only because of the harsh environ-

ment but also because the novel sampling design we developed for this study (Appendix

3.C). In our study, we increased the scanning resolution from 0.06° to 0.04° (Appendix

3.C) as suggested by Wilkes et al. (2017) to balance trade-off between accuracy and scan-

ning time requirements. Gonzalez de Tanago et al. (2017) pointed out that low-density

point clouds created unrealistic branching reconstructions. Still, we discarded 8 tree point

clouds due to under-story occlusion. Because a detailed analysis of quality of tree point

clouds is usually done after the fieldwork, we suggest increasing the number of scanned

trees by 10 % over the desired sample size in case some trees need to be removed due to

poor quality.

Tropical countries seeking to participate in REDD+ that do not possess own tree biomass

database might find our TLS-driven methodology a resourceful alternative. They can test

and develop national allometric models based on TLS-derived parameters and some de-

structively harvested reference data. Our methodology provided unbiased AGB estimates

regardless of tree structure, even with partially hollow and irregular stems. However,

we suggest that this outcome is further tested with destructively harvested data from

other forests. For Guyana, developing a national monitoring system based on the now

known most appropriate pantropical model or their own national model could contribute

to more accurate biomass estimates for REDD+ MMRV. Our results demonstrated that

TLS-derived AGB estimates can be used as a decision-making tool in MMRV selection of

an adequate pantropical allometric model, and in case TLS-derived allometric models us-

ing CD are out of scope, Ch05.II.3 would be an adequate model (on average conservative

and reasonably accurate).

Being able to obtain TLS-derived AGB estimates without destructively harvesting trees is

relevant also environmentally desirable. We are able to quantify AGB for trees that would

be illegal, expensive, impractical, or simply unnecessary to harvest. We are aware that our
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methods and analyses require expensive equipment and expert knowledge, but the process

is much faster, less labour intensive, and environmentally sustainable than destructive

harvesting, especially for large trees. Research has already begun to semi-automatize the

modelling processes by separating individual trees (Raumonen et al., 2015) and splitting

hardwood from soft tissues (Disney et al., 2018).

With the advances on tree segmentation algorithms (Burt, 2017; Calders et al., 2018),

the modelling of trees is being semi-automatized. Tree segmentation algorithms would

allow us to segment and estimate AGB using TreeQSM for entire TLS scanned forest

plots. As mentioned before, the estimation of AGB from tropical trees is being biased by

underestimation from the pantropical allometric models, TLS can remove this bias.

Although this is a case study of creating site-specific allometric models for Guyana, we

showed that TLS-derived allometric models (including CD) can be an unbiased estimator

of AGB, even in a logged forest where we would expect a high proportion of damaged

and hollow trees remaining. Our method’s potential to rapidly produce large, unbiased

calibration tree datasets is of great significance to remote sensing missions, which rely on

field data for their calibration, thereby improving tropical forests biomass estimates. We

strongly encourage other studies to expand upon our findings to determine whether TLS

always provides unbiased AGB estimates and could replace destructive sampling in the

future.

3.5 Conclusions

We advanced TLS methods to estimate tree metrics and explored the accuracy of field

and TLS-derived methods to develop local allometric models for Guyana. We showed

that TLS-derived allometric models can be built from TLS-derived tree volume and wood

density without destructive harvesting, even with the occurrence of hollow and irregular

stems. We demonstrated that tree AGB estimates from TLS-derived allometric models

including crown diameter (models m4 and m5) provide better agreement with reference

data (mean error 0.04 Mg to 0.05 Mg) than AGB estimates from pantropical allometric

models (mean error −0.83 Mg to −0.29 Mg), especially for large trees (D > 70 cm). AGB

estimates from TLS-derived allometric models and pantropical models including height

provided poor agreement with reference data when compared to their counterpart without

height (m2 and m5 respectively). The simplest pantropical model (Chave et al. 2005, with

only D and WD) provided very good estimates of our data. Our results are based on 72

TLS scanned trees, a small number of trees compared to other studies. Nonetheless, our

new approach can be further applied for developing allometric models without the need to

harvest vast numbers of trees. This new approach can be used to test and choose existing

allometric models calibration remote sensing metrics to forest biomass, and improve the

future estimates of forest biomass from tropical forest.
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3.A Appendix

3.B Biomass sampling design

3.B.1 Field protocol summary

1. Measure preharvest

� Mark coordinates, label tree

� Measure: diameter (paint location), total height (Htot), crown radius

� Note: crown quality, structural damage, stem irregularities

2. Post-felling measurements

� Remeasure tree size

– Re-measure: diameter (same location), total height (Htot), crown radius

– Measure: Htot, stump height (Hstump), commercial height (Hcom), height

of first major branch (≥5 cm; HFMB)

� Separate and weigh

– Small branches (<10 cm diameter)

– Large branches (≥10 cm diameter)

– Commercial bole

– Non-commercial bole

– Stump

� Take wood samples

– Label each sample and measure fresh mass

* Small branches (Bs)

* Large branches (BL)

* Trunk (T)

* Stump (St)

– Measure volume as soon as possible

– Store samples in the sun, if possible
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– Transport samples to laboratory, dry, and weigh

3.B.2 Tree inventory

All individuals fitting the diameter classes were included in the selection regardless of

commercial value, structural irregularities, health, or wood defects. We measured each

position using the average of 1000 GPS measurements (WGS84 Geographic coordinate

system). We measured diameter at 1.3 m or above buttress with a diameter tape and

recorded the point of measurement (POM). Total height, height of first branch, and

crown width were measured with a Nikon Forestry-Pro hypsometer (precision of 0.2 m).

We noted any structural damage or irregularities, and an experienced local taxonomist

matched reported local names with scientific names.

3.B.3 Pre-harvest tree measurements

We will measure DBH, total height, height of the commercial bole, depth and diameter

of the canopy, angle of the branches, and extract a wood sample with an increment

borer.

1. Tree information

� Mark coordinates with GPS

� Label tree with spray paint.

2. Diameter at Reference Height (DRH; from the RAINFOR field manual for plot

establishment and remeasurement).

� Mark POM on tree (with marker or paint)

� Make note of POM

3. Height: It is optional to measure height on standing trees. Height can be measured

with a laser rangefinder as per the “Measuring tree height in tropical forest trees”

manual (Chave, 2005):

� Rangefinder: Only for trees > 10 m in height can be measured this way.

4. Height of snapped crown

� Measured by the same methods to account for crown damage (Chambers et al.,

2001)

5. Crown measurement
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� Take crown radius as the distance from the trunk to the projected edge in 4-8

compass directions (Kitajima et al., 2004). For each tree, crown radius will

determined as the mean the above 4-8 measurements (Kitajima et al., 2004).

� Crown area can be measured as an ellipse, measuring the diameter at the

longest and shortest widths

6. Classification of canopy quality, as Jiménez-Rojas et al. (2002).

� good (symmetrical and vigorous)

� average (some defects with respect to the symmetry and density of the foliage)

� poor (not vigorous, substantial portions of the limbs without foliage or branch-

ing, markedly asymmetrical)

7. Alive status

� According to the manual RAINFOR field work database codes for trees as in

Phillips et al. (2005).

8. Structural damage

� Take note of any loss of large branches, stem damage, etc

9. Stem irregularity

� Take note of buttresses, fluted trunks, etc.

3.B.4 Post-harvest tree measurements

1. Felling

� Ask chainsaw operator to saw off trunk as close to ground level as possible

� Ask chainsaw operator to remove as many large branches as they would nor-

mally

2. Labelling

� If the trunk is cut into multiple pieces, label (spray paint) each section with

its ID number plus a, b, c, etc (going from base to crown).

� Record the total number of sections per trunk.

3. Heights: Measured on felled trees with a measuring tape

� Total height: Measure to top leaf

� Height of commercial bole (Hc): The point of measurement will be identified

by experienced loggers
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� A main branch is defined as one > 5 cm diameter, with leaves

� Height of first living branch: this will identify crown depth:

– Crown depth will be defined as “the distance between the crown apex and

the lowest foliated branch” (Kitajima et al., 2004)

– Measured on the ground as Crown depth =

(Total height) – (Height to the first living branch)

– Branch height will be measured at the base

4. DRH:

� Re-measure trunk diameter (at the same point)

5. Stem taper

� Diameter will be measured every 1 m from the base of the tree (0 m) to the top

of the bole.

� Potential problems and how they will be handled:

– Climbers will be removed prior to measurement

– Fluted and all irregular stems: “diameter” will be measured regardless of

irregularity (though, the type and extent of irregularity will be noted)

– Resprouts and multiple stems: diameter will be measured and recorded

separately for up to 3 stems (any more will be considered the canopy).

– Sloped trees (i.e., the base of the tree is not perpendicular to the rest of

the trunk): we will take measurements starting (0 m) at the uphill side of

the tree.

6. Each tree will be separated into the following parts:

� main stem

� large branches (≥ 10 cm)

� small branches (< 10 cm) and leaves

7. Fresh mass of each tree part will be measured in the field

� Tarps will be used to catch as much material as possible (e.g., saw dust and

leaves)

� Large branches will be sawed into manageable sizes

� Small samples will be weighed near the felled tree with the 250 kg scale (at-

tached to a nearby tree)
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� Trunks will be left until the company can drag them to a logging deck. They

will be weighed with the use of a front loader whenever the machinery is pos-

sible.

8. For all trees, we will take at least one cross-sectional slice of the bole. Trees will

only be cut according to the forestry concession’s standard practices. This will

include cuts at the base and top of commercial bole. In the case of very large (>

6 t) trees or other circumstances, there may be intermediate cuts. We will ask for a

3 cm disk at the point of every cutting.

9. If it is absolutely not possible to weigh a tree, the volume will be calculated from a

series of diameter and length measurements and converted to dry mass

� Diameter should be measured every 1 m

� At least 2 disks or wedges (3 cm cm thick) will need to be obtained from

different points along the stem

� Measure fresh mass of disk in the field.

� In the case of semi-direct measurements, these methods will need to be com-

pared to a subsample of direct measurements.

10. Sub-samples to be taken to laboratory:

� Wood disks from stem: as described above

� Wood disks from large branches – check lateral variability

� Small branches

3.B.5 Laboratory work

1. Label samples. In field, label all pieces of the wood samples. Bark may fall off while

air drying, so label the bark as well and/or put in a labelled paper bag.

2. Volume of samples.

� We separated and weighed each tree into the following parts: small branches

(< 10 cm diameter, including leaves), large branches (≥ 10 cm diameter), bole

(stump to first branch), and stump.

� Fresh mass was measured directly in field with a 300-kg capacity digital scale

with 0.1 kg precision. All irregular boles and boles of D < 70 cm were weighed

directly. Larger and non-irregular stems and very large branches were measured
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through volume estimation (diameter every 1 m). We measured length, top

diameter, and bottom diameter of any hollow sections.

� Measure by displacement: “Accurate water displacement requires immersion

of the wood sample into a beaker of water loaded on a top-loading electronic

balance. The wood sample is pressed below the water surface with the aid of a

“volumeless” needle or insect pin. The volume of the wood is read accurately

on the balance as the mass of the displaced water. Older methods of volume

displacement in graduated cylinders or beakers where water levels are read by

sight are much less accurate and increase variance in volume measurements”

(Williamson & Wiemann, 2010).

3. Oven dry samples.

� Wood samples at 101 ◦C to 105 ◦C.

� Foliar, fruit, and flowers at 60 ◦C to 70 ◦C (Williamson & Wiemann, 2010).

� Dry to constant mass

4. Dry Weight.

� Remove samples from oven

� Cool in box with desiccant

5. Save samples.

� Dry sub-samples will be prepared and stored for analysis of carbon concen-

tration. Sampling will depend on variability of carbon contents, time, and

financial resources.

We calculated tree dry mass by two methods: (i) for tree parts which had been directly

measured, we calculated dry mass by multiplying fresh mass by dmf ; and (ii) for tree

parts which had been measured by volume, dry mass was calculated by multiplying volume

(minus hollow sections) by WD. We added the estimates from both methods for each

tree part and then the complete tree.

3.C TLS data acquisition and Plot sampling de-

sign

3.C.1 TLS data acquisition

This LiDAR scanner is a discrete multiple-return laser scanner and its specifications are

detailed in the following table. We set up two (virtual) rings around each tree to be
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scanned: an inner ring at 6 m from the trunk and an outer ring at 14 m from the trunk.

We set up 8 to 10 scan positions between the inner ring and outer ring.

Terrestrial laser scanning RIEGL VZ-400 specifications for wavelength, beam divergence scan

range and scan resolution.

Wavelength 1550 nm

Beam divergence 0.35 mrad

Scan range 360° in azimuth

100° in zenith

Scan resolution 0.04 degree

3.C.2 TLS acquisition protocol

1. Plot delineation.

� Find tree, label tree.

2. Plot set up

� Set up inner and outer ring of 8 scan positions.

� Set up reflector sets + 3 reflectors for tilt.

� Clean up area low vegetation occluding reflectors view (1 m to 2 m height along

the view lines from scan positions to reflectors).

� Note on field sheet data.

3. GPS

� Turn on GPS.

� Save name of position in GPS and field sheet.

� Save averaged measurements (leave it running, save it at the end before going

to new scan position).

4. TLS scanning

� Set up tripod where the scan position was determined.

� Set up TLS and plug battery.

� Find north and orient TLS in Y-axis towards the target tree.

� Fill field sheet (orientation, position number, tripod height, GPS code).

� Turn on TLS.
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� Scan on upright position.

� Scan on tilt position.

� Turn off TLS.

� Remove TLS from tripod and take it to next scan position.

5. Start again from point 2.

6. Download and backup TLS data

� Connect TLS to power and to laptop.

� Copy data to two 2 external hard drives.

� Delete scans from TLS.

3.C.3 Plot set up and scanning progression within the plot

Once we found the tree, we label the tree (see Figure 3.A1). We set up a total of eight

scan positions, four in an inner ring at 6 m from the tree and the other four at 14 m from

the tree. We cleared the surrounding vegetation and check that the tree can be clearly

seen (specially the crown) at every position.

Figure 3.A1

This is the direction that we will follow from the tree (see Figure 3.A2). Choose one point

and scan counter-clockwise.
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Figure 3.A2

For the first scan, we set up three sets of reflectors: A, B and C (Figure 3.A3, left). We

must be careful enough that each set of reflectors is being seen by the other scan position.

For example, Set of reflector A has to be seen from scan position 1 and 2. Once the scan

finished, we moved to scan position 2 (Figure 3.A3, right). We set up reflector set D and

can this position. Then, we move to scan position 3 (Figure 3.A4, left) and move reflector

set A and E. We continue following this pattern until we finished the plot (Figure 3.A5

and 3.A6).

Figure 3.A3



60 TLS-derived allometric equations in Guyana

Figure 3.A4

Figure 3.A5
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Figure 3.A6

3.C.4 Download data and backup

For each tree, create a folder with the treeID and we copy the number of scans (minimum

16 scans).

Transcribe the field sheet into a word file with the same name of the tree.

Download the GPS data and save it with the treeID.

Download camera pictures and save them in a folder.

After downloading, create copies in external hard drives.
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3.D Semi-automated extraction of individual trees

from TLS plots

A framework was designed to semi-automated extract individual tree from TLS

plots:

a) We co-registered each scan using RiScan Pro Software [RIEGL Laser Measurement

Systems GmbH, Horn, Austria, www.riegl.com, version 2.5.1] with a registration

accuracy below 1 cm (Wilkes et al., 2017). We kept the co-registration files and the

individual files as input for the algorithm.

b) For each tree, we extracted a small cross-sectional point cloud. This cross section

specifies the location of the tree to the algorithm.

c) The algorithm locates the tree from the ring and creates a point cloud subset which

contained the potential tree.

d) We manually cleaned the tree point cloud subset from other features present (such

as lianas, stems and canopies from other trees). In addition, we ensure that no

branches or canopy parts are missing in the subset. If parts were missing, we

manually extracted them from the initial point cloud.

e) Individual trees are down-sampled to a minimum of 1 point per 26 mm3 to create a

uniform point density throughout the whole tree.

f) Finally, material separation algorithm separated hardwood (stem and branches)

from soft tissues (leaves) on our down-sampled trees (Vicari, 2017).

www.riegl.com
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3.E Pantropical allometric models

Pantropical models from Chave et al. (2005, 2014) and Réjou-Méchain et al. (2017)

included diameter at breast height (D, in cm), specie-specific wood density values ac-

cording to the GWDD (WD, in g cm−3 or kg m−3), total height (H, in m), the en-

vironmental stress (E, calculated from the GPS average location of each tree (http:

//chave.ups-tlse.fr/pantropical_allometry.htm) to estimate aboveground biomass

(AGB, in kg dry mass) and ε is the model error.

Model Form AGB =

Ch05.II.3 WD · exp[−1.499 + 2.1481 · log(D) + 0.207 · log(D)2 − 0.0281 · log(D)3] + ε

Ch05.I.5 0.0509 ·WD ·D2 ·H + ε

Ch14.H 0.0673 · (WD ·D2 ·H·)0.976 + ε

Ch14.E exp[−1.803− 0.976 · E + 0.976 · log(WD) + 2.673 · log(D)− 0.0299 · log(D2)] + ε

Rj17.E exp[−2.024− 0.896 · E + 0.920 · log(WD) + 2.795 · log(D)− 0.0461 · log(D2)] + ε

http://chave.ups-tlse.fr/pantropical_allometry.htm
http://chave.ups-tlse.fr/pantropical_allometry.htm
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3.F TLS-derived allometric model assumptions

We used a t-paired test to analyse whether the TLS-derived parameters had a significant

difference compared to our post-harvested field measurements. If TLS and field-based

measurements differed significantly, a calibration factor was applied to the input param-

eter.

We also tested whether there were significant differences between models built using field

measurements or TLS-derived data. We built models using both sets of data with data

source as a dummy variable. When the dummy variable was significant, we applied its

parameter estimate (Reference Dummy Variable Corrector; RDVC) to the corresponding

model form to modify the TLS built models.

We removed insignificant parameters using backwards stepwise regression to produce a

minimum adequate model. We tested assumptions of the final models. We tested for

normal distribution of the residuals using Q-Q plots and Anderson-Darling test, Durbin-

Watson test to assess independence, and plots of residuals against fitted values to assess

homogeneous variance and linearity.
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3.G Tree point cloud dataset

Tree point clouds of the TLS dataset by diameter size class and coloured by height. Tree

dataset comprises 72 TLS scanned trees and 26 harvested trees from 48 different species in

24 different families with diameter ranging from 12.9 cm to 149.8 cm and heights ranging

from 6.33 m to 49.2 m.
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3.H Wood density values for field inventory and de-

structive sampling

Wood density from field inventory (GWDD) and destructive sampling (weighted) from

72 and 26 trees respectively.

Diameter

class (cm)

Field inventory (n = 72) Destructive sampling (n = 26)

n min max mean n min max mean

10 ≤ DBH < 30 14 0.520 0.971 0.756 6 0.561 0.836 0.711

30 ≤ DBH < 50 17 0.378 0.971 0.777 5 0.384 0.908 0.634

50 ≤ DBH < 70 16 0.484 0.971 0.760 6 0.421 0.857 0.713

70 ≤ DBH < 90 15 0.524 0.862 0.733 4 0.627 0.852 0.706

DBH ≥ 90 10 0.390 0.862 0.627 5 0.408 0.808 0.635
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3.I Residuals vs fitted and Q-Q plots for models m4

and m5

TLS-derived allometric model m4 (top) and m5 (bottom) residual vs fitted (left) and Q-Q

plots (right) graphs.

Figure a: Model m4

Figure b: Model m5
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3.J Summary of statistics for small and large

trees

Table 3.A1: Summary of AGB estimates from TLS-derived and pantropical allometric mod-

els —R2, RMSE, CCC, sum of errors (sum, mean, standard deviation [SD]), mean percent

error and relative error (n = 26) separated in small trees (D ≤ 70 cm) and large trees (D >

70 cm). Models are arranged based on the statistical parameters from the best model to the

worst model.

Model Type
R2 RMSE CCC Sum Error (Mg)

small large small large small large small large

m5 D.WD.CD 0.83 0.84 1.27 2.69 0.87 0.90 0.50 0.53

m4 D.WD.H.CD 0.83 0.81 1.22 2.89 0.89 0.89 1.23 0.13

Ch05.II.3 WD.D.D2.D3 0.70 0.78 1.57 3.30 0.79 0.86 −3.61 −3.88

Ch05.I.5 D2.WD.H 0.76 0.67 1.40 4.25 0.84 0.79 −1.95 −7.91

Ch14.H (D2.WD.H) 0.75 0.67 1.41 4.11 0.84 0.79 −1.45 −10.44

m1 D 0.74 0.59 1.55 3.71 0.81 0.76 10.81 2.84

Rj17.E D.D2.WD.E 0.70 0.77 1.65 3.45 0.75 0.85 −6.72 −12.55

Ch14.E D.D2.WD.E 0.70 0.77 1.68 3.55 0.74 0.84 −7.45 −14.11

m3 D.WD.H 0.67 0.74 1.67 4.39 0.75 0.72 −2.66 −29.45

m2 D.WD 0.64 0.77 1.90 4.30 0.76 0.81 14.30 17.91

Table 3.A1: (continued).

Model
Mean error (Mg) SD error (Mg) Mean rel. error (%) SD. rel. erro (%)

small large small large small large small large

m5 0.03 0.06 1.31 2.86 44.08 0.11 70.75 22.73

m4 0.08 0.01 1.26 3.07 44.29 −0.04 65.74 23.30

Ch05.II.3 −0.21 −0.43 1.60 3.47 10.71 −4.22 57.51 22.36

Ch05.I.5 −0.11 −0.88 1.44 4.42 15.26 −7.57 47.45 24.95

Ch14.H −0.09 −1.16 1.45 4.19 19.54 −9.21 48.42 23.74

m1 0.64 0.32 1.46 3.92 99.92 7.74 118.63 26.22

Rj17.E −0.40 −1.39 1.65 3.34 3.61 −11.50 52.33 20.40

Ch14.E −0.44 −1.57 1.67 3.37 1.39 −13.08 51.60 20.94

m3 −0.16 −3.27 1.71 3.11 35.20 −23.72 65.90 19.41

m2 0.84 1.99 1.75 4.04 105.06 14.74 109.05 28.47
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3.K Mean error estimates for allometric models in

Mg

Mean error in estimates (estimated AGB minus reference AGB in Mg) by DBH size class:

small trees (D ≤ 70 cm; n = 17) and large trees (D > 70 cm; n = 9) for the TLS-derived

allometric models and pantropical models.
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Abstract

Tree architecture is the three-dimensional arrangement of aboveground parts of a tree.

Ecologists hypothesize that the topology of tree branches represents optimized adapta-

tions to tree’s environment. Thus, an accurate description of tree architecture leads to a

better understanding of how form is driven by function. Terrestrial laser scanning (TLS)

has demonstrated its potential to characterize woody tree structure. However, most cur-

rent TLS methods do not describe tree architecture. Here, we examined nine trees from

a Guyanese tropical rainforest to evaluate the utility of TLS for measuring tree architec-

ture. First, we scanned the trees and extracted individual tree point clouds. TreeQSM was

used to reconstruct woody structure through 3D quantitative structure models (QSMs).

From these QSMs, we calculated: 1) length and diameter of branches > 10 cm diameter,

2) branching order and 3) tree volume. To validate our method, we destructively har-

vested the trees and manually measured all branches over 10 cm (279). TreeQSM found

and reconstructed 95 % of the branches thicker than 30 cm. Comparing field and QSM

data, QSM overestimated branch lengths thicker than 50 cm by 1 % and underestimated

diameter of branches between 20 cm and 60 cm by 8 %. TreeQSM assigned the correct

branching order in 99 % of all cases and reconstructed 87 % of branch lengths and 97 %

of tree volume. Although these results are based on nine trees, they validate a method

that is an important step forward towards using tree architectural traits based on TLS

and open up new possibilities to use QSMs for tree architecture.
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4.1 Introduction

Tree architecture can be defined as the three-dimensional arrangement of the organs of

a tree. This arrangement includes the size and spatial arrangement of branches, leaves

and flowers (Reinhardt & Kuhlemeier, 2002) and can be defined by specific morphological

traits (Rosati et al., 2013). Tree architecture is a consequence of genetics and chance.

Genetics encode an adaptation of tree form and function to its surroundings with respect

to both biotic and abiotic factors such as competition for space, differential resource dis-

tribution (e.g., light), and support and safety against mechanical forces (e.g. gravity or

wind) (Chéné et al., 2012; Dassot et al., 2010). Chance includes stochastic processes such

as wind damage and damage to neighbours. Tree architecture directly influences biophys-

ical processes, such as photosynthesis and evapotranspiration (Rosell et al., 2009; Van der

Zande et al., 2006), ultimately leading to changes in carbon and water storage. The West,

Brown and Enquist (WBE) model (West et al., 1997; West, 1999a) uses the fractal-like

architecture of branching networks as a building block to predict how metabolism scales

with body size and structure in a simplified and generalized way (West et al., 1997; West,

1999a). Within the context of the WBE theory, tree architectural traits can be used to

understand and explore specific links among, for example, tree height, biomass, diame-

ter, growth and mortality (Bentley et al., 2013; Kempes et al., 2011; West, 1999b; West

et al., 2009). Thus, an accurate description of the architecture of trees can play a key role

in understanding tree-level and plot-level processes (Kempes et al., 2011; Rosati et al.,

2013).

Previous studies have described the architecture of tropical trees (Hallé et al., 1978; Hallé

& Oldeman, 1970) with the goal of qualitatively classifying tree forms. Standardized

structural assessment of forest canopies or individual trees have been developed, but these

assessments are based on subjective methods that do not allow a quantitative comparison

(Van der Zande et al., 2006) and generate a limited number of attributes that can be

readily obtained with non-destructive methods (Henning & Radtke, 2006). Studies have

quantitatively described tree architectural traits, but are limited due to the intensity

of manual labour needed to sample large numbers of trees with enough detail (Bentley

et al., 2013; Dassot et al., 2010). In light of these limitations, here we propose another

way forward to characterize tree architecture: terrestrial LiDAR (light detection and

ranging; Dassot et al., 2012) combined with a 3D quantitative structure model (TreeQSM ;

Raumonen et al., 2013).

Terrestrial LiDAR, also known as terrestrial laser scanning (TLS), is a valuable tool to

assess the woody structure of trees (Holopainen et al., 2011; Calders et al., 2015b; Gonzalez

de Tanago et al., 2017). In the field, a forest plot is scanned from multiple locations, which

are later co-registered into a point cloud to which 3D tree models can be fitted (Raumonen

et al., 2013; Hackenberg et al., 2014) and from which structural parameters can then
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be extracted in an objective and consistent way (Calders et al., 2015b; Pueschel et al.,

2013). A tree point cloud is an uninterpreted collection of data and the actual structural

information cannot be directly extracted (Bremer et al., 2013). To derive the structural

parameters from tree point clouds, several approaches have been developed (Pfeifer et al.,

2004; Thies et al., 2004; Dassot et al., 2012; Raumonen et al., 2013; Hackenberg et al.,

2014). Among these, TreeQSM - a 3D quantitative structure model (QSM) reconstruction

method - has been recognized as a promising tool for topological and structural assessment

of individual trees (Raumonen et al., 2013; Calders et al., 2015b; Gonzalez de Tanago et al.,

2017). TreeQSM splits the tree point cloud into segments and then reconstructs the whole

tree topological structure by fitting cylinders to each segment (Raumonen et al., 2013;

Gonzalez de Tanago et al., 2017). From each segment, we are able to calculate surface

and volume (Gonzalez de Tanago et al., 2017) and reconstruct topology. The output, a

QSM, is a hierarchical collection of cylinder which closely resemble the tree point cloud

in shape. More details regarding the mechanics of TreeQSM can be found in Åkerblom

(2017); Calders et al. (2015b); and Gonzalez de Tanago et al. (2017).

TLS, in combination with TreeQSM, has proven to be an accurate method to estimate

direct tree parameters such as tree height (Burt et al., 2013; Krooks et al., 2014), diameter

at breast height (D), trunk and branch volumes (Burt et al., 2013); and even indirect and

complex parameters such as biomass (Calders et al., 2015b) and changes in tree biomass

(Kaasalainen et al., 2014). Tree structure modelling with TreeQSM was also successfully

employed for automatic species recognition as in Åkerblom et al. (2017). However, most

studies so far have focused on measuring total tree volume as the only validation method

for this approach (Burt et al., 2013; Calders et al., 2015b; Gonzalez de Tanago et al.,

2017). Moreover, previous studies using TLS have mostly focused on temperate trees in

their leafless condition and with a comparatively low canopy height (Burt et al., 2013;

Dassot et al., 2010; Hackenberg et al., 2014; Holopainen et al., 2011; Kaasalainen et al.,

2014; Krooks et al., 2014; Pueschel et al., 2013; Seidel et al., 2012) (but see Wilkes et al.

(2017); Gonzalez de Tanago et al. (2017); and Momo Takoudjou et al. (2018) for tropical

forests). Scanning tropical trees is more difficult due to the complex forest layers with

evergreen species which lead to occlusion in the under story, frequently changing weather

conditions and logistical challenges (such as scanner settings, hardware requirements,

distance to plot, plot area; Wilkes et al., 2017).

Because quantitative measurements of tree architecture in the tropics are needed, this

paper assessed whether tree architecture can be reconstructed using TLS and TreeQSM.

Specifically, we aimed to: (i) reconstruct tree architecture scanned with TLS using Tree-

QSM, (ii) validate individual branch lengths, branch diameters and branching orders with

field reference measurements taken manually, and (iii) provide guidelines for future studies

endeavouring to reconstruct tree architecture using TLS and QSMs.
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4.2 Material and methods

4.2.1 Study area and plot design

Field data were collected in Vaitarna Holding’s forest concession in the tropical forest of

central Guyana during November 2014. Nine plots were established in a lowland tropical

moist forest located between 6°2′2.4′′N 58°41′56.4′′W and 6°2′20.4′′N 58°41′38.4′′W. The

field study had a mean elevation of 117 meters above sea level and mean precipitation

of 2195 mm yr−1 (Muñoz & Grieser, 2006). Tree selection was based on its harvestable

diameter and its suitability for harvesting. We located nine suitable trees for harvesting. A

local experienced taxonomist identified the trees, and the local names were later matched

with scientific names (Miller & Détienne, 2001). A total of seven Eperua grandiflora, one

Ormosia coutinhoi and one Eperua falcata were harvested.

In each plot, the selected tree was located and a 30 x40 m grid subplot (Online Resource

1 and Figure OR1.1) was established around it. The origin of the local coordinate system

was located at bottom left corner of the plot (bottom left red sun cross in Figure OR1.1).

The selected tree was located at 15 m East and 5 m North from the origin and a total of

thirteen scan locations were set up in the plot (sun crosses in Figure OR1.1), whereas the

y-axis was parallel to the expected felling direction. Each plot was scanned with TLS and

then the focal tree was felled and detailed measurements were taken.

4.2.2 TLS data acquisition

TLS data were acquired using a RIEGL VZ-400 V-Line 3D© terrestrial laser scanner

[RIEGL Laser Measurement Systems GmbH, Horn, Austria, <www.riegl.com>]. The

RIEGL VZ-400 is a discretized multiple-return LiDAR with a 1550 nm wavelength and a

beam divergence of 0.35 mrad (Wilkes et al., 2017; Gonzalez de Tanago et al., 2017). The

beam scan range is 360° in the azimuth and 100° in the zenith direction. In this study an

angular resolution of 0.06° was used. To co-register each scan, 5-cm cylindrical reflecting

targets (tie-points) were distributed throughout the plot, in such a way that they were

scanned from several positions. In total, thirteen scan locations were set up in each plot

using 60 reflectors. The average distance between scan locations was 17.5 m. These tie-

points were later used to register multiple individual point clouds into one unified point

cloud (Gonzalez de Tanago et al., 2017; Wilkes et al., 2017).

4.2.3 Manual measurements from harvested trees

After each tree was harvested, the geometrical structure of the main stem and branches

with a diameter of > 10 cm was manually measured with a 1 cm precision forestry tape.

<www.riegl.com>
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Buttresses were assumed to be cylindrical in order to enable comparison with 3D models.

To homogenize the measurement process on the harvested trees (Figure 4.1), we defined

a “branch node” as the furcation point over a tree segment where another tree segment

originates. From an ecological point of view, a “branch” is referred to the lateral axis from

the axillary meristems which begin in the axils of the leaves (Reinhardt & Kuhlemeier,

2002). In this study, we referred to “branch” as the tree segment which originates from a

furcation point and terminates either:

� when the tree segment begins to widen into another furcation point (specially noticed

on the main stem),

� when the tree segment reaches 10 cm diameter, or

� when the tree segment ends or is broken.

For each branch, we measured two parameters: length and diameter. We defined “branch

length” as the distance between the base furcation point and the termination point of

the branch, and “branch diameter” as the average of the diameter taken over the base

furcation point and the diameter taken below the termination point of the branch. In

addition, a unique BranchID was labelled to each measured branch for identification. For

“branching order”, we adapted a similar coding strategy as used in Gaaliche et al. (2016).

We determined the relative branching order centrifugally as shown in Figure 4.1, beginning

from the tree main stem. The main stem was considered as “first branching order”, then

the branches originated from the first furcation were considered as “second branching

order”, then the branches originated from this second furcation were considered as “third

branching order” and continuing by adding another branching order on each furcation as

in Figure 4.1. More details on how we determined branching order for this study can be

found in Online Resource 2. Finally, the “parent branch” was defined as the tree segment

on which another tree segment was originated and shared the same branch node as shown

in Figure 4.1. We recorded the branch length, branch diameter, branching order and

parent branch relative to each branch until they reached 10 cm diameter.

4.2.4 Tree architecture reconstruction

Our reconstruction procedure had three components: (i) manual tree extraction from

the registered point cloud, (ii) 3D reconstruction of individual tree point clouds using

TreeQSM, and (iii) individual analysis of QSM branches via manual branch-by-branch

pairing. First, to manually extract an individual tree from the point cloud of the entire

plot, a framework was designed:

1. Individual point cloud scans were co-registered into a plot point cloud using RiScan

Pro software [RIEGL Laser Measurement Systems GmbH, Horn, Austria, <www.

riegl.com>, version 2.0]. The achieved accuracy of our co-registration process was

<www.riegl.com>
<www.riegl.com>
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below an average of 1 cm per plot.

2. The main stem and canopy of each harvested tree were located in the registered

point cloud.

3. From a top view, a bounding box which enclosed the harvested tree was created.

The bounding box limits were defined by the area of the canopy.

4. The point cloud containing the harvested tree inside the bounding box was ex-

tracted.

Figure 4.1: Diagram of manual measurements from a harvested tree. A “branch node” is

the furcation point over a tree segment where another tree segment originates (0’, 1’, 2’).

Then, we defined a “branch” as the tree segment which originates from a furcation point and

terminates either: when the tree segment begins to widen into another furcation point (1’),

when the tree segment reaches 10 cm diameter (8’), or when the tree segment ends or is broken

(4’, 10’, 14’). “Branch length” was defined as the distance between the base furcation point

and the termination point of the branch (c and c’ ) and “branch diameter” as the average of

the diameter taken over the base furcation point (a and a’ ) and the diameter taken below the

termination point of the branch (b and b’ ). In addition, a unique BranchID was labelled to

each branch for identification. We labelled each parent branch, i.e. BranchID 2 and BranchID

4 had the same parent branch (BranchID 1), while BranchID 8, BranchID 10 and BranchID

14 shared the same parent branch (BranchID 2). The branching order was determined relative

to the main stem and given centrifugally by the furcations originated on each branch.
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5. Features that were not related to the harvested tree, such as lianas, stems and

canopies from other trees were manually removed.

6. In addition, visual inspection was performed to ensure that no branches or canopy

parts were missing in the subset. Missing parts were manually copied from the

entire plot point cloud and merged with the individual tree point cloud.

Once the individual tree point clouds were extracted, cylindrical models were fitted to

those point clouds using TreeQSM (Raumonen et al., 2013; Calders et al., 2015b; Gonzalez

de Tanago et al., 2017). In this paper, TreeQSM version 2.2.1 was used (a later version is

available and functions in a similar way). Reconstructing trees using TreeQSM is semi-

automatic and requires the input of a few parameters. TreeQSM partitions the point cloud

into small connected surface patches and then uses them to reconstruct each segment of the

tree. Then, cylinders are fitted to the segments and geometric and topological features are

obtained (Raumonen et al., 2013). The most important input parameter is the diameter

(d) that defines the size of the surface patches. Furthermore, the partition into patches is

random and thus repeating the reconstruction always results slightly different QSMs, even

if all inputs are the same. To assess the robustness of the d parameter, previous works

(Calders et al., 2015b; Gonzalez de Tanago et al., 2017) have focused on optimizing total

volume and not the detailed structure of tree branches. They produced several models

for each case and calculate the mean and standard deviation from these repetitions. To

choose the most robust value of d we:

1. Fitted 10 QSMs of three random trees using values for the d parameter ranging

from 0.05 to 0.5 at a 0.05 increment.

2. Visually inspected each QSM for each d value, as described in Calders et al. (2015b).

The best d value was heuristically determined based on the visual inspection.

Based on the visual inspection, TreeQSM produced the most visually accurate models

for tree architecture when d was set to 0.1. Nevertheless, we decided that quantitative

measures of fit were necessary. Once the point clouds had been transformed into cylin-

drical models, we continued to the final step of analysing individual QSM branches as

follows:

1. Each TLS tree point cloud was reconstructed 20 times using d set to 0.1.

2. The TreeQSM simplification algorithm was performed to obtain simplified QSMs

outputs (Tobias Jackson, personal communication, May 17, 2017). This simplifica-

tion method is also available with the latest version of TreeQSM. This simplification

algorithm specifies that:

� QSMs cylinders with a diameter < 10 cm are removed to be comparable with

our manual measurements dataset and to minimize the possibility of including

lianas.



4.2 Material and methods 79

� QSMs cylinders with a radius less than or equal to 1/3 of its parent radius are

removed to eliminate very small artefact cylinders.

3. Each QSM branch was split at each branch node, since the original TreeQSM did

not split QSM branches at each branch node (See Online Resource 2 and Figure

OR2.1).

4. The branching order of the QSMs was arranged to add a level at every branch node

(See Online Resource 2 and Figure OR2.1).

5. All 20 repetitions were ranked using a quantitative scale based on visual inspection

(Online Resource 3) and the seven most accurate models were saved for further

analyses.

Finally, the geometrical structure and branching order from the QSMs were reconstructed

following the measurements from the harvested trees (Figure 4.2). A QSM branch node

was defined as a QSM cylinder from which two or more cylinders are originated. This

cylinder defined the termination of a QSM branch and the following cylinders are the origin

of new QSM branches. Then, we defined a QSM branch as a collection of consecutive

QSM cylinders which originate from a QSM branch node and terminates either:

� on another QSM branch node,

� when a QSM cylinder reaches 10 cm diameter, or

� when the QSM branch ends

The QSM branch length was estimated as the sum of the length of all cylinders belonging

to the QSM branch and the QSM branch diameter was estimated as the average of the

first and last cylinder belonging to the QSM branch.

4.2.5 Visual branch-by-branch pairing

The manually measured tree and QSM tree were visually paired branch-by-branch. The

architecture of the manually measured tree was followed and each individual manually

measured branch was located and identified. Then, we visually paired the measured

branch with a QSM branch following the architecture of the QSM tree. Manually mea-

sured branches which did not have a QSM pair at all were excluded for further analysis.

In the case that a manually measured branch was a suitable pair to two or more QSM

branches, the similarity of each QSM branch with their manually measured counterpart

was analysed. The length and diameter of each QSM branch were the parameters used

to analyse quantitatively the similarity of branches. Because length and diameter had

different orders of magnitude (one order of magnitude difference in length parameter

is a hundred order of magnitude difference in branch diameter), we could not compare

them using Euclidian distance. To overcome this, a special type of Euclidian distance,
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Figure 4.2: Diagram of QSM reconstruction. QSMs cylinders with a diameter < 10 cm

were removed. Different colours depict different QSM branches. A branch node is a QSM

cylinder from which two or more cylinders are originated (dark green a” cylinder and orange

c” cylinder). These cylinders are also the termination of their respective QSM branches. An

orange QSM branch started from b” cylinder and terminated on c” cylinder. The QSM branch

length d” was calculated as the sum of the length of the consecutive cylinders from the orange

QSM branch and the QSM branch diameter was calculated as the average of the first cylinder

(b”) and the last cylinder (c”) diameters. Please refer to the digital version for colour image.

the Diagonal-norm approach (Bezdek, 1981) was applied. The diagonal-norm approach

computed standardized values for both parameters and allowed us to compare them quan-

titatively in the same order of magnitude. Then, the QSM branch most similar to the

manually measured branch in standardized length and standardized diameter was chosen

as the best fitted pair.
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4.2.6 Tree metrics assessment

We examined the absolute and relative error to evaluate branch length and diameter accu-

racy per individual paired branch. A confusion matrix was used to validate the accuracy

of our branching order method when compared to our manual measured dataset. Finally,

the relative error was used to compare the cumulative length and the cumulative branch

volume of total branches (as the aggregation of all paired branches) and separated by

diameter classes. The cumulative branch length was calculated as the sum of branches’

length per cumulated diameter class. Likewise, the cumulative branch volume was calcu-

lated as the total sum of branches’ volume per cumulated diameter class. The length and

mean diameter values of each branch were used to calculate branch volume.

4.3 Results

4.3.1 Manual measurements from trees

TheD of the nine trees harvested ranged from 61.3 cm up to 97 cm and the total tree height

ranged from 18.8 m up to 29.9 m. We collected and manually measured 279 branches up

to diameter > 10 cm and the highest branching order recorded was 8 (Table 4.1).

Table 4.1: Local name, scientific name, D, tree height, number of branches measured and

branching order for the nine trees harvested in this study.

Tree
Local

name

Scientific

name

Tree

diameter (cm)

Tree

height (m)

Measured

branches

Branching

order

1 Wallaba ituri E. grandiflora 89.3 25.4 39 8

2 Wallaba ituri E. grandiflora 61.3 18.8 23 6

3 Wallaba ituri E. grandiflora 66.0 22.2 23 5

4 Wallaba ituri E. grandiflora 68.7 29.6 30 6

5 Wallaba ituri E. grandiflora 72.7 28.8 26 5

6 Wallaba ituri E. grandiflora 97.0 29.2 32 7

7 Wallaba ituri E. grandiflora 82.6 27.0 20 6

8 Korokororo O. coutinhoi 76.0 29.8 54 7

9 Wallaba soft E. falcata 65.5 29.9 32 8
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4.3.2 Pairing individual QSM branches with manually measured

branches

We needed to pair one measured tree with the seven most accurate QSMs. To cope with

this, we compared seven times the measured branches with the seven most accurate QSMs.

Thus, a total of 279 manually measured branches were compared seven times (a total of

1953 branches were compared) and expected to pair with QSM branches. TreeQSM was

able to find all measured branches at least once within the seven repetitions. However,

only 1149 QSM branches paired, a 59 % success rate (Table 4.2). TreeQSM was able to

reconstruct more than 95 % of the branches thicker than 30 cm. These branches were

mostly the main stem and big branches. However, the reconstruction accuracy decreased

for thinner branches (which usually have also lower point cloud density). TreeQSM re-

constructed less than 56 % of the branches with diameter measured between 10 cm to

30 cm.

Table 4.2: Manually measured branches and the average and standard deviation of the most

accurate QSM branches with TreeQSM (7 repetitions) by diameter classes. Accuracy shows

the percentage of manually measured branches successfully reconstructed by TreeQSM. Our

analysis was based only using QSM branches that could be paired with a manually measured

branch.

Diameter

class (cm)

Measured

branches

Average of

QSM branches

Accuracy

(%)

10–20 160 72.29± 13.03 45

20–30 67 44.86± 7.27 67

30–40 26 21.86± 9.14 84

40–50 11 10.14± 3.93 92

50–60 7 7 100

60–70 5 5 100

≥ 70 3 3 100

4.3.3 Branch length from QSMs

We analysed the performance of TreeQSM by comparing the length of QSMs branches

against the length of our manually measured branches and calculating the absolute error

difference between diameter classes (Table 4.3 and Figure 4.3a). For average length values

per classes, refer to Table OR4.1 in Online Resource 4. For branches greater than 50 cm

diameter, the length of QSMs branches was overestimated by 1 % (0.21 m larger on average

than the manually measured branches). TreeQSM had lower accuracy reconstructing

length for branches smaller than 50 cm diameter. The length of QSM branches was
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underestimated by 20 % (0.58 m shorter on average) when compared to its measured

counterpart.

Table 4.3: Average absolute error and average relative error for QSM branches by diameter

classes. Our analysis was based on the QSM branches which paired a manually measured

branch. Negative values indicated a model underestimation while positive values indicate a

model overestimation compared to the manually measured branches.

Diameter

class (cm)

Absolute error and SD Relative error

Length (m) Diameter (cm) Length (%) Diameter (%)

10–20 −1.03± 1.81 5.14± 5.50 12 40

20–30 −0.67± 1.50 −0.65± 4.76 10 −2

30–40 −0.42± 2.19 −5.33± 5.26 37 −15

40–50 −0.21± 1.37 −4.23± 7.83 19 −9

50–60 −0.10± 0.76 −3.61± 8.98 −1 −7

60–70 0.34± 0.40 −5.33± 5.68 3 −9

≥ 70 0.39± 0.30 −1.54± 0.80 2 −2

4.3.4 Branch diameter from QSMs

For branches greater than 60 cm in diameter, the diameter of QSMs branches was un-

derestimated by 6 % (3.44 cm thinner on average than that of the measured branches)

as seen in Table 4.3 and Figure 4.3b. For average diameter values per classes, refer

to Table OR4.1 in Online Resource 4. For branches with a diameter between 20 cm to

60 cm, TreeQSM underestimated the diameter by 8 % (3.46 cm thinner on average than

measured branches). Also TreeQSM did not perform well for branches between 10 cm to

20 cm. For these branches, QSMs diameters were overestimated by 40 % (5.14 cm thicker

on average).

4.3.5 Branching order from paired QSMs

The confusion matrix revealed that our method was very accurate in assigning the correct

branching order when compared to the branching order of our manually measured paired

dataset (Table OR5.1 in Online Resource 5). Our method correctly assigned 1143 QSM

paired branches with an overall accuracy of 99 % and an overall kappa coefficient of 0.99.

Only 6 QSM branches were assigned incorrectly, and all of these were assigned to higher

branching orders.
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Figure 4.3: Absolute error for length for each unique QSM branch (a) and diameter (b).

The solid black horizontal line depicts a perfect match (absolute error of 0 m). Vertical lines

depict the range of values of the seven reconstructions of the QSM per tree and the dot depicts

the average value from the seven repetitions. Coefficient a denotes each tree main stem.

4.3.6 Absolute and cumulative branch length and branch volume from

QSMs

The absolute length and absolute volume of TreeQSM matched branches were compared

with the absolute length and absolute volume of manually measured matched branches

by diameter classes (Table 4.4). When analysing by diameter classes, for branches

between 10 cm to 20 cm, TreeQSM underestimated the absolute branch length by 30 %.

For thicker branches, with diameter between 20 cm to 50 cm, absolute branch length is

underestimated by 17 % and for branches thicker than 50 cm, is slightly overestimated

by 1 %. On the other hand, TreeQSM greatly overestimated the absolute branch volume

for branches between 10 cm to 20 cm (40 %). However, for the branches with diameter

between 20 cm to 50 cm, TreeQSM underestimated the absolute branch volume by 29 %.

For thicker branches (> 50 cm), the absolute volume is slightly underestimated by 0.4 %

(Table 4.4).

The cumulative branch length and cumulative branch volume of each TreeQSM tree were

compared to the same parameters of each manually measured tree (Table 4.5). When

analysing all measured branches, TreeQSM underestimated the length by 13 %. Tree-
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Table 4.4: Absolute values for manually measured branches and absolute values and relative

error for QSM branches for the absolute branch length and absolute branch volume separated

by 10 cm diameter classes. Values shown are the average values and standard deviation from

the seven models.

Diameter

class (cm)

Absolute branch length (m) Absolute branch volume (m3)

Measured

branches

QSM

branches

Relative

error (%)

Measured

branches

QSM

branches

Relative

error (%)

10–20 25.50± 8.21 17.82± 6.49 −30 0.44± 0.15 0.61± 0.34 40

20–30 13.51± 4.86 9.78± 4.62 −28 0.66± 0.23 0.47± 0.24 −29

30–40 6.61± 5.49 5.61± 3.53 −15 0.60± 0.45 0.42± 0.28 −30

40–50 4.16± 2.16 3.80± 1.60 −8 0.66± 0.38 0.49± 0.22 −26

50–60 14.88± 6.77 14.88± 6.85 −1 3.39± 1.74 3.62± 2.05 7

60–70 11.22± 7.65 11.56± 7.94 3 3.47± 2.38 3.28± 2.42 −5

≥ 70 21.23± 4.57 21.62± 4.79 2 9.51± 2.19 9.25± 2.02 −3

QSM only slightly overestimated below 1 % the length of branches thicker than 40 cm

compared to the manual measurements. When summing branches up to 20 cm diameter,

the accuracy decreased and the cumulative length was underestimated by 6 %. Similarly,

TreeQSM tended to underestimate the cumulative volume when compared to manual

measurements (Table 4.5). When analysing all measured branches, TreeQSM underesti-

mated the volume by 3 %. For branches thicker than 50 cm, the volume of QSM branches

was overestimated by 1 % and the cumulative accuracy decreased when summing thin-

ner branches. For branches thicker than 30 cm, TreeQSM underestimated volume by

3 %.

4.4 Discussion

Our TLS and the TreeQSM method correctly identified and reconstructed 95 % of the

measured branches thicker than 30 cm diameter, 67 % of the measured branches with

diameter between 20 cm and 30 cm and 45 % of the measured branches thinner than 20 cm

diameter. Our method was exceptionally accurate assigning branching order (Figure

4.4). However, we identified limitations with this method for reconstructing the length

of measured branches less than 50 cm and the diameter of measured branches thinner

than 20 cm. In a similar study on non-tropical trees, Hackenberg et al. (2015b) found

that branches with diameter thicker than 10 cm were reconstructed accurately, but with

smaller branches, especially twigs with diameter thinner than 4 cm, models overestimated

branch volume. In a study by Kaasalainen et al. (2014) branches with diameter thinner

than 5 cm were hardly visible in the point cloud and therefore were mostly left out of the

model.
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Table 4.5: Cumulative values and relative error (%) for cumulative branch length and branch

volume for manual measurements and TreeQSM models. Negative values show underestima-

tion while positive values show overestimation. Values are average values from the seven

models.

Cumulated

branch

diameter (cm)

Cumulative branch length (m) Cumulative branch volume (m3)

Measured

branches

QSM

branches

Relative

error (%)

Measured

branches

QSM

branches

Relative

error (%)

≥ 70 21.23 21.62 2.0 9.51 9.25 −3

≥ 60 32.45 33.18 2.0 12.98 12.52 −3

≥ 50 47.33 47.92 1.0 16.36 16.15 −1

≥ 40 51.49 51.71 0.4 17.02 16.64 −2

≥ 30 58.10 57.33 −1.0 17.63 17.05 −3

≥ 20 71.61 67.11 −6.0 18.29 17.52 −4

Measured tree 97.11 84.93 −13 18.73 18.14 −3

Our method underestimated absolute measured branch cumulative length on average by

13 %. When analysing by cumulative diameter classes, our method slightly overestimated

less than 1 % the length of cumulative measured branches thicker than 40 cm. When

including thinner measured branches (up to 20 cm), the absolute measured length was

underestimated by 6 %. Dassot et al. (2012) found that reconstructed stem length agreed

well with destructive measurements while reconstructed length of thinner branches did

not.

Moreover, our method tended to slightly overestimate the length of thicker branches

and underestimate the length of thinner branches (Table 4.4). This pattern was also

observed in the relative error of the cumulated branches (Table 4.5). The relative error

of the absolute branch length was greater as branches got thinner (Table 4.4). However,

the cumulative branch length did not reflect this pattern, due to the small influence of

the length of smaller branches when compared to the absolute length of our measured

branches.

Similarly, our method underestimated the absolute branch volume by 3 %. When

analysing by cumulated diameter classes, our method slightly underestimated the esti-

mated volume of branches thicker than 50 cm by 1 %. When including thinner branches

(below 20 cm), cumulative branch volume underestimation increased up to 4 %. This sys-

tematic underestimation of tree volume regardless of species or absolute volume was also

reported by Dassot et al. (2012); Calders et al. (2015b); and Gonzalez de Tanago et al.

(2017). Similar studies also described similar accuracy values, Gonzalez de Tanago et al.

(2017) showed an overall underestimation of 4 % and Hackenberg et al. (2015a) described

a absolute relative error of 8 % compared to volume reference data. Although our method
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greatly underestimated the volume of thinner measured branches (Table 4.4), these did

not contribute significantly to the cumulative branch volume, as seen in Table 4.5.

Figure 4.4: (a) E. grandiflora tree point cloud, (b) TreeQSM with branches> 10 cm diameter

reconstructed from the tree point cloud. (c) QSM branches classified by length, (d) by branch

diameter, and (e) by branching order. (f) QSM branches which were paired with manually

measured branches. Please refer to the digital version for colour image.

A conceptual difference where the main stem terminated was found between the manual

measurements and the tree reconstruction. In the manual measurements, the length of the

main stem stopped where the stem began to widen, before the point of furcation (Figure

4.1); while in our method (Figure 4.2), the length of the main stem terminated where the

actual furcation was. The point of the manual measurement was up to several meters

below where the measured branch split occurred and where the TreeQSM reconstructed

a new branch. Thus, we took new measurements using the tree point cloud. The new

measurements lowered the absolute error from 4.6 m to 0.7 m. Based on our results, we

recommend for future research to explicitly define a measured branch starting from the

base of a branch. An ambiguous branch definition might lead to higher uncertainty in

the length of the QSM branch. In addition, we observed that some big branches were de-

stroyed during tree felling and could not be manually measured afterwards. Luckily, these

branches had been scanned before felling, and thus appeared in the point cloud and were

reconstructed by TreeQSM. As such, in the future, we suggest that the destroyed branches

should be taken into account during the reconstruction process, because a missing branch

might confuse the branching order and misclassify the QSM branch.

While our tree reconstruction method helped us to understand the architecture of the

branches, it also constrained representing the architectural complexity. In this study, we

enforced a simple cylinder-fractal structure of trees and lost details of the complex nature

of the architecture of trees. Figure 4.1 shows that branch daughters exactly originated

from a single branch node. However, two branches might originate from different branches

nodes which are very close to each other and they might be confused as one branch node.

While in this study we did not find this case, future studies should take into account the
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exact point of furcation as the origin of the branches. Enforcing a cylindrical structure

also impacted the buttresses modelling. In this study, the presence of buttresses did not

impact our branches analysis. Moreover, the TreeQSM version used for this analysis was

not able to render buttresses, thus we assumed them as cylinders. Recent work done

by Gonzalez de Tanago et al. (2017) suggested that the modelling of buttresses has an

impact on decreasing uncertainty on total tree volume and encouraged further studies to

analyse buttresses in depth. In addition, we applied a simplification algorithm to reduce

the number of output cylinders. This step reduced the number of cylinders by, either

removing specific cylinders (based on our threshold), or merging two or three cylinders

into a larger one. Nevertheless, this simplification indirectly added uncertainty in the

reconstruction. Figure 4.2 shows three cylinders originating from the blue branch. While

two cylinders originated from a very close furcation point, the first cylinder originated

below this furcation point. However, the simplification process of our method created a

single cylinder and simplified the output model.

The quality of any TreeQSM output is a reflection of the quality of the point cloud

on which it was based and the accuracy assessed for reconstruction. Several stud-

ies proved that TreeQSM was able to reconstruct smaller branches with high accu-

racy when these branches had sufficient point density for an proper reconstruction

(Raumonen et al., 2013; Calders et al., 2015b; Åkerblom et al., 2017). In our study, we

scanned the trees in dense tropical environments, which made it difficult to scan properly

the smaller branches inside the crown. The quality of the point cloud is directly influenced

by several factors such as: the distance between the TLS scanner and the scanned tree,

the scanning parameters and the environment surrounding the tree. The distance from

the instrument to the tree canopy was especially noticed, which is the farthest path from

the TLS scanner, surrounded by under story and (very often) lianas. The presence of

lianas did not help us in the reconstruction process; however, in this study we are not

modelling tree volume, and so the effects were not considered important. Even though

our results showed that TreeQSM could not reconstruct thinner branches (it found 56 %

of branches between 10 cm to 30 cm diameter), the deviations of the TreeQSM matched

branches from the real data measured in the field are relatively small. Moreover, we

scanned with an angular resolution of 0.06°, which had proven to be a good trade-off

between accuracy and time requirements for estimating other tree parameters (Calders

et al., 2015b; Gonzalez de Tanago et al., 2017; Wilkes et al., 2017), but might not be the

most adequate parameter for inside canopy measurements. Wilkes et al. (2017) suggested

that an angular resolution of 0.01° might be a better choice when scanning branches in

high detail. By decreasing the resolution to 0.01°, we would be increasing the point den-

sity at larger distances, capturing more details of branches at higher heights. However, by

increasing the angular resolution, we are also exponentially increasing the time scanning.

Moreover, we are also increasing the chance that we capture the branches being swayed

by the wind, creating a ghosting effect in the point cloud (Wilkes et al., 2017).



4.4 Discussion 89

Occlusion (the hiding of some structural elements by others) is a big issue for scanning in

the tropics, thus to avoid occlusion and capture branches in detail within the canopy, the

scanner should be located within a gap in the understory or in flexible positions. Imple-

menting a radial sampling design with flexible locations around the tree could potentially

produce a more evenly distributed point density along the tree (Wilkes et al., 2017) and

avoid occlusion by the surroundings. Our study employed 9 fixed position and only 4

flexible positions (set up arbitrarily within canopy gaps to capture the tree canopy) for

TLS scanning per plot (Online Resource 1). We suggest that further studies should in-

crease the number of flexible scan positions. The inclusion of more flexible scan positions

might increase the point density at plot level. Moreover, when scanning, one should take

into account wind, which swayed the medium to small branches and introduced noise in

the point cloud. Seidel et al. (2012) have recommended to avoid wind with speed greater

than 5 m/s.

Although our sample size is small and dominated by one tree species, our methodology can

be applied to most tree species. We suggest that future research can apply our method-

ology on trees with different architecture and compare the accuracy. Equally important,

one should be aware of the presence of non-hardwood components (leaves), branches from

other trees and lianas. Tree architecture relies mostly on hardwood measurements and

the presence of leaves, foreign branches and lianas introduces uncertainty in the branch

reconstruction at canopy level. Lianas are very difficult to distinguish within the canopy

and manually removing them creates extra work. In this paper, we systematically deleted

all cylinders with diameter less than 10 cm to remove lianas. Future research on branch

architecture in the tropics should aim to incorporate new algorithms for leaves and lianas

removal.

The branching order is a very sensitive parameter. TreeQSM will reconstruct foreign cylin-

ders from a point cloud which has not been properly cleaned (with lianas or branches from

other trees). The presence of these foreign branches will add several levels to the branch-

ing order, especially if those foreign branches are attached to the main stem, changing the

order drastically. Even though the branching order was highly accurate with our paired

branches, some branches were misclassified in higher branching orders.

We excluded branches thinner than 10 cm from our analysis. The low point density (due

to the scanner angular resolution used in this paper), the plot design (Online Resource

1) and the high occlusion (due to lianas and the same branches) inside the crown made

the reconstruction of branches within the crown unreliable. Moreover, our field data

collected only measurements of branches > 10 cm. While removal of branches below

10 cm facilitated branch reconstruction in this study, it also reduces the applicability of

this method for further studies. Despite that, it does not complete discard it; future

research could adopt this methodology for smaller branches and still have comparable

results.
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Our paper relied on visual inspection in several steps of this paper (sections 4.2.4 and

4.2.5). Even though visual inspection is subjective, it was done heuristically based on the

expertise of the authors. Other studies relied on other parameters to optimize TreeQSM,

e.g. Gonzalez de Tanago et al. (2017) used the absolute volume to estimate an optimal d.

We could not apply the same optimization method as in Gonzalez de Tanago et al. (2017),

since their method was optimized upon estimating biomass and their sample size was

bigger than ours. Future research should focus on an automated TreeQSM optimization

method, as proposed by Calders et al. (2015b).

4.5 Conclusions

Our study assessed the accuracy of using TLS and TreeQSM to reconstruct tree archi-

tecture parameters (branch length, branch diameter, branching order, absolute and cu-

mulative measured tree length and absolute and cumulative estimated tree volume) from

tropical tree point clouds. Our method is able to reconstruct accurately big branches (>

40 cm diameter), while for smaller branches the accuracy decreased. A series of limita-

tions were discussed which could improve the constraints encountered in this study and

improved the modelling of smaller branches. We encourage future studies to optimize the

plot and sampling design to obtain a more optimal point cloud density for branches inside

the canopy and to take other factors into account while scanning, such as wind and dis-

turbance from sampling activities (Wilkes et al., 2017). Even though our results perform

worse at the tree level, our approach still represents a significant step forward into studies

of tree architecture based on TLS and TreeQSM which could accelerate and improve our

understanding of tree architecture and how it may influence ecological (Kempes et al.,

2011; Rosati et al., 2013) and metabolic processes (West, 1999b; Bentley et al., 2013) or,

in turn, be shaped by those processes.
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LiDAR and 3D modelling
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Abstract

Tree architecture influences physical and ecological processes within the tree. Prior work

suggested the existence of general principles which govern these processes. Among these,

the West, Brown and Enquist (WBE) theory is prominent; it holds that biological function

has its origin in a tree’s idealized branching system network; from which scaling exponents

can be estimated. The scaling exponents of the WBE theory (branch radius scaling ratio,

α and branch length scaling ratio β) can be derived from branch parameters and from

these, metabolic scaling rate (θ) can be derived. Until now, branch parameter values

are taken from direct measurements, either from standing trees or from harvested trees.

Such measurements are time-consuming, labour intensive and susceptible to subjective

errors. Terrestrial LiDAR (TLS) is a promising alternative, being both less biased to error,

scalable, and being able to collect large quantities of data without the need of destructive

sampling the trees. In this thesis we estimated scaling exponents and derived metabolic

rate from TLS and quantitative structure models (TreeQSM ) models from nine trees in a

tropical forest in Guyana. To validate these TLS-derived scaling exponents, we compared

them with scaling exponents and derived metabolic rate from field measurements at three

levels: branch-level, tree-level and plot-level. For that, we destructive sampled the scanned

trees and measured all branches > 10 cm. Our results show that, with some limitations,

radius, length scaling exponents and architecture-based metabolic rate can be derived

from 3D data of tree point clouds. However, we found that only θ converged between our

TreeQSM modelled and manually measured dataset at both, the branch-level (0.59 and

0.50 for TreeQSM and manually measured exponent, respectively) and at the tree-level

(0.56 and 0.51). Our results did not support the same conclusion for α nor β - neither at

the branch-level nor at the tree-level. The α diverged between TreeQSM and manually

measured dataset at the branch-level (0.45 and 0.63) and at the tree-level (0.46 and 0.64).

The β was the exponent which most deviated between TreeQSM and manually measured

dataset at the branch-level (0.42 and 0.07) and at the tree-level (0.41 and 0.05). At the

tree-level, we found that all estimated averaged exponents deviated significantly from

metabolic scaling theory predictions (α=1/2 , β=1/3 , and θ=3/4 ). Our study provides

an alternative method to estimate scaling exponents variation at both the branch- and

tree-level in tropical forest trees without the need for destructive sampling. Although

this approach is based on a limited sample of nine trees in Guyana, can be implemented

for large-scale plant scaling assessments. These new data might improve our current

understanding of metabolic scaling without harvesting trees.
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5.1 Introduction

Tropical forests are structurally complex ecosystems. This complexity is due to the dis-

tribution of woody stems and the three-dimensional arrangement of the aboveground ele-

ments (such as leaves, branches, trunk) from the bottom to the top of the canopy (Saatchi

et al., 2011). The architectural form of the tree is the results of a combination of both

its genetic programme and its adaptive response to the surroundings (Malhi et al., 2018)

and influences physical (such as growth, water movement and nutrient allocation) and

ecological processes (such as photosynthesis, CO2 sequestration and evapotranspiration)

(Rosell et al., 2009). Previous studies found similarities in the relationships between these

physical and ecological processes that suggest the existence of general underlying prin-

ciples which govern these processes (Savage et al., 2010; Sperry et al., 2012; Tredennick

et al., 2013).

Several ”universal” theories, including the Geometric Similarity Model (McMahon & Kro-

nauer, 1976), Stress Similarity model (Niklas, 1994) and the West, Brown and Enquist

(WBE) model (West et al., 1997; West, 1999a) have been developed to understand these

principles with reproducible theoretical predictions (Tredennick et al., 2013). Among

these theories, the WBE model (West et al., 1997; West, 1999a) has best stood the test

of time. The WBE theory holds that the scaling of metabolic rate and other biological

functions has its origin in a (theoretical) optimal branching system network at both in-

ternal (vascular) and external (branching) components (West et al., 1997; West, 1999a;

see Appendix 5.A for more information regarding WBE theory). In terms of the WBE

model, the external structure assumes an idealized branching network which must be

symmetrical, self-similar and hierarchical (Appendix 5.A). From this branching network,

three key parameters (branching ratio, branch radius scaling and length scaling ratio) can

be extracted and used to estimate the scaling exponents (Fig. 5.1 top and Malhi et al.,

2018). Nevertheless, real trees do rarely conform to idealized branching. To understand

the basis of this theory, an accurate quantification of the branching architecture of trees

is needed.

Detailed description of branching architecture can be traced back to Leonardo Da Vinci in

the 15th century; however, it was not until the work of Francis Halle in the late 70’s that

tree form was qualitatively classified (Hallé et al., 1978). From there, only few studies

have quantitatively assessed branch architecture at branch-level or tree-level and used

them as a base for plant scaling models (Nygren & Pallardy, 2008; Bentley et al., 2013;

Tredennick et al., 2013); using either destructive harvesting or direct measurements with

xyz -local coordinates. The intensity of manual labour to sample large quantities of trees

with enough detail (Bentley et al., 2013) and the uncertainty of subjective errors in the

measurements are the biggest limitations for quantifying branches in an objective way. An

accurate estimation and quantification of the branching architecture is key to understand
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the ecological processes of plant metabolism.

Terrestrial Light Detection and Ranging (LiDAR) or terrestrial laser scanning (TLS) is a

valuable tool to capture the three-dimensional structure of trees and, in combination with

specialized algorithms, to assess the woody structure in a repeatable, non-invasive and ob-

jective way (Wilkes et al., 2017; Malhi et al., 2018). This active remote sensing technique

is based on the emission and reception of tens to hundreds of thousands of monospectral

laser beam pulses (Grau et al., 2017) which are propagated into the surroundings of the

instrument up to hundreds of metres (Malhi et al., 2018). When these pulses hit an ob-

ject they are reflected back to the instrument. The reflected pulse’s return time is used

to create an accurate and highly detailed spatial three-dimensional representation of the

surface of the objects surrounding the scanner. With the use of specialized software, a

highly detailed 3D point cloud of the scanned area is created (Wilkes et al., 2017).

TLS has rapidly been developed to extract various attributes (at plot-level and tree-

level) from scanned forest environments. Studies initially focused on extracting plot-level

attributes (Côté et al., 2012; van Leeuwen et al., 2011; Dassot et al., 2011; Newnham

et al., 2015; Xi et al., 2016; Wilkes et al., 2017; Grau et al., 2017), mostly because of the

manual labour identifying and extracting individual trees from the massive point cloud.

The development of tree segmentation algorithms (Raumonen et al., 2015; Ayrey et al.,

2017) may assist in a semi-automated extraction of individual trees. From individual

tree point clouds we can directly estimate branch diameter (Tansey et al., 2009; Huang

et al., 2011), tree height (Burt et al., 2013; Krooks et al., 2014; Brede et al., 2017), and

crown diameter and area (Zhao et al., 2012; Srinivasan et al., 2015), among other tree

parameters.

The development of quantitative models to reconstruct the fine structure of trees (e.g.

TreeQSM ; Raumonen et al., 2013 and Simple Tree; Hackenberg et al., 2015a) made a new

approach available to derive indirect parameters. Several studies focused on the potential

of these reconstruction algorithms to estimate tree volume, and indirectly, aboveground

biomass (Calders et al., 2015b; Gonzalez de Tanago et al., 2017; Momo Takoudjou et al.,

2018; Saarinen et al., 2017; Stovall et al., 2017). Further, from these estimations, Olagoke

et al. (2016) was able to construct allometric models. Other studies focused on other

characteristics of trees, such as root modelling (Smith et al., 2014a; Paynter et al., 2016)

and species recognition (Åkerblom et al., 2017). TLS scanning of the same area at differ-

ent periods allowed Olivier et al. (2017) to observe canopy change and Kaasalainen et al.

(2014) to observe aboveground biomass change. The reconstruction of tree structure in

fine detail allows not only to quantify tree productivity, as mentioned above, but also to

assess tree structure from an ecological point of view. Malhi et al. (2018) detailed the

potential application of TLS and quantitative structure models to understand the eco-

logical challenges regarding branching architecture, surface area scaling, tree respiration,

seed dispersal and tree mechanics.
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Figure 5.1: Branch scaling ratios for idealized symmetrical trees (top) and for trees modelled

with TreeQSM (bottom) based on branch radius (r), length (l), and branching ratio (n). The

branching ratio is the number of daughter branches per parent branch. The branch radius

scaling parameter is
rdaughter
rparent

and the length scaling parameter is
ldaughter
lparent

. Based on Fig. 3

from Malhi et al. (2018). Refer to digital version for colour image.

This study aims to provide a better basis for understanding metabolic scaling through an

approach to estimate scaling exponents using TLS and TreeQSM (Fig. 5.1). We do not try

to improve the understanding of metabolic scaling, but to offer an approach that does not

rely on destructive sampling and can increase data collection with better data in shorter

time than traditional methods. We aim to: (i) estimate WBE-based metabolic scaling

exponents from TLS point clouds and TreeQSM, (ii) validate these exponent estimates

from the TreeQSM with manually measured exponents estimates and, (iii) assess whether

theoretical metabolic scaling predictions are included within our estimations.
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5.2 Material and methods

We used the data collected in Chapter 4. A total of nine trees in Guyana were scanned,

destructively harvested and all of their branches measured down to 10 cm diameter. We

used the tree parameters (branch diameter, length and branching order) from Chapter 4

to assess the architecture-based metabolic scaling exponents in this study.

Study area

Field data were acquired from Vaitarna Holding’s concession, central Guyana, during

November 2014. The area is a lowland tropical moist forest with an elevation of 117 m

above sea level and a mean rainfall of 2195 mm yr−1. Seven Eperua grandiflora, one

Ormosia coutinhoi, and one Eperua falcata were selected based on their diameter and

timber suitability (Fig. 5.A1 in Appendix). The diameter at breast height (DBH) ranged

from 61.3 cm to 97.0 cm and the height ranged from 18.8 m to 29.9 m. A 30 x 40 m plot was

set up around each selected tree on the expected felling direction. We scanned each plot

with TLS, harvested the tree and took detailed geometrical measurements. Plot details

can be found in Gonzalez de Tanago et al. (2017) and Wilkes et al. (2017).

TLS acquisition and plot design

All TLS datasets were acquired using a RIEGL VZ-400 V-Line 3D© terrestrial laser

scanner (RIEGL Laser Measurement Systems GmbH, Horn, Austria, www.riegl.com).

The instrument used in this study is a discretized multiple-return LiDAR scanner with a

1550 nm wavelength and a 0.35 mrad beam divergence (Gonzalez de Tanago et al., 2017;

Wilkes et al., 2017). This TLS has a scan range of 360° in the azimuth, 100° in the zenith

and the angular resolution used in this study was 0.06°. In each plot, 9 to 16 scan positions

were set up and 80 to 100 5-cm-diameter cylindrical reflecting targets (tie-points) were

distributed evenly in the plot. The tie-points were placed in such a way that each of them

could be scanned from several positions. These tie-points were later used to co-register

the individual points clouds into a unified point cloud as in Gonzalez de Tanago et al.

(2017), Wilkes et al. (2017) and in Chapter 4.

Manual measurements of branches

The manual measurements of the nine harvested trees were analysed in Chapter 4. Here,

we give a summary of the methodology employed. We measured a total of 279 individual

branches up to 10 cm diameter with 1 cm-resolution forestry tape. We took two mea-

surements of each branch: length (m) and diameter (cm). The length was defined as
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the distance between the base and the termination of the branch and the diameter was

defined as the average of two diameter measurements, one taken at the base, and the

other, at the termination of the branch (See Fig. 1 in Chapter 4). Finally, we defined

the branching order and hierarchy. The branching order was established ”centrifugally”,

starting from the main stem and adding an order at every branch node. The branch hi-

erarchy was defined as the branch correspondence between a parent branch and daughter

branch. A daughter branch is any branch with originates from a parent branch and the

parent branch was recorded for each individual branch.

Branching reconstruction

The branching reconstruction of the digital trees was performed in Chapter 4 and had

three components: (i) manual tree extraction from the point cloud (Fig. 5.2a), (ii) 3D

reconstruction of individual tree point clouds using TreeQSM (Figs. 5.2b-5.2c), and (iii)

individual analysis of TreeQSM branches against manually measured branches (Fig. 5.2d).

All individual TLS scans were co-registered into a plot point cloud, in which the harvested

trees were located and extracted. For quality control, visual inspection was performed on

each tree point cloud to ensure that no parts of the tree were missing. Then, individual

tree point clouds were reconstructed using quantitative structure modelling TreeQSM

(Raumonen et al., 2013 and see Fig. 2 in Chapter 4). A series of steps was performed to

ensure that the seven best-fitted TreeQSM models were obtained (Chapter 4).

We visually paired each manually measured branch with a QSM modelled branch following

the structure of the modelled tree. If a measured branch did not have a modelled branch,

the measured branch was not paired and excluded from further analysis. If a measured

branch corresponded to two or more modelled branches, we quantitatively analysed the

similarity of these branches using their length and diameter. We used a diagonal-norm

approach to standardize both parameters and analysed their similarities. The modelled

branch most similar to the measured branch was chosen as the best-fitted pair.

The geometrical structure was determined as follows: TreeQSM branch length was the

sum of the length of all cylinders of the same branch, TreeQSM branch diameter was

the average of the first and last cylinder of the same branch, and branching order was

estimated starting from the main stem and adding a new level at each branch node.

Tree metrics

The tree architecture of these trees was analysed in Chapter 4 and a summary of tree

metrics for this dataset can be seen in Table 5.1. Chapter 4 validated the reconstruction

accuracy of branches lengths, branches diameters and branching orders of 279 modelled



98 Architecture-based metabolic scaling exponents of tropical trees

Figure 5.2: (a) Ormosia coutinhoi tree point cloud, (b) TreeQSM with branches > 10 cm

diameter reconstructed along with the tree point cloud, (c) QSM branches classified by branch-

ing order and (d) QSM branches which were paired with manually measured branches. Refer

to digital version for colour image.

branches compared with manually measured branches. Their method found and recon-

structed 95 % of branches thicker than 30 cm diameter. The accuracy of the length and

diameter of the modelled branches varied among diameter classes. For branches smaller

than 50 cm in diameter, the length of the modelled branches was underestimated by

20 %.

For branches greater than 50 cm in diameter, the length of the modelled branches was

overestimated by 1 %. For branches between 10 cm and 20 cm in diameter, the modelled

branch diameters were overestimated by 40 %. For branches with a diameter between

20 cm and 60 cm, diameter was underestimated by 8 %; if the branch diameter was greater

than 60 cm, diameter was underestimated by 6 %. In this study, the branching order was

correctly assigned with an overall accuracy of 99 %.

Table 5.1: Tree metrics from TreeQSM branches and manually measured branches from the

Vaitarna dataset. From Chapter 4.

Diameter

class (cm)

Measured

branches

Reconstruction

Accuracy (%)

Absolute error Relative error

Length (m) Diameter (cm) Length (%) Diameter (%)

10–20 160 45 −1.03± 1.81 5.14± 5.50 12 40

20–30 67 67 −0.67± 1.50 −0.65± 4.76 10 −2

30–40 26 84 −0.42± 2.19 −5.33± 5.26 37 −15

40–50 11 92 −0.21± 1.37 −4.23± 7.83 19 −9

50–60 7 100 −0.10± 0.76 −3.61± 8.98 −1 −7

60–70 5 100 0.34± 0.40 −5.33± 5.68 3 −9

≥ 70 3 100 0.39± 0.30 −1.54± 0.80 2 −2
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Finally, we used the information of branch length, diameter and hierarchy provided in

Chapter 4 to estimate architecture-based metabolic scaling exponents from modelled trees

and compare them with architecture-based metabolic scaling rates from manually mea-

sured branches.

Estimation of WBE scaling exponents

Based on previous work by Savage et al. (2010) and Bentley et al. (2013), the scaling

exponents from the WBE model for idealized trees can be described using three key pa-

rameters (West, 1999a; Malhi et al., 2018): branch radius scaling ratios (α), branch length

scaling ratios (β), and branching ratios (n, ratio between number of daughter branches

per parent branch). From these branch-level attributes, the scaling of architecture-based

metabolic rate (θ) can be further predicted (Table 5.2). Within the WBE model, constant

values are given to these parameters when idealized trees are estimated (α = 1/2 , β =

1/3 , and θ = 3/4 ; Savage et al., 2008; Malhi et al., 2018).

Table 5.2: Scaling exponents αbranch and βbranch were calculated at branch-level and defi-

nitions are as follows: r = branch radius, n = number of branches, and l = branch length,

while the θbranch was derived from αbranch and βbranch.

Exponent Equation

α - Radius scaling αnode = − ln δnode
nnode

where:

δnode =
rdaughter
rparent

;nnode =
ndaughter

nparent

β - Length scaling βnode = − ln γnode
nnode

where:

γnode =
ldaughter
lparent

;nnode =
ndaughter

nparent

θ - Estimated metabolic rate θnode =
1

2αnode + βnode

Assessment of WBE scaling exponents

The scaling exponents α, β and θ were assessed at three different levels:

� Branch–level: scaling exponents at branch-level are shown as the distribution of the

exponents, calculated from all branch nodes as in Table 5.2 and Fig. 5.1 for all the
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nine trees in this study. We also estimated the median values and 95 % confidence

interval (CI) of all the branch nodes.

� Tree–level: scaling exponents at tree level are shown as the median values and 95 %

CI of all the branch nodes within a tree.

� Plot–level: scaling exponents at plot-level are shown as the range between the trees

in this study.

Median values were used instead of the arithmetic mean because we did not want to as-

sume unimodal and symmetrical distributions and could not use the geometric mean due

to negative numbers (Bentley et al., 2013). We analysed the normality of the distribu-

tion of values, and in the case of a non-normal distribution, a non-parametric approach

(Wilcoxon Test) would be used to calculate the (pseudo)median with 95 % confidence

interval. We included the theoretical predictions and analysed whether the theoretical

predictions fall within the CI of our estimations in all three levels.

5.3 Results

Scaling exponents at branch-level

The scaling exponent distributions at branch-level of branch radius scaling ratio (αbranch),

branch length scaling ratio (βbranch) and architecture-based metabolic rate (θbranch) for

both, TreeQSM and manually measured branches were statistically significant (p-value <

0.05; Table 5.A1 in Appendix) and did not follow a normal distribution (Fig. 5.3).
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Figure 5.3: Distribution of individual branches for radius scaling exponent (top), length scal-

ing exponent (middle) and architecture-based metabolic rate (bottom) exponents as density

function (y-axis), for TreeQSM and manually measured estimated scaling exponents. Vertical

dashed line indicates WBE idealized predictions for α = 1/2 , β = 1/3 , and θ = 3/4 Refer

to digital version for colour image.

The pseudo(median) values and 95 % CI for scaling exponent distributions at branch-level

are displayed in Table 5.3. The TreeQSM αbranch showed a slightly lower pseudo(median)

than its manually measured counterpart and the TreeQSM θbranch showed a slightly higher

pseudo(median) than its manually measured counterpart. Nevertheless, the TreeQSM

βbranch showed great disparity compared to its manually measured value. We found that

αbranch and θbranch had a relative narrow CI range. On the contrary, βbranch had a relative
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larger CI range. This trend was found for both TreeQSM and manually measured branches

scaling exponent values.

Table 5.3: Scaling exponents of branch radius scaling ratio (αbranch), branch length scaling

ratio (βbranch) and architecture-based metabolic rate (θbranch) of the TreeQSM and manually

measured branches at branch-level. Values shown as (pseudo)median with 95 % CI (low and

high in parenthesis) for the branch-level distribution and values are shown as average values

for plot-level.

Scaling

exponents

Theoretical

value

Branch-level

TreeQSM Measured

Branch radius

scaling ratio - α
1/2 0.45 0.43 – 0.48 0.63 0.62 – 0.65

Branch length

scaling ratio - β
1/3 0.42 0.31 – 0.54 0.07 −0.06 – 0.20

Architecture-based

metabolic rate - θ
3/4 0.59 0.53 – 0.65 0.50 0.40 – 0.56

Branch scaling exponents per cumulative branching order at branch-level

We also analysed the representation of the scaling exponents for cumulative branching

orders for both, TreeQSM and manually measured branches up to the 8th branch order

(Fig. 5.4 and Table 5.A2 in Appendix). The TreeQSM and manually measured scaling

exponents followed the same pattern in each cumulative scaling exponent. Moreover,

in the cumulative branch radius scaling exponent, the TreeQSM exponents had slightly

higher exponents than the manually measured exponents from the second branch order

onwards. While for the cumulative branch length scaling exponent and cumulative es-

timated metabolic rate, the TreeQSM exponents had higher values than the measured

ones. The confidence interval of the radius scaling exponent and the architecture-based

metabolic rate showed a narrow range, while the CI of the length scaling exponent showed

a wider range across the cumulative branching orders for both TreeQSM and manually

measured branches.
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Figure 5.4: Cumulative (pseudo)median and 95 % CI for radius scaling exponent (top),

length scaling exponent (middle) and architecture-based metabolic rate (bottom) exponents

for TreeQSM and manually measured branches up to cumulative 8th branch order. The 95 %

CIs are shown as vertical lines on the (pseudo)medians. Horizontal dashed line indicates WBE

idealized predictions for αbranch=1/2 , βbranch=1/3 , and θbranch=3/4 Refer to digital version

for colour image.
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Branch radius scaling exponents showed no significant variation for branching order higher

than 6th order (Fig. 5.4 and Table 5.A2 in Appendix). On the other hand, branch length

scaling exponents showed high (pseudo)medians on the 2nd and 3rd branch order (2.4 and

2.27 up to 2nd branch order for TreeQSM and manually measured branches respectively)

and displayed no significant variation after 6th branch order. The architecture-based

metabolic rate showed a different pattern, both with TreeQSM and manually measured

branches. The metabolic rate started with lower (pseudo)medians and no significant

difference after the 5th branch order for TreeQSM and manually measured branches,

respectively.

Scaling exponents at tree-level and plot-level

Table 5.4 shows the pseudo(median) values for each tree and 95 % CI from each exponent

distribution at tree-level. The average pseudo(median) values for the estimated scaling

exponent αtree was 0.46 and 0.64; for the βtree was 0.41 and 0.05; and for the θtree was

0.56 and 0.51 for the TreeQSM and manually measured values, respectively.

Table 5.4: Branch radius scaling ratio (αtree), branch length scaling ratio (βtree) and

architecture-based metabolic rate (θtree) pseudo(median) values, 95 % CI per individual tree

and plot-level ranges between trees. Continued on the following page.

Trees
Branch radius - α

TreeQSM Measured

GUY01 0.49 0.44 – 0.54 0.66 0.61 – 0.70

GUY03 0.45 0.36 – 0.52 0.62 0.60 – 0.69

GUY04 0.43 0.37 – 0.49 0.69 0.65 – 0.76

GUY05 0.44 0.32 – 0.56 0.68 0.65 – 0.75

GUY06 0.47 0.41 – 0.51 0.62 0.54 – 0.67

GUY07 0.50 0.40 – 0.60 0.65 0.62 – 0.68

GUY08 0.50 0.41 – 0.61 0.66 0.60 – 0.73

GUY09 0.52 0.46 – 0.59 0.62 0.56 – 0.66

GUY10 0.33 0.28 – 0.38 0.53 0.46 – 0.59

plot-level 0.33 – 0.52 0.53 – 0.69

When comparing TreeQSM with manually measured trees estimated radius ratio scaling

exponent (αtree) and metabolic rate (θtree), both showed the same trend. As with the

scaling exponents at branch-level, TreeQSM αtree also showed slightly lower value com-

pared to manually measured αtree. This trend was also found in θ values, where TreeQSM

θtree showed slightly higher values compared to manually measured θtree. TreeQSM βtree

showed great disparity compared to the manually measured βtree. TreeQSM βtree values

were greater than manually measured βtree.
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Table 5.4: (continued).

Trees
Length radius - β

TreeQSM Measured

GUY01 0.21 −0.06 – 0.60 −0.12 −0.32 – 0.25

GUY03 0.59 0.24 – 0.99 0.3 0.10 – 0.49

GUY04 0.35 −0.04 – 0.79 0.13 −0.23 – 0.42

GUY05 0.17 −0.31 – 1.04 −0.33 −0.71 – 0.59

GUY06 0.55 0.10 – 0.99 0.42 −0.11 – 0.99

GUY07 0.62 0.24 – 1.08 −0.19 −0.53 – 0.30

GUY08 0.44 0.12 – 0.74 0.28 −0.20 – 0.75

GUY09 0.57 0.26 – 0.83 0.05 −0.35 – 0.38

GUY10 0.23 0 – 0.50 −0.11 −0.51 – 0.32

plot-level 0.17 – 0.62 -0.33 – 0.42

Table 5.4: (continued).

Trees
Metabolic rate - θ

TreeQSM Measured

GUY01 0.69 0.45 – 0.88 0.52 0.39 – 0.65

GUY03 0.56 0.38 – 0.84 0.64 0.53 – 0.76

GUY04 0.38 −0.27 – 0.56 0.47 0.41 – 0.59

GUY05 0.24 −0.39 – 0.65 0.38 −1.26 – 0.69

GUY06 0.51 0.34 – 0.84 0.38 0.23 – 0.92

GUY07 0.75 0.55 – 1.04 0.76 0.58 – 0.97

GUY08 0.53 0.37 – 0.67 0.27 −2.18 – 0.34

GUY09 0.59 0.48 – 0.83 0.71 0.54 – 0.96

GUY10 0.77 0.57 – 1.02 0.45 0.25 – 0.95

plot-level 0.24 – 0.77 0.27 – 0.76

At plot-level, the range of (pseudo)median values for our TreeQSM estimated scaling

exponent αplot was from 0.33 to 0.52, while for the manually measured scaling values was

from 0.53 to 0.69. For the estimated scaling exponent βplot, TreeQSM (pseudo)median

values ranged from 0.17 to 0.62 and −0.33 to 0.42 for the manually measured scaling

values. For the estimated scaling exponent θplot, (pseudo)median values ranged from 0.24

to 0.77 for the TreeQSM and 0.27 to 0.77 for the manually measured scaling values (Table

5.4).
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Theoretical scaling exponents inclusion

At branch-level (Table 5.3), all of the 95 % CI for TreeQSM and manually measured

scaling exponents excluded the theoretical values (α = 1/2, β = 1/3, and θ = 3/4). Only

TreeQSM βbranch included the theoretical values within its CI range. However, at tree-

level, most of the individual trees included the theoretical values within their 95 % CI

(Table 5.4). At plot-level, all scaling exponents from TreeQSM and manually measured

values included the theoretical values within their ranges except the manually measured

αplot. It did not include αtree prediction due to a small difference (0.53 compared to 0.50;

Table 5.4).

5.4 Discussion

We first examine the results obtained for the TreeQSM and manually measured exponents,

then we analyse the implications of using TLS and 3D models in the estimation of scaling

exponents, and finally describe the implications of our results within the WBE context of

metabolic scaling.

This study represents the first quantitative analysis of metabolic scaling rates based on

WBE theory applied to tropical trees based on 3D models from point cloud and field

measured data. Overall, we found that only architecture-based metabolic rate (θ) con-

verged between our TreeQSM modelled and manually measured dataset at both, branch-

level (with a (pseudo)median of 0.59 for TreeQSM and 0.50 for the manually measured

exponent) and at tree-level (with a (pseudo)median of 0.56 for TreeQSM and 0.51 for

the manually measured exponent). Our results did not support the same conclusion for

branch radius scaling ratio (α) or branch length scaling ratio (β) - neither at branch-level

nor at tree-level. The branch radius scaling ratio (α) diverged at branch-level (with a

(pseudo)median of 0.45 for TreeQSM and 0.63 for the manually measured exponent) and

at tree-level (with a (pseudo)median of 0.46 for TreeQSM and 0.64 for the manually mea-

sured exponent). The length scaling ratio (β) was the exponent which most deviated be-

tween TreeQSM and manually measured dataset at branch-level (with a (pseudo)median

of 0.42 for TreeQSM and 0.07 for the manually measured exponent) and at tree-level

(with a (pseudo)median of 0.41 for TreeQSM and 0.05 for the manually measured expo-

nent).

The large divergence in the branch length scaling ratios was caused by the large absolute

length error between the TreeQSM estimates and the manual measurements (Table 5.1).

While for branches greater than 50 cm, the length of QSMs branches was overestimated

by 1 %, for branches thinner than 50 cm, the average length of QSMs branches was under-

estimated by 20 % (See Table 5.1). As discussed in Chapter 4, a conceptual difference in

the branch termination between the TreeQSM estimates and the manual measurements
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was found. This conceptual difference has a direct impact in the branch length scaling

ratio (Table 5.2). As length scaling is a ratio (
ldaughter
lparent

), the larger the value of the length

of the parent branch, the smaller the exponent value is. Since we had an underestimation

of the length of QSMs branches, we expect that our TreeQSM exponent values would be

higher than the measured exponents at branch-, tree- and plot-level, as in Table 5.3). As

also discussed in Chapter 4, a correct definition of the branch measurements could avoid

ambiguity and lower the absolute errors.

A trend can be observed in the cumulative scaling exponents between the TreeQSM and

the manually measured branches (Fig. 5.4 and Table 5.A2 in Appendix). This concords

with the tree metrics from Table 5.1. For radii, TreeQSM showed an underestimation;

while for the lengths, TreeQSM showed an overestimation when compared to manually

measured branches. However, while radius scaling exponents and the architecture-based

metabolic rate had no significant variation while cumulating branch orders, the length

scaling exponents had a high (pseudo)median in the first two cumulative branch orders

and then decreasing until being steady from the 5th cumulative branch order. We theorize

that the length scaling ratio is high at this order due to the ratio between the length of

father branch (in this case, the main stem) and the length of daughter branches. This

difference can be up to several meters, having a direct effect on the length scaling exponent

at this cumulative branch order.

WBE predicted values for plant scaling regarding the scaling of radius, length and

architecture-based metabolic exponents were not in concordance with our results from

the tropical trees assessed in this study. Our analysis showed that central values deviated

from predictions and that WBE predicted values were included by a very small mar-

gin in the 95 % confidence intervals, only at plot-level. Moreover, this study found out

that while TreeQSM branch ratio αbranch,tree were relatively close to the theoretical value,

length ratio βbranch,tree and architecture-based metabolic rate θbranch,tree greatly deviated

from WBE predictions, in both, TreeQSM and manually measured datasets.

The TreeQSM β exponents were closer to 1/2 than to the WBE theoretical estimate of

1/3. This finding is consistent with Bentley et al. (2013), who found that β estimates were

closer to 1/2 than 1/3, and Muller-Landau et al. (2006), who also observed that observed

exponents significantly differed from predicted theoretical values. Bentley suggested that

β = 1/3 might only occur in large trees, but although our tree sample comprised trees

ranging between 61.3 cm to 97.0 cm DBH, our results do not support this statement. As

mentioned by Malhi et al. (2018); the tree’s rapid response to the environment to max-

imize light capture through maximizing vertical height, maximize efficiency of resource

distribution, and minimize the risk of breakage or overturning might be the reason why

trees appear more plastic in their lengths than in their radius (Bentley et al., 2013; Price

et al., 2007).
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In addition to the deviation observed for length ratio β, our findings for TreeQSM

architecture-based metabolic rate θbranch,tree were lower than WBE prediction of 3/4

While Isaac & Carbone (2010) found strong support for 3/4 scaling of metabolism, our

analysis does not support this statement. In fact, our results are more aligned with

those by Petit & Anfodillo (2009); Bentley et al. (2013); and Smith et al. (2014b), whose

estimates all deviated from predicted exponents. Our results at branch-level and tree-

level were closer to 3/8 than 3/4 metabolic rate which supports the assumption of elastic

similarity in large branching networks as mentioned by Price et al. (2007) and Bentley

et al. (2013); and plastic response to environment, a common feature found in tropical

trees.

Fractal branching and homogeneous length and diameter parameters within the same

branch node were not found in our dataset. As mentioned by Petit & Anfodillo (2009),

the fractal branching proposed by the WBE model is very unlikely to be found in real

plants. The scaling exponents deviated significantly from the exponents predicted from

symmetrical and self-similar branches as proposed by the WBE model. The WBE pre-

dictions might work on individual trees which grow in absence of competition and no

nutrition limitation, such as on plantations (Muller-Landau et al., 2006); or might work

on young trees with simple branching rules (Petit & Anfodillo, 2009; Loehle, 2016). Those

trees would have enough nutrients and would be protected from environmental hazards

(such as heavy wind or rainfall) and with small branch size distributions which might be

easily measured. Our sample trees do not fall into those assumptions. Predictions for large

trees, as explained by Loehle (2016), are still puzzling due to the architectural complex-

ity of real trees, their susceptibility to damage and their rapid resilience; characteristics

unfitted for the symmetrical branching geometry proposed by WBE model.

Our sample also showed a high variation, supporting Loehle’s statement which says that

optimal branching cannot be found in old trees or with increased exposure to the envi-

ronment. We suggest a further study focusing on how asymmetrical branching changes

WBE predictions and how to improve WBE predictions based on asymmetrical branch-

ing. As suggested by Smith et al. (2014b) and Price et al. (2009), the theoretical value

for metabolic scaling in the WBE context might be more an approximate rather than an

exact value when applied to real trees.

5.5 Conclusions

We present a novel approach to estimate scaling exponents and architecture-based

metabolic rate within the context of the West, Brown and Enquist (WBE) model for

tropical forest trees that relies on Terrestrial Laser Scanner (TLS) and TreeQSM mod-

elling. While some limitations emerged that would still allow to further improve the

scaling exponents estimations from TLS and TreeQSM modelling; our results show that
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radius scaling exponents, length scaling exponents, and architecture-based metabolic rate

can be estimated from 3D data of tree point clouds. Thus, a much easier way is iden-

tified to test metabolic scaling laws further with the use of large datasets collected in

non-destructive ways in the field, rather than with the smaller datasets obtained from the

tedious and time-consuming hand-collection of data.

Nevertheless, our results show that only architecture-based metabolic rate (θ) converged

between TreeQSM and manually measured metabolic rate at branch- (0.59 and 0.50),

tree- (0.56 and 0.51) and plot-level (0.24 to 0.77 and 0.27 to 0.76). Our results did not

support the same conclusion for branch radius scaling ratio (α) or branch length scaling

ratio (β) - neither at branch-, tree- nor at plot-level. The ability to estimate these scaling

exponents is critical to estimate metabolic rate at tree-level and scale up to large-scale

plots without the need of destructive sampling.

We highlight that our results are based on a limited sample of nine trees in Guyana

and more research is needed. Nevertheless, the validation of our approach provides an

insight into the potential of TLS and TreeQSM to account for individual tree structure,

providing enough detailed architectural information to estimate scaling exponents at both,

branch-level and tree-level and how this could be implemented for large-scale plant scaling

assessments. Our approach can be used further to estimate plant-scaling exponents and

metabolic rate from TreeQSM models from trees from different regions at a global scale.

This new data might improve the current understanding of metabolic scaling without

harvesting trees.
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5.A Appendix

WBE metabolic scaling exponents

The WBE theory holds that the scaling of metabolic rate and other biological functions

has its origin in an optimal branching system network at both internal (vascular) and

external (branching) components (West et al., 1997; West, 1999a). While the internal

structure is composed by xylem and phloem conduits, the external structure is composed

by branches. The WBE theory assumes that an idealized external tree branching network

is symmetrical, self-similar and hierarchical (see Figure 3 in Malhi et al. 2018), organized

in such a way that metabolic rate should not vary when comparing branch node-level to

the whole tree-level (West, 1999a; Nygren & Pallardy, 2008; Sperry et al., 2012; Bentley

et al., 2013). Nevertheless, real trees do not show an idealized external branching network.

Self-similarity rarely holds true throughout a whole tree, branching order varies across

tree-level, and stems taper and exhibit asymmetric branching (Nygren & Pallardy, 2008;

Smith et al., 2014b; Price et al., 2012; Bentley et al., 2013).
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Figure 5.A1: Tree point clouds and TreeQSM models from the nine trees scanned in Guyana.

(a) tree point clouds of the nine trees from Guyana, (b) One repetition of TreeQSM with

branches > 10 cm diameter reconstructed along with the tree point clouds, (c) QSM branches

classified by branching order, and (d) QSM branches which were paired with manually mea-

sured branches. GUY01 to GUY08 are Eperua grandiflora trees, GUY09 is a Ormosia coutin-

hoi tree, and GUY10 is a Eperua falcata tree.
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Table 5.A1: Shapiro-Wilks p-values, (Pseudo)median and CI (95%) for scaling exponents at

branch node-level and tree-level for QSM model trees and reference trees.

Scaling exponent

and

theoretical value

TLS-derived scaling exponent Reference scaling exponent

p-value
(Pseudo)median

and CI (95%)
p-value

(Pseudo)median

and CI (95%)

αnode
1/2 0.0325 0.45 0.43 – 0.48 1.913 x 10-9 0.63 0.62 – 0.65

αtree - 0.46 0.38 – 0.53 - 0.64 0.59 – 0.69

βnode
1/3 0.0123 0.42 0.31 – 0.54 4.31 x 10-5 0.07 −0.06 – 0.2

βtree - 0.41 0.06 – 0.84 - 0.05 −0.32 – 0.5

θnode 3/4 1.345 x 10-41 0.59 0.53 – 0.65 8.305 x 10-42 0.5 0.44 – 0.56

θtree - 0.56 0.28 – 0.81 - 0.51 −0.06 – 0.76
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Table 5.A2: Accumulated (Pseudo)median and CI (95%) for branch order for scaling expo-

nents at branch node-level for TreeQSM and manually measured branches.

Branch order

accumulated

Branch radius - α

TreeQSM Measured

up to 2nd 0.70 0.63 – 0.75 0.61 0.57 – 0.65

up to 3rd 0.54 0.50 – 0.58 0.64 0.59 – 0.66

up to 4th 0.51 0.48 – 0.54 0.64 0.62 – 0.66

up to 5th 0.48 0.45 – 0.50 0.64 0.62 – 0.66

up to 6th 0.46 0.44 – 0.48 0.64 0.62 – 0.66

up to 7th 0.46 0.43 – 0.48 0.63 0.62 – 0.65

up to 8th 0.45 0.43 – 0.48 0.63 0.62 – 0.65

Table 5.A2: (continued).

Branch order

accumulated

Length radius - β

TreeQSM Measured

up to 2nd 2.40 2.22 – 2.63 2.27 1.98 – 2.46

up to 3rd 1.01 0.80 – 1.23 0.84 0.59 – 1.03

up to 4th 0.60 0.46 – 0.75 0.32 0.17 – 0.47

up to 5th 0.48 0.36 – 0.61 0.07 −0.06 – 0.22

up to 6th 0.44 0.32 – 0.56 0.11 −0.01 – 0.26

up to 7th 0.43 0.31 – 0.54 0.07 −0.06 – 0.20

up to 8th 0.42 0.31 – 0.54 0.07 −0.06 – 0.20

Table 5.A2: (continued).

Branch order

accumulated

Metabolic rate - θ

TreeQSM Measured

up to 2nd 0.28 0.26 – 0.29 0.30 0.28 – 0.31

up to 3rd 0.28 0.39 – 0.56 0.47 0.43 – 0.53

up to 4th 0.47 0.50 – 0.62 0.58 0.52 – 0.65

up to 5th 0.56 0.52 – 0.65 0.51 0.45 – 0.58

up to 6th 0.58 0.51 – 0.64 0.50 0.44 – 0.56

up to 7th 0.58 0.52 – 0.65 0.50 0.44 – 0.56

up to 8th 0.58 0.52 – 0.65 0.50 0.44 – 0.57
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6.1 Main findings

The main objective of this thesis is to explore the use of 3D models from TLS point

clouds to estimate above-ground biomass and architecture of tropical trees. From the

estimations of AGB and tree architecture, I generated significant quality data for a better

understanding of ecological challenges in tropical forests. Based on this objective, four

research questions were defined in section 1.5. The previous chapters (2 to 5) addressed

the research conducted in this thesis. In this chapter, I answer each of the research

questions formulated in the Introduction based on my findings.

1. How accurately can above-ground biomass of tropical trees be estimated

from TLS point clouds?

The key result from Chapter 2 and Chapter 3 is that reconstructed tree volume with

basic wood density values can estimate more accurately AGB that have less

bias than pantropical allometric models. In both chapters, I described an approach

to estimate AGB based on tree volume and basic wood density values. The tree volume

is reconstructed from 3D modelling of tropical trees TLS point clouds. AGB estimations

were improved during this thesis. As a result, in Chapter 2 buttresses were assumed

cylindrical, in Chapter 3 buttresses were modelled as meshes. Estimating the volume of

buttresses reduced the uncertainties of buttresses modelling. The analysis in Chapter 2

was based on 29 trees across three pantropical regions (Peru, Indonesia, and Guyana) and

in Chapter 3 the analysis was based on 26 trees in Guyana.

In Chapter 2, I demonstrated that AGB estimates from TreeQSM models had high agree-

ment with the reference AGB and better agreement than when the pantropical models

were assessed. AGB estimates from TreeQSM had an overall underestimation of 3.7 %,

while AGB estimates from pantropical models had an overall underestimation ranging

from 15.2 % to 35.7 % (Figure 2.5). Chapter 3 also demonstrated that AGB estimates

from TreeQSM had the highest level of agreement, the highest R2, and the smallest

CV RMSE compared to the pantropical models assessed in this chapter. Both chapters

demonstrated the systematic increasing AGB underestimation for large trees (D > 70 cm)

when estimated with allometric models (Figure 2.5). My results confirm the observations

by Calders et al. (2015b) and show that this is also valid for tropical forests.

2. What is the capability of non-destructive TLS-based methods to derive

allometric models for tropical trees?

The major result from Chapter 3 is that allometric models can be built from TLS-

derived tree volume and basic wood density with no need for destructive

harvesting. The allometric models provide good agreement with reference

data with almost unbiased estimates. In Chapter 3, I developed allometric models

to estimate AGB from trees in Guyana. These allometric models are based on TLS-derived
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parameters, such as D, H, CD, and basic WD. I used TreeQSM to estimate AGB from

TLS data in a similar approach as in Chapter 2. The TLS-derived allometric models were

based on 72 scanned trees and I validated them with 26 harvested trees. To assess the

ability of these TLS-derived allometric models, I compared my TLS-derived estimated

AGB with AGB from five pantropical allometric models (Appendix 3A.2).

This approach not only evidenced the potential of TLS-derived allometric models to esti-

mate accurately AGB from tropical forest in Guyana, but also that including CD provides

a good agreement with reference data, while H worsens AGB estimates. I show that the

pantropical models assessed in this study corroborated the systematic underestimation

for small trees (D ≤ 70 cm) with an increasing error for larger trees, as mentioned by

Goodman et al. (2014) and Calders et al. (2015b). My findings contribute estimating tree

metrics and TLS-derived methods to develop allometric models in Guyana. Although

Chapter 3 is a case scenario for Guyana, the methodology presented is not dependent

on the structure of the trees. My approach should accurately generate TLS-derived tree

parameters from different types of forest and be able to build an allometric model that

estimates AGB from any type of forest. An example is the assessment done by Stovall &

Shugart (2018). In this study, they reconstructed 329 trees from a forest plot in Virginia,

US in a similar approach as this chapter.

3. Can the branching architecture of tropical trees be linked to 3D models

using their topological features?

Chapter 4 offered the first quantitative analysis branch-by-branch between TreeQSM mod-

els and manually measured branches. Chapter 4 demonstrated that big branches (>

40 cm diameter) could be reconstructed accurately, while for smaller branches

the accuracy decreased when using TreeQSM and TLS approach. In Chapter 4, I re-

constructed the branching architecture of tropical trees using TLS and TreeQSM and

compared them to their manually measured counterparts. A total of 279 individual

branches (D > 10 cm diameter) from 10 trees in Guyana were collected, scanned, and

manually measured. To assess the accuracy of my approach, I analysed the following tree

architecture parameters: branch length, branch diameter, branching order, absolute and

cumulative tree length, and absolute and cumulative tree volume. An essential step in

the methodology is that the manually measured branches and the QSM branches were

visually paired branch-by-branch. By applying this step, I was able to match the QSM

branches against their reference measurements to individual branch-level.

In Chapter 4, my approach identified and reconstructed 95 % of the measured branches

thicker than 30 cm diameter, and correctly assigned the branching order in 99 % of the

cases. Results also show that my approach overestimated branch length thicker than 50 cm

by 1 % and underestimated diameter of branches between 20 cm to 60 cm by 8 %. A major

limitation found in Chapter 4 was the conceptual difference where the main stem ends:

between the manual measurements (Figure 4.1) and the TreeQSM model (Figure 4.2).
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This ambiguous definition led to higher uncertainties in the length of the QSM models.

An additional constraint was the low point density of the smaller branches. In response

to these limitations, a series of recommendations were described to improve the accuracy

of my approach. I recommended unifying the branch definitions between the TreeQSM

branches and the measured branches. Although my results performed worse for smaller

branches, my study still represents a breakthrough into studies of tree architecture based

on TLS and TreeQSM. My findings can improve our understandings of tree architecture

and how it may influence ecological processes or be shaped by those processes.

4. Does TLS-based branching architecture relate to metabolic scaling in trop-

ical trees?

In Chapter 5, my analysis indicated that only metabolic rate converged between the

TLS-derived and manually measured values. Results also indicated that neither

branch radius nor branch length converged between the TLS-derived and manually mea-

sured values. From these two exponents, branch length was the exponent that deviated

the most. The theoretical exponents from the WBE theory converged with TLS-derived

and manually measured exponents only at tree-level. To estimate the metabolic scaling

in tropical trees, I develop an approach to estimate these exponents from the TLS-derived

branch architecture. The scaling exponents from the WBE model can be described using

three parameters: branch radius scaling ratio, branch length scaling ratio, and branching

ratios (West, 1999a). From these parameters, the architecture-based metabolic scaling ra-

tio can be predicted. I used the results from Chapter 4 to estimate the scaling exponents.

By applying the approach from Chapter 5, branch scaling ratio, length scaling ratio, and

metabolic scaling can be estimated from TLS-derived branching architecture. To validate

my analysis, I compared the TLS-derived scaling exponents against manually measured

scaling exponents at three levels: branch-level, tree-level, and plot-level.

The major limitation found in Chapter 5 was the stem conceptual difference stated in

the previous chapter. The large absolute error (70 cm) in the length between the TLS-

derived and the manually measured branches caused a large divergence in the branch

length scaling ratio (Table 5.3). Despite these results, my data did not show symmetrical

fractal branching nor homogeneous branch and length parameters. Petit & Anfodillo

(2009) argue that the symmetrical branching proposed by WBE theory cannot be found

in real plants —my data can support their statement. Muller-Landau et al. (2006) and

Petit & Anfodillo (2009) stated that WBE predictions might work on trees that grow in

absence of competition or nutrient limitations, protected from environmental hazards, or

in young trees. My dataset does not fall into these assumptions and might explain the

divergence between my results and the WBE predictions. Despite the limitations, my

findings contribute to a basis for a better understanding of the metabolic scaling and how

I can estimate metabolic scaling using TLS-derived parameters.
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6.2 Reflection and outlook

The research performed in this thesis was motivated by the need for estimating tree at-

tributes for biomass and tree architecture that can help us increase the present collection

of available tropical tree datasets. Within this context, this thesis revealed that tree at-

tributes such as diameter, height, crown diameter, total volume, and branch lengths and

diameters derived from TLS point clouds can be used to estimate biomass and define

quantitatively the architecture of trees. Moreover, this thesis contributes scientifically to

the development and assessment of new methods, and explores their practical use. In

fact, I developed allometric models and calculated plant scaling exponents based on these

TLS-derived parameters, and compared these estimates with those from traditionally in-

ventoried data. Even though I found several limitations during this thesis, it offers great

opportunities as an alternative for traditional forest inventory data and destructive sam-

pling with ground-breaking results. In this section, I provide insight on some of the issues

and limitations encountered, and an overview of current and upcoming developments on

LiDAR research.

6.2.1 From traditional to digital fieldwork

Liang et al. (2016) indicated that three aspects shape the adaptation of any new tech-

nique for measuring trees in forest inventories: (i) the cost of the acquisition data, the

post-processing, and interpretation of data should be affordable; (ii) the accuracy of the

tree parameters estimation with the new technique should be at least at the same level

or surpass the traditional technique; and (iii) the new technique should focus on tree

attributes relevant for the decision-making process.

Regarding point (i); besides of the cost of the TLS instrument and licensed software, the

fieldwork campaigns in this thesis were based on a strong cooperation between several

institutions that provided logistics for before-, during-, and after-campaign. This coop-

eration allows us to share the costs and make efficient use of the resources allocated.

Moreover, the gained experience from previous fieldworks incurs into a better use of re-

sources by taking into account practical considerations when designing and executing a

successfully fieldwork campaign. In this thesis, I used licensed software, and wherever

possible, open-source software to perform analysis. Not only because of the extra cost for

licensing software, but also because open-source software allows accessibility and usability

for researchers with less resources, transparency, and greater shareability in the scientific

community.

Concerning point (ii) and (iii); I demonstrated in Chapter 2 and 4 that tree attributes such

as diameter, height, crown diameter, and branch lengths and diameters can be derived

from TLS point clouds of tropical trees. Moreover; that not only these parameters can be
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derived, but that the accuracy of these TLS-derived parameters have high agreement with

reference data. Moreover, in Chapter 2, 3, and 4 I also showed that indirect estimates,

such as AGB had also high agreement with reference data and allometric models can

be built based on TLS-derived parameters. This thesis is a contribution towards an

accurate estimation of tree parameters and derived estimates such as AGB, allometric

models, and plant scaling. Destructive sampling is not an option at large-scale, and TLS-

derived parameters could step in as an alternative to estimate tree parameters in tropical

forests.

The miniaturization and mobilization of LiDAR instruments would allow a small team

to scan forests plots within hours. Moreover, the up-scaling of tree algorithms from tree-

level to plot-level would allow; not only to extract forest attributes such as diameter and

height, but also to infer indirect attributes, such as tree volume, path length, and surface

area in a semi-automatic way. In the near future, these technologies would be a basic

component of any fieldwork campaign.

6.2.2 The art of tree modelling

The methods developed in this thesis employed TreeQSM modelling method to recon-

struct quantitative structure models (QSMs) of tropical trees from point clouds. In

Chapter 2, I evidenced that tree parameters could be derived from QSMs of tropical

trees and in Chapter 4, I showed that the fine detail structure of tropical trees could

be reconstructed. Both chapters evidenced the robustness of TreeQSM to model tropi-

cal trees. Nevertheless, TreeQSM is not the only modelling method available to model

trees. Tree modelling is relevant in other fields, e.g., planning tree growth in agricul-

tural projects, accurate representation of trees for video games, and tree models for urban

planning (Bournez et al., 2017). Several algorithms, such as PlantScan3D (Boudon et al.,

2014), TreeArchitecture (Landes et al., 2015), SimpleTree (Hackenberg et al., 2015a), and

VoxR (Lecigne et al., 2018) were developed throughout these years and served different

purposes.

Despite the great advances of these algorithms, challenges persist in the modelling process.

A great challenge I found during the tree modelling process (besides extracting individual

trees from the forest point cloud, which I discuss in the following section) is tuning the

TreeQSM parameters to create the best representation of the tree point cloud. TreeQSM

has several parameters that can be modified and the different combination of these param-

eters provide a different range of results. In Chapter 2, I developed an optimization for the

most important parameter; and two years later, in Chapter 4, I used the semi-automatic

optimization process developed by Burt (2017) to model tree point clouds. Whereas

knowledge on TreeQSM is required for developing a manual optimization, no deep prior

knowledge on TreeQSM is required for the semi-automatic optimization process. This
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will enhance the usage of tree TreeQSM models among the scientific community.

Due to the random component of TreeQSM (Raumonen et al., 2013), it is suggested that

a tree parameter should be used as the average value of 5 to 10 QSM models (Calders

et al., 2015b). For the volume parameter in Chapter 2 and 3, we used the average of 20

QSMs to determine the volume value per tree. However, for detailed branch matching,

as in Chapter 4, a manually branch-by-branch pairing was performed. One alternative

approach used by Momo Takoudjou et al. (2018) was manually editing one single QSM

model to closely resemble the tree point cloud. This approach could deal with point cloud

issues, such as gaps due to occlusion, or noise in the point cloud. While editing a few

trees is feasible, editing hundreds or thousands of trees at a plot-scale involve extensive

hours of manual editing.

An important part of modelling tropical trees is the buttresses modelling. As stated be-

fore, the buttresses modelling improved from Chapter 2 to Chapter 3 (Figure 3.2). In

Chapter 3, I used meshes to model the buttresses and estimate volume. Other studies

also assessed the geometry of buttresses through meshes (Nölke et al., 2015; Bauwens

et al., 2017; Momo Takoudjou et al., 2018). Nölke et al. (2015) analysed the geometry

and allometry and Bauwens et al. (2017) used point clouds from terrestrial close-range

photogrammetry for measuring and modelling buttresses with high concordance. My re-

sults in Chapter 3 and the results from Momo Takoudjou et al. (2018) also indicated

high concordance between total tree volume with buttresses and their reference counter-

part.

Throughout this thesis, I evidenced that the main stem and branches (until certain diame-

ter) can be reconstructed with cylindrical features from TLS point clouds of tropical trees.

Moreover, my results support similar research by Calders et al. (2015b); Rahman et al.

(2017); Momo Takoudjou et al. (2018); and Disney et al. (2018) in tropical and evergreen

trees. Nevertheless, a TLS tree point cloud also includes leaves. While on deciduous trees,

one has the opportunity to scan a tree in a leaf-off condition; in evergreen trees, one does

not have this chance. Analysing separately hard tissue (stem and branches) from soft tis-

sue (leaves, fruits) is relevant for AGB estimation (this thesis), classification of vegetation

elements (Li et al., 2018), gap fraction, and leaf area index (LAI; Zhu et al., 2018). In

Chapter 3, I digitally defoliated the tree sample using a leaf/wood separation algorithm

from Vicari (2017; Figure 3.1c). This algorithm detects trunk and larger branches first,

and then unsupervised classification assigns the remaining points as leaves (Disney et al.,

2018). Having a digital defoliated tree point cloud improves the TreeQSM reconstruction

and reduces the chance of creating non-existent branches.

Other type of research needs to create a high realistic 3D virtual forest. Despite TLS point

clouds include leaves, their reconstructing still (to my knowledge) not attainable. To cope

with that, Åkerblom et al. (2018) developed an algorithm to insert leaves (broadleaves

or needle leaves) into QSMs structures. Measuring individual leaves seems an impossible
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Figure 6.1: (a) TLS leaf-off point cloud of Sycamore (Acer pseudoplatanus) coloured by

height from 0 m (blue) to 25.9 m (red), (b) TLS point cloud and QSM, (c) standalone QSM,

and (d) QSM with added leaves; modified from Calders et al. (2018).

task. This algorithm generates digital leaves and insert them in a realistic way that certain

leaf properties can be estimated. Calders et al. (2018) recreated a 3D virtual forest in

Wytham Woods (Oxford, UK) and used this algorithm to generate digital leaves (Figure

6.1) for radiate transfer modelling. Although now seems an impossible task to reconstruct

individual leaves from trees, it seems plausible that modelling individual leaves would be

the next step in tree modelling. With enough points to define a leaf, algorithms might be

able to detect leaves, either by shape or by colour, identify them, and model individually.

This digital leaf would be inserted back to where the real leaf is and create a high realistic

3D virtual forest.

6.2.3 From trees to plots

One limitation I encountered in this thesis was the manual extraction of individual tree

point clouds from the massive plot-level point cloud. Delineating and manually extracting
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each tree point cloud is time-consuming and highly prone to errors due to the complexity

of the forest structure. For Chapters 2, 4, and 5 a colleague and I manually extracted

29 trees. These chapters aimed to characterize individual trees and the 29 trees served

their purpose. Nevertheless, Chapter 3 aimed to develop an allometric model based on

TLS-derived parameters. For that, a greater number of trees was required. A total of 106

tree individual point clouds were extracted. To extract these trees, a semi-automatic tree

segmentation algorithm, treeseg ; Burt (2017), was applied.

Semi-automatic tree segmentations are needed to assist in the extraction of individual

trees. A few studies have developed also other tree segmentation approaches. One of

the pioneers was Raumonen et al. (2015). They developed an automated extraction of

individual trees from point cloud data based point cloud segmentation into stem and

branches. Ayrey et al. (2017) developed layer stacking algorithm. This segmentation

method slices the entire forest point cloud and isolates trees in each slice later. In addition,

Trochta et al. (2017) developed 3D forest, an algorithm that uses the distance between

points and clusters to segment trees. These algorithms were tested and performed well in

particular forest type: deciduous forest in leaf-off stage.

Figure 6.2: Individual tropical tree point clouds in Brazil using treeseg ; from Burt (2017).

The algorithm I used in Chapter 3, treeseg, was developed by Burt (2017). His algorithm

has been tested on deciduous forests (Disney et al., 2018; Calders et al., 2018), but also in

tropical environments (Chapter 4 of this thesis, Burt, 2017; Disney et al., 2018) as shown

in Figure 6.2. These segmentation algorithms are the next step in modelling tree point

clouds. The extraction of tree parameters with little or no human interaction allow me to

model entire forest plots within days and recreate a real 3D virtual forest with a detailed

reconstruction of every tree.

Massive reconstruction of trees is particular relevant for plot-level research; such as Ra-

diative Transfer Modelling (Calders et al., 2018), or developing allometric models, or
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estimating forest AGB for calibration plot for space-born missions with more realistic

features (individual leaves, branches, and stems). Having this quality of detail in a vir-

tual forest would allow researchers to understand the dynamics of forests and be able to

link between TLS-derived ground measurements and high-resolution remote sensing, or

airborne LiDAR or, even spaceborne LiDAR.

I foresee that semi-automatic tree segmentation algorithms will have important devel-

opments within these five years. The number of tropical forests plots TLS scanned is

increasing greatly and the demand for extracting hundreds of tropical trees is increasing

exponentially. Most of the research done today with TLS are proof of concept research

and the next step, up-scaling analysis, will require the extraction of hundreds or thousands

of tree point clouds.

6.2.4 TLS-derived allometry for greenhouse inventories

The economical and policy framework of the United Nations’ REDD+ is a global effort

to create a monetary value for the carbon in forests (Hunter et al., 2013). This frame-

work allows countries that demonstrate emissions reductions to access a (monetary or

non-monetary) compensation from the international carbon market (Gibbs et al., 2007).

However, to ensure a fair and adequate compensation based on the measurement, report-

ing, and verification (MRV) of carbon pools; it is essential to quantify carbon stocks with

the lowest possible uncertainty (Hunter et al., 2013) within the country’s capacities and

capabilities (Henry et al., 2015).

In Chapter 3, I evidenced that TLS-derived allometric models can estimate less biased

AGB than pantropical allometric models in Guyana. Although Chapter 3 is a case study

in Guyana, I am confident that the methodology from Chapter 3 can be adapted to

different forest types and produce the same results. One example is Momo Takoudjou

et al. (2018). They applied a similar methodology using TLS point clouds from trees in

Cameroon and SimpleTree algorithm to calibrate pantropical allometric models with good

results. These findings might be the starting point to consolidate TLS-derived allometric

models as a robust alternative approach to estimate AGB for countries that are working

towards a national REDD+ MRV system.

This thesis and other TLS-related researches reviewed in this thesis revealed that using

TLS and 3D modelling is an alternative approach to traditional pantropical allometric

models to estimate AGB in tropics. Nevertheless, the consolidation of a TLS-derived

approach as part of the design and implementation of a MMRV system remains a chal-

lenge. The TLS-derived approach is a novel methodology that needs to be tested and

refined in different tropical environments before to be assessed as a robust approach for

a MMRV system. Moreover, the methodology should be based on open-source software

to enhance the accessibility and reachability by experts and non-experts. To improve the



6.2 Reflection and outlook 125

understanding of non-experts, capacity development, and training workshops should be

integral part of the MMRV system to explore the capabilities and potentialities of using

TLS for their own benefit.

6.2.5 Integrating LiDAR in remote sensing

An accurate assessment of forests AGB at global level is vital for climate change modelling

at global scale, greenhouse inventories, and terrestrial carbon accounting (Dittmann et al.,

2017). Remote sensing is widely considered an essential tool for monitoring deforestation

and forest degradation. Remote sensing can provide data for monitoring national-scale

forest area change in tropics; and, along with ground measurements provide an objective

and practical cost-effective solution for developing REDD+ MMRV systems (De Sy et al.,

2012).

Spaceborne ESA’s BIOMASS (Eitel et al., 2016) and NASA’s GEDI (https://science.

nasa.gov/missions/gedi) missions are being developed and will incorporate LiDAR

technology to provide large scale detailed information from above the canopy to assess

carbon stocks. Uncertainty regarding plot-level biomass is present due to inadequate

and unrepresentative allometric models to estimate AGB. Chapters 2 and 3 evidenced

the potential of TLS to estimate AGB from tropical trees in-situ. Recently, Stovall &

Shugart (2018) used 243 trees reconstructed from TLS to calibrate SAR- and LiDAR-

based empirical biomass models. They found that TLS reduced plot-level RMSE and

revealed a systematic underestimation in the allometric models used.

LiDAR technology is overcoming its own limitations and with the new advances discussed

in this thesis, TLS has the theoretical potential to provide accurate data to calibrate

algorithms from space-born missions and link to ground observations. LiDAR-derived

assessments could synergy with other two-dimension remote sensing imageries to provide

high detailed vegetation metrics. This synergy would allow us to add explicitly structural

3D information to the remote sensing imagery and characterize individual tree attributes

up scaling to plot-level analysis.

6.2.6 Beyond terrestrial LiDAR

As stated in the Introduction, the TLS point clouds analysed in this thesis were acquired

using a RIEGL VZ-400 terrestrial LiDAR (Figure 1.2). Wilkes et al. (2017) presented

their experience using RIEGL VZ-400 terrestrial LiDAR in 27 field campaigns, in which

I contributed with three of them. Nevertheless, there are several commercial terrestrial

LiDARs available, and picking the right one is a matter of budget and the aim of the

research.

https://science.nasa.gov/missions/gedi
https://science.nasa.gov/missions/gedi
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Figure 6.3: Point cloud composite from UAV LiDAR (top), and TLS (bottom) for an Old

beech and Oak forest coloured by apparent reflectance from low (blue) to high (red); modified

from Brede et al. (2017).

In addition to the commercial scanners available, other research groups have developed

several experimental TLS instruments specifically for forestry applications. The single

wavelength Echidna (Strahler et al., 2008), the Dual-Wavelength Echidna Laser scanner

— DWEL (Douglas et al., 2015), the Compact Biomasss LiDAR — CBL (Paynter et al.,

2016), the Salford Advanced Laser Canopy Analyser — SALCA (Danson et al., 2014), and

the VEGgetation monitoring NETwork — VEGNET (Culvenor et al., 2014) are one of the

few instruments developed by other research groups around the globe. These instruments

have been designed for specific tree attributes: volumetric models for the CBL (Paynter

et al., 2018), vegetation properties for the SALCA instrument (Hancock et al., 2017),

and plant area index for the VEGNET (Portillo-Quintero et al., 2014) with successful

results.
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In the recent years, laser scanners have been mounted on different platforms to improve the

effort acquisitions of medium to large areas. LiDAR instruments became more portable

and with the raising popularity of Unmanned Aerial Vehicles (UAVs) for forest surveys,

laser scanner has been mounted on UAVs and able to scan large areas in less time and use

these point clouds to extract basic tree parameters with enough accuracy as TLS point

clouds (Wallace et al., 2016; Brede et al., 2017). The RIEGL RiCOPTER with VUX® -

1UAV (RIEGL Laser Measurements Systems, GmbH, Horn, Austria) is a 2D laser scanner

mounted on a UAV. However, the UAV-LiDAR incorporates the best features of both

systems. As being an UAV system, it is able to scan in low altitude, closer to the canopy

of trees compared to airborne LiDAR; which is mounted on airplanes. Moreover, due

to the low altitude flight, it provides a better side view of the understory than airborne

LiDAR. This is important for the structural description of forests. In addition, the UAV-

LiDAR is able to scan larger areas in less time than using TLS with interesting results.

In Brede et al. (2017), a comparison between the RIEGL RiCOPTER and the VZ-400

TLS concluded that RiCOPTER has the potential to acquire enough information (Figure

6.3) to perform comparable to TLS for estimating canopy height and diameter at breast

height, under forest conditions. Future research should test the TreeQSM models with

tree point clouds from UAV LiDAR.



Tambopata National Reserve, Peru 
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Hallé, F., & Oldeman, R. (1970). Essai sur l’architecture et la dynamique de croissance

des arbres tropicaux . Monographie de Botanique et de Biologie Végétale. {M}asson.
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