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Foreword  

The twentieth century witnesses the widespread eutrophication and 

intensive organic contaminations in earth surface water systems located in 

highly populated areas, resulting in severe deterioration of water quality in 

freshwater ecosystems around the globe. This is particularly the case for 

many freshwater shallow lakes in China. The interaction between excess 

nutrient loading and enormous organic contaminants discharge has raised 

increasing attention from both scientists and lake managers, whereas 

accurate prediction for both substances cannot be properly predicted based 

on knowledge from either field alone. However, efforts in the related 

scientific research, particularly the development of relevant modeling tools, 

remains scarce. To this end, the aim of this thesis is to develop an 

integrated ecological and chemical modeling tool, which is composed of 

contaminant fate module (CF), food web accumulation module (FW) and 

ecological module (EM), in the hope to fulfill the research gap above. We 

collected three groups of HOCs, namely hexachlorocyclohexanes (HCHs), 

polycyclic aromatic hydrocarbons (PAHs) and Per- and polyfluoroalkyl 

substances (PFASs), in multiple compartments from two Chinese shallow 

lakes that are currently in distinct ecological states, i.e., Lake Small 

Baiyangdian (in clear state) and Lake Chaohu (in turbid state). In particular, 

paleo-records of PAHs residual levels in Lake Chaohu in two sediment 

cores covering the time span of over 60 years were obtained. We elaborated 

to explicitly investigate the fate, transport and transformation of these 

contaminants in these two shallow lakes using the developed modeling 

tool, with either steady state or dynamic simulations (in time scales of both 

short-term intra-annual (1-2 years) and long-term inter-annual (60 years)). 

The following issues were addressed: 1) fate of the chemicals in lake 

environment and the dominant processes; 2) seasonal patterns of chemicals 

in lakes and the driving factors; 3) long-term dynamics of chemicals in 

lakes and the driving factors; and 4) impact of abrupt changes in 

ecosystems on the distribution of contaminations in shallow lakes. For 

modeling techniques, we implemented uncertainty analysis on the model 

using both classic Monde Carlo and more advanced Bayesian Markov 

Chain Monte Carlo (MCMC) algorithm. We recommend to apply MCMC to 

contaminant modeling approach to make calibration possible and to 

remove the overestimated uncertainty in predictions. Furthermore, we 
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compared the advantages and disadvantages of our model to other models 

with similar objectives, and we further proposed a more comprehensive 

modeling framework that incorporates hydrodynamic models to address 

spatial variations of contamination, which embraces the fruitful outcomes 

in aquatic ecosystem modeling. Finally, we advocate to add modeling 

approach as the third dimension for the ‘contemporary & paleo-

observations’ strategy, which together contribute to the ‘golden triangle’ 

framework. New insights and discoveries may emerge for the evaluation 

on the organic contaminants in shallow lake systems, which may contribute 

to ecological and human health risk assessment. This ‘golden triangle’ may 

serve as the multidiscipline framework for limnologic research in the future.  
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“Persistent pollutants, persistent threats.” 

-Jepson & Law, Science 2016, 352:1388-1389. 

1. Introduction 

Increasing contamination including excessive nutrients and toxic 

compounds are one of the most prevalent threats confronting freshwater 

ecosystems globally (Skei et al. 2000, Schwarzenbach et al. 2006). Increasing 

nutrient loads, together with many other human activities, can induce abrupt 

changes in aquatic ecosystems, which can in turn influence the environmental 

behavior of those toxic chemicals. Understanding the interactions between 

ecological processes and the behavior of toxic chemicals therefore becomes a 

relevant and urgent issue in the context of global change. In this chapter, I 

briefly introduce the current status of micropollutants contamination in global 

aquatic systems, and review the potential impact of ecological processes on the 

environmental behavior of many contaminants. Then, I provide a short review 

on the development of fugacity-based multimedia fate model for HOCs, which, 

in this thesis, has been further coupled to a food web accumulation model and 

an ecological model. In the last section, I introduce the two study sites and the 

three groups of target chemicals investigated in this thesis, and finally give the 

outline of this thesis. 

Hydrophobic organic contaminants in aquatic ecosystems 

It is well recognized that the contamination of global freshwater 

resources by micropollutants has become a key environmental issue raising 

major public concern (Millennium Ecosystem Assessment 2005). Around the 

globe, approximately one-third of the freshwater is currently affected by 

humans for agriculture, industrial and domestic activities (Schwarzenbach et al. 

2006). As a consequence, annually c.a. 300 million tons of chemical compounds, 

including c.a. 140 million tons of fertilizers, pesticides, and various hazardous 

chemicals such as hydrophobic organic contaminants (HOCs), finally enter 

aquatic ecosystems including streams, rivers, lakes, groundwater and coastal 

seas (Larsson et al. 2000, Skei et al. 2000, Schwarzenbach et al. 2006). This is 

particularly the case in many catchments with high population densities and 

intensive human activities in China, such as Haihe Plain (Wang et al. 2011a, 

Wang et al. 2013) and lower Yangtze River floodplain in China (Qiu et al. 2008, 

He et al. 2012, Qin et al. 2013a). 
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Some of these HOCs do not or very slowly degrade, such as lindane 

and polycyclic aromatic hydrocarbons (PAHs) (Walker et al. 1999, Breivik and 

Wania 2002, Schenker et al. 2009, Parajulee and Wania 2014). After these 

chemicals enter the aquatic environment, they are subject to environmental 

and ecological processes, and are distributed among various compartments in 

the lake, accumulate and biomagnify in the food chain, thereby threatening the 

ecological functions at various levels, from impairment of individuals (e.g. the 

survival and biomass of one or more core species) to ultimately the ecosystem 

level (biodiversity and functioning loss) due to their high toxicity at 

environmentally relevant concentrations (Qin et al. 2013b). A recent study 

indicates that polychlorinated biphenyls (PCBs) continue to threaten marine 

predators, such as orcas, even though the use and manufacture of PCBs have 

been banned in the early 1980s (Jepson and Law 2016). In addition, these 

persistent contaminants damage human health via consumption of aquatic 

products and environmental exposure (Wu et al. 2007). Those organic 

contaminants with low degradation rates are generally referred to as Persistent 

Organic Pollutants (POPs) (Jones and De Voogt 1999), and many of those 

causing high ecological or human health risks have been subject to legislative 

restrictions in the Stockholm convention (SCPOPs 2009, Vijgen et al. 2011). 

Alternative stable states in shallow lake ecosystems 

The environmental behavior of HOCs in aquatic systems is determined 

by biogeochemical and ecological processes within these systems (Koelmans et 

al. 2001). Therefore, understanding the ecology of these systems, e.g., shallow 

lakes that are distributed globally, is a prerequisite for evaluating the effects of 

HOCs on these systems.  

Intensive studies have revealed that freshwater shallow lake ecosys-

tems exhibit alternative stable states, i.e. a clear, macrophyte-dominated state, 

and a turbid, phytoplankton-dominated state (Scheffer et al. 1993). Such 

systems are stable in either of the states reinforced by multiple feedbacks, 

which center around the interaction between macrophytes and water turbidity 

(Scheffer et al. 1993). The alternative equilibria in shallow lakes have important 

implications, as they can shift from one state to another surprisingly when a 

threshold of a certain external condition is crossed, which is generally referred 

to as a ‘regime shift’ (Scheffer et al. 2001a, Scheffer and Carpenter 2003, 

Scheffer 2004, Scheffer and Jeppesen 2007).  

Among all the potential mechanisms, crossing the threshold of a critical 

nutrient level in the water column is often considered as the dominant one 

(Scheffer 2004). Therefore, the world-wide water quality deterioration due to 
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eutrophication by excessive nutrient discharge will exhibit nonlinear rather 

than linear patterns and result in abrupt changes in ecosystems. In addition, 

many other factors may also play a role (Scheffer and van Nes 2007). Recent 

studies have highlighted the impact of extreme water levels on lakes 

ecosystems, demonstrating that frequent flooding and occasional droughts can 

induce regime shifts as well (Schooler et al. 2011). The significant role of 

hydrological disturbance by human activities (van Geest et al. 2007, Loverde-

Oliveira et al. 2009, Kong et al. 2017a), climate change (Scheffer et al. 2001b, 

Smol et al. 2005) in driving regime shifts in lakes have also been demonstrated. 

As a consequence, the risk of transgressing the ‘planetary boundaries’ and the 

occurrence of abrupt change in ecosystems such as lakes are increasing rapidly 

in the context of global change driven by multiple human activities in the 

coming future (Rockström et al. 2009, Dearing et al. 2014, Scheffer et al. 2015, 

Steffen et al. 2015). 

Potential impact of ecological state on the fate of HOCs in lakes 

The alternative stable states and abrupt changes occurring in shallow 

lake ecosystems could have a substantial impact on the fate of HOCs. The 

ecological structures in the alternative states are different (Downing et al. 2012, 

Kong et al. 2016). The ecological functions in ecosystems with different 

structure are substantially altered, leading to disturbed biogeochemical cycling 

(Jeppesen et al. 2011). Several studies have indicated that these changes may 

influence the environmental behavior of HOCs in these lake systems, including 

transport, partitioning, and bioavailability (Berglund et al. 2001, Koelmans et al. 

2001, Moermond et al. 2005, Nizzetto et al. 2012). First, the differences in 

primary producers play a critical role. In a clear lake, the dominated 

submerged vegetation can act as a sink for HOCs and decrease the amount in 

other compartments (Roessink et al. 2010). For example, sediment-rooted 

macrophytes can substantially decrease the amount of pollutants in sediment 

by uptake (Diepens et al. 2014). On the other hand, in a turbid state lake 

dominated by suspended algae, the sink of vegetation is absent and the 

mobility of HOCs is enhanced. It has been reported that abundant algae in 

eutrophic lakes may act as a ‘biological pump’ that drives the exchange of 

HOCs between e.g. air-water and water-sediment interfaces, thereby largely 

influencing the fate and transport of HOCs in lakes and oceans (Dachs et al. 

1999, Dachs et al. 2000, Nizzetto et al. 2012). Second, the altered food web 

structure and ecological functioning may also play a role. The importance of 

planktonic food webs in driving the fate of HOCs in lakes suggest the necessity 

to include zooplankton as a factor (Berrojalbiz et al. 2009). In addition, the 
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changes in the fish community can result in, e.g. different intensity of sediment 

disturbance by benthivorous fish, which subsequently will affect the fate of 

HOCs (Roessink et al. 2010). Several studies addressed this issue with 

mesocosm experiments and field observations (Moermond et al. 2005, Roessink 

et al. 2010). However, only few studies have addressed the impact of regime 

shifts from one ecological state to the alternative state on the distribution and 

transport of HOCs in one system. This gap in knowledge is subject to the data 

paucity of HOC observations either in ecosystems of contrasting states, or in 

one ecosystem undergone abrupt changes. 

Fugacity-based multimedia fate model 

Multimedia fate model is a widely used modeling tool to investigate 

environmental behavior of chemicals, ecological risk assessment and 

environmental management of contaminants. Fugacity-based multimedia fate 

model is one of the derivatives, which is considered to be an important 

development of multimedia fate model (Mackay 2001). The word fugacity 

originates from the Latin fugere, which means to flee. This concept was firstly 

introduced to thermodynamics in 1901 by the American chemist Gilbert N. 

Lewis (Lewis and Randall 1961). Fugacity evaluates the equilibrium 

distribution and tendency of chemicals to escape between phases (Mackay and 

Paterson 1981). It was applied in multimedia fate modeling since the beginning 

of the 1980s (Mackay 1979, Mackay and Paterson 1981, 1982). 

Fugacity-based multimedia fate model is developed based on the 

principle that both environmental conditions and physical-chemical properties 

of the chemicals determine their fate, transport and transformation in the 

environment. Four levels of fugacity model exist (Level I - IV) (Mackay and 

Paterson 1982): 

 

 Level I model is for equilibrium, stable and non-flowing systems;  

 Level II model is for equilibrium, stable and flowing systems;  

 Level III model is for non-equilibrium, stable and flowing systems;  

 Level IV model is for non-equilibrium, non-stable and flowing systems .  

 

It is either Level III or Level IV model that could comprehensively 

describe the chemical’s behavior after entering the environment. More 

compartments are included during the development of level III model with 

case studies of contaminants of prior attention (Edwards et al. 1999). The 

model accounts for chemicals in air, water, fish and sediment (aquatic 

systems)(Mackay et al. 1983a, Mackay et al. 1983b, Mackay and Hughes 1984, 
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Mackay et al. 1986, Mackay and Diamond 1989, Baek and Park 2000, Wang et 

al. 2012a), soil and plants systems (Paterson et al. 1990, Paterson et al. 1991), 

terrestrial systems (Wang et al. 2002, Wania et al. 2006, Parajulee and Wania 

2014), as well as the whole environmental (Mackay and Paterson 1991, Mackay 

et al. 1992). In addition, incorporation of spatial heterogeneity at both regional 

(Tao et al. 2003) and global (Ballschmiter 1992, Wania and Mackay 1995) scales 

provides deeper insights into the characteristics of chemical’s behavior in 

environment. Coupling to an atmospheric transportation model enables the 

model to address global distribution and health risk from inhalation exposure 

to the contaminants (Zhang et al. 2009, Wang et al. 2011a). Furthermore, a level 

IV fugacity-based multimedia fate model evaluates dynamics of fate, transport 

and transformation of chemicals, at temporal scales of either short-term with 

seasonal variations (Lang et al. 2007, Wang et al. 2011a) or long-term with 

changes in emission intensity (Tao et al. 2006, Cao et al. 2007, Liu et al. 2007, Ao 

et al. 2009, Dong et al. 2009). These studies generally observe a relative good fit 

of model predictions to measured data, and an evident response of contami-

nant residual levels to the changes in emission rates in the past. Prognoses of 

contaminant residual levels in the coming decades can also be indicated (Tao et 

al. 2006), which serves as critical implications for chemical managements. 

Overall, since the first report, fugacity-based multimedia fate model has been 

under continuous development and applications. 

Fugacity-based multimedia fate model has also been utilized in 

investigations of the bioconcentration, bioaccumulation and biomagnification 

of contaminants in food chains and/or food webs in ecosystems (usually level 

III) to facilitate ecological and human health risk assessment. These approaches 

are based on the fact that the fugacity ratio between biota and abiotic phases, 

and between trophic levels, could be higher than one. As a result, fugacity 

gradient of chemicals is the key driver of bioconcentration, bioaccumulation 

and biomagnification (Connolly and Pedersen 1988). In addition, studies that 

quantitatively evaluate the relevant parameters also provide an important 

basis for these approaches, such as the relationship between the bioaccumu-

lation factor (KB) and the octanol/water partition coefficient (Kow) (Mackay 1982). 

For food chains and food webs, fugacity-based model starts from modeling 

contaminants in both the digestive system of fish (Mackay and Hughes 1984, 

Gobas et al. 1993, Gobas et al. 1999, Hauck et al. 2011) and terrestrial vegetation 

(Calamari et al. 1987, Paterson et al. 1994, McKone and Maddalena 2007, 

Diepens et al. 2014), including agriculture crops (Hung and Mackay 1997). 

Next, the model is extended to whole food chains and/or food webs (Diamond 

et al. 1996, Binelli and Provini 2003, Arnot and Gobas 2004, Gobas and Arnot 

2010) and ultimately to a general framework for food web accumulation model 
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(Campfens and Mackay 1997), resulting in modeling tools with more 

systematic description on transport and transformation of chemicals, and a 

rapid risk assessment of commercial chemicals (Mackay and Fraser 2000). 

Overall, due to potential toxicity of the contaminants that may lead to species 

extinction (Gilbertson 1996) or human health risks (Thomas et al. 1998), 

understanding bioconcentration, bioaccumulation and biomagnification of 

contaminants using models is of great importance (Sharpe and Mackay 2000, 

Koelmans et al. 2001). However, models integrating ecosystem dynamics and 

contaminant fate models are still limited in both model availability and 

completeness of process description. 

PCLake as a lake ecological model 

PCLake model was initially developed as an integrated ecosystem 

model for temperate shallow non-stratifying lakes in the Netherlands (Janse 

and van Liere 1995). The model has a fully mixed water column and a 

subsurface sediment layer, and operates with closed nutrient cycles in the lake 

system (Janse 1997, Mooij et al. 2010). Three groups of phytoplankton (diatoms, 

greens and blue-green) and submerged vegetation are included in the model, 

as well as a simplified food web, consisting of zooplankton, zoobenthos, and 

three functional groups of fish (zooplanktivorous, benthivorous and 

piscivorous). Each compartment is modeled by three components, namely, dry 

weight as a surrogate for carbon, nitrogen and phosphorus. The model keeps 

track of the mass balances. In addition, the model is based on both mechanistic 

descriptions of biotic and abiotic processes (e.g. grazing, mortality, respiration 

and shade effects) and empirical relations (e.g. sediment resuspension, 

interactions between resuspension and vegetation). The main purpose of the 

model development is to simulate the critical transitions between the clear, 

vegetation-dominated state and the turbid, phytoplankton-dominated state in 

shallow lakes (Janse and van Liere 1995). A comprehensive and detailed des-

cryption of PClake model can be found in Janse (2005).  

To date, multiple studies have investigated the features of shallow lake 

ecosystem simulated by PCLake. The model is well-calibrated based on a large 

lake dataset in the Netherlands, and the most sensitive parameters and model 

uncertainties are addressed (Aldenberg et al. 1995, van Puijenbroek et al. 2004, 

Mooij et al. 2009, Janse et al. 2010, Nielsen et al. 2014). Some studies mainly 

focus on calculating the critical level of nutrient loading at which a transition 

may occur between the two alternative stable states in shallow lakes. These 

studies aim at revealing the associated influencing factors such as lake types or 

other features, and providing hints for lake management (Janse 1997, Janse et 
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al. 2008). In addition, the model can also be used to address the biological 

factors influencing the stability of macrophyte-dominate states in the lake 

(Janse et al. 1998). The effects of climate change on shallow lakes are also 

evaluated by the PCLake model in both temperate and subtropical regions 

(Mooij et al. 2007, Fragoso et al. 2011, Nielsen et al. 2014). The predictions from 

the model to future scenarios in the context of global warming depend on the 

location and the status of the lake. Nonetheless, evidence from model 

simulations has shown that changes in climate, nutrient and hydraulic loading, 

as well as enhanced input of terrestrial particulate organic matter, will decrease 

critical nutrient loadings and increase the probability of a shift from a clear to a 

turbid state (Mooij et al. 2007, Lischke et al. 2014). Several studies focus on 

modification and improvement of the PCLake model, including addition of 

vertical variations in the lake (Prokopkin et al. 2010), and incorporation of a 3D 

hydrodynamics model to describe the integrated hydrodynamic, water-quality, 

and biological processes in the lake (Fragoso et al. 2009, Fragoso et al. 2011). 

PCLake model is considered as a powerful tool to simulate the long-

term dynamics of Lake Chaohu ecosystem because this model is developed in 

the context of alternative stable states and regime shifts of shallow lakes 

between clear and turbid states. The model has a detailed submodel for 

submerged macrophytes and an explicit interpretation of the interactions 

between phytoplankton and submerged macrophytes. The most important 

mechanisms that lead to alternative stable states and hysteresis are considered 

in PCLake. The assumed regime shifts in Lake Chaohu during the last several 

decades, from a clear, submerged-dominated state (approximately 30% 

coverage of submerged plants before the 1960s), to a turbid, phytoplankton-

dominated state, are within the scope and ability of the model, making it 

possible to simulate the dynamics and reveal the dominant driving factors. In 

this thesis, PCLake is coupled with a fugacity-based multimedia model 

developed for modeling HOCs in shallow lake Chaohu. Details can be found in 

a previous publication (Kong et al. 2017a). 

Research objectives and hypothesis 

In this thesis, I aim to address the following questions: What are the 

characteristics of fate, transport and bioaccumulation of HOCs for the distinct 

ecological states of shallow lake ecosystems, on both seasonal and annual 

temporary scales? What are the major factors influencing the patterns of HOC 

environmental behavior? Can an integrated contaminant fate & ecosystem 

model for this approach be developed? Will the model be able to simulate the 

dynamics of fate, transport and bioaccumulation of HOCs during a regime 
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shift occurring in a lake? I hypothesize that the environmental behavior of 

HOCs in shallow lakes with alternative stable states (i.e. clear and turbid states) 

will be significantly different in terms of fate, transport and bioaccumulation. 

Therefore, regime shifts in shallow lakes would exert large impacts on HOCs 

cycling in shallow lakes and possibly their risks. 

2. Study systems 

Study sites 

Two typical shallow lakes in China are selected (Fig. 1), one in a clear, 

macrophyte-dominant state (Lake Small Baiyangdian), and the other in a 

turbid, phytoplankton-dominant state (Lake Chaohu).  

 Lake Small Baiyangdian 

Lake Baiyangdian is located in the triangular region defined by three 

large cities, Beijing, Tianjin, and Baoding. It is the largest freshwater lake in 

northern China with a total area of 366 km2 with an average depth of 

approximately 1.9 m. Lake Baiyangdian plays an important role in maintaining 

the ecological balance of north China and in providing domestic, agricultural, 

and industrial water sources for the lake catchment (Wang et al. 2013), which is 

regarded as the ‘Pearl of North China’. It is also a critical natural wetland for 

groundwater replenishment, flood control and biodiversity preservation in this 

region (Li et al. 2012). Lake Baiyangdian is composed of 143 small lakes and 

ponds. Lake Small Baiyangdian is one of them with a total area of 

13.3 km2. This lake is dominated by macrophytes whereas the lake has suffered 

from increasing nutrient loading and HOCs due to rapid population growth 

and economic development in the basin over the past several decades (Xu et al. 

2011a). 

 Lake Chaohu 

Lake Chaohu is the fifth-largest shallow freshwater lake in China 

(surface area 780 km2 with an average depth of approximately 3 m). The 

catchment area of the lake is 12,938 km2. Before the 1950s, the lake was well 

known for its scenic beauty and rich aquatic products. The macrophyte 

coverage was 25%-30% of the lake area and the water body was mesotrophic 

with a low phytoplankton concentration before 1960 (Xu et al. 1999b). Over the 

last several decades, the total human population living in the catchment 

increased from 3.1 million in 1950 to 7.4 million in 2013. In the same period the 

gross value of industrial output increased from 31 million RMB in 1950 to 
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165,525 million RMB in 2013 (Zhang et al. 2015a). Drastic changes have 

occurred in this lake, and nowadays the lake is highly eutrophic with frequent 

summer blooms of cyanobacteria (Kong et al. 2015, Zhang et al. 2015b). 

Previous studies combing ecosystem modeling and paleolimnological records 

have revealed that this lake has undergone several regime shifts since 1950s 

(Kong et al. 2016, Kong et al. 2017a). Moreover, the lake has been highly 

polluted with multiple HOCs over a long-term period (He et al. 2014). 

Therefore, this lake also serves as a good case for investigating the impact of 

regime shifts on environmental behavior of HOCs during a long-term time 

scale. 

 

 
Fig. 1  Locations of Lake Small Baiyangdian and Lake Chaohu in China. 

 

Target HOCs 

 Hexachlorocyclohexanes (HCHs) 

HCHs are chemicals of any of several polyhalogenated organic 

compounds consisting of a six-carbon ring with one chlorine and one hydrogen 

attached to each carbon (Table 1). They are compounds of major concern 
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among organochlorine pesticides (OCPs), which have been heavily used in the 

past around the world (Carson 2002). There are eight geometric isomers of 

HCHs, which differ in the axial and equatorial positions of the chlorine atoms 

(Walker et al. 1999). HCH isomers (α-, β- and γ-HCH) were recently added to 

the list of persistent organic pollutants (POPs) at the Stockholm Convention 

(Vijgen et al. 2011). The isomers of α-HCH and γ-HCH are the main 

ingredients for the commercial product of technical HCHs (containing 60-70% 

α-HCH and 10-15% γ-HCH), and γ-HCH is the active ingredient of the 

insecticide lindane (containing more than 99.9% γ-HCH). Studies showed that 

lindane may exert pressures on freshwater ecosystems (Qu et al. 2011, Matozzo 

et al. 2012). Among the isomers of HCHs, α-HCH can cause human 

neurological disorders and gastrointestinal discomfort, resulting in liver and 

kidney damage, human endocrine system disorders and immune system 

abnormalities (SCPOPs 2009). Furthermore, as the only isomer with specific 

insecticidal properties, γ-HCH is found to be a tumor promoter (Walker et al. 

1999). One study indicated that subtle alterations in breast and prostate cells 

could be induced by environmental concentrations of lindane (Kalantzi et al. 

2004b). 

 Polycyclic aromatic hydrocarbons (PAHs) 

PAHs are hydrocarbons-organic compounds containing only carbon 

and hydrogen, which can be found in coal and tar deposits, and are also 

produced by the incomplete combustion of organic matter (Zhang and Tao 

2009). PAHs are globally-concerned pollutants due to their widespread 

occurrence, strong persistence, long-range transport potential and carcinogenic 

toxicity (Qin et al. 2013b), and have been listed in Annex B of the Stockholm 

Convention (SCPOPs 2009). As one of the fastest growing countries in the 

world, China is suffering from severe contamination with PAHs from various 

sources (Zhang et al. 2007), where ecosystem and human health are threated. 

The atmospheric emissions of 16 priority PAHs in China in 2004 (114 Gg) 

accounted for about 22% of the total global emissions (520 Gg) (Zhang et al. 

2009). It was estimated that 5.8% of China's land area, where 30% of the 

population lives, exceeded the national ambient benzo[a]pyrene (BaP) stand-

ard of 10 ng/m3, and that the overall population attributable fraction for lung 

cancer caused by inhalation exposure to PAHs was 1.6% (Zhang et al. 2009). 

 Poly - and perfluoroalkyl substances (PFASs) 

PFASs are a group of chemicals that are widely applied in fire-fighting 

foams, carpets, paints, and oil-resistant coatings for food contact paper, etc. 

(Giesy and Kannan 2001, Liu et al. 2015b). These group of substances have 
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been produced since the 1950s, and are highly used from the 1970s at a global 

scale (Lindstrom et al. 2011). After the prohibition of application in 2002 (3M 

2003), the countries around the world have still reported the continuous 

production and application of PFASs, and its production increases annually. 

Both perfluorooctanoic acid (PFOA) and perfluorooctane sulphonate (PFOS) 

are the dominant PFASs that have attracted public attention (Loos et al. 2010). 

PFOA, also known as “C8”, is used in the process of making Teflon and similar 

chemicals. PFOS, on the other hand, is the key ingredient in Scotchgard, a 

fabric protector made by 3M, and numerous stain repellents. In 2009, PFASs 

were listed in Annex B of the Stockholm Convention (SCPOPs 2009). 

 

Table 1  Basic information of the target HOCs 

Name Abbreviation Molecular structure 
Molecular 

formula 
CAS No. 

Hexachlorocyclohexane (n=2) 

α-

hexachlorocyclohexane 
α-HCH 

 

C6H6Cl6 319-84-6 

γ-

hexachlorocyclohexane 
γ-HCH 

 

C6H6Cl6 58-89-9 

Polycyclic Aromatic Hydrocarbons (n=16) 

Naphthalene NAP 
 

C10H8 91-20-3 

Acenaphthylene ACY 

 

C12H8 208-96-8 

Acenaphthene ACE 

 

C12H10 83-32-9 

Fluorene FLO 
 

C13H10 86-73-7 

Phenanthrene PHE 
 

C14H10 85-01-8 

Anthracene ANT 
 

C14H10 120-12-7 

Fluoranthene FLA 

 

C16H10 206-44-0 

Pyrene PYR 

 

C16H10 129-00-0 

http://www.ichemistry.cn/chemistry/58-89-9.htm
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Benzo(a)anthracene BaA 

 

C18H12 56-55-3 

Chrysene CHR 

 

C18H12 218-01-9 

Benzo(b)fluoranthene BbF 

 

C20H12 205-99-2 

Benzo(k)fluoranthene BkF 

 

C20H12 207-08-9 

Benzo(a)pyrene BaP 

 

C20H12 50-32-8 

Indeno(1,2,3-cd)pyrene IcdP 

 

C22H12 193-39-5 

Dibenz(a,h)anthtacene DahA 

 

C22H14 53-70-3 

Benzo(ghi)perylene BghiP 

 

C22H12 191-24-2 

Poly - and perfluoroalkyl substances (n=2) 

Perfluorooctanoic acid PFOA 

 

C8HF15O2 335-67-1 

Perfluorooctanesulfonic 

acid 
PFOS 

 

C8HF17O3S 1763-23-1 

 

Field sampling 

Monthly samples over two years were collected in the two lakes, 

including gaseous, aerosol particles, water and suspended solids samples. 

Concentrations of target HOCs were measured. Other field data included 

HOCs in multiple groups of biota (fish and benthos) for human consumption, 

phytoplankton, submerged vegetation, surface sediment and soil in the 

catchment. Lipid fractions were measured for all organisms. In addition, PAH 

profiles were measured in two sediment cores in Lake Chaohu from the centers 
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of the west and the east part of Lake Chaohu. Chronologies were obtained by 

measuring 210Pb and 137Cs radionuclide activities in contiguous samples in the 

first 30 cm of the cores. The time series of historical PAHs records in sediment 

cores were used for the validation of the long-term model simulation. 

Model development 

The model developed in this project is composed of three modules, i.e., 

a contaminant fate module (CF), a food web accumulation module (FW) and 

an ecological module (EM). 

 CF module 

The CF module focuses on the fate and transport of contaminants in the 

abiotic compartments in lake ecosystems (Koelmans et al. 2001). In this thesis, 

the CF was developed from the fugacity-based Quantitative Water, Air, 

Sediment Interaction (QWASI) model (Mackay et al. 1983b), with the major 

difference being the inclusion of the soil compartment, and atmospheric 

advection input and output from the modelled system. The CF has four main 

compartments (atmosphere, water, soil and sediment). The atmospheric phase 

is comprised of two sub-phases: gaseous and particulate matter. The aqueous, 

soil and sediment phases all comprise two sub-phases: water (pore water for 

sediment) and solids (suspended solids for aqueous phase). It is assumed that 

the fugacities for all of the sub-phases in each compartment are the same 

(Mackay and Paterson 1991), i.e., equilibrium exists within all four main 

compartments. 

 FW module 

The FW module describes the contaminant uptake, depuration and 

transformation in aquatic biota, and transfer through the trophic levels of the 

lake food web. The structure of the FW in this project was designed based on 

previous studies focusing on food web structure in typical Chinese lakes such 

as Lake Chaohu (Zhang et al. 2012, Kong et al. 2016). For fish and invertebrates 

(zooplankton and zoobenthos), the exchange with water was modelled 

following Arnot and Gobas (2004). For both macrophytes and phytoplankton, 

the approach was similar to that used for the fish and invertebrates, however 

with modifications based on the uptake model from Dachs et al. (1999). The 

metabolic transformation rates for fish and invertebrates were similar to those 

in Moermond et al. (2007). Bioaccumulation modeling accounted for predation 

or grazing on different types of food, and loss by being predated or grazed 
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according to the interactions defined in Arnot and Gobas (2004) and the diet 

composition defined in Kong et at. (2016) for Lake Chaohu. 

 EM module 

The EM module was developed to account for biogeochemical cycling 

in a lake ecosystem, including the dynamics of nutrient and organisms, and to 

subsequently provide external inputs of biomass for the FW module. Therefore, 

EM serves as the basis for the integrated modeling approach. PCLake was used 

as the EM in this thesis. PCLake is a well-developed ecosystem model with a 

detailed coverage of the interactions between phytoplankton and submerged 

macrophytes. The most important mechanisms that lead to alternative stable 

states and hysteresis in shallow lakes are modelled explicitly. In addition, 

PCLake has been adapted for Chinese lakes and fitted to field observations 

(including nutrient levels, water quality indicators and biomass of various 

biota components) (Kong et al. 2017a). PCLake has a food web module that is 

similar to the module used in FW. Therefore, the biomass for different 

organism groups as simulated by EM (PCLake) was used as external inputs for 

FW. 

Model analysis 

Model analysis included both sensitivity analysis and uncertainty 

analysis, in order to evaluate the robustness of the model. All parameters were 

initiated using empirical values from literature or field observations from the 

laboratory. 

 Sensitivity analysis 

Sensitivity analysis was applied by implementing a ‘perturbation’ near 

the best estimate value of a parameter, and the variation of model outputs was 

studied under the condition that other parameters remained unchanged. The 

Morris classification screening method, a widely applied local sensitivity 

analysis method (Morris 1991), was used. 

 Uncertainty analysis 

For uncertainty analysis of environmental models, basic Monte Carlo 

simulation is commonly used, which relies on user-defined probability 

distributions for the model input parameters. Due to data limitations, the 

distributions of certain parameters are difficult to determine, which might lead 

to an unsatisfactory fit between the model output and the observed data and 

over-estimated uncertainty of the model results in the Monte Carlo simulation. 



General introduction 

27 

Therefore, a Bayesian Markov Chain Monte Carlo (MCMC) method associated 

with the adapted Metropolis-Hastings algorithm was used in this thesis, which 

combines the uncertainty analysis and the calibration of the fugacity model 

(Saloranta et al. 2008). 

 Model simulation and validation 

The model runs on different time scales, i.e., steady state, short-term 

seasonal variations and long-term dynamics starting from the early 1950s. The 

steady state model serves as the first step in model development and 

evaluation. The short-term simulation aimed at evaluating the robustness of 

the model and the ability of the model to predict the seasonality of HOC 

concentrations in lakes. The long-term simulation is designed to investigate the 

impact of a catastrophic regime shift on the fate and dynamics of HOCs. 

External conditions including water inflow and outflow, depth, wind speed, 

water temperate and precipitation were collected. The model was validated by 

field observations from both multiple compartments in the lake and also the 

data from sediment cores. 

3. Thesis outline 

Chapter 2 

This chapter aimed to develop a basic version of the model including 

the CF module and a very simple FW module, which was applied in modeling 

the fate and transport of PAHs under steady state assumption in Lake Small 

Baiyangdian, a typical macrophyte-dominated shallow lake. The sensitivity of 

parameters and model uncertainty was investigated. 

Chapter 3 

Based on the previous developed model (Chapter 2), seasonal varia-

tions of α-HCH in Lake Chaohu, a typical phytoplankton-dominated shallow 

lake, were modelled. Sensitivity analysis was conducted for both stable and 

dynamic parameters. Uncertainty of the model in dynamics simulations was 

evaluated using basic Monte Carlo simulations. 

Chapter 4 

Seasonal variations of γ-HCH in Lake Chaohu were simulated using 

the model in Chapter 3, but slightly different in structure. Uncertainty analysis 



Chapter 1 

28 

was conducted by both basic Monte Carlo and Bayesian Markov Chain Monte 

Carlo (MCMC) methods, and the results were compared and discussed. 

Chapter 5 

Two per- and polyfluoroalky substances (PFASs), including perfluo-

rooctanoic acid (PFOA) and perfluorooctane sulphonate (PFOS), were expli-

citly investigated in the turbid Lake Chaohu based on a two-year field 

observation. A similar modeling tool as that in Chapter 3 & 4 was applied, with 

essential adaptations in both structure and parameterizations for both 

contaminants. Uncertainty of the model in dynamical simulations was 

evaluated and the major sources of uncertainty will be identified. 

Chapter 6 

The model was updated by including a full FW module, and further 

linked to an EM module using PCLake. This modified model was utilized in 

simulating long-term dynamics of representative polycyclic aromatic hydro-

carbons (PAHs) in Lake Chaohu during a long term period covering regime 

shifts in the lake ecosystem. Historical records of PAHs from sediment cores 

were used for model validation. 
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Abstract  

A QWASI (Quantitative Water Air Sediment Interaction) fugacity 

model was developed to characterize the fate and transfer of fifteen priority 

PAHs in Lake Small Baiyangdian. The PAH concentrations in the air (air, 

particulates), water (water, suspended solids, plants and fishes) and sediment 

(water and solids) as well as the transfer fluxes between adjacent 

compartments were derived under the steady-state assumption. Sensitivities of 

the model estimates to input parameters were tested. Monte Carlo simulation 

was conducted for the uncertainty analysis. The results indicated that there 

was generally good agreement between the modeled and measured 

concentrations with the differences within an order of magnitude for the 

majority of PAH components. The fluxes into and out of the lake as well as 

each compartment were well-balanced. The average bioaccumulation flux of 

PAHs by plants was four times higher than that by fishes. The transfer 

directions of PAHs were from air to water and to sediment. Temperature was 

the most influential parameter, and was more sensitive to the modeled 

concentrations of middle- and high-molecular-weight PAHs that were 

considered as the source of the model uncertainty. The model developed in 

this study could well characterize the fate and transfer of PAHs in the lake.   
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1. Introduction 

Polycyclic aromatic hydrocarbons (PAHs) are globally-concerned 

pollutants due to their widespread occurrence, strong persistence, long-range 

transportation potential and carcinogenic toxicity (Xu et al. 2011b). As one of 

the fastest growing countries in the world, China is suffering from severe 

contamination of PAHs from various sources (Zhang et al. 2007). The threat of 

PAH pollution to ecosystems and human health have become serious in China. 

It was reported that the atmospheric emissions of 16 priority PAHs in China in 

2004 (114 Gg) accounted for about 22% of the total global emissions (520 Gg) of 

16 priority PAHs set by USEPA (Zhang and Tao 2009). It was estimated that 5.8% 

of China's land area, where 30% of the population lives, exceeded the national 

ambient benzo[a]pyrene (BaP) standard of 10 ng/m3, and that the overall 

population attributable fraction for lung cancer caused by inhalation exposure 

to PAHs was 1.6% (Zhang et al. 2009). Therefore, it is very meaningful to 

understand and predict the fate and transport of PAHs in various 

environmental media in China.  

Multimedia modeling is required to predict the fate and transport of 

PAHs, since they occur in every media including air, water, soil, sediment and 

various organisms. Among various multimedia models, fugacity model 

proposed by Mackay (1979) is the most popular model with many successful 

case studies on the fate of organic chemicals such as PAHs at regional scales 

(Wang et al. 2002, Tao et al. 2003, Lang et al. 2008). In the developed fugacity 

models, two case studies included all 16 principal PAHs (Lang et al. 2008, 

Wang et al. 2011a); only limited PAH components such as BaP and 

phenanthrene (Phe) were considered in other studies (Wang et al. 2002, Tao et 

al. 2003). However, the fate of PAH components in water and sediments were 

not well modeled in such studies at regional scales (Wang et al. 2002, Tao et al. 

2003, Lang et al. 2008, Wang et al. 2011a). To solve this limitation, a more 

specific approach consisting of the quantitative water, air, sediment interaction 

(QWASI) fugacity model can be used. The QWASI fugacity model developed 

first by Mackay and his colleagues (Mackay et al. 1983a, Mackay et al. 1983b) 

has been successively applied to predict the fate of heavy metals and organic 

chemicals such as lead (Pb), mercury (Hg), nickel (Ni), copper (Cu), 

polychlorinated biphenyls (PCBs), linear alkylbenzenesulphonates (LAS) and 

BaP in lake or river ecosystems (Mackay et al. 1983a, Mackay et al. 1983b, 

Holysh et al. 1986, Ling et al. 1993, Diamond et al. 2000, Woodfine et al. 2000). 

However, priority PAH components other than BaP have not been included in 

the QWASI fugacity models. In order to understand properly and to compare 
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the behaviors of individual PAH components in aquatic ecosystems, it is 

critical to include other priority PAH components excluding BaP, because the 

behaviors and physical-chemical features are varied for different PAH 

components (Harvey 1991, Lohmann et al. 2011). For BaP, more case studies on 

using QWASI fugacity model are still needed to understand and predict its fate 

behaviors in lake ecosystems, especially in such a lake as Small Baiyangdian 

that has abundant aquatic plants. In the previous studies on the development 

and application of QWASI fugacity model, aquatic plants were never included. 

It was suggested that plant bioaccumulation potential was one of the major 

limitations of the fugacity model (Calamari et al. 1987). 

In this study, a QWASI fugacity model was developed to characterize 

the environmental fate and transfer processes of PAHs in Lake Small 

Baiyangdian. Aquatic plants were included in the model, and the fifteen 

priority PAH components were modeled. The reliability of the model estimates 

was evaluated by various means including concentration validation, sensitivity 

and uncertainty analysis. 

2. Materials and methods 

Study area and measurements 

Lake Baiyangdian, the largest freshwater lake in Northern China, is 

located at the central place of three big cities, Beijing, Tianjing and 

Shijiazhuang, one of the most seriously polluted areas in China for PAHs 

(Zhang et al. 2007) (Fig. 1). Lake Baiyangdian is one of the important locations 

of fish production in China. However, during the last decades, with the rapid 

economic development and population growth in the watershed and neighbor 

regions, the lake receives an increased loading of PAHs (Xu et al. 2011b). The 

lake with total area of 366 km2 is composed of 134 interconnected small lakes 

with different size areas. Lake Small Baiyangdian, with the area of 13.3 km2, is 

the biggest one among 134 interconnected small lakes.  

Sampling for water, suspended solids, sediment and macrophytes at 

six sites (Fig. 1), and for fish at one site in Lake Small Baiyangdian was 

performed once on October 7th, 2007. Air sampling including gaseous, 

particulate and dust samples at two sites was carried out four times seasonally 

during autumn 2007 to summer 2008. Gaseous and particulate samples were 

collected using passive air sampler (Tao et al. 2009). Dust samples were 

collected by dust tank. Macrophyte samples included two species of floating 

plants, three species of submerged plants, and three species of emergent plant. 

Four species of commonly consumed freshwater fish including 15 individuals 
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of crucian carp, and 10 individuals each of snakehead fish, grass carp and 

silver fish were collected. Fifteen priority PAHs included Acenaphthylene 

(Acy), Acenaphthene (Ace), fluorene (Flo), Phe, anthracene (Ant), fluoranthene 

(Fla), pyrene (Pyr), Chrysene (Chr), benzo[a]anthracene (BaA), benzo[b] 

fluoranthene (BbF), benzo[k]fluoranthene (BkF), BaP, indeno[1,2,3-cd]pyrene 

(IcdP), benzo[ghi]perylene (BghiP), dibenz[a,h]anthracene (DahA), and were 

measured by GC-MS. Organic carbon contents in water, suspended solids and 

sediments, and lipid contents in fish and macrophytes were also analyzed. The 

mean contents of PAHs, lipid and organic carbon in the studied multimedia 

were calculated for the parameters and calibrated for the model.  

 

 
Fig. 1. Location of Lake Small Baiyangdian and sampling sites in China 

 

Model development 

 Conceptual framework  

    Air sample sites  

    Water, suspended solid & sediment sample sites 
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A QWASI (Quantitative Water Air Sediment Interaction) fugacity 

model was developed to characterize the multimedia fate of PAHs in Lake 

Small Baiyangdian based on the approaches of Mackay and his colleagues 

(Mackay et al. 1983a, Mackay et al. 1983b, Mackay and Diamond 1989, Mackay 

and Paterson 1991). The conceptual diagram of the model is presented in Fig. 2. 

Air, water and sediment were defined as three bulk compartments. Eight sub-

compartments included in the three bulk compartments are as follows: air and 

particles in air; water, suspended solids, plants and fish in water; and water 

and solids in sediment. The processes taken into consideration are defined in 

Fig. 2, and additional details are given in the Appendices (Table 1).  

 

 

 
Fig. 2. Conceptual diagram of the QWASI fugacity model for modeling 

multimedia fates of PAHs in Lake Small Baiyangdian. Transfer processes are 

designated as Tijk. The subscripts i and j represent various media (0 for outside 

of the area including local emission and discharge from human activities and 1, 

2 and 4 for compartments of air, water and sediment, respectively). The 

subscript k indicates process category (t, h, d, p, w, s and m for advective flow, 

human discharge, diffusion, dry and wet precipitation, sedimentation and 

degradation, respectively). 
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Table 1 Transfer and transformation processes defined in the QWASI fugacity 

model 

Symbol  Transfer process 

T01t, T10t  Advective air flows into/out of the lake air bulk 

T02t, T20t  Advective water flows into/out of the lake water bulk 

T02h  Local wastewater discharge to the lake water bulk 

T10m, T20m, T40m   Degradation in air, water and sediment 

T20p, T20f  Bioaccumulation in aquatic plants and fishes   

T12d, T12p, T12w  Diffusion, dry deposition and wet precipitation from air to water 

T21d  Diffusion from water to air 

T24d, T42d  Diffusion between water column and bottom sediment 

T24s  Sedimentation from column and bottom sediment 

 Model equations 

The mass balance equations with fugacities as variables for air, water 

and sediment bulk compartments are tabulated in the Appendices (Table 2). 

The equations for the transfer rate coefficients of the modeled processes and for 

the fugacity capacity of each bulk phase and sub-phase are listed in Tables 3 

and 4 in the Appendices, deriving from the approaches of Mackay and his 

colleagues (Mackay et al. 1983a, Mackay et al. 1983b, Mackay and Diamond 

1989, Mackay and Paterson 1991). 

 

Table 2 Mass balance equations in the QWASI fugacity model 

Phase Mass balance equation* Mass balance equation in detail* 

Air T01t+T21d=T10t+T10m+ T12d+ T12p+ T12w 
Q01tC01t+D21df2= (D10t+ D10m+ D12d+ D12p+ 

D12w)f1 

Water 
T02t+T02h+T12d+T12p+T12w+T42d=T20t+T20m+ 

T20f+ T20r+ T21d+ T24d+ T24s 

Q02tC02t+Q02hC02h+(D12d+D12p+D12w)f1+D42df4= 

(D20t+ D20m+ D20f+ D20r+ D21d+ D24d+ D24s)f2 

Sediment T24d+ T24s= T42d+ T40m (D24d+D24s)f2=(D42d+D40m)f4 

* Tijk are transfer processes, defined in Table 1. Dijk are transfer rate coefficients for 

major transfer processes from the ith bulk phase to the jth bulk phase (see Table 3 for 

details). For system input, T01t =Q01t×C01t, T02t =Q02t×C02t, T02h =Q02h×C02h. For system 

output, T10t =D10t×f1, T20t =D20t×f2, T10m =D10m×f1, T20m =D20m×f2, T40m =D40m×f4, T20p 

=D20r×f2, T20f =D2f×f2. For air-water transfer, T12d =D12d×f1, T21d =D21d×f2, T12p =D12p×f1, 

T12w =D12w×f1. For water-sediment transfer, T24d =D24d×f2, T42d =D42d×f4, T24s =D24s×f2.    
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Table 3 Equations for calculating transfer rate coefficients (D) 

    Process Equations  Remarks 

Air(1)-

Water(2) 

Diffusion 

Dry deposition 

Wet precipitation 

D12d=A2/[1/(K12×Z11)+ 

1/(K21×Z22)] 

D12p=A2×Kp×X13×Z13 

D12w=A2×Kw×Sc×X13×Z13 

D21d=D12d 

Water(2)-

Sediment(4) 

Diffusion 

Deposition 

D24d=A2/[1/(K24×Z22)+L4/(B4×Z22)];  

D24s=A2×Ks×Z23;  

D42d=D24d 

Reaction 

Degradation in air 

Degradation in water 

Degradation in 

sediment  

D40m=Km1×A1×h1×Z1  

D20m=Km2×A2×h2×(Z22+Z23) 

D40m=Km4×A4×h4×Z4 

- 

Advection 
Advective air flows 

Advective water flows 

D01t=Q01t×Z1 

D02t=Q02t×Z2 

- 

Biota 
Fish harvest  

Plants harvest 

D20f=Yf×Z2f/2f 

D20p=Yp×Z2p/2p 

- 

* Dijk are transfer rate coefficients for major transfer processes from the ith bulk 

phase to the jth bulk phase (1, 2, and 4 for air, water, and sediment, respective, 0 for 

outside of the area). The subscript k indicates process category (t, d, p, w, f, r, s, 

and m for advective flow, diffusion, dry deposition, wet precipitation, fish 

bioaccumulation, pant bioaccumulation, sedimentation, and degradation, 

respectively). Z is fugacity capacity (see Table 4 for details). See Table 5 for the 

meanings of other parameters.  

 

Table 4 Equations for calculating fugacity capacities (Z) 

Bulk phase Sub-phase Equations for calculating Z (mol/m3·Pa) *  

Air 
Air 

Particle 

Z11=1/RT 

Z13=6E6/(PSRT)/BPS 
Z1=X11Z11+X13Z13 

Water 

Water 

Suspended 

solids 

Fish 

Plant 

Z22=1/H 

Z23=O2323Koc/H 

Z2f=BCFf/H 

Z2p= BCFp/H 

Z2=X22Z22+X23Z23+X2fZ2f 

+X2pZ2p 

Sediment  
Pore water 

Solids 

Z42=1/H 

Z43= O4343Koc/H 
Z4= X42Z42+X43Z43 

* Z1, Z2, and Z4 are fugacity capacity for air, water and sediment bulk 

compartments, respectively. Z11, Z13, Z22, Z23, Z2f, Z2p, Z42, and Z43 are fugacity 

capacity for air and particle sub-phases in air, water, suspended solids, fish, plant 

sub-phases in water, pore water and solids sub-phases in sediment, respectively. 

See Table 5 for the meanings of other parameters. 
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 Model parameters  

The model parameters including environmental, physical, chemical 

and process kinetic ones were determined in three different ways -- literature 

review, laboratory experiments and model calibration. The symbols, 

descriptions, values and sources of all model parameters are presented in 

Tables 5. The mean values of collected data are used for the parameters after 

abnormal values are excluded. The Henry’s law constant, saturation vapor 

pressure and fugacity ratio is the value under the temperature of 25℃. 

However, the average annual temperature in Lake Small Baiyangdian is 12.1℃. 

The necessary corrections for these parameters are performed by the equation 

in literature (Paasivirta et al. 1999).  

 

Table 5 Parameters for the QWASI fugacity model  

Symbol Unit Parameters Value Reference 

A1, 

A2,A4 

m2 Interface areas of air/water and 

water/sediment 

1.366×107 [1] 

h1 m Thickness of air 7.00×102 [2],[3] 

h2 m Thickness of water 1.87 [2],[3] 

h4 m Thickness of sediment 1.00×10-1 [2],[3] 

X13 v/v Volume fractions of solids in air 9.84×10-11 [4], Note A 

X23 v/v Volume fractions of solids in water  4.29×10-6 [4], Note A 

X43 v/v Volume fractions of solids in 

sediment 

3.00×10-1 [4], Note A 

L4 m Diffusion path lengths in sediment 5.00×10-3 [4] 

X2f v/v Volume fractions of fish in water 4.08×10-5 [5], [6] 

X2p v/v Volume fractions of plants in water 8.20×10-4 [5], [6] 

X42 v/v Volume fractions of water in 

sediment 

7.00×10-1 [4] 

O23 % Contents of organic carbon in solids 

in water  

4.41×10-1 Note A 

O43 % Contents of organic carbon in solids 

in sediment 

2.89×10-2 Note A 

23 t/m3 Densities of solids in water  1.89 Note A 

43 t/m3 Densities of solids in sediment 2.49 Note A 

2f t/m3 Densities of fish in water 1.05 [7], Note A 

2p t/m3 Densities of plants in water 8.83×10-1 [7], Note A 

Q01t m3/h Air advection flow into lake area 1.13×1010 [2],calculated 

Q10t m3/h Air advection flow out of lake area 1.13×1010 [2],calculated 

Q02t m3/h Water advection flow into the lake  3.00×104 [8] 

Q20t m3/h Water advection flow out of the lake  2.50×104 [8] 
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Note A: Data determined in our lab. 

Q02h m3/h Rate of local wastewater discharge 500 [2],calculated 

C02t mol/m3 PAHs concentration in water 

advection flow  

Note B [9], Note A 

C02h mol/m3 PAHs concentration in wastewater Note B Note A 

Yf T/h Harvest rate of fish 3.00 [5], [6] 

Yp T/h Harvest rate of plants 6.00×101 [5], [6] 

T K Local average temperature 3.00×102 [1] 

Ps25 Pa Local vapor pressure Note B [10]~[14] 

R Pam3/molK The gas constant 8.314 [10],[11],[15] 

F25 - Fugacity ratio at 25℃ Note B [11] 

H25 Pam3/mol Henry’s constant Note B [11]~[14], [16] 

BF - Fugacity ratio temperature 

correction factor 

Note B [17] 

BH - Henry’s law constant temperature 

correction factor 

Note B [17] 

BPS - Saturation vapor pressure 

temperature correction factor 

Note B [17] 

KOC m3/t,1/h Adsorption coefficient Note B [11], [14], [18], 

[19] 

Km1 1/h Degradation rate of PAHs in air Note B [20], [21] 

Km2 1/h Degradation rate of PAHs in water  Note B [20], [21] 

Km4 1/h Degradation rate of PAHs in 

sediment 

Note B [20], [21] 

BCFf m3/t Bioconcentration factor of fish Note B [21]~[23], Note 

A (calculated) 

BCFp m3/t Bioconcentration factor of plants Note B [21]~[23], Note 

A (calculated) 

B1 m2/h Molecular diffusivities in air Note B [24]~[27] 

B2 m2/h Molecular diffusivities in water Note B [24]~[27] 

B4 m2/h Molecular diffusivities in sediment Note B [24]~[27] 

K12 m/h Air-side molecular transfer 

coefficient over water 

3.00 [28], [29] 

K21 m/h Water-side molecular transfer 

coefficient over air 

3.00×10-2 [28], [29] 

K24 m/h Water-side molecular transfer 

coefficient over sediment 

1.00×10-2 [28], [29] 

KP m/h Dry deposition velocity 5.69×10-1 [2], [4], [30], [31] 

Kw m/h Wet deposition velocity 6.51×10-5 [2], [4], [30], [31] 

KS m/h Water sedimentation rates 4.60×10-6 [32], [33] 

SC m/h Rain scavenging rate 2.00×105 [34] 
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Note B: Presented in Table S1.  

Reference: [1] Zhao et al., 2007; [2] HPEPB, 2001; [3] Ma et al., 2007; [4] Mackay and 

Paterson, 1991; [5] Zhao et al., 2005; [6] Zhao, 1995; [7] Davenport, 1999; [8] Yin, 

2008; [9] Bai, 2008; [10] Van Agreren et al., 1998; [11]Mackay et al., 1997; [12] Wang, 

1991; [13] Wang, 1993; [14] Jin, 1990; [15] Karickhoff, 1981; [16] Ten Hulscher et al., 

1992; [17] Passivirta et al., 1999; [18] STF, 1991; [19] US-EPA, 1996a; [20] Mackay, 

2001; [21] Lang et al., 2008; [22] Duan, 2005; [23] Tang et al., 2006; [24] Perry and 

Chilton, 1973; [25] US-EPA, 1996b; [26] Shor et al., 2003; [27] Xu, 1991; [28] 

Thibodeaux, 1996; [29] Banks and Herrera, 1997; [30] Beijing Statistics Bureau, 2005; 

[31] Tainjin Environment Protection Bureau, 1991, 1996, 2001; [32] Chen et al., 2006; 

[33] Hu et al., 1998; [34] Mackay and Paterson, 1986 (See SI for details of references). 

 Multimedia modeling  

The concentrations of PAHs in the compartments and the transfer 

fluxes between adjacent compartments were modeled under a steady-state 

assumption. Measured concentrations in this study were used for model 

validation. Modeling was performed using Matlab v.6.5 (MathWorks 2002). 

SPSS v.10.0 and MS Excel were employed for statistical analysis and data 

manipulation.  

 Sensitivity analysis 

A good overview of the most sensitive components of the model can be 

determined through sensitivity analysis. This analysis provides a measure of 

the sensitivity of parameters, forcing functions or sub-models to the state 

variables of greatest interest in the model. In practical modeling, the sensitivity 

analysis is carried out by changing the parameters, forcing functions and sub-

models, and the corresponding response of the selected state variables is 

observed (Jorgensen, 1994). In this study, the sensitivity analysis was 

performed only for the parameters. A change for the parameter at ±10% was 

chosen, and the sensitivity coefficient (S) was calculated by the following 

formula (Jørgensen 2011):   

 

S=(Y1.1-Y0.9)/(0.2*Y)               (1) 

 

The terms, Y1.1 and Y0.9, represent the estimated concentrations when 

the tested parameter was changed at +10% and -10%, respectively. The greater 

the absolute value of sensitivity coefficient, the more sensitive the parameter.       

 Uncertainty analysis 
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Both concentrations and fluxes estimated by the multimedia model are 

inherently variable (McKone 1996). In addition to the inherent variability, there 

are also uncertainties in the parameters and estimates (Tao et al. 2003). For 

assessing the overall uncertainty and variability in predictions, Monte Carlo 

simulation was used to illustrate collective variance of the inputs through the 

model. Each input parameter was represented as a probability density function 

that defined both the range of values and the likelihood of the parameter 

having that value. All of the parameters were assumed to follow the log-

normal distribution. The simulation was undertaken repeatedly 3000 times, 

with new values randomly selected for all parameters within the range of 

mean ± standard deviation. A built-in function of “randn” in Matlab was used 

to select the values randomly for each parameter (MathWorks 2002). The 

model uncertainty was ascertained by statistical analysis on the output result. 

To quantify the differences, coefficients of variation (CVs) were calculated 

based on log-transformed data. 

3. Results and discussion 

Modeled concentration distributions 

The levels and distributions of calculated PAHs concentrations in the 

three bulk and seven sub-phases are presented in the Appendices (Table S2). 

The highest PAHs concentrations were found in the sediment phase, followed 

by the water and air phases (Fig. 3). The percentage ratios of individual PAH 

congeners ranged from 58.9% to 88.5%, 11.5% to 26.8%, and 0 to 14.3% for the 

sediment, water and air phases, respectively (Fig. 3). This implies that the 

sediment would serve as the sink of PAHs. Among different PAHs congeners, 

low-molecular-weight PAHs (LMW-PAHs) predominated the distribution in 

three bulk phases. From LMW-PAHs to middle- and high-molecular-weight 

PAHs (MMW- and HMW-PAHs), the average percentage were increased from 

64.8% to 66.1% and 87.0% in the sediment, and decreased from 26.3% to 22.9% 

and 13.0% in the water, and 11.0% to 8.9% and 0 in the air. This means that 

LMW-PAHs were in higher proportion in the water and air, while HMW-

PAHs were in higher proportion in the sediment. 
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Fig. 3. Distributions of calculated PAHs concentration and their percentage 

in three bulks. LMW-, MMW- and HMW-PAHs are low-molecular- weight 

PAHs with 2–3 ring (Nap, Acy, Ace, Flo, Phe, Ant, Fla), moderate-molecular-

weight PAHs with 4 ring (Pyr, Baa, Chr, Bbf, Bkf) and high-molecular-weight 

PAHs with 5-6 ring (Bap, Icdp, Daha, Bghip). 
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Fig. 4. Calculated PAHs concentrations in the sub-phases in Lake Small 

Baiyangdian 
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Fig. 4 illustrates that the different distribution patterns of LMW-, 

MMW- and HMW-PAHs in seven sub-phases. In the air, LMW-PAHs 

predominated in the gaseous sub-phase, while HMW-PAHs were dominant in 

solid-particle sub-phase (Fig. 4a). In the water, the PAHs contents in sub-

phases were in the declining order of suspended solids (C23) > fish (C2f) > 

aquatic plants (C2p) > dissolved sub-phase (C22); and PAHs contents in the 

dissolved phase were much lower than these in the suspended solid, fish and 

aquatic plant sub-phases. From LMW-PAHs to MMW- and HMW-PAHs, the 

contents were decreased in the dissolved sub-phase, and similar in the 

suspended solids, fish and plant sub-phases (Fig. 4b). In the sediment, PAHs 

contents in the solid sub-phase (C43) were significantly higher than these in 

pore water sub-phase (C42) (Fig. 4c).  

The different fate behaviors of LMW-, MMW- and HMW-PAHs in the 

water, air and sediment may be attributed to the difference in their physical 

and chemical properties. LMW-PAHs with higher vapor pressure and Henry’s 

law constant are more volatile than HMW-PAHs with lower vapor pressure 

and Henry’s law constant. On the other hand, LMW-PAHs are less lipophilic 

due to their lower Koc values, so that their ability in binding to organic matter 

in suspended solids and sediments is obviously weaker than that of HMW-

PAHs. The dissolved PAHs concentrations in the water and pore water were 

decreased with the increase of their molecular weight, probably due to the 

decreasing solubility. 

Model validation 

The model was validated by the comparisons between calculated and 

measured PAHs concentrations in the sub-phases. As shown in Fig. 5, very 

similar distribution patterns in the sub-phases of the water and sediment 

would be found in both calculated and measured PAHs concentrations. The 

simulated values for the most of PAHs congeners were lower than their 

measured values, which may be attributed to the neglect of some input process 

such as soil erosion. The difference between the calculated and measured 

PAHs concentrations were different for both the sub-phases and PAH 

congeners. Among seven sub-phases, the best agreements with the difference 

less than one order of magnitude could be found for the PAHs concentrations 

in the solid sub-phase in the sediment (C43), while the worst agreements with 

the difference around two orders of magnitude were for the PAHs 

concentrations in the dissolved and solid sub-phase in water (C22 and C23). 

Among fifteen PAH congeners, LMW-PAHs maintain better agreements in all 

sub-phases than HMW- PAHs. The best agreements with the difference less 
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than one order of magnitude could be found for the LMW-PAHs except for 

Acy and ANT in the suspended solid sub-phases (C23) and ANT in the fish 

sub-phases (C2f). The worst agreements with the difference around two orders 

of magnitude were for the HMW-PAHs in the suspended solid and fish sub-

phases (C23 and C2f). The Icdp and Daha in the suspended solid and fish sub-

phases as well as the Bghip in the suspended solid sub-phase were 

undetectable; however, their modeled values were relatively high. 

 
Fig. 5. Comparisons between the calculated and measured concentration of 

PAHs in seven sub-phases. C11, C13, C22, C23, C2f, C2p and C43 are the 

PAHs contents in the gaseous and particulate sub-phases in air, the dissolved, 

suspended solid, fish and plant sub-phases in water, and the solid sub-phase in 

sediment, respectively.  

Measured 
Calculated 
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The calculated transfer fluxes of PAHs across the air-water and water-

sediment interfaces are shown in Fig. 6 and Table S3. The transfer fluxes from 

air to water across the air-water interface and from water to sediment across 

the water-sediment interface were much higher than these from water to air 

and from sediment to water, respectively. This indicated that, in the air-water-

sediment system, the transfer directions of PAHs were from air to water and to 

sediment. Air was the source of PAHs, while sediment could serve as the sink 

of PAHs. Among fifteen PAH congeners, the highest transfer fluxes from air to 

water (T12) and from water to sediment (T24) could be found for LMW-PAHs 

(including 2- and 3-ring PAHs), followed by MMW- and HMW- PAHs.   

 

 
Fig. 6. Transfer fluxes of PAHs across the air-water and water-sediment 

interfaces in Lake Small Baiyangdian. T21 and T12 are transfer fluxes from 

water to air and from air to water across the air-water interface, respectively; 

T24 and T42 are transfer fluxes from water to sediment and from sediment to 

water across the water-sediment interface, respectively.    

 

Fig. 7 illustrates that contributions of the transfer fluxes of PAHs from 

air to water and from water to sediment though different processes were 

changed. From air to water (Fig. 7a), the transfer of LMW-PAHs by the diffuse 

process (T12d) contributed the highest fluxes, followed by wet and dry 

precipitation processes (T12p and T12w). For MMW- and HMW-PAHs, the wet 

precipitation had the highest contribution of transfer fluxes (T12w), followed by 

the diffuse and dry precipitation (T12d and T12p). From LMW-PAHs (including 

2- and 3-ring PAHs) to MMW- and HMW-PAHs, the transfer fluxes through 

diffuse process (T12d) were decreased. The transfer fluxes through dry and wet 

precipitations (T12p and T12w) were increased from 2-ring PAHs to 3- and 4-ring 

PAHs. From water to sediment (Fig. 7b), the transfer fluxes of PAHs were 
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mainly depended on the sedimentation process (T24s). The diffuse process (T24d) 

could only have some contributions for 2-, 3- and 4-ring PAHs.    

 

 
Fig. 7. Transfer fluxes of PAHs through different processes from air to water 

(a) and from water to sediment (b) in Lake Small Baiyangdian. T12d, T12p 

and T12w are the transfer fluxes from air to water through the diffuse, dry and 

wet precipitation processes, respectively; T24d and T24s are the transfer fluxes 

from water to sediment through the diffuse and sedimentation processes.  

Sensitivities of modeled concentrations to input parameters 

The parameters with sensitivity coefficients higher than 0.5 are 

considered as more influential parameters in the model (Table S4). Four 

compounds, Ace, Phe, Chr and BaP, were chosen to represent two-, three-, 

four- and high-ring PAHs. The model outputs included the concentrations of 

four representative PAH compounds in the four sub-phases in the water 

including dissolved phase (C22), suspended solids (C23), fish (C2f) and aquatic 

plants (C2p), and in solids sub-phase in the sediment (C43). The results were 

summarized in Table S9 in the Appendices. Among 54 parameters, there were 

only 17 parameters with sensitivity coefficients higher than 0.5. Temperature (T) 

was the most influential parameter in the model, and was more sensitive to the 

model concentrations for Chr and BaP than those for Ace and Phe in all the 
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studied sub-phases (C22, C23, C2f, C2p and C43). The number of sensitive 

parameters for BaP in the studied sub-phases was nine to thirteen; however, 

that for Ace and Phe was only three to seven. There were only three 

parameters, T, Ks and K12, that were sensitive to Ace and Phe in C23. For the 

modeled concentration in a specific studied sub-phase, the parameters for BaP 

and Chr were more sensitive than those for Ace and Phe.  

Uncertainty of the modeled Concentrations 

3000 Monte Carlo simulations were performed to simulate the 

concentrations of four representative PAHs (Ace, Phe, Chr and BaP) in the 

seven sub-phases. Coefficients of variation (CVs) for Ace, Phe, Chr and BaP in 

the seven sub-phases are shown in Fig. 8 and the heights of the bars indicate 

the perturbations of the calculated concentrations.  
 

 
Fig. 8. Comparisons of CV values for the four representative PAHs in the seven 

sub-phases. 

 

Fig. 8 illustrates that, among four representative PAH components, BaP 

had the highest CV values of 29% in the particulate sub-phase in air (C13) to 50% 

in the sediments (C43), followed by Chr with the CV ranging from about 4% in 

the particulate sub-phase in the air (C13) to 22% in the plant sub-phase in the 

water (C2p); however, all the CV values for Ace and Phe in seven sub-phases 

were less than 5%. This indicated that there were the highest uncertainty for 

the modeled BaP concentration, and very low uncertainty for the modeled Ace 

and Phe concentrations. In seven sub-phases studied, the variabilities for the 

modeled Ace and Phe concentrations were relatively similar to each other, and 
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those for the modeled Chr and BaP concentrations were in a descending order 

of C2p>C22≈C2f>C43≈C11>C23≈ C13, and of C43>C2f>C23≈C22>C11>C2p≈C13, 

respectively. The largest uncertainties of the calculated BaP concentrations 

were related to the most influential parameters identified in the sensitivity 

analysis (Table S4).  

The ecological implications of the proposed model 

Ecotoxicological models are increasingly applied to assess the fate and 

effect of chemical emissions to the environment, and they can be divided into 

three types, fate models, effect models and fate-transport-effect models (FTE-

models) (Jørgensen 2011). Fate models provide the concentration of a chemical 

in one or more environmental compartments; effect models translate a 

concentration or body burden in a biological compartment to an effect either 

on an organism, a population, a community, an ecosystem, a landscape, or the 

entire ecosphere; and fate-transport-effect models are the merging of fate 

models with effect models (Jørgensen 2011). So far, many fate models, fewer 

effect models, and only a few FTE-models have been applied to solve 

ecotoxicological problems and perform ecological risk assessments; however, 

the development is toward a wider application of effect and FTE-models 

(Jørgensen 2011).  

Through the QWASI fugacity model developed in the present study, 

the PAHs concentrations in main environmental compartments including the 

air (air, particulates), water (water, suspended solids, plants and fishes) and 

sediment (water and solids) were derived. These results could be used for the 

ecological risk assessments of PAHs in the Lake Small Baiyangdian. The 

proposed multimedia fate model could serve as a fundamental for developing 

an effect model and FTE-model to solve ecotoxicological problems and 

perform ecological risk assessments of PAHs in the Lake Small Baiyangdian. 

Furthermore, the applications of the effect model and FTE-model in the lake 

would promote the development of eco-toxicological model.  

The modeling results in the present study point out that macrophytes 

play an very important role in maintaining a healthy lake ecosystem by taking 

up toxic substances and by creating a favorable environment for a variety of 

complex chemical, biological and physical processes that contribute to the 

removal and degradation of toxic pollutants (Xu et al. 1999b). Macrophytes 

growing in a lake are also crucial to regulate lake biological structure, because 

they limit algal growth by shading and competing for nutrients with algae and 

because they increase herbivorous fish biomass by providing food, and a 

refuge (Xu et al. 1999b). 
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4. Conclusions 

A QWASI fugacity model was developed to characterize the fate and 

transfer of fifteen priority PAHs in Lake Small Baiyangdian. The reliability of 

the model estimates was evaluated by various means including concentration 

validation, sensitivity and uncertainty analysis. There was generally good 

agreement between the modeled and measured concentrations with the 

differences within an order of magnitude for the majority of PAHs. The fluxes 

into and out of the lake as well as each compartment were well-balanced. The 

average bioaccumulation of PAHs by plants was four times higher than that by 

fishes. The transfer directions of PAHs were from air to water and to sediment. 

Temperature was the most influential parameter, and was more sensitive to the 

modeled concentrations of middle- and high-molecular-weight PAHs that 

were considered as the source of the model uncertainty. The model developed 

in this study could well characterize the fate and transfer of PAHs in the lake. 
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Abstract 

Fate and seasonal variation of α-hexachlorocyclohexane (α-HCH) were 

simulated using a dynamic fugacity model in Lake Chaohu, China. Sensitivity 

analyses were performed to identify influential parameters and Monte Carlo 

simulation was conducted to assess model uncertainty. The calculated and 

measured values of the model were in good agreement except for suspended 

solids, which might be due to disregarding the plankton in water. The major 

source of α-HCH was input from atmospheric advection, while the major 

environmental outputs were atmospheric advection and sediment degradation. 

The net annual input and output of α-HCH was approximately 0.294t and 

0.412t, respectively. Sediment was an important sink for α-HCH. Seasonal 

patterns in various media were successfully modeled and factors leading to 

this seasonality were discussed. Sensitivity analysis found that parameters of 

source and degradation were more important than the other parameters. The 

sediment was influenced more by various parameters than air and water were. 

Temperature variation had a greater impact on the dynamics of the model 

output than other dynamic parameters. Uncertainty analysis showed that the 

model uncertainty was relatively low, but significantly increased in the second 

half of the simulation period due to the increase in the gas-water diffusion flux 

variability. 
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1. Introduction 

Organochlorine pesticides (OCPs) have been under increasing scrutiny 

due to their refractory qualities and high ecotoxicity. Hexachlorocyclohexanes 

(HCHs), a type of OCPs, have already been listed by the Stockholm 

Convention on Persistent Organic Pollutants in the first batch of control 

compounds (SCPOPs 2009). During the 1960s and 1970s, there was a 

substantial amount of production and usage of HCH pesticides in China, 

resulting in high level of residues in the soil (Cao et al. 2004). Through surface 

runoff, undercurrent, osmosis, leaching and other transport mechanisms from 

the soil into the surface water, the water bodies, such as lakes, have also been 

severely polluted by HCH pesticides. According to historical data, the quantity 

of emitted OCPs in the Lake Chaohu water bodies amounted to 1.16 tons in 

1984. Among the isomers of HCHs, α-HCH can cause human neurological 

disorders and gastrointestinal discomfort, resulting in liver and kidney 

damage, human endocrine system disorders and immune system 

abnormalities (SCPOPs 2009). Therefore, an understanding of the distribution 

and dynamics of α-HCH in lake environments is extremely crucial. 

The multi-media model is a mathematical model developed in the 

1980s based on the concept that the physical and chemical properties of 

environmental systems and pollutants synergistically determine the 

concentration distribution and migration of contaminants throughout the 

transformation process between environmental compartments (Mackay 2001). 

Mackay (1979) and Mackay and Patterson (1981, 1982) proposed a fugacity 

model to simplify the structure of the multi-media model and the calculation 

process. This model has been widely used in describing the environmental 

behaviors of pollutants in global, regional and local environments (Wania and 

Mackay 1995, Tao et al. 2003, Liu et al. 2007). There are four levels in the 

fugacity model. A level IV fugacity model is appropriate when continuous 

changes in the concentrations of particular pollutants are studied over a period 

of time (Tao et al. 2006, Liu et al. 2007).  

Few studies have been conducted that focus on the seasonal variation 

in α-HCH using the level IV fugacity model. In this study, the fate and 

seasonal variation of α-HCH in the air, water and sediment of Lake Chaohu 

was examined. Since the usage of industrial HCHs was banned in 1983 and 

lindane was applied instead (Tao et al. 2006), the α-HCH emissions can be 

assumed to be zero. The results of this model can reveal the main source, the 

migration and transformation processes and the most influential parameters on 

the fate and seasonal variations of α-HCH in the of Lake Chaohu environment. 
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The uncertainty of the model was also assessed using a Monte Carlo simula-

tion. 

2. Materials and methods 

Model development 

The framework of the model in this study was based on the 

Quantitative Water, Air, Sediment Interaction (QWASI) fugacity model 

(Mackay et al. 1983a), with the major difference being the inclusion of 

atmospheric advection input and output of the system. This model included 

three main compartments: atmosphere, water, and sediment, which were 

represented by the subscripts 1, 2 and 4, respectively. The atmospheric phase 

was comprised of two sub-phases: gaseous and particulate matter. The 

aqueous phase also comprised two sub-phases: water and suspended solids. 

The sediment phase consisted of porewater and a solid phase. The model 

framework is shown in Figure 1. The basic characteristics of the model for Lake 

Chaohu are shown in Table 1.  

 

 

Water 

D42d 

Q01t 

Q02t/Q02h 

Q10t 

D24d 
D40m 

Sediment 

D24s 

Air 
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Fig. 1. Transport fluxes of α-HCH in and out of the Lake Chaohu area and 

between the adjacent compartments. D12d, D21d, D24d and D42d represent the 

diffusion processes between air/water and water/sediment. D12p and D12w 

represent the dry and wet deposition from air to water, respectively. D12r 

represents scavenging by precipitation. Q01t, Q02t and Q02h represent the input 

from air advection, water inflows and waste water discharge, respectively. Q10t, 

Q20t and Q23h represent the output from air advection, water outflows and water 

reuse by industry and agriculture, respectively. D10m, D20m and D40m represent 

the degradation occurring in the air, water and sediment, respectively. 
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Table 1 Volume and properties of the phases and sub-phases 

 

Model parameter symbols, units, values and data sources are shown in 

Tables S1 and S2 in Supplementary Materials. The model had a total of 46 

parameters, including 23 environmental parameters, 12 interface mass transfer 

parameters and 11 physicochemical parameters for the pollutant. The 

environmental parameters included temperature, lake area, height and sub-

phase volume fraction determined by the literature or laboratory 

measurements. The physicochemical parameters, such as the gas constant, 

Henry's constant and saturated vapor pressure, were obtained from the 

literature. The environmental kinetics of the process parameters, including the 

rate of degradation, the rate of diffusion, migration constant, molecular 

diffusion path length, atmospheric wet and dry deposition rates, deposition 

rate and cleaning coefficients, were obtained from the relevant literature. 

Fifteen parameters had annually changing values, including the environmental 

parameters (h2, X13, Q01t Q10t, Q02t, Q20t, Q23h, Q02h, T, C1 and X23) and the mass 

transfer parameters (K12, K21, K42r and Kw). The parameter h2 included hourly 

data; T, K12, K21, K42r and Kw had daily data, and X13, Q01t (Q10t), Q02t, Q20t, Q23h, 

Q02h, C1 and X23 had monthly data. Other parameters were used in terms of 

annual average values, and they remained constant during the simulation. In 

addition, Henry’s constant, saturated vapor pressure and the fugacity rate of 

the pollutant were primarily obtained using a temperature of 25 °C. The 

temperature correction required for these parameters and the correction 

equation are shown in Equation 1 (Paasivirta et al. 1999): 

 

10 10 25

1 1
log log ( )

298 273
TP P A

T
   

            (1)                          

 

where PT is the physical and chemical parameter values at T (°C) 

(Henry's constant, the saturation vapor pressure or fugacity rate); P25 is the 

physical and chemical parameters at 25 °C; A is the temperature correction 

coefficient (for Henry's constant, saturated vapor pressure and fugacity 

Main phase Area (m2) Depth (m) 

Organic 

Carbon 

(%) 

Sub-phases and volume fraction (Xij) 

Air (1) Water (2) 
Solid 

Particles (3) 

Air (1) 7.5810E+08 1.0000E+02 - 1.0000E+00 - 7.6278E-11b 

Water (2) 7.5810E+08 3.0124E+00 
1.6700E-

01 
- 1.0000E+00 1.2631E-05b 

Sediment (3) 7.5810E+08 1.0000E-01 
4.6077E-

03 
- 7.0000E-01 3.0000E-01 
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rate).To obtain the total river inflows of Lake Chaohu from May 2010 to 

February 2011, monthly data from May 1987 to April 1988 were collected (Tu et 

al. 1990) along with the corresponding daily precipitation data from the China 

Meteorological Data Sharing Service System. There was a significant linear 

relationship between the river inflow and the precipitation data. Using this 

linear relationship and the monthly precipitation data from May 2010 to 

February 2011 for Lake Chaohu, the river inflow (Q02t) for the simulation 

period was easily calculated. This calculation was based on the assumption 

that there were no significant landscape level changes which largely modifying 

fate of precipitation at catchment area since 1980s. In addition, the values of 

water inflow were not important to the fate of α-HCH in the lake, which will 

be revealed in the sensitive analysis (section 3.3). The average monthly river 

outflow (Q20t) of Lake Chaohu was based on the water balance calculation of 

inflow and water level in addition to the rates of industrial and agricultural 

water consumption (Q23h) (Tu et al. 1990).Taking into consideration that 

industrial HCHs were banned in 1983 and lindane (γ-HCH) was applied 

instead (Tao et al. 2006), emissions of α-HCH in the vicinity of Lake Chaohu 

were assumed to be zero during the simulation. Atmospheric α-HCH input 

originated from atmospheric advection. The α-HCH concentration in the 

advection within the study area (C1) was determined according to the sampled 

values on the lake side (four samples in total). The daily average wind speed 

and direction during the simulation period in Lake Chaohu area was obtained 

from the China Meteorological Data Sharing Service System. The volumes of 

atmospheric advections (Q01t, Q10t) were calculated according to the 

corresponding atmospheric height, the area of Lake Chaohu and the wind 

speed. α-HCH input originated from water inflows were determined by the 

summation of the input amount from all the rivers around the lake. 

The mass transfer coefficients of both sides of the gas-water interface 

(K12 and K21) were calculated according to the method proposed by 

Southworth (1979). The resuspension coefficient (K42r) was calculated 

according to the formula from Tu et al. (1990). The specific equations are as 

follows: 

 
0.5

12K 11.375 (WS RS) (18 / MW)                                (2) 

 

 
0.969 0.5 0.673

21 WK 0.2351 RS (32 / MW) a / h
a 1 WS 1.9 m / s

a exp[0.529(WS 1.9)] WS > 1.9 m / s

  
 

 
       (3) 
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8

42r WK 3 10 WS / h              (4) 

 

where WS is the average wind speed (m/s); RS is the surface flow 

velocity (m/s); MW is the molecular weight (g/mol); and hW is the water depth 

(m). 

The transfer and transformation processes defined in the model are 

shown in Table S3 (Supplementary Materials). Details can be found in Mackay 

and Patterson (1991). The level IV fugacity model can be expressed by equation 

(5), where fugacity is symbolized by f (Pa). The processes considered in the 

model included the advection of the air and water phases, diffusion and 

dry/wet deposition between the air and water, diffusion, sedimentation and 

resuspension between the water and sediment, and the degradation process 

during the main phase. In this study, the fourth-order Runge-Kutta method 

was applied to solve the differential equations by simulating step of 1-hour. 

The time period of the dynamic simulation was from May 1, 2010 to February 

28, 2011. The seasonal variation of the α-HCH concentration for each 

compartment of the environment was simulated and compared to the 

measured values. Validation data were obtained from the monthly samples of 

atmospheric aerosols on an island in the lake, water and suspended solids 

(four sample sites in total) collected from May 2010 to February 2011 (Liu et al. 

2012, Ouyang et al. 2012) and from the 14 sediment samples collected in 

August 2008 from Lake Chaohu (Wang et al. 2012c). 
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    (5)  

Sensitivity analysis 

When a system error of the model cannot be eliminated, the accuracy of 

the parameters is the most important factor in model accuracy, particularly 

regarding some sensitive parameters (Cao et al. 2004). Therefore, a sensitivity 

analysis was conducted for all parameters involved in the model (except the 

gas constant, R). For constant parameters, a local sensitivity analysis was 

applied which implemented a "perturbation" near the best estimate value of a 

parameter, and the variation of model outputs was studied under the 

condition that other parameters remained unchanged. The Morris classification 

screening method, a widely applied local sensitivity analysis method, was used 
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(Morris 1991). A variable was selected, and the value changed to the fixed step 

size, while the other parameters remained the same. The sensitivity index of 

the parameter was the average of the multiple disturbance calculated Morris 

coefficient: 
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
                                                       (6) 

 

where S is the Morris coefficient; Yi is the model output value in the ith 

simulation; Y0 is the model calculation result when the parameter is set at the 

initial value; Pi is the percentage change of the parameter value the for the i-th 

simulation ; and n is the number of runs. 

Cao et al. (2004) proposed that when the step size is small enough, the 

nonlinear effects of the parameters of the model output are negligible. In this 

study, it was assumed that the parameters increased and decreased by 10% on 

the basis of the original value. Y0.9, Y0 and Y1.1 are the output results when the 

parameter was multiplied by 0.9, 1 and 1.1, respectively. The sensitivity 

coefficient (Cs) is as follows: 

 

1.1 0.9

0

( )
0.2

Y Y
Cs Abs

Y





                                                            (7) 

 

The effect of the parameters on the model output was not only 

associated with corresponding Cs values of the parameters but was also related 

to the fluctuation range of the parameters in the environment (Cao et al. 2004). 

With the same Cs value, those parameters with higher variability have greater 

impacts on the model than those with lower variability. In this study, the 

sensitivity coefficient after the correction of the coefficient of variation (Cn) for 

the parameters was also calculated by (Cao et al. 2004), such that Cn=Cs×CV, 

where CV is the coefficient of variation of the parameter. 

For the dynamic parameters in the model, the dynamic sensitivity 

coefficient (SCV) is calculated as follows (Lang et al. 2007): 

 

𝑆𝐶𝑉𝑖 =
∆𝐶𝑉𝑖

𝑌/𝐶𝑉𝑖
𝑌

∆𝐶𝑉𝑖
𝑋/𝐶𝑉𝑖

𝑋                                                              (8) 

 

where CViX and CViY indicate the corresponding coefficients of 

variation of the ith input parameter and the output parameter, respectively, and 

ΔCViX and ΔCViY represent the variations of the corresponding coefficients of 

variation of the i-th input parameter and the output parameter, respectively. 
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Uncertainty analysis 

A Monte Carlo simulation was utilized to study the impact of the 

simultaneous changes in the parameters on the model results, i.e., the 

uncertainty of the model. Based on an analysis of the collected parameter 

values, all of the parameters except for temperature (T) were assumed to 

follow the lognormal distribution (Lang et al. 2007). 

A total of 2200 Monte Carlo simulation runs were conducted. Both 

static and dynamic parameters with higher sensitivity coefficients were 

selected and the original values were retained for the remaining parameters in 

the simulation process. The geometric mean and standard deviation could be 

calculated for static parameters with multiple values. Conversely, if only one 

value was obtained, the corresponding coefficients of variation for the 

parameters were assigned using values based on the literature (Cao et al. 2004, 

Lang et al. 2007). For dynamic parameters, the monthly geometric mean and 

standard deviation were calculated from hourly or daily data. When only 

monthly data were available, the coefficients of variation were manually 

assigned. Each run was implemented with values for each parameter that were 

randomly selected in the range of the mean ± standard deviation. Semi-

interquartile ranges for the monthly model output were obtained for the 

uncertainty analysis. 

3. Results and discussion 

Concentrations of α-HCH in various media and model validation 

The simulated annually average concentrations of α-HCH in the air, 

water and sediment are shown in Figure 2 and were found to be in agreement 

with the measured data. The differences in the main phases were 0.21, 0.06 and 

0.07 logarithmic units for the air, water and sediment, respectively, which were 

all within 0.5 log units during the simulation. The air concentrations were 

underestimated, which might be due to various factors. On the other hand, in 

addition to the uncertainty of the model, the underestimation in the sediment 

may be due to fact that the samples were collected in 2008, while the model 

simulation period was 2010-2011. The overestimation of the concentration in 

the water may have been due to the absence of a biological phase. Aquatic 

organisms, especially plankton, can substantially affect the fate of Persistent 

Organic Pollutants (POPs) in the water environment (Dachs et al. 1999). It can 

be observed that the α-HCH concentration in the sediment particles was much 

higher than that in the atmosphere or in the water bodies. It was concluded 
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that sediment is an important sink of α-HCH (Walker et al. 1999). 

The simulation results for the atmospheric particulates and the 

suspended solids in the water were not satisfactory. The differences between 

the measured and simulated data are 0.6 and 1.69 orders of magnitude, 

respectively. The underestimation of the α-HCH concentration in atmospheric 

particulates may be associated with the underestimation of the organic carbon 

content or the volume ratio of the atmospheric particulates. It was always 

acceptable if the deviations between the simulated and observed data were less 

than 0.5 or 0.7 orders of magnitude for multimedia fugacity model (Cao et al. 

2004). Thereby, the results in the air particles should be acceptable. The 

underestimation of the α-HCH concentration in the suspended solids in the 

water may be related to similar processes as those that caused the overesti-

mation in the water. 

 

 

 
Fig. 2. Comparison between the simulated and measured α-HCH concentra-

tions in the air, water and sediment of Lake Chaohu. The error bars included in 

this figure represent the standard deviations. 

 

 

The simulation results regarding the monthly α-HCH concentration in 

different compartments are shown in Figure 3. The model output of the α-

HCH concentrations in the atmosphere and the atmospheric particles was 

consistent with the measured values. However, the α-HCH concentration in 
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the atmospheric particles peaked in November according to the measured 

values, while the calculated value peaked in December, which corresponded to 

the peak of gaseous α-HCH concentration but failed to capture the November 

peak. This discrepancy may due to higher concentrations of α-HCH in the 

remote input of atmospheric particulate matter in November. The specific 

mechanisms underlying this difference require further study. 

Gaseous α-HCH concentrations in the summer and winter, notably in 

August and December, were higher than in other seasons. Ridal et al. (1996) 

also observed relatively high concentrations of gaseous α-HCH in Lake 

Ontario in August. The most likely cause of higher α-HCH concentrations in 

the summer may be the higher temperatures in summer months (Zheng et al. 

2010), which favor volatilization. High values in the winter may be due to 

remote inputs from the atmosphere (Li et al. 2002). Haugen et al. (1998) 

suggested that when the regression coefficient R2 for lnP and 1/T is high, local 

gaseous α-HCH is mainly derived from surface volatilization. Otherwise, 

remote input is typically the dominant source of gaseous α-HCH. In this study, 

the regression coefficient for lnP and 1/T was 0.004, indicating that the gaseous 

α-HCH in Lake Chaohu was influenced to a greater extent by remote input 

than by lake volatilization. Agricultural land accounted for 61.12% of the total 

land area in the Lake Chaohu watershed (Tu et al. 1990). Consequently, large 

amounts of α-HCH residues remain in the soils. After volatilization, the α-

HCH is able to be transported to the lake by air advection. In addition, there 

was a slight decline of gaseous α-HCH in July (Figure 3), which corresponded 

to a marked increase in the wet deposition flux (T12r) during this period. The 

reason for the slight decline may be increased precipitation. It can be 

concluded that both temperature and precipitation are key factors affecting 

gaseous α-HCH. This conclusion was quantitatively verified using the 

sensitivity analysis. It is worth noting that wet deposition (T12w) was higher in 

the summer, particularly in August, and lower during the other seasons. In 

contrast, dry deposition (T12p) was higher in the winter, notably in December, 

and lower during the other seasons. 
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Fig. 3. Seasonal variations of α-HCH concentrations in the various environ-

mental media. Both the simulated and measured concentrations are presented 

for comparison and model validation. 

 

 

α-HCH in atmospheric particulate matter was lower in the summer 

and higher in the winter. The primary reason behind this difference may be 

that as the temperature rises in the summer, the gas-solid balance of α-HCH in 

the air shifts toward the gaseous phase. The situation is opposite in the winter 

(Carlson et al. 2004). In addition, the atmospheric particulate matter content in 

the summer is lower due to a decrease in the remote inputs when compared to 

winter. 

The measured and simulated values of α-HCH in the water were also 

in good agreement. The model captured the high value in the winter and the 

variation in the other seasons, which was also consistent with the data Ridal et 

al. (1996) observed in Lake Ontario. The peak in the winter values may be 

attributed to several causes. First, although the winter temperatures are lower, 
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leading to reduced water fugacity capacity (Carlson et al. 2004), the 

precipitation and water inflow are also lower in the winter, resulting in a 

significant decrease in water levels, which may cause a concentration effect. 

Furthermore, the gas-to-water diffusion process flux (T12d) is higher in the 

winter, which may also be important. Conversely, lower concentrations were 

simulated in the summer and the autumn. A noticeable decline occurred in 

June, which may be due to the dilution effect caused by the rising water levels 

and elevated water-to-air diffusion (T21d) caused by increasing temperatures. 

The α-HCH concentrations in water begin to be overestimated from August 

through December, which coincides with an observed increase in the seasonal 

distribution of cyanobacteria in Lake Chaohu (Xie 2009). In addition, the 

calculated value of the α-HCH concentration in the suspended solids was 

much less than the measured value by a factor of more than one order of 

magnitude every month. It can be speculated that disregarding aquatic 

organisms, particularly the phytoplankton phase, can lead to a significant 

deviation between the measured data and simulation results. Phytoplankton 

uptake is strongly affecting the fate of persistent organic pollutants (POPs) in 

aquatic environments (Dachs et al. 1999), which was not included in this model. 

Only absorption by the organic matter in the suspended solids was considered 

in the model. Dachs et al. (1999) proposed a model combining POPs in the air-

water exchange and phytoplankton absorption processes. However, currently 

there is no data on the parameters of HCH exchange between water and 

phytoplankton (Del Vento and Dachs 2002, Berrojalbiz et al. 2011). A 

modification in the model structure and further research are needed in the 

future. 

The annual averages of the sampled values of α-HCH content in the 

sediment particles were consistent with the simulated results. Similar seasonal 

variation in the water bodies was obtained, showing the trends of higher 

values in the summer and lower values in the winter. With smaller seasonal 

changes, the α-HCH content in the sediment was relatively stable compared to 

that in the water. 

Transfer fluxes of α-HCH between compartments 

As shown in Figure 4, the net input of α-HCH into the Lake Chaohu 

environment is approximately 0.115 mol/h (approximately 0.294 t/a), while the 

net output is 0.162 mol/h (approximately 0.412t/a). It can be observed that the 

α-HCH content in the Lake Chaohu watershed is diminishing. The 

atmospheric advection input was found to be the main source (T01t) (0.278 t/a), 

which corresponded to the atmospheric advection output (T10t) (0.277 t/a). By 
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contrast, the α-HCH input from water inflows was very small (0.016 t/a). An 

important output was the degradation in the sediments (0.119 t/a), which 

accounted for 89.05% of the total degradation in the environment, while the 

degradation in the water was 0.015 t/a, which accounted for 10.86% of the total 

degradation. 

 

 

 
Fig. 4. α-HCH fluxes in and out of the Lake Chaohu area and between the 

adjacent compartments. T01t: Air advection flows into the area; T10t: Air 

advection flows out of the area; T12d: Diffusion from air to water; T12p: Dry 

deposition from air to water; T12w: Wet deposition from air to water; T12r: 

Rain scavenging; T21d: Diffusion from water to air; T42d: Diffusion from 

sediment to water; T42r: Resuspension from sediment to water; T24d: 

Diffusion from water to sediment; T24s: Sedimentation from water to sediment; 

T02t: Water advection flows into the area; T20t: Water advection flows out of 

the area; T02h: Locative wastewater discharge; T23h: Industry and agriculture 

water usage; T10m: Degradation in air; T20m: Degradation in water; T40m: 

Degradation in sediment.  

 

 

For interface processes, the atmospheric input to the water was 0.030 

t/a, and the dominant process of atmospheric input to the water was 

precipitation scavenging (T12w), which accounted for 57.80% of the gas-to-water 

flux. The flux of diffusion from the water to the atmosphere (T21d) was 0.014 t/a. 

Therefore, there was an annual net input from the atmosphere to the water. 

The seasonal variations in the air-water exchange were shown in Figure 5. 

There was a net volatilization from the water into the atmosphere in May, 

which was consistent with the results obtained by Taihu (Qiu et al. 2008). 
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main cause of this difference may be that the research in Lake Taihu did not 

include deposition from air to water. It is also worth noting that the α-HCH 

concentrations in the Lake Taihu atmosphere and water are 32 ± 28 pg/m3 and 

1887 ± 1372 pg/L, respectively, while in Lake Chaohu, the corresponding 

concentrations are 16 ± 11 pg/m3 and 423 ± 395 pg/L, which are 50.0% and 22.4% 

of the values of Lake Taihu, respectively. The lower α-HCH concentration in 

the water of Lake Chaohu may be due to historically lower HCH pesticide 

usage. The results are also opposite from the findings for Lake Ontario (Ridal 

et al. 1996). Ridal et al. (1996) proposed that, due to a reduction in the 

atmospheric concentration, the α-HCH flux in Lake Ontario has shifted from 

net settlement to net volatilization when compared with the years prior to 1990. 

For Chaohu, however, due to a reduction in the water α-HCH concentration, 

the air-water interface may have still been net settlement. Therefore, despite 

the net volatile flux in the summer, the annual net flux is from the gas to the 

water. 

 

 

 
Fig. 5. α-HCH fluxes over the air-water interface (a) and the water-sediment 

interface (b). The positive values indicate net inputs from air to water or from 

water to sediment. 

 

 

The flux from the water to the sediment was 0.022 t/a, and 
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73.28% of this flux. There was a net input from the water to the sediment 

(Figure 5). Although the sediment resuspension flux was 0.003 t/a, which 

accounted for 26.72% of the flux from the sediment to the water, this flux still 

reflects the strong resuspension process in Lake Chaohu (Tu et al. 1990). In the 

sensitivity analysis, those parameters related to relatively important processes 

will always be observed with higher sensitivity (see next section). 
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Fig. 6. Coefficients of sensitivity of the calculated concentrations of the 

environmental compartments to the input static parameters with (Cn)(a) and 

without (Cs)(b) CV normalization. 

 

Sensitivity analysis 

For the static parameters, the sensitivity coefficients changed 

significantly after correction with the coefficients of variation (Figure 6). Thus, 

despite the high sensitivities regarding Koc，r23，r43，Bps，BH，A2 and Sc, the 

corrected sensitivity coefficients for those parameters with lower variability 

were significantly reduced, such that these eight parameters were considered 

to be insensitive. The sensitivity reductions in Koc and A2 were also observed 

by Cao et al. (2004). In contrast, due to higher variability, the sensitivity 

coefficients of h4, km4, km2 and L4 increased after correction, and they were 

found to be important parameters. h4 is related to sediment volume, and 

sediment is found as the sink for α-HCH in lakes; km4 is directly related to the 

degradation of α-HCH in the sediments, which has been found to be the most 

important degradation process in the environment (section 3.2). Thus, the two 

static parameters exerted considerable influence on the model results. L4 and 
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km2 become more important parameters due to their high variability. Other 

parameters, including C02t，O23，O43，X43，Ps25 and H25, had relatively similar 

high sensitivity coefficients before and after correction. C02t strongly affects the 

α-HCH content in the water and suspended matter. O23 and O43 determine the 

adsorption capacity of the particles in the suspended solids and sediments, 

while X43 is related to the amount of sediment adsorption. Therefore, these 

parameters exert a great influence on the model output. Ps25 determines the 

fugacity capacity of the atmospheric particulates (Mackay et al. 1986), and H25 

plays a decisive role on the fate of POPs in the environment (Odabasi et al. 

2008). Although the variability of these two parameters is negligible, the 

collected values in this study are based on the results from different time 

periods using different methods. Therefore, the sensitivities of these two 

parameters remain high after the correction. 

Each of the parameters has a different influence on the various environ-

mental compartments. For example, km4 has a higher sensitivity coefficient for 

the sediment than for the water or atmosphere, while km2 has the highest 

sensitivity coefficient for the water. Overall, the average values of Cn for the air, 

water and sediment were 1.17%, 2.78% and 3.42%, respectively. Although 

water contains the most parameters among the three main phases (Tao et al. 

2006), the sediment serves as an important sink for α-HCH and is influenced 

by all of the parameters to a greater extent than either the air or the water. 

 

 

 
Fig. 7. Dynamic coefficients of sensitivity of the calculated concentrations of 

the environmental compartments to the input dynamic parameters. 
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The dynamic sensitivity coefficients (SCV) are shown in Figure 7. The 

model output was much more sensitive to temperature (T) than to the other 

parameters because temperature had very strong effects on Ps and H, the two 

important parameters in the model. Consequently, temperature played a 

decisive role in the distribution of α-HCH between the gaseous and particulate 

phases as well as between the air and water (Walker et al. 1999). In addition, h2, 

Q01t, Q10t, C01t, X13, K12, K21 and Kw also had strong influences on the dynamic 

changes of the model output. h2 strongly affected the variation of α-HCH 

concentrations in the water and suspended solids; Q01t, Q10t and C01t were 

associated with the atmospheric advection, which was the main source of the 

α-HCH in Lake Chaohu. Thus, the seasonal variations in these three 

parameters also had significant impacts. Cao et al.(2004) found that the 

parameters related to source and degradation in the fugacity model were 

relatively more important, which was consistent with the relatively high 

sensitivities of Q01t, Q10t, C01t, km4 and km2. X13 had a relatively strong influence 

on the seasonal changes in the concentration in the atmosphere and the water 

bodies as well as the particulate and suspended matter content, which is in 

agreement with the conclusion of the Pearl River Delta study (Lang et al. 2007); 

K12, K21 and Kw were the main parameters influencing the air-water interface 

flux due to their direct impacts and significant seasonal variations, and these 

three parameters are also important parameters generally. In addition, due to 

the insignificant effect of water inflows on the model, parameters such as Q02t, 

Q20t and Q23h had little effect on the variability of the model output. Without 

considering the biological phase, the importance of X23 was also reduced. The 

low sensitivity coefficient of K42r was due to the corresponding low 

resuspension flux. 

Uncertainty analysis 

The results of the uncertainty analysis for each phase are shown in 

Figure 8. It was found that the uncertainty of the model was relatively small 

from May to September, as represented by the small semi-interquartile ranges 

of the Monte Carlo simulation results. The uncertainty of the model output 

began to increase in October and peaked in December or January. This increase 

was attributed to our finding that from October to December, the coefficients of 

variation in the gas-water diffusion rate (K12 and K21) significantly increased, 

leading to an increase of variation in the air-water diffusion flux. This also 

contributed to a significant increase in the uncertainty of the other phases. 

Lang et al. (2007) similarly found that the coefficient of variability of diffusion 

is associated with wide variability in the gaseous PAHs concentrations. The 
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rates of diffusion across the gas-water interface (K12 and K21) were related to 

wind speed and water depth, and the coefficient of variation of water depth (h2) 

did not increase during October-December. It can be speculated that elevated 

variation in the wind speed in this period causes the increasing uncertainty.  

 

 

 
Fig. 8. Uncertainties of the predicted seasonal variations of α-HCH 

concentrations in the air, water and sediment. The results are presented as 

median values (lines with dots) and semi-quartile ranges (solid lines). 

 

4. Conclusion 

A dynamic Quantitative Water, Air, and Sediment Interaction (QWASI) 

fugacity model was utilized to simulate the fate and seasonal variation of α-

HCH in the air, water and sediment, as well as various environmental fluxes in 

Lake Chaohu. The calculated and measured values of the model were in good 
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large deviations between the simulated and measured values of α-HCH in 
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suspended solids in water. The major source of α-HCH in Lake Chaohu was 

input from atmospheric advection, while the major environmental outputs 

were atmospheric advection and sediment degradation. The net annual input 

of α-HCH into the lake area was approximately 0.294t, while the net output 

was approximately 0.412t. The factors leading to the seasonal variations of α-

HCH in various compartments were revealed. For the fluxes at the air-water 

interface, atmospheric inputs into the water were dominant for most of the 

year with the deposition processes included, while the water and sediment 

interface was mainly influenced by the net input from the water to the 

sediment. Thus, sediment is an important sink for α-HCH. Sensitivity analysis 

found that parameters of source and degradation were more important than 

the other parameters. The sediment was influenced more by the combined 

effects of the various parameters than air and water were. In addition, 

temperature variation had a much greater impact on the dynamics of the 

model output than other dynamic parameters. Uncertainty analysis showed 

that the model uncertainty was relatively low, especially in the first half of the 

simulation period. Due to the increase in the gas-water diffusion flux 

variability, uncertainty of the model significantly increased for all of the 

compartments. 
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Supplementary materials  

Table S1   Environmental parameters for the model 

Symbol Unit Parameters Reference 
Data 

Numbers 

Allocate 

mean 

Allocate 

SD 

Geometric 

mean 

Geometric 

SD 

A2 m2 Interface areas of air/water 1,2 2 7.58E+08 2.69E+06 7.58E+08 1.00E+00 

h1 m Thickness of air 1 1 1.00E+02 -b 1.00E+02 1.00E+00 

h2a m Depth of water 3 - - - - - 

h4 m Thickness of sediment 1 1 1.00E-01 - b 1.00E-01 5.78E-01 

X13a, X23 v/v 
Volume fractions of solids 

in air and water 
4, Note A - - - - - 

X43 v/v 
Volume fractions of solids 

in sediment 
4 1 3.00E-01 - b 3.00E-01 1.08E+00 

X42 v/v 
Volume fractions of water 

in sediment 
4 1 7.00E-01 - b 7.00E-01 1.02E+00 

O23 % 
Contents of organic carbon 

in solids in water 
4 1 1.67E-01 - b 1.67E-01 1.20E+00 

O43 % 
Contents of organic carbon 

in solids in sediment 

1,2,5,  

Note A 
61 5.27E-03 2.92E-03 4.61E-03 1.72E+00 

23 t/m3 Densities of solids in water 1 1 1.50E+00 - b 1.50E+00 1.06E+00 

43 t/m3 
Densities of solids in 

sediment 
1 1 2.76E+00 - b 2.76E+00 1.16E+00 

Q01ta, Q10ta m3/h 
Air advection flow in and 

out of the area 
Calculated - - - - - 

Q02ta, Q20ta m3/h 
Water advection flow in 

and out of the area 
Calculated - - - - - 

Q02ha m3/h 
Rate of local wastewater 

discharge 
1 - - - - - 

C1a mol/m3 
α-HCH concentration in 

air 
Note A - - - - - 

C02t  mol/m3 
α-HCH concentration in 

water advection flow 
1,6 1 1.34E-08 - b 1.34E-08 1.63E+00 

C02h mol/m3 
α-HCH concentration in 

wastewater 
1 1 1.56E-08 - b 1.56E-08 1.82E+00 

Ta K Local average temperature 7 - - - - - 

References:  

[1]Tu, 1990; [2]Yin, 2011; [3] AHTIS (http://61.191.22.154/yc_web/yc_index_frame.aspx). [4] 

Mackay, 2001; [5] Zhou et al., 2007; [6] Zhang, 2009. [7] CMDSSS

（http://www.cma.gov.cn/2011qxfw/2011qsjgx/index.htm）. 

Note A: Measured in Laboratory. 
a dynamic parameters (Values not shown) 
b One value only; Geometric SD assigned manually (Log-normal distribution assumed) 

1) Tu, Q.Y., Gu, D.X., Yi, C.Q., Xu, Z.R., Han, G.Z., 1990. The Researches on the Lake 

Chaohu Eutrophication. , Publisher of University of Science and Technology of China, 

Hefei (in Chinese). 

2) Yin, F.C., 2011. A study on evaluation and control instruments of Chao lake 

eutrophication, China Environmental Science Press Beijing (in Chinese). 

3) Anhui Hydrological Telemetry Information System (AHTIS), 2010-2011. Hourly water 

level report. http://61.191.22.154/yc_web/yc_index_frame.aspx 

http://61.191.22.154/yc_web/yc_index_frame.aspx
http://www.cma.gov.cn/2011qxfw/2011qsjgx/index.htm
http://61.191.22.154/yc_web/yc_index_frame.aspx
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4) Mackay, D., 2001. Multimedia Environmental Models: The Fugacity Approach, second 

ed., Lewis Publishers, NewYork, USA. 

5) Zhou, Z.H., Liu, C.Q., Li, J., Zhu, Z.Z., 2007. Record of ecosystem evolvement processes 

provided by δ13Corg and δ15 N Values in Chaohu Lake sediments, Environmental 

Science, 28, 1338-1343 (in Chinese). 

6) Zhang, M., 2009. Distribution characteristic and assessment of typical persistent 

organic pollutions-Organochlorine pesticides in water of Chaohu Lake watershed. 

Anhui Agriculture University, Hefei (in Chinese). 

7) China Meteorological Data Sharing Service System (CMDSSS), 2010-2011. Daily 

Meteorological Data. http://www.cma.gov.cn/2011qxfw/2011qsjgx/index.htm  

http://www.cma.gov.cn/2011qxfw/2011qsjgx/index.htm
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Table S2   Mass transfer kinetic and physical-chemical parameters for the 

model 

Symbol Unit Parameters Reference 
Data 

Numbers 

Allocate 

mean 

Allocate 

SD 

Geometric 

mean 

Geometric 

SD 

PS Pa 
Local vapor 

pressure 
1-6 6 4.92E-02 1.08E-01 9.01E-03 1.50E+00 

R 
Pam3/mol

K 
The gas constant 1 1 8.31E+00 0.00E+00 8.31E+00 1.00E+00 

F25 - 
Fugacity ratio at 

25℃ 
7 1 1.21E-02 -b 1.21E-02 1.00E+00 

H Pam3/mol Henry’s constant 1,3,5,6 4 6.12E-01 4.18E-02 6.11E-01 1.07E+00 

BF - 

Fugacity ratio 

temperature 

correction factor 

7 1 1.62E+03 -b 1.62E+03 1.00E+00 

BH - 

Henry’s law 

constant 

temperature 

correction factor 

7 1 1.71E+03 -b 1.71E+03 1.00E+00 

BPS - 

Saturation vapor 

pressure 

temperature 

correction factor 

7 1 4.95E+03 -b 4.95E+03 1.00E+00 

KOC m3/t,1/h 
Adsorption 

coefficient 
1,3,5 3 1.69E+03 1.86E+02 1.68E+03 1.11E+00 

Km1 - 
Degradation rate 

of α-HCH in air 
1,2,5,8,9 4 2.43E-03 3.70E-03 1.09E-03 3.86E+00 

Km2 - 
Degradation rate 

of α-HCH in water 
1,2,5,10 4 3.17E-04 3.33E-04 2.18E-04 2.63E+00 

Km4 - 

Degradation rate 

of α-HCH in 

sediment 

1,2,3,5,10 5 4.87E-04 7.37E-04 1.22E-04 5.52E-01 

B1 m2/h 
Molecular 

diffusivities in air 
2,10,11,12 4 2.49E-02 1.03E-02 2.36E-02 1.44E+00 

B2 m2/h 

Molecular 

diffusivities in 

water 

2,10,11,12 4 2.86E-06 1.17E-06 2.68E-06 1.54E+00 

B4 m2/h 

Molecular 

diffusivities in 

sediment 

2,12 2 1.43E-05 1.09E-05 1.20E-05 2.34E+00 

K12a m/h 

Air-side molecular 

transfer coefficient 

over water 

Calculated - - - - - 

K21a m/h 

Water-side 

molecular transfer 

coefficient over air 

Calculated - - - - - 

K24 m/h 

Water-side 

molecular transfer 

coefficient over 

sediment 

2 1 1.00E-02 -b 1.00E-02 1.17E+00 

K42 m/h 
Water-side 

molecular transfer 
10,14 1 

5.39415E-

06 
-b 5.39E-06 1.52E+00 
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coefficient over 

sediment 

K42ra m/h 
Sediment 

resuspension rate 
Calculated - - - - - 

L4 m 

Diffusion path 

lengths in 

sediment 

2 2 3.50E-02 2.12E-02 3.16E-02 1.91E+00 

KP m/h 
Dry deposition 

velocity 
2,10 2 1.04E+01 5.66E-01 1.04E+01 1.06E+00 

KS m/h 

Water 

sedimentation 

rates 

14,15 5 3.62E-06 4.34E-06 1.66E-06 4.32E+00 

Kwa m/h 
Wet deposition 

velocity 
16 - - - - - 

Sc - Scavenging Ratio 2,10 2 1.34E+05 9.33E+04 1.17E+05 2.14E+00 

References: [1] Cao,et al., 2007; [2]Mackay D., 2001; [3] Cao et al., 2003; [4]Cao et al., 

2005; [5]Ao et al., 2009; [6]Dong et al., 2009;  [7] Paasivirta et al.,1999; [8] Prinn et al., 

2001; [9] Brubaker et al., 1998; [10] Breivik and Wania., 2002; [11] Mackay and 

Patterson, 1991; [12] Cao et al., 2004; [13]Tu, 1990; [14] Gu, 2007;[15] CDMSSS

（http://www.cma.gov.cn/2011qxfw/2011qsjgx/index.htm）. 
a dynamic parameters (Values not shown) 
b One value only; Geometric SD assighed manually (Log-normal distribution 

assumed) 

 

1) Cao, H.Y., Liang, T., Tao, S., Zhang, C. S., 2007. Simulating the temporal 

changes of OCP pollution in Hangzhou, China. Chemosphere, 67, 1335-1345,. 

2) Mackay, D., 2001. Multimedia Environmental Models: The Fugacity Approach, 

second ed., Lewis Publishers, NewYork, USA. 

3) Cao, H.Y., Cao, J., Xu, F.L., Li, B.G., 2003. Fate and transfer flux of HCHs in 

Tianjin," Environmental Chemistry, 22, 548-554 (in Chinese). 

4) Cao, H.Y., Liang, T., Tao, S., 2005. Dynamic simulation and prediction of BHC 

transfer and residues in Beijing during 50 years. SCIENCE IN CHINA Ser. D 

Earth Sciences, 35, 980-988 (in Chinese). 

5) Ao, J.T., Chen, J.W., Tian, F.L., Cai, X.Y., 2009. Application of a level IV 

fugacity model to simulate the long-term fate of hexachlorocyclohexane 

isomers in the lower reach of Yellow River basin, China. Chemosphere, 74, 

370-376. 

6) Dong, J.Y., Gao, H., Wang, S.G., Yao H.J., Ma, M.Q., 2009. Simulation of the 

transfer and fate of HCHs since the 1950s in Lanzhou, China. Ecotoxicology 

and Environmental Safety, 72, 1950-1956. 

7) Paasivirta, J., Sinkkonen, S., Mikkelson, P., Rantio T., Wania, F., 1999. 

Estimation of vapor pressures, solubilities and Henry's law constants of 

selected persistent organic pollutants as functions of temperature. 

Chemosphere, 39, 811-832. 
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hydroxyl radicals in the past two decades. Science, 292, 1882-1888. 

9) Brubaker, W.W., Hites, R.A., 1998. OH reaction kinetics of gas-phase alpha- 

and gamma-hexachlorocyclohexane and hexachlorobenzene," Environmental 

Science & Technology, 32, 766-769. 

10) Breivik, K., Wania, F., 2002. Evaluating a model of the historical behavior of 

two hexachlorocyclohexanes in the Baltic sea environment, Environmental 

Science & Technology, 36. 1014-1023. 

11) Mackay, D., Paterson, S., 1991. Evaluating the multimedia fate of organic-

chemicals - a Level-III fugacity model, Environmental Science & Technology, 
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12) Cao, H. Y. et al., 2004. Multimedia fate model for Hexachlorocyclohexane in 

Tianjin, China, Environmental Science & Technology, 38, 2126-2132. 

13) Tu, Q.Y., Gu, D.X., Yi, C.Q., Xu, Z.R., Han, G.Z., 1990. The researches on the 

Lake Chaohu eutrophication. Publisher of University of Science and 

Technology of China, Hefei (in Chinese). 

14) Gu, C.J., 2005. Historical sedimentary records and environmental changes in 

Chaohu lake. East China Normal University, Shanghai. 
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Table S3  Definitions of the transfer and transformation processes 

Symbol Formula Explanation 

System input:   

T01t Q01t×C01t Air advection flows into the area 

T02t Q02t×C02t Water advection flows into the area 

T02h Q02h×C02h Locative wastewater discharge 

System output:   

T10t D10t×f1 Air advection flows out of the area 

T20t D20t×f2 Water advection flows out of the area 

T10m D10m×f1 Degradation in air 

T20m D20m×f2 Degradation in water 

T40m D40m×f4 Degradation in sediment 

T23h D23h×f2 Industry and agriculture water usage 

Air-water transfer:  

T12d D12d×f1 Diffusion from air to water 

T21d D21d×f2 Diffusion from water to air 

T12p D12p×f1 Dry deposition from air to water 

T12w D12w×f1 Wet deposition from air to water 

T12r D12r×f1 Rain scavenging 

Water-sediment transfer  

T24d D24d×f2 Diffusion from water to sediment 

T42d D42d×f4 Diffusion from sediment to water 

T24s D24s×f2 Sedimentation from water to sediment 

T42r D42r×f4 Resuspension from sediment to water 

 

 

 

 

 

 

 

 



 

 

 

 

 

Xiangzhen Kong, Wei He, Ning Qin, Qishuang He, Bin Yang, 

Huiling Ouyang, Qingmei Wang, Chen Yang, Yujiao Jiang, Fuliu Xu 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Published in Ecological Indicators (2014) 41, 65–74 



Chapter 4 

84 

Abstract 

Long-term annual dynamics from 1984-2020 (simulation #1) and 

seasonal variation from May 2010 to February 2011 (simulation #2) of γ-

Hexachlorocyclohexane (γ-HCH) in various environmental media in Lake 

Chaohu, China was simulated with a previous developed fugacity-based level 

IV Quantitative Water Air Sediment Interaction (QWASI) model (Kong et al. 

2012). The model was modified as a fish sub-phase was included. Also the 

emission flux was added to study the impact of the lindane prohibition in 

simulation #1. Sensitivity analysis was conducted for both static and dynamic 

parameters, while in uncertainty analysis, both basic Monte Carlo and 

Bayesian Markov Chain Monte Carlo (MCMC) method were undertaken for 

simulation #2 and the results were compared. Simulated data were consistent 

with the observations in simulation #1. Seasonal patterns in various media 

were also successfully modeled in simulation #2 and factors leading to this 

seasonality were discussed. Atmospheric advection input was the main source. 

In simulation #2, approximately 36 kilogram (kg) of γ-HCH in Lake Chaohu 

was removed per year. In addition, 31 kg of γ-HCH was added to Lake 

Chaohu by air-water interface fluxes, and 13 kg of γ-HCH was added to the 

sediment by water-sediment interface. Sensitivity of static and dynamic 

parameters was discussed. Uncertainty analysis by the basic Monte Carlo 

method for simulation #1 showed that the dispersion for each media was less 

than two orders of magnitude. Higher dispersions in fish and two sub-phases 

of the sediment were attributed to a larger variation in the relevant parameters. 

The MCMC method for simulation #2 eliminated 77% of the model true 

uncertainty in water ascertained by basic Monte Carlo method and significant 

elimination in other phases can be speculated. It is suggested that rather than 

calibrating the model, the main function of the MCMC for fugacity model 

should be to avoid overestimating uncertainty in model prediction. 
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1. Introduction  

Hexachlorocyclohexane (HCH) isomers (α-, β- and γ-HCH) were 

recently added to the list of persistent organic pollutants (POPs) at the 

Stockholm Convention (Vijgen et al. 2011). The isomer of γ-HCH is one of the 

main ingredients for the technical HCH (containing 10-15% γ-HCH), and the 

absolute ingredient of lindane (containing more than 99.9% γ-HCH). The ratios 

of α-/γ-HCH and β-/(α + γ)-HCH are frequently used as the indicators to 

identify the source of the HCHs (Iwata et al., 1993, 1995; Walker et al., 1999; 

Law et al., 2001; Liu et al., 2012, 2013; Ouyang et al., 2012, 2013; Xu et al., 2013). 

For technical HCHs, the ratios of α-/γ-HCH and β-/(α + γ)-HCH are 

approximately 4-7 and 0.06-0.17, respectively; while for lindane, the ratios of α-

/γ-HCH and β-/(α + γ)-HCH are less than 0.1 and 0.06, respectively (Iwata et al., 

1993, 1995; Walker et al., 1999). Additionally, the α/γ-HCH ratio can serve as an 

indicator to identify the atmospheric source of HCHs, since α-HCH with the 

high vapor pressures is the main isomer in the air and could be transported for 

long distances (Iwata et al., 1993, 1995; Walker et al., 1999). 

In China, there was extensive use of technical HCHs from 1953 until 

1983 (Li et al. 2001), when lindane began to be applied instead, and HCHs were 

totally prohibited by the government in 1992 (Tao et al., 2006). Anhui Province, 

where Lake Chaohu is located, was among the regions with the highest usage 

of pesticides in China (Cai 2010). The application rate of technical HCHs in 

Anhui was close to Jiangxi Province, with a total usage of nearly 200 kilotons 

between 1952 and 1984 (Li et al. 2001). High levels of HCHs could persist in the 

environment under such intensive application, but HCH residue has been 

decreasing rapidly since its prohibition. It has been reported that the levels of 

HCHs in the topsoil in Anhui have dropped from 0.349 mg/kg (Xia et al. 1987) 

to 0.150 mg/kg (Yue et al. 1990) and 0.0286 mg/kg (Wang et al. 2011b).  

Lake Chaohu is known as the fifth largest shallow freshwater lake in China. 

The lake has been severely polluted by HCH pesticides through surface runoff, 

undercurrent, osmosis and leaching from the soil into surface water. According 

to historical data, the OCP emissions in Chaohu water bodies amounted to 1.16 

tons in 1984 (Zhang and Lu 1986). Due to persistence, the concentrations of 

HCHs in the soil and sediment of Lake Chaohu basin were 1.4 μg/kg (Gao and 

Zhao 2012) and 0.58 μg/kg (Wang et al. 2012c), respectively. In addition, 

according to our measurement, the level of γ-HCH in fish, which might be 

consumed by human beings, was 11.42 ± 29.98 μg/kg dw (Wang, 2012, 

unpublished data). Study showed that pesticides like lindane have been posing 

pressures on the freshwater ecosystem (Qu et al., 2011; Matozzo et al., 2012). In 
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addition, as the only isomer with specific insecticidal properties, γ-HCH was 

found to be a tumor promoter (Dich et al. 1997). One study indicated that 

subtle alterations in breast and prostate cells could be induced by 

environmental concentrations of lindane (Kalantzi et al. 2004a). Therefore, 

understanding the behavior of γ-HCH in a lake environment is of great 

concern. 

Multimedia models were usually applied in assessment of the fate and 

transport of organic pollutants in the environment (von Waldow et al., 2008). 

Fugacity-based multimedia model proposed by Mackay and Paterson (1982) 

has been widely used to describe the environmental behavior of organic 

pollutants in global, regional and local environments (Liu et al., 2007; Tao et al., 

2003; Wania and Mackay, 1995; Xu et al., 2012; Xia et al., 2011). Among them, 

the fugacity-based Quantitative Water Air Sediment Interaction (QWASI) 

model by Mackay and Diamond (1989) should be considered for a lake system 

(Diamond et al. 2005, Xu et al. 2012). To date, few studies have focused on 

seasonal variations in pollutants (i.e., γ-HCH) in subtropical aquatic systems 

using the dynamic fugacity model (Diamond et al., 2005; Tao et al., 2006; Lang 

et al., 2007; Liu et al., 2007; Ao et al., 2009; Xia et al., 2011; Xu et al., 2012). In our 

previous study, a fugacity-based level IV Quantitative Water Air Sediment 

Interaction (QWASI) model was developed to simulate the seasonality of α-

HCH in Lake Chaohu (Kong et al., 2012). As the measured data of γ-HCH in 

1984 have been collected in this study, it is also interesting to use the model to 

simulate the long-term annual dynamics of γ-HCH (Wania and Mackay 1995, 

Cao et al. 2007, Xia et al. 2011) in Lake Chaohu. For γ-HCH, other than the 

seasonal variation, it is also important to simulate the long-term dynamics and 

predict the residue level of the lindane in the environment in the future. 

Therefore, long-term annual dynamics of γ-HCH (from 1984 to 2020) in Lake 

Chaohu was also investigated by the model in this study. The measured data 

of γ-HCH in water and fish in 1984 have been collected for model validation. 

We also have modified the model by adding a fish sub-phase and an emission 

flux to air. In addition, in studies that focused on the uncertainty of the 

fugacity model (Tao et al., 2006; Ao et al., 2009), the basic Monte Carlo 

simulation was commonly used, which relies on user-defined probability 

distributions for the model input parameters. Due to data limitations, the 

distribution of certain parameters were difficult to determine, which might 

lead to an unsatisfactory fit between the model output and the observed data 

and over-estimated uncertainty of the model results in the Monte Carlo 

simulation (Saloranta et al. 2008). A Bayesian Markov Chain Monte Carlo 

(MCMC) method was proposed to combine the uncertainty analysis and the 

calibration of the fugacity model by Saloranta et al. (2008). However, Salortanta 
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et al. (2008) did not clearly show an improved fit of the model output to the 

observations or a better estimate of model uncertainty (two advantages of the 

MCMC method), which can be illustrated by a data set with more frequent 

observations, such as the seasonal variation simulation in this study, instead of 

the long-term simulation for yearly observations.  

The main goals of this study were 1) to simulate the long-term 

dynamics of γ-HCH in Lake Chaohu from 1984 to 2020; 2) Using the results of 

1) as initial values to model the seasonal variations of γ-HCH in Lake Chaohu 

from May 2010 to February 2011; 3) to evaluate the sensitivity of the 

parameters in seasonal variability simulation; and 4) to evaluate the 

advantages of the MCMC method by comparing the uncertainty of seasonal 

variations simulation determined by the basic Monte Carlo and MCMC 

methods. 

2. Materials and methods 

Model development 

The framework of the fugacity-based QWASI model in the previous 

study was applied (Kong et al., 2012), which is present in Fig. S1 

(supplementary materials). The volume and properties of the phases and sub-

phases are presented in Table 1 (Chapter 3). The transfer fluxes included in the 

framework were originally from Mackay and Paterson (1991) and named after 

Cao et al. (2004). As fish play a very important role in aquatic environment and 

also in human daily food (Xu et al. 2011), a fish sub-phase was included in the 

water to account for the bioconcentration effect, while the corresponding 

process of fish production (T2f) was also added in the model framework. 

Emission (T01h) was added in the model because lindane was still in application 

before 1992. Table S3 (Chapter 3) provides a detailed description of all the 

processes in the model. It was assumed that the fugacities for all of the sub-

phases in each compartment were the same (Mackay and Paterson 1991), i.e., 

equilibrium exists within all three main compartments. The differential mass 

balance equations with fugacities (fi, i=1,2,and 4) as variables are illustrated in 

supplementary materials, S1. 

Simulations and model validation 

Two simulation phases were conducted in this study. Simulation #1 

modeled the dynamic of γ-HCH in Lake Chaohu annually from 1984 to 2020. 

As lindane was used instead of technical HCHs from 1983 and was prohibited 

in 1992, the steady state was assumed for γ-HCH in Lake Chaohu environment 
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system in 1984. In 1993, emissions ceased and the corresponding application 

and discharge parameters were set to zero. Seasonal variations were not 

considered in this simulation. Simulation #2 started from May 2010 to February 

2011. Seasonally varying data for several parameters were applied instead, 

which will be demonstrated in section 2.3. The seasonality of γ-HCH in various 

media of Lake Chaohu was focused in this simulation. The fourth-order 

Runge-Kutta method was applied to solve differential equations with a 

simulation time step of 1 hour. The available observations of γ-HCH in water 

and fish in 1984 (Zhang and Lu 1986), fish data of 2010 (Wang, 2012, 

unpublished data), sediment data from August, 2009 (Wang et al. 2012c), and 

the sampled monthly data in our laboratory from May 2010 to February 2011 

for air, air particles (Ouyang et al. 2012), water (He et al., 2012) and suspended 

solids (Liu et al., 2012) were used for model validation in the two simulations. 

Details of the sampling and measuring of the data can be found in the relevant 

references. Particularly, the measurement method for fish can be also found in 

Xu et al. (2012) and Wu et al. (2013).  

Parameter determination 

Model parameters symbols, units, values and data sources are provid-

ed in Table S1-S2 in the supplementary materials S2. Totally, 50 parameters 

were included, including 24 environmental parameters, 16 mass transfer 

parameters and 10 physicochemical parameters of the pollutant. Environ-

mental and physicochemical parameters were determined by the literature or 

measured in the laboratory. Henry’s constant, the saturated vapor pressure 

and the fugacity rate of the pollutant were corrected by the equation provided 

by Paasivirta et al. (1999) under different temperatures. The environmental 

kinetics of the process parameters were obtained from the relevant literature or 

calculated based on the conditions in Lake Chaohu.  

For simulation #1, the emissions rate to the air was not available for 

1984. Although the discharge value from rivers to the lake was obtained, it was 

found that the output of the model underestimated the concentration in the 

water and fish by approximately 1.5 and 1 orders of magnitude in 1984, 

respectively, without emission input. Therefore, the value of the emissions rate 

to the air in 1984 was back calculated using the corresponding concentration in 

water. The rapid response of the water concentration to changes in loading 

allowed for the calibration of the inflow concentrations (Helm et al. 2002, 

Diamond et al. 2005). Due to high-level interactions between air and water, it 

was also possible to calibrate the emissions rate to air from the water 

concentration in Lake Chaohu. In addition, the observed γ-HCH concentration 
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in fish could validate the results of the calibrated emissions rate. To be noticed, 

the emissions were assumed to move directly into the air above the lake (Fig. 

S1) due to deficiency of air advection data. For simulation #2, there were 16 

parameters with seasonal values, which can be found in Kong et al. (2012). O23 

(organic carbon fraction in suspended solids in water) was a newly added 

dynamic parameter. Determination of these dynamic parameters was 

illustrated in the supplementary materials, S3. Other parameters used annual 

average values and remained constant during the simulation. 

Sensitivity analysis 

A similar sensitivity analysis was conducted for simulation #2 as that in 

Kong et al. (2012). All 50 parameters were involved except the gas constant (R). 

For the constant parameters, the Morris classification screening method 

(Morris 1991) was used. Based on this method, a sensitivity coefficient (Cn) 

corrected by the coefficient of variation (CV) and applied by Tao et al. (2006) 

was chosen in this study. Moreover, for the 16 dynamic parameters in the 

model, the variability-based sensitivity coefficient (SCV) (Lang et al., 2007) was 

calculated to assess their influence on the variation of the model outputs. 

Uncertainty analysis 

Basic Monte Carlo simulation was applied to assess the uncertainty of 

the model both in simulation #1 and #2. The distributions of these parameters 

were obtained from prior knowledge and the data collected in this study. 

Based on the analysis of the collected parameter values and the modeling 

experience (Tao et al. 2006), all of the static parameters, except for temperature 

(normal distribution), were assumed to obey the lognormal distribution. More 

details can be found in Kong et al. (2012). Furthermore, Bayesian MCMC 

simulation method associated with the adapted Metropolis-Hastings algorithm 

(Saloranta et al. 2008) was conducted on simulation #2. The density of 

observations in time and various media in this period provided sufficient 

information for the MCMC simulation. 15 parameters without seasonal 

variations and the standard deviation of the normal distribution of 

observations in log-scale (sigma0) were studied, which were primarily based 

on the results of the sensitivity analysis (see supplementary materials, S6 for 

details). The statistical characteristics of the 16 parameters with seasonal 

variations were not updated during the simulation. The remaining parameters 

were fixed to their original distributions. The length of the Markov chain was 

set as 105. The convergence of the chain was judged by visual inspection and 

the first 20000 runs were discarded (considered as the burn-in period). The 
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uncertainty results obtained from random sampling (2200 runs) from the chain 

were compared with the former results derived from the basic Monte Carlo 

simulation. The DRp proposed by Tao et al. (2006) was considered as the 

indicator for the ascertained uncertainty and used for the comparison (see 

section 3.5 for details). 

3. Results and discussion 

Simulation #1:  Dynamics of γ-HCH from 1984 to 2020 

The concentration dynamics of γ-HCH in each compartment from 

1984-2020 are indicated in Fig. 1, along with the estimated uncertainty 

dispersion, which will be discussed in section 3.5. From 1984-1993, before 

lindane was completely prohibited in China, the concentrations of γ-HCH 

were in steady state for all the compartments. The model calculated γ-HCH 

concentration in water was in agreement with the observation. The estimated 

emissions rate to air was 30 mol/h, which was almost half of the determined 

emissions rate of 73.1 mol/h in Hangzhou (Cao et al. 2007). Li et al. (2001) found 

that the application rate of technical HCHs in Zhejiang Province was twice as 

high as that in Anhui Province in the 1980s, which raised our confidence in the 

estimated emissions rate. In addition, the simulated γ-HCH concentration in 

fish also fit well with the observed data, suggesting the accuracy of the 

determined parameters. After the ban of lindane usage in 1993, concentrations 

of γ-HCH in all compartments decreased rapidly by more than three orders of 

magnitude, and the rate of change became slower after approximately 10 years. 

All of the simulated results were consistent with the observed data in 2010 and 

2011, with deviations generally of less than one order of magnitude. The model 

predicted that till 2020, the residue level of γ-HCH in Lake Chaohu will keep 

slowly decreasing but still at the similar level as that at present. To be noticed, 

the model outputs of the suspended solids in water were almost two 

logarithmic units lower than the observations. This underestimation might be 

attributed to sample collection. The suspended solids were filtered from the 

water samples with a 0.45μm glass fiber filter (GFF) (He et al., 2013), which 

included the phytoplankton in the water. As a heavily eutrophic shallow lake, 

the phytoplankton was dominant in the lake, especially in the summer when 

algae were blooming. In addition, phytoplankton uptake strongly affects the 

fate of persistent organic pollutants (POPs) in aquatic environments (Dachs et 

al. 1999), which was not included in this study. Only absorption by the organic 

matter in the suspended solids was considered in the model, resulting in the 

underestimation of γ-HCH concentrations. Further studies are needed to 



Modeling γ-HCH in a phytoplankton-dominated shallow lake 

91 

ascertain the relative uptake coefficient constants for γ-HCH in phytoplankton, 

which are not available at present.  

 

 
Fig. 1. Dynamics of the calculated γ-HCH concentration results in simulation 

#1 for various environmental media in the lake as well as the uncertainty 

determined by the basic Monte Carlo simulation from 1984 to 2020. The results 

are depicted as the 0.25 (dashed line at the bottom) and 0.75 (dashed line on the 

top) percentiles, and the simulated data (solid line in the middle) in log-scale. 

Circles are the corresponding observations. 
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The simulated results of the fugacity in the three main compartments 

on May 1st, 2010 in simulation #1 were set as the initial values for the 

simulation #2. The average simulated results agreed well with the average 

observed data, which are presented in Fig. 2. The deviations were 0.36, 0.25, 

0.12, 1.36, 0.66 and 0.13 logarithmic units for air, air particles, water, suspended 

solids, fish and sediment solids, respectively, which were all within one 

logarithmic unit, except for suspended solids in water, which was also found 

for α-HCH in Kong et al. (2012). Similar reasons to those presented in section 

3.1 might account for the relatively large deviation in suspended solids. The 

relatively high level of γ-HCH concentration in fish should be the result of the 

bioconcentration effect (Hargrave et al. 2000), while the sediment might act as a 

sink of HCHs (Walker et al. 1999), resulting in high concentration. 

 

 
Fig. 2. Comparison of the measured and simulated γ-HCH concentration 

results in simulation #2 for various environmental media in Lake Chaohu. 

Annual average values are presented and the standard deviations are also 

provided as little bars for both measured and simulated results. 
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pattern were as follows: First, Haugen et al. (1998) proposed that the regression 

slope between lnP (air partial pressure; in atm) and 1/T (K-1) indicated that 

atmospheric concentrations were controlled by either re-evaporation from 

surfaces in the vicinity of the sampling site (steep) or air advection (shallow). It 

was found that the regression coefficients (R2) were 0.4317 and 0.0007 for γ-

HCH and α-HCH (Fig. S5), respectively, which indicated that the gaseous γ-

HCH concentration was strongly affected by local emissions. Second, it was 

found that the α/γ ratio was much lower in both air and water in the summer 

(Fig. S6), indicating possible recent illegal applications of lindane around Lake 

Chaohu. It was reported that agricultural land accounted for 61.1% of the total 

land area in the Lake Chaohu basin (Tu et al. 1990), resulting in high levels of 

γ-HCH residues in the soil. The soil could be converted from a major sink to an 

important emissions source of OCPs after the ban (Tao et al. 2008). Higher 

precipitation levels and optimized plant growth in the summer also resulted in 

more rapid release of HCHs from soil (Waliszewski 1993). Third, high 

temperatures in the summer favored volatilization from fields to the 

atmosphere (Crosley et al. 1998), which was also the case in this study (T21d), 

with a lesser contribution to the seasonal pattern in comparison with the input 

from air advection (T01t). The γ-HCH concentration in air particulates showed a 

relatively high level in winter, which peaked in November (Fig. 3). Similar 

results for α-HCH (Kong et al., 2012) and for γ-HCH in the Great Lakes 

(Carlson et al., 2004) were also provided. The atmospheric vapor pressure (Ps) 

for γ-HCH was lower in the winter due to lower temperatures, resulting in a 

higher fugacity capacity of the air particles. Therefore, temperature was the 

key factor controlling the partition of γ-HCH between the air vapor and 

particulate phases (Carlson et al. 2004). Similar results for α-HCH (Kong et al., 

2012) and for γ-HCH in the Great Lakes in United States (Carlson et al., 2004) 

were also reported. The atmospheric vapor pressure (Ps) of γ-HCH was lower 

in the winter due to lower temperatures, resulting in a higher fugacity capacity 

of the air particles. Therefore, temperature was the key factor controlling the 

partition of γ-HCH between the air vapor and particulate phases, which was 

also indicated in other study (Carlson et al., 2004). In the water phases, the γ-

HCH concentration peaked in late winter (February) and was lower in other 

seasons for several reasons. Reasons for this are as follows. First, the low 

temperature in the winter, especially the lowest in February, led to low 

Henry’s law constants and high fugacity capacities of the water phase. 

Moreover, the precipitation and water inflow were both low in the winter, 

resulting in a concentrated effect due to decreased water volume. A lower peak 

value was also observed in the summer (July). The significantly higher gas-

water interface processes in summer (Fig. S4), especially wet deposition (T12w), 
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might lead to the relatively higher concentration than those in late spring or 

autumn. However, the level in the winter was almost twice as high as that in 

the summer. The simulated results for suspended solids in water were 

consistent with the seasonal pattern of the observations but were 

underestimated by nearly one and half orders of magnitude. The observed 

data were relatively higher in August, which might correspond to the annual 

algae bloom in Lake Chaohu (Xu et al. 1999a). The simulated results captured 

the higher values during the summer due to relatively higher organic carbon 

fraction (O23). However, further research was still required to introduce the 

process of phytoplankton uptake and ascertain the corresponding parameters. 

The average of the model results for fish and sediment agreed with the 

observations. The concentration in fish had relatively small seasonal variations. 

Similar seasonal variations in water bodies were observed for sediment solids. 

Although the sedimentation (T24s) had an elevated level in summer rather than 

winter, the much lower Henry’s law function might have had a higher 

influence, leading to the peak value of the concentration in sediment solids in 

winter time. 

Transfer fluxes of γ-HCH 

The simulated annual average transfer fluxes of γ-HCH in Lake 

Chaohu are depicted in Fig. S2. The amount of the fluxes had been estimated to 

account for a year in the following discussion. The net input of γ-HCH into 

Lake Chaohu was estimated at approximately 0.160 t/a, while the net output 

was approximately 0.196 t/a. Therefore, the total quantity of γ-HCH in Lake 

Chaohu had decreased by 0.036 tons, which was about one third of α-HCH 

(Kong et al., 2012). Specifically, the main source of input was atmospheric 

advection of 0.151 t/a, which corresponded to an advection output of 0.171 t/a. 

On the contrary, the input from water inflow was relatively small (0.008 t/a), 

while the output from water outflow was 0.013 t/a. Degradation processes 

were significantly lower than α-HCH (Kong et al., 2012), as the value were 

estimated as 0.001, 0.002 and 0.009 t/a for air, water and sediment, respectively, 

which could be attributed to the persistence of γ-HCH (Cao et al. 2004) and 

low levels of γ-HCH in the environment. The degradation in sediment 

accounts for 76.3% of the total degradation in the environment. For interface 

processes between air and water, the dominant process was rain scavenging 

(T12w), which accounted for 72.3% of the air-to-water fluxes. Except for dry 

deposition (T12p), all fluxes between air and water had a seasonal pattern of 

relatively higher in summer and lower in winter (Fig. S4). Diffusion from air to 

water (T12d) was 0.002 t/a, while the corresponding process from water to air 
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amounted to 0.007 t/a. This result was close to the estimated annual average of 

net volatilization in Lake Taihu (4.1 kg; Qiu et al., 2008). However, net input 

from atmosphere to water was ascertained if deposition and rain scavenging 

fluxes were considered (Fig. S3). It was estimated that approximately 0.031 

tons of γ-HCH was added to Lake Chaohu by air-water interface fluxes in one 

year. The large quantities of γ-HCH cycling through air-water interface fluxes 

indicated that this pathway might be a major factor in determining HCH 

concentrations in large lakes (Ridal et al. 1996). The interface between water 

and sediment provided a net input of 0.013 t/a (Fig. S3). Sedimentation 

accounted for 82.8% of the processes from water to sediment, while 

resuspension dominated the fluxes from sediment to water (85.4%). 

 

 
Fig. 3. Seasonal variations of γ-HCH concentrations in the air, air particles, 

water and suspended solids. Both simulated and measured concentrations are 

presented for model validation. 
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Fig. 4. Coefficient of variability normalized sensitivity coefficients (Cn) of static 

parameters (a) and variability-based sensitivity coefficient (SCV) of the 

dynamic parameters (b) to the model outputs in various environmental media. 
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Kow and rf, which were important parameters for fish. It was worth noted that 

parameters associated with degradation, such as km4 and km2, had relatively 

lower sensitivity for γ-HCH than α-HCH due to less importance of 

degradation processes. It was found in section 3.3 that degradation fluxes of γ-

HCH in all media were significantly lower than those of α-HCH. In general, 

the average values of Cn for air, water and sediment were 1.42%, 4.59% and 

6.23%, respectively. Although the water compartment was the center of the 

system and had the largest number of parameters in the model (Tao et al. 2006), 

sediment was under the greatest influence of the parameters. Variability-based 

sensitivity coefficients (SCV) for the sixteen dynamic parameters were 

indicated in Fig. 4b. Similar to α-HCH (Kong et al., 2012), temperature (T) was 

found to have a much greater influence on the variation of the model output 

than the other parameters. h2 strongly affected the variations in γ-HCH 

concentrations in water and fish, which might be associated with the apparent 

seasonality of high water in the summer and the drought period in the winter. 

The SCV for Q20t was much higher than for Q02t, which might be attributed to 

the nearly one and half times higher quantity of water outflow (T20t) than 

inflow (T02t) (Fig. S2). Lower concentration in the water inflow resulted in the 

higher influence of Q20t on the variation than Q02t. O23 was relatively influential 

on the sub-phases in water with lower SCV on the suspended solids, which 

might be due to the significant underestimation of this phase. In contrast to α-

HCH, K12 and K21 were both considered to be unimportant to seasonality of γ-

HCH, probably because of lower diffusion fluxes for γ-HCH than α-HCH 

between air and water. 

Uncertainty of the model simulation 

The results of the uncertainty analysis for simulation #1 in various 

environmental media are illustrated in terms of the semi-inter-quartile range 

(i.e., the range between 25th and 75th percentiles) in Fig. 1. The dispersion for 

each media was no more than two orders of magnitude. Moreover, the 

observations in various media in 1984 and 2010 were all within the range of 

dispersion (except for suspended solids), suggesting that the model was 

reliable. The large deviation between the observed and simulated data (where 

even the observed data fell far from the dispersion range) in suspended solids 

indicated that underestimation in this sub-phase originated not only from the 

uncertainty of the model prediction but also from model error, which in turn 

from the simplification of the model to the real environment (as discussed in 

section 3.1). The structure of this model requires modification so that 

predictions of the suspended solids might be more accurate. Comparatively 
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speaking, the dispersions in the fish and the two sub-phases in sediment were 

larger than the other compartments. This trend might be attributed to larger 

variation in the relevant parameters. Cn was a good indicator and provided 

information regarding the influence of parameter variation on the model. It 

was concluded in section 3.4 that sediment was under the largest influence of 

the parameters in this study, with an average Cn of 6.23% (3.11% and 3.12% for 

porewater and sediment solids, respectively), while the corresponding value 

for fish was 2.16%. These average Cn values were all higher than the other 

phases (0.8% for air, 0.6% for air particles, 1.1% for water and 1.3% for 

suspended solids). It can be speculated that the larger dispersion for fish might 

come from the larger variation of H25, r23, Ks, rf and Kow, while the 

corresponding parameters for porewater and sediment solids were H25, h4, r43, 

O43 and Km4 (Fig. 4). Due to insufficient observations, the MCMC method was 

not applied in this simulation. 

The basic Monte Carlo and MCMC simulation were both undertaken 

for simulation #2. 15 parameters determined to be influential to model outputs 

in the sensitivity analysis in section 3.4 were selected to be estimated and 

updated in the MCMC simulation. The results of the uncertainty analysis are 

presented simultaneously in Fig. 5. For the basic simulation, a similar 

characteristic as those for α-HCH (Kong et al., 2012) was obtained. In the 

MCMC simulation, after the first 20000 runs, the chains for all of the 

parameters converged, which were judged by visual inspection (Fig. S8). 

Subsequently, 2200 runs of the model were performed, and the fifteen 

parameters (excluding sigma0) were randomly resampled from the last 80000 

parameter chains. The results of the uncertainty analysis for all media are 

illustrated by the solid line in Fig. 5. The dispersion of the model output, 

shown as semi-inter-quartile ranges, was significantly reduced in this 

simulation. This difference was primarily attributed to the reduced dispersion 

of the fifteen parameters after the MCMC simulation. Details of the statistical 

characteristics for these parameters before and after the MCMC are listed in 

Table 1. The prior and posterior probability distributions of r23 and H25 are also 

shown in Fig. S9 (see supplementary materials, S6 for more details). The 

estimations of these parameters based on their posterior distributions were 

relatively close to the original values, while the semi-inter-quartiles ranges 

were all remarkably reduced. However, Ks was estimated to be approximately 

two orders of magnitude lower compared to its original value. During the 

simulation, the model could be trying to fit the largely underestimated 

simulated data of suspended solids to the corresponding observations by 

decreasing the output of this sub-phase, such as sedimentation, which was 

strongly affected by Ks (Fig. 4). However, the model error was too high to be 
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reduced by simply updating the parameters. Moreover, this simulation also led 

to an incorrect continuous decrease in this parameter, resulting in an 

unreasonably low value for Ks after the simulation. Therefore, Ks retrieved its 

original distribution during the reproduction of the model uncertainty after the 

MCMC simulation. 

 

 
Fig. 5. The dynamics of the simulated dispersions of γ-HCH concentrations in 

various media from 2010.5-2011.2, which are presented as the 0.25 (dashed line 

at the bottom) and 0.75 (dashed line on the top) percentiles, determined by the 

basic Monte Carlo simulation and the 0.25 (solid line at the bottom) and 0.75 

(solid line on the top) percentiles, determined by MCMC simulation. 
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On the other hand, it was revealed that the uncertainty of the model 

included both inherent variability and true uncertainty of the model estimates 

(McKone 1996). Tao et al. (2006) proposed that DRp, which was defined as the 

difference between the concentration ranges in which a given percentage (p) of 

the simulated and the measured results fall, could be considered the indicator 

for the true uncertainty. Because the multi-site monthly samples were only 

available for water and suspended solids in this study, while the simulated 

data did not provide rational results for the suspended solids, the results in 

water were selected for uncertainty reduction estimation. For p, 95% was used 

as the criteria. The annual averages of DR95 for the water phase in the basic 

Monte Carlo and MCMC simulations were 3.208 and 0.741, respectively. The 

true uncertainty provided by the basic Monte Carlo was unreasonably high, 

which might give a wrong impression of the model reliability (Saloranta et al. 

2008). The MCMC simulation decreased the ascertained true uncertainty to 23% 

of the original, indicating that 77% of the model true uncertainty in water had 

been eliminated. A significant decrease of the true uncertainty of model 

prediction in other media could be speculated. The model simulation results 

with the updated parameter estimations for various media were not indicated 

because the output did not significantly fit the observation better. For the 

multimedia fugacity model, it was always acceptable if the differences between 

the simulated and observed data were less than 0.5 or 0.7 orders of magnitude 

(Cao et al. 2004). The patterns of variation were more valuable than the 

prediction accuracy for seasonal modeling by the level IV fugacity model 

(Lang et al. 2007). Thus, model calibration might not be important for the 

fugacity model. The calibration in the MCMC simulation was aimed at 

avoiding improbable parameter combinations, which led to a poor fit between 

the model results and observed data and the subsequent overestimation of 

model uncertainty, instead of fitting the model results as close as possible to 

the observations. As a result, rather than calibrating the model, it was 

suggested that the main functions of the MCMC in this study should be to 

conduct a proper uncertainty analysis, disregard improbable parameter 

combinations, and avoid the overestimation of the confidence bands in model 

prediction (Saloranta et al. 2008). 
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Table 1  Statistical characteristics of prior and posterior distribution for the 

sixteen parameters in the MCMC simulation. 

Parameters 
Prior Posterior 

25% 50% 75% 25% 50% 75% 

h4 6.907E-02 1.000E-01 1.448E-01 1.255E-01 1.350E-01 1.452E-01 

L4 2.042E-02 3.162E-02 4.896E-02 2.850E-02 3.393E-02 4.039E-02 

Kow 2.605E+03 4.600E+03 8.124E+03 4.561E+03 4.601E+03 4.641E+03 

Koc 1.441E+03 1.619E+03 1.818E+03 1.475E+03 1.588E+03 1.710E+03 

B4 6.785E-06 1.205E-05 2.140E-05 1.096E-05 1.372E-05 1.718E-05 

sigma0 1.141E+00 1.500E+00 1.972E+00 5.265E-01 5.476E-01 5.696E-01 

r23 2.264E+00 2.500E+00 2.760E+00 2.545E+00 2.552E+00 2.559E+00 

r43 2.474E+00 2.760E+00 3.079E+00 2.514E+00 2.555E+00 2.596E+00 

rf 1.436E+00 1.500E+00 1.567E+00 1.636E+00 1.706E+00 1.779E+00 

Ps25 5.655E-04 1.240E-03 2.719E-03 1.219E-03 1.340E-03 1.473E-03 

Ks 6.161E-07 1.655E-06 4.446E-06 2.992E-08 8.542E-08 2.438E-07 

O43 5.494E-02 7.920E-02 1.142E-01 1.083E-01 1.187E-01 1.301E-01 

Km4 4.961E-06 1.260E-05 3.200E-05 1.086E-05 1.115E-05 1.145E-05 

Km2 2.811E-05 4.077E-05 5.912E-05 2.193E-05 2.407E-05 2.642E-05 

C02t 4.693E-10 6.750E-10 9.708E-10 7.245E-10 7.707E-10 8.199E-10 

H25 1.692E-01 2.610E-01 4.025E-01 3.704E-01 4.439E-01 5.320E-01 

Note: Definitions of these parameters please refer to supplementary materials, 

Table S1 and S2. 

4. Conclusion 

The two simulations in this study provided good descriptions of the 

long-term annually dynamics from 1984 to 2020 (simulation #1) and the 

seasonal variation from May 2010 to February 2011 (simulation #2) of the γ-

HCH distributions in various environment media in Lake Chaohu. The 

simulation outputs were consistent with the observations (generally with 

deviations of less than one order of magnitude) for all environment media 

except for suspended solids. Higher gaseous γ-HCH concentrations during the 

summer were mainly attributed to the elevated input from air advection, 

which could originate from recent illegal application of lindane. Higher 

concentrations in air particulates and water in the winter were primarily due to 

low temperature and the latter could also be attributed to the effect resulting 

from low water level. Atmospheric advection input was the main input source, 

while the total quantity of γ-HCH in Lake Chaohu decreased by 36 kg per year. 

Approximately 31 kg of γ-HCH was added to water from air and 13 kg of γ-
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HCH was added to the sediment from water every year. The sensitivity 

analysis found that Henry’s law constant at 25℃ was the most sensitive static 

parameter, and temperature was the most sensitive dynamic parameter. The 

uncertainty analysis by the basic Monte Carlo simulation for simulation #1 

found that high dispersions in fish and sediment were attributed to greater 

variation of the relevant parameters. The MCMC simulation for simulation #2 

eliminated 77% of the true model uncertainty in water determined by basic 

Monte Carlo. It was suggested that rather than calibrating the model, the main 

function of the MCMC for the fugacity model should be to conduct a proper 

uncertainty analysis and avoid overestimating the uncertainty in the model 

prediction. 
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Supplementary materials 

Details of the MCMC method 

The MCMC simulation method associated with the adapted 

Metropolis-Hastings algorithm (Saloranta et al. 2008) based on Bayesian 

inference was conducted in simulation #2. The 15 parameters determined to be 

sensitive were chosen in this simulation. A common standard deviation of the 

concentration of all media (sigma0; in log-scale) was also updated in this 

simulation with a prior uniform distribution. All of the parameters were 

spanning a range that was predicted to be wide enough to determine a new 

local maximum of likelihood. A scheme proposed by Saloranta et al. (2008) was 

followed for the MCMC simulation.  

The statistical characteristics of prior and posterior distributions for the 

sixteen parameters in the MCMC simulation were listed in Table 1. Except for 

Ks, most of the parameters centered on their prior distributions with a 

significantly narrowed dispersion range, such as h4, L4, and Kow. Several other 

parameters had been slightly displaced compared to their prior distributions, 

except for Ks, which was considered to be the result of the poor performance of 

the model in suspended solids. O43 was updated to a higher value, which could 

be attributed to the underestimation of the concentration in sediment solids in 

the original simulation. The estimated Km2 was on average a factor of 2 lower, 

the primary reason for which should be the underestimation of the suspended 

solids. The MCMC simulation was attempting to increase the levels in water so 

that the estimated concentration in suspended solids would be simultaneously 

elevated to fit the observations. Posterior estimated H25 was nearly two times 

higher than the prior values. All of the calculations of the fugacity capacity in 

the water and sediment phases were related to this parameter. Therefore, this 

update might have been the combined effect of the model fitting for both 

compartments in water and sediment.  

Although the MCMC simulation could be able to fit the simulation data 

to the corresponding observations, one must bear in mind that the fugacity 

model was not established for the purpose of fitting the model results as close 

as possible to the observations. Calibration in the MCMC simulation was used 

to avoid improbable parameter combinations, which led to poor fit between 

the model results and observations and the subsequent overestimation of the 

model uncertainty. The main function of the MCMC in the fugacity model 

should decrease the determined uncertainty by obtaining the posterior 

distribution of the parameters with a narrowed dispersion. 
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Fig. S1. Transport fluxes of γ-HCH in and out of the Lake Chaohu area and 

between the adjacent compartments. D12d, D21d, D24d and D42d represent the 

diffusion processes between air/water and water/sediment. D12p and D12w 

represent the dry and wet deposition from air to water. D12r represents 

scavenging by precipitation. Q01t, Q02t and Q02h represent the input of air 

advection, water inflows and wastewater discharge, respectively. Q10t, Q20t and 

Q23h represent the output of air advection, water outflows and water reuse by 

industry and agriculture. D2f represents losses from water by fish production. 

D10m, D20m and D40m represent degradation in air, water and sediment, 

respectively. 
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Fig. S2. γ-HCH fluxes in and out of the Lake Chaohu area and between the 

adjacent compartments. T01t: Air advection flows into the area; T10t: Air 

advection flows out of the area; T12d: Diffusion from air to water; T12p: Dry 

deposition from air to water; T12w: Wet deposition from air to water; T12r: 

Rain scavenging; T21d: Diffusion from water to air; T42d: Diffusion from 

sediment to water; T42r: Resuspension from sediment to water; T24d: 

Diffusion from water to sediment; T24s: Sedimentation from water to sediment; 

T2f: fish production; T02t: Water advection flows into the area; T20t: Water 

advection flows out of the area; T02h: Locative wastewater discharge (set as 

zero); T23h: Industry and agriculture water usage; T10m: Degradation in air; 

T20m: Degradation in water; T40m: Degradation in sediment.  
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Fig. S3. γ-HCH fluxes between the air-water interface (left) and the water-

sediment interface (right). The positive values indicate net input from air to 

water and water to sediment.  
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Fig. S4. Seasonal variations of the γ-HCH fluxes in and out of the Lake Chaohu 

area and between the adjacent compartments. T01t: Air advection flows into 

the area; T10t: Air advection flows out of the area; T12d: Diffusion from air to 

water; T12p: Dry deposition from air to water; T12w: Wet deposition from air 

to water; T12r: Rain scavenging; T21d: Diffusion from water to air; T42d: 

Diffusion from sediment to water; T42r: Resuspension from sediment to water; 

T24d: Diffusion from water to sediment; T24s: Sedimentation from water to 
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sediment; T2f: fish production; T02t: Water advection flows into the area; T20t: 

Water advection flows out of the area; T02h: Locative wastewater discharge 

(zeros); T23h: Industry and agriculture water usage; T10m: Degradation in air; 

T20m: Degradation in water; T40m: Degradation in sediment.  

 

 

 

 

 
Fig. S5. Logarithm of the partial pressure of α-and γ-HCH in air plotted 

against the reciprocal of the ambient temperature 
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Fig. S6. α-HCH/γ-HCH concentration ratio in air(left) and water(right) in Lake 

Chaohu. 
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Fig. S7.  Sensitivity coefficient for the parameters before CV correction. 

 

 
Fig. S8. Examples (H25 and r23) of the corresponding converged chain from 

MCMC simulation. The last 80000 data from the total 105 runs were taken out 

for presentation. 
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Fig. S9. Examples (H25 and r23) of the prior distributions (shown by the black 

line) and corresponding posterior distributions derived from the converged 

parameter chain form MCMC simulation (black histograms). 

  



Chapter 4 

112 

Table S1   Environmental parameters for the model 

Symbol Unit Parameters Reference 
Data 

Numbers 

Allocate 

mean 

Allocate 

SD 

Geometric 

mean 

Geometric 

SD 

A2 m2 
Interface areas of 

air/water 
1,2 2 7.58E+08 2.69E+06 7.58E+08 1.00E+00 

h1 m Thickness of air 1 1 1.00E+03 -b 1.00E+03 6.12E+00 

h2a m Depth of water 1 1 2.69E+00 -b 2.69E+00 1.30E+00 

h4 m 
Thickness of 

sediment 
1 1 1.00E-01 -b 1.00E-01 1.73E+00 

X13a v/v 
Volume fractions 

of solids in air  
4, Note A 13 8.36E-11 3.88E-11 7.55E-11 1.56E+00 

X23a v/v 
Volume fractions 

of solids in water 
4, Note A 13 1.60E-05 1.29E-05 1.26E-05 2.02E+00 

X43 v/v 

Volume fractions 

of solids in 

sediment 

4 1 3.00E-01 -b 3.00E-01 1.08E+00 

X42 v/v 

Volume fractions 

of water in 

sediment 

4 1 7.00E-01 -b 7.00E-01 1.02E+00 

X2f v/v 
Volume fractions 

of fish in water 
1,8,9 3 8.93E-06 1.39E-06 7.60E-06 2.07E+00 

O23a % 

Contents of 

organic carbon in 

solids in water 

4,5, Note 

A 
13 8.77E-02 7.31E+00 7.83E-02 1.90E+00 

O43 % 

Contents of 

organic carbon in 

solids in sediment 

1,2,6, Note 

A 
61 5.27E-02 2.92E-02 7.92E-02 1.72E+00 

23 t/m3 
Densities of solids 

in water 
1 1 2.50E+00 -b 2.50E+00 1.16E+00 

43 t/m3 
Densities of solids 

in sediment 
1 1 2.76E+00 -b 2.76E+00 1.18E+00 

Q01t 

(=Q10t)a 
m3/h 

Air advection flow 

in and out of the 

area 

Calculated 1 2.17E+11 -b 2.17E+11 

1.47E+00 

Q02ta m3/h 
Water advection 

flow into the area 
1 1 5.35E+05 -b 5.35E+05 

3.22E+00 

Q20ta m3/h 

Water advection 

flow out of the 

area 

1 1 6.46E+05 -b 6.46E+05 

3.07E+00 

Q02ha m3/h 

Rate of local 

wastewater 

discharge 

1 1 4.67E+04 -b 4.67E+04 

1.45E+00 

Q23h m3/h Irrigation rates 1 1 
 

1.19E+05 
9.27E+04 9.26E+04 

2.07E+00 

Ta K 
Local average 

temperature 
1,7 1 2.88E+02 9.75E+00 2.88E+02 - 
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C01ta 2010 mol/m3 

γ-HCH 

concentration in 

air in 2010 

Note A 12 2.20E-14 1.47E-14 1.71E-14 1.42E+00 

C01ta mol/m3 

γ-HCH 

concentration in 

air in 1984 

8 1 1.31E-11 -b 1.31E-11 2.25E+00 

C02t(2010) mol/m3 

γ-HCH 

concentration in 

water advection 

flow in 2009 

6 1 6.75E-10 -b 6.75E-10 1.71E+00 

C02t mol/m3 

γ-HCH 

concentration in 

water advection 

flow in 1984 

8 1 8.07E-07 -b 8.07E-07 1.43E+00 

C02h mol/m3 

γ-HCH 

concentration in 

wastewater in 1984 

8 1 1.44E-06 -b 1.44E-06 1.41E+00 

Yf t/a 
Fish production 

rate 
8 1 5.71E-01 -b 5.71E-01 1.18E+00 

Note A: Measured in Laboratory. 
a Dynamic parameters for simulation #2 
b One value only; Geometric SD assigned manually (Log-normal distribution 

assumed, except for T) 
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Table S2   Mass transfer kinetic and physical-chemical parameters for the 

model 

Symbol Unit Parameters Reference 
Data 

Numbers 

Allocate 

mean 

Allocate 

SD 

Geometric 

mean 

Geometric 

SD 

PS Pa Local vapor pressure 1-6 7 1.13E-02 1.93E-02 1.24E-03 3.20E+00 

R 
Pam3/mol

K 
The gas constant 1 1 8.31E+00 0.00E+00 8.31E+00 1.00E+00 

F25 - Fugacity ratio at 25℃ 7 1 8.84E-02 -b 8.84E-02 1.00E+00 

H25 Pam3/mol Henry’s constant 1,3,5,6 5 2.98E-01 1.40E-01 2.61E-01 1.90E+00 

BF - 

Fugacity ratio 

temperature 

correction factor 

7 1 1.24E+03 -b 1.24E+03 1.00E+00 

BH - 

Henry’s law constant 

temperature 

correction factor 

7 1 3.09E+03 -b 3.09E+03 1.00E+00 

BPS - 

Saturation vapor 

pressure temperature 

correction factor 

7 1 5.57E+03  5.57E+03 1.00E+00 

KOC - Adsorption coefficient 1,3,5 4 1.64E+03 2.79E+02 1.62E+03 1.19E+00 

Kow - 
Octanol/water 

partition coefficient 
1,3,5,13 4 4.82E+03 2.30E+03 4.60E+03 2.32E+00 

BCFf - 
Bioconcentration 

factors for fish 
1 1 8.77E+02 -b 8.77E+02 1.66E+00 

Km1 - 
Degradation rate of γ-

HCH in air 
1,2,5,8,9 5 9.69E-04 6.65E-04 6.66E-04 1.73E+00 

Km2 - 
Degradation rate of γ-

HCH in water 
1,2,5,10 6 1.11E-04 5.55E-05 4.08E-05 1.74E+00 

Km4 - 
Degradation rate of γ-

HCH in sediment 
1,2,3,5,10 7 2.38E-04 2.79E-04 1.26E-05 3.98E+00 

B1 m2/h 
Molecular 

diffusivities in air 
2,10,11,12 4 2.49E-02 1.03E-02 2.36E-02 1.44E+00 

B2 m2/h 
Molecular 

diffusivities in water 
2,10,11,12 4 2.86E-06 1.17E-06 2.68E-06 1.54E+00 

B4 m2/h 

Molecular 

diffusivities in 

sediment 

2,12 2 1.43E-05 1.09E-05 1.20E-05 2.34E+00 

K12a m/h 

Air-side molecular 

transfer coefficient 

over water 

13,Calculat

ed 
1 7.11E+00 -b 6.68E+00 1.43E+00 

K21a m/h 

Water-side molecular 

transfer coefficient 

over air 

13,Calculat

ed 
1 2.08E-03 -b 2.02E-03 1.24E+00 

K24 m/h 

Water-side molecular 

transfer coefficient 

over sediment 

2 1 1.00E-02 -b 1.00E-02 1.59E+00 

K42 m/h 

Sediment-side 

molecular transfer 

coefficient over water 

14 1 5.39E-06 -b 5.39E-06 1.52E+00 

K42ra m/h 
Sediment 

resuspension rate 

13,Calculat

ed 
1 2.92E-05 -b 2.56E-05 1.70E+00 

L4 m Diffusion path lengths 2 2 3.50E-02 2.12E-02 3.16E-02 1.91E+00 
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in sediment 

KP m/h 
Dry deposition 

velocity 
2,10 2 1.04E+01 5.66E-01 1.04E+01 1.06E+00 

KS m/h 
Water sedimentation 

rates 
14,15 5 3.62E-06 4.34E-06 1.66E-06 4.32E+00 

Kwa m/h 
Wet deposition 

velocity 
14 1 1.33E-04  -b 1.33E-04 5.96E+00 

Sc - Scavenging Ratio 2,10 2 1.34E+05 9.33E+04 1.17E+05 2.14E+00 

a Dynamic parameters for simulation #2 
b One value only; Geometric SD assigned manually (Log-normal distribution 

assumed, except for T) 
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Abstract  

Freshwater shallow lake ecosystems provide valuable ecological 

services to human beings. However, these systems are subject to severe 

contamination from anthropogenic sources. Per- and polyfluoroalkyl 

substances (PFASs), including perfluorooctanoic acid (PFOA) and 

perfluorooctane sulphonate (PFOS), are among the contaminants that have 

received substantial attention, primarily due to abundant applications, 

environment persistence, and potential threats to ecological and human health. 

Understanding the environmental behavior of these contaminants in shallow 

freshwater lake environments using a modeling approach is therefore critical. 

Here, we characterized the fate, transport and transformation of both PFOA 

and PFOS in the fifth largest freshwater lake in China (Chaohu) during a two-

year period (2013-2015) using a fugacity-based multimedia fate model. A 

reasonable agreement between the measured and modeled concentrations in 

various compartments confirmed the model’s reliability. The model 

successfully quantified the environmental processes and identified the major 

sources and input pathways of PFOA and PFOS to the Chaohu water body. 

Sensitivity analysis revealed the critical role of nonlinear Freundlich sorption, 

which contributed to a variable fraction of the model true uncertainty in 

different compartments (8.1%-93.6%). Through additional model scenario 

analyses, we further elucidated the importance of nonlinear Freundlich 

sorption that is essential for the reliable model performance. We also revealed 

the distinct composition of emission sources for the two contaminants, as the 

major sources were indirect soil volatilization and direct release from human 

activities for PFOA and PFOS, respectively. The present study is expected to 

provide implications for local management of PFASs pollution in Lake Chaohu 

and to contribute to developing a general model framework for the evaluation 

of PFASs in shallow lakes. 
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1. Introduction  

Poly - and perfluoroalkyl substances (PFASs) are a group of chemicals 

that have been produced since the 1950s, and are highly used from the 1970s at 

a global scale (Lindstrom et al. 2011). After the prohibition of application in 

2002 (3M 2003), the countries around the world have still reported the 

continuous production and application of PFASs, and its production increases 

annually. Both perfluorooctanoic acid (PFOA) and perfluorooctane sulphonate 

(PFOS) are the dominant PFASs that have attracted public attention (Loos et al. 

2010). It is estimated that about 80% of perfluorocarboxylates (PFCAs) that 

have been released to the environment comes from “direct sources” including 

manufacture and use (Prevedouros et al. 2006). Due to their high water 

solubility and extreme resistance to thermal or biological degradation, PFOA 

and PFOS are currently globally distributed in abiotic and biotic media (Giesy 

and Kannan 2001, Naile et al. 2010). In this context, further investigation has 

revealed that these compounds are subject to long-range transport (Martin et al. 

2004), exert toxic effects on aquatic organisms (Latała et al. 2009), and 

ultimately pose high health risks for human beings (Fromme et al. 2009, 

Domingo 2012). In 2009, PFASs were listed in Annex B of the Stockholm 

Convention (SCPOPs 2009). 

Shallow lakes are ecosystems provide essential ecological services for 

both nature and human society (Millennium Ecosystem Assessment 2005). 

These systems are, however, receiving severe pressure from anthropogenic 

activities, including the deterioration of water quality by increasing 

contamination from substances such as PFASs (Kwadijk et al. 2010, Bao et al. 

2012). It was suggested that the majority of PFASs released into soil will be 

transported to surface or groundwater bodies (Zareitalabad et al. 2013). 

Therefore, understanding the fate, transport and transformation of PFASs in 

shallow lake environments, particularly PFOA and PFOS, is a major scientific 

task and a priority for further development for source indicators, exposure 

evaluations and environment risk assessments of these substances. To this end, 

fugacity-based multimedia fate models have been successful in facilitating this 

investigation (Mackay 2001). To date, modeling approaches of PFASs, however, 

have generally focused on a regional (Liu et al. 2015a) or on a global scale 

(Armitage et al. 2009), whereas to the best of our knowledge models for 

specific lake environments are lacking. Modeling one lake can offer a more 

detailed description of the environmental behavior of chemicals, including a 

more specific understanding of the local environment with practical 

implications for managers. 
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Lake Chaohu (31°34’N, 117°34’E) is the fifth largest freshwater lake in 

China and is located in the lower reaches of the Yangtze River floodplain. The 

lake has a surface area of approximately 760 km2 and an average depth of 3 m. 

The lake is “shallow” as the water column does not have the thermocline and 

thus is well-mixed without stratification during summer time (Lerman et al. 

1995). During the past several decades, this lake has suffered from intensive 

human disturbance and has become one of the most eutrophic lakes in China 

(Kong et al. 2017a). Meanwhile, Lake Chaohu has been subject to severe 

pollution by persistent toxic substances (PTSs) (He et al. 2014) including PFASs 

(Liu et al. 2015b). A comprehensive evaluation of the distribution and 

dominant processes of PFASs in this lake using a modeling approach is highly 

valuable for lake managers. A specific version of a multimedia model for 

aquatic systems, termed the Quantitative Water Air Sediment Interaction 

(QWASI) model, has been developed and widely used (Mackay et al. 1983a, 

Tong et al. 2014). In our previous studies, models modified from the QWASI 

framework have been developed and applied to multiple PTS groups, 

including polycyclic aromatic hydrocarbon (PAHs) (Xu et al. 2013, Kong et al. 

2017b) and hexachlorocyclohexane (HCHs) (Kong et al. 2014) in Lake Chaohu. 

The model is readily applicable to the simulation of PFASs on the basis of 

parameterization and validation against field data. In addition, based on the 

model analysis, it is relevant to test several hypotheses on PFASs pollution, 

such as the claimed importance of nonlinear sorption to organic matter 

(Higgins and Luthy 2006, Kwadijk et al. 2013) and the relative contribution of 

direct local industry emissions and indirect soil volatilization (Liu et al. 2017), 

which would provide important scientific basis and implications for PFASs 

pollution management in aquatic ecosystems. 

The objectives of the present study are as follows: 1) to refine a 

multimedia fate model for PFOA and PFOS that describes their fate, transport 

and transformation in a lake environment, including air, water, soil and 

sediment; 2) to investigate parameter sensitivity and their contribution to the 

model uncertainty; and 3) to unravel the importance of processes such as 

nonlinear sorption and direct emissions to the model performance. 

2. Materials and methods 

Data collection 

We collected field data for PFOA and PFOS concentrations in various 

environmental compartments in Lake Chaohu (see Table S1 for a summary of 

data sources). A two-year monthly dataset was available for atmospheric 
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(gaseous and particulate, both active air samples) and aquatic (dissolved and 

suspended solids (SS)) samples between September 2013 and August 2015 at 

one site at the center of the lake. In addition, data for surface sediment and fish 

were collected during August 2011. To investigate the PFOA and PFOS inputs 

to the lake, data on the major rivers flowing into the lake were obtained in both 

March and September 2013 (unpublished data). The methods for sample 

collection and measurement are available elsewhere (Liu et al. 2015b). We also 

collected data from the literature as a supplement to this study. Overall, PFOA 

and PFOS observations were available for all modeled compartments, which 

provide adequate support to our model evaluation. 

Model development 

Our model is a fugacity-based level IV multimedia fate model for lakes 

modified from the QWASI model framework (Mackay et al. 1983a). Following 

our previous study (Kong et al. 2017b), we defined the four main 

compartments in our model, namely, air, water, soil and sediment (Fig. S1). 

There are several sub-compartments in each compartment, i.e., 1) gaseous form 

and aerosol particulates in air; 2) dissolved and SS in water; 3) air, water and 

solids in soil; and 4) pore-water and solids in sediment. We also defined the 

major transport and transformation processes of the contaminants (Fig. S1), 

including emissions from human activities, atmospheric outflow advection, 

water inflow/outflow advections, air-water/air-soil interface processes 

including diffusion, wet/dry deposition and rain scavenging, water-sediment 

interface processes including diffusion, sedimentation and resuspension, fish 

bioaccumulation and loss from fisheries, and finally, degradation in each of the 

main compartments. We assumed that emissions from direct sources and the 

nonlinear Freundlich sorption of carbonaceous materials both play critical roles 

in the environmental distribution of PFOA and PFOS. Therefore, these two 

processes were included in the model. Emissions are an input process directly 

to the air. Nonlinear Freundlich sorption, on the other hand, is applied to the 

solids in soil, SS and sediment by an additional term (𝑓𝐵𝐶𝐾𝐹𝐶𝑊
𝑛 ) to the formula 

for the calculation of the fugacity capacity Z  (Table S2), which determines the 

sorption intensity (Moermond et al. 2007, Koelmans et al. 2009, Kwadijk et al. 

2013). Here, fBC (-) is the fraction of carbonaceous material, KF ((ng/gBC)/(ng/L)nF) 

is the Freundlich coefficient for sorption to black carbon, CW (ng/L) is the 

contaminant concentration in water (converted from value in unit of mol/m3 

during simulation), and nF (-) is the Freundlich exponent. In addition, given 

that the lake is shallow, we assumed equilibrium within each main 

compartment, in accordance with earlier modeling studies (Mackay and 
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Paterson 1991). Differential equations of the model are provided in the 

supporting information, together with the details of all the processes and the 

calculation equations (Table S2). 

Parameter determination 

Definition, statistics and sources for all the parameters in the model are 

listed in Tables S3-S7. In total, there are 59 parameters, including 42 

environmental parameters and 17 chemical-specific parameters (mass transfer 

and physicochemical parameters). Among the 42 environmental parameters, 11 

parameters vary seasonally, while the other 31 parameters remain constant 

during the model simulation. In addition, 3 out of the 17 chemical-specific 

parameters are dynamic. The values for these parameters were obtained from 

either the relevant literature or measured/calculated based on the conditions in 

Lake Chaohu. In particular, the emission intensity (T01h) was estimated for the 

region of Lake Chaohu based on the emission inventory for both PFOA and 

PFOS in China (Xie et al. 2013a, Xie et al. 2013b, Wang et al. 2015, Liu et al. 

2017). In addition, temperature corrections were applied to both the subcooled 

liquid vapor pressure (Ps25; Pa) and Henry’s law constant (H25; Pa·m3/mol) at 

25ºC for both substances using the equation in Paasivirta et al. (1999). 

Furthermore, more than 99% of the PFOA will occur in its anionic form in 

water due to a low pKa value (2.8), implying that most of the PFOA does not 

partition into the gas phase (Goss 2007). We therefore adjusted the vapor 

pressure (Ps25) of PFOA dividing by the ratio of the anionic form to the neutral 

form (~106), resulting in a much lower Ps25 for PFOA. For the nonlinear 

sorption of PFOA and PFOS to carbonaceous materials such as black carbon in 

soil, SS and sediment, we assigned fBC to 0.002, which has been shown to be 

valid in our previous modeling study of PAHs in Lake Chaohu (Kong et al. 

2017b). For KF and nF, we collected values from literature for sorption of PFOA 

and PFOS to different carbonaceous materials (Table S7). Results from Hansen 

et al. (2010) for both PFOA and PFOS were applied because they determined 

sorption parameters within environmentally relevant concentration ranges. 

Model simulations 

Our simulation duration was from September 2013 until August 2015, 

for a total of 24 months. Initial values were determined by the observations 

from September 2013 in different compartments. The model simulation 

(‘Model-0’) aimed at evaluating the ability of the model to predict the 

magnitude and seasonal variations of both the PFOA and PFOS concentrations 

in Lake Chaohu. In addition, we designed two additional scenarios termed as 
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‘Model-1’ and ‘Model-2’. In ‘Model-1’, we removed the nonlinear Freundlich 

sorption of PFOA and PFOS to carbonaceous materials in soil, SS and sediment 

solids, while all the other elements remained unchanged. By comparing the 

outcomes from ‘Model-0’ and ‘Model-1’, we deciphered the likely impact of the 

sorption of carbonaceous materials on the modeling performance of both 

PFOA and PFOS. Additionally, in ‘Model-2’, the direct emission process to the 

atmosphere was eliminated. We aimed to evaluate the relative importance of 

direct (human release) and indirect (soil volatilization) sources in the local 

emissions of PFOA and PFOS so that we can provide implications for local 

environmental management. Note that these scenario analyses would not lead 

to model unbalance and the model would still comply with the law of 

conservation of mass. The model was implemented in MATLAB (MathWorks 

2002). The differential equations were solved using a fourth-order Runge-Kutta 

method available in MATLAB (ode45) with a simulation time step of 1 hour. 

Model sensitivity and uncertainty analysis 

For the sensitivity analysis, we focused on the static parameters listed 

in both Tables S3 and S4. We used the “Morris method”, which is also known 

as the “one-step-at-a-time” method (Morris 1991). This means that we varied 

the parameters one by one by multiplying them with a factor of either 1.1 or 0.9, 

while all the other parameters remain constant. This method has shown its 

feasibility and reliability and has been extensively applied in contaminant fate 

modeling (Koelmans et al. 2000, Tao et al. 2006, Koelmans et al. 2017). The 

model usually responded linearly to the small variation applied to the 

parameters (10%), thus does not affect the model but only reveals the 

importance of these parameters (Saltelli et al. 2000). Similar to previous studies 

(Cao et al. 2004, Kong et al. 2014), the sensitivity coefficient was calculated 

using the averaged data over the model simulation (two years), because we 

were investigating the global averaged rather than the temporally varied 

parameter sensitivity. Only the parameters contributing up to the 90th 

percentile of the sensitivity across all the modeled compartments were 

indicated. 

In addition, we determined the uncertainty of the model using Monte 

Carlo simulations. The uncertainty in model predictions usually can be 

distinguished into inherent variability and true uncertainty (McKone 1996). We 

quantitatively evaluated the two parts of model uncertainty by calculating the 

coefficient of variation (CV) of both measured and modeled contaminant 

concentrations (after log-transformation) in different compartments. CVs of the 

measured concentrations were considered as the inherent variability, while 
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CVs of the modeled data were the combination of the two parts of uncertainty 

(Tao et al. 2006). We focused on the most sensitive parameters identified by the 

sensitivity analysis above, of which the contribution to the uncertainty of 

model predictions was assumed to be dominant.  Distributions of these 

parameters were determined by the values collected from the literature. The 

Monte Carlo simulations used 3,000 parameter combinations randomly 

sampled from the predefined statistical distributions of these parameters. All 

of the simulated values for each compartment in each model run were 

collected and analyzed. 

3. Results and discussion 

Model validation 

Our model validation on contaminant concentrations was based on 

both overall-averaged and monthly-varied data. For the overall-averaged 

validation, our model showed an acceptable performance for both PFOA and 

PFOS in various compartments in Lake Chaohu (Fig. 1). The log-transformed 

deviation between the measured and modeled PFOA concentrations in the gas 

phase, aerosol solid phase, dissolved state in water, SS, fish, soil and sediment 

solid phases were 0.31, 0.27, 0.24, 1.11, 0.14, 0.39 and 0.19 log units, respectively. 

For PFOS, these deviations were 1.23, 0.23, 0.21, 1.22, 0.54, 0.57 and 0.46 log 

units, respectively. Deviations between the measured and modeled concentra-

tions in 11 out of the 14 compartments (7 for PFOA and 7 for PFOS) were lower 

than 0.7 log units, a criterion based on which the contaminant fate model can 

be considered acceptable (Cowan et al. 1995, Kong et al. 2017b). Exceptions 

were PFOA in SS (1.11), and PFOS in the gas phase (1.23) and SS (1.22). 

We infer that the underestimation of the PFOS concentration in the gas 

phase (Fig. 1) may result from the underestimated direct emission of PFOS to 

the atmosphere in the Lake Chaohu area. In fact, the emission flux for PFOS in 

our model (0.35 mol/h; Table S4) was estimated at the provincial level in China 

(Xie et al. 2013b), while Lake Chaohu is located in the most developed region 

in the province. Higher regional emission of PFOS to the Lake Chao area 

would be expected as the consequences of local or regional industrial produc-

tion of PFASs (Liu et al. 2015b). We subsequently applied the “inverse 

modeling” approach (Parajulee and Wania 2014) to estimate the emission flux 

to air that would be required to explain measured PFOS concentrations in the 

gas phase. The model will meet the “0.7 log units” criteria for PFOS in the gas 

phase if the emission flux would be set to 1.25 mol/h, which was more than 

three times higher than the reported flux. We, however, retained the original 
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emission flux (0.35 mol/h) in our model because it was evidence-based 

estimation from literature. Nonetheless, our model revealed a vast 

underestimation of the PFOS emission inventory in Lake Chaohu area, which 

thus requires further refinement to increase the spatial resolution. 

 

 

 
Fig. 1. Comparison of measured and modeled concentrations on a logarithmic 

scale averaged over the simulation period for PFOA (a) and PFOS (b). Error 

bars for the measured data of air, air particulates, water and suspended solids 

relate to the standard deviation (s.d.) of monthly observations. Error bars for 

the measured data of fish, soil and sediment solids relate to the s.d. of multiple 

samples. Error bars for the modeled data relate to s.d. of simulation outputs. 
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in modeling approach. We suggest that the leading factor for the 
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model complexity in structure to an intermediate level rather than calibrating 

parameters would be more beneficial. As a result, we advocate changing the 

model structure to improve model performance. The incorporation of 

nonlinear sorption to carbonaceous materials has further reduced the 

deviations of the model prediction in SS (see below) but this was still 

insufficient to overcome the lack of fit. Since our SS samples were filtered from 

the water samples with a 0.45-μm glass fiber filter (GFF), plankton was not 

excluded from the contaminant data in SS (Kong et al. 2014). Hence, the bias 

may be attributed to this missing component in the model framework for SS, 

namely zooplankton and phytoplankton. Plankton has been identified as a 

critical player in driving the fate and transport of POPs in freshwater and 

marine environments (Dachs et al. 2000). Serving as the ‘biological pump’, 

plankton, particularly abundant phytoplankton such as cyanobacteria in 

eutrophic lakes, can vastly alter the residue levels and seasonal variations of 

POPs in water and sediment by dictating processes such as air-water exchange, 

sorption, accumulation and the SS sinking flux (Nizzetto et al. 2012, Tao et al. 

2017). PFASs are no exception in this matter (Casal et al. 2017) , particularly for 

lakes such as Chaohu that has been subjected to intensive eutrophication and 

severe phytoplankton blooms in recent years (Jiang et al. 2014, Yang et al. 2016). 

In addition, PFOS is commonly recognized as a substance that is subject to 

biomagnification (Conder et al. 2008, de Vos et al. 2008, Loi et al. 2011). 

Modeling the food web accumulation and magnification (Kong et al. 2017b) 

would be a vital step towards a better understanding of the fate of PFASs in 

lake environments. In our previous model analysis of  PAH behavior in Lake 

Chaohu, we observed a good fit of different PAHs between model predictions 

and field data in SS (Kong et al. 2017b), for which the inclusion of 

phytoplankton was crucial. However, in this study, we did not incorporate the 

plankton or the food web due to the lack of relevant parameters for PFASs 

sorption/accumulation in plankton and the unavailable PFASs observations in 

aquatic organisms other than fish. We anticipate that the food web-inclusive 

multimedia fate modeling for PFASs will lead to better understanding of the 

fate of PFASs in biota and further improved model performance, which would 

be a prerequisite for risk assessment and environmental management of PFASs 

contamination. 

We use R2 as a criterion for the evaluation of the model performance in 

seasonal variations (Fig. S2). For PFOA in gaseous form, aerosol particulates, 

dissolved state and SS, the R2 values were 0.03, 0.01, 0.41 and 0.43, respectively. 

For PFOS, these values were 0.01, 0.02, 0.10 and 0.45, respectively. In addition, 

we observed that the model-predicted concentrations in the gas phase were 

greater during warm seasons for both PFOA and PFOS, while air particulates 
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were greater during cold seasons. For water and SS, the modeled data were 

generally greater during the winter and spring than those in the summer and 

autumn.  

Our model performed better for the aquatic than the atmospheric 

compartments in terms of the seasonality, whereas the general performance in 

seasonality modeling remains unsatisfactory with the R2 ranged from 0.01 to 

0.45. This is the case not only in here but also in other previous studies (Lang et 

al. 2007, Kong et al. 2014). We attribute this to the following two reasons: 1) 

insufficient sampling size. Using monthly samples from one site could be 

sufficient for model validation on an average scale, but may lead to increasing 

uncertainty if these data are used as the representation of the monthly average 

values due to spatial and temporal heterogeneity. Monitoring data in riverine 

inflows was also limited. Intensified sampling on both spatial and temporal 

scales may further reduce the uncertainty. 2) the simplified nature of the 

fugacity model compared to real conditions. Many influential internal 

processes for PFASs cycling in lakes, such as organic carbon cycling and 

phytoplankton growth, are currently not included. Integrating the multimedia 

fate model to an aquatic ecosystem model (Janssen et al. 2015, Kong et al. 2017a) 

that accounts for the in-lake abiotic and biotic processes could be a potential 

solution (Koelmans et al. 2001, Lohmann et al. 2007, Kong et al. 2017b), which, 

however, would be at the expense of increasing model complexity and 

propagating uncertainty. 

Mass transfer fluxes 

The averaged mass transfer fluxes of PFOA and PFOS over the 

simulation period provide a systematic view on the environmental behavior of 

the contaminants (Fig. 2). The primary sources of PFOA and PFOS were the 

emission flux to the air and erosion of soil to the lake, while the major output 

pathway was water outflow. For PFOA, degradation was much greater in soil 

and sediment than that in air and water. On the other hand, degradation for 

PFOS in various compartments were negligible. This is primarily due to the 

higher persistence of PFOS than PFOA (Armitage et al. 2009), as the 

degradation rates of PFOS are one order of magnitude lower in air and water, 

and 3-4 orders of magnitude lower in soil and sediment than those of PFOA 

(Table S4). For the interface processes, the major fluxes between air and water 

were dry/wet deposition and rain scavenging, among which rain scavenging 

contributed over 90% (PFOA) and 80% (PFOS) of the interface processes. In 

addition, PFOA diffusion from water to air is approximately 4 orders of 

magnitude greater than it is for PFOS. For the air and soil interface, PFOA and 
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PFOS showed distinct features that the PFOA exchange was much more 

intensive than that for PFOS. The diffusion flux from soil to air was high for 

PFOA, which suggested an indirect emission source in addition to direct 

anthropogenic release. For the water-soil interface, the major process was soil 

erosion for both PFOA and PFOS, which served as the major input to the water. 

For the water-sediment interface, sedimentation surpassed the other processes, 

which was another output pathway of PFOA and PFOS from the water in 

addition to outflow advection. For the water-sediment subsystem in the lake, 

the model suggested that the annual average net input and output of PFOA 

were approximately 0.454 and 0.377 tons, respectively, and were 

approximately 0.243 and 0.142 tons, respectively, for PFOS. The results imply 

that over the period of 2013-2015 in Lake Chaohu, PFOA and PFOS were 

accumulating at a rate of 0.077 and 0.101 tons/year, respectively. 

Our model evaluation indicated that soil erosion was the dominant 

source for both PFOA and PFOS in the water body of Lake Chaohu, while 

water inflow and atmospheric deposition played secondary roles. This pattern 

is consistent with observations in other lakes, where the transport of PFOA and 

PFOS from soil to water bodies was significant due to the enhanced sorption 

capacity of the chemicals in situ (Kim and Kannan 2007, Zareitalabad et al. 

2013). The model also revealed that water was not a permanent sink for PFOA 

and PFOS, since most of the contaminants would be transported to the 

sediment or removed from the system via riverine outflow. A similar finding 

was also reported by McMurdo et al. (2008). 

Parameter sensitivity and model uncertainty 

The parameters that contribute to the sensitivity of the 90th percentile 

were identified (Fig. S3). We found that the most sensitive parameters were nF 

(the parameter defining the nonlinearity of the Freundlich sorption isotherm) 

and KF (Freundlich sorption distribution coefficient) for both PFOA and PFOS, 

regardless of their distinct values particularly for nF (Table S7). These two 

parameters are both related to the nonlinear Freundlich sorption by 

carbonaceous materials. Hence, the results of the parameter sensitivity analysis, 

at least in part, support our assumption that nonlinear Freundlich sorption 

plays critical role in PFOA and PFOS environmental distribution. We further 

noticed that nF and KF could influence the PFOA level in both the gas phase 

and aerosols, which however was not the case for PFOS. The difference might 

primarily be attributed to the much lower interactions on the interface of 

air/water and air/soil of PFOS than those of PFOA (Fig. 2). Other sorption 

related parameters, such as fraction of carbonaceous materials (fBC) and solid 
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density (r23, r33 and r43), were also identified as sensitive but with relatively 

lower influence. Our results further reflect the need to identify the role of 

sediment components (e.g., black carbon) in the sorption of PFASs within 

aquatic systems (Selck et al. 2012). 

 

 

 
Fig. 2. Modeled transport and transformation fluxes (mol/h) averaged over the 

simulation duration for (a) PFOA and (b) PFOS. 
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For the other sensitive parameters, many of them are soil-related, 

indicating the importance of soil acting as the major sink and source of the 

contaminants. Note that parameters including Km3, K13 and L3 were only 

sensitive for PFOA because the air-soil interactions were much stronger for 

PFOA than for PFOS (Fig. 2). In addition, the vapor pressure (Ps25), Henry’s 

law constant (H25) and their temperature adjustment parameters (BH and BPS) 

were also found to be critical. Other significant parameters for the model were 

those that dictated the major mass transfer fluxes, such as Ue, K24S, KP and Sc, 

and volume parameters that determined the intensity of the major fluxes (e.g., 

degradation in soil) such as A3, h3 and h4. 

We further evaluated the contributions of the sensitive parameters 

related to the nonlinear sorption process (nF, KF, fBC, r23, r33 and r43) to the model 

uncertainty. The statistic distributions for nF and KF were determined based on 

the literature data (Table S7). For fBC, a median value of 0.002 with a CV of 2.5 

was assigned based on Hauck et al. (2007). Variations in r23, r33 and r43 were 

ascertained based on the data from Cao et al. (2004). We found that the 

dispersions of the modeled concentrations were consistently larger than those 

of the measured concentrations in all model compartments for both PFOA (Fig. 

3) and PFOS (Fig. 4). True uncertainty of the model (due to uncertainty in 

model parameter) could be represented by the differences of CVs of the model 

outputs (the total model uncertainty) and the CVs of the measured 

concentrations (inherent variability due to spatial and/or temporal variations). 

Our results suggested that the true uncertainty of the model accounted for 

from 8.1% (PFOA in SS) to 93.6% (PFOA in water) of the total model 

uncertainty. For water, fish and sediment solids, the true model uncertainties 

were the predominant source of uncertainty in model predictions for both 

PFOA and PFOS. Note that the true uncertainty determined above was only 

from the variations of parameters related to nonlinear sorption process. The 

true uncertainty would be even larger if more parameters would be included 

in the Monte Carlo simulation. Nonetheless, we highlighted the importance of 

nonlinear sorption process to model predictions of PFOA and PFOS in lakes by 

quantitatively showing the high contribution of nonlinear sorption parameters 

to model uncertainty, particularly for the water, fish and sediment solids 

compartments. More accurate data for these parameters with much lower 

variations than those shown in Table S7 would be an effective way to reduce 

the model uncertainty. 
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Fig. 3. (a-g) Comparison of the log-transformed distributions of the observed 

and the modeled PFOA concentrations in the seven compartments. The 

observed distributions were generated based on geometric means and 

standard deviations of the measured concentrations, while the modeled 

distributions were obtained from Monte Carlo simulation. (h) Comparison of 

the observed variability (reflected by the CVs of the observed concentrations) 

and the true uncertainty of the model (represented by the differences between 

the CVs of the concentrations from Monte Carlo simulation and the CVs of the 

observed concentrations) in the seven compartments. 

 

Model scenarios 

Comparing the model scenario ‘Model-1’ to ‘Model-0’, we observed a 

drastic loss in modeling performance in terms of both magnitude and seasonal 

variations after the removal of nonlinear Freundlich sorption (Fig. S4). For 

water and fish, the deviation between the measured and modeled data 

increased by approximately 3 log units for both PFOA and PFOS (Fig. S4a and 

b). For air and air particulates, PFOA was more sensitive to the missing 

nonlinear Freundlich sorption than PFOS, since the deviations of PFOA also 

increased to over 3 log units. Meanwhile, deviations between the measured 

and modeled concentrations of PFOA and PFOS in other compartments were 

generally similar in ‘Model-1’ and ‘Model-0’. In addition, the model showed a 

reduced power in the prediction of seasonal variations for water, as the R2 
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decreased from 0.41 to 0.04 for PFOA, and from 0.11 to 0.01 for PFOS (Fig. S4c-

f). 

 

 

Fig. 4. (a-g) Comparison of the log-transformed distributions of the observed 

and the modeled PFOS concentrations in the seven compartments. The 

observed distributions were generated based on geometric means and 

standard deviations of the measured concentrations, while the modeled 

distributions were obtained from Monte Carlo simulation. (h) Comparison of 

the observed variability (reflected by the CVs of the observed concentrations) 

and the true uncertainty of the model (represented by the differences between 

the CVs of the concentrations from Monte Carlo simulation and the CVs of the 

observed concentrations) in the seven compartments. 

 

 

There is little consensus regarding the sorption characteristics of PFASs 

to organic matter at present. It remains uncertain, particularly for PFOS with a 

Freundlich exponent close to unity (0.9) (Higgins and Luthy 2006, Kwadijk et 

al. 2013), whether the linear partitioning process would be sufficient to 

describe the sorption of PFASs to soil and sediment or not (Ahrens et al. 2011). 

Laboratory experiments on PFOA and PFOS based on linear partitioning 

suggested an average logKoc of approximately 2.06 for PFOA and 2.88 for 

PFOS (Higgins and Luthy 2006), while in situ data suggested higher logKoc 

values for both PFOA and PFOS, without which overestimation of PFASs 

concentrations in water would occur (Zareitalabad et al. 2013). In the ‘Model-1’ 
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scenario, applying logKoc values from in situ data assuming linear partitioning 

resulted in vastly biased predictions compared to field data. The better 

performance of the ‘Model-0’ compared to the ‘Model-1’ scenario relies on two 

factors. First, we applied the parameter values for sorption of PFOA from the 

experimental study within the environmental relevant concentration ranges 

(Hansen et al. 2010). The nonlinearity in the sorption process was strong for 

PFOA (nF=0.6) and therefore inclusion of nonlinear Freundlich sorption became 

essential. Second, despite a Freundlich exponent close to unity (0.9) for PFOS 

(Kwadijk et al. 2013), the nonlinear Freundlich sorption process in our model 

may have compensated for the largely underestimated logKoc values in experi-

mental studies compared to the in situ situation. Overall, in concert with the 

sensitivity analysis, the ‘Model-1’ scenario suggested that nonlinear Freundlich 

sorption of carbonaceous materials was critical in modeling PFOA and PFOS in 

lake ecosystems, even though the nonlinear process is approaching linear for 

PFOS. 

Partitioning of PFASs between water and particles can be very 

complicated (Ahrens et al. 2010). In addition to carbonaceous components, 

other factors, such as sediment density, Ca2+, pH and salinity, can also play 

significant roles (Higgins and Luthy 2006, Ahrens et al. 2009, Chen et al. 2009, 

Ahrens et al. 2010, Kwadijk et al. 2013, Du et al. 2014), which are not explicitly 

considered in our model. A more general sorption model describing the effect 

of electrostatic interactions (Higgins and Luthy 2007) may be an alternative 

way to more accurately model PFOA and PFOS in future studies, if more data 

on these environmental conditions are available. 

From ‘Model-2’, we observed a higher sensitivity of PFOS to emissions 

from “direct” sources than PFOA (Fig. S4). Once the “direct” emission flux was 

removed, the deviation between the measured and modeled PFOS data in air 

and air particulates drastically increased to an unreasonable level, while for 

PFOA, the model performance remained similar between ‘Model-0’ and 

‘Model-2’. The insensitivity of PFOA to the removal of the emission flux was 

attributed to the diffusion from soil to air as another “indirect” source in 

addition to the ‘direct’ emission flux from industrial and domestic activities to 

air (Fig. 2). This is consistent with previous observations that volatilization was 

one of the most important processes for PFOA (Goss 2007). On the other hand, 

the “direct” source dominated the emission pathway for PFOS and the 

diffusion flux from soil to air was much lower than that for PFOA (Fig. 2), 

because PFOS is less prone to partitioning in air and water than PFOA (Goss 

2007) but is subject to sorption on organic matter due to a lower Henry’s law 

constant and a higher KF (Tables S4 and S7). 
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The ‘Model-2’ scenario reveals the distinct emission source to air for 

PFOA and PFOS due to their different chemical properties. Nevertheless, the 

residual levels of PFOA and PFOS in other compartments including water and 

sediment were hardly sensitive to the changes in direct emission fluxes to the 

air (Fig. S4), because the soil erosion was the major source of contamination 

(Fig. 2). For the local environmental managers, these results may have 

important implications for management strategies on these two contaminants. 

For air pollution, the control on the release pathway to soil that subsequently 

became the “indirect” source should become the priority in management for 

PFOA, while the “direct” emissions to air from industrial production and 

manufacture deserve more attention for PFOS. On the other hand, controlling 

water pollution from PFOA and PFOS would be more effective if we focus 

more on soil erosion in the catchment. 

4. Conclusion 

In the present study, we managed for the first time to establish a 

fugacity-based multimedia fate model for PFOA and PFOS in a shallow lake 

environment. The model provided a quantitative evaluation of the fate, 

transport and transformation of the two contaminants in shallow Lake Chaohu 

over a two-year period. A comparison with field data confirms the reliability of 

the model predictions. Our model revealed the critical role of nonlinear 

Freundlich sorption, which contribute to a significant part to the uncertainty in 

modeling predictions on PFOA and PFOS in aquatic systems. Furthermore, 

model scenarios confirm the importance of nonlinear Freundlich sorption that 

led to a reliable model performance, and also identified the distinct emission 

sources of the two contaminants. In future work, it would be valuable to test 

the model in a second lake to see if the model also works for a similar location, 

thereby increasing the validity and extending the application domain of the 

model. We expect that our study will provide implications for the environment 

assessment on the exposure levels and risks of PFASs in Lake Chaohu, and 

contribute to developing a general model framework for the evaluation of 

PFASs in other shallow lakes. 
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Supplementary materials 

SI text: Model equation 

The differential equations for the model are shown as follow: 

 

 
where fi (i=1,2,3,4) denotes the fugacity (Pa) in the different compartments. The 

model labelling for the main compartments is: “1” for air, “2” for water, “3” for 

soil and “4” for sediment. See Table S2 for a detailed description on the terms 

in the equations. 
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SI figure 

 

Fig. S1. Conceptual framework of the model. Transport and transformation 

fluxes in and out of the lake and between the adjacent compartments are 

presented. See Table S2 in the supporting information for the details of all the 

defined processes.  

 

 

 
Fig. S2. Comparison of measured and modeled concentrations with seasonal 

variations. (a-d) Comparison of measured and modeled data with seasonal 

variations for PFOA in air, air particulates, water and suspended solids. (e-h) 

Comparison of measured and modeled data with seasonal variations for PFOS 

in air, air particulates, water and suspended solids.  
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Fig. S3. Sensitivity coefficients of the modeled concentrations in the six 

compartments to the input parameters for (a) PFOA and (b) PFOS. Only the 

parameters that contribute to the sensitivity of the 90th percentile are presented. 

See Tables S3 and S4 in the supporting information for parameter descriptions. 
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Fig. S4. Comparision of averaged model results to measurements in ‘Model-0’, 

‘Model-1’ and ‘Model-2’ for (a) PFOA and (b) PFOS. (c-f) The comparision of 

seasonal variations in dissolved phase in water between modeled and 

measured results for PFOA and PFOS in ‘Model-0’ and ‘Model-1’. 
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SI Tables 

Table S1 Data source for the present study 

Compartment Reference Note 

Air Liu et al., in preparation(a) unpublished data from our 

lab 

Water Liu et al., 2015 There are unpublished data 

from our lab in addition to 

the data in the reference 

Soil Meng et al., 2013 Data for soil samples around 

Huaihe river close to Lake 

Chaohu 

Sediment Qi et al., 2015 There are unpublished data 

from our lab in addition to 

the data in the reference 

Fish Liu et al., in preparation(b) unpublished data from our 

lab 

 

Reference 

1) Meng, J., Wang, T., Wang, P., Giesy, J.P., Lu, Y., 2013. Perfluorinated compounds and 

organochlorine pesticides in soils around Huaihe River: a heavily contaminated 

watershed in Central China. Environ. Sci. Pollut. Res. 20, 3965-3974. 

2) Qi, Y., Hu, S., Huo, S., Xi, B., Zhang, J., Wang, X., 2015. Spatial distribution and 

historical deposition behaviors of perfluoroalkyl substances (PFASs) in sediments of 

Lake Chaohu, a shallow eutrophic lake in Eastern China. Ecol. Indic. 57, 1-10. 

3) Liu, W.X., He, W., Qin, N., Kong, X.Z., He, Q.S., Yang, B., Yang, C., Jorgensen, S.E., 

Xu, F.L., 2015. Temporal-spatial distributions and ecological risks of perfluoroalkyl 

acids (PFAAs) in the surface water from the fifth-largest freshwater lake in China 

(Lake Chaohu). Environ. Pollut. 200, 24-34. 

4) Liu, W., He, W., Xu, F., in preparation-a. Distribution, partitioning and inhalation 

exposure of perfluoroalkyl acids (PFAAs) in urban and rural air nearby Lake Chaohu, 

China. 

5) Liu, W., He, W., Xu, F., in preparation-b. Residues, bioaccumulation and 

biomagnification of perfluoroalkyl acids (PFAAs) in the aquatic animals from Lake 

Chaohu, China.  
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Table S2 Definitions of the transfer and transformation processes 

Sym

bol 
Formula 

Calculation of D 

(mol/(h·Pa)) 
Description 

Calculation of Z 

(fugacity capacity) 

System input: - 

T01h - - Emission to air - 

T02t Q02t×C02t - Water advection flows into the 

area 

- 

System output:  

T10t D10t×f1 D10t=Q10t×Z1 Air advection flows out of the 

area 
Z1=X11×Z11+ X13×Z13 

T20t D20t×f2 D20t=Q20t×Z2 
Water advection flows out of the 

area 
Z2=X22×Z22+ X23×Z23 

T10m D10m×f1 D10m=Km1×A1×h1×Z1 Degradation in air - 

T20m D20m×f2 D20m=Km2×A2×h2×Z2 Degradation in water - 

T30m D30m×f2 D30m=Km3×A3×h3×Z3 Degradation in soil Z3=X32×Z32+ X33×Z33 

T40m D40m×f4 D40m=Km4×A4×h4×Z4 Degradation in sediment Z4=X42×Z42+ X43×Z43 

Air-water interaction: - 

T12d D12d×f1 D12d=A2/[1/(K12×Z11)+ 

1/(K21×Z22)] 

Diffusion from air to water Z11=Z31=1/RT 

Z22= Z32= Z42=1/H 

T21d D21d×f2 D21d=D12d Diffusion from water to air - 

T12p D12p×f1 D12p=A2×Kp×X13×Z13 Dry deposition from air to water Z13=6×106/PsRT 

T12w D12w×f1 D12w=A2×Kw×Sc×X13×Z13 
Wet deposition from air to 

water 

- 

T12r D12r×f1 D12r=A2×Kw×Z22 Rain scavenging to soil - 

Air-soil interaction:  

T13d D13d×f1 D13d=A3/[1/(K13×Z11)+L3/

(B1×Z11+ B2×Z22)] 

Diffusion from air to soil - 

T31d D31d×f2 D31d=D13d Diffusion from soil to air - 

T13p D13p×f1 D13p=A3×Kp×X13×Z13 Dry deposition from air to soil - 

T13w D13w×f1 D13w=A3×Kw×Sc×X13×Z13 Wet deposition from air to soil - 

T13r D13r×f1 D13r=A3×Kw×Z22 Rain scavenging to soil - 

Water-soil interaction: - 

T32e D32e×f3 D32e= A3×Ue×Z33 Erosion from soil to water 
Z33=[O33×Koc+fBC×KF×(Z3

2×f3)nF-1]×33/H 

Water-sediment interactions: - 

T24d D24d×f2 D24d=A2/[1/(K24×Z22)+L4/

(B4×Z22)] 

Diffusion from water to 

sediment 

- 

T42d D42d×f4 D42d=D24d Diffusion from sediment to 

water 

- 
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T24s D24s×f2 D24s=A2×Ks×Z23 Sedimentation from water to 

sediment 

Z23=[O23×Koc+fBC×KF×(Z2

2×f2)nF-1]×23/H 

T42r D42r×f4 D42r= A2×K42r×Z43 Resuspension from sediment to 

water 

Z43=[O43×Koc+fBC×KF×(Z4

2×f4)nF-1]×43/H 

Fishery: 

T2f D2f×f2 D24d=Yf×Z2f Removal from fishery Z2f=BCFF×f/H 

Note: For the definition of the parameters and their values please see Table S3-S6. 
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Table S3 Environmental and universal mass transfer kinetic parameters for 

the contaminant fate model 
Symbol Unit Parameters Reference Data 

Numbers 

Geometric 

mean 

Geometric 

S.D. 

Static parameters 

A2 m2 Interface areas of air/water 1,2 2 7.581E+08 1.004E+00 

A3  m2 Interface areas of air/soil 1 1 1.04E+10 1.000E+00 

h1 m Thickness of air 1,10 2 1.000E+02 1.413E+00 

h3 m Thickness of soil 1,10 2 5.000E-01 1.479E+00 

h4 m Thickness of sediment 1,10 2 1.000E-01 1.479E+00 

O33 % Contents of organic carbon 

in soil 

1,7-11 6 6.296E-03 1.577E+00 

O43 % Contents of organic carbon 

in sediment 

1-3 61 7.920E-02 1.720E+00 

R Pam3/molK The gas constant - 1 8.310E+00 1.000E+00 

X31 v/v Volume fractions of air in 

soil 

1, 7-11 6 2.500E-01 5.000E-02 

X32 v/v Volume fractions of water 

in soil 

1, 7-11 6 2.500E-01 5.000E-02 

X33 v/v Volume fractions of solids 

in soil 

1, 7-11 6 5.000E-01 1.000E-01 

X42 v/v Volume fractions of water 

in sediment 

4, 7-11 6 7.000E-01 1.022E+00 

X43 v/v Volume fractions of solids 

in sediment 

4, 7-11 6 3.000E-01 1.077E+00 

r23 t/m3 Densities of solids in water 1,4 2 1.200E+00 1.158E+00 

r33 t/m3 Densities of solids in soil 1, 8-11 5 2.568E+00 1.537E-01 

r43 t/m3 Densities of solids in 

sediment 

1,4 2 2.760E+00 1.176E+00 

2f t/m3 Densities of fish 1, 8-11 2 1.500E+00 1.236E-01 

Yf kg/h Fish production rate 1,5 2 5.710E-01 1.183E+00 

K13 m/h Air-side molecular transfer 

coefficient over soil 

7-11 6 1.000E+00 1.324E-01 

K24 m/h Water-side molecular 

transfer coefficient over 

sediment 

7-11 5 1.000E-02 1.585E+00 

K42 m/h Sediment-side molecular 

transfer coefficient over 

water 

1, 7-11 6 5.390E-06 1.520E+00 

KS m/h Water sedimentation rates 12 3 1.655E-06 1.254E+00 

L3 m Diffusion path lengths in 

soil 

7-11 5 1.000E-01 1.369E+00 

L4 m Diffusion path lengths in 

sediment 

7-11 5 5.000E-03 1.912E+00 

KP m/h Dry deposition velocity 7-11 5 1.039E+01 1.056E+00 

Ue m/h Runoff rate of solid phase 10 1 1.100E-07 1.000E+00 

Sc - Scavenging ratio 4, 7-11 6 1.200E+05 2.144E+00 

B1 m2/h Molecular diffusivities in 

air 

4, 7-11 6 1.3000E-02 1.342E+00 

B2 m2/h Molecular diffusivities in 

water 

4, 7-11 6 1.4000E-06 1.621E+00 
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B4 m2/h Molecular diffusivities in 

sediment 

4, 7-11 6 6.3000E-13 1.483E+00 

fBC - Black carbon fraction of 

solids in sediment 

13 1 2.000E-03 1.000E+00 

Dynamic parametersa 

h2 m Depth of water 14 24 3.390E+00 1.296E+00 

O23 % Contents of organic carbon 

in solids in water 

15, this 

study 

24 7.829E-02 1.900E+00 

X13 v/v Volume fractions of solids 

in air 

this study 24 7.628E-11 1.562E+00 

X23 v/v Volume fractions of solids 

in water 

this study 24 1.263E-05 2.007E+00 

T K Local average temperature 

in air 

16 730 2.889E+02 9.747E+00 

Twc K Local average temperature 

in water 

16,17 730 1.270E+01 2.587E+00 

W m/s Wind speed 16 730 1.083E+00 1.521E+00 

Q02t m3/h Water advection flow into 

the area 

14 24 3.373E+05 3.217E+00 

Q20t m3/h Water advection flow out 

of the area 

14 24 4.189E+05 3.072E+00 

Kw m/h Wet deposition velocity 14,16 730 1.332E-04 5.958E+00 

K42rd m/h Sediment resuspension rate 1 730 2.558E-05 1.702E+00 

a for values see Table S5 
b Normal distribution assumed (instead of lognormal distribution for others) 
c Calculate from air temperature according to ref. 17 
d Calculated according to ref. 1 

References: 

1) Tu, Q.Y., Gu, D.X., Yi, C.Q., Xu, Z.R., Han, G.Z., 1990. The researches on the Lake 

Chaohu eutrophication. Hefei: Publisher of University of Science and Technology of 

China.  

2) Yin, F.C., 2011. A study on evaluation and control instruments of Chao lake 

eutrophication. Beijing: China Environmental Science Press. 

3) Zhang, M., 2009. Distribution characteristic and assessment of typical persistent 

organic pollutions-Organochlorine pesticides in water of Chaohu Lake watershed 

[Master dissertation]. Hefei: Anhui Agriculture University. 

4) Mackay, D., 2001. Multimedia Environmental Models: The Fugacity 

Approach,second ed. NewYork, USA: Lewis Publishers. 

5) Guo, L.G., 2005. Studies on fisheries ecology in a large eutrophic shallow lake, Lake 

Chaohu [Doctoral dissertation]. Wuhan: Institude of Hydrobiology, Chinese 

Acadamy of Sciences (in Chinese). 

6) Kong, F.X., Song, L.R., 2011. Study on formation process and its environmental 

characteristics of cyanobacteria bloom. Beijing: Science Press (in Chinese) 

7) Lang, C., Tao, S., Wang, X.J., Zhang, G., Li, J., Fu, J.M., 2007. Seasonal variation of 

polycyclic aromatic hydrocarbons (PAHs) in Pearl River Delta region, China. Atmos. 

Environ. 41, 8370-8379. 
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8) Lang, C., Tao, S., Wang, X.J., Zhang, G., Fu, J.M., 2008. Modeling polycyclic aromatic 

hydrocarbon composition profiles of sources and receptors in the Pear River Delta, 

China. Environ. Toxicol. Chem. 27, 4-9.  

9) Wang, R., Cao, H.Y., Li, W., Wang, W., Wang, W.T., Zhang, L.W., Liu, J.M., Ouyang, 

H., Tao, S., 2011. Spatial and seasonal variations of polycyclic aromatic hydrocarbons 

in Haihe Plain, China. Environ. Pollut. 159, 1413-1418. 

10) Tao, S., Cao, H.Y., Liu, W.X., Li, B.G., Cao, J., Xu, F.L., Wang, X.J., Coveney, R.M., 

Shen, W.R., Qin, B.P., Sun, R., 2003. Fate modeling of phenanthrene with regional 

variation in Tianjin, China. Environ. Sci. Technol. 37, 2453-2459. 

11) Zhang, X.L., Tao, S., Liu, W.X., Yang, Y., Zuo, Q., Liu, S.Z., 2005. Source diagnostics 

of polycyclic aromatic hydrocarbons based on species ratios: A multimedia approach. 

Environ. Sci. Technol. 39, 9109-9114. 

12) Gu, C.J., 2005. Historical Sedimentary Records and Environmental Changes in 

Chaohu lake. [Master dissertation]. Shanghai: East China Normal University (in 

Chinese).  

13) Hauck, M.; Huijbregts, M. A. J.; Koelmans, A. A.; Moermond, C. T. A.; van den 

Heuvel-Greve, M. J.; Veltman, K.; Hendriks, A. J.; Vethaak, A. D., Including sorption 

to black carbon in modeling bioaccumulation of polycyclic aromatic hydrocarbons: 

Uncertainty analysis and comparison to field data. Environ. Sci. Technol. 2007, 41, (8), 

2738-2744. 

14) Anhui Hydrological Telemetry Information System (AHTIS), 2013-2015. Hourly 

water level report. http://yc.wswj.net/ahyc/  

15) Zhou, Z.H., Liu, C.Q., Li, J., Zhu, Z.Z., 2007. Record of ecosystem evolvement 

processes provided by δ13Corg and δ15N values in Chaohu Lake sediments.  

Environmental Science, 28, 1338-1343. 

16) China Meteorological Data Sharing Service System (CMDSSS), 2013-2015. Daily 

Meteorological Data. http://data.cma.cn/  

17) Mooij, W.M., Domis, L., Hulsmann, S., 2008. The impact of climate warming on water 

temperature, timing of hatching and young-of-the-year growth of fish in shallow 

lakes in the Netherlands. J. Sea Res. 60, 32-43.  

http://yc.wswj.net/ahyc/
http://data.cma.cn/
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Table S4 Chemical specific parameters for the contaminant fate model 

Parameters Unit Definition PFOA Ref. PFOS Ref. 

Static       

PS25 Pa 
Subcooled liquid 

vapor pressure at 25℃ 
5.7377E-06a 

(Kaiser et al. 

2005, Goss 

2007, Burns 

et al. 2008) 

1.8400E-06 (3M 2003) 

H25 Pam3/mol 
Henry’s constant at 

25℃ 
1.4400E+01 

(Kutsuna 

and Hori 

2008) 

4.7500E-04 (3M 2003) 

BH - 

Henry’s law constant 

temperature correction 

factor 

7.7820E+03b 
(Wang and 

Shih 2011) 
7.7820E+03 Note c 

BPS - 

Subcooled liquid 

vapor pressure 

temperature correction 

factor 

3.3879E+03 
(Kaiser et al. 

2005) 
4.9150E+03 

(Mackay et 

al. 1982, 

Kaiser et al. 

2005) 

logKOC m3/t Adsorption coefficient 2.0600E+00 

(Higgins 

and Luthy 

2006) 

2.8800E+00 
(Yang et al. 

2011) 

Km1 1/h Degradation rate in air 4.5591E-05 
(Gomis et al. 

2015) 
2.6102E-06 

(Liu et al. 

2015a) 

Km2 1/h 
Degradation rate in 

water 
5.7190E-06 

(Gomis et al. 

2015) 
1.2600E-07 

(Liu et al. 

2015a) 

Km3 1/h 
Degradation rate in 

soil 
4.0104E-05 

(Gomis et al. 

2015) 
6.9300E-09 

(Liu et al. 

2015a) 

Km4 1/h 
Degradation rate in 

sediment 
4.0104E-05 

(Gomis et al. 

2015) 
4.0765E-08 

(Liu et al. 

2015a) 

logKow - 
Octanol-water 

partition coefficient 
4.3000E+00 

(Arp et al. 

2006, Wang 

and Shih 

2011) 

4.3500E+00 

(Arp et al. 

2006, Wang 

and Shih 

2011) 

T01h mol/h Emission rate 1.4500E+00 

(Wang et al. 

2015, Liu et 

al. 2017) 

3.5000E-01 

(Xie et al. 

2013a, Xie et 

al. 2013b) 

BCF L/g 
Bioconcentration factor 

of fish 
3.4677E+00 

(Quinete et 

al. 2009) 
2.9934E+03 

(Quinete et 

al. 2009) 

Dynamic       

C02t mol/m3 
Concentration in water 

advection inflow 
4.8067E-11 This studyd 1.2904E-09 This studyd 

K12 m/h 

Air-side molecular 

transfer coefficient 

over water 

4.6375E+00 

(Kim and 

Kannan 

2007) 

5.2850E+00 
(Liu et al. 

2015a) 

K21 m/h 

Water-side molecular 

transfer coefficient 

over air 

1.9350E-03 

(Kim and 

Kannan 

2007) 

2.2050E-03 
(Liu et al. 

2015a) 

Notes: 
a: adjusted based on Burns et al. (2008) and Goss (2008) 
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b: Estimated based on the Van 't Hoff equation and the Enthalpy of PFOA (ΔH=64.7 

kJ·mol-1). 
c: No data is available in literature. The same value for PFOA is used. 
d: Estimated based on the data in the inflow rivers in March and September 2013 

and weighted by the inflow volume of these rivers 
 

References: 

1) 3M, 2003. Environmental and health assessment of sulfonic acid and its salts. 3M 

Company. 

2) Arp, H.P.H., Niederer, C., Goss, K.U., 2006. Predicting the partitioning behavior of 

various highly fluorinated compounds. Environ. Sci. Technol. 40, 7298-7304. 

3) Burns, D.C., Ellis, D.A., Li, H., McMurdo, C.J., Webster, E., 2008. Experimental p K a 

determination for perfluorooctanoic acid (PFOA) and the potential impact of p K a 

concentration dependence on laboratory-measured partitioning phenomena and 

environmental modeling. Environ. Sci. Technol. 42, 9283-9288. 

4) Gomis, M.I., Wang, Z., Scheringer, M., Cousins, I.T., 2015. A modeling assessment of 

the physicochemical properties and environmental fate of emerging and novel per-and 

polyfluoroalkyl substances. Sci. Total Environ. 505, 981-991. 

5) Goss, K.U., 2007. The p K a values of PFOA and other highly fluorinated carboxylic 

acids. Environ. Sci. Technol. 42, 456-458. 

6) Higgins, C.P., Luthy, R.G., 2006. Sorption of perfluorinated surfactants on sediments. 
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2017. Pollution pathways and release estimation of perfluorooctane sulfonate (PFOS) 

and perfluorooctanoic acid (PFOA) in central and eastern China. Sci. Total Environ. 580, 

1247-1256. 
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identification and emission estimation of perfluorooctane sulfonate in China. Environ. 

Inter. 52, 1-8. 

18) Yang, L., Zhu, L., Liu, Z., 2011. Occurrence and partition of perfluorinated compounds 

in water and sediment from Liao River and Taihu Lake, China. Chemosphere 83, 806-

814.  



Modeling PFASs in a phytoplankton-dominated shallow lake 

151 

Table S5 Environmental dynamic parameters for the contaminant fate model 

Month 
h2 WS X13 X23 Q02t Q20t T Tw O23 Kw K42r 

m m/s - - m3/h m3/h K K % mm m/h 

9-2013 3.19 2.00 3.86E-11 1.08E-04 2.35E+07 2.76E+07 296.65 300.63 7.39E+00 115.35 1.88E-07 

10-2013 3.28 1.95 5.15E-11 1.05E-04 2.34E+06 7.27E+04 289.74 294.18 5.31E+00 11.50 1.79E-07 

11-2013 3.22 1.85 6.97E-11 1.24E-04 3.25E+06 5.48E+06 285.03 288.23 4.14E+00 15.95 1.72E-07 

12-2013 3.17 1.75 1.75E-10 2.45E-04 2.05E+06 4.02E+06 279.77 283.81 3.19E+00 10.05 1.66E-07 

1-2014 3.27 2.20 1.17E-10 1.31E-04 4.90E+06 2.44E+06 272.92 276.47 7.54E+00 24.05 2.02E-07 

2-2014 3.48 2.45 1.22E-10 7.59E-05 2.52E+07 2.26E+07 278.23 278.00 5.24E+00 123.80 2.11E-07 

3-2014 3.38 2.50 1.28E-10 8.16E-05 1.08E+07 1.56E+07 282.59 282.59 4.89E+00 52.90 2.22E-07 

4-2014 3.14 2.30 1.32E-10 6.18E-05 3.85E+07 5.22E+07 290.57 289.25 4.21E+00 188.75 2.20E-07 

5-2014 2.94 2.40 7.09E-11 5.02E-05 1.32E+07 2.15E+07 295.34 296.60 7.69E+00 64.75 2.45E-07 

6-2014 3.16 2.05 9.37E-11 5.13E-05 2.83E+07 2.59E+07 297.66 298.83 2.03E+01 139.05 1.95E-07 

7-2014 3.91 1.95 3.99E-11 6.77E-05 5.48E+07 3.91E+07 300.95 302.04 1.23E+01 268.60 1.49E-07 

8-2014 3.83 1.80 7.40E-11 2.89E-05 3.33E+07 4.13E+07 299.90 302.92 2.20E+01 163.45 1.41E-07 

9-2014 3.72 2.25 3.86E-11 1.08E-04 1.68E+07 2.30E+07 295.64 299.32 7.39E+00 82.50 1.82E-07 

10-2014 3.61 2.05 5.15E-11 1.05E-04 1.01E+07 1.53E+07 290.45 294.27 5.31E+00 49.60 1.71E-07 

11-2014 3.59 2.05 6.97E-11 1.24E-04 2.07E+07 2.45E+07 286.98 290.23 4.14E+00 101.75 1.71E-07 

12-2014 3.26 2.15 1.75E-10 2.45E-04 8.26E+05 1.16E+07 276.88 281.74 3.19E+00 4.05 1.98E-07 

1-2015 3.30 2.05 1.17E-10 1.31E-04 9.35E+06 9.49E+06 275.95 278.14 7.54E+00 45.85 1.86E-07 

2-2015 3.31 2.45 1.22E-10 7.59E-05 1.35E+07 1.54E+07 276.19 277.74 5.24E+00 66.40 2.22E-07 

3-2015 3.26 2.40 1.28E-10 8.16E-05 1.72E+07 2.13E+07 282.40 281.44 4.89E+00 84.50 2.21E-07 

4-2015 2.85 2.40 1.32E-10 6.18E-05 2.37E+07 4.04E+07 291.44 290.62 4.21E+00 116.10 2.52E-07 

5-2015 3.32 2.30 7.09E-11 5.02E-05 2.26E+07 1.11E+07 294.27 293.96 7.69E+00 110.80 2.08E-07 

6-2015 4.47 2.20 9.37E-11 5.13E-05 7.56E+07 5.09E+07 298.12 298.46 2.03E+01 370.75 1.48E-07 

7-2015 3.70 2.30 3.99E-11 6.77E-05 3.74E+07 6.79E+07 300.81 302.45 1.23E+01 183.30 1.87E-07 

8-2015 3.21 2.25 7.40E-11 2.89E-05 2.43E+07 4.38E+07 301.91 304.46 2.20E+01 119.30 2.11E-07 

Note: for interpretation of the parameters please refer to Table S3. 
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Table S6 Chemical specific dynamic parameters for the contaminant fate 

model 

Note: for interpretation of the parameters please refer to Table S4.  

Month 
C02t (mol/m3)  K12 (m/h)  K21 (m/h) 

PFOA PFOS  PFOA PFOS  PFOA PFOS 

9-2013 9.85E-10 4.10E-11  4.89E+00 4.29E+00  2.06E-03 1.81E-03 

10-2013 1.09E-09 4.33E-11  4.77E+00 4.18E+00  1.98E-03 1.73E-03 

11-2013 1.19E-09 4.57E-11  4.53E+00 3.97E+00  1.95E-03 1.71E-03 

12-2013 1.29E-09 4.81E-11  4.29E+00 3.77E+00  1.97E-03 1.73E-03 

1-2014 1.39E-09 5.04E-11  5.36E+00 4.70E+00  2.26E-03 1.98E-03 

2-2014 1.49E-09 5.28E-11  5.95E+00 5.22E+00  2.47E-03 2.17E-03 

3-2014 1.60E-09 5.52E-11  6.07E+00 5.33E+00  2.59E-03 2.27E-03 

4-2014 1.49E-09 5.28E-11  5.60E+00 4.91E+00  2.45E-03 2.15E-03 

5-2014 1.39E-09 5.04E-11  5.83E+00 5.12E+00  2.70E-03 2.37E-03 

6-2014 1.29E-09 4.81E-11  5.00E+00 4.39E+00  2.14E-03 1.87E-03 

7-2014 1.19E-09 4.57E-11  4.77E+00 4.18E+00  1.75E-03 1.54E-03 

8-2014 1.09E-09 4.33E-11  4.41E+00 3.87E+00  1.73E-03 1.52E-03 

9-2014 9.85E-10 4.10E-11  5.48E+00 4.81E+00  2.13E-03 1.87E-03 

10-2014 1.09E-09 4.33E-11  5.00E+00 4.39E+00  1.95E-03 1.71E-03 

11-2014 1.19E-09 4.57E-11  5.00E+00 4.39E+00  1.96E-03 1.72E-03 

12-2014 1.29E-09 4.81E-11  5.24E+00 4.60E+00  2.21E-03 1.94E-03 

1-2015 1.39E-09 5.04E-11  5.00E+00 4.39E+00  2.07E-03 1.82E-03 

2-2015 1.49E-09 5.28E-11  5.95E+00 5.22E+00  2.56E-03 2.25E-03 

3-2015 1.60E-09 5.52E-11  5.83E+00 5.12E+00  2.51E-03 2.21E-03 

4-2015 1.49E-09 5.28E-11  5.83E+00 5.12E+00  2.75E-03 2.41E-03 

5-2015 1.39E-09 5.04E-11  5.60E+00 4.91E+00  2.36E-03 2.07E-03 

6-2015 1.29E-09 4.81E-11  5.36E+00 4.70E+00  1.83E-03 1.61E-03 

7-2015 1.19E-09 4.57E-11  5.60E+00 4.91E+00  2.19E-03 1.92E-03 

8-2015 1.09E-09 4.33E-11  5.48E+00 4.81E+00  2.35E-03 2.06E-03 
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Table S7 Data collection for Freundlich isotherm parameters 

Notes: KF: Freundlich sorption distribution coefficient; nF: indication of the 

nonlinearity of the sorption isotherm 
a Unit: (ng/g sorbent)(ng/L)-n 

b Unit: (mmol/g sorbent)(mmol/L)-n 

c logKoc (L/kgOC) 
d PAC: Powdered activated carbon; GAC: Granular activated carbon 
e including organic matter fraction (fOC) 
 

References: 

1) Hansen, M.C., Børresen, M.H., Schlabach, M., Cornelissen, G., 2010. Sorption of 

perfluorinated compounds from contaminated water to activated carbon. Journal of 

Soils and Sediments 10, 179-185. 

2) Yu, Q., Zhang, R., Deng, S., Huang, J., Yu, G., 2009. Sorption of perfluorooctane 

sulfonate and perfluorooctanoate on activated carbons and resin: kinetic and isotherm 

study. Water Res. 43, 1150-1158. 

3) Higgins, C.; Luthy, R. Sorption of perfluorinated surfactants on sediments Environ. Sci. 

Technol. 2006, 40, 7251-7256. 

4) Kwadijk, C.J.A.F., Velzeboer, I., Koelmans, A.A., 2013. Sorption of perfluorooctane 

sulfonate to carbon nanotubes in aquatic sediments. Chemosphere 90, 1631-1636.

Contamina

nt 
Sorbent 

Freundlich isotherm 
Conc. range References 

log KF nF 

PFOA GACd 2.28±0.11
a 

0.29±0.05 1400±130 

ng/L 

Hansen et al. 2010 

PACd 3.82±0.14 

a 

0.6±0.2 1400±130 

ng/L 

Hansen et al. 2010 

GACd 7.07 b 0.28  50 mg/L Yu et al., 2009 

PACd 5.79 b 0.2  50 mg/L Yu et al., 2009 

Lake sediment 2.06 c 0.75-1.00 

(0.9) 

0.5-100 μg/L Higgins and Luthy, 

2006 

Used in the 

model 

3.82 0.6 - For the present study 

PFOS GACd 2.73±0.05 

a 

0.5±0.03 1400±200 

ng/L 

Hansen et al. 2010 

PACd 4.0±0.2 a 0.9±0.5 1400±200 

ng/L 

Hansen et al. 2010 

Lake sediment 6.2±2.1e 0.92±0.063 0.05-5 mg/L Kwadijk et al., 2013 

GACd 6.92 b 0.18 50 mg/L Yu et al., 2009 

PACd 6.60 b 0.18 50 mg/L Yu et al., 2009 

Lake sediment 2.57±0.13 

c 

0.75-1.00 

(0.9) 

0.5-100 μg/L Higgins and Luthy, 

2006 

Used in the 

model 

4.0 0.9 - For the present study 
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Abstract  

Shallow lakes can switch suddenly from a turbid situation with high 

concentrations of phytoplankton and other suspended solids to a vegetated 

state with clear water, and vice versa. These alternative stable states may have 

a substantial impact on the fate of hydrophobic organic compounds (HOCs). 

Models that are fit to simulate impacts from these complex interactions are 

scarce. We developed a contaminant fate model which is linked to an 

ecosystem model (PCLake) for shallow lakes. This integrated model was 

successful in simulating long-term dynamics (1953-2012) of representative 

polycyclic aromatic hydrocarbons (PAHs) in the main biotic and abiotic 

components in a large shallow lake (Chaohu in China), which has undergone 

regime shifts in this period. Historical records from sediment cores were used 

to evaluate the model. The model revealed that regime shifts in shallow lakes 

had a strong impact on the fate of less hydrophobic compounds due to the 

large storage capacity of macrophytes, which accumulated up to 55.6% of 

phenanthrene in the clear state. The abrupt disappearance of macrophytes after 

the regime shift resulted in a sudden change in phenanthrene distribution, as 

the sediment became the major sink. For more hydrophobic compounds such 

as benzo(a)pyrene, the modeled impact of the regime shift was negligible for 

the whole environment, yet large for biotic compartments. This study is the 

first to provide a full mechanistic analysis of the impact of regime shifts on the 

fate of PAHs in a real lake ecosystem. 
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1. Introduction 

Freshwater shallow lake ecosystems often suffer from water quality 

deterioration due to eutrophication (Conley et al. 2009). The response of these 

systems to eutrophication is non-linear, reinforced by multiple feedback 

mechanisms (Carpenter et al. 1999) that lead to alternative stable ecosystem 

states, i.e. a clear, macrophyte-dominated state, and a turbid, phytoplankton-

dominated state (Scheffer et al. 2001a). Such systems are stable in either of the 

states (Scheffer et al. 1993) but can shift from one state to another surprisingly, 

when a threshold of a certain external condition is crossed (e.g. nutrient 

loading), which is generally referred to as a ‘regime shift’ (Scheffer and 

Jeppesen 2007). Over the last decades, many shallow lakes around the globe 

have undergone such a regime shift from clear to turbid state mainly due to 

severe pressure from anthropogenic activities (Wang et al. 2012b, Kong et al. 

2017a). 

Meanwhile, freshwater lake ecosystems in highly populated areas are 

increasingly contaminated with hazardous chemicals such as hydrophobic 

organic contaminants (HOCs) (Schwarzenbach et al. 2006). These HOCs are 

distributed among various compartments in the lake environment and 

accumulate in the aquatic food web, thereby threatening ecological functions 

due to toxicity to organisms (Qin et al. 2013b), and potentially undermining 

human health if contaminated aquatic products are consumed (Wu et al. 2007). 

The coincidence of eutrophication and contamination in shallow lakes calls for 

a better understanding of the impacts of regime shifts on the behavior and 

potential risks of HOCs in such aquatic ecosystems. This is a prerequisite for 

ecological and human health risk assessment, which in turn may inform 

environmental management and policy. The ecological structures in the 

alternative states have been shown to be largely different (Kong et al. 2016), 

while the fate of HOCs in aquatic ecosystems is largely associated with the 

biogeochemical cycle of carbon and the dynamics of primary producers 

(Koelmans et al. 2001, Nizzetto et al. 2012). Consequently, the changes in 

ecological structure due to the aforementioned regime shifts will drastically 

alter the fate and bioaccumulation of certain HOCs in lakes. This issue has 

been addressed by indoor experiments (Roessink et al. 2010) and field studies 

with several lakes in distinctive ecological states (Moermond et al. 2005), yet 

illustrative cases of regime shifts within one ecosystem are scarce. This can be 

explained by lack of long-term observations in lake ecosystems that may have 

suffered from regime shifts, and by the difficulty in detecting the occurrence of 

these regime shifts. However, studying regime shifts in one specific system has 
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the advantage that confounding factors due to differences among lakes play no 

role. 

The mechanistic understanding of the implications of regime shifts for 

HOC fate and effects requires the integration of ecosystem and contaminant 

fate models (Koelmans et al. 2001). Integrated models can be used to test new 

hypothesis at the interface of the disciplines of aquatic ecology and 

environmental chemistry. However, such integrated models are poorly 

available. Furthermore, there is room for improvement with respect to some of 

the process descriptions, for instance those capturing the dynamics of the food 

web (Gouin et al. 2013), and those quantifying sorption to condensed carbon 

phases (Koelmans et al. 2001, Koelmans et al. 2006), which we aim to address 

in the present study. Finally, whether such models can adequately represent 

the implications of a regime shift for the cycling of HOCs in a real system 

remains to be demonstrated.  

We applied the model to polycyclic aromatic hydrocarbons (PAHs), 

which is a class of HOCs that can exert a wide range of different chemical 

behaviors (Shen et al. 2013). The objectives of the present study are: 1) to 

develop an integrated ecological and chemical fate model for PAHs that 

describes their fate in both abiotic and biotic compartments in a lake area at 

short- and long- term temporal scales, which can include regime shifts, and 2) 

to investigate the impact of regime shifts on the fate of PAHs in shallow lake 

ecosystems. To achieve these aims, we coupled a food web accumulation 

model based on existing approaches for accumulation of PAHs in aquatic 

organisms (Campfens and Mackay 1997, Arnot and Gobas 2004, Gandhi et al. 

2006), to a previously developed contaminant fate model (Kong et al. 2014), 

which is applicable to multiple groups of HOCs, like for instance PAHs (Xu et 

al. 2013). The model was further integrated with a well-calibrated ecosystem 

model (PCLake) (Kong et al. 2017a), which accounted for the ecological 

processes. To evaluate the model, we used the data from a large shallow lake 

in China (Lake Chaohu), which had been subject to a regime shift from clear to 

turbid state over the last several decades (Kong et al. 2017a). Contemporary 

data of PAHs observations in various biotic and abiotic components in Lake 

Chaohu were available. To further evaluate the model performance in the long-

term, we used the information on historical pollution of PAHs over a time span 

of 60 years from 1953 to 2012, measured in two sediment cores from the lake. 

To our knowledge, this is the first study that aims at modeling regime shifts in 

PAH cycling, and that combines historical information and modeling results to 

illustrate the long-term dynamics of PAHs fate in an aquatic environment. 
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2. Materials and methods 

Study area 

Lake Chaohu (31°25’28’’-31°43’28’’N, 117°16’54’’-117°51’46’’E) is the 

fifth largest freshwater shallow lake in China with a surface area of 760 km2 

and an average depth of 3 m, located in the most developed region among the 

lower reaches of the Yangtze River floodplain (Fig. 1). The lake used to provide 

important ecological services to the catchment area, e.g. drinking water supply 

for large cities Hefei and Chaohu. However, the lake ecosystem has undergone 

regime shifts between clear and turbid states since the 1950s (Kong et al. 2017a). 

The heavy flood occurring in 1954 induced a regime shift into a turbid state in 

this lake, which shifted back to a clear state before 1960 (Kong et al. 2017a). The 

onset of the sluice in 1963 (Fig. 1), however, tipped the lake into a turbid state 

again, and increasing nutrient loadings (Kong et al. 2015) triggered the 

nuisance of phytoplankton blooms since 1980, which has lasted until now. The 

lake is no longer serving as the drinking water source to adjacent cities. Great 

effort has been invested into ecological restoration and management of this 

lake with however limited improvement in lake water quality and ecological 

status at the current stage (Kong et al. 2017a). Meanwhile, the lake has been 

subjected to severe PAHs pollution (as well as black carbon) due to increasing 

energy consumption by biomass fuel combustion for heating in rural areas, 

vehicle emissions in urban areas and coal combustion at nearby power plants 

in the catchment (Qin et al. 2014). Reduction in PAHs input to the lake in 

recent years is not likely to happen due to intensified human activities in the 

lake catchment (Giesy et al. 2016). 

Data collection 

Phenanthrene (Phe), pyrene (Pyr) and benzo(a)pyrene (BaP), were 

selected to represent low-, moderate- and high-molecular-weight PAHs. 

Monthly concentrations of these PAHs were available for gaseous, aerosol 

particles and for suspended solids from May 2010 to April 2011, and aqueous 

phase from May 2010 to April 2012 (Qin et al. 2013a, Qin et al. 2014), at 

multiple sampling sites (Fig. 1). Other field data included PAHs in multiple 

groups of biota for human consumption in 2009 (Qin et al. 2013c) and in 

phytoplankton in 2012 (provided as Supporting Information). We further 

collected data from literature, including PAHs in surface sediment in 2011 (Li 

et al. 2014) and in soil close to the study site in 2007 (Wang et al. 2010). 

Additionally, we used PAHs concentrations in vegetation for Lake Taihu in 
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2014 (Tao et al. 2015) as a proxy for those in Lake Chaohu. This is based on the 

fact that: 1) both lakes are located in the lower Yangtze River floodplain, where 

the ecosystems are subjected to very similar (intense) human disruptions and 

pollutions (Dearing et al. 2012); 2) Both lakes are large shallow lakes with 

similar eutrophication status since the 1980s (Janssen et al. 2014, Kong et al. 

2017a); 3) Both lakes are located in the area with similar intensity of PAHs 

emission (Zhang et al. 2007). Overall, PAH observations were available for 

model evaluation in all modeled compartments except for zooplankton. For all 

organisms, data on lipid fractions were available from our previous 

measurements (Qin et al. 2013c). In addition, PAH profiles were measured in 

the first 30 cm of two sediment cores (Fig. 1), which were collected with a 

Kajak gravity corer from the centers of the west and the east part of Lake 

Chaohu on August 23rd, 2011 (details for PAHs measurement provided as 

Supporting Information). The time series of historical PAHs records were used 

for the evaluation of the long-term model simulation. Chronologies were 

obtained by measuring 210Pb and 137Cs radionuclide activities in contiguous 

samples in the cores (details provided as Supporting Information). More 

details regarding analytical procedures for 210Pb and 137Cs radionuclide 

activities in the sediment were reported before (Kong et al. 2017a). 

 

 
Fig. 1. Lake Chaohu and the catchment area in China, as well as the sampling 

sites for two gaseous and aerosol particles samples (Qin et al., 2013a), four 

water and suspended solid samples (Qin et al., 2014) and two sediment core 

samples (Kong et al., 2017). The locations of major rivers and the sluice built in 

1963 are also shown. 
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Model development 

The model framework is composed of an ecological module (PCLake 

model) and a contaminant fate model that includes an abiotic module and a 

biotic (foodweb) module (Fig. 2). Model equations are provided as Supporting 

Information. Important environmental processes (e.g. water-sediment 

interaction) and dynamics of the food web components in Lake Chaohu are 

simulated using PCLake (Fig. 2). PCLake is a well-developed ecosystem model 

for shallow lakes in the context of the alternative stable states theory (Janse 

2005). This model has been adapted for Lake Chaohu in our previous study 

and fitted to field observations (including nutrient levels, water quality 

indicators and biomass of various biota components) in both short-term (2008-

2013) and long-term (1953-2012) simulations (Kong et al. 2017a). PCLake has a 

food web module that is similar to the biotic module in the contaminant fate 

model in the present study. Therefore, the biomass for different organism 

groups as simulated by PCLake (Fig. S1) is used as input for the simulations of 

the food web PAH bioaccumulation model. This is based on the assumption 

that PAH toxicity had no influence on the biomass and abundance of species, 

which is reasonable for the present case study because the PAH concentrations 

(total and individual PAH) in both sediment cores were generally lower than 

the threshold effect concentration (TEC), and were always below the probable 

effect concentration (PEC) (MacDonald et al. 2000) (Fig. S2). 
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Fig. 2. Overview of the model. (A) Processes between major compartments of 

the contaminant fate model. (B) Structure of the food web accumulation model, 

including piscivorous fish (PF), zooplanktivorous fish (ZF), benthivorous fish 

(BF), zoobenthos (Zb), zooplankton (Zp), phytoplankton (P), submerged 

macrophytes (SP) and detritus (D). (C) Processes between water and 

phytoplankton/suspended solids in the model. (D) Schematic framework of 

shallow lake ecosystem model PCLake (redrawn after Janse, 2005). 
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For the contaminant fate model, the abiotic module is a fugacity-based 

level IV fate model for lakes based on previous studies (Xu et al. 2013, Kong et 

al. 2014), with an additional soil compartment in the lake basin. The water 

compartment is assumed well-mixed in this study as the lake is shallow with 

an average depth of only 3 m. Following earlier modeling (Mackay and 

Paterson 1991), equilibrium is assumed within each main abiotic compartment. 

The biotic module is a food web accumulation model (Campfens and Mackay 

1997, Gandhi et al. 2006), with an extended description of the PAH exchange 

between water and phytoplankton (Fig. 2; SI text). Based on our previous 

study on the food web structure in Lake Chaohu (Kong et al. 2016), we defined 

a simplified food web structure for the model in the present study that 

comprises seven functional groups: piscivorous fish, zooplanktivorous fish, 

benthivorous fish, zoobenthos, zooplankton, phytoplankton, and macrophytes. 

Suspended solids in the water compartment (i.e. detritus) serve as an 

additional group in the food web. Modeled processes include exchange 

through gills from water or pore water in sediment (DW), uptake from food 

(DA), loss by fecal egestion (DE), loss by growth dilution (DG), loss by 

metabolism (DM) and loss by predation (DP). For the three fish groups, we 

added the process of production (D2f) representing the influence of fishery. The 

exchange with water for fish groups is modeled following Arnot and Gobas 

(2004), which is also applied for invertebrates (zooplankton and zoobenthos). 

Growth dilution and metabolism for both fish and invertebrates are modeled 

as first-order kinetic processes, while the PAH metabolic transformation rates 

are approximated following Moermond et al. (2007). Note that metabolism is 

found to dominate PAH elimination from fish and invertebrates and is thus 

important for the trophic transfer of PAHs in aquatic ecosystems (Wan et al. 

2007). For modeling PAHs in macrophytes and phytoplankton, we used 

similar principles as those for fish and invertebrates, with modifications based 

on the uptake model for phytoplankton from Dachs et al. (1999) (SI text). 

Bioaccumulation is modeled based on the foodweb interactions (Arnot and 

Gobas 2004) and the dietary composition defined in Table S3. Finally, we 

modeled elimination by egestion as a constant fraction of the uptake from food, 

quantified as the limiting biomagnification factor (Q) (Campfens and Mackay 

1997). 

Parameter determination 

Definition, statistical data and sources for all the parameters in the 

contaminant fate model are listed in Tables S4-S6. There are 159 parameters in 

the model, including 46 environmental parameters, 21 chemical-specific 
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parameters (mass transfer and physicochemical parameters) and 92 food web-

related parameters. Twenty-one parameters vary seasonally, whereas the other 

parameters remain constant throughout the simulation. The parameters were 

obtained from the relevant literature or calculated based on the conditions in 

Lake Chaohu (Table S4-S6). Temperature corrections were applied to both 

subcooled liquid vapor pressure (Ps25; Pa) and Henry’s law constant (H25; 

Pa·m3/mol) at 25ºC (Lun et al. 1998, Paasivirta et al. 1999). Note that vapor 

pressure for the solid substance of the chemical, which is generally lower than 

that for the subcooled liquid of the chemical, can lead to an overestimation of 

the fugacity capacity of aerosol particles and thus to inaccurate predictions 

(Paasivirta et al. 1999). Sorption of PAH to black carbon (BC) in sediment was 

taken into account. Following previous approaches (Hauck et al. 2007, 

Koelmans et al. 2009), a whole-lake median literature value for the fraction of 

BC in sediment was applied (fBC=0.002). Other parameters for strong sorption 

of PAHs to carbonaceous materials and for metabolic transformation were 

based on Moermond et al. (2007). We used the bioconcentration factors for 

phytoplankton’s matrix and surface (BCFM and BCFS, respectively; m3/kg) 

reported by Del Vento and Dachs (2002), adjusted by the factors kd/(kd +kG) and 

kdes/(kdes +kG), respectively, to account for the dilution effect of growth 

(Koelmans 2014){Koelmans, 1995 #2359}. The parameters kd (1/h), kdes (1/h) and 

kG (1/h) are the depuration rate, the desorption rate of surface, and the growth 

rate of phytoplankton, respectively. Uncertainly exists when these parameters 

are extrapolated to other phytoplankton species (Del Vento and Dachs 2002). 

However, as the experimentally determined values were not available for 

species in Lake Chaohu, we used literature data (Del Vento and Dachs 2002). 

We assumed that species-dependent kinetic factors play a secondary role in 

determining the fate of POPs in aquatic environments, which has been proved 

valid for modeling other HOCs (Dachs et al. 1999). For the remainder, the food 

web accumulation model was parametrized according to previous studies 

(Campfens and Mackay 1997, Arnot and Gobas 2004, Di Paolo et al. 2010). In 

the present modeling approach, none of the parameters was optimized by 

fitting to measured data. 

Model simulations 

Two simulations were conducted. The short-term simulation covered 

the period from May 2010 to April 2012. The long-term simulation covered the 

period from January 1953 to December 2012, i.e. 60 years in total. The short-

term simulation aimed at evaluating the robustness of the model and the 

ability of the model to predict the seasonality of PAH concentrations in Lake 
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Chaohu. The long-term simulation was designed to investigate the impact of 

the catastrophic regime shift on the fate and dynamics of PAHs in the 

catchment of Lake Chaohu. Note that our model is 0-dimensional, which 

suffices for the present study because the lake is assumed to be well-mixed 

both horizontally and vertically. The external conditions were derived from 

our previous study (Kong et al. 2017a), including water inflow and outflow, 

water depth, wind speed, water temperate and precipitation. Other boundary 

conditions such as emission inventories are provided as Supporting 

Information. For the short-term, initial values were the observations from 

March 2010 for concentrations in air and water, complemented with the 

available field observations for the other compartments. For the long-term, 

however, no data were available before the starting date. We assumed initial 

values to be two orders of magnitude lower than the average values for 2008-

2013 based on the concentrations measured in the deepest (oldest) layers from 

sediment cores (Fig. S3). The model was implemented in Matlab (MathWorks 

2002), The differential equations were solved using a fourth-order Runge-Kutta 

method as available in Matlab (ode45), with a simulation time step of 1 hour. 

3. Results and discussion 

Model evaluation in the short-term simulation 

In the short-term simulation, our yearly (2-year for dissolved phase in 

water) average results fit well to the measured data for all modeled 

compartments (Fig. 3); two-thirds of the outcomes with a deviation smaller 

than a factor of 3, one-sixths with a deviation between a factor 3 and 5, and one 

sixths with a deviation between a factor 5 and 10. An acceptable deviation 

between measured and modeled values for contaminant fate models is 0.7 

logarithm units or lower, i.e. a factor smaller than 5 (Cowan et al. 1995). Thus, 

five-sixths of the modeling results fall in the acceptable range. We found that 

model performance for suspended solids, phytoplankton and macrophytes are 

relatively less robust (with larger deviation), particularly for Phe and BaP. 

Moreover, previous studies showed that the underestimation of sorption of 

PAHs to sediment can be due to the neglect of strong nonlinear sorption to 

condensed carbonaceous materials such as BC in the sediment (Moermond et 

al. 2007). Here, the inclusion of sorption to BC significantly improves model 

performance, particularly for the more hydrophobic PAHs, as the deviation 

between measured and modeled concentrations of Pyr and BaP in the sediment 

reduces by approximately one order of magnitude (not shown), to only a factor 

of 2 (Fig. 3). The importance of BC in modeling PAHs sorption in sediment has 
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been previously demonstrated (Hauck et al. 2007). The typical value of the 

fraction (0.002) of BC in aquatic sediments, which is applied in the present 

study, seems to be a reasonable estimation when field data are not available. In 

addition, it has been shown that metabolic transformation at higher trophic 

levels may cause trophic dilution of PAHs in aquatic food webs (Wan et al. 

2007). Here, the inclusion of metabolic transformation has a significant positive 

effect on the outputs of PAHs concentrations in fish and invertebrates (not 

shown), which is crucial to model the bioaccumulation of PAHs in food web 

(Moermond et al. 2007). Overall, our model reconfirms the importance of 

incorporating the processes of BC sorption and metabolic transformation for 

PAH modelling (Hauck et al. 2007, Moermond et al. 2007, Di Paolo et al. 2010). 

On a seasonal scale, the model provides a reasonable match with the 

observations for the three PAHs in the gaseous phase and aerosol particles in 

air. However, the model shows a relatively limited ability to predict seasonal 

variations of PAH concentrations in the water column (dissolved and 

suspended solids) (Fig. S4). More details are provided as Supporting 

Information. The seasonal validation provides more detail on model 

performance, detail that cannot be clearly demonstrated from annual average 

results. For example, better model performance for aerosol particles than for 

the gas phase can be observed from the seasonal simulation data (Fig. S4), but 

cannot be easily seen on an annual average scale (Fig. 3). Overall, the results 

imply that within short temporal scales, the developed model, with all the 

mechanisms above incorporated, is capable of predicting the magnitude in 

most compartments (less than 0.7 logarithm units deviation between measured 

and modeled values for five-sixths of outputs) and seasonal patterns in abiotic 

compartments (air and water) for the three PAH residual concentrations within 

Lake Chaohu. The model was subsequently evaluated using long-term data. 
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Fig. 3. Comparison of measured and modeled concentrations (on a logarithmic 

scale) of Phe (A), Pyr (B) and BaP (C) in all the model compartments averaged 

over the short-term simulation period. Error bars for measured data relate to 

standard deviation (s.d.) of monthly observations on different sample sites 

(May 2010 to April 2012 for water phase, and May 2010 to April 2011 for air, 

aerosol particles and suspended solid), or s.d. obtained from literature (other 

compartments). Error bars for modeled data relate to s.d. of simulation outputs. 

Observations in zooplankton are not available. 
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Fig. 4. Comparison of measured and modeled concentrations of Phe (A), Pyr (B) 

and BaP (C) in sediment solids for the long term simulation (January 1953 to 

December 2012). Measured data are the average values from the two sediment 

cores, and modeled data are plotted as the annual average values of each year. 

 

Model evaluation using long-term simulation 

The 60-year simulation was evaluated against data using the historical 

records in the sediment cores (Fig. 4). The model predictions for the sediment 

show a good match to the long-term historical records, whereas the prediction 

power in other compartments remains untested. Based on the model 

predictions, emission in the lake catchment (Fig. S3) drives the accumulation of 

PAHs in the sediment of Lake Chaohu since the 1950s, which is consistent with 

the positive correlations between PAH emissions and residue levels in 

sediments of Lake Chaohu (Ren et al. 2015). However, the model tends to 

overestimate the concentrations of Phe before 1990 (Fig. 4A). This discrepancy 

may be attributed to the underestimation of biodegradation of low-molecular-

weight PAHs, the effect of which may be much stronger in earlier time. The 

general decreasing trend of PAHs in sediment after the 2000s is in line with the 
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emission data (Fig. S3), which was however not fully captured in the model 

outputs. Multiple factors may contribute to this deviation, such as the absence 

of long-term data regarding BC contents in the sediment. A better model 

prediction may be achieved by using time explicit data of BC content in 

sediment cores. This BC content may have decreased after the 2000s due to a 

higher energy use efficiency (Wang et al. 2014) and enhanced burial. 

Nonetheless, the general agreement between measured and modeled PAH 

concentrations in sediment with respect to both magnitude and temporal 

dynamics implies that long-term model simulation outputs can be used for 

further evaluation. 

Impact of the regime shift on the modeled fate of PAHs 

The regime shift in this lake was characterized by a loss of macrophytes, 

rapidly developing blooms of phytoplankton, a switch in fish community 

towards domination of small zooplanktivorous fish, a strong enhancement in 

sediment resuspension and a substantial increase in suspended solid 

concentration (Fig. S1). The lake state dynamics are nicely represented by the 

vegetation coverage from the PCLake model (Fig. 5A), which agrees well with 

the field data (Kong et al. 2017a).  

Long-term dynamics of the mass distribution for the three modeled 

PAHs among various compartments are simulated for the same period (Fig. 5). 

In general, our modeling results demonstrate that the mass distribution of less 

hydrophobic PAH in the lake is more susceptible to changes in ecological 

structure than that of more hydrophobic PAH (Fig. 5B-D). During the clear 

state (1958-1962), the model shows that a large fraction of Phe in the lake area 

is distributed in the food web (55.6% on average), while the fractions are much 

lower for Pyr and BaP (2.6% and 0.3% on average, respectively). On the other 

hand, during the turbid state after the regime shift (1963-2012), the 

corresponding average values become 0.050%, 0.010% and 0.008% for Phe, Pyr 

and BaP, respectively, and the dominant sinks of the three modeled PAHs in 

the total environment of the lake catchment are soil and sediment. This finding 

agrees with results from indoor mesocosm experiments (Roessink et al. 2010), 

which show that the less hydrophobic and more mobile HOCs are more 

susceptible to ecological changes than the more hydrophobic and less mobile 

HOCs. 
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Fig. 5. Long term model simulations from 1953 to 2012. (A) Vegetation 

coverage from field observations (red dots) and PCLake model simulation 

(black line) (from Kong et al., 2017), which indicates the lake state (clear or 

turbid). (B-D) Modeled chemical mass fractions for Phe (B), Pyr (C) and BaP (D) 

among various compartments in the lake area. (E and F) Modeled average 

relative mass distributions of Phe, Pyr and BaP in water, suspended solids and 

all the biota compartments in the food web during the periods of clear (1958-

1962; E) and turbid (1980-2012; F) states (note that soil and sediment are not 

included). 

 

 

The model further indicates that the higher susceptibility to ecological 

changes for less hydrophobic chemicals is attributable to their higher tendency 

to get absorbed by macrophytes (Fig. 5B) before they get a chance of being 

adsorbed to BC. The model confirms that macrophytes are one of the dominant 

sinks for Phe in addition to soil and sediment in a clear lake basin, which is 

quantitatively in accordance with earlier results from laboratory mesocosm 

experiments mimicking conditions of shallow lakes (Roessink et al. 2010). In 

addition, the fractions of total mass in macrophytes for three modeled PAHs 

decrease drastically with increasing molecular weight (Fig. 5B-D), resulting in 

a lower susceptibility to ecological changes for Pyr and BaP. Both Pyr and BaP 

are primarily bound in soil and sediment rather than in the macrophytes 

because of their stronger sorption to BC than that of Phe (Koelmans et al. 2006). 

Therefore, different sorption abilities to BC of chemicals determine their 

behaviors during regime shifts. More hydrophobic PAHs may be bound 
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primarily to soil and sediment due to stronger BC sorption, thereby being less 

affected by a regime shift within biotic compartments. 

As for modeling PAH bioconcentration by macrophytes, our model 

may leave some room for improvement. Based on previous modeling work 

(Janse 2005), the equation for macrophytes (see the Supporting Information) 

describes the exchange of substances with water and sediment separately, 

whereas it ignores the transport process between root and shoot, and it 

considers the chemicals to be evenly distributed in the macrophyte biomass. 

However, recent work has shown that chemicals were more slowly 

translocated from root to shoot than the other way around (Diepens et al. 2014). 

Consequently, including heterogeneity within the macrophytes and accounting 

for translocation between shoot and root in our model, may further increase 

ecological realism and provide more accurate simulations, especially when 

partitioning to macrophytes is important like during the clear state before 1963 

(Fig. 5). However, parameters regarding uptake and elimination kinetics of 

PAH in sediment-rooted macrophytes are still uncertain and scarce (Diepens et 

al. 2014). More field data, as well as a more comprehensive submodel for 

macrophytes involving heterogeneity, are expected in future research. 

The capacity of macrophytes to store considerable amounts of PAHs, 

i.e. ‘biomass dilution’ (Roessink et al. 2010), results in the depletion of PAHs in 

other environmental compartments, most importantly in biota. The model 

shows that in a clear lake, macrophytes account for 99.7% of Phe mass, 99.2% 

of Pyr mass and 83.1% of BaP mass in the water column above the sediment 

(Fig. 5E). Further indoor experiments have focused on investigating the 

potential of certain macrophytes to become a major storage reservoir for HOCs 

(Schneider and Nizzetto 2012). In addition, macrophytes are modeled to 

stabilize the sediment, thereby reducing resuspension fluxes due to fish 

bioturbation and wind shear stress in shallow lakes (Janse 2005). Consequently, 

the concentrations of suspended solids and PAH in the dissolved phase are 

lower with macrophytes present, due to lower desorption of PAHs from the 

suspended solids and to higher accumulation in macrophytes. We can infer 

that ecological restoration of a turbid lake back to a clear, macrophyte-rich 

state will not only improve water quality, ecological functioning and services, 

but also lead to the redistribution of PAHs in the lake ecosystem where higher 

proportions of PAHs will end up in macrophytes. As a consequence, PAH 

concentrations in suspended solids and biota compartments, as well as the 

toxic effects and ecological risks of these contaminants, may be reduced on an 

annual scale. 

After the lake ecosystem tips into a turbid state, the dominant sinks of 

the three modeled PAHs are primarily soil and sediment, whereas phyto-
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plankton being the primary producer accumulates only a negligible fraction of 

PAH mass in the whole environment (Fig. 5B-D). The predominant roles of soil 

and sediment to determine PAH distribution in an aquatic ecosystem are in 

agreement to earlier studies (Liu et al. 2007, Roessink et al. 2010). However, 

within the water column above the sediment (the soil and sediment 

compartments were both excluded), the model reveals the significant role of 

phytoplankton in the distribution of PAHs, particularly for more hydrophobic 

chemicals such as Pyr and BaP, because 39.7% of Pyr mass and 83.8% of BaP 

mass are associated with the phytoplankton (Fig. 5F). A similar pattern was 

observed in an earlier laboratory study, in which periphyton dominated the 

mass distribution of PAHs in indoor model ecosystems when macrophytes 

were not present (Roessink et al. 2010). This effect also has been recognized for 

pelagic ecosystems (Nizzetto et al. 2012), in which phytoplankton is referred to 

as the ‘biological pump’ (Jurado and Dachs 2008). PCLake shows that biomass 

of phytoplankton is much higher without macrophytes (Fig. S1), primarily due 

to the increase of available nutrients from the dead macrophytes and the 

destabilized sediment. The rapidly increased phytoplankton biomass may bind 

large amounts of PAHs from the dissolved phase, which may promote the 

transfer of PAH from the atmosphere to the water as was suggested before 

(Dachs et al. 1999). In addition, the mortality of phytoplankton may enhance 

the vertical flux to sediment, whereas the absence of macrophytes may also 

result in a higher resuspension intensity. Consequently, the interaction 

between water and sediment possibly is much stronger in turbid than in clear 

lakes, which may enlarge the pool of sediment acting as a sink of PAHs. Our 

study reveals that the capacity of phytoplankton as a storage reservoir of PAHs 

is much lower than that of macrophytes, but the influence of phytoplankton on 

the fate of PAHs in the components of the food web and the aqueous phase can 

be substantial. 

Integrated modeling approach: merits and limitations 

The model developed in the present study has several advantages over 

earlier models. By forcing the contaminant fate model with outputs from the 

PCLake ecosystem model, our model accounts for processes including organic 

carbon cycling, transport and accumulation of PAHs in the foodweb, and 

limnologic processes such as bottom up and top down control, which are 

essential to evaluate the fate of contaminants in lake ecosystems with changing 

nutrient loading (Koelmans et al. 2001). In addition, long-term and intensive 

time series data from field observations in lake ecosystems are usually scarce, 

particularly those covering a time span where regime shifts occur. Complex 
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aquatic ecosystem models describing the main biotic and abiotic components, 

such as PCLake, can be considered as a ‘virtual mesocosm’, the output of 

which can subsequently serve as the supplement of sparse field observations. 

Our model may provide benefits for lake management, for instance to base a 

trigger for sediment PAH remediation on anticipated consequences of 

abatement of eutrophication, which in part have been covered at length in 

earlier literature (Koelmans et al. 2001).  

The toxic effect of PAHs on organisms was assumed to be negligible 

here, because observed PAH concentrations are below the PEC levels (Fig. S2). 

Here the thresholds for PAHs (TEC and PEC) are both consensus-based 

sediment quality guidelines for freshwater ecosystems (MacDonald et al. 2000). 

This, however, may not be true in other cases. After all, PCLake predictions 

without accounting for the toxic effects may be biased because toxicity may 

affect abundances of certain sensitive species (e.g. arthropods), which play key 

roles in food web interactions (Koelmans et al. 2001). Including the toxic effect 

of PAHs in the model would permit to investigate if high PAHs concentrations 

could trigger regime shifts on the ecosystem level. Like all other ecological 

stressors, toxicity of HOCs is known to cause gradual changes on the level of 

individuals (e.g. impairment of individuals), populations and communities (e.g. 

the abundance and diversity of species) (Diepens et al. 2016). Several studies 

have further indicated adverse effects of chemicals, e.g. tributyltin and 

organochlorine pesticides, that break down the feedback mechanisms that 

promote the dominance of macrophytes (Stansfield et al. 1989, Sayer et al. 

2006). The possibility of HOCs to cause regime shifts in lakes may largely 

depend on the systems’ stability, i.e., how far the system is from the tipping 

point, which is generally determined by multiple factors, such as food web 

interaction, trophic state and chemical pollution. 

4. Conclusion 

We provided an integrated ecological and BC-inclusive chemical 

transport and food web accumulation model, which predicted concentrations 

of three different PAH compounds that are consistent with short-term and 

long-term measured data. Model simulations revealed a full picture of the 

impact of demonstrated regime shifts in the shallow lake ecosystem on the fate 

of the PAHs. Also for the first time, historical records from sediment cores 

were used for model evaluation, serving as an alternative way to compensate 

data deficiency.  
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The model revealed that regime shifts in shallow lakes have a stronger 

impact on the fate of less hydrophobic compounds than on more hydrophobic 

compounds due to the large storage capacity of macrophytes, which in the 

studied case accumulated up to 55.6% of Phe in the clear state. The abrupt 

disappearance of macrophytes after the regime shift resulted in a sudden 

change in Phe distribution. For more hydrophobic compounds such as BaP, the 

impact of the regime shift was negligible for the whole environment, yet large 

for biotic components. The present study demonstrates how integrated 

modeling can assist in identifying the central roles of both abiotic components 

(soil and sediment) and biota at the base of the food web (phytoplankton and 

macrophytes) in driving the distribution of PAHs in shallow lakes. 

The present results may have implications for lake management, as 

many shallow lakes around the globe are simultaneously polluted by excess 

nutrient loads and HOCs such as PAHs. A better understanding of their 

interactions may enhance our prediction power on the fate of HOCs, which in 

turn may facilitate the development of sound lake management strategies. 
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Supplementary materials 

Additional Information includes: SI Text for model equations, description 

of modelling water-phytoplankton interactions, methods for PAHs 

measurement in phytoplankton and sediment cores, methods for chronologies 

determination in sediment cores, boundary conditions, and model evaluation 

of seasonal patterns in the short-term simulation. SI Figures include Fig. S1-S5. 

SI Tables include Table S1-S8. 

1. Model equations 

The equations for the abiotic module in the model are as follows: 

 

 
 

where fi (i=1,2,3,4) denotes the fugacity (Pa) in the different 

compartments. The model labelling for the main compartments is: “1” for air, 

“2” for water, “3” for soil and “4” for sediment. 

The dynamics of chemicals in various organisms (i) are described by: 

 2 4

1 1 to      

 

/ + + 
n n

i i i Wi W S Aji j i Wi Ei Mi Gi Pij

j jExchange water Egestion Metabolism Growth dilutionExchange from water and sediment

Food uptake Predation

V Z df dt D x f x f D f f D D D D D
 

 
 

      
 
 
 

 

  
where fi denotes the fugacity (Pa) in different organisms. The food web 

includes eight components: piscivorous fish, zooplanktivorous fish, 

benthivorous fish, zoobenthos, zooplankton, phytoplankton, macrophyte, and 

detritus. 

The method for calculation of each process in the equations above is 

listed in Table S1. Calculation of fugacity capacity (Z; mol/(m3·Pa)) for different 

compartments is given in Table S2. The equation for fish/organisms is 
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Zi=BCFi·i/H, where BCFi and i are the equilibrium bioconcentration factor and 

density for group i, respectively. BCF for phytoplankton and macrophytes 

were derived from literature (Del Vento and Dachs 2002). For the other groups, 

BCF was calculated as the production of lipid fraction (vLB) and Kow. The 

dietary composition matrix for aquatic organisms is given in Table S3. Symbols, 

descriptions, values and sources of all the parameters in the model are listed in 

Table S4-S6. 

2. Modelling the transport of chemicals between water and 

phytoplankton  

Phytoplankton was assumed to be at equilibrium with water as in the 

model from Campfens and Mackay (1997), which, however, may not be 

realistic for hydrophobic compounds for two major reasons: 1) the production 

of new phytoplankton and changing HOC concentrations in water due to 

diffusive air-water exchange both make the time to reach equilibrium much 

longer (Skoglund et al. 1996, Dachs et al. 1999); 2) bioconcentration of HOC in 

algae is rate limited because desorption rate decreases with increasing 

exposure time (Koelmans 2014). The dynamics of chemicals in the 

phytoplankton matrix can be described by equation (1) according to Dachs et al. 

(2000) : 
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where CW (mol/m3) and CP,M (mol/kg) are the PAH concentrations in the 

dissolved phase and the phytoplankton matrix, respectively. ku (m3/(kg·h)) and 

kd (1/h) are the uptake and depuration constants of PAHs in phytoplankton, 

respectively. kG (1/h) is the growth rate of the phytoplankton. 

The chemical uptake flux between water and phytoplankton (FPW; mol/h) is 

calculated by equation (2): 
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where BP (kg/m3) is the phytoplankton biomass; A2 (m2) is the surface 

area of the air-water interface; hmix (m) is the fraction of the water column 

directly influenced by air-water exchange. The product of BP, A2 and hmix gives 

the total biomass of phytoplankton in the lake (kg). FPW represents the total flux 

between water and phytoplankton in the lake.  
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Here we translated the model from concentration-based model to 

fugacity-based format. The term (kd+kG) / ku equates to the reciprocal of the 

bioconcentration factor of the phytoplankton matrix (BCFM; m3/kg), where 

metabolization rate is assumed to be much slower than sorption kinetics 

(kmeta<< kd) (Del Vento and Dachs 2002). As a result, FPW (mol/h) is given by 

equation (3): 
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where fp (Pa) and fW (Pa) are the chemical fugacity in the phytoplankton 

matrix and water, respectively. 𝜌𝑃  (kg/m3) is density of phytoplankton. ZW 

(mol/(m3Pa)) and ZP,M (mol/(m3Pa)) are the fugacity capacity of water and 

phytoplankton matrix, respectively. Here, ZW equates to the reciprocal of 

Henry’s law constant (1/H; mol/Pam3). DWP (mol/(h·Pa)) is the chemical 

exchange from water to phytoplankton. From equation (3), DWP and ZP,M can be 

obtained as 𝐷𝑊𝑃 =  𝐵𝑃𝐴2ℎ𝑚𝑖𝑥𝑘𝑢/𝐻  and 𝑍𝑃,𝑀 =  𝐵𝐶𝐹𝑀𝜌𝑃/𝐻 , respectively. See 

Table S6 for more details. 

Note that some earlier studies described phytoplankton uptake with a 

two-compartment model: uptake from the water to the phytoplankton matrix 

and uptake from the water to the phytoplankton surface (Koelmans et al. 1993, 

Koelmans et al. 1995, Skoglund et al. 1996, Dachs et al. 1999, Dachs et al. 2000, 

Koelmans 2014). However, the sorption to the surface is two orders of 

magnitude faster than that to the matrix (Dachs et al. 1999, Del Vento and 

Dachs 2002). Therefore, for simplification, we assumed that PAH in the 

dissolved phase and at the phytoplankton surface are at equilibrium, and the 

flux of FPW can be calculated simply by equation (3). 

3. Methods for PAHs measurement in phytoplankton 

Samples of the phytoplankton in Lake Chaohu were collected in May 

2012, using a self-developed tool with nylon mesh filter (mesh diameter of 64 

μm; Patent No. ZL201220617775.X) (Jiang et al. 2014). The filters were wrapped 

with aluminum foil and immediately transported to laboratory. Filters were 

frozen (-18°C) until the extraction process. The processes for PAHs 

measurements in the phytoplankton samples were similar to those in the 

sediment samples, which are described in detail below. 

4. Methods for PAHs measurement in sediment cores: sample analysis 

and quality control 
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The sediment cores were cut into 1 cm slices, placed in sealed bags and 

transported back to the laboratory immediately. All samples were freeze-dried 

and milled to 200 mesh sieve prior to solvent extraction. After the addition of 

surrogate standards, sediment samples (10.0 g) were Soxhlet extracted with a 

150 ml mixture of dichloromethane/hexane (1:1 v:v) for 48 h. The extraction 

rate was controlled by a cooling water circulating system. Activated copper 

strips were added to remove elemental sulfur. The extract was concentrated to 

~1 ml and solvent- exchanged to hexane, which was further concentrated to 1 

ml using a rotary evaporator. The extract was added to a glass column packed 

with silica gel (12cm in length and 10mm in diameter). The column was 

washed with 20 ml of hexane, a 70 ml mixture containing hexane and 

dichloromethane (3:7 v:v) to elute the PAH fraction. The extract was condensed 

with a rotary evaporator, solvent-exchanged to hexane and concentrated to 1 

ml under a gentle N2 stream. Before instrumental analysis, a known amount of 

internal standard mixture (Nap-d8, Ace-d10, Ant-d10, Chr-d12 and Perylene-

d12, J&K Chemical Ltd., USA) was added. 

The extracts of the sediment samples were analyzed for the individual 

concentration of 16 PAH compound by a GC-MS (Agilent 6890GC/5973MSD), 

including naphthalene (Nap), acenaphthylene (Acy), acenaphthene (Ace), 

fluorene (Flo), phenanthrene (Phe), anthracene (Ant), fluoranthene (Fla), 

pyrene (Pyr), benz(a)anthracene (BaA), chrysene (Chr), benzo(b)fluoranthene 

(BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), dibenz(a,h) 

anthracene (Di-ahA), indeno(l,2,3-cd)pyrene (IcdP), and benzo(g,h,i)perylene 

(BghiP). A 30 m×0.25 mm i.d. with a 0.25 μm film thickness HP-5MS capillary 

column (Agilent Technology) was used. The column temperature was 

programmed to increase from 60 °C to 280 °C at 5°C min-1 and was then held 

constant for 20 min. The MSD was operated in the electron impact mode at 70 

eV, and the ion source temperature was 230 °C. The mass spectra were 

recorded using the selected ion monitoring mode. 

The quality control process was conducted following our previous 

study on PAHs in the lake environment (Qin et al. 2013a). Internal standard 

method was performed using Nap-d8, Ace-d10, Ant-d10, Chr-d12 and 

Perylene-d12 (J&K Chemical, Beijing, China). Three replicate samples were 

collected from each sample of the sediment core. Laboratory blanks were 

analyzed with the true samples. The values for recoveries and detection limits 

are shown in Table S7 in the supporting information. The PAH recoveries 

varied from 45.5% (Nap) to 96.0% (Pyr). 

5. Methods for chronologies determination in sediment cores 
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Measurements of 210Pb and 137Cs radionuclide activities for the 

sediment samples were conducted using Ortec HPGe GWL series of well-type, 

coaxial, low background, intrinsic germanium detectors (GCW3022 H-P Ge) at 

the State Key Laboratory of Lake Science and Environment of Chinese 

Academy of Sciences (CAS), Nanjing, China. Sediment age determined by 

unsupported 210Pb was based on the composite model for both cores (Appleby 

2001), and the results were in accordance with the 137Cs age (1963 AD). For 

more details see Kong et al. (2017a). 

6. Boundary conditions for model simulation 

Emission inventory 

The annual emission of three modeled PAHs in the Lake Chaohu 

catchment from 1953 to 2012 was calculated (Fig. S3) following the methods 

below. Zhang et al. (2008) provided an annual total PAH (∑PAH) emission 

inventory in China from 1953 to 2005. Shen et al. (2013) estimated that ∑PAH 

emission in China in 2007 was 106,000 tons, whereas the emission from 2008 to 

2030 will decrease by 48%, i.e., approximately 2% per year. We estimated the 

∑PAH emissions from 2008 to 2012 accordingly. The value for 2006 was 

calculated as the average value of ∑PAH emission in 2005 and 2007. The 

annual emissions to the Anhui province (where the lake is located) were 

subsequently calculated using the fact that the Anhui province ranked the 7th 

position in the emission rate (1,200 out of 25,300 tons) (Xu et al. 2006). The 

emissions were further adjusted to the Lake Chaohu catchment according to 

the surface area fraction (1.3×104 km2 of the catchment, about one-tenth of that 

for Anhui province (1.39×105 km2)). In order to apportion ∑PAH to Phe, Pyr 

and BaP emission, data on chemical profiles of the emitted PAHs were used 

(Xu et al. 2006). The annual emission was further downscaled to monthly 

values in proportion to the seasonal pattern for China (Zhang et al. 2008). 

 

 

Other major inputs 

Besides emission to the catchment area, other major inputs include air 

and water advection inflows. For the air advection, we used observations from 

a third sample site at the shore of Lake Chaohu as the concentration in the 

inflow (unpublished data). For the water advection, we used observation from 

sample sites at the entrances of major rivers to the lake as the concentrations in 

the inflows (unpublished data). The method details for sampling and 

measurement were the same as those in our previous studies (Qin et al. 2014, 

Liu et al. 2015b). The total advection inflows for both air and water were 
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calculated monthly following the method in our previous study (Kong et al. 

2014). The values are given in Table S8, together with the estimated monthly 

emission rates for the three modeled PAHs (Phe, Pyr and BaP). For the long-

term simulation, emission data are available (Fig. S3); however, no 

observations were available to calculate the air and water advection inflows. 

We applied a strategy as follows: we used the monthly data for 2011 as the 

reference (Table S8), and estimated the monthly data for the other years (1953-

2010 and 2012; data not shown) based on the ratio of emission rates shown in 

Fig. S3. 

7. Model evaluation of seasonal patterns in the short-term simulation 

On a seasonal scale, deviation ranges over time between measured and 

modeled values (in logarithm units) are 0.10-1.02 (Phe), 0.19-0.95 (Pyr), 0.06-

1.46 (BaP) in gaseous phase; 0.08-0.90 (Phe), 0.01-0.71 (Pyr), 0.08-1.32 (BaP) in 

aerosol particles; 0.09-1.08 (Phe), 0.04-0.42 (Pyr), 0.49-0.69 (BaP) in dissolved 

phase; and 0.03-1.33 (Phe), 0.02-0.95 (Pyr), 0.10-1.25 (BaP) in suspended solids 

in water. The PAH concentrations in the gaseous phase and aerosol particles in 

the air are strongly driven by sources, which are primarily emission from coal 

and biomass combustion. Long-range transport of gaseous and particulate 

PAHs to Lake Chaohu can be considered as another source (Kong et al. 2013), 

but plays a secondary role because atmospheric degradation is significant 

during PAH transport (Hafner and Hites 2003). Moreover, our previous 

modeling study has identified temperature as the most sensitive parameter 

that drives the seasonal variations of hexachlorocyclohexanes (HCHs) in the 

same area (Kong et al. 2014). Here, the temperature dependence of aerosol-

particle partitioning may also contribute to the high concentration of 

particulate PAHs in winter, due to cold trapping of gases at lower 

temperatures (Gustafson and Dickhut 1997). On the other hand, the model 

shows a relatively limited ability to predict seasonal variations of PAH 

concentrations in the water column (dissolved and suspended solids) 

compared to PAH concentrations in the atmospheric phase (Fig. S4). This 

lower prediction power may be explained in two ways. First, our approach 

assumed that the water column is well-mixed, which is often a presupposition 

in 0-dimensional contaminant fate modeling (Mackay and Paterson 1991). 

Nonetheless, some non-uniformity may have contributed to the lack of fit. It 

would be interesting to couple our model to a spatially explicit hydrodynamic 

model in order to address spatial heterogeneity, which contributes to the 

uncertainty of the contaminant fate models (Tao et al. 2003). Second, the 

seasonal dynamics of PAHs cycling in the water column can be driven by both 
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variations in inputs and processes inside the lake. On one hand, major inputs 

to the fraction of PAH in the dissolved phase include river inflows and 

atmospheric input (by diffusion and deposition) (Fig. S5), which has been 

nicely captured. Higher concentrations during summer (Fig. S4) are primarily 

driven by the higher input of PAHs from river inflows (Table S8), which was 

similar to what has been found elsewhere (Lang et al. 2007). A lower dilution 

potential is unlikely to occur in Lake Chaohu during summer because water 

inflows and water levels are both higher (Kong et al. 2017a). On the other hand, 

the variations of PAHs in the water column are also due to many other factors. 

Our samples included the fraction of PAHs adsorbed to dissolved organic 

matter in water column, whereas this process was not incorporated in our 

model at the current stage. In addition, the ageing of organic matter in 

suspended solids may also cause increased fixation of PAHs onto organic 

particles (Koelmans et al. 1997) and further affect the seasonal variations of 

PAHs in water column. The missing mechanisms above may therefore lead to 

limitations of the model in predicting the seasonal variations of PAHs in the 

water column. Nonetheless, the seasonal validation provides more detail on 

model performance, detail that cannot be clearly demonstrated from annual 

average results. For example, better model performance for aerosol particles 

than for the gas phase can be observed from the seasonal simulation data (Fig. 

S4), but cannot be easily seen on an annual average scale (Fig. 3 in the main 

text).  
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Fig. S1. Density of the eight food web components over time during 1953 to 

2012 (daily) obtained from PCLake simulation (Kong et al., 2017). 

Reference:  

Kong, X., He, Q., Yang, B., He, W., Xu, F., Janssen, A.B.G., Kuiper, J.J., van Gerven, L.P.A., 

Qin, N., Jiang, Y., Liu, W., Yang, C., Bai, Z., Zhang, M., Kong, F., Janse, J.H. and Mooij, 

W.M. (2017) Hydrological regulation drives regime shifts: evidence from 

paleolimnology and ecosystem modelling of a large shallow Chinese lake. Global 

Change Biology 23(2), 737-754. 
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Fig. S3. Estimated emission inventory from 1950 to 2012 for the three modeled 

PAHs in the Lake Chaohu catchment. 
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Fig. S4. Comparison of measured and modeled monthly concentrations of Phe, 

Pyr and BaP in air, aerosol particles, water and suspended solids for the short 

term simulation. Measured data correspond to the average of observations for 

each month in different sample sites (2 for gaseous and aerosol particles, and 4 

for water and suspended solids). Note the different time scales for water (May 

2010 to April 2012) and others (May 2010 to April 2011). 
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Fig. S5. Annual average simulated fluxes (mol/h) between compartments for 

Phe (A), Pyr (B) and Bap (C) in the Lake Chaohu catchment from May 2010 to 

April 2012. 
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Table S1  Definitions of the transfer and transformation processes 

Symbol Formula 
Calculation of D 

(mol/(h·Pa)) 
Description 

System 

input: 
   

T01t Q01t×C01t - Air advection flows into the area 

T01h - - Emission to air 

T02t Q02t×C02t - Water advection flows into the area 

T02h Q02h×C02h - Locative wastewater discharge 

System output:   

T10t D10t×f1 D10t=Q10t×Z1 Air advection flows out of the area 

T20t D20t×f2 D20t=Q20t×Z2 Water advection flows out of the area 

T10m D10m×f1 D10m=Km1×A1×h1×Z1 Degradation in air 

T20m D20m×f2 D20m=Km2×A2×h2×Z2 Degradation in water 

T30m D30m×f2 D30m=Km3×A3×h3×Z3 Degradation in soil 

T40m D40m×f4 D40m=Km4×A4×h4×Z4 Degradation in sediment 

T23h D23h×f2 D23h=Q23h×Z2 Agriculture irrigation 

Air-water interaction:   

T12d D12d×f1 
D12d=A2/[1/(K12×Z11)+ 

1/(K21×Z22)] 
Diffusion from air to water 

T21d D21d×f2 D21d=D12d Diffusion from water to air 

T12p D12p×f1 D12p=A2×Kp×X13×Z13 Dry deposition from air to water 

T12w D12w×f1 D12w=A2×Kw×Sc×X13×Z13 Wet deposition from air to water 

T12r D12r×f1 D12r=A2×Kw×Z22 Rain scavenging to soil 

Air-soil interaction:   

T13d D13d×f1 
D13d=A3/[1/(K13×Z11)+ 

1/(K31×Z32)] 
Diffusion from air to soil 

T31d D31d×f2 D31d=D13d Diffusion from soil to air 

T13p D13p×f1 D13p=A3×Kp×X13×Z13 Dry deposition from air to soil 

T13w D13w×f1 D13w=A3×Kw×Sc×X13×Z13 Wet deposition from air to soil 

T13r D13r×f1 D13r=A3×Kw×Z22 Rain scavenging to soil 

Water-soil interaction:   

T32e D32e×f3 - Erosion from soil to water in solids 

T32l D32l×f3 - Erosion from soil to water in liquid 

Water-sediment interactions:  

T24d D24d×f2 
D24d=A2/[1/(K24×Z22)+L4/(B4

×Z22)] 
Diffusion from water to sediment 

T42d D42d×f4 D42d=D24d Diffusion from sediment to water 
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T24s D24s×f2 
D24s=A2×Ks×(Z23×X23+Z2p×

X2p)/(X23+X2p) 

Sedimentation from water to 

sediment 

T42r D42r×f4 D42r= A2×K42r×Z4 Resuspension from sediment to water 

Food web interaction:   

TW DW×(xWf2+xSf4-fi) DWi=ku×h2×Bp×A2×Z22  Exchange with water or porewater in 

sediment  

(phytoplankton and macrophytes) 

DWi=GW×EW×Z22 (Other biota) 

TE DE× fi DEi=DWi /Qi Loss by egestion 

TM DM× fi DMi=kMi×Vi×Zi Loss by metabolism 

TG DG× fi DGi=Zi× (dVi/dt)= kGi×Vi×Zi Loss by growth dilution 

Tf Df× fi Dfi =BCFfi ×Yf/H Loss by harvest (only for fish) 

TA 
1

n

Aij j

j

D f



  

DAij=GAi×EAi×Zj×DTij Uptake from food 

TP 
1

n

i Pji

j

f D



 

DPji=DAij Loss by predation or grazing 

Note: For the calculation of Z please see Table S2. For the definition of the 

parameters and their values please see Table S4-S6. 
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Table S2 Calculation of Z values  

Phase Equations for Z (mol/m3·Pa) 

Air Z11=Z31=1/RT Z1=X11×Z11+ X13×Z13 

Water Z22= Z32= Z42=1/H Z2=X22×Z22+ X23×Z23 

Solid sorbent 

Z13=6×106/PsRT 

Z23=O23×23×Koc/H 

Z43=O43×43×Koc/H 

- 

Soil - 
Z3= X31×Z31+ X32×Z32+ 

X33×Z33 

Sediment - Z4= X42×Z42+ X43×Z43 

Lipid and octanol ZO=Kow/H - 

Fish/Organism Zi=BCFi×i/H=vLB×i×ZO - 

 

Table S3 Dietary composition matrix for aquatic organisms (based on Kong et 

al., 2016)  

No. Group Pisc. fish Zoopl. fish Bent. fish zoobenthos zooplankton 

1 Pisc. fish 0 0 0 0 0 

2 Zoopl. fish 0.8 0 0 0 0 

3 Bent. fish 0.2 0 0 0 0 

4 zoobenthos 0 0 0.9 0 0 

5 zooplankton 0 0.9 0.05 0.6 0 

6 phytoplankton 0 0.1 0 0.4 0.4 

7 macrophytes 0 0 0.05 0 0 

8 detritus 0 0 0 0 0.6 

 
sum 1 1 1 1 1 

 
Reference:  

Kong, X.; He, W.; Liu, W.; Yang, B.; Xu, F.; Jørgensen, S. E.; Mooij, W. M., Changes in food 

web structure and ecosystem functioning of a large shallow Chinese lake during 1950s, 

1980s and 2000s. Ecol. Model. 2016, 319, 31-41. 
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Table S4  Environmental and universal mass transfer kinetic parameters for 

the contaminant fate model 

Symbol Unit Parameters Reference 
Data 

Numbers 

Geometric 

mean 

Geometric 

S.D. 

Static parameters 

A2 m2 Interface areas of air/water 1,2 2 7.581E+08 1.004E+00 

A3  m2 Interface areas of air/soil 1 1 1.04E+10 1.000E+00 

h1 m Thickness of air 1,10 2 1.000E+02 1.413E+00 

h3 m Thickness of soil 1,10 2 5.000E-01 1.479E+00 

h4 m Thickness of sediment 1,10 2 1.000E-01 1.479E+00 

O33 % 
Contents of organic carbon in 

soil 
1,7-11 6 6.296E-03 1.577E+00 

O43 % 
Contents of organic carbon in 

sediment 
1-3, Note A 61 7.920E-02 1.720E+00 

R Pam3/molK The gas constant - 1 8.310E+00 1.000E+00 

X31 v/v Volume fractions of air in soil 1, 7-11 6 2.500E-01 5.000E-02 

X32 v/v 
Volume fractions of water in 

soil 
1, 7-11 6 2.500E-01 5.000E-02 

X33 v/v 
Volume fractions of solids in 

soil 
1, 7-11 6 5.000E-01 1.000E-01 

X42 v/v 
Volume fractions of water in 

sediment 
4, 7-11 6 7.000E-01 1.022E+00 

X43 v/v 
Volume fractions of solids in 

sediment 
4, 7-11 6 3.000E-01 1.077E+00 

23 t/m3 Densities of solids in water 1,4 2 1.200E+00 1.158E+00 

33 t/m3 Densities of solids in soil 1, 8-11 5 2.568E+00 1.537E-01 

43 t/m3 Densities of solids in sediment 1,4 2 2.760E+00 1.176E+00 

Yf kg/h Fish production rate 1,5 2 5.710E-01 1.183E+00 

rd μm Diameter of phytoplankton Note A,6 13 8.717E+00 2.048E+00 

K24 m/h 
Water-side molecular transfer 

coefficient over sediment 
7-11 5 1.000E-02 1.585E+00 

K42 m/h 
Sediment-side molecular 

transfer coefficient over water 
1, 7-11 6 5.390E-06 1.520E+00 

KS m/h Water sedimentation rates 12 3 1.655E-06 1.254E+00 

L4 m 
Diffusion path lengths in 

sediment 
7-11 5 5.000E-03 1.912E+00 

KP m/h Dry deposition velocity 7-11 5 1.039E+01 1.056E+00 

Sc - Scavenging Ratio 4, 7-11 6 1.200E+05 2.144E+00 

Ul m/h Runoff rate of dissolved phase 10 1 1.240E-05 1.000E+00 

Ue m/h Runoff rate of solid phase 10 1 1.100E-07 1.000E+00 

S % 
Degree of oxygen saturation of 

water 
- 1 1.00E+02 1.000E+00 

nF - 
Freundlich coefficient for 

sorption to black carbon 
13 1 7.000E-01 1.000E+00 

fBC - 
Black carbon fraction of solids 

in sediment 
13 1 2.000E-03 1.000E+00 
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Dynamic parametersb 

h2 m Depth of water 14 17520 2.970E+00 1.296E+00 

O23 % 
Contents of organic carbon in 

solids in water 

4,15,Note 

A 
24 7.829E-02 1.900E+00 

X13 v/v Volume fractions of solids in air Note A 24 7.628E-11 1.562E+00 

X23 v/v 
Volume fractions of solids in 

water 
Note A 24 1.263E-05 2.007E+00 

Tc K 
Local average temperature in 

air 
16 730 2.889E+02c 9.747E+00c 

Twa,c K 
Local average temperature in 

water 
16 730 1.270E+01 2.587E+00 

W m/s Wind speed 16 730 1.083E+00 1.521E+00 

DO mg/m3 
Concentration of dissolved 

oxygen in water 
Note A 730 1.127E+01 1.285E+00 

Q01t 

(=Q10t)a 
m3/h 

Air advection flow in and out of 

the area 
Note B 24 1.878E+11 1.471E+00 

Q02ta m3/h 
Water advection flow into the 

area 
1,17-19 24 3.373E+05 3.217E+00 

Q20ta m3/h 
Water advection flow out of the 

area 
1,17-19 24 4.189E+05 3.072E+00 

Q02ha m3/h 
Rate of local wastewater 

discharge 
1 24 4.656E+04 1.447E+00 

Q23h m3/h Irrigation rates 1 24 9.264E+04 2.066E+00 

Kwa m/h Wet deposition velocity 16 730 1.332E-04 5.958E+00 

K42ra m/h Sediment resuspension rate 1, Note C 730 2.558E-05 1.702E+00 

a Calculate from air temperature according to Ref. 20 
b Values for both short-(2010.5-2012.4) and long-(1953.1-2012.12) term simulation 

were collected, only short term values are given here. 
c Normal distribution assumed 

Note A: Measured 

Note B: Calculated according to air thickness and wind speed. 

Note C: Calculated according to method in the reference. 
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Table S5 Chemical specific parameters for the contaminant fate model 

Symbol Unit Parameters Reference 
Data 

Numbers 

Phe Pyr Bap 

Geometric 

mean 

Geometric 

S.D 

Geometric 

mean 

Geometric 

S.D 

Geometric 

mean 

Geometric 

S.D 

PS25 Pa 

Subcooled 

liquid vapor 

pressure at 25℃ 

1-8 8 1.150E-01 2.209E+00 1.510E-02 4.153E+00 1.540E-05 6.695E+00 

F25 - 
Fugacity ratio at 

25℃ 
1 1 2.080E-01 1.000E+00 1.570E-01 1.000E+00 3.850E-02 1.000E+00 

H25 Pam3/mol 
Henry’s 

constant at 25℃ 
2-7 6 4.332E+00 1.375E+00 1.352E+00 1.244E+00 1.445E-01 2.103E+00 

BF - 

Fugacity ratio 

temperature 

correction factor 

1 1 8.616E+02 1.000E+00 8.954E+02 1.000E+00 9.066E+02 1.000E+00 

BH - 

Henry’s law 

constant 

temperature 

correction factor 

1 1 2.120E+03 1.000E+00 2.475E+03 1.000E+00 3.558E+03 1.000E+00 

BPS - 

Subcooled 

liquid vapor 

pressure 

temperature 

correction factor 

1 1 2.982E+03 1.000E+00 3.370E+03 1.000E+00 4.465E+03 1.000E+00 

KOC m3/t 
Adsorption 

coefficient 
2-6 5 1.811E+04 1.121E+00 2.405E+05 2.479E+00 2.482E+06 2.171E+00 

Km1 1/h 
Degradation 

rate in air 
2-4,6,8 5 2.457E-02 4.902E+00 9.827E-03 5.811E+00 7.923E-03 3.600E+00 

Km2 1/h 
Degradation 

rate in water 
2-4,6,8 5 5.397E-04 1.776E+00 4.096E-04 1.177E+00 4.689E-05 3.254E+00 

Km3 1/h 
Degradation 

rate in soil 
2-4,6,8 5 1.400E-05 1.743E+00 2.900E-05 2.313E+00 9.600E-06 1.426E+00 

Km4 1/h 
Degradation 

rate in sediment 
2-6,8 6 1.636E-05 3.022E+00 1.349E-05 3.141E+00 1.893E-05 1.952E+00 

B1 m2/h 

Molecular 

diffusivities in 

air 

2-6 5 1.998E-02 1.474E+00 1.310E-02 1.015E+00 1.402E-02 1.004E+00 

B2 m2/h 

Molecular 

diffusivities in 

water 

2-6 5 2.182E-06 1.404E+00 1.990E-06 1.010E+00 2.087E-06 1.012E+00 

B4 m2/h 

Molecular 

diffusivities in 

sediment 

2-6 5 1.171E-10 1.291E+03 2.895E-11 1.003E+00 1.634E-12 1.043E+00 

lgKow - 

Octanol-water 

partition 

coefficient 

7-9 3 4.553E+00 1.006E+00 5.180E+00 1.000E+00 6.020E+00 1.006E+00 
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BCFv m3/kg 

Bioconcentration 

factor of 

vegetation 

4,6 2 1.350E+06 1.019E+00 6.330E+05 1.004E+00 2.200E+05 1.229E+00 

BCFM m3/kg 

Bioconcentration 

factor of 

phytoplankton 

matrix 

10 1 1.500E+01 1.225E+00 6.900E+01 1.225E+00 1.3240E+03 1.225E+00 

BCFs m3/kg 

Bioconcentration 

factor of 

phytoplankton 

surface 

10 1 2.400E+01 1.269E+00 1.420E+02 1.269E+00 2.220E+02 1.269E+00 

ku m3/(kg·d) 

Uptake rate 

constant by 

phytoplankton 

matrix 

10 1 6.340E+00 1.418E+00 4.040E+01 1.418E+00 1.545E+03 1.418E+00 

kd 1/h 

Depuration rate 

constant by 

phytoplankton 

matrix 

10 1 4.100E-01 1.184E+00 5.800E-01 1.184E+00 1.170E+00 1.184E+00 

kad m3/(kg·d) 

Adsorption rate 

constant by 

phytoplankton 

surface 

10 1 4.030E+03 4.810E+00 3.858E+03 4.810E+00 3.409E+03 4.810E+00 

kdes 1/h 

Desorption rate 

constant by 

phytoplankton 

surface 

10 1 1.679E+02 2.636E+00 3,870E+01 2.636E+00 1.530E+01 2.636E+00 

K12a m/h 

Air-side 

molecular 

transfer 

coefficient over 

water 

11, Note 

A 
730 8.175E+00 1.417E+00 8.012E+00 1.432E+00 7.174E+00 1.432E+00 

K21a m/h 

Water-side 

molecular 

transfer 

coefficient over 

air 

11, Note 

A 
730 4.181E-03 1.498E+00 4.063E-03 1.538E+00 3.638E-03 1.538E+00 

T01ha mol/h Emission rate Note B 24 3.606E+01 1.103E+00 1.394E+01 1.103E+00 3.944E+00 1.103E+00 

C01ta mol/m3 
Concentration in 

air advection 
Note C 24 1.210E-10 2.045E+00 2.859E-11 1.547E+00 1.024E-13 3.411E+00 

C02ta mol/m3 

Concentration in 

water advection 

inflow 

Note C 24 7.248E-07 2.341E+00 1.105E-07 2.195E+00 9.005E-09 2.430E+00 

C02h mol/m3 

Concentration in 

wastewater 

inflow 

12 1 2.669E-05 1.650E+00 1.320E-06 1.650E+00 5.120E-08 1.650E+00 

Note A: Calculated according to method in the reference. 
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Note B: Estimated 

Note C: Measured. 
a Dynamic parameters for simulation 
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Table S7 Recoveries and detection limits for PAHs in sediment cores 

Abbr. PAHs Recoveries (%) Detection limits (μg·L-1) 

Nap Naphthalene 45.5 0.5 

Ace Acenaphthene; 79.7 0.5 

Acy Acenaphthylene 73.8 1.0 

Flo Fluorene 76.7 0.5 

Phe Phenanthrene 95.1 0.5 

Ant Anthracene 85.1 0.5 

Fla Fluoranthene 95.3 0.5 

Pyr Pyrene 96.0 0.5 

Baa Benzo[a]anthracene 93.9 1.0 

Chr Chrysene 95.0 1.0 

Bbf Benzo[b]fluoranthene 95.3 1.0 

Bkf Benzo[k]fluorant hene 95.1 1.0 

Bap Benzo[a]pyrene; 88.8 1.0 

DahA Dibenz[a,h]anthracene 89.0 1.0 

IcdP Indeno[1,2,3-cd]pyrene 85.5 1.0 

BghiP Benzo[ghi]perylene 91.2 1.0 
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Table S8 Boundary conditions for the short-term model simulation 

Year Month 

Phe  Pyr  BaP 

T01ta 

(mol/h) 

T01ha 

(mol/h) 

T02ta 

(mol/h) 

 

T01t 

(mol/h) 

T01h 

(mol/h) 

T02t 

(mol/h) 

 

T01t 

(mol/h) 

T01h 

(mol/h) 

T02t 

(mol/h) 

2010 

5 9.09E-03 3.26E+01 6.91E-01 3.47E-03 3.00E+00 2.14E-02 8.54E-05 3.56E+00 2.73E-03 

6 1.17E-02 1.16E+01 3.90E-01 2.69E-03 2.46E+00 2.51E-01 3.82E-05 3.68E+00 3.20E-03 

7 1.03E-02 1.20E+01 3.71E-01 3.59E-03 3.67E+00 6.67E-01 4.03E-06 3.92E+00 8.50E-03 

8 1.76E-02 1.03E+01 1.52E+00 5.46E-03 5.11E+00 3.49E-01 4.74E-05 3.86E+00 4.45E-03 

9 2.43E-02 9.26E+00 9.66E-01 1.91E-03 1.91E+00 4.65E-01 1.16E-05 3.71E+00 5.93E-03 

10 1.60E-02 8.71E+00 1.25E+00 2.45E-03 2.83E+00 1.03E-02 1.47E-05 3.71E+00 1.31E-03 

11 1.84E-02 9.01E+00 2.11E+00 3.72E-03 4.40E+00 3.89E-03 4.06E-05 4.19E+00 4.96E-04 

12 4.48E-02 9.58E+00 2.67E+00 1.16E-02 9.64E+00 6.46E-03 6.70E-06 4.48E+00 8.23E-04 

2011 

1 1.02E-01 9.45E+00 9.82E-01 3.64E-03 3.80E+00 5.24E-03 2.10E-05 4.62E+00 6.67E-04 

2 3.23E-02 9.06E+00 1.06E+00 4.58E-03 4.28E+00 7.16E-03 4.85E-06 4.80E+00 9.13E-04 

3 3.39E-02 9.06E+00 3.84E-01 3.13E-03 3.06E+00 1.33E-02 3.88E-06 4.12E+00 1.69E-03 

4 1.13E-02 1.02E+01 9.23E-01 2.63E-03 2.15E+00 4.57E-03 1.98E-06 3.71E+00 5.82E-04 

5 8.41E-03 1.10E+01 1.21E-01 3.67E-03 3.00E+00 1.35E-02 9.03E-05 3.49E+00 1.72E-03 

6 1.05E-02 1.05E+01 4.34E-01 2.58E-03 2.46E+00 6.10E-02 3.66E-05 3.61E+00 7.78E-02 

7 1.19E-02 1.09E+01 2.57E-01 3.76E-03 3.67E+00 7.46E-02 4.21E-06 3.84E+00 9.50E-02 

8 1.47E-02 9.37E+00 9.52E-01 5.23E-03 5.11E+00 6.16E-02 4.54E-05 3.78E+00 7.85E-02 

9 3.06E-02 8.43E+00 5.54E-01 2.04E-03 1.91E+00 9.75E-03 1.24E-05 3.63E+00 1.24E-03 

10 1.83E-02 7.92E+00 7.60E-01 2.71E-03 2.83E+00 1.30E-02 1.62E-05 3.63E+00 1.66E-03 

11 2.07E-02 8.20E+00 1.45E+00 4.21E-03 4.40E+00 1.38E-02 4.60E-05 4.10E+00 1.76E-03 

12 4.00E-02 8.72E+00 1.64E+00 8.37E-03 9.64E+00 5.27E-03 4.84E-06 4.39E+00 6.72E-04 

2012 

1 7.81E-02 8.60E+00 1.08E+00 3.30E-03 3.80E+00 6.48E-03 1.91E-05 4.52E+00 8.26E-04 

2 4.71E-02 8.24E+00 1.60E+00 4.10E-03 4.28E+00 1.92E-02 4.35E-06 4.69E+00 2.45E-03 

3 3.50E-02 8.24E+00 6.58E-01 3.40E-03 3.06E+00 2.33E-02 4.22E-06 4.03E+00 2.96E-03 

4 1.01E-02 9.32E+00 8.72E-01 2.29E-03 2.15E+00 1.56E-02 1.73E-06 3.63E+00 1.99E-03 

Note (a): T01h : Emission rate; T01t : Air advection inflow rate; T02t : Water advection 

inflow rate.   
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1. Introduction 

In this chapter, I first synthesize the data from this thesis obtained from 

two shallow lake ecosystems with distinct states (clear state, Lake Small 

Baiyangdian, and turbid state, Lake Chaohu) and present field evidence on 

how eutrophication interacts with contamination. Then, I go through the 

chapters in this thesis, summarize the efforts in modeling development 

towards an integrated ecological and chemical fate model (i.e. EUTOX 

framework (Koelmans et al. 2001)), discuss in detail the advantages of our 

model over other existing models with similar objectives, indicate the 

limitations of our modeling tool, and finally propose future directions for 

investigating interactions between eutrophication and contamination in 

shallow lake ecosystems. In particular, I emphasize the importance to 

incorporate the ecological model PCLake into our model framework and to 

appropriately apply advanced uncertainty analysis tools (Bayesian Markov 

Chain Monte Carlo) for contaminant fate models. Furthermore, I point out the 

missing components for simulating toxic effects and spatial heterogeneity in 

the current modeling configuration, and propose a more comprehensive 

modeling framework (EUTOX-S) that includes EUTOX components and also 

hydrodynamic models for lakes, which serves as the potential direction for 

future modeling development. In addition, I propose a novel ‘golden triangle’ 

conceptual framework for limnologic research in the future, which combines 

contemporary observations, paleo-observations and models. This strategy has 

facilitated our research in investigating how critical transitions in shallow lake 

ecosystems affect fate and transport of contaminants, which also may be 

promising in other multidisciplinary approaches to lake research. 

2. Fate of contaminants in lakes with distinct ecological 

states 

Understanding the mass distribution of contaminants in lakes with 

distinct ecological structure is crucial for the management of contaminants in 

floodplain lakes in either clear or turbid states. In this thesis, my colleagues 

and I have collected data for 16 PAHs with priority attention in various 

compartments of two shallow lakes in China, i.e. Lake Small Baiyangdian, a 

vegetation-dominated lake and Lake Chaohu, a phytoplankton-dominated lake. 

Note that many factors are different between these two lakes, including climate, 

intensity of PAHs discharge and social-environmental conditions. Therefore, 

direct comparison of PAHs residual levels in both lakes is inappropriate. 
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However, it would be interesting to compare the PAHs mass distributions over 

different compartments, thereby facilitating the quantitative assessment of the 

impact of ecological states and processes on PAHs behavior in shallow lakes. 

PAHs data, as well as the basic catchment/lake characteristics, were 

synthesized from Chapters 2 and 6. Additional PAHs data in macrophytes 

from Lake Small Baiyangdian were obtained elsewhere from our group (Zhu et 

al. 2009, Qin et al. 2012). Data was available for the water column, suspended 

solids, fish, macrophytes and sediment in both lakes. Considering that 

sediment was the major sink for PAHs, it was excluded from the following 

analysis to obtain a clear picture of PAHs distribution in water column. 

 

 
Fig. 1. Distribution of total PAHs (∑16PAHs) in the water-suspended solids-

fish-macrophytes system in (a) Lake Small Baiyangdian (clear state), and (b) 

Lake Chaohu (turbid state) during contemporary sampling. 

 

(a) Lake Small 
Baiyangdian 

(b) Lake Chaohu
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I observed distinct features in the mass distribution of total PAHs (∑

16PAHs) in Lake Small Baiyangdian and Lake Chaohu (Fig. 1). In Lake Small 

Baiyangdian, ∑16PAHs distributed equally between the water column and the 

macrophytes, while Lake Chaohu exhibited the dominating role of the water 

column as a sink for PAHs in the pelagic compartments above the sediment. In 

both lakes, the total mass of ∑16PAHs in suspended solids and fish was 

negligible, despite their equal or relatively higher ∑16PAHs concentrations 

compared to those in water (Chapter 2 and 6). The PAHs data for 

phytoplankton was not available for Lake Small Baiyangdian, but the Chl-a 

concentration was relatively lower than that in Lake Chaohu, primarily due to 

the competition and suppression of macrophytes (Xu et al. 2011a). As a result, 

the contribution of phytoplankton to the profile of PAHs in Lake Small 

Baiyangdian was low. This finding was consistent with the modeling results in 

Chapter 6, where distinct features of PAHs distribution in the water column of 

the lake were predicted before and after the regime shifts in lake ecosystems. 

The data synthesis from both lakes for multimedia distribution of PAHs 

provided evidence for the substantial impact of ecological processes on 

contaminant behavior in shallow lake ecosystems. 

The results from this thesis further support the hypothesis that complex 

interactions occur between eutrophication and contamination in shallow lakes, 

which can be described by two frameworks, i.e. the interactions between 

nutrients and organic contaminants (Skei et al. 2000, Roessink et al. 2008, 

Roessink et al. 2010) and community ecology (Rohr et al. 2006, Halstead et al. 

2014). In the present study, scavenging of contaminants by macrophytes, as the 

‘Type II mechanism’ among the four mechanisms for interaction (Roessink et al. 

2008), plays a critical role. The interaction framework by Roessink et al. (2008) 

mainly focused on the cycling of contaminants, but contained less detail on 

toxic effects on the lake at a system level. On the other hand, the community 

ecology framework by Rohr et al. (2006) may explicitly illustrate the direct and 

indirect toxic effects, but remains incapable to address the interaction between 

contamination and eutrophication. I therefore propose to take the advantages 

of the two frameworks by combining them into a comprehensive modeling 

approach (EUTOX; see below), which may shed new light on understanding of 

the interaction between eutrophication and contamination in shallow lakes. 

3. A step towards an integrated ecological and chemical 

fate model (EUTOX) 

What is an EUTOX model?  
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The concept of EUTOX (EUtrophication and TOXicant) model was 

proposed by Koelmans et al. (2001). EUTOX models are expected to simulate 

the fate and food chain accumulation of different contaminants of prior 

attention at varying trophic states in aquatic environments (Koelmans et al. 

2001). To achieve this goal, an EUTOX model needs to integrate four single 

issue models, namely, an eutrophication model, a food web model, a 

contaminant fate model and a food chain accumulation model. These single 

issue models should be linked by the following processes (Koelmans et al. 

2001): 

1) Cycling of organic carbon and interaction between contaminants and 

organic matter. 

2) Acute and chronic toxicity of contaminants and the impact on food web 

structure and ecosystem functioning. 

3) Food web accumulation of the contaminants. 

4) Impact of nutrient cycling on food web structure and functioning, 

particularly phytoplankton as the primary producers. 

A step towards an EUTOX model 

The model developed in this thesis is expected to make a step towards 

the development of a full EUTOX model. In brief, my colleagues and I have 

developed a model consisting of the four single issue modules as described 

above, which is per se a typical fugacity-based contaminant fate model linked 

to a food web accumulation model and an aquatic ecosystem model for 

shallow lakes (PCLake) (Fig. 2). 

At the beginning, my coauthors and I started from building a 

contaminant fate model at steady state, i.e., a level III fugacity-based 

multimedia model (Chapter 2). This model was developed based on the 

QWASI framework (Mackay et al. 1983a) with several modifications in our 

study (see Chapter 2 for details), serving as the basis for the modeling 

approach throughout this thesis. This model focused on the abiotic processes 

of contaminants in the lake environment including the cycling of organic 

carbon and its interaction with contaminants, while the bioaccumulation by 

several biological components (water plants and fish) were also incorporated. 

However, food chain accumulation was not considered. Besides, the model 

was at steady state so that neither inter- nor intra- year dynamics was 

simulated. This model fulfilled the first requirement for an EUTOX model. 
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Fig. 2. Conceptual framework of the model developed in this thesis (after 

Koelmans et al., 2001). The four single issue models are shown in the boxes and 

their links are given by the arrows in between. All the required links of EUTOX 

models have been accomplished, except for toxicity (dashed arrow), which is 

currently not considered, yet expected to be accomplished in the near future. 

 

 

My coauthors and I then applied the model above to several other 

contaminants of prior concern (α-HCH, γ-HCH, PFOA and PFOS; Chapter 3-5), 

while we also made great efforts in understanding, investigating and 

upgrading the model. We extended the model from steady state (Level III) to 

dynamic (Level IV), which enabled the model to simulate seasonal variations 

(Chapter 3-5) and long-term dynamics on a decadal scale (Chapter 3 and 4) of 

contaminants in shallow lakes. In addition, we performed a sensitivity analysis 

on the model for each of these contaminants in order to understand the model 

behavior and the most influential components.  

I consistently found that for studies in the eutrophic Lake Chaohu with 

abundant algae biomass, our model usually underestimated the contaminant 

level in the suspended solids (Chapter 3-5). I hypothesized that our field 

samples of suspended solids included the pelagic plankton, which was not 

considered in the modeling framework. The model simulated the sorption of 

the contaminant to the organic matter in the suspended solids, while the 

impact of plankton remained unclear. 

PCLake

model
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My coauthors and I therefore incorporated the processes of nutrient 

cycling, ecosystem dynamics and food web accumulation into our model 

(Chapter 6). This was achieved by coupling the aquatic ecosystem model 

(PCLake) and a food web accumulation model (Arnot and Gobas 2004) into the 

contaminant fate model. The integrated model not only resolved the 

unsatisfactory performance of our model with respect to suspended solids, but 

also served as a bridge between ecological and chemical modeling that 

embraced the complex interaction between ecological processes and chemical 

transport in shallow lakes. Requirements three and four for EUTOX models 

were therefore accomplished. 

Advantages of our model 

I compare our model to some other integrated models with similar 

objectives and application domain (GBMB, AQUATOX, and CATS-5), 

following the features of the model proposed for EUTOX (Koelmans et al. 2001) 

(Table 1). Surprisingly, development of these integrated models for simulation 

of both ecological and chemical processes is relatively slow, and continuous 

efforts are only performed for a few models such as AQUATOX (Park et al. 

2008). 

 

 
Table 1. Comparison of integrated modelsa 

Name of the models This study GBMB AQUATOX CATS-5 

General characteristics     

Number of trophic levels in food 

chain/number of components in food 

chain 

4/14b 4/7 Flexible, user-

definedl 

3/7 

Focus on food web or specific target 

organism 

Food web Food web Food web Food web 

Type of toxicants  HOC HOC Organic 

chemicalsl 

HOC 

Steady state (SS) or dynamic model Dynamic Dynamic Dynamic Dynamic 

Generic or specific Generic Generic Generic Generic 

Type of environment Shallow lakes Lakes Streams, 

ponds, lakes, 

reservoirs, 

estuary 

Shallow lakes 

Dimensions 0 2, 

+stratification 

0, 

+stratification 

0 

Level of special aggregation 

(fine/rough)  

Rough Rough Rough Rough 

Time step  Daily NC Average daily 

conditions 

< 1 day  

 (variable) 
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Validation.  

Tested against real data (which 

system) 

+Lake Chaohu, 

Lake Small 

Baiyangdian 

+Green Bay, 

Lake Michigan, 

Fox river 

+Lake 

Onondaga, 

Coralville 

reservoir, Lake 

Ontario, etc. 

+microcosm 

data 

Useful tool for long-term predictions + + +l -c 

Useful for management scenario 

studies 

+ + + + 

(possible) connection with 

hydrodynamic model 

+d + (included) + - 

(possible) connection with loading 

model (especially for non-point 

sources) 

+e NC + l (link to 

SWAT) 

+(but not used 

for cosm data) 

Biotic and physical compartments     

Ecosystem components     

Primary producers     

Macrophytes + 6 typesf - + 2 types + 

Phytoplankton + 3 types + + 3 types + 2 types 

Periphyton (algae on sediment or 

plants) 

- - + + 

     

Herbivores     

Zooplankton + + + + 

Molluscs +g -h +l + 

Herbivorous fish +g + + - 

Detrivores (shredders) - - + + 

**Omnivores (fish) +g - +l - 

**Benthivores (fish) + - +l - 

Carnivores     

Carnivorous macrofauna +g - + + 

Carnivorous fish + + + - 

Decomposers (m.o., bacteria) - - - + 

Benthic organisms + - + + 

Particulate organic carbon/detritus  + + Detritusi + 

Dissolved organic carbon +g + Detritusj + 

     

Physical compartments     

Sediment compartments (active 

surface layer? Dynamic/constant 

fluxes) 

Active surface 

layer, 

burial layer, 

Dynamic fluxes. 

Active 0–4 cm 

layer, 4–12 

mixed layer, 

Dynamic 

fluxes. 

Active surface 

layer, 

burial layer, 

refractory 

and labile，

Dynamic 

fluxes. 

0–10 cm 

mixed，

Dynamic 

fluxes. 
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**Soil (terrestrial area in the 

catchment) 

+ - - - 

Water + + + + 

Air + + + - 

     

Fate of nutrients, carbon and 

contaminants 

    

Fate of nutrients/organic matter     

N balance + + + +k 

P balance + + +l + 

Organic matter balance + + +l + 

Sedimentation + + +l + 

Resuspension + + +l + 

Advection + + +l NC 

Dispersion + + Only vertical NC 

     

Fate of toxic compound     

Transport     

Advection + + +l Homog mixed 

Dispersion + + Only vertical Homog mixed 

Transformation of toxic compounds     

Hydrolysis +m +n + + 

Photolysis +m +n + + 

Biodegradation +m +n + + 

Sorption     

Sorption to phytoplankton + + + + 

**Absorption by phyto-/zoo-

plankton 

+ - - - 

Sorption to macrophytes + - + + 

Sorption to sediment + + + + 

Sorption to suspended solids/POC + + + + 

Sorption to DOC - + + - 

Sorption to exudates/faeces - - +l - 

Sorption to animals (fish etc.) + (fish as a 

whole) 

- + (gills&guts) - 

Sediment-water exchange     

Diffusion of toxic compounds + + +l + 

Air–water exchance/volatilisation + + + + 

Bioconcentration + + + -o 

Elimination of toxic compounds 

from biota 

+ + + -o 
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Bioaccumulation/biomagnification + + + - 

Comparison of models: biology and 

effects 

    

Biology     

Mineralisation + + + +(first order) 

Algal growth (light/nutrient/temp 

dependent) 

+(l/n/t) +(l/n/t) + +(monod)p 

Algal losses 

(respiration/decay/sedimentation/ 

grazing/wash-out) 

+ +r/d/s/w +r/d/s/g/wj + 

Growth terms for ecosystem 

components 

+ - + Macrophyte 

(droop) 

     

Effects     

Acute toxicity - - + + 

Chronic toxicity - - + + 

Occurrence of changes in chemical 

environment (pH/T/redox) 

+T, redox - +Tq, (pH) NC 

Note: this table is designed and updated after Koelmans et al. (2001). 
a  (+): present;   (-) not present;  NC: not clear;   **: new items in this study compared 

to Koelmans et al. (2001). 
b The food web is typically consisted of 4 trophic levels (TL) and 14 components: 

(TL=4) carnivorous fish; (TL=3) zooplanktovorous, benthovorous fish; (TL=2) 

zooplankton, zoobenthos; (TL=1) cyanobacteria, green algae, diatom, detritus 

(both pelagic and sediment), macrophytes. 
c Applicable to study short term ecological responses to environmental 

perturbations, such as changes in loading or the effects of pesticides. 
d PCLake model has been connected to Delft3D (Janssen et al. 2017) and two other 

hydrodynamic models, GOTM and GETM (Hu et al. 2016). 
e PCLake model has been connected to SWAT model as the catchment loading 

models (Nielsen et al. 2017). 
f PCLake model can include six types of macrophytes via connecting to PCDitch 

(Van Gerven et al. 2017). 
g This component is added to PCLake model when it was applied in the sub-

tropical shallow lake (Lake Chaohu) (Kong et al. 2017a). 
h A herbivorous invertebrate is modelled, for instance a mollusk. 
i Detritus is defined including all non-living organic matter (dissolved and 

particulate) and the associated decomposers bacteria and fungi. 
j Also excretion is modelled and this changes algal biomass. 
k Descriptions of primary productivity and nutrient cycles are from PCLake (Janse 

et al. 1992). 
l Updated for AQUATOX after Koelmans et al. (2001). 
m The three transformation processes are modelled as a lumped decay rate. 
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n Degradation of the toxic compound in air, water and soil is modelled probably as 

a lumped decay rate. 
o included in precursor model CATS-2 (Traas et al., 1994). 
p Temperature responses included. pH will be included in the next version. 
q Temperature is incorporated in the PCLake modules for macrophytes and algae, 

but not functional in the microcosm implementation (constant temperature). 

 

 

From the comparison I found that, first, our model showed several 

advantages over the other models, mainly because PCLake was utilized as the 

ecological module in our model framework. By incorporating PCLake, my 

coauthors and I utilized the modeling strength associated with the 

development of PCLake itself and incorporation of PCLake with other 

modeling tools. PCLake model in this modeling approach served as the 

combined eutrophication and food web model described in the EUTOX 

framework (Koelmans et al. 2001). PCLake is capable of simulating the nutrient 

cycling, primary production dynamics and the trophic interactions in shallow 

lake ecosystems at both short- and long-term temporal scales. The strength of 

PCLake model has been illustrated by the determination of critical nutrient 

loading (Janse 2005, Janse et al. 2008), prediction of cyanobacterial blooms in 

the context of climate change (Nielsen et al. 2014, Trolle et al. 2014), and also by 

investigating the food web stability in shallow lakes via coupling to a classic 

Lokta-Volterra type food web model (Kuiper et al. 2015). Therefore, in this 

thesis, PCLake was applied to provide food web structure information for the 

bioaccumulation model, and to offer critical parameters for environmental 

processes in the contaminant fate model, which has proven its feasibility 

(Chapter 6). In addition, food web structure of PCLake can be modified so that 

our model may overcome the issue of most integrated models that the food 

web structure is fixed rather than flexible, as pointed out by Koelmans et al. 

(2001). Moreover, our integrated model is capable of long term simulations for 

contaminant exposure and food web bioaccumulation (Chapter 6), which is 

proposed as one of the challenges for integrated modeling (Koelmans et al. 

2001). This advantage is mainly attributed to the food web module in PCLake. 

PCLake is under continuously development to broaden its application 

domain. The model has been adapted to ditch systems and to sub-tropical 

shallow lake ecosystems by adding more essential abiotic and biotic 

components (Fragoso et al. 2011, Kong et al. 2017a, Van Gerven et al. 2017). In 

addition, it has been connected to hydrodynamic models including Delft3D, 

GOTM and GETM (Fragoso et al. 2011, Hu et al. 2016, Janssen et al. 2017), 

which also paves the way for the contaminant fate model to be linked to 
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hydrodynamic modeling. A recent study combined PCLake to the lake 

catchment model (SWAT) so that effect of land use changes on nutrient loading 

and ecological processes in lakes can be tested (Nielsen et al. 2017). The 

contaminant fate and food web accumulation modeling may therefore benefit 

from these fruitful developments in aquatic ecosystem modeling.  

Another strength of using PCLake is that I can test the impact of critical 

transitions on contaminant fate and transport in shallow lakes. It is 

hypothesized that a regime shift in a shallow lake may exert large impacts on 

the chemical cycling of HOCs, due to the significant reconfiguration of food 

web structure and ecosystem functioning. However, the corresponding model 

simulations cannot be realized unless an ecosystem model, such as PCLake 

that is capable of mimicking the nonlinear patterns along the eutrophication of 

shallow lakes, is incorporated. As a result, my coauthors and I have simulated 

how regime shifts in shallow lakes alter the fate and transport of contaminants 

(Chapter 6). The integrated model may also identify the major players and 

underlying mechanisms in driving these changes, thereby focusing on the 

question: how ecological processes may interact with the biogeochemical 

cycling of contaminants in shallow lakes (Skei et al. 2000). These outcomes may 

have profound implications on the decision making and management policy 

with respect to shallow lakes, which are subject to both severe eutrophication 

and HOC contaminations (e.g. Lake Chaohu). 

I consider PCLake as a ‘virtual mesocosm’ of shallow lake ecosystems, 

which enables researchers to investigate lakes in silicon. By providing essential 

and reliable information for the other approaches such as food web modeling 

and contaminant food web accumulation modeling, which rely on the external 

input of biomass data, PCLake may have a much broader application domain 

beyond the current research field in shallow lake ecosystems. 

Our model also contains more components than the other models, such 

as the soil compartment in shallow lake catchments, more types of 

macrophytes and fish (Table 1). Besides, our model accounts for more 

processes, such as absorption of contaminants by plankton, which would be 

critical in understanding the partitioning of HOC between water and 

phytoplankton (Table 1). This is particularly essential for eutrophic lakes with 

abundant algae blooms (Dachs et al. 2000, Nizzetto et al. 2012). Last but not the 

least, my coauthors and I have also developed our model for specific lake 

systems. This would provide concrete case studies for specific lake ecosystems, 

so that the model can provide a detailed description on the chemical behavior 

in specific systems. 
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4. Uncertainty analysis of contaminant fate models 

It is critical to quantify the uncertainty in model simulations and 

predictions. The robustness and reliability of models relies on the total model 

uncertainty, including inherent variability (due to spatial and/or temporal 

variations) and true uncertainty (due to uncertainty in model structure and 

parameters) (McKone 1996). It is the true uncertainty that is usually addressed 

in uncertainty analysis, which could be reduced by incorporating more 

components into the fugacity models, such as vegetation (Diepens et al. 2014) 

and dissolved organic matter (Li et al. 2015). For the true uncertainty of model 

parameters, the Monte Carlo method has been commonly used as the standard 

tool (see Chapter 2, 3 & 5). I found that the ascertained uncertainty of the 

contaminant fate model could span 1-2 orders of magnitude (Chapter 5), with a 

coefficient of variation (CV) up to 60% (Chapter 2). This phenomenon exists 

not only in our study but also in other fate modeling studies with similar 

model configuration (Tao et al. 2003, Cao et al. 2004, Tao et al. 2006, Lang et al. 

2007). I consider this a key challenge that should be resolved before the 

contaminant fate model can be employed in scenario predictions. 

My coauthors and I therefore sought to improve our uncertainty 

analysis by using more advanced algorithms, i.e. Bayesian Markov Chain 

Monte Carlo (MCMC) simulations. We observed that the MCMC method 

eliminated 77% of the true uncertainty in the model predictions for the water 

column estimated by the traditional Monte Carlo method (Chapter 4). This 

indicates that a major part of the uncertainty ascertained by the traditional MC 

algorithm may be redundant, so that uncertainty for the contaminant fate 

model in the earlier studies may be largely overestimated. This is mainly 

attributed to the manually-defined probability distributions for the model 

input parameters, particularly those with a high impact on the model (i.e. high 

sensitivity coefficients). This issue is, however, difficult to resolve because the 

data for the proper determination of many parameters are usually limited, 

thereby reducing confidence in and reliability of fate modeling (Saloranta et al. 

2008). 

I consider Bayesian MCMC an adequate tool for estimating uncertainty 

of contaminant fate models for two reasons. First, for contaminant fate 

modeling, I could obtain or assume prior distributions of most parameters 

from literature and/or laboratory experiments, which may or may not comply 

with their theoretical ranges. Bayesian MCMC is, however, capable of 

continuously updating the parameter priors towards a better fit between the 

simulated and observed data, thereby refining the model parametric space and 
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reducing the redundant uncertainty of the model predictions in a proper 

manner. Second, during the simulations of Bayesian MCMC, the contaminant 

fate model has been actually calibrated, which was not possible before due to 

large deviations between modeled and observed data (up to one order of 

magnitude) (Cao et al. 2004). Overall, Bayesian MCMC may reconcile the 

dilemma of ‘cannot be calibrated’ for fate modeling, which has raised doubts to 

many environmental and ecological modelers. I propose that the Bayesian 

MCMC may become a standard tool for not only contaminant fate modeling, 

but also other modeling approaches subject to manual calibration, such as the 

lake ecosystem modeling using PCLake. 

5. Limitations and future perspectives 

The other way around?  

The present model focuses on the impact of ecological processes on the 

fate, transport and transformation of contaminants in shallow lakes. However, 

on the other way around, the model has not incorporated the potential toxic 

effects of contaminants on lake ecosystems (Fig. 2 and Table 1). As a result, 

requirement two for EUTOX framework has not been fulfilled yet, which 

remains a critical step towards a fully-functional EUTOX model. The current 

model configuration is reasonable only if the toxic effects from the residual 

level of the contaminants are insignificant and can be neglected (such as the 

PAHs in Lake Chaohu; see Chapter 6), which would be, however, violated 

when the contaminant levels increase beyond the thresholds for toxic impact. 

Intensive evidence from the literature has shown that contaminants, 

especially HOCs, may cause gradual changes on the level of individuals (e.g. 

impairment of individuals), populations, and communities (e.g. the abundance 

and diversity of species), and may also trigger nonlinear critical transition due 

to their toxic effects on keystone species, which dampen the feedback 

mechanisms that maintain the stability and resilience of the ecosystems 

(Stansfield et al. 1989, Sayer et al. 2006, De Laender et al. 2016). The negative 

impacts of chemical pollution on the human well-being has been addressed 

within the framework of a ‘safe operating space’ for humanity, whereas the 

planetary boundary for chemical pollution remains unquantified (Rockström et 

al. 2009). The boundary or the ‘threshold’ for chemical pollution may be 

convenient to determine for individual species or populations using statistical 

tools such as species sensitivity distributions (SSD) based on experimental data 

(Xu et al. 2015), but may remain challenging to be quantified on the ecosystem 

or regional level. 
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It has been proposed that community ecology may serve as a tool to 

investigate the toxic impact of the emerging contaminants on the ecosystems 

(Rohr et al. 2006). The analogy, e.g., ‘pesticide-as-predator’ or ‘pesticide-as-

competitor’, may facilitate the investigation of the toxic effects of chemical 

pollution, particularly the ‘indirect effects’ on one species caused by other 

species or factors directly affected by contaminants, thereby better predicting 

the indirect effects of contaminants on the ecosystem (Rohr et al. 2006, 

Halstead et al. 2014). One limitation of this method is that bottom-up effects in 

food webs are difficult to evaluate because abiotic components such as nutrient 

are usually not directly considered in the community ecology framework. 

Although this framework may remain difficult to apply practically by 

environmental scientists, it sheds light on how to unify environmental and 

ecological research, and to utilize the fruitful discoveries from community and 

system ecology researches.  

Spatial heterogeneity and “EUTOX-S” 

Another limitation of the model in this thesis is that spatial variation 

has not been considered. This may be negligible for small lakes such as Lake 

Small Baiyangdian, but may become problematic for large lakes such as Lake 

Chaohu. Though I observe fair agreement between modeled and observed data 

in most of the studies for Lake Chaohu, incorporation of spatial explicitly 

modeling remains a critical step towards a more comprehensive framework 

(EUTOX-S) (Fig. 3). Spatially explicit multimedia fate models have unraveled 

critical factors that drive the spatial patterns of contaminants at regional and 

global scales for terrestrial systems (Wania and Mackay 1995, Zhu et al. 2015). 

It is found that spatial distributions of contaminants in air are generally 

determined by emission inventory, whereas distributions in soil are controlled 

by the spatial distributions of soil organic carbon (Tao et al. 2003, Wang et al. 

2011a, Liu et al. 2014). Several modeling studies focus on the spatial patterns of 

contaminants in river systems (Ao et al. 2009, Wang et al. 2012a, Quik et al. 

2015), while those on lakes are rare. When modeling contaminants in lakes, the 

water column is usually assumed to be well mixed. Horizontal and vertical 

fluxes of contaminants could be stronger in the water column than in soil. This 

feature may, on one hand, alleviate the spatial heterogeneity of contaminants 

in lakes, but on the other hand may transport the contaminant to a large scale 

and create a more complicated spatial pattern of contamination, particularly in 

case of point sources in lakes. Therefore, hydrodynamic models will play a 

vital role in EUTOX-S models with spatial recognition, which may simulate 

water and contaminant fluxes between spatial compartments and predict 
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spatial patterns of water contamination (Fig. 3). Fortunately, the recent 

advancements in hydrodynamic models for aquatic systems (Hu et al. 2016, 

Janssen et al. 2017) shed light on the spatial approach outlined above. 

 

 
Fig. 3. Conceptual diagram of the ‘EUTOX-S’ modeling framework to be used 

in future studies. 

 

Model accuracy 

In model development, it is important to strive at a deviation between 

simulated and observed data as low as possible. For aquatic ecosystem 

modeling, criteria for model performance evaluation have been proposed and 

tested (Arhonditsis and Brett 2004). However, such criteria for quantifying 

ecological model performance are not applicable, for contaminant fate 

modeling. Instead, my coauthors and I used a threshold of 0.7 logarithm units, 

i.e. a factor smaller than 5, as the acceptable deviation between measured and 

modeled values for contaminant fate models. This criterion was proposed 

elsewhere (Cowan et al. 1995) and has been applied in several earlier fate 

modeling studies (Cao et al. 2004, Tao et al. 2006, Wang et al. 2011a), where 

deviations below a factor of 3-4 are considered to represent a good consistency 

between modeled and measured concentrations. This may sound unreasonable 
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for environmental modelers, who may raise the question how for a 

contaminant at the concentration of 1.0 μg/m3, a model that predicts a range 

from 0.2 to 5.0 μg/m3 can be acceptable? I argue that, this is, in fact, acceptable. 

Due to the relatively larger dispersion of contamination concentrations in the 

various compartments in the environment than limnologic indicators (such as 

nutrient levels, dissolved oxygen and algae biomass), I argue that it is not 

possible to request the fate models to fit to the field observations as good as 

those in aquatic ecosystem modeling. The inherent variability of data for 

contamination is so large that the acceptable magnitude of deviation in 

contaminant fate models may be higher. Besides, for prediction of the fate of 

contaminants in ecosystems, an order of magnitude is usually sufficient for 

managers in decision making, while accurate predictions are usually 

unnecessary. This is similar to identification of disease from human pathogens 

in medical caring, in which the power of the bacteria abundance value is all the 

doctors need for diagnosis. Nevertheless, ecological and health risk assessment 

would benefit more from fate models with higher prediction accuracy. Overall, 

it is still relevant to set up a standardized evaluation system for contaminant 

fate models. I recommend to develop different criteria for different model 

types depending on the objectives and requirements. 

Seasonal variations 

Seasonal variations of contaminants in aquatic systems have been 

extensively addressed in field studies (Ridal et al. 1996, Carlson et al. 2004, 

Zheng et al. 2010), whereas modeling approaches remain scarce. I find that the 

performance of our model in capturing the seasonality of contaminants in 

various compartments in the lake environment remains uncertain. For some 

contaminants (HCHs) the model performed relatively well (Chapter 3 and 4), 

but not for others (PAHs and PFSAs) (Chapter 5 and 6). 

At the very beginning of fugacity models development, the motivation 

for Level IV models was to predict the residual levels of contaminants in the 

environment in response to significant changes in the source (Mackay 1979). 

Simulating seasonality of contaminant behavior has rarely been the main 

objective of fugacity modeling, which is in fact also difficult. This is because 

too many factors, alone or together, could become the dominant driver(s) of 

the seasonality of the contaminants in the environment. These factors include 

the seasonal variations in the source, climate and biological components, etc., 

the importance of which varies for different contaminants with distinct 

chemical properties, as well as for sites with different characteristics. For 

example, uncertainties in the emission inventories and limited knowledge of 
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fate and behavior of PAHs are proposed to be the major reason for the 

unpredicted seasonality of PAHs (Prevedouros et al. 2004). On the other hand, 

modeling based on detailed seasonal emission inventories showed much 

higher performance in predicting seasonality of PAHs (Lang et al. 2007). Also, 

seasonal variations in HCHs were well predicted using models with dynamic 

temperature and precipitation data as external conditions (Breivik and Wania 

2002), which is also the case in our studies (Chapter 3 and 4). For arctic lakes, 

the seasonality of contaminants largely depends on the variations of long-

range atmospheric transport driven by the global climate system (Wang et al. 

2009, Hallanger et al. 2011). In addition, for eutrophic lakes with abundant 

algae blooms, the seasonality of contaminants may be largely influenced by the 

life cycles of cyanobacteria, which may play a major role in driving the fate of 

contaminants in both freshwater and marine systems (Dachs et al. 2000, Meijer 

et al. 2009, Nizzetto et al. 2012). Therefore, to predict seasonal variations of 

contaminants in lakes, I suggest to first identify the major factor(s) in driving 

the seasonality of the contaminants in lakes, and then to incorporate these 

factors into the modeling approach. On the other hand, I propose to be 

cautious when using fugacity-based models for seasonality predictions of 

contaminants, because the relatively large uncertainty in model predictions as 

discussed above may mask the true variations in seasonal variations. 

Future perspectives 

I propose that coupled ecosystem and contaminant fate & effect models 

may provide more reliable tools to address the direct and indirect effects of 

contaminants on aquatic organisms. Our approach not only incorporates the 

trophic interactions in the food web, but also involves the biogeochemical 

processes in the ecosystems, particularly C, N and P cycling, which links the 

abiotic and biotic components (Fig. 3). These two types of models are mutual 

beneficial, as ecosystem dynamics in highly polluted systems are strongly 

driven by the toxic effects of contaminants, while the fate of contaminants is 

also determined by the carbon cycles in the lakes. This advantage over the 

classic community ecology approaches enables us to further predict the 

implications of toxic contaminants on the ecosystem level involving the biotic 

components and their interactions. 

I further propose to fulfil the need for managing contaminants under 

the EUTOX-S framework (Fig. 3), which makes it fit to the urgent requirements 

of end users including water boards, consultancy agencies and scientific 

researchers. We need to focus on those contaminants which are highly toxic to 

aquatic organisms, and with the potential of triggering drastic changes in 
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aquatic ecosystems. EUTOX-S models will cover various aquatic ecosystems, 

including lakes, ditches and streams, thereby helping water managers to: 1) 

quantitatively understand the causality between the external conditions (such 

as contaminant discharge, nutrient loading and hydrological cycles) and the 

response quality variables (such as contaminant levels in water and various 

organisms) in the water body on both spatial and temporary scales; 2) identify 

the contaminant thresholds for ecosystem stability and resilience under various 

external conditions, below which the ecosystem will operate within the “safe 

operating space” and health risks for human beings will remain at an 

acceptable level; and 3) make prognosis for the effects of different management 

options, thereby providing hints for policy making. Based on these results, it is 

possible to evaluate the impacts of contaminants and the combined effects with 

other external stressors (such as nutrients, hydrology, climate) on aquatic 

ecosystems, understand how far away we are from a tipping point towards a 

repulsive ecosystem state (e.g., turbid, algae-dominant state in lakes), and set 

up targets for contaminant discharge. Overall, based on EUTOX-S, we can 

develop a new model for ecological risk assessment of contaminants, which 

will serve as a new option for water quality evaluation and direct the future 

aquatic ecosystems management from both environmental and ecological 

aspects. 

6. A ‘golden triangle’ framework of contemporary 

observations, paleo-observations and models 

Based on the methodology in this study, I further propose a ‘golden 

triangle’ framework for the evaluation of fate, transport and transformation of 

contaminants in lakes, which consists of contemporary pelagic observations, 

paleo-observations and environmental modeling using a EUTOX-S framework 

(Fig. 4).  
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Fig. 4. A ‘golden triangle’ framework of for contaminant research in lakes 

 

 

The strength in combining contemporary ecology and paleolimnology 

to investigate lake ecosystem dynamics on multiple timescales has been 

emphasized (Sayer et al. 2010). Contemporary limnology provides critical 

insights into the structure and functions of lake ecosystems such as interactions 

between organisms on a short-term timescale (<1–15 years), whereas 

seasonality, inter-annual variation and noisy multiple structuring forces may 

obscure underlying patterns (Sayer et al. 2010). On the other hand, 

paleolimnology records unravel the ecological dynamics of lakes on a much 

longer time scale (centuries to millennia) than the reach of contemporary 

monitoring data (Sayer et al. 2010, Randsalu-Wendrup et al. 2014), which 

however, largely rely on the assistance of contemporary limnology to 

reconstruct transfer functions from proxies (such as diatom assembly) to single 

environmental variables (such as TP) (Chen et al. 2011). The key opportunities 

of this transdisciplinary approach are to yield long-term records of lake 

histories, thereby facilitating the investigation of the response of the lakes to 

external stressors such as nutrient loads and climate change on a much broader 

temporary scale. Therefore, it has been strongly advocated to link paleo-

limnology to current aquatic ecology, which provide a valuable long-term 

dimension to our understanding of shallow lake responses to human activities 

(Smol 1990, Battarbee et al. 2005). 

In addition, a recent study from my colleagues and I combines 

contemporary limnology, paleolimnology and ecosystem modeling, which 

provided deeper insights into a shallow lake system dynamics over a decadal 
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scale (Kong et al. 2017a). The ecosystem modeling approach serves as a new 

dimension to the field records from the lake water column and sediment cores, 

on which we can reconstruct and predict lake ecosystem dynamics under 

distinct scenarios. This new dimension therefore provides us with a better 

understanding of the major drivers and underlying mechanisms. I therefore 

advocate this ‘golden triangle’ to be applied in future limnology studies, which 

particularly focus on long-term ecosystem dynamics. 

The advancement in limnological research may inspire environmental 

scientists on toxicant research, as a similar ‘golden triangle’ strategy may also 

apply (Fig. 4). Despite the intensive literature on sediment records of historical 

contaminants (Sayer et al. 2006, Kang et al. 2015, Ren et al. 2015), contemporary 

evaluation (Tao et al. 2017) and the fate modeling discussed extensively above, 

studies that combine the strengths from these three research domains are 

scarce. Residual levels of contaminants in sediment cores show the trends on 

the longer-term and provide background information for the current pollution 

status. It is essential to assess the current status and ascertain the pollution 

level while acknowledging the data from pristine state of the lake, which may 

also provide insights in how system-level ecological changes affect the fate and 

transport of contaminants. In addition, contemporary evaluation reveals the 

patterns of contaminant distributions in the lake environment, with which 

environmental scientists can understand the processes related to the cycling of 

these substances in lakes. Furthermore, the strengths of the integration of 

pelagic monitoring, sediment data and modeling are reflected in the here 

presented study on PAHs in Lake Chaohu (Chapter 6), in which my coauthors 

and I unravel how abrupt changes in shallow lake ecosystems alter the fate and 

transport of PAHs. The model is validated by field data from both 

contemporary and paleo records, and is subsequently used to reconstruct the 

fate and transport of PAHs in different components of the lake on a decadal 

scale. This cannot be achieved by analysis of the field data itself. If 

contemporary monitoring in lakes is like taking a photo of a train during its 

journey without a full temporary records (Smol 1990), I propose that the 

‘golden triangle’ can serve as a video recording part of the train’s journey that 

are of particular interested. Overall, it will enhance our power to understand 

the past of lake ecosystems and to foresee how they will change in the future. 

7. Conclusion remarks 

Freshwater ecosystems generate a wide range of supporting services 

that sustain human well-beings. However, the last several decades bears 
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witness to increasing anthropogenic pressures that globally led to a substantial 

degradation of aquatic ecosystems. The pressures of an increasing population 

and growing food demand have resulted in a rapid expansion of agricultural 

land use and an excessive application of fertilizers, leading to intensified 

eutrophication and water quality deterioration in adjacent lakes. Meanwhile, 

freshwater ecosystems in highly populated areas suffer from the increasing 

contamination with hazardous chemicals due to intensive industrial and 

agricultural activities. These contaminants can accumulate in the aquatic food 

web, thereby threatening ecological functions due to toxicity to organisms, or 

human health due to direct consumption. This is for example the case for many 

large shallow lakes in China. The environmental effects of both eutrophication 

and contaminants in shallow lakes cannot be predicted from each process 

alone. Therefore, understanding the interactions between them using data 

from both contemporary pelagic and paleolimnolgic samples, and further 

implementation of modeling approaches on the basis of a systematic 

framework (e.g. EUTOX-S) for simulation and prediction, is a prerequisite for 

ecological and human health risk assessment. In turn, this may inform 

environmental management and policy profoundly. 
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Summary 

Freshwater ecosystems in highly populated areas suffer from graduate 

or abrupt ecological changes during eutrophication and increasing 

contamination of toxic hydrophobic organic compounds (HOCs), which are 

among the key issues for scientific research and aquatic ecosystem 

management. This is particularly the case for many shallow lakes in China. The 

behavior of HOCs in aquatic ecosystems is largely associated with the 

biogeochemical cycle of carbon and the dynamics of primary producers. 

Consequently, the changes in ecological structure due to the eutrophication 

will alter the fate, transport and transformation of HOCs in the lake 

environment. Understanding the behavior of HOCs in aquatic ecosystems 

under distinct nutrient loading and in specific ecological states is therefore a 

prerequisite for ecological and human health risk assessment, which in turn 

may inform management and policy. 

For the issue above, integrating ecosystem and contaminant fate 

models are required to obtain accurate prognoses. However, such integrated 

modeling tools are still limited in both model availability and completeness of 

process description. To this end, an integrated contaminant and ecological 

model has been developed in this thesis. The model is composed of one 

contaminant fate module (CF), one food web accumulation module (FW) and 

one ecological module (EM). To test our model, abundant field observations 

have been collected for three groups of HOCs with prior attention, i.e. 

hexachlorocyclohexanes (HCHs), polycyclic aromatic hydrocarbons (PAHs) 

and Per- and polyfluoroalkyl substances (PFASs), in multiple media (gaseous, 

aerosol particles, dissolved phase in water, suspended solids, sediment pore 

water, sediment solids) from two Chinese shallow lakes that are currently in 

distinct ecological states, i.e., Lake Small Baiyangdian (clear state) and Lake 

Chaohu (turbid state). Fate, transport and bioaccumulation of the HOCs in the 

two lakes, as well as the impact of regime shifts in Lake Chaohu on PAHs 

distributions over the last several decades, have been explicitly investigated 

using the modeling tool. 

In Chapter 2, a basic version of the model including the CF module and 

a simplified FW module has been developed. The model was applied to 

characterize the fate of fifteen priority PAHs in Lake Small Baiyangdian, a 

typical macrophyte-dominated shallow lake. The PAH concentrations in the air 

(air, particulates), water (water, suspended solids, plants and fishes) and 

sediment (water and solids) as well as the transfer fluxes between adjacent 

compartments were derived under the steady-state (Level III). For most PAHs, 
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the model simulation showed good agreement to the measured data, with 

differences within one order of magnitude. Sensitivity analysis revealed that 

temperature was the most influential parameter for the model, and that the 

model sensitivity increase from low- to middle- and high-molecular-weight 

PAHs, which were considered as the source contributing to the model 

uncertainty. The model further unraveled that the net transfer directions of 

PAHs were from air to water and subsequently to sediment, indicating the 

sediment as the major sink for the contaminants. In addition, we observed that 

the average bioaccumulation flux of PAHs by aquatic plants was four times 

higher than that by other biological components such as fish, which implies the 

predominant role of the macrophytes in driving the cycling of HOCs in 

shallow lake ecosystems. This motivated us to further investigate the PAHs in 

the other lake (Lake Chaohu) in which the macrophytes are absent due to 

eutrophication (Chapter 6). 

In Chapter 3, seasonal variations of α-hexachlorocyclohexane (α-HCH), 

one of the HCHs isomer, in a typical phytoplankton-dominated shallow lake 

(Lake Chaohu) were simulated using a level-IV fugacity model developed 

based on the model in Chapter 2. We collected monthly data over one year, 

and we observed good agreement in seasonal dynamics between calculated 

and measured values except for suspended solids (SS) in the water column, 

which might be due to the missing sorption process of plankton components 

that were in fact included in SS samples. In addition, sensitivity analysis was 

conducted for both stable and dynamic parameters. We found a higher 

sensitivity of parameters related to input and degradation processes, because 

the major source of α-HCH was input from atmospheric advection, while the 

major environmental outputs were atmospheric advection and sediment 

degradation. We further concluded that temperature variation was the 

predominant factor in driving the dynamics of the α-HCH in different 

compartments of the lake. Uncertainty of the dynamic model simulations was 

evaluated using basic Monte Carlo simulations, where we found relatively 

large model uncertainty as simulations in some compartments may span up to 

one order of magnitude. 

In Chapter 4, we applied the level IV contaminant fate model above 

(with slight modification in structure) to simulate both long-term inter-year 

dynamics (1984-2020) and intra-year seasonal variation of γ-Hexachloro-

cyclohexane (γ-HCH, another HCH isomer) in various environmental media in 

Lake Chaohu. Data for γ-HCH were available from a one-year sampling, while 

limited records for water and fish were also collected back to the 1980s. 

Modelled data were generally consistent with the observations in both long- 

and short- simulations. For uncertainty analysis, both basic Monte Carlo and a 
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more advanced algorithm, the Bayesian Markov Chain Monte Carlo (MCMC) 

method, were undertaken and the results were compared. Results from the 

basic Monte Carlo method showed that the dispersion for each media were less 

than two orders of magnitude, but remain unacceptable for accurate 

predictions due to redundant uncertainty from overestimated variation in the 

relevant parameters. The MCMC method, on the other hand, eliminated 77% of 

the model true uncertainty (for water phase) ascertained by basic Monte Carlo 

method, and significant elimination in other phases can be speculated. We 

concluded that the MCMC method can not only allow “calibration” of 

contaminant fate model, but also remove the overestimated uncertainty in 

model predictions which is critical for the positive evaluation on the reliability 

of the model. 

In Chapter 5, we further applied the level IV contaminant fate model 

described above to characterize the fate, transport and transformation of PFOA 

and PFOS, both of which are among the per- and polyfluoroalkyl substances 

(PFASs) that have received substantial attention due to abundant applications, 

environment persistence, and potential threats to ecological and human health. 

To validate our model, we collected data in Lake Chaohu over two years (2013-

2015). We found reasonable agreement between the measured and modeled 

concentrations in various compartments. This result confirmed the reliability of 

our model to predict the fate of emerging HOCs such as PFOA and PFOS in 

shallow lake ecosystems, in addition to traditional HOCs such as OCPs and 

PAHs. Furthermore, we conducted both sensitivity and uncertainty analysis, 

not only on parameters but also on processes dictating fate of PFOA and PFOS 

in lakes. The model revealed the critical role of nonlinear Freundlich sorption, 

which contributed to a variable fraction of the model true uncertainty in 

different compartments (8.1%-93.6%). Additional scenario analyses further 

elucidated the importance of nonlinear Freundlich sorption for reliable model 

performance. This finding provided new insights for the research on PFASs, 

for which the sorption mechanism to organic matter is still unclear. In addition, 

our model identified the major sources and input pathways of PFOA and PFOS 

into the lake water column, as the major sources are indirect soil volatilization 

and direct release from human activities for PFOA and PFOS, respectively. 

In Chapter 6, we developed an integrated ecological and contaminant 

fate model composed of CF, FW and EM modules. This integrated model was 

successful in simulating long-term dynamics (1953-2012) of representative 

PAHs in the main biotic and abiotic components in Lake Chaohu, which has 

undergone regime shifts in this period. Both contemporary and historical 

records from pelagic and sediment core samples were used to evaluate the 

model performance. Due to the large storage capacity of macrophytes, regime 



Summary 

244 

shifts in shallow lakes were found to exert a strong impact on the fate of less 

hydrophobic compounds. Sediment became the major sink after the abrupt 

disappearance of macrophytes, resulting in a sudden change in phenanthrene 

distribution in lake. On the other hand, the modelled impact of the regime 

shifts on more hydrophobic compounds, such as benzo(a)pyrene, was 

negligible for the whole environment, yet large for biotic compartments. 

In Chapter 7, I proposed several remarks and perspectives. The 

transdisciplinary works in this thesis stand on the research fields of aquatic 

ecology and environmental chemistry in shallow lake ecosystems, which 

emphasize the interaction between eutrophication and contamination in lakes. 

Though the importance of this interaction has been realized for quite some 

time, modeling efforts on this issue remain scarce. The modeling approach in 

this thesis has made a step towards an integrated ecological and chemical fate 

model (i.e. EUTOX framework) that may fill this research gap. I also proposed 

a more comprehensive modeling framework (EUTOX-S), including EUTOX 

components and hydrodynamic models to address spatial variations. I 

suggested that by embracing the outcomes in aquatic ecosystem modeling (e.g. 

Delft3D as the hydrodynamic model, PCLake as the ecosystem model), new 

insights and discoveries may emerge for the research on organic contaminants 

in these systems that cannot be achieved by contaminant fate modeling itself. 

We also advocated to add the modeling approach as the third dimension in the 

emerging research strategy combining contemporary and paleo-observations, 

which together become the ‘golden triangle’ as the multidiscipline framework 

for limnologic research in the future. 

In conclusion, this thesis underlines the significance of incorporating 

ecological knowledge in assessing the environmental behavior of HOCs in 

shallow lakes. Considering the valuable ecological services to human beings 

provided by freshwater shallow lake ecosystems and magnificent rewards in 

protecting them properly, intensive effort from both the scientific and the 

societal domain is still highly motivated. The present thesis is expected to 

provide implications for local ecological and environmental management and 

to contribute to developing a general model framework for the investigation of 

HOCs in shallow lakes, which are by all means indispensable. 
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