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A B S T R A C T

The worlds’ oceans and seas have tremendous potential to contribute to the provision of food, feed, energy and
natural resources. The emerging concepts of “Blue Growth” and “Blue Economy” have put the development of
new marine industries on the political agenda. As marine industries expand, spatial interconnections and in-
dustry boundaries are being drawn and the potential for the combined use of marine space is being explored. The
aim of this paper is to provide a single source document that summarizes the probable boundaries of marine
growth industries, namely aquaculture; offshore wind energy with fixed foundations; floating offshore wind
energy; tidal and wave energy; marine biotechnology, seabed mining; and tourism and recreation, based on
depth and distance from the shore. This is an important first step in developing a single source document for
marine industry boundaries that will help marine spatial planners and researchers develop innovative industry
combinations to foster growth in the marine sector. This paper explores marine industry overlaps in four basins:
European Atlantic, Baltic/North Sea, Mediterranean/Black Sea and the Caribbean/ Gulf of Mexico. By describing
the geographical characteristics of different sea basins, this paper helps to focus marine governance strategies for
stimulating combinations of marine industries towards the most promising areas. The methodology developed in
this paper was also used to generate 72 country-specific maps and corresponding tables to support marine spatial
planning processes at a national level.

1. Introduction

The world's oceans and seas have tremendous potential to con-
tribute to the global economy through the supply of food, energy and
natural resources. The emerging concepts of “Blue Growth” and “Blue
Economy” are used across the world to capture this potential and bring
these concepts to the forefront of the political agenda [21,77]. In the
international development sphere, the FAO Blue Growth Initiative seeks
to reconcile economic growth with improved livelihoods and social
equity through sustainable use of aquatic natural resources in capture
fisheries and aquaculture, ecosystem services, trade, livelihoods and
food systems [23]. The European Commission coined the term “Blue
Growth” to emphasize the economic potential of the maritime sectors
aquaculture, offshore energy, marine biotechnology, seabed mining and
tourism [14,18].

As both the variety and absolute number of marine commercial
activities increase, competition for space in countries’ exclusive eco-
nomic zones (EEZs) increases. This trend is amplified by the

establishment of marine protected areas (MPAs), which have a goal of
protecting biodiversity and helping to meet sustainable development
targets [51,59].

One of the major purposes of marine spatial planning is to ensure
that all activities that take place in the marine space can function to-
gether in a sustainable way [61]. Competition for space has triggered
research into the potential for combining different industries and
technologies in ocean spaces. Combining compatible industries allows
for more efficient use of space, enables various sectors to cooperate in
the same area and develop synergies, both of which can lead to cost-
savings (see for example [39,52,79,70]).

Research efforts like these are driven by an interest in technical
and/or economic feasibility. Such efforts broaden the body of knowl-
edge on the multiple use of marine space (multi-use), but are of limited
relevance in marine spatial planning because they do not provide spe-
cific insight into the geographic potential of multi-use combinations
according to sea basin. Furthermore, there are no scientific publications
that identify the physical boundaries of the various marine industries
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and analyze different marine basins with the purpose of identifying
potential industry combinations and the amount of ocean space suitable
for these combinations.

The main research question addressed in this paper is: What are
operational boundaries for Blue Growth industries and the resultant geo-
graphic potential for the multi-use of space? Answering this question re-
quires further investigation into the boundaries of the relevant marine
industries, analysis of the geographical conditions and a review of the
potential for multi-use. The following sub-questions therefore need to
be addressed:

1. What are the operational boundaries required for the Blue Growth
industries?

2. What areas in the different sea basins are available and suitable for
these industries, when considering all areas and when taking into
account MPAs?

3. What are the consequences for the development of multi-use com-
binations and marine spatial planning in the regions concerned?

4. What are the main non-operational barriers to the multi-use of sea
space?

5. How can the methodology developed in this paper support marine
spatial planning processes?

This paper provides a single source document that summarizes the
boundaries of seven different Blue Growth sectors: aquaculture; off-
shore wind energy with fixed foundations; floating offshore wind en-
ergy; tidal and wave energy; marine biotechnology, seabed mining; and
tourism and recreation, by depth and distance from the shore. Depth
and distance to shore are important parameters that determine the
feasibility of new offshore activities (see e.g. [8]).

This is an important first step for identifying potential combinations
for the marine industries and providing a method for future analysis of
other operational boundaries. Collating this information will help
marine spatial planners and researchers to accommodate multi-use in
marine spatial planning and assess the impact for marine basin strate-
gies.

1.1. Scope of this study

The Horizon 2020 Marine Investment for the Blue Economy
(MARIBE) project was one of a number of European Union research
projects that have focused on the multiple use of marine space. This
paper focuses on the four marine basins studied in the MARIBE project:
European Atlantic, the North Sea/Baltic, Mediterranean/Black Sea and
the Caribbean/Gulf of Mexico. The methods used are applicable to
other marine basins and results of the MARIBE project are available at
https://maribe.eu/. The results presented are not a duplication of the
content of project reports.

This paper focuses on the Blue Growth sectors as identified by the
EU [16], because these marine sectors will occupy considerable
amounts of space [37]. More traditional marine sectors such as shipping
and offshore oil and gas are not included in the analysis. This is be-
cause, although shipping lanes are spatially extensive, their operational
boundaries are of limited relevance in planning, and fixed stationary
structures (oil and gas) are excluded because they take up very little
space. Other sectors, including fisheries, transport and sand dredging
are mobile and often not limited by operational boundaries.

For the purposes of this analysis, operational boundaries are limited
to water depth and distance to shore. Other operational boundaries are
also important, e.g. distance from conservation areas, distance from
marine infrastructure (e.g. oil platforms) and distance from shipping
lanes. However, the methodology described herein can accommodate
other marine sectors and other types of boundaries, but these are be-
yond the scope of this paper.

1.2. Juridical boundaries

This paper focusses on those parts of the sea under the authority of
nation states. Territorial seas and the contiguous zone are included in
the EEZ. Coastal states can essentially exercise the same rights of so-
vereignty over their seas as they do over land but there are some in-
ternational obligations, including the right to passage by ships. Coastal
states are entitled to legislate in order to protect facilities and in-
stallations within the territorial seas, but must give due publicity to
their laws and regulations ([68], Art.21 [4]).

A state's territorial sea extends up to 12 NM (22 km) from its base-
line. The baseline is the low water line along the coast that is officially
recognized by the coastal state. Straight baselines can alternatively be
defined as connecting fringing islands along a coast, across the mouths
of rivers, or with certain restrictions across the mouths of bays.

The contiguous zone is a band of water extending from the outer
edge of the territorial sea up to 24 NM (44 km) from the baseline. A
state's EEZ is an area that extends seawards to a distance of no more
than 200 NM (370.4 km) from its coastal baseline, thus it includes the
contiguous zone. Coastal states have control of all economic resources
within their EEZ. The international waters (or high seas) are oceans,
seas and waters beyond national jurisdiction, termed ABNJ (Fig. 1).

Under the United Nations Convention on the Law of the Sea
(UNCLOS), coastal states may seek ownership of the extended con-
tinental shelf beyond 200 NM, if the requirements in UNCLOS article 76
are met. This procedure is under the control of the Commission on the
Limits of the Continental Shelf. Successful application grants Coastal
States the economic rights to exploit the resources on and in the seabed,
but not the waters above the seabed. For this reason, the extended
continental shelf areas are excluded from the analysis below.

2. Method

The identification of the operational boundaries was done by review
of literature and expert consultation as part of the MARIBE project.
Within MARIBE, different combinations of marine industries were de-
tailed in cooperation with industry experts, businesses and academic
experts. Additionally, the resulting combinations were presented and
discussed at a workshop (organized in Brussels, Belgium in June 2016)
with a 13-member expert panel represented by industries including
banking, financial services, multinational professional services, en-
gineering procurement and construction services, naval architecture,
research institutes, ocean energy and aquaculture, among others.

For the subsequent spatial analyses, selected marine basins were
delineated into maritime boundaries based on Version 9 of the World
EEZ data set [11]. Within each EEZ, buffers were created for regions
extending out to 5, 12, 16, 24 and 200 NM from land areas extracted
from the Global Administrative Unit Layers (GAUL) data set (FAO,
2015b). Distance bands at 12, 24 and 200 NM are commonly used EEZ
designations, and additional bands at 5 and 16 NM were included to
improve the spatial precision of the analyses. In rare cases, marine re-
gions were classified as being within an EEZ but were> 200 NM from
shore. Therefore, a separate classification was created for these areas.
Marine basins were delineated into depth ranges using bathymetric
data from the General Bathymetric Chart of the Oceans (GEBCO)
[72,73]. Surface areas were classified into depth range bands of>
−10m, − 10m to − 50m, − 50m to − 100m, − 100m to − 150m,
− 150m to − 200m, and< −200m. In the following figures and
tables, the phrase “less than 200m” and the symbol “< −200” refer to
water deeper than 200m. All spatial analyses were performed in
ArcMap 10.4.

Even though MPAs do not exclude all users – for example, tourism
activities are allowed in most MPAs – for ecological or conservation
reasons, access to MPAs is usually restricted or forbidden to certain
types of development. These waters were classified as protected if they
were defined as such in the World Database of Protected Areas (WDPA)
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[32].
Jurisdictional boundaries, distance-to-shore buffers, depth range

bands, and protected areas were intersected to produce a dataset that
identified all areas within the EEZ of each marine basin. Areas of each
polygon were calculated using spherical trigonometric methods on la-
titude/longitude coordinates as described in Jenness [35]. The re-
spective areas were then summed to produce tables describing the cu-
mulative area in each unique combination of maritime boundary,
distance to shore, depth range and protected status.

The coastline length data were derived from the GAUL
Administrative Unit polygons (FAO, [21]). GAUL is a high-resolution
global boundary dataset digitized at approximately one vertex every
300m. This data set of marine coastlines was derived by (1) creating an
“Ocean” data set by clipping out the GAUL polygons from a general

background polygon covering the entire earth; (2) deleting all small
polygons from the Ocean data set which represented lakes or internal
holes in the GAUL data set; and (3) creating a coastline data set by
intersecting the GAUL polygons with the Ocean polygons. This last data
set is the linear intersection of all coastal countries with the oceans and
therefore represents the coastline of all countries that face the ocean.
The coastline length was calculated using Vincenty's equations for
geodesic length over the ellipsoidal model of the earth [35,71]. Eco-
nomic activities can be considered relative to coastline length to pro-
vide an indication of the relative intensity of the use made of the coastal
ecosystem; in the case of aquaculture, for example, measured in terms
of tonnes per kilometer of coastline [1]. For aesthetic purposes, online
National Geographic base maps provide the background to Figs. 3–6
[15].

Fig. 1. Generalized sea areas and jurisdiction in international rights (source: modified from [68]).

Fig. 2. Operational depth of Blue Growth sectors.
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3. Results

3.1. What are the operational boundaries required for the Blue Growth
industries?

3.1.1. Aquaculture
Offshore Aquaculture may be defined as taking place in the open sea

with significant exposure to wind and wave action [13]. Owing to hy-
drographic conditions, operation and maintenance costs and technical
feasibility, aquaculture is bound by depth and distance. Deeper waters
and greater distances from shore can be subject to increased wave
heights, faster currents and be less accessible for day-to-day operations.
Existing technology and costs allow aquaculture installations to be lo-
cated in areas with water depths between 10m and 50m at low tide.
The distance from shore at which aquaculture installations operate
depends on the technology available to service the installation, and the
unique seabed geography of each basin. The maximum cost-effective
distance from shore to an offshore aquaculture operation, including
Atlantic salmon, was found to be 46.3 km (25 NM) [36,38].

In the future, aquaculture installations are expected to move deeper
and farther offshore [38]. In order for such installations to become

feasible, there would need to be lower technology and maintenance
costs and potentially greater biomass returns. The move offshore can
also benefit from clustering of farms, allowing for shared facilities and
infrastructure. Industries and MPAs competing for ocean space will
affect the potential of the industry [28]. The main challenges in rea-
lizing this future state for offshore aquaculture relate to increased
governance support, the economic viability of such ventures, and
technological advances [41], as well as a maritime spatial planning
approach that coordinates the siting of aquaculture facilities to mini-
mize costs and impacts [40].

3.1.2. Offshore wind energy with fixed foundations
Technological advances have made it feasible to install offshore

wind farms that take advantage of high wind speeds over water and do
not take up space on land. Currently, offshore wind farms use fixed
foundations such as monopiles or jackets [6] and are limited by depth
of water, distance from shore and hydrographic conditions. The depth
boundary is due to technological limitations, including the ability to
sink and secure the base of the turbine on the sea floor and enable it to
operate economically. Existing technology allows this to occur at
depths of up to 50m. The distance boundary is determined, in part, by

Fig. 3. The European Atlantic Basin, illustrating depth ranges, distance ranges, MPAs and coastline length within EEZs.
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the ability to transport the electricity to shore with minimal losses and
the need to offset the cost of laying cables. New technology significantly
reduces the losses, but these technologies are currently prohibitively
expensive. With current technologies, the average distance from shore
for fixed wind turbines is 29 km [20].

Future trends for fixed offshore wind farms lie in increasing the size
and efficiency of turbines, i.e. turbines with greater than 7MW (MW)
capacity. Turbines with greater capacity allow for a greater density of
power produced from installed capacity [20].

3.1.3. Floating offshore wind energy
As with fixed wind farms, the depth and distance boundaries for

floating wind turbines are mainly determined by technological and
economic limitations. Floating wind installations, where the turbine is
mounted on a buoyant structure moored to the seabed, have been under
development for some time. Different types of installations are cur-
rently being tested [31]. Through the 30MW Hywind Scotland project,
Statoil is deploying 6MW floating turbines in the North Sea, 25 km off
the coast of Peterhead, at a depth of 100m [65]. Principle Power and
EDP developed the WindFloat project off the Portuguese coast in 2011,
and these turbines began to produce power in 2012 using 2MW Vestas

turbines [55].
The depth ranges seen now are 60–200m, but as technology pro-

gresses, greater depths will become commercially viable [20]. The
distance from shore will likely be greater than that of fixed wind farms,
although projects will still be constrained by technology and the effi-
ciency of energy transmission. Development of this sector outside the
boundaries of EEZs will create a more urgent need for new international
agreements and marine governance.

3.1.4. Tidal and wave energy
Tidal and wave energy – often considered together as “ocean en-

ergy” – represent significant potential for electricity production. Ocean
Energy Europe estimated that 100 gigawatts (GW) of combined tidal
and wave energy could be brought online by 2050, which would re-
present 10% of Europe's energy demand (SI [63]). Currently, the ac-
tivities are focused in the Atlantic, with little activity seen in the Baltic,
Mediterranean and Caribbean basins where the potential of wave en-
ergy is more limited.

Tidal power technologies range from integrated tidal lagoon tur-
bines that take advantage of water level changes, to freestanding tur-
bines in high tidal currents or continuous current areas. Although this

Fig. 4. The Baltic and North Sea Basin, illustrating depth ranges, distance ranges, MPAs and coastline length within EEZs.
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technology is not yet widely in use, it has strong potential because of
the predictability of the tide and the density of water which produce
more power at lower speeds than wind power. However, since de-
ploying tidal technology requires specific hydrographic conditions, it is
expected that it will remain a niche market (SI [63]). The challenges
with tidal power installations are technical, environmental and related
to issues of corrosion, impact on local species and potential fouling. The
depth at which tidal installations are deployed depends on the type of
device and the method of harnessing power, but generally it is from 25
to 120m (SI [63]). Presently, the distance of tidal units from shore
tends to be quite small, but in the future tidal units could be placed
further from shore in areas with strong currents, such as in the Gulf
Stream, 100 km off Florida. The depth boundary is mainly determined
by the availability of the required environmental conditions, and the
economic feasibility of building a tidal pool or a current turbine. The
distance metric is similar to the wind distance and is constrained by the
loss of power over long distances and the maintenance costs of the
units.

The wave power industry requires significant innovation to progress
it towards a commercially viable product. At this time, the depth
boundary for wave power depends on the device type and method of
harnessing power. Currently, units are deployed in waters less than

100m deep (SI [63]). The most important constraint for wave power is
the distance from shore. The distance is constrained by the unit, op-
eration and maintenance costs, ability to moor the units in deeper
waters and the transmission of the power to shore. At present the
furthest a unit has been deployed is 16 km from shore (SI [63]).

3.1.5. Marine biotechnology
Marine biotechnology is defined as “the application of science and

technology to living organisms, as well as parts, products and models
thereof, to alter living and non-living materials for the production of
knowledge, goods and services” [48]. The essence of the marine bio-
technology sector lies in exploring the chemical and biological diversity
of seas and oceans. Marine biodiversity is considered be a rich source of
novel natural compounds. According to ERA-NET Marine Bio-
technology, some of these compounds are already used in food, cos-
metics and agricultural, chemical and pharmaceutical products, but
their diversity has not been fully characterized and utilized. Further
opportunities exist for the use of ocean genetic resources in markets for
industrial enzymes, functional foods, cosmeceuticals,1 biomaterials,
bioprocessing and medical devices [30]. Marine biotechnology is

Fig. 5. The Mediterranean and Black Sea Basin, illustrating depth ranges, distance ranges, MPAs and coastline length within EEZs.

1 Cosmetics that claim to have medicinal properties.
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mostly concentrated in the European Union (EU), North America and
the Far East. Currently, 90% of all samples taken have been from waters
less than 100m deep owing to the cost of sampling in deeper waters
[42]. Distance to shore is rarely a limiting factor.

New technologies are being developed to sample the deep sea for
genetic resources. There is a difference in regulations when it comes to
accessing genetic resources within EEZs and from ABNJ. The ABNJ is
unregulated, which may encourage more sampling in these areas.
However, there are few technical innovations that could make sampling
far offshore either cheaper or easier. In the long-term, automated un-
derwater vehicles could play an important role in allowing expeditions
to take place in deeper water and further from shore. The main barriers
for the industry are a lack of coordination and cooperation along the
value chain, access to capital, lack of knowledge and insufficient in-
formation exchange [42].

3.1.6. Seabed mining
Seabed mining is a complex nearshore and offshore industry, re-

quiring high-level knowledge from diverse fields. This type of mining
involves exploration and extraction of minerals other than petroleum
from the sea floor, including dredging for sands. More recent seabed
mining activities include the mining of ores such as polymetallic
(manganese) nodules, polymetallic sulphides (SMS deposits), cobalt

crusts (crusts), phosphorites and gas hydrates [5,57]. Each time land-
based ore prices rise, interest grows in seabed resources; the opposite
happens when prices drop [49,57]. Currently, phosphorites have
reached sufficiently high and stable market prices to justify investments
in deep sea mining. The other resources remain of geopolitical interest
and only a few exceptional cases seem worthy of commercial ex-
ploitation. Seabed mining occurs at depths of up to 400m [57] and it
takes place both close to the shore and at greater distances.

Seabed mining technology is being developed to allow for mining at
much greater depths in order to access different minerals. Despite
technological advances there may not be significant cost efficiencies to
be gained in the future because of the exploratory nature of the industry
and the lack of consistent economic drive [57].

3.1.7. Tourism and recreation
Tourism and recreational activities vary considerably with depth

and distance from the coast. They range from swimming in shallow
coastal waters to offshore recreational boating and angling in waters
further than 22 km (12 NM) from shore and at depths of a few hundred
meters. The diversity of activities contributes significantly to local
economies, generating revenue and employment [16]. Offshore struc-
tures combined with tourism activities, for example aimed at sport
fishing or scuba-diving, could facilitate the combination of industries,

Fig. 6. Caribbean and Gulf of Mexico Basin illustrating depth ranges, distance ranges, MPAs and coastline length within EEZs.
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moving tourism into waters farther offshore and extending the opera-
tional season beyond the summer.

Depending on the type of recreational activity, depth and distance
will play varying roles in constraining the growth of this sector.
Offshore recreational angling, for example, is often restricted by dis-
tance from port because of fuel costs and vessel range and finding the
optimum conditions to ensure that anglers catch fish [47]. Ensuring
good potential for fish capture could assist the growth of this activity.
Assessment of the environmental impacts of offshore wind farms has
identified them as potential artificial reefs and fish aggregators [76].
Effective management of this combination would benefit recreational
fishers, recreational fisheries managers and owners of offshore wind
farms [26] at distances ranging from a few kilometers to perhaps
100 km offshore.

The following general conclusions can be drawn from the assess-
ment of operational boundaries for marine industries. Table 1 demon-
strates that most marine industries are primarily bounded by depth,
although distance from shore is an important constraint. For example,
there are distance constraints when considering the transmission of
power (energy) produced by wind, tidal or wave energy back to shore,
both in terms of cost and energy losses through transportation.

Table 1 and Fig. 2 demonstrate that marine industries overlap in
their identified depth bands, which provides scope for multi-use of
space for industrial development. In shallower waters there is greater
potential for industry cooperation; seven of the Blue Growth (sub)
sectors discussed overlap in the 0–50m band. In the 50–100m depth
band, four (sub)sectors overlap. Beyond 100m water depth, there is
little overlap.

3.2. What areas in the different sea basins are available and suitable for
these industries, when considering all areas and when taking into account
MPAs?

The following section describes the areas that are available in the
four identified sea basins within the EEZs for combinations of in-
dustries, based on the identification of overlapping operational
boundaries, as described in the previous section. The tables describe the
area that lies within all combinations of depth and distance ranges.
Results are provided including and excluding areas classified as MPAs
because many MPAs are not by definition off-limits for economic ac-
tivities.

3.2.1. European Atlantic
The Atlantic Basin includes the Atlantic Ocean EEZs of Belgium,

France, Ireland, Portugal, Spain and the west coast of the United
Kingdom (Fig. 3). Table 2 shows surface areas of the Atlantic Basin that
lie within several distance and depth ranges, outside the MPAs.

The total EEZ for this basin is 1811,656 km2, with 19% of the EEZ
less than 100m deep and 11% covered by MPAs. The total coastline
length for the basin is 27,267 km. Large portions of the European

Atlantic Basin feature very deep waters, although the depth range
varies considerably, even within the waters of individual countries. For
example, around the United Kingdom and Ireland waters are less deep
than off the Spanish and Portuguese coasts. A small fraction of total sea
area features water depths of less than − 50m (7%). The MPAs are
generally located near to the shore, in shallow waters.

3.2.2. Baltic and North Sea
The Baltic and North Sea Basin includes the North Sea, Norwegian

Sea and Baltic Sea and spans various countries2 (Fig. 4). Table 3 shows
the area and proportion of the Baltic and North Sea Basin that lie within
several distance and depth ranges, excluding MPAs.

The total EEZ for this basin is 1,726,041 km2, with 46% of the sea
area being less than 100m deep and 8% covered by MPAs. The total
coastline length for the basin is 72,191 km. As in the European Atlantic
Basin, the MPAs in the Baltic and North Sea Basin are generally located
near to the shore and in shallow waters. Proportionate to total basin
size, large areas feature water depths between 10 and 50m. Compared
to other basins, distances to shore are generally small, largely as a result
of the small and/or narrow shape of the Baltic and North Seas.

3.2.3. Mediterranean and Black Sea
The Mediterranean and Black Sea Basin comprises the

Mediterranean and Black seas (Fig. 5) and includes various islands and
nations.3 Table 4 shows the area and proportion of the Mediterranean
and Black Sea Basin that lie within several distance and depth ranges,
excluding MPAs.

The total EEZ for this basin is 3307,035 km2, with 16% of the area
less than 100m deep and 5% covered by MPAs. The total coastline
length for the basin is 52,585 km. The Mediterranean and Black Sea
Basin is much deeper than the previous two basins, although large
portions of the basin are situated close to the shore. The areas where
depths are more frequently less than 100m are in Albania, Bulgaria,
Croatia, Egypt, France, Greece, Italy, Montenegro, Romania, Russia,
Slovenia, Tunisia, Turkey and Ukraine. A large part of the shallower
waters are located in the Adriatic and Black seas. The largest MPAs are
in the seas around parts of Corsica, Italy, southern France and Spain.

3.2.4. Caribbean and Gulf of Mexico
The Caribbean and Gulf of Mexico Basin includes large areas of the

Atlantic Ocean and spans various countries and islands4 (Fig. 6).
Table 5 shows the area and proportion of the Caribbean and Gulf of
Mexico Basin that lie within several distance and depth ranges, ex-
cluding MPAs.

The Caribbean and Gulf of Mexico Basin is by far the largest basin
studied. The total EEZ for this basin is 6418,579 km2, with 18% of the
marine area being less than 100m deep and 4% covered by MPAs. The
seas in this basin are generally deep. Large portions of the basin are
more than 24 NM from the shore. There are few MPAs compared to the
other basins and they mainly consist of three large MPAs near the

Table 1
Depth and distance boundaries for marine industries.

Industry Depth
(meters)

Present distance from shore

Kilometers Nautical miles

Aquaculture < 10–50 >2 (trend up to
46.3)

> 1 (trend up
to 25)

Fixed wind < 50 29 16
Floating wind 60–200 25 13
Tidal energy 25–120 Close to shore
Wave energy < 100 <16 <9
Marine biotechnology < 100 Close to shore to deep ocean
Offshore seabed mining 80–400 Close to shore to deep ocean
Tourism (including

angling)
< 250 <5 <3

2 Belgium, Denmark, Estonia, Finland, Germany, Latvia, Lithuania,
Netherlands, Norway, Poland, Russia, Sweden and the United Kingdom.

3 It spans Albania, Algeria, Bulgaria, Croatia, Cyprus (North and South),
Egypt, France (including Corsica), Georgia, Greece (including Crete), Israel,
Italy (including Sardinia and Sicily), Lebanon, Libya, Malta, Morocco,
Montenegro, Romania, Russia, Spain (including Balearic Island), Slovenia,
Syria, Tunisia, Turkey and the Ukraine.

4 Antigua and Barbuda, Aruba, Bahamas, Barbados, Belize, British Virgin
Islands, Bonaire, Cayman Islands, Colombia, Costa Rica, Cuba, Curacao,
Dominica, Dominican Republic, French Guiana, Grenada, Guadeloupe,
Guatemala, Guyana, Haiti, Honduras, Jamaica, Martinique, Mexico,
Montserrat, Nicaragua, Northern Saint-Martin, Panama, Puerto Rico, Saba,
Saint Kitts and Nevis, Saint Lucia, Saint Vincent, Sint-Eustatius, Sint-Maarten,
Suriname, Trinidad and Tobago, Turks and Caicos Islands, Venezuela and US
Virgin Islands and United States of America (Gulf of Mexico).
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Dominican Republic and in the Lesser Antilles.

3.2.5. Country specific maps
The methodology developed in this paper was applied at sea basin

level but was also used to generate 72 country-specific maps and cor-
responding tables to support maritime spatial planning processes at a
national level. In Fig. 7a map of the Netherlands North Sea area is

provided as an example of the country level maps available as
Supplementary materials.

Fig. 7 shows that large parts of the coastline are designated MPAs.
For the Blue Growth sectors concerned (in this case, most notably off-
shore wind and tourism), the distance to shore boundary – rather than
water depth – is the limiting factor. Consequently, sectors try to find
space in a narrow band across the shore line where competition for

Table 2
Surface area for all combinations of depth range and distance band in the Atlantic Basin. Cell values are area in km2 [% of Basin].

0–5NM 5–12NM 12–16NM 16–24NM 24–200NM >200NM Sum

Total surface areas in European Atlantic Basin (showing both km2 and % of total area for all depths and distances)
>−10m 20,523 [1%] 551 [0%] 42 [0%] 0 [0%] 0 [0%] 0 [0%] 21,117 [1%]
10–50m 59,366 [3%] 34,144 [2%] 9023 [0%] 8373 [0%] 4076 [0%] 0 [0%] 114,981 [6%]
50–100m 32,246 [2%] 56,219 [3%] 28,264 [2%] 41,942 [2%] 43,842 [2%] 0 [0%] 202,513 [11%]
100–150m 7884 [0%] 24,939 [1%] 16,235 [1%] 33,001 [2%] 154,703 [9%] 0 [0%] 236,762 [13%]
150–200m 941 [0%] 6235 [0%] 3365 [0%] 7979 [0%] 69,745 [4%] 1 [0%] 88,266 [5%]
<−200m 324 [0%] 4675 [0%] 7082 [0%] 21,292 [1%] 1105,604 [61%] 9040 [0%] 1148,017 [63%]
Sum 121,284 [7%] 126,763 [7%] 64,011 [4%] 112,587 [6%] 1377,970 [76%] 9041 [0%] 1811,656 [100%]

Total surface areas subtracting MPAs
> −10m 7184 [0%] 248 [0%] 35 [0%] 0 [0%] 0 [0%] 0 [0%] 7468 [0%]
10–50m 38,108 [2%] 24,651 [2%] 6898 [0%] 6895 [0%] 3841 [0%] 0 [0%] 80,392 [5%]
50–100m 25,696 [2%] 50,118 [3%] 25,845 [2%] 37,244 [2%] 39,176 [2%] 0 [0%] 178,078 [11%]
100–150m 6273 [0%] 22,260 [1%] 14,864 [1%] 30,857 [2%] 149,728 [9%] 0 [0%] 223,982 [14%]
150–200m 766 [0%] 4044 [0%] 2747 [0%] 7424 [0%] 68,201 [4%] 0 [0%] 83,181 [5%]
<−200m 255 [0%] 4054 [0%] 5984 [0%] 19,616 [1%] 1,005,114 [62%] 9040 [1%] 1,044,063 [65%]
Sum 78,281 [5%] 105,374 [7%] 56,373 [3%] 102,036 [6%] 1,266,060 [78%] 9040 [1%] 1,617,164 [100%]

Table 3
Surface area for all combinations of depth range and distance band in the Baltic and North Sea Basin. Cell values are area in km2 [% of Basin].

0–5NM 5–12 NM 12–16 NM 16–24NM 24–200NM >200NM Sum

Total surface areas in Baltic and North Sea Basin
> −10m 69,302 [4%] 4936 [0%] 495 [0%] 266 [0%] 54 [0%] 0 [0%] 75,053 [4%]
10–50m 99,812 [6%] 87,422 [5%] 30,099 [2%] 37,078 [2%] 141,488 [8%] 0 [0%] 395,899 [23%]
50–100m 24,801 [1%] 41,090 [2%] 24,074 [1%] 40,744 [2%] 185,283 [11%] 0 [0%] 315,991 [18%]
100–150m 11,787 [1%] 10,340 [1%] 6853 [0%] 14,304 [1%] 100,123 [6%] 0 [0%] 143,407 [8%]
15–200m 7992 [0%] 7236 [0%] 3616 [0%] 8924 [1%] 26,259 [2%] 0 [0%] 54,027 [3%]
< −200m 16,732 [1%] 24,949 [1%] 17,001 [1%] 32,951 [2%] 645,402 [37%] 4628 [0%] 741,663 [43%]
Sum 230,426 [13%] 175,974 [10%] 82,138 [5%] 134,268 [8%] 1098,608 [64%] 4628 [0%] 1726,041 [100%]

Total surface areas subtracting MPAs
> −10m 32,565 [2%] 1846 [0%] 153 [0%] 47 [0%] 1 [0%] 0 [0%] 34,611 [2%]
10–50m 75,220 [5%] 71,788 [5%] 24,989 [2%] 29,686 [2%] 110,853 [7%] 0 [0%] 312,536 [20%]
50–100m 23,177 [1%] 39,861 [3%] 23,602 [1%] 39,863 [3%] 176,653 [11%] 0 [0%] 303,155 [19%]
100–150m 11,390 [1%] 9944 [1%] 6741 [0%] 14,000 [1%] 99,202 [6%] 0 [0%] 141,278 [9%]
15–200m 7850 [0%] 7155 [0%] 3525 [0%] 8649 [1%] 26,079 [2%] 0 [0%] 53,258 [3%]
< −200m 16,582 [1%] 24,913 [2%] 16,980 [1%] 32,137 [2%] 642,774 [41%] 4628 [0%] 738,014 [47%]
Sum 166,785 [11%] 155,507 [10%] 75,989 [5%] 124,381 [8%] 1,055,562 [67%] 4628 [0%] 1,582,852 [100%]

Table 4
Surface area for all combinations of depth range and distance band in the Mediterranean and Black Sea Basin. Cell values are area in km2 [% of Basin].

0–5–NM 5–12NM 12–16NM 16–24 NM 24–200 NM >200NM Sum

Total surface areas in Mediterranean and Black Sea Basin
> −10m 50,729 [2%] 9003 [0%] 1637 [0%] 1089 [0%] 193 [0%] 0 [0%] 62,650 [2%]
10–50m 106,815 [3%] 51,804 [2%] 16,586 [1%] 23,050 [1%] 21,709 [1%] 0 [0%] 219,964 [7%]
50–100m 80,769 [2%] 66,239 [2%] 22,782 [1%] 30,293 [1%] 43,125 [1%] 0 [0%] 243,208 [7%]
100–150m 30,155 [1%] 42,483 [1%] 16,422 [0%] 23,171 [1%] 25,835 [1%] 0 [0%] 138,067 [4%]
150–200m 15,775 [0%] 19,274 [1%] 8961 [0%] 11,612 [0%] 13,698 [0%] 0 [0%] 69,321 [2%]
< −200m 88,141 [3%] 227,573 [7%] 136,814 [4%] 270,489 [8%] 1850,803 [56%] 5 [0%] 2573,825 [78%]
Sum 372,383 [11%] 416,376 [13%] 203,203 [6%] 359,704 [11%] 1955,363 [59%] 5 [0%] 3307,035 [100%]

Total surface areas subtracting MPAs
> −10m 39,840 [1%] 8518 [0%] 1478 [0%] 943 [0%] 193 [0%] 0 [0%] 50,972 [2%]
10–50m 87,789 [3%] 48,591 [2%] 16,408 [1%] 22,986 [1%] 21,703 [1%] 0 [0%] 197,476 [6%]
50–100m 67,119 [2%] 58,488 [2%] 20,864 [1%] 28,220 [1%] 42,045 [1%] 0 [0%] 216,736 [7%]
100–150m 25,133 [1%] 36,697 [1%] 15,070 [0%] 22,214 [1%] 25,047 [1%] 0 [0%] 124,161 [4%]
150–200m 13,456 [0%] 17,043 [1%] 8562 [0%] 11,355 [0%] 13,515 [0%] 0 [0%] 63,931 [2%]
< −200m 79,946 [3%] 206,004 [7%] 125,701 [4%] 254,481 [8%] 1822,827 [58%] 5 [0%] 2488,964 [79%]
Sum 313,283 [10%] 375,341 [12%] 188,084 [6%] 340,199 [11%] 1925,329 [61%] 5 [0%] 3142,240 [100%]
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space increases. Marine spatial planning and marine policy must ad-
dress the question of how to make use of areas further from shore and
find ways to increase the distance to shore boundary.

3.3. What are the consequences for development of multiple use
combinations and marine spatial planning in the regions concerned?

Having analyzed the sector specific boundaries for the Blue Growth
industries (Section 3.1), as well as the available areas in the sea basins
concerned (Section 3.2), the feasibility of combining Blue Growth in-
dustries is now addressed on an individual basin basis.

3.3.1. European Atlantic
Aquaculture is a growing sector in the Atlantic Basin. Data collected

by the EU showed that EU aquaculture sales volumes and value reached
1.3 million tonnes and €4.5 billion in 2014 [62]. Many of the other Blue
Growth industries discussed in this paper are yet to achieve commer-
cial-scale operations. Fixed offshore wind farms are being developed
along the coasts of various nations [9], while tests of floating wind
energy and wave and tidal energy installations have occurred in the
Atlantic Basin, e.g., Galway Test Site; Biscay Marine Energy Platform –
BIMEP [3,58,78]. Seabed mining in the form of sand and gravel ex-
traction is a large industry [4], marine biotechnology is an emerging
industry [54] and tourism is also an active industry across much of the
Atlantic Basin [27].

Fig. 3 shows that the shallower waters of the Basin are concentrated
around the United Kingdom, Ireland and France. Thus these countries
have greater potential, at least spatially, to combine shallow-water
marine industries in the Atlantic Basin. The aquaculture, tourism, wave
energy and fixed and floating wind energy industries have the greatest
potential for cooperation. All these industries are active in the depth
band of less than 100m, and within the distance range of 16 NM. Given
the recent surge of activity in the offshore wind energy sector, research
efforts on multi-use focus mostly on the combined use of wind farms by
other sectors [29,52].

3.3.2. Baltic and North Sea
In the Baltic and North Sea Basin various Blue Growth industries

(excluding floating wind, tidal and wave energy) play a role in the
marine economy (see, for example, [10]). Aquaculture is an important
industry, with Norway producing a significant portion of the world's
farmed salmon [24,25] mainly in the Norwegian Sea area. Fixed wind
farms are rapidly being developed in the North Sea, in the UK, Dutch,
Danish and German EEZs [2]. For the Dutch EEZ alone, these will oc-
cupy up to 2900 km2 in 2023 [46]. Seabed mining, in the form of sand
and gravel mining, is a well-established sector and is important for

some countries [12,53]. Tourism is also a vibrant sector in the basin
[10].

The depth profile of the Baltic and Norwegian Sea Basin makes it
suitable for various marine industry combinations. Based on geo-
graphical conditions, the industries that have the highest potential for
working together are aquaculture, fixed wind energy and tourism. In
the context of the rapid development of offshore wind energy – initially
driven by strong government support – the development of combina-
tions that include offshore wind energy seems logical. In this context,
Jansen et al. [34] and van den Burg et al. [69] highlight the potential
for combining offshore mussel culture with wind energy in the Dutch
North Sea. This option is currently also being piloted in the Belgian
offshore wind farms [33]. The Baltic Sea is characterized by high eu-
trophication levels that limits the potential for the culture of most fish
species. Extractive aquaculture, such as mollusks and seaweeds which
remove plankton and nutrients from surrounding waters, may help to
decrease high nutrient levels, and thus pave the way for the develop-
ment of more aquaculture activities in the future [64].

3.3.3. Mediterranean and Black Sea
Neither offshore fixed and floating wind energy, nor tidal and wave

energy currently play a significant role in the marine economy of the
Mediterranean [17]. Seabed mining has limited potential in this basin
but, given that this is an area with high biodiversity [45], there is
considerable interest in the potential of marine biotechnology. Eurostat
data shows the tourism appeal of the Mediterranean region, with many
of the top European tourist sites located in this sea basin, e.g. Cataluña,
Iles Balears and numerous Adriatic and Aegean Sea resorts [19].

Although the Mediterranean Basin has some potential to combine
offshore wind, marine biotechnology and tourism, (the combination of
offshore wind and artificial reefs was evaluated by [74]]), the shortage
of areas with depths of less than 100m (Fig. 5, Table 4) limits this
potential. As technologies evolve and industries develop ways of
working in deeper waters, there may be increased opportunities in this
basin in the future.

3.3.4. Caribbean and the Gulf of Mexico
In the Caribbean and the Gulf of Mexico Basin, aquaculture is an

active industry and the FAO predicts a significant expansion of aqua-
culture production in Latin America and the Caribbean. Production
could reach 3.7 million tonnes by 2025, an increase of 39.9% over the
level of 2013–2015 [22]. There is also good potential for ocean energy
(fixed and floating wind, tidal and wave) but at present none of these
technologies are deployed commercially [50]. Marine biotechnology,
while not currently active, also has good potential in this region,
whereas seabed mining, as in some of the other basins, presently has

Table 5
Surface area for all combinations of depth range and distance band in the Caribbean and Gulf of Mexico Basin. Cell values are area in km2 [% of Basin].

0–5 NM 5–12NM 12–16 NM 16–24NM 24–200NM >200 NM Sum

Total surface areas in Caribbean and Gulf of Mexico Basin
> −10m 144,150 [2%] 52,343 [1%] 14,100 [0%] 18,344 [0%] 41,810 [1%] 0 [0%] 270,747 [4%]
10–50m 96,538 [2%] 107,212 [2%] 52,684 [1%] 87,251 [1%] 257,699 [4%] 0 [0%] 601,383 [9%]
50–100m 23,339 [0%] 28,012 [0%] 13,603 [0%] 23,893 [0%] 165,874 [3%] 0 [0%] 254,722 [4%]
100–150m 10,524 [0%] 8292 [0%] 4196 [0%] 7716 [0%] 57,171 [1%] 0 [0%] 87,899 [1%]
150–200m 7890 [0%] 5781 [0%] 2709 [0%] 3734 [0%] 40,188 [1%] 0 [0%] 60,302 [1%]
< −200m 85,583 [1%] 238,756 [4%] 150,147 [2%] 302,784 [5%] 4320,508 [67%] 45,748 [1%] 5143,526 [80%]
Sum 368,024 [6%] 440,396 [7%] 237,440 [4%] 443,722 [7%] 4883,250 [76%] 45,748 [1%] 6418,579 [100%]

Surface areas subtracting MPAs
> −10m 107,405 [2%] 46,257 [1%] 13,377 [0%] 17,963 [0%] 41,123 [1%] 0 [0%] 226,125 [4%]
10–50m 79,886 [1%] 98,128 [2%] 50,564 [1%] 86,005 [1%] 255,893 [4%] 0 [0%] 570,476 [9%]
50–100m 18,416 [0%] 24,218 [0%] 12,942 [0%] 23,632 [0%] 165,687 [3%] 0 [0%] 244,895 [4%]
100–150m 8216 [0%] 7684 [0%] 3933 [0%] 7564 [0%] 57,001 [1%] 0 [0%] 84,398 [1%]
150–200m 6333 [0%] 5362 [0%] 2632 [0%] 3612 [0%] 40,112 [1%] 0 [0%] 58,052 [1%]
< −200m 75,119 [1%] 220,078 [4%] 143,431 [2%] 289,844 [5%] 4197,099 [68%] 45,746 [1%] 4971,316 [81%]
Sum 295,375 [5%] 401,727 [7%] 226,879 [4%] 428,620 [7%] 4756,914 [77%] 45,746 [1%] 6155,261 [100%]
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Fig. 7. Country level maps of the Netherlands North Sea, an example of 72 country-specific maps and corresponding tables developed to support marine spatial
planning at national level.
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limited potential [50].
Nine percent of the Caribbean and Gulf of Mexico Basin has waters

less than 50m deep (Fig. 6, Table 5) and these areas are concentrated
along the coasts of the Bahamas, Cuba, French Guiana, Guyana, México,
Nicaragua, Suriname, Venezuela and the United States of America.
These areas have good potential to develop combinations with aqua-
culture, floating wind energy and tourism. Although tourism cannot be
combined well with all industries because of safety concerns, com-
bining it with other industries can serve as an educational tool to in-
crease understanding and acceptance of different industries and com-
binations of industries.

3.3.5. Geographic potential for the most promising combination: fixed
offshore wind and aquaculture

The discussion on current developments shows that the greatest
interest in the combined use of space involves the fixed offshore wind
energy and aquaculture industries. Aquaculture is an established in-
dustry in all four sea basins and offshore wind energy is developing in
some of the basins. Both industries operate in areas of limited water
depth and relatively close to shore. In Table 6, an analysis is made of
available ocean space that meets the following three requirements
(1)< 100m water depth, (2)< 16NM from shore and (3) not part of
an MPA.

Relatively large regions of the Baltic and Norwegian Sea meet these
criteria, highlighting the geographical potential to further develop
aquaculture and offshore wind energy in these areas. In absolute terms,
the Gulf of Mexico and Caribbean Basin has a larger area that meets
these criteria, but they are dispersed over a larger sea basin.

3.4. What are the main non-operational barriers to the multi-use of sea
space?

Getting two or more sectors together in a multi-use arrangement is
not only dependent on shared operational boundaries based on depth
and distance from shore alone. A number of studies have examined
willingness and barriers to cooperate, most often with a focus on
combined offshore wind energy and aquaculture. Many studies have
identified economic incentives for cooperation, such as shared opera-
tions and maintenance (Micler-Cieluch et al., 2009; [56,7]).

Yet, commercially exploited multi-use combinations have not ma-
terialized so far. Various reasons for this are identified. Institutional
arrangements for cross-sectoral activities are missing and need to be
developed [44]. According to Stuiver et al. [66] a clear policy frame-
work to guide multi-use, including a clear licensing procedure, is cur-
rently lacking. The recent Safe production Of Marine plants and use of
Ocean Space (SOMOS) project focused on a framework for risk assess-
ment that may remove resistance to multi-use (https://www.wur.nl/
en/project/SOMOS.htm). A lack of trust between sectors is reportedly
an issue of concern, leading to a call for innovative social networks that
can help to create trust [67]. The Multi-use in European Seas (MUSES)
project is focused on identification of non-operational barriers and
formulating a roadmap to remove them (https://muses-project.eu).

The quantitative assessment of potential for multi-use presented in
this paper does not solve the issues mentioned above but can be input to
discussions within such networks to focus development of required
institutional arrangements, overcoming barriers to real-life

development of multi-use arrangements.

3.5. How can the methodology developed in this paper support marine
spatial planning processes?

Interest by national policymakers in the potential of multi-use
combinations is increasing, particularly in Northwestern European
countries. Stuiver et al. [66] studied the governance of multi-use plat-
forms at sea. Until now, governance has primarily focused on creating
knowledge of the economic, technical and environmental feasibility of
combining industries at sea. European research funding has played an
instrumental role here, for example, supporting research and innova-
tion. Governmental support for continued research will bring techno-
logical innovations that will enable the further development of the Blue
Growth industries. Legislation is often seen as a barrier to multi-use.
Policies that enable or even require the multiple use of sea space can
encourage the development of multiple use approaches. In addition,
incentives such as environmental taxes or tax rebates can also boost the
multi-use of sea space.

This paper's contribution to the discussion on multi-use is that it
illustrates the geographical potential for the combined use of marine
space. Based on the analysis, the following challenges for marine spatial
planning are identified:

- It is important to recognize the potential of combined use within sea
basins by understanding operational boundaries and geographical
characteristics. Clearly, the geographical potential for combined use
of space differs between sea basins. Most combinations of activities
are possible in relatively shallow waters situated not too far from
shore.

- Recognizing the potential for certain combinations, policymakers
can gear up efforts to bring stakeholders together in innovative so-
cial networks, addressing non-operational barriers to multi-use.

- Each marine activity would also need to investigate and consider
other limiting factors for marine location, such as shipping and
fisheries, plus (in varying circumstances) maximum wave heights,
speed of currents, existence of MPAs or military areas, point sources
of pollution, fish nursery grounds, etc.

- The combination of offshore wind energy and aquaculture is already
a subject of study, which confirms the identified geographic po-
tential of some sea basins. It can be seen as a priority combination –
perhaps the first multi-use combination to mature.

- Based on the geographical analysis, there is potential for combining
marine industries with tourism, yet there is relatively little interest
in combinations that include tourism activities. Although they have
been studied to some extent [74,75], such combinations warrant
further study.

- Many marine habitats are sensitive to change and Blue Growth
should not cause damage to these habitats. In the current marine
spatial planning process, establishing an MPA is the most effective
way to protect an area. The impact of developments outside of MPAs
must be taken into account, particularly where the cumulative ef-
fects of combining different sectors are expected.

- Climate change will affect conditions at sea and thereby the feasi-
bility of accommodating (combinations) of sectors. The con-
sequences might be uncertain and vary according to sector, but the

Table 6
Surface area of regions with the highest potential per basin in km2.

EEZ (km2) < 100m water depth(%) <100m and < 16 NM(%) <100m and <16 NM excluding MPAs(%)

European Atlantic 1811,656 338,611 [19%] 240,377 [13%] 178,783 [11%]
Baltic and North Sea 1726,041 786,943 [46%] 382,031 [22%] 293,200 [19%]
Mediterranean and Black Sea 3307,035 525,822 [16%] 406,364 [12%] 349,095 [11%]
Gulf of Mexico and Caribbean 6418,579 1126,852 [18%] 531,982 [8%] 451,193 [7%]
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marine spatial planning processes need to be adaptive to these
changes [60].

4. Conclusion

This article calls attention to the great and widespread potential for
the combined use of marine space. Its purpose is to encourage countries
with significant absolute or relative potential for the multiple use of
marine space to undertake studies at the national level to define that
potential as a step towards updating policies and improving planning
for the development of Blue Growth sectors.

One of the objectives of maritime spatial planning is to manage
ocean resources sustainably. Areas where multiple sectors overlap run
the risk of overexploitation and great care must to taken to allocate
space within the limits of environmental sustainability. Overlapping
operational boundaries do not only point towards the potential for
cooperation, they also point towards potential conflict. Where multiple
sectors make competing claims for space, there is potential for long-
term economic sustainability to be negatively impacted.

In order to develop a governance framework for the developing
marine industry combinations, an understanding of the geographical
conditions required for marine industries is required. Although all
marine industries have their own considerations for site selection, un-
derstanding the depth and distance boundaries for each industry pro-
vides an indication of where the Blue Growth industries have the
greatest potential. The continued growth of the these industries must be
supported with marine spatial planning and marine governance that
recognizes the potential of multi-use combinations for the basin con-
cerned. The methodology developed here can be suitably configured to
provide quantitative inputs to marine spatial planning.

Those areas within 16 NM from the shore and with depth ranges of
less than 100m have the highest potential for the multi-use of sea
space. At the same time, these areas are generally characterized by a
higher level of activity and therefore have greater potential for spatial
conflicts (including access restrictions and conflicts with already ex-
isting activities).

Depth and distance from shore for each of the marine industries
have been used to define their boundaries. This approach is a pre-
liminary step because there are additional factors that influence the
final suitability of marine space for the development of a given marine
economic activity. Current speed, exposure, distance to ports (rather
than simply distance from shore), seasonal considerations such as ice
cover, and weather conditions (such as temperature gradients), water
quality and flow, etc. are all factors that may influence development.
The manner in which such factors influence the potential for combining
industries is not in the scope of this study, but they are an important
consideration when exploring marine industry combinations in a
country. Factors like these should be studied in more detail. Conflict
and opportunity matrixes can be used to facilitate further discussion
around the prospects for the multi-use of sea space [43].

With the improvement of existing technologies, a movement to-
wards deeper waters might be expected for most industries, leading to
more opportunities for industry combinations and fewer potential
spatial conflicts. Moving further offshore and crossing jurisdictional
boundaries implies that issues of ownership, rights and responsibility
need to be addressed, particularly when activities take place outside the
territorial zones.
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