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Insects typically forage in complex habitats in which their

resources are surrounded by non-resources. For herbivores,

pollinators, parasitoids, and higher level predators research

has focused on how specific trophic levels filter and integrate

information from cues in their habitat to locate resources.

However, these insights frequently build specific theory per

trophic level and seldom across trophic levels. Here, we

synthesize advances in understanding of insect foraging

behavior in complex habitats by comparing trophic levels in

specialist host-parasitoid-hyperparasitoid systems. We argue

that resources may become less apparent to foraging insects

when they are member of higher trophic levels and hypothesize

that higher trophic level organisms require a larger number of

steps in their foraging decisions. We identify important

knowledge gaps of information integration strategies by insects

that belong to higher trophic levels.
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Introduction
Insects forage in complex environments where their

resources are found among non-resources. Non-resource

organisms contribute to complexity in cues out of which

the foraging insect needs to filter information about its

desired resource [1��]. Most (if not all) cues have multiple

sources of variation (e.g. spatial, temporal, due to (a) biotic

factors), and this variation leads to an enormous amount of

information an insect has to handle [2]. Moreover,
Current Opinion in Insect Science 2019, 32:54–60 
information on a food source may differ in reliability as

well as detectability due to differences in evolutionary

pressure on conspicuousness of organisms as well as

similarity in cues of resources and non-resources [3–7].

In specialist host-parasitoid-hyperparasitoid systems,

each of the trophic levels ranging from herbivore, para-

sitoid to hyperparasitoid forages in the same complex

environment (Figure 1). However, information on the

presence and location of their resources may be more

sparse or indirect for different organisms in the food

chain. In their search for suitable food plants in plant

communities, herbivores can rely on direct cues associ-

ated with their food plant and require relatively few

behavioral steps to reach their food plant [1��,8]. Para-

sitoids associated with these herbivores need to be able to

locate their hosts hidden among non-host insects which

are feeding in speciose plant communities [9]. Because

herbivores are inconspicuous, parasitoids use indirect

information of herbivore induced plant volatiles (HIPVs)

that are a detectable source of information of herbivore

presence. However, other non-host herbivores feeding on

the same food plant species may induce similar volatile

blends which may result in reduced reliability of the

information [9,10,11��]. Parasitoids may therefore need

to go through multiple foraging steps to not only locate

food plants with potential hosts, but to also locate the host

on these plants [9,10,11��]. Hyperparasitoids that parasit-

ize the larvae or pupae of these parasitoids even need to

be able to locate parasitized herbivores in these plant-

insect communities [12��], which may require a longer

series of foraging steps to reach the resource (Figure 1).

We thus argue that the apparency of resources to foraging

organisms in complex environments decreases when

organisms belong to higher trophic levels in specialist

host-parasitoid-hyperparasitoid systems. Comparing how

each of these organisms in the trophic chain deals with the

complexity of the environment may increase our under-

standing of search strategies and information integration

in insect foraging.

In this review, we discuss whether trophic levels differ in

their i) search template of cues used as information

source, ii) sensory systems used to filter information,

and iii) how the integration of information is structured.

We connect literature from different trophic levels to gain
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Figure 1

herbivore parasitoid hyperparasitoid
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Foraging of insects of different trophic levels (herbivores, parasitoids, hyperparasitoids) in a complex environment. The different trophic levels are

exposed to the same complex environment, but are foraging for different resource types (indicated with arrows and resources inside the patch are

outlined with the same color as circle around the insect). Herbivores (purple) search for preferred food plants and use plant-derived cues.

Parasitoids search for suitable hosts which might be on different food plants and in different densities, occurring near non-host insects and can

use plant-derived cues and host-derived cues. Hyperparasitoids (blue) encounter a situation similar to parasitoids, but have to select caterpillars

which are parasitized by their host, using plant-derived cues, caterpillar-derived cues and host-derived cues. Cues presented by other organisms

in the patch can cause noise during foraging. Odor cues are represented by small plumes: different colors indicate different blend compositions

and length indicating the relative strength of the cue.
insight in differences among trophic levels in their forag-

ing strategies. We identify important knowledge gaps in

how higher trophic levels filter and integrate information

and argue that insights gained in research on pollinator

foraging and information use enrich our understanding of

information use by higher trophic levels.

Search templates to filter information
Insects in different trophic levels all have a common

strategy to deal with the enormous complexity of infor-

mation they encounter: they do not follow random cues,

but a subset of stimuli that are likely correlated with the

occurrence of the desired resource. We will refer to this

subset of stimuli a foraging insect is focusing on as a

search template. This term includes an innate or learned

preference for certain stimuli that may be fine-tuned or

broadened with additional foraging experience. The tem-

plate is thus constantly updated. The term thereby differs

from the term search image that is a temporal specializa-

tion on certain stimuli caused by selective attention to a

particular set of stimuli as a strategy to recognize
www.sciencedirect.com 
abundant resources [13–16]. In fact, a search image can

be seen as a specific type of transient search template.

Insects are known to use a variety of different stimuli in

foraging, which can be classified as olfactory, visual,

acoustic, tactile and gustatory cues and a search template

can be based on a combination of any of these cues. The

use of olfactory cues during long-range foraging is widely

distributed across all trophic levels [1��,7,17–21] and all

trophic levels seem to use gustatory cues to evaluate

resource identity and quality after resource contact. As

the same cue encompasses different information for dif-

ferent trophic levels, trophic levels likely differ in their

cue use and thus search template.

The search template of herbivorous insects is dominated

by the use of plant volatiles and colors during long-range

foraging [7,18, 22,23,24,25�] while tactile and gustatory

cues influence host plant selection after contact [26�,27].
For generalist insects, several ubiquitous primary metab-

olites stimulate feeding, and the plant will only be
Current Opinion in Insect Science 2019, 32:54–60



56 Ecology
rejected if it has a high concentration of a specific deter-

rent, while specialist herbivores often use taxonomically

characteristic compounds to accept a food plant [28,29].

Higher trophic levels such as parasitoids in the third

trophic level, predominantly use herbivore-induced plant

volatiles (HIPVs) in long-range foraging [17,30�]. The

induction of plant volatiles by herbivores results in a well

detectable source of information [3] and can even contain

information on the identity of the herbivore [31,32,33�].
However, non-host herbivores may also affect the reli-

ability of the information by inducing similar volatiles

while feeding on other plants in the community, and by

masking or altering volatiles induced by the host when

feeding on the same plant as the host herbivore [10]. After

arrival at the herbivore-infested plant, the employed

search template is broadened with gustatory cues, visual

cues (like color, shape and size e.g. [34–39]), as well as

olfactory cues emitted from the host or prey itself [40]. It

has further been reported that some parasitoids and

predators use sound and vibrations generated by prey

movement and feeding to detect their prey/host on the

plant [41–43]. The number of foraging steps to reach the

resource may be larger for parasitoids than for herbivores,

and in each step the search template may include differ-

ent sensory systems (Figure 2).

Fourth and higher trophic level organisms have been

understudied for their cue-use in foraging. Caterpillar-

associated hyperparasitoids can use HIPVs to discrimi-

nate between plants with parasitized and non-parasitized

caterpillars [12��]. During foraging at close range, cater-

pillar body-odors can be used to distinguish parasitized

and non-parasitized individuals [44]. In aphid-associated

hyperparasitoids however, there is so far no evidence for

the use of HIPVs [45], but support for direct responses to

aphid associated cues [46,47]. Although each trophic level

may adopt the search template and use different sets of

stimuli in each foraging step, we hypothesize that higher

trophic level organisms have longer behavioral sequences

to reach the resource and have fewer stimuli available in

early foraging steps. This is because only in later foraging

steps of higher trophic level organisms information is

available from different sensory systems and that may

come directly from the resource. However, we lack infor-

mation for higher trophic levels on in particular, the range

at which visual and acoustic stimuli are used in search

templates.

Perception of complex information
Trophic levels may differ in cue use because of differ-

ences in the perception of cues. The sensory systems of

insects in different trophic levels likely evolved to per-

ceive the most reliable information to find the resource,

and may thus predict the search template that these

organisms use.
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In all trophic levels, olfaction is a dominant stimulus in

the search template. Interestingly, the organization of the

olfactory system is highly conserved in different trophic

levels, but the olfactory receptors may differ among

species [48]. The olfactory receptors (ORs) located on

the antennae (and the palps) detect volatile chemicals.

Most insects have ORs that detect volatiles that are

characteristic for the host (or unsuitable host), and ORs

that detect more general cues [49,50��]. For their visual

system, insect species differ in the number of color

receptor types, their spatial distribution across the retina,

and their wavelength sensitivity [51]. Research on the

color sensory system is heavily biased to Lepidoptera and

bees, and we have limited knowledge on the visual

sensory system of higher trophic levels. How vision is

incorporated in the search template by different trophic

levels remains to be explored.

Gustatory receptors (GRs) are highly divergent among

different insect species and do not seem to correspond

with trophic position [26�]. Some GRs probably detect a

broad range of compounds, while other might be highly-

specific [26�]. For herbivores, closely related species

might diverge considerably in GRs, and generalist species

might contain more GRs than specialist species [26�].
This might indicate that the gustatory sensory system is

an important filter for some trophic levels like herbivores.

Unfortunately, we know little about the gustatory sensory

systems of higher trophic levels [but see 52,53].

Predicting differences in foraging strategies between

trophic levels in specialist host-parasitoid systems,

requires more research on sensory systems of higher

trophic levels to gain a more complete picture of their

search template.

Integration of complex information
Because higher trophic level organisms in specialist host-

parasitoid-hyperparasitoid systems require multiple for-

aging steps to reach their resource in complex environ-

ments, and direct cues associated with their resource are

not apparent, they may differ in how they integrate

information compared to lower trophic levels. In all

trophic levels, foraging steps may use a hierarchical

organization of which cues dominate each foraging step

[1��,29,54]. For herbivores, distinct hierarchical decisions

in foraging may include resource habitat and location of

the food plant after which the herbivore enters quality

assessment of the food source. Already in the first steps,

herbivores may make use of different sensory systems,

because odor, color and shape of their resource may be

available and detected from a longer distance. This allows

herbivores to use a multimodal integration of information

[55,56]. With multimodal integration, the search template

is composed of more than one major cue type (visual,

odor, gustatory, or tactile). Multimodal integration is well

known for pollinators that use multiple cues such as visual
www.sciencedirect.com
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Figure 2

potential to use multimodal information integration
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resource
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The number of foraging steps a species makes, corresponds with information availability or apparency of the resource. We predict that longer

chains of foraging steps start with multiple unimodal steps and the closer the foraging species gets to its resource the larger the potential for

multimodal information integration due to the availability of new cues picked up by different sensory systems. Because lower trophic levels more

frequently have smaller number of foraging steps and their information is less sparse than for higher trophic levels, we hypothesize that they may

use multimodal information integration earlier in foraging decisions than higher trophic levels.
and odor cues, which might be supplemented by other

cues, such as humidity, thermal cues, and electric fields

before a resource is successfully located [57��,58��,59].
Moreover, functional hypotheses have been developed

for pollinators that clearly show the benefits of multi-

modal integration [59–61]. Similar to pollinators, herbi-

vores may be strongly selected for using a multimodal

integration of cues. A set of cues as compared to indi-

vidual cues might reveal both presence and quality of a

resource, and increases the accuracy and/or reliability of

the information [60–62]. Therefore multimodal integra-

tion of information directly optimizes foraging efficiency

[60–62]. For multiple herbivore species, multimodal inte-

gration in resource location has been identified [54,55].

Higher trophic levels often find themselves in more

complex situations when locating their resources and

may not be able to use information to identify resource

presence and quality at the same distance from the

resource, simply because this information is not available

to them early in their foraging steps. The first foraging

steps in the hierarchy of host searching by parasitoids and

hyperparasitoids is known to rely on unimodal use of

volatile information [63–65]. Decisions on location of

suitable habitat and host-infested patches are dominated

by plant volatiles [63,65]. When arriving on a plant,

parasitoids and hyperparasitoids may be able to use visual,

gustatory and tactile cues to locate their resource. At this

stage in their foraging steps, higher trophic level organ-

isms may use a multimodal integration of information.

However, multimodal information use has only recently

gained attention in higher trophic level arthropods [66]
www.sciencedirect.com 
and to our knowledge has not been studied for parasitoids

and hyperparasitoids. Interestingly, the brain structures

responsible for multimodal integration such as the mush-

room body calyces are highly developed in parasitoids

[67,68] and predict similar capacities of multimodal infor-

mation use as known for Hymenopteran pollinators such

as honeybees and bumblebees [59,61].

Conclusion and future perspectives
Differences in information availability may underlie that

the number of steps in foraging decisions corresponds

with the potential to use unimodal versus multimodal

information integration, and may cause trophic levels to

differ in information use in the same complex environ-

ment. Important knowledge gaps are to explore whether

higher trophic levels use multimodal integration of cues

[65] and how each trophic levels uses a hierarchical

structure of unimodal or multimodal information

[58��,62,69,70]. Moreover, how foraging experience mod-

ulates search templates and integration of information is

understudied in especially herbivores and hyperparasi-

toids. Recent studies suggest that for all trophic levels,

search templates for patch and resource location are

especially plastic, while habitat location and resource

acceptance templates seem more fixed [1��,71]. Here,

we focused on specialist host-parasitoid systems. A

broader comparison between generalist and specialist

species within trophic levels may further reveal which

search templates and information integration strategies

correspond with foraging strategies. Direct experimental

comparison of how different trophic levels deal with the

same complex environment will provide us with
Current Opinion in Insect Science 2019, 32:54–60
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understanding how organisms deal with habitat complex-

ity on different scales. This is important in fundamental

understanding of how habitat complexity alters the

strength of trophic interactions and can be applied to

design cropping systems in which foraging efficiency of

desired organisms is enhanced and that of undesired

organisms decreased.
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