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Summary 

This study aimed to evaluate commercial biofertiliser quality and awareness amongst 

smallholder farmers in Gauteng Province, South Africa. Sixty-seven smallholder farmers 

were interviewed in Gauteng Province by using a survey method, while the physicochemical 

and microbiological properties of 13 biofertilisers were evaluated using laboratory 

experiments. The results showed that awareness and use of biofertiliser are very poor, with 

96% of the smallholder farmers surveyed not having biofertiliser knowledge. Furthermore, 

the products lack basic quality parameters: 54% contained no biofertiliser strain while all the 

products contained microbial contaminants. The pH, moisture content and viable microbial 

densities were below the acceptable standards for some of the products. Two fungal and 58 

bacterial operational taxonomic units were obtained from the 16S rRNA Sanger sequences 

while 5 791 OTUs were obtained from the Illumina Miseq system. Approximately 40%, 

41% and 59% of the isolates were positive for nitrogen-fixation, siderophore production and 

phosphorous solubilisation. Overall, there is a need to improve awareness amongst farmers 

and promote good-quality biofertiliser products for increased crop productivity. 
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1. Introduction  

1.1 Background 

South Africa’s population growth rate is increasing and more than half of the population needs 

a substantial food supply, especially amongst the rural inhabitants who are living below the 

upper boundary of the poverty line (UBPL) (StatsSA, 2017). In order to adequately feed the 

population, it is necessary to increase food production more than twofold. However, South 

Africa has poor soil fertility and an erratic climate, coupled with other issues such as land 

acquisition, a struggling economy and a global concern for ecological balance (Goldblatt et al., 

2010). Therefore, only an agricultural system that employs less capital and fewer land 

resources, with little or no fingerprint of ecological damage, will be the unlocking strategy. 

Such an agricultural system is entrenched in sustainable and smallholding agriculture 

(Lichtfouse et al., 2009; Vanlauwe et al., 2014).  

 
Smallholder farmers (SHFs) mainly cultivate subsistence crops on small pieces of land and in 

some instances, commercial crops on a small-scale basis. They exist in various locations, 

ranging from rural areas to towns, and generally involve their family members in the labour 

force (Cousins, 2010). According to the International Fund for Agricultural Development 

[IFAD] (2013), more than 2 billion people in the world are supported by half a billion SHFs, 

with about 33 million operating in Africa. Smallholder farmers are very important for the 

agricultural and socio-economic development of any nation because of their contributions 

towards poverty alleviation and food security (Cacho et al., 2003; FAO, 2014). Currently, about 

10% of agricultural land in the world are smallholder farms and interestingly they account for 

over 20% of total global food supply (Rudi, 2014).  

However, the intensive farming practices of SHFs are not without their shortcomings. Where 

efficient nutrient management is not practised, soil nutrient depletion has been exacerbated. 

Therefore, there is a need for a replenishment strategy for sustainable crop productivity (Lahiff 

& Cousins, 2005). Presently, the major nutrient-management practice is the application of 

fertilisers, especially inorganic and in some cases organic fertilisers (Duarah et al., 2011). On 

the other hand, the use of chemical fertilisers is unsustainable amongst SHFs due to its high 

market price, caused by an unstable foreign exchange market and the high cost of production 

(Camara & Heineman, 2006). In addition, excessive applications of chemical and organic 
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fertilisers have been found to contribute to numerous ecological challenges such as leaching  

(Bationo et al., 2006), soil degradation, air and water pollution  (Savci, 2012) and alterations in 

soil organic matter content (Bot & Benites, 2005). These challenges have a negative effect on 

farmers’ productivity, as well as on plant, animal and human health (Savci, 2012).  

 

Therefore, an ecologically friendly approach that will enhance sustainability in the farming 

system is required (Gruhn et al., 2000). Sustainable agricultural practices ensure efficient use 

of resources by integrating biological, chemical, physical and economic sciences to develop 

new practices that are safe and conserve the environment while supporting the development of 

plants and animals (Lichtfouse et al., 2009; Patel et al., 2014). The use of biological fertilisers 

such as biofertilisers has been suggested as a useful technology in nutrient management and 

sustainable agriculture (Kawalekar, 2013; Malusà & Ciesielska, 2014).  

1.2 Rationale  

The use of biofertiliser is vital for increased productivity amongst SHFs (Patangray, 2015; Patel 

et al., 2014). Surveys conducted in sub-Saharan Africa have shown that the application of 

biofertilisers on smallholder farms is very low compared to developed countries such as China, 

India, the United States of America and Canada (Masso et al., 2015). The low demand of 

biofertiliser products in Africa may be attributed to lack of awareness, product inaccessibility, 

poor quality products, a lack of technical experience as well as inadequate policies (Carvajal-

Muñoz & Carmona-Garcia, 2012; Chianu et al., 2011). Consequently, it is necessary to improve 

awareness and quality in order for SHFs to fully benefit from the economic importance of 

biofertilisers (Ma et al., 2011; Masso et al., 2015). 

 

Biofertilisers are substances that contain living microorganisms such as Rhizobium, 

Azospirillum, Bacillus and Pseudomonas (Rai, 2006). These microbes are able to improve plant 

growth and development through their participation in soil nutrient cycling and solubilisation, 

and through pest and diseases control (Kawalekar, 2013; Rai, 2006; Rose et al., 2014; Vessey, 

2003). Biofertilisers may be solid or liquid. Solid biofertilisers are made with carrier materials 

such as peat, charcoal, humus and bagasse, while liquid biofertilisers are usually made with 

water, mineral oil or an oil-water solution. These materials support the growth and development 

of biofertiliser strains during storage. A good-quality carrier must be able to sustain microbes 

for a long period in order to guarantee the transfer of stipulated density of viable cells to the 
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field for effective functioning. Consequently, assessing the carrier materials’ properties, and 

the types, density and the functional capabilities of beneficial microbes in biofertiliser products 

is important in defining the quality of the products and their potential efficiency on the field 

(Ansari et al., 2015). 

 

Biofertiliser quality is also affected by the product’s properties such as moisture content, pH, 

nutrient content and level of contamination. These parameters are usually defined by the 

product quality standard (Malusá & Vassilev, 2014; Yadav & Chandra, 2014). Hence, 

evaluating the quality of biofertilisers is an opportunity to ascertain the product conformity to 

quality standards and consequently determining the level of quality control management among 

manufacturers. In addition, it may be established that poor products are not sold to end users 

(Lupwayi et al., 2000; Mujawar, 2014; N’cho et al., 2013). It has been observed that inefficient 

quality control management usually results in the influx of low-quality products into 

biofertiliser markets (Ghosh et al., 2001; Simiyu et al., 2013) leading to poor field performance 

and consequently contributing to the low productivity and loss of economic value of SHFs 

(Lupwayi et al., 2000). Therefore, this study will assess SHFs’ awareness and the quality of 

commercial biofertilisers available in South Africa. 

1.3 Justification 

Biofertilisers have been found to offer cheap and environmentally friendly alternatives to soil 

and crop nutrient replenishment (Patel et al., 2014; Vessey, 2003). In addition, biofertiliser-

production technologies are relatively simple and cost-effective, which has encouraged an 

increase in commercial production (Mohammadi & Sohrabi, 2012). A key factor in evaluating 

the quality of biofertiliser is the source of the products (Yadav & Chandra, 2014). This is 

because various manufacturers often have different formulations for biofertiliser products 

(Masso et al., 2015). For instance, many of the imported products have been formulated in 

consideration of the quality standards, crops, soil and environmental factors of the 

manufacturing country. Thus, biofertiliser efficiency may not be optimal when used outside the 

environment in which it was manufactured (Huising, 2013).  

The quality of biofertiliser is considered a major factor affecting SHFs’ productivity, especially 

in the developing countries where awareness and acceptance of biofertiliser are low (Chianu et 

al., 2011). Many biofertilisers imported and produced in South Africa are rarely subjected to 
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standards or specifications; hence, some of the biofertilisers may be substandard and not 

efficient for sustainable agriculture (Lupwayi et al., 2000; Simiyu et al., 2013). However, in 

order to achieve significant biofertiliser usage among the SHFs, there is a need for a more 

focused and stringent national strategy (Masso et al., 2015). As SHFs continue to adopt and use 

biofertiliser, it will be beneficial to understand the various types and quality of biofertiliser 

products available for crop cultivation. This will improve knowledge that reduces costs of 

production, protects end users and promotes the perfect choice of biofertiliser products amongst 

SHFs. An increase in awareness and use of good-quality biofertilisers will improve and sustain 

crop productivity, which will subsequently promote South African agricultural development 

(Gentili & Jumpponen, 2006). 

1.4 Hypotheses 

 Commercial biofertiliser products available to smallholder farmers in Gauteng 

Province, South Africa are of poor quality. 

 There is a low level of awareness and adoption of commercial biofertilisers among 

smallholder farmers in Gauteng Province, South Africa. 

1.5 Aim and objectives  

The study aimed at investigating the quality of commercial biofertiliser products available to 

SHFs in South Africa.  

Specific objectives of the study include the following: 

 To determine the physicochemical characteristics of various commercial biofertiliser 

products;  

 To investigate the microbial diversity in commercial biofertiliser products using culture-

dependent and culture-independent techniques;  

 To evaluate the biochemical profile and functional attributes of microbial isolates from 

commercial biofertiliser products; and  

 To investigate the awareness, adoption and types of biofertilisers used by SHFs in South 

Africa. 
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Chapter Two  

Literature Review 
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2. Literature review 

2.1 Introduction 

The world population has been projected to grow to over 9.5 billion by 2050 (Godfray et al., 

2010). Unfortunately, Africa especially sub-Saharan Africa, is predicted to be one of the major 

contributors to this increase (Sasson, 2012; Jayne & Ameyaw, 2016). The rapidly growing 

population of Africa has increased competition for every aspect of human life such as land, 

housing, water and food (Rukuni, 2002). Thus, there is a need to improve crop productivity to 

meet the high food demand. The industrial and green revolutions triggered a marked increase 

in food production in the past half-century; however, it has not alleviated the food-security 

challenges in Africa (Gregory et al., 2005). The African economy and the continent’s natural 

resources must, therefore, be effectively utilised to increase productivity at a higher rate than 

the population growth rate (Daily & Ehrlich, 1992). 

 

For centuries, the agricultural sectors of many African nations have been largely driven by 

SHFs, all the while faced with challenges of low-fertile soils, low or non-usage of external farm 

inputs, environmental degradation and lack of governmental support (Holt-Giménez & 

Shattuck, 2009). These challenges have caused a significant economic loss to farmers and have 

consequently hindered rural development (Diao et al., 2012). Collier and Dercon (2014) 

enumerated the strategies for rural development and one such strategy emphasised the support 

of SHFs. Resource-poor farmers should be supported financially and with various agricultural 

inputs such as fertilisers and high-yield seeds for improved productivity (Vink, 2012). 

2.1.1 Smallholdings and Smallholder Farmers  

Smallholding agriculture is a common practice in developing countries. A smallholding is a 

small plot of land used for cultivating crops where the number of plots owned by an individual 

farmer varies, subject to availability of farmlands (Salami et al., 2010). The smallholding size 

differs between countries and agro-ecological regions. In highly populated regions, less than 2 

Ha of land is cultivated whereas more than 10 Ha may be cultivated in less-populated areas 

(Dixon et al., 2003). According to Fan et al. (2013), about half-a-billion farmers in the world 

cultivate less than 2 Ha due to declining arable lands. In addition, most of the lands are 

communally owned, which impacts negatively on their commercial value (Fan et al., 2013). 
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Recently, many countries have identified smallholding agriculture as one of the strategies for 

national economic development, stability and food security (Birner & Resnick, 2010; Dioula et 

al., 2013). Generally, SHFs have few or no resources and are often vulnerable to agricultural 

risk and climate change (Harvey et al., 2014). They are considered informal economy players, 

who are not registered and lack social protection (Curtis, 2013). It has been reported that 

smallholding agriculture supplies about 20% of the world’s food supply. Therefore, investing 

in smallholding agriculture is an impetus to strengthen and develop the South African national 

economy (Rudi, 2014). 

2.1.2 Smallholder farmers in South Africa 

In South Africa, SHFs have contributed immensely to economic development through poverty 

alleviation and food supply (Livingstone et al., 2011). The contributions are so significant that 

the government is willing to invest more than R7 billion in smallholder agriculture (Rudi, 2014). 

Despite the contributions, most South African SHFs are economically highly deprived. They 

are less educated and reside mostly in the villages, which are characterised by less developed 

infrastructures (Jacobs & Baiphethi, 2015).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Female smallholder farmers cultivating the land  

Source: http://www.actionaid.org/australia/6%20things-small-holder-women-farmers  

https://www.google.co.za/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwixnN3p-L3XAhWIKOwKHfoaAoYQjRwIBw&url=http://www.actionaid.org/australia/6 things-small-holder-women-farmers&psig=AOvVaw2JXfEhMmCNuWFqfwyo4hXG&ust=1510744730238511
https://www.google.co.za/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwixnN3p-L3XAhWIKOwKHfoaAoYQjRwIBw&url=http://www.actionaid.org/australia/6 things-small-holder-women-farmers&psig=AOvVaw2JXfEhMmCNuWFqfwyo4hXG&ust=1510744730238511
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According to Statistics South Africa [StatsSA], (2011), below 2% of households in South Africa 

are practicing in smallholder agriculture. With about 38% of all households in South Africa 

being headed by females, and the increasing need to improve the household economy, the 

population of women in smallholder agriculture has continued to increase. Smallholder farming 

has become an additional livelihood strategy for women to earn extra income and provide food 

for their families (Fig. 2.1) (Thamaga-Chitja & Morojele, 2014). 

2.1.3 Smallholder economic importance 

Increasing populations as well as economic and income growth lead to an escalation in 

commercial demand, thereby requiring complementary agricultural supply (Neven, 2014). 

Smallholder farmers are an important part of the emergence and modernisation of agricultural 

value chains (AVCs), which have contributed to the economic development of many nations. 

According to Barrett et al. (2012), one of the ways to achieve a seamless success in AVCs is 

the employment of contract farming arrangements (CFA) with smallholders. Many 

policymakers have utilised this to encourage rural economic growth.  

 

Smallholder farmers are predominantly producers of subsistence crops such as maize, wheat, 

millet, groundnuts, rice, beans and potato. They also produce vegetables and fruits as well as 

cash crops such as coffee, cotton, tobacco, tea and cocoa, which contribute to the national export 

earnings of most nations (Livingstone et al., 2011; Salami et al., 2010). Therefore, the synergy 

between economic development and agriculture could improve the gross domestic product 

(GDP) if properly managed (Cervantes-Godoy & Dewbre, 2010). Consequently, it is imperative 

for SHFs to think beyond feeding their households alone and to produce in surplus in order to 

play a key role in African food security and economic development (Vink, 2012). In sub-

Saharan Africa, smallholding agriculture employs over 65% of the African labour force while 

also contributing up to 90% of agricultural production (Asenso-Okyere & Jemaneh, 2012; 

Wiggins & Keats, 2013). In the 1980s, South African maize production increased by three-fold 

as a result of smallholders’ contribution to the Grain Marketing Board intake. The huge increase 

was attributed to a number of factors such as improved agricultural research, extension 

management and government support, as well as the availability of improved technologies 

which included hybrid seeds, storage technology and fertilisers (Costa, 2014; Muzari et al., 

2012). Developing smallholder agriculture with improved technologies can lead to a sustainable 

food system (Dioula et al., 2013). 
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2.1.4 Smallholder challenges 

Obsolete and unsustainable farming practices amongst SHFs need to be improved to operate 

optimally. Excessive cultivation without nutrient management has caused loss of soil nutrients 

and quality. According to Bationo et al. (2006), the elevated nutrient loss experienced in parts 

of southern and northern Africa was attributed to unsustainable agricultural practices. There is 

no doubt that lack of technical know-how of cutting-edge scientific developments and nutrient-

management systems has hindered increased productivity (Muzari et al., 2012). Most resource-

poor farmers are illiterate or have low-level education, hence the adoption of new technologies 

that can bring about improved productivity is hindered. In addition, most African soils are not 

fertile and cannot naturally support optimal crop yield. Coupled with the scarcity of rainfall, 

farmers cannot increase per capita food production (Abraha et al., 2015; Okalebo et al., 2006). 

 

Similarly, many agricultural policies do not favour smallholders. Infrastructure, financial 

support and extension services are rarely provided for farmers (Rosegrant et al., 2005; Wiggins 

& Proctor, 2001). In addition, declining cultivable land is another challenge. Arable lands are 

being used for social developmental purposes such as shopping malls, event centres and 

residential areas. Therefore, it is important that the available arable land is maximised through 

efficient nutrient management that can revitalise the soil for increased productivity (Gruhn et 

al., 2000). Until now, the major nutrient management system has been the use of inorganic 

fertilisers (Silva & Uchida, 2000). Common inorganic fertilisers include urea, ammonium 

sulphate, diammonium sulphate, potash, potassium phosphate and superphosphate. Mineral 

fertilisers have been able to support optimal crop productivity; however, it has had an adverse 

effect on the environment (Savci, 2012).  

2.2 Challenges in the use of inorganic and organic fertilisers  

Over-application of inorganic fertilisers has contributed to environmental degradation, leaching 

of nutrients, eutrophication and soil microbial floral alteration as well as soil pH distortion 

(Savci, 2012). Fertilisers are easily dissolved and washed away by rain or irrigation water. 

Nitrogen and phosphorous fertilisers are leached as nitrate (NO3
-) and phosphate (PO4

3-), 

respectively into water bodies where they support the excessive growth of algae (Savci, 2012). 

This causes a lack of oxygen in water bodies, leading to the formation of dead zones, which 

kills the aquatic organisms in the water body (Fig. 2.2). In addition, the acidity or alkalinity of 



11 

 

the soil has also been affected by the application of inorganic fertilisers, thereby causing a 

reduction in soil fertility (Hermary, 2007). 

 

Figure 2.2: Algae bloom in a water body killing the aquatic organisms.  

Source: Ahearn (2015) 

Furthermore, a major challenge in the production process of mineral fertilisers is energy 

utilisation. It has been reported that the energy required to produce 1 kg of mineral fertiliser is 

about 80 JM, 40 JM and 12 JM for nitrogen, phosphorous and potassium fertilisers, respectively 

(Bhattacharyya, 2014). This is rather uneconomical, considering the challenges and costs of 

generating power in many African countries, especially South Africa. This has made inorganic 

fertilisers more expensive for SHFs to use (Chianu et al., 2011). Moreso, phosphorus, which is 

one of the limiting macro-elements, has been forecasted to run out in the next few decades (Cho, 

2013). If this is not mitigated, it will cause a spontaneous hike in the price of phosphorous and 

its related products. To this end, there is a genuine need to discover a more economical and 

environmentally friendly method of nutrient management. 

 

https://www.google.co.za/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwiekorOlb7XAhUGLsAKHaiRCkoQjRwIBw&url=http://nwpr.org/post/massive-toxic-algae-bloom-closing-some-west-coast-shellfisheries&psig=AOvVaw0BDLtQLcucb1TMZhy2w6Pa&ust=1510752313166266
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Another important nutrient-management practice that has been in use for decades is organic 

fertilising. Organic fertilisers are made from the remains of plants and animals such as plant 

leaves, cow dung, poultry manure and crop residues (Rosen & Bierman, 2005). However, 

challenges of availability, cost and management have decreased their use among SHFs. For 

instance, there are not enough poultry farms to supply the actual nutrient needs of the crops in 

any region of the world. Unfortunately, the little that is produced is wasted due to lack of 

technical expertise (Abbas, 2016). For example, South Africa produces about 3 million tons of 

animal manure annually, which can supply approximately 13% nitrogen, 28% phosphorous and 

10% potassium of the needed soil nutrients. However, only 25% is utilised while the remaining 

is unexploited due to management constraints (Harris, 2002; Okorogbona & Adebisi, 2012).  

 

The pungent smells associated with some organic fertilisers, especially animal manure, have 

made them difficult to work with (Gerber et al., 2007). Apart from this, compost, cow dung, 

and poultry waste are potential havens for pathogenic microbes (Heinonen-Tanski et al., 2006) 

and heavy metal contamination (cadmium, mercury, lead, cobalt and nickel) in agricultural soil 

(Moreno-Caselles et al., 2002). This encourages pests and diseases attack on plants and animals, 

leading to the creation of more challenges than benefits (Moreno-Caselles et al., 2002). 

Moreover, the cost of transporting manure from the source point to the farmland is high and 

coupled with the bad road networks to rural farms in many African countries, organic fertilisers 

have become uneconomical to use. The enumerated challenges have caused the need for more 

efficient nutrient management, which will not only benefit SHFs but will also be more 

sustainable in the long run. 

2.3 Awareness and application of biofertiliser among South African smallholder farmers  

Biofertiliser holds great potential to improve SHFs’ crop productivity and their economic 

importance in South Africa (Bloem et al., 2009). To realise these benefits, there is a need to 

improve awareness, knowledge and usage amongst farmers. The level of knowledge about a 

technology is, therefore, a factor that can significantly influence adoption decisions. The initial 

awareness of a technology, which includes its potential benefits and economic characteristics, 

is an essential phase in the adoption of technology amongst farmers (Floyd et al., 1999). Many 

developed countries have realised the benefits of biofertiliser technology through increased 

awareness and scientific knowledge development (Chianu et al., 2011; Masso et al., 2015). 

Commercialisation and effective regulation of the biofertiliser industry in developed countries 
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have also enhanced the availability and adoption of biofertiliser products. On the other hand, 

lack of infrastructure, skill and a supportive regulatory framework have caused the low level of 

biofertiliser awareness and usage in sub-Saharan Africa (Simiyu et al., 2013), including South 

Africa.  

2.3.1 Factors affecting awareness and use of biofertilisers among smallholder farmers  

Low adoption rates of various agricultural practices amongst farmers are often a challenge for 

agronomists and extension managers. The major limitations to the adoption of new technology 

are time and the ability of farmers to integrate new ideas (Llewellyn, 2007). In addition, 

technologies may not be adopted due to lack of information and research-based evidence 

(Ochola et al., 2013). Moreover, the costs of seeking information and learning may be a 

challenge. Therefore, quality and readily available information with high reliability and 

relevance to the SHFs are important strategies for increasing awareness and use of biofertilisers 

(Santos Ordóñez, 2011). Other constraints on the use of improved nutrient-management 

systems are lack of institutional factors and non-adaptation of the technology to farmers’ 

economic situations, as well as poor extension services (Sanginga & Woomer, 2009). Effective 

extension management is key to providing timely, adequate and relevant information to farmers 

(Tiwari et al., 2003). Individuals’ awareness of problems, possible solutions and decision-

making on adopting and using a particular technology is a function of the experience gained 

through different learning and experimental phases (Tiwari et al., 2003). Both economic and 

non-economic factors of the individual farmer may also be responsible for attitudes towards 

new technology (Liberio, 2012). Farmers’ socioeconomic factors, knowledge, farm 

characteristics, institutional factors and biofertiliser accessibility were examined in this study 

as factors influencing awareness and use of biofertiliser technology.  

 

Socioeconomic factors such as age, gender, education and types of crops grown are possible 

features that could influence awareness and use of biofertilisers amongst SHFs (Mutuma et al., 

2014; Ochola et al., 2013). Farmers’ level of education and experience also play significant 

roles in the awareness and adoption of biofertilisers. Generally, the more years of experience 

farmers have, the more knowledgeable they are over time. Perhaps the learning-process stages 

involving problem observation, evaluation, experimentation and the final-solution stage have 

improved farmers’ proficiency, which affects adoption attitude (Llewellyn, 2007).  
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Types of crops grown also affect adoption and use of biofertiliser technology. Where cash crops 

are cultivated, high revenue may be realised which could possibly increase the financial 

capability of farmers to invest in new technology and bear the attendant risk (Santos Ordóñez, 

2011). Farm characteristics such as farm size, agricultural practices, soil nutrient challenges 

and disease and pest occurrence also affect adoption (Tiwari et al., 2003). Furthermore, where 

the present farm practices have been efficient with optimal results, the adoption of new 

technology may not be an option, even with evidence of improvement.  

2.4 Soil fertility  

Soil is a living system containing millions of different creatures. These living organisms are 

essential for the recycling of soil nutrients, which occur through physical, chemical and 

biogeochemical reactions (Deepti & Mishra, 2014). Soil fertility is the ability of soil to supply 

vital nutrients and water in adequate amounts for plant growth in the absence of poisonous 

substances. Where the soil is toxic and essential nutrients are absent, plant growth is inhibited 

(Roy et al., 2006). This is why soil nutrient deterioration is considered a significant cause of 

reduced productivity of agriculture soil, especially in Africa (Sanchez, 2002). Soil deterioration 

occurs mainly through anthropogenic activities such as over-cultivation, unsustainable nutrient 

management or mechanised farming. To revitalise deteriorated soils, organic components, 

which supply the bulk of nutrients, must be augmented (Walworth, 2011). It is important that 

fertile soils have the appropriate physical and biological properties necessary for plant growth 

and development (Jones, 2012). Biological properties, which include the abundance and 

diversity of bacteria, blue-green algae and fungi, are good indicators of soil fertility. These 

microbes decompose organic wastes and their by-products improve the fertility of the soil 

(Biswas et al., 2000).  

 

Fertilisers are substances that deliver plant nutrients in usable forms. The fertility of the soil is 

essential in the descriptions of fertiliser usage. This is because fertilisers are of different types 

and nutrient compositions. These define their various nutrient implications on plant growth and 

in the soil (Bationo et al., 2006; Jones, 2012). According to the Fertilisers, Farm Feeds, 

Agricultural Remedies and Stock Remedies Amendment Act 24, 1977, fertiliser is any material 

intended or used for improving or maintaining plant growth or soil productivity. Essentially, 

about 17 elements are necessary for proper plant development. A shortage or overdose in the 
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supply of any of these nutrients (Table 2.1) can result in severe damage to plant development. 

Primary macronutrients include nitrogen, phosphorous and potassium (Roy et al., 2006) while 

secondary macronutrients – calcium, magnesium and sulphur –, which are not so important for 

crop development, are usually sufficient in the soil. However, micronutrients such as iron, 

manganese, boron, nickel, zinc and copper, as important as they are, can become phytotoxic 

when present in excess (Mishra & Dash, 2014).  

 

Table 2.1: Essential plant nutrient elements 

Essential plant element Elements Symbol Primary form 
Non-mineral elements Carbon C CO2 (g) 
  Hydrogen H H2O (l), H+ 
  Oxygen O H2O (l) O2 (g) 
Mineral elements       
Primary macronutrients Nitrogen N NH4

+ NO3
- 

  Phosphorous P HPO4
2-, H2PO4

- 
  Potassium K K+ 
 Secondary macronutrients Calcium Ca Ca2+ 
 Magnesium Mg Mg2+ 
  Sulphur S SO4

 2- 
 Micronutrients Iron Fe Fe3+, Fe2+ 
  Manganese Mn Mn2+ 
  Zinc Zn Zn2+ 
 Boron B B(OH)3 
  Molybdenum Mo MoO4

2- 
  Chlorine Cl Cl- 
  Nickel Ni Ni2+ 
 Copper Cu Cu2+ 

  

Source: Parikh & James (2012).  

 
Nitrogen is crucial for plant growth and optimum yield. When deficient, crops have limited 

growth and show signs of chlorosis, which is more pronounced in mature leaves (Bennett, 

1993). The leaves show signs of yellow to tan colouration and eventually die. Some crops such 

as maize and tomatoes also exhibit purplish pigmentation on the stems and leaves when nitrogen 

is lacking (Baligar et al., 2001). Phosphorous is another important nutrient required for cell 

division and development. It is essential for photosynthesis, sugar and starch formation, energy 
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transfer, reproduction and movement of carbohydrate within the plant cells. Lack of potassium 

leads to stunted growth, delayed maturity and dark-green coloured young leaves, while the 

matured leaves become dark brown (Roy et al., 2006). On the other hand, potassium is 

necessary for protein, carbohydrate and fat production. It is also essential for chlorophyll and 

enzyme formation. Potassium helps to maintain the cell electrolyte balance and plant stomata 

functioning. When deficient, crops have irregular chlorotic leaves that appear burnt around the 

edges. Weak branches and stems appear in cereal grains while roots become rotten from 

microbial attack (Roy et al., 2006). Where these signs are visible, wind, rain or animals easily 

pull down the crops. When in short supply, other elements such as calcium, magnesium, 

sulphur, iron, zinc, copper and boron affect chlorophyll formation and cause dark green, 

twisted, necrotic and deformed leaves. Crops also produce seed disorder and stunted growth 

(He et al., 2005). 

 

However, the increased emphasis on ecosystem quality has led to intensified sustainable 

agriculture (Gruhn et al., 2000), which is aimed at water and soil conservation, eliminating or 

reducing the use of chemical inputs and promoting crop and ecosystem biodiversity, as well as 

sustaining the economic stability of farms (Lichtfouse et al., 2009). Various agricultural 

techniques used in sustainable agriculture involve the cultivation of crops that can produce their 

nutrients such as legumes, which can fix atmospheric nitrogen, or the use of microbes that can 

fix soil nutrients or make nutrients available to crops. Such beneficial microorganisms are 

referred to as biofertilisers (Uribe et al., 2010). Biofertilisers have been widely used in 

sustainable agriculture for improved soil and crop productivity (Mahdi et al., 2010; Saba et al., 

2013). 

2.5 Biofertiliser 

2.5.1 What are biofertilisers? 

Biofertilisers are substances that contain live microorganisms, which when applied to plant 

surfaces, seeds, roots or soil stimulate plant growth by increasing the availability of plant 

nutrients and growth substances to the host crops (Figueiredo et al., 2010; Vessey, 2003). The 

term “biofertiliser” is used interchangeably with “inoculant” or “bioformulation” (Gupta et al., 

2007; Hassen et al., 2016; Suyal et al., 2016). In South African fertiliser legislation, biofertiliser 
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falls under agricultural remedy substances. In the amendment Act 24 of 1977, an agricultural 

remedy includes any biological preparation or combination of any substance intended to be 

used as plant growth regulator, defoliant, desiccant or legume inoculant (Kotzé, 2006; SAFL, 

1977). Biofertilisers may comprise of fungi, blue-green algae (BGA) and bacteria (separately 

or in combination), in liquids or carrier substances. The beneficial microbes may be 

rhizospheric–colonising the root surface or intercellular spaces of the plant roots– or endophytic 

–where they colonise the tissue or apoplastic space within the host plants (Malusà et al., 2016). 

The carrier materials sustain the microbial inoculants and allow the product to be stored for a 

longer period before field application (Boraste et al., 2009; Rashid et al., 2016). 

 

Biofertilisers are not in any way the same as organic fertilisers such as animal manure, compost 

and plant manure or extracts (Mazid & Khan, 2014). However, if it causes an increase in crop 

yield (Banayo et al., 2012), increases crop accessibility to nutrients (Mujawar, 2014), replaces 

lost nutrients in the soil (Shridhar, 2012), or if the overall nutrient condition of crop and soil 

has been improved only by the beneficial microbes (Fig. 2.3), such a substance can be 

considered as a biofertiliser (Vessey, 2003). 

 

 
Figure 2.3: Plant and beneficial microbe interaction in the rhizosphere.  

Source: Raimi et al. (2017) 
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2.5.2 Types of biofertiliser 

The classification of biofertilisers depends on the microbial type and functional attributes 

established during their interactions with plants in the rhizosphere (Huang et al., 2014; Lucy et 

al., 2004). These functional attributes include nutrient fixing and solubilisation, biocontrol 

ability and production of plant growth-promoting substances (PGPS) (Gupta et al., 2012). 

According to Lesueur et al. (2016), biofertilisers should be classified based on the ability of the 

inoculum to perform two or more of the above functions. However, the basic classification 

based on strain types and functions are nitrogen-fixing, phosphate and micronutrient 

solubilising and plant growth-promoting biofertilisers (Fig. 2.4). 

 
Figure 2.4: Classification of biofertilisers.   

Adapted from Tamil Nadu Agricultural University, [TNAU] (2014). 
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2.5.2.1 Nitrogen-fixing biofertilisers 

Nitrogen makes up approximately 78% of the atmospheric gases. It is a stable gas and 

inaccessible by organisms except when converted to compounds that can easily be assimilated 

(Guinness & Walpole, 2012). Nitrogen is recycled through various biological and chemical 

transformations involving different soil microbes as summarised in Fig. 2.6. In nitrogen 

deficient soils, diazotrophs fix nitrogen gas from abiotic to biotic environments using the 

enzyme nitrogenase. This oxygen-sensitive enzyme complex is composed of dinitrogenase 

reductase and dinitrogenase (Fig. 2.5), which reduce the dinitrogen into reactive forms such as 

ammonia and nitrate (Dighe et al., 2010). 

Figure 2.5: Dinitrogenase in nitrogen cycle (Dighe et al., 2010). 

Biofertilisers are usually in symbiotic or non-symbiotic relationships with host plants. The 

symbiotic relationship is common in rhizobia such as Rhizobium, Bradyrhizobium and 

Sinorhizobium, which inhabit the root nodules of most leguminous crops such as bean, cowpea, 

soybean and groundnut (Martínez-Romero, 2009; Oldroyd et al., 2011). This association has 

huge ecological importance due to its substantial impact on global biological nitrogen fixation. 

The non-symbiotic free-living nitrogen-fixers include Azotobacter, Beijerinckia and 
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Clostridium, while associative nitrogen-fixers include; Enterobacter and Azospirillum species 

(Shridhar, 2012; Wagner, 2012). These microbes regulate the amount of soil-organic nitrogen 

through immobilisation and mineralisation during organic matter decomposition. During 

mineralisation, microbial cells are decomposed to release ammonia and nitrate, while 

immobilisation occurs when soil microbes take up ammonia and nitrate in a form that is 

unavailable to crops (Zehr & Kudela, 2011).  

 

Another nitrogen-fixing biofertiliser of great economic importance is Cyanobacteria. It is 

comprised of Anabaena (or Nostoc) in association with Azolla (Benkeblia & Francis, 2014). 

Cyanobacteria are mainly used in rice cultivation, maintaining soil organic carbon and fixing 

nitrogen in the range of 40-100 kg/Ha when used for wet-rice cultivation (Paudel et al., 2012; 

Wagner, 2012). Azolla in rice cultivation can give about 15-18% yield increase, while also 

saving about 15-25 kg/Ha on nitrogen fertilisers (Jiao et al., 2015). Arbuscular mycorrhiza fungi 

(AMF) also play an important role in nitrogen fixation. Leigh et al. (2009) established that 

mycorrhizal association might supply up to 50% of plant nitrogen needs, making it very 

important in cultivating soils with low nitrogen, especially in sub-Saharan African countries 

such as South Africa. 

2.5.2.2 Solubilising and mobilising biofertiliser 

Phosphorous and potassium form stable compounds with elements such as iron, aluminium and 

calcium, which are not readily accessible by plants (Richardson et al., 2009). This has resulted 

in limiting nutrients, especially for phosphorous. Unfortunately, phosphorous has no large 

atmospheric deposit unlike nitrogen; therefore, solubilisation and mobilisation are important 

mechanisms used by phosphate solubilising microorganisms (PSM) in the phosphorus cycle 

(Mohammadi, 2012). 

 

PSMs are mainly bacteria (Pseudomonas, Klebsiella, Micrococcus, Flavobacterium and 

Bacillus) and fungi (Aspergillus, Fusarium and Penicillium) (Sundara et al., 2002). According 

to Pindi and Satyanarayana (2012), the most efficient phosphorous solubilisers include; 

Bacillus polymyxa, B. megaterium, Pseudomonas striata, P. rathonis, Aspergillus awamori, A. 

niger, and Penicillium digitatum. They are able to mineralise organic phosphorous by secreting 
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phosphatases, which hydrolyse organic phosphorous and can save up to 30-50 kg/Ha of 

phosphorous pentoxide (P2O5) fertiliser (Richardson et al., 2009; Singh et al., 2014). 

 

 

Figure 2.6: Nitrogen cycle  

Adapted from the University of Waikato 
(http://www.waikato.ac.nz/__data/assets/image/0013/151033/NitrogenCycle.jpg). 
 

Phosphate-solubilising microbes also produce organic acids such as gluconic, lactic, oxalic and 

citric acids to solubilise soil inorganic phosphorous (Fig. 2.7) (Malusà & Ciesielska, 2014). The 

genera Bacillus, Actinomycetes and Pseudomonas are non-symbiotic bacteria that are effective 

in solubilising inorganic phosphorous such as tricalcium and rock phosphate to monobasic 

(H2PO4
-) and dibasic (HPO4

2-) ions (Adeleke et al., 2017; Rai, 2006). 

 

Phosphorous-mobilising microorganisms (PMMs) improve the ability of plants to acquire 

soluble phosphorous. Many plants, especially in phosphorus-deficient soil, develop increased 

root growth by the extension of the existing root systems. This may occur through mycorrhizal 

association or the phytostimulation effect, which involves hormonal stimulation (Richardson & 

Simpson, 2011). The plant-fungi symbiotic relationship is a major technique used by most 
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plants to alleviate phosphorous-limiting conditions. Here, fungal hyphae are able to mobilise 

and make phosphorous available to plants (Mujawar, 2014; Ramasamy et al., 2011). Arbuscular 

mycorrhizal fungi through specialised structures known as vesicles and arbuscules are able to 

increase a plant’s exploitation of soil nutrients (Leigh et al., 2009; Smith et al., 2011). Another 

mechanism of phosphorous-mobilisation is through changes in the sorption balance of soil 

solution caused by microbial biomass turnover in the rhizosphere. This may lead to increased 

mobility and uptake of organic phosphorous or orthophosphate ions. Microbial metabolic 

processes may also directly mineralise and solubilise phosphorous (inorganic and organic) 

through the efflux of protons, organic ions and siderophore production (Fig. 2.7) (Richardson 

& Simpson, 2011).  

 

Deficiency of phosphorous affects nodule development and total nitrogen fixation in legume 

crops, hence phosphorous biofertilisers are essential for legume development and its 

contribution to soil and plant-nitrogen content (Valentine et al., 2017). Legume cultivating 

countries such as South Africa, with high phosphorous-deficient soils, can use phosphorous 

biofertilisers to augment soil phosphorous to the required levels for crop use (Deckers, 1993).  

 

Potassium-solubilising biofertiliser (KSB) solubilises compounds such as muscovite, illite, 

mica and biotite by producing organic ligands, hydroxyl anions, enzymes and biofilms in the 

rhizosphere (Bahadur et al., 2014; Shanware et al., 2014). Potassium-solubilising bacteria 

include Pseudomonas, Burkholderia, Acidothiobacillus, Paenibacillus and Bacillus sp., and 

their ability to solubilise effectively is based on the type of soil, potassium complexes and 

microbial strains (Liu et al., 2010; Sangeeth et al., 2012).  

2.5.2.3 Micronutrient biofertiliser 

Micronutrients form complexes in the soil that are inaccessible by crops. For example, 75% of 

zinc applied as fertiliser forms insoluble complexes, while plants use only about 1-4% of total 

available zinc in the soil (Mahdi et al., 2010). However, biofertilisers such as Rhizobium, 

Bradyrhizobium, Pseudomonas, Trichoderma, Bacillus and Saccharomyces sp. can improve 

the availability and uptake of micronutrients in the soil (Ahsan et al., 2012; Esitken et al., 2010). 
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Figure 2.7: Phosphorous solubilisation mechanism in PSM (Richardson & Simpson, 2011). 

 

In iron-immobilized soil, for example, bacteria produce siderophores that solubilise and chelate 

iron into complexes that can be easily absorbed by plants (Mathew et al., 2014). Trichoderma 

harzianum, a fungal species, solubilises minerals such as metallic zinc and manganese oxide 

by chelating and reducing mechanisms (Altomare et al., 1999). Vesicular-arbuscular 

mycorrhiza (VAM) are also able to solubilise zinc, iron, manganese and copper complexes in 

agricultural soil (Martino et al., 2003; Pal et al., 2015).  

2.5.2.4 Plant growth-promoting rhizobacteria (PGPR) 

Beneficial microorganisms that participate in nutrient cycling and produce growth-promoting 

substances in the rhizosphere are called plant growth-promoting rhizobacteria (PGPR) 

(Ahemad & Kibret, 2014; Bhattacharyya & Jha, 2012). This group of biofertilisers stimulates 

plant growth through one or more mechanisms. The growth-promoting substances may increase 

plant growth directly or indirectly (Hayat et al., 2010; Soltani et al., 2010). The indirect 

mechanisms involve the production of antimicrobial metabolites such as hydrogen cyanide, 

phenazines and tensin, which protect the plants against diseases. Plant growth-promoting 

rhizobacteria synergy with plant roots also elicit plant defence against bacterial, fungal and viral 
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pathogens, termed induced systemic resistance (Ahemad & Kibret, 2014; Vacheron et al., 

2014). This group of heterogeneous beneficial rhizospheric microbes has multiple modes of 

action, which may include nutrient solubilisation, phytostimulation and biocontrol (Table 2.2). 

They include genera such as Bacillus, Burkholderia, Serratia, and Pseudomonas. 

(Bhattacharyya & Jha, 2012; Hassen et al., 2016). 
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Table 2.2: Plant growth-promoting rhizobacteria and their functions 

Organisms Function Reference 

Rhizobium cicero, R. phaseoli Siderophore ,  

Fix- N, IAA 

Berraho et al. (1997)  

Zahir et al. (2010) 

Sinorhizobium meliloti Fix- N Villegas et al. (2006) 

Bradyrhizobium Japonicum, B. elkanii, 

B. canariense, B. betae, B. liaoningense,  

Fix-N, P-solubilisation siderophore and IAA 

production 

Antoun et al. (1998) 

 

Azospirillum brasilense, A. lipoferum 

A. amazonense, A. amazonense      

Fix-N, P-solubilisation 

IAA and siderophore production 

 Rodrigues et al. (2008) 

Thakuria et al. (2004) 

Azotobacter chroococcum Fix-N, P-solubilisation, gibberellin, IAA, 

kinetin & siderophore production 

 

Verma et al. (2001) 

Azoarcus communis, A. indigens  N-fixer Reinhold-Hurek et al. (1993) 

Bacillus mucilaginous, B. megaterium 

B. licheniformis, B. edaphicus, B. 

subtilis, B. cereus, B. pumilus, B. 

circulans 

K & P-solubilisation, gibberellin, auxin, and 

cytokinin   production 

Parmar and Sindhu (2013) 

Mohammadi and Sohrabi (2012) 

Karadeniz et al. (2006) 

Burkholderia unamae, B. tropica 1-aminocyclopropane-1-carboxylate (ACC) 

deaminase, N-fixer, IAA, P-solubilisation, and 

siderophore 

Onofre-Lemus et al. (2009) 

 

Enterobacter asburiae IAA, P-solubilisation, siderophore ammonia, Ahemad and Khan (2010) 

Klebsiella sp. IAA, P-solubilisation, siderophore ammonia Ahemad and Khan (2011) 

Pseudomonas putida, P. jessenii, P. 

aeruginosa, P. chlororaphis. 

P-solubilisation, siderophore and IAA,  Parani and Saha (2012) 

Shaharoona et al. (2008) 

Alcaligenes faecalis  P-solubilisation, IAA and siderophore 

production 

 

Sayyed et al. (2010) 

Acinobacter sp. IAA, P-solubilisation and siderophore Rokhbakhsh-Zamin et al. (2011) 

Serratia marcescens IAA, siderophore, HCN and P-solubilisation Badawi et al. (2011) 

Flavobacterium sp. IAA,P-solubilisation   

Gigaspora ramisporophora, Glomus 

clarum, G. mosseae, G. etunicatum 

Zn, Cu, Fe & P-solubilisation, Improve salinity 

tolerance  

Garg and Chandel (2011) 

 

Penicillium bilaiae, P. italicum P- solubilisation, gibberellin, IAA, improve 

water and salinity tolerance 

Waqas et al. (2012) 

Ahmad et al. (2008) 

Aspergillus niger, A. terreus, A. flavus P-solubilisation Sharma et al. (2013) 

Anabaena azolla P-solubilisation, N-fixing, and detoxify heavy 

metal and gibberellin, cytokinin and IAA 

Singh et al. (2016) 

Adapted from Ahemad and Kibret (2014) 
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2.6 History of biofertiliser 

The concept of biofertiliser might have originated from some of the ancient farming practices 

such as crop rotation and intercropping, which aimed at increasing yield and soil fertility 

(Peoples et al., 2009; Preissel et al., 2015). One of the major crops used in crop rotation is 

legume; this is because rhizobia develop symbiotic associations with leguminous plants, 

forming symbiosomes, intracellular compartments within root nodules where nitrogen is fixed 

(Oldroyd et al., 2011). The improved knowledge of the interactions in the soil between 

microbial communities and various plants has been the basis of biofertiliser development 

(Jensen et al., 2012). In addition, the fact that these beneficial microbes can be isolated, cultured 

and identified in the lab (in vitro), is also an important factor that has aided the development of 

biofertiliser (Carvajal-Muñoz & Carmona-Garcia, 2012). Biofertilisers are comprised of live 

beneficial microbes in a sustainable system for crop and soil inoculation, which support plant 

growth and soil-quality upgrades by way of the biological activity of the microbes in the soil. 

 

Commercial biofertiliser production and use in the developed countries date back to 1895 with 

the first biofertiliser product patent registered in 1896 in the United Kingdom (Patent no. GB 

189511460) (Chansa-Ngavej & Assavavipapan, 2007). In Africa, it is unclear when biofertiliser 

was first introduced, but according to literature, the history of its commercial production could 

date back to 1952 when commercial biofertiliser was first reported in South Africa (Strijdom, 

1998). In addition, a documented report on large-scale afforestation of pine in Rhodesia (now 

Zimbabwe) also reveals that soil inoculants have been in use in Africa since 1928. Inoculated 

soil, most probably with mycorrhizal fungi, was a major strategy for pine-nursery growth and 

successful pine cultivation (Romberger & Mikola, 1964). Despite decades of inoculant 

existence, the production and use of biofertiliser in Africa are still very low. However, some 

countries such as Kenya, Malawi, Tanzania, South Africa, Zimbabwe and Zambia have small-

scale inoculant production (Hardarson & Broughton, 2003).  

2.7 Biofertiliser production in South Africa 

In South Africa, the rapid expansion of the commercial biofertiliser market in 1952 necessitated 

the establishment of an independent quality-control body in the early 1970s. In conjunction 

with the Department of Agriculture, this body monitors the quality of the products produced 

(Strijdom, 1998). The Department of Agriculture stipulated some quality parameters for 
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biofertiliser registration. These include a six-month shelf life, maintenance of at least 5 × 108 

rhizobial cells before the expiration date and the use of sterile peat as carrier material (Strijdom, 

1998). There are various commercial biofertiliser producers in South Africa such as Soygro 

(Ltd)  Ltd, which produce major products such as Mazospirflo and Rhizostim (Azospirillum), 

Peanutflo and Soyflo (Bradyrhizobium) and Nemablock (De Bruijn, 2015). Other producers 

include Mycoroot™ (Ltd) Ltd; Biological Control Products SA Ltd and Amka Product Ltd 

(Table 2.3). 

Table 2.3: Biofertiliser products, microbial compositions and their manufacturers in South 

Africa 

Biofertilisers Active components Manufacturers 

Firstbase Bacillus sp. Microbial solution  Ltd, South Africa 

Biostart Bacillus sp. Microbial solution  Ltd, South Africa 

Landbac Bacillus sp. Microbial solution  Ltd, South Africa 

Waterbac Bacillus sp. Microbial solution  Ltd, South Africa 

Likuiq Semia Bradyrhizobium elkanii Microbial solution  Ltd, South Africa 

Nitrasec Alfalfa (Lucerne) Sinorhizobium meliloti Microbial solution  Ltd, South Africa 

Rhizatech Glomus mosseae, G. etunicatum, 

G. intraradices 
Dudu tech, Naivasha, Kenya 

Symbion vam plus Glomus sp. Gigaspora sp. 
Bacillus megaterium var. 
phospaticum 

T. stanes and Company Ltd. India 

Ectovit Ectomycorrhizal Symbiom Ltd., Czech Republic 

Rhodovit Not specified Symbiom Ltd., Czech Republic 

Mycoroot superGro Arbuscular mycorrhizal fungi Mycoroot  Ltd, South Africa 

Mycoroot Super Booster Arbuscular mycorrhizal fungi Mycoroot  Ltd, South Africa 

Mycoroot green Arbuscular mycorrhizal fungi Mycoroot  Ltd, South Africa 

Organico Bacillus sp., Enterobacter sp., 
Pseudomonas, Stenotromonas, 

Rhizobium, 

Amka Products  Ltd, South Africa 

Soil Vital Q 

Bacillus subtilis,  

Bacillus thuringiensis,  

Azotobacter chroococcum, 

Pseudomonas florescens, 

Lactobacillus sp. Biological Control Products SA  Ltd 

Nitrasec Rhizobium tropici Lage y Cía. S.A, Uruguay 
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Biofertilisers Active components Manufacturers 

LifeForce Bacillus sp. Microbial solution  Ltd, South Africa 

Azo- N Azospirillum brasilense, 

Azospirillum lipoferum 
BioControl Products SA  Ltd 

Azo-N Plus 
Azospirillum brasilense, 

Azospirillum lipoferum, 

Azotobacter chroococcum 

BioControl Products SA  Ltd 

NAT-P Pseudomonas fluorescence BioControl Products SA  Ltd 

N-Soy Bradyrhizobium japonicum BioControl Products SA  Ltd 

SoilFix 

Brevibacillus laterosporus, 

Paenibacillus chitinolyticus, 

Lysinibacillus sphaericus, 

Sporolactobacillus laevolacticus 

BioControl Products SA  Ltd 

Composter Bacillus sp. BioControl Products SA  Ltd 

N-Bean Rhizobium phaseolus BioControl Products SA  Ltd 

Histick Bradyrhizobium japonicum BASF South Africa  Ltd, South Africa 

Nodumax Bradyrhizobia IITA Business incubation platform, Nigeria 

MycoApply endo AMF (3 sp.) not specified Mycorrhizal Applications Inc., Grants , US 

MycoApply endonet Glomus. intraradi Mycorrhizal Applications Inc., Grants , US 

MycoApply root dip gel AMF (not listed) Mycorrhizal Applications Inc., Grants , US 

Soyflo Bradyrhizobium japonicum Soygro   Ltd, South Africa 

Rhizostim Azospirillum sp. Soygro  Ltd, South Africa 

Mazospirflo Azospirillum brasilense Soygro  Ltd, South Africa 

Legume fix Rhizobium sp. Legume Technology (UK) 

Bio-N Azotobacter sp. Nutri-Tech Solution, Australia 

Twin N Azorhizobium sp., Azoarcus sp., 
Azospirillum sp., Mapleton Ltd., UK 

Bac up Bacillus subtilis Biological control product Ltd, South Africa 

BIOFIX Not specified MEA Fertiliser Ltd, Kenya 

Vault NP Bradyrhizobium japonicum Becker Underwood, USA 

Adapted from Herrmann et al. (2015) 

 

The numerous strains of beneficial microbes have great potential in the development of 

biofertiliser products. As new beneficial strains with inoculum potential are isolated, 

characterised and stored in various laboratories in different countries around the world, new 
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products are also being developed. This has sustained the continuous production and 

improvement of biofertiliser products (Hayat et al., 2010; Rosen & Bierman, 2005). 

Biofertiliser strains can be obtained from various institutes or conservation centres where they 

are stored. In South Africa, biofertiliser strains can be obtained from the Plant Protection 

Research Institute (PPRI) at the Agricultural Research Council. 

2.8 The economic importance of biofertiliser in smallholder agriculture 

The benefit-cost analysis of biofertiliser is determined by calculating the proportion of the 

obtainable value of benefits compared to the actual cost of biofertiliser. For instance, legume-

inoculant benefits are computed based on the amount of nitrogen fixed (Mulongoy et al., 1992). 

For instance, white clover crop was able to fix 200 kg of N /Ha and has a benefit-cost ratio of 

416 while soybean fixed 100 kg of N/Ha and the benefit was calculated to be 17 when the cost 

of fixed nitrogen is considered as US$0.50 per kg (Mulongoy et al., 1992). The following are 

major contributions of biofertiliser to smallholder agriculture. 

2.8.1 Increased yield and nutrient availability 

Crop yield can be improved by using biofertilisers such as Rhizobium and Bradyrhizobium. 

Rhizobium’s symbiotic relationship with legumes replenishes soil nitrogen by fixing up to 50-

200 kg N/Ha in the soil (Mishra & Dash, 2014). In addition, soybean inoculation causes an 

increase in yield, improves soil organic matter, while also fixing about 80% of crop nitrogen 

need (Chianu et al., 2011; Giller et al., 2011). Rose et al. (2014), reported that biofertiliser could 

replace about 52% nitrogen-fertiliser and cause an increase in rice yield over the control. 

 

Therefore, the use of biofertilisers by resource-poor farmers can increase crop yield and reduce 

the cost of production through less application of chemical inputs, thereby increasing 

profitability (Suyal et al., 2016). Azolla soaked in 50 ppm of superphosphate when inoculated 

in a paddy field fixes about 40-55 kg N/Ha, 15-20 kg P/Ha and 20-25 kg K/Ha in a month per 

1 kg of Azolla applied, bringing the yield of a flooded paddy to about 10-20% over the control 

(Mazid & Khan, 2014). Similarly, potassium-solubilising bacteria such as Pseudomonas and 

Burkholderia have been reported to cause an increase in growth and yield of wheat and pepper 

(Shanware et al., 2014), while Bacillus caused yield increase in cucumber and pepper. These 
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underscore the importance of biofertiliser to improve the yield of SHFs (García-Fraile et al., 

2015). 

2.8.2 Plant growth-promoting substances 

Plant growth-promoting rhizobacteria (PGPR), produce phytohormones such as cytokinins, 

auxins and gibberellins that cause an increase in plant foliage, root elongation, fruit yield and 

plant-microbe symbiosis (Hassen et al., 2016; Vacheron et al., 2014). Indole acetic acid (IAA), 

also called auxin, affects plant root architecture, promoting increased root surface area and root-

tip elongation (Ahmad et al., 2005), while gibberellic acid induces increased flowering, stems 

and internode elongation, fruit setting and growth in plants (Kumar et al., 2014; Zalewska & 

Antkowiak, 2013). Swain et al. (2007) reported in a study that yam (Dioscorea rotundata) 

inoculated with Bacillus subtilis, an IAA-producing strain, had an increased tuber length and 

an increased number of sprouts compared to uninoculated plants. Furthermore, rice and maize 

cultivated with gibberellic acid producing PGPR had a significant increase in growth and yield 

(Vacheron et al., 2014). Similarly, siderophores produced by PGPR stimulate the growth of 

maize in iron-poor soil (Egamberdiyeva, 2007), while an increase in yields of many cereal crops 

has been reported in the work of Pérez-Montaño et al. (2014) when the crops were grown with 

biofertilisers. 

2.8.3 Low cost of nutrient supply 

Different values for biological nitrogen fixation (BNF) in the soil have been reported. Galloway 

(1998) valued the annual BNF to be about 90-130 Tg N year-1, while Boyer et al. (2004) 

approximated it to be roughly 107 Tg N year-1. Similarly, Bhattacharyya (2014) estimated BNF 

on land to be 140 Tg N year-1. It has also been reported that up to 300 kg N/Ha per season can 

be fixed on legume-cultivated land (Ngetich et al., 2012). Surprisingly, the energy bill for this 

process is fully paid for by nature. Furthermore, the quantity of biofertiliser required to achieve 

the same amount of nutrients supplied by inorganic fertiliser is relatively lower. The cost of 

Rhizobium biofertiliser sufficient for 1 Ha was reported to be US$5.20 in Zimbabwe and 

US$4.50 in Rwanda (Mulongoy et al., 1992). NoduMax costs only US$5/Ha in application as 

opposed to the US$100/Ha cost of urea fertiliser needed to supply the same quantity of nutrients 

(N2Africa, 2015). The required energy for manufacturing inorganic fertilisers is huge compared 

to that required in biofertiliser production. This has made mineral fertilisers more expensive. In 
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fact, about 60% of smallholders in Africa cannot afford the high-priced inorganic fertiliser 

(Chianu et al., 2011). However, the use of biofertilisers is cost-effective, economical and 

sustainable for SHFs. 

2.8.4 Biocontrol ability of biofertilisers 

The metabolic products or indirect competition of biofertiliser strains can inhibit pathogens, 

thereby preventing pests and disease attack (García-Fraile et al., 2015; Rudrappa et al., 2008). 

Pseudomonas and Bacillus produce some antibiotics that impede the growth of bacterial and 

fungal pathogens (Beneduzi et al., 2012; Figueiredo et al., 2010). Similarly, the nodule-forming 

symbiotic association between legumes and Rhizobium boosts the synthesis of cyanogenic 

defence substances, which increase plant resistance to herbivore attack (Mazid et al., 2011; 

Megali et al., 2015). It is a fact that bacterial and fungal attacks reduce crop productivity among 

SHFs (Sones, 2015). Therefore, using inoculants producing antifungal and antibacterial 

substances such as chitinases and β-glucanases is a good strategy to suppress plant pests and 

diseases. Fusarium wilt of pigeon pea and soft rot of potato caused by Fusarium udum Butler 

and Erwinia Carotovora can be controlled by Pseudomonas fluorescens and sinorhizobium, 

both producing chitinase and β-glucanases (Guo et al., 2013; Kumar et al., 2010). Bacillus sp. 

has also been found to inhibit important pathogens such as Rhizoctonia solani in tomatoes and 

Phytophthora capsici in pepper (Akgül & Mirik, 2008; Solanki et al., 2012).  

 

Biofertilisers strains produce siderophore, an iron-chelating agent, which limits the available 

iron in the soil. This indirect competition for iron suppresses pathogens’ ability to cause 

diseases (Solanki et al., 2014). Bacillus and Pseudomonas produce siderophores that attack 

Fusarium wilt of potato and maize. Likewise, Burkholderia cepacia has been used as a 

biocontrol of Fusarium sp. and Pythium sp., which affect mainly maize and wheat yield of SHFs 

in most parts of sub-Saharan Africa, especially in South Africa (Beneduzi et al., 2012). 

2.8.5 Water stress resistance in plants 

Drought seasons in South Africa have been one of the major challenges in increasing crop 

productivity among smallholders (Falkenmark & Rockström, 2008). Biofertilisers, being able 

to enhance water-stress tolerance in plants, is a viable technology to alleviate this challenge 

(Dimkpa et al., 2009). The production of cytokinins, auxins, gibberellins and 1-
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aminocyclopropane-1-carboxylate (ACC) deaminase have been reported to cause an increase 

in plant water-stress tolerance (Khalil & El-Noemani, 2015; Mayak et al., 2004). For example, 

there was an increase in water-stress tolerance of potato plants when inoculated with Bacillus 

sp. that enhanced siderophore production, ACC deaminase activity and phosphate solubilisation 

(Gururani et al., 2013). Similarly, under drought conditions, AMF make available substantial 

amounts of ammonium and nitrate to the host plant by using the inorganic nitrogen released 

from organic sources or by taking up organic nitrogen in amino-acid form (Wu & Xia, 2006). 

Therefore, biofertiliser technology is important in improving the productivity of smallholders 

in dry regions and during drought seasons, especially in drought-prone sub-Saharan African 

countries such as South Africa (Kaushal & Wani, 2016).  

2.8.6 Volatile organic compounds 

Volatile organic compounds (VOCs) are part of normal metabolic activities of rhizosphere 

microbes and play an essential role as signals in plant-microbe interactions (Insam & Seewald, 

2010; Santoro et al., 2011). Microbial-synthesized VOCs, which include jasmonates, terpenes 

acetone, isoprene and 3-butanediol can improve crop productivity. VOCs from rhizobacteria 

have been reported to cause an increase in growth parameters and biosynthesis of essential oil 

in Mentha piperita (peppermint) (Santoro et al., 2011). 

2.8.7 Bioremediation 

Recently, biofertilisers such as Rhizobacteria in consortium with AMF have found use in the 

clean-up of heavy metal-polluted soils (Khan, 2014; Singh et al., 2011). Similarly, the 

Pseudomonas sp. strain 10-1B has been reported as a viable remediating agent, especially in 

polycyclic aromatic hydrocarbon (PAH)-contaminated soils (Bello-Akinosho et al., 2015). 

Biofertilisers such as Cyanobacteria, Azospirillum, Burkholderia, Bacillus, Enterobacter, 

Aspergillus and Penicillium have also been found to be useful in bioremediation (Choudhary 

& Das, 2010; Jain & Khichi, 2014). The dual functions of some biofertilisers in bioremediation 

and fertilisation have made them an important technology in agroforestry (Bello-Akinosho et 

al., 2016). Bioremediation using biofertiliser strains for treating crude oil-contaminated soil has 

been successfully used in many sub-Saharan African countries, such as Ogoni land in Delta 

State, Nigeria (Zabbey et al., 2017) and creosote-contaminated soil in South Africa (Atagana, 

2004). This highlight the importance of biofertiliser strains in sustainable agriculture. 
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2.9 Biofertiliser quality standards  

Generally, quality standards are specific for different biofertiliser products and each country 

has adopted a particular standard in its biofertiliser statute, which is relevant for that country 

(Motsara & Roy, 2008; Roy et al., 2006). Quality is an important factor in the acceptance and 

use of biofertilisers among SHFs. Quality determines the potential efficiency of the product. 

When product quality is poor, inoculants cannot perform effectively when used in the field, and 

farmers’ confidence in the technology wanes (Deaker et al., 2011). In most cases, the density 

of the viable microbial strains in a product is the major parameter that defines biofertiliser 

quality. However, other parameters such as pH, moisture content, odour and contaminant level 

should also measure within the acceptable standards (Table 2.4) (Yadav & Chandra, 2014). 

Many African countries, such as Kenya and Uganda, do not have a complete regulatory 

framework that defines biofertiliser standards. The majority have a “work in progress” 

framework, which can be referred to as an ordinary draft (Kenya standard, 2015; Uganda 

standard, 2014). Where regulatory guidelines are present, it has been made voluntary, such as 

is the case in South Africa (Lupwayi et al., 2000). The regulatory guidelines need to be 

legislated and must be compulsory in order to improve quality. Presently, the sub-Saharan 

African region has under-regulated the influx of biofertiliser products whose true qualities are 

rarely guaranteed (Simiyu et al., 2013). Therefore, there is a need for stringent national policy 

and regulatory strategies with effective monitoring management that will drive awareness on 

quality control, which consequently may lead to the production of quality biofertiliser products 

(Simiyu et al., 2013).  
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Table 2.4: Comparison between biofertiliser standards in India and Kenya 

  INDIAN BIOFERTILISER SPECIFICATIONS KENYAN BIOFERTILISER SPECIFICATIONS 

Parameter Rhizobium Azotobacter Azospirillum  PSB Rhizobium Azotobacter Azospirillum  PSB 

Base Carrier  base Carrier  base Carrier base Carrier base Carrier  base 
Carrier  base  

>106micron 

Carrier lignite/ 

charcoal  

> 100 micron 

Carrier lignite 

/charcoal      

>100micron 

Viable cell (CFU)/g 107 106 107 108 108 107 107 107 

Contamination level Nil at 10-5 Nil at 10-5 Nil at 10-5 Nil at 10-6 Nil at 10-5 Nil at 10-5 Nil at 10-4 Nil at 10-4 

Expiry date 6 months 6 months 6 months 6 months 6 months 6months 6months 6months 

pH 6.5-7.5 6.5-7.5 6.5-7.5 6.5-7.5 6.5-7.5 6.5-7.5 7.0-8.0 6.5-7.5 

Particle Size  212 micron 106 micron 106 micron 106 micron 0.15-212 mm 0.15-0212 mm 0.15-0212 mm 0.15-0212 mm 

Pathogen Shall be nil  Shall be nil Shall be nil Shall be nil Shall be nil Shall be nil Shall be nil Shall be nil 

Moisture  content % 30-40 % 30-40 % 30-40 % 30-40 % 30-40 % 35-40% 35-40 % 35-40 % 

Efficiency character 

positive 

nodulation 

≥50% 

increase 

N fixation 

≥ 5mg/g sucrose 

White pellicle in 

NFB at 10-7 

Phosphate 

mobilising 

zones ≥12mm 

at 10-5 

Positive   

nodulation 

20mg/g     

glucose 

N-Fixation 

>10mg/g sucrose / 

1mm zone of                 

P solubilisation 

30-50% N-fixation 

and 1mm P-

solubilisation zone 

P-Solubilising 

30-50% and 

1mm zone. 

Adapted from Kenya standard (2015); NCOF (2011). CFU: colony-forming units, PSB: Phosphate-solubilising bacteria 
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2.9.1 Biofertiliser standard specifications 

The legal quality of biofertiliser products is set based on eight major parameters in China and 

India, and the same parameters apply to commercial biofertilisers sold in African countries such 

as South Africa and Kenya (Table 2.4). These parameters included the density of viable strains, 

carbon and moisture content, pH, particle size (solid products), appearance, contamination and 

shelf life (Malusá & Vassilev, 2014). These basic parameters are outlined below. 

Carrier base: Materials such as peat, wood charcoal, lignite, humus or similar materials that 

favour the growth of inoculants are good carrier materials for solid products. They can be in the 

form of moist or dry powder, or granules (El-Fattah et al., 2013). However, broth cultures, 

mineral oil, water and oil-in-water emulsions are used in liquid products except for mycorrhiza, 

which is made with fine powder or granules, or root biomass carrier bases mixed with growing 

substrate (Bhattacharyya, 2014; Malusà & Ciesielska, 2014). 

 

pH: The pH standard for most biofertiliser products is in the range 6.5-7.5 except for mycorrhiza 

and liquid phosphate solubilising biofertiliser (PSB), which is expected to be 6.0-7.5 and 5.0-

7.5 respectively (FNCA, 2006). However, other countries may specify different pH standards. 

For example, the pH for Azospirillum products is specified to be 7.0-8.0 for Kenyan biofertiliser 

products (Kenya standard, 2015). 

 

Viable cell count: The minimum density of viable cells should be 5 × 107 CFU/g or 1 × 108 

CFU/ml for all bacterial biofertilisers while at least 100 viable spores per gram of mycorrhizal 

biofertiliser are required (Yadav & Chandra, 2014). Viable cells can be determined using the 

plate count technique. This involves serial dilution of the broth culture or carrier and spreading 

an aliquot on media to obtain viable count after a period of incubation (Lupwayi et al., 2000). 

 

Particle size: The size and strength of a particle determine its dissolution ability. Most 

biofertiliser carrier materials have small particle sizes and are highly water-soluble. Hence, they 

dissolve quickly with soil moisture (Motsara & Roy, 2008). Particle-size estimation is an 

important parameter in determining the quality and potential efficiency of biofertiliser products. 

The acceptable standard stipulates that carrier base biofertilisers should pass through a 0.150-
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0.212 mm IS sieve for bacteria, while for mycorrhizal powder biofertilisers, 90% should pass 

through a 0.250 mm IS sieve (60 BSS) (Yadav & Chandra, 2014). 

 

Moisture content: The moisture percent by weight of a good biofertiliser product has been 

stipulated to be 30-40% maximum for bacteria biofertilisers, while for mycorrhizal products 

the maximum is 8-12%. Excessive drying of biofertiliser is prevented by keeping the package 

tightly closed after use and stored in a cool and dry place (Kaljeet et al., 2011). 

 

Contamination level: According to biofertiliser standards, there should be no contamination at 

105 dilutions. The product must be free of foreign elements that can reduce its efficiency. No 

pathogen should cohabit with the inoculants (NCOF, 2011). 

 

Shelf life: This is the lifespan of the viable microorganisms in the biofertiliser when it is 

effective and free from deterioration. Though the standards vary from one country to another, 

the acceptable shelf life of carrier-based biofertilisers is six-months or more. However, it could 

be as long as two years for a liquid formulation (Brar et al., 2012). This is why liquid 

biofertiliser products are being developed and preferred over the carrier-based products. Liquid 

products contain special cell protectants that encourage spore or cyst formation, thereby 

improving products’ shelf life (Ansari et al., 2015; Pindi & Satyanarayana, 2012). 

 

Efficiency character: This is the expected character of the inoculants before being used on the 

field. Efficiency character of Rhizobium, for instance, is determined based on the formation of 

nodules on crops it can support. Azotobacter strains must have the capability to fix nitrogen, at 

least 10 mg of nitrogen per gram of sucrose consumed while the formation of a visible white 

pellicle in semisolid nitrogen-free bromothymol blue media defines the efficiency character for 

Azospirillum (Ghosh et al., 2001; Hardarson & Broughton, 2003). For PSB, the solubilisation 

ability should be a minimum of 30% when tested spectrophotometrically. However, a 5 mm 

minimum solubilisation zone is recommended in prescribed media with at least 3 mm thickness. 

The efficiency character of mycorrhizal biofertiliser is determined based on its infectivity 

potential. There should be at least 80 infection points in test roots per gram of mycorrhizal 

inoculum (Yadav & Chandra, 2014). 
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2.9.2 Guidelines for buying and storage of biofertilisers 

Procurement and storage guidelines are critical for obtaining a quality biofertiliser product. The 

package’s physiological properties should be intact and all informative labelling must be 

readable (El-Fattah et al., 2013). It is important that products be freshly produced, while expired 

products should not be sold or purchased. The products must be crop specific (e.g. Rhizobium 

and soybean) and should be stored in a cool place, preferably in a refrigerator since high 

temperatures can activate or damage the inoculants (Muraleedharan et al., 2010). Storage is an 

important factor in maintaining the stability and quality of biofertiliser products (Pindi & 

Satyanarayana, 2012). Different storage conditions, such as temperature and humidity, have 

been found to affect the carrier-material quality and the efficiency of an inoculant. This 

consequently affects the shelf life of the product. For better quality and longer shelf life, 

biofertilisers are to be stored at room temperature, except otherwise stated by the manufacturer 

on the product labels (Rajasekar & Elango, 2011). However, if the product is to be kept for a 

longer period, for example, 30-90 days before use, it is advisable to store the product in a 

refrigerator at 4-5 °C (Phiromtan et al., 2013).    

2.10 Carrier material properties 

Carrier materials allow for easy management, durability, improved shelf life and effectiveness 

of biofertilisers. They must be cheap, non-toxic, available in abundance and very easy to 

process with good moisture absorption and pH-buffering capacity. Carriers should have low 

levels of toxic or heavy metals that are dangerous to microorganisms, humans and the 

environment (Kaljeet et al., 2011). It is necessary that carrier materials be sterilised to support 

high numbers and different strains of beneficial microbes for a longer period and to prevent the 

proliferation of contaminants during storage. This also ensures that pathogens are not 

transferred to the agricultural field (Bazilah et al., 2011). The most commonly used methods of 

sterilisation are gamma irradiation and autoclaving methods. The autoclaving method has a 

lower cost of operation and the ability to produce a pure culture of inoculant. However, gamma 

irradiation is most suitable because it produces a better quality of final material without any 

effect on the physical and chemical properties (El-Fattah et al., 2013; Hung et al., 1998). In 

most cases, the granular form of (0.5-1.5 mm) peat, perlite, talcum powder, charcoal or soil 

aggregates is generally used as a carrier (Muraleedharan et al., 2010). Other carriers include 
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sterilised oxalic acid industrial waste, composted sawdust, kaolin, vermiculite, diatoms, wheat 

bran and sugarcane bagasse (Deepti & Mishra, 2014). 
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Chapter Three 

Methodology 
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3. Methodology 

3.1 Smallholder survey  

Descriptive survey design, which involves the collection of data with the aim of answering 

questions related to the subject of study, was used to investigate the first objective (Appendix 

1). This is also concerned with describing, analysing and reporting situations that exist or 

existed.  

3.1.1 Study area 

The study area is the Gauteng Province (latitude S25.93; longitude E28.05, Fig. 3.1), South 

Africa. Although efforts were made to include more provinces, time and budget constraints and 

other challenges in obtaining approval from the Department of Agriculture and Rural 

Development to engage smallholder farmers hindered the inclusion of other provinces in this 

study. This also affected the number of respondents interviewed in this study. However, since 

the Gauteng province is commercially viable and highly accessible for the introduction of new 

technologies and knowledge in agriculture, such as biofertiliser technology, it was envisaged 

that feedback obtained from smallholder farmers in the Gauteng province provided a 

countrywide estimate on biofertiliser perception and adoption.  

 

According to StatsSA (2011), approximately 2.9 million households are involved in agriculture 

in South Africa. Among the provinces, the largest percentage of agricultural households were 

recorded in KwaZulu-Natal, Eastern Cape and Limpopo, with 25%, 21% and 16%, respectively. 

Gauteng comes after Limpopo with about 10% while the Western Cape (3%) and Northern 

Cape (2%) had the lowest percentage of agriculture households. Specific activities showed that 

vegetable production was high amongst agricultural households in Gauteng (13%) compared to 

all other provinces. In addition, Gauteng dominated in the production of other crops (29%), in 

all probability due to substantial courtyard cultivation (StatsSA, 2011).  

 

The Province covers about 16 500 km2 with an average annual rainfall below 800 mm and 

average annual maximum temperature of 25 °C in the north and 22 °C in the south. The province 

is about 1 500 m above sea level with an average relative humidity of 85% (Dyson, 2009), and 

it has a population of over 13 million, making it the most populated province in South Africa. 
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Gauteng is bordered in the south by the Vaal River, which separates it from the Free State 

Province. It also borders North-West Province to the west, Limpopo Province to the north and 

Mpumalanga Province to the east (https://En.Wikipedia.Org/Wiki/Gauteng; StatsSA, 2017).  

 

 

Figure 3.1: Location of the study area showing Gauteng Province and the municipalities. 

3.1.2 Sampling procedure 

The selection of a specified number of individuals called the ‘sample’, which is a representative 

of the target group, is essential in population analysis. This is because the main population is 

usually too large to be investigated, while the sample is smaller and can be more easily studied. 
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The sampling frame of this study consisted of SHFs who are involved in crop production. In 

drawing samples, probability and non-probability methods were used. In probability sampling, 

members have an equal chance of being chosen, while in non-probability sampling members 

are non-randomly selected to allow for the deliberate selection of some individuals. Non-

probability sampling methods include judgment, convenience, quota and snowball (Kothari, 

2004). In this study, the probability method was used to select the municipalities of interest 

while the non-probability method used for choosing the respondents was convenience 

sampling, which is based on ease of accessibility to the smallholders. A sample consisting of 

67 SHFs was selected (Table 3.1). 

Table 3.1: Site location and coordinates 

Site No of respondents Coordinates 

Randfontein  Hekpoort 5    (26o10'47''S, 27o42'15''E) 

Johannesburg Metro 10   (26o11'50''S, 28o2'31''E) 

Winterveldt 24 (25o25'12''S, 27o56'56''E) 

Bronkhorstspruit 13         (25o48'18''S, 28o44'47''E) 

Khutsong  4 (26o20'1''S, 27o19'39''E) 

Ennerdale 11 (26o24'35''S, 27o50'13''E) 

Total 67  

 

3.1.2.1 Collection of data  

A well-structured questionnaire was used to collect data. The questionnaire was designed using 

a series of closed-ended and open-ended questions. Closed-ended questions generate data that 

can easily be analysed, while open-ended questions allow for suggestions and further 

expression of the matter in question by the respondents. Data were collected through personal 

(face-to-face) interviews with the smallholders at their respective farms (Appendix 1). 

3.1.2.2 Validity of the instruments 

According to Gakuu and Kidombo (2010), validity is the appropriateness, meaningfulness and 

usefulness of the conclusion on the data obtained from a study. In order to ensure validity, 

expert judgment of the study supervisors and of statisticians was employed. The instrument was 

also pretested and problems observed were resolved, before the final questionnaire was 

formulated. 
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3.1.3 Ethical consideration  

Ethical consideration is essential in order for the researcher to understand the standard of 

conduct in a particular field of study. It is also there to safeguard the rights of participants by 

ensuring the confidentiality of obtained information and identity protection, if need be (Artal & 

Rubenfeld, 2017). Approval to engage the SHFs was obtained from the Gauteng Department: 

Agriculture and Rural Development (Appendix 2) while UNISA CAES Research Ethics 

Review Committee granted ethical clearance (Appendix 3). The consent of the SHFs was 

obtained through a duly completed consent form (Appendix 19).  

3.2 Laboratory experiment 

Thirteen biofertiliser products that are commercially available in South Africa were analysed 

in this study. This constituted only the samples that were obtained at the time of sampling. Of 

the 13 samples, ten were liquid and three were carrier-based products. Codes assigned to the 

products were CBS and CBL to denote solid and liquid commercial biofertiliser respectively. 

The products were stored at 4 °C after sterilising the container with 70% (v/v) ethanol.  

3.2.1 Physical and physicochemical properties 

3.2.1.1 Water holding capacity (WHC) 

Sterile distilled water was added to 100 g oven-dried biofertiliser product with continuous 

stirring until it was saturated. The mixture was allowed to stand for 20-25 min and thereafter 

filtered using a sieve of 0.05 mm. The quantity of water filtered was measured to determine the 

amount of water held by the carrier matter (Somasegaran & Hoben, 1994). 

 

𝑊𝐻𝐶 % =
(𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑎𝑑𝑑𝑒𝑑 − 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 )

(𝑚𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑖𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒)
 ×  100 

3.2.1.2 Determination of pH 
Twenty grams of biofertiliser product was added to sterile distilled water in a ratio of 1:3 and 

agitated to mix on a rotary shaker at 120 rpm for 20 min. The pH of the solution was measured 

with glass electrode AD1030 (Adwa, Hungary) pH meter.  
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3.2.1.3 Particle size determination 
To measure the particles of carrier-based biofertilisers, sieves of prescribed mesh sizes were 

used. A 100 g biofertiliser sample was passed through 0.150 and 0.212 mm IS sieve. The entire 

biofertiliser must pass through the sieve, while for mycorrhizal biofertiliser, at least 90% should 

pass through 0.250 mm IS sieve (60 BSS) (Yadav & Chandra, 2014). 

3.2.1.4 Determination of moisture content 

A crucible containing 10 g of solid biofertiliser was placed in an oven at 105 °C for 48 h. The 

weight was measured intermittently until a constant weight was observed (Somasegaran & 

Hoben, 1994). The formula below was used to calculate the moisture content. 

𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (% 𝑏𝑦 𝑤𝑒𝑖𝑔ℎ𝑡) =
𝐵 − 𝐶

𝐵 − 𝐴
 

 × 100  

                                         𝐴 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 

            𝐵 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 𝑎𝑛𝑑 𝑏𝑖𝑜𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑠𝑒𝑟 𝑏𝑒𝑓𝑜𝑟𝑒 𝑜𝑣𝑒𝑛 𝑑𝑟𝑦 

         𝐶 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 𝑎𝑛𝑑 𝑏𝑖𝑜𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑠𝑒𝑟 𝑎𝑓𝑡𝑒𝑟 𝑜𝑣𝑒𝑛 𝑑𝑟𝑦 

3.2.1.5 Estimation of electrical conductivity  

The electrical conductivity (EC) was measured with a suitable conductivity electrode meter 

calibrated with 0.01 M potassium chloride. A 5 g biofertiliser mixed with 50 ml of deionised 

water in a bottle was centrifuged after shaking on a rotary shaker at 150 rpm for 30 min. The 

standard ratio 1:10 (mass/volume), which has been quite efficient in all sample analysis for 

compost and fertiliser samples, was used.  

3.2.1.6 Storage temperature 

Different temperatures were evaluated to ascertain efficient storage temperature for improved 

shelf life of biofertiliser products. Aliquots of biofertiliser products were stored at three 

different temperature conditions for three months. The 4 °C temperature condition was 

maintained in a refrigerator, 25 °C at room temperature, while 36 °C was maintained in an 

incubator. The temperatures were chosen based on various studies, which have confirmed these 

storage temperatures as efficient for increasing shelf life during storage (El-Fattah et al., 2013; 

Phiromtan et al., 2013). The microbial total viable count was determined after a 90-day storage 

period. 
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3.2.1.7 Estimation of total micronutrients and heavy metals 

A multi-element detecting instrument called inductively coupled plasma optical emission 

spectrometry (ICP-OES) was used to estimate the macro and microelements in the samples. 

ICP-OES is a sequential instrument that detects elements almost immediately and 

simultaneously. Each element is detected and measured at an appropriate emission wavelength 

chosen for high sensitivity without spectral interferences. The wavelengths used were; 

magnesium 383.826 nm, calcium 422.673 and 317.933 nm, phosphorus 213.618 nm, potassium 

769.896 nm, sodium 589.592 nm, iron 259.940 nm, manganese 257.61 nm, zinc 213.856 nm, 

aluminium 396.152 nm and copper 324.754 nm. This experiment was conducted at the 

analytical department of the Soil, Climate and Water business unit of the Agricultural Research 

Council.  

3.2.1.8 Estimation of total nitrogen and carbon 

Total carbon and nitrogen were determined on a Carlo Erba NA 1500 C/N/S analyser (Waltham, 

MA, USA), using an approximately 15 mg air-dried sample, which was weighed in tin-foil 

containers (Jimenez & Ladha, 1993). The container with the samples was ignited at 1 020 C 

in oxygen (on a chromium oxide catalyst) to produce carbon dioxide, dinitrogen and oxides of 

nitrogen (plus other oxides). The gases produced passed through silvered cobalt oxide (to 

remove oxides of sulphur and halogens) and a column of copper at 540 C to reduce the oxides 

of nitrogen to nitrogen gas (and to remove excess free oxygen). Subsequently, a trap of 

anhydrous magnesium perchlorate removed water vapour while the final separation of nitrogen 

gas and carbon dioxide was by gas chromatography using helium carrier gas. The elements 

were measured with a thermal conductivity detector.  

3.2.1.9 Identity character, appearance and odour 

Labelling details and manufacturer instructions, where available, were inspected and recorded. 

The colour and odour of the biofertiliser products were also observed and noted (NCOF, 2011). 

It was observed that not all the products had complete labelling information. In some cases, 

manufacture date, expiry date, shelf life, microbial densities or product functions were not 

stated. The claimed microbial strains in the products were used to categorise the products as 

Rhizobia, free-living N-fixing, and PGPR products. These products could be made of single or 

consortium strains. Where the products consisted of two or more of the above group they are 

referred to as mixed products.  
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3.2.2 Quantitative analysis of microbial content of biofertilisers 

3.2.2.1 Total viable count 

The total viable count was estimated by the dilution plate technique (Motsara & Roy, 2008). A 

tenfold serial dilution was made by adding 10 g of solid or 10 ml of liquid biofertiliser product 

to 90 ml of saline solution (0.85% (w/v) sodium chloride) in sterile glass bottles. The solution 

was agitated on a rotary shaker at 150 rpm for 25 min prior to further dilution up to 10-9. 

Subsequently, 0.1 ml from dilution 10-5 to 10-9 was spread on different culture media plates in 

triplicate (Table 3.2). Colonies below 300 were enumerated after incubating for two to five days 

and microbial density was expressed as colony-forming units (CFU g-1 or ml-1). 

 

𝑁𝑜 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 (𝐶𝐹𝑈 𝑝𝑒𝑟 𝑚𝑙) =
(𝑛𝑜 𝑜𝑓 𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠 × 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟)

(𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑖𝑛𝑜𝑐𝑢𝑙𝑢𝑚)
    

 

Table 3.2: Media used in microbial isolation 

Media Organisms Incubation °C References 

Congo red yeast extract Mannitol agar   Rhizobia 30 °C ± 2 °C Datta et al. (2015) 

N-free semi-solid bromothymol blue Nfb Azospirillum 30 °C ± 2 °C Baldani et al. (2014) 

Burks N-free medium Azotobacter 30 °C  ± 2 °C Revillas et al. (2000) 

Potato Dextrose Rose Bengal agar Fungal strains 25 °C ± 2 °C Rao et al. (2007) 

Nutrient agar Bacillus, Pseudomonas 

and others 

36 °C ± 2 °C Sigma-Aldrich, India 

(The chemical composition is in appendices 12, 13, 14 and 15)  

3.2.2.2 Most probable number 

The most probable number (MPN) technique estimates viable cell numbers based on the 

likelihood and assumption that a cell or group of cells will show a positive response in a tube 

(Alexander, 1965; Herbert, 1990). This was used to enumerate the Azospirillum in products 

CBL6 and CBL7. The results are usually estimated using already published tables (Cochran, 

1950) or software such as Most Probable Number Enumeration Systems (MPNes, by NifTAL) 

or an MPN calculator (by the United States Environmental Protection Agency). A 0.1 ml aliquot 

of dilutions 10-5 to 10-9 were placed in 25 ml McCartney bottles containing 10 ml of nitrogen-

free (Nfb) media and incubated for four days. The experiment was conducted in five replicates. 
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3.2.3 Molecular analysis of biofertiliser products 

3.2.3.1 DNA extraction  

A pure colony of an overnight bacterial culture on nutrient agar was suspended in 50 µl of 

sterile polymerase chain reaction-grade water and heated for 2 min in a microwave (Defy, 

model DMO351, China) to lyse the cells and release the nucleic materials. Subsequently, the 

microwaved cell suspension was centrifuged (JP Selecta Centrifuge, Barcelona, Spain) at 

10 000 rpm for 1 min and 2 ml of the supernatant of the lysed cell was taken as a template for 

the polymerase chain reaction (PCR). For fungal isolates, a five-day-old fungal growth on PDA 

was used for DNA extraction using a PowerSoil DNA Isolation Kit (MO BIO Laboratories, 

Inc, California, USA), according to the manufacturer’s instructions. A 0.25 g or ml of sample 

was placed into a PowerBead tube containing lysis solution, homogenised and vortexed at 

maximum speed for 10 min and was centrifuged at 10 000 × g for 30 sec at 25 °C. The 

supernatant obtained was purified twice by adding an inhibitor removal and centrifuge at 10 

000 × g for 60 sec after incubating at 4 °C for 5 min. This is to precipitate non-DNA organic 

and inorganic materials such as humic substances, cell debris and proteins. Subsequently, the 

supernatant was mixed with a binding solution in a collection tube, briefly vortexed to mix and 

the resulting solution was loaded onto a Spin Filter and centrifuge at 10 000 × g for 60 sec. The 

DNA is selectively bound to the filter membrane in the Spin Filter under the high salt 

concentration of the binding solution. The bound DNA on the silica filter membrane was further 

cleaned by the addition of an ethanol-based wash solution and centrifuged at 10 000 × g for 30 

sec at room temperature. This solution removes residual salts, humic acids and other 

contaminants. The Spin Filter is centrifuged again at 10 000 × g for 1 minute at room 

temperature to remove any residual solution of ethanol wash reagent. The DNA is then released 

from the silica Spin Filter membrane into a 1.5 ml collection tube with sterile elution buffer by 

centrifuging at 10 000 × g for 30 sec. The DNA extracted was stored at -20 °C for downstream 

application. 

 

Similarly, the PowerSoil DNA Isolation Kit was also used to extract total genomic DNA of 

microorganisms in the biofertiliser products. The extracted DNA was quantified using a Qubit 

2.0 fluorometer (Invitrogen, California, USA) and the integrity was verified on 1% (w/v) 

agarose gel electrophoresis stained with ethidium bromide. The gel was run at 80 V for 45 min. 
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3.2.3.2 Amplification of bacterial 16S rRNA gene and fungal ITS regions 1 and 2 of isolates. 

The V3-V4 region of the 16S rRNA gene of bacterial isolates and the internal transcribed spacer 

(ITS) regions 1 and 2 of fungal isolates were amplified using universal primers (Table 3.3). 

Polymerase chain reaction was performed in a T100TM (Bio-Rad, USA) thermal cycler. Each 

PCR-reaction mixture contained 12.5 µl of one Taq 2× Master Mix with Standard Buffer (New 

England, Biolabs Inc, USA), 2 µl of DNA template and 0.2 µM each of forward and reverse 

primers and nuclease-free water to a final volume of 25 µl. The thermocycling conditions are 

as follows: initial denaturation was at 94 oC for 30 sec, 30 cycles of denaturation at 94 oC for 

30 sec, annealing at 55 oC for 55 sec and extension at 68 oC for 60 sec. The final extension was 

at 68 oC for 5 min. An aliquot of 2 μl PCR-product was run on a 1% (w/v) agarose gel at 80 V 

for 45 min to verify the integrity and the size of the PCR amplicons. 

Table 3.3: Primers for bacterial 16S rRNA gene and fungal ITS regions 1 and 2 amplification. 

Organism Primers Primer sequence (5´-3´) Reference 

Bacteria  27F AGAGTTTGATCCTGGCTCAG Frank et al. (2008) 

(16S rRNA gene) 1492R TACGGYTACCTTGTTACGACTT  

Fungi  ITS 1 F TCCGTAGGTGAACCTGCGG White et al. (1990) 

(ITS regions 1 & 2) ITS 4 R TCCTCCGCTTATTGATATGC  

 

3.2.3.3 Sequencing and taxonomic assignment 

The PCR amplicon samples were sequenced at Stellenbosch University’s Central Analytical 

Facility, using universal primers (Table 3.3). Sequences obtained were manually inspected, 

edited and bidirectional sequences were merged using the BioEdit Sequence Alignment Editor 

to generate contiguous consensus sequences. For the taxonomic assignment, contiguous 

sequences were matched against available sequences in the National Centre for Biotechnology 

Information (NCBI) database using the basic logical alignment search tool (BLAST). A 

phylogenetic tree with relatives above 97% similarity was constructed using MEGA 7.0.25 

(Kumar et al., 2016). 
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3.2.4 Arbuscular mycorrhizal fungal biofertiliser spore count and viability determination 

3.2.4.1 Spore count 

Arbuscular mycorrhizal fungi spores were extracted using the wet-sieving and decanting 

method as described by Habte and Osorio (2001). Enough distilled water was added to 10 g 

biofertiliser product (CBS13) in a beaker and thoroughly agitated for 30 min to release the 

spores from the dispersed biofertiliser aggregates. The resultant solution was passed through 

nested sieves with mesh sizes of 0.75, 0.50, 0.25, 0.10 and 0.05 mm arranged in descending 

order of size. The trapped spores in 0.050-, 0.100- and 0.250-mm sieves were centrifuged at 2 

00 × g for 3 min after being suspended in distilled water. The sediment was centrifuged again 

after being re-suspended in 50 ml of 50% (w/v) sucrose solution. The supernatant fluid was 

washed with distilled water to release the spores from the sucrose. Subsequently, the spores 

were transferred to a Petri dish and were examined and counted under a light microscope (Motic 

BA210, Spain). The results were expressed in the number of counted spores per 10 g of 

biofertiliser product.  

3.2.4.2 Spore viability determination 

The procedure of Habte and Osorio (2001) was used in assessing the viability of the AMF 

spores. Sterilised soil contained in a Petri dish was moistened to its maximum water-holding 

capacity with a solution of 0.1% (w/v) Trypan blue. This solution increases the visibility of 

hyphal growth. Pieces of membrane filter about 10 × 10 mm (pore size 0.45 µm) were placed 

on a nylon mesh of pore size 50 µm positioned on the soil surface. The membrane filters were 

pre-sterilised in 70% (v/v) alcohol for 5 min and rinsed with distilled water. The Petri dish was 

covered and incubated in the dark at 20 °C after a spore has been placed on each piece of filter 

square. After 14 days of incubation, the filter membrane was removed, and the spores examined 

under a light microscope (Motic BA210, Spain). Viability is indicated by the growth of the 

spores.  

3.2.5 Analysis of bacteria in biofertiliser products using Illumina MiSeq system 

3.2.5.1 16S rRNA gene library construction 

The Illumina MiSeq 16S library preparation guide (Illumina Inc.) was followed in building the 

gene library. The hypervariable V3-V4 region (approximately 460 base pair) of the 16S rRNA 

gene was amplified using region-specific primers 341F (5՜-CCTACGGGNGGCWGCAG-3՜) 
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and 805R (5՜-GACTACHVGGGTATCTAATCC-3՜) in a PCR that was performed in a 

SimpliAmp™ Thermal Cycler (Thermo Fisher, USA). Both the forward and the reverse 

Illumina overhang adapters (Illumina Inc., California, USA) were clamped to the 5՜ end of the 

primer-pair sequences for compatibility with Illumina index and sequencing adapters. In 

summary, the library preparation workflow involved a first-stage of PCR amplicon, intended to 

amplify the target region through a PCR using 2.5 µl DNA template (5 ng/µl in 10 Mm Tris, 

pH 8.5), 12.5 µl of 2× KAPA HiFi HotStart ReadyMix (KAPA Biosystems, Massachusetts, 

USA) and 5 µl of each of the  forward and reverse primers (1 µM) to a final volume of 25 µl. 

The thermocycling conditions were an initial denaturation at 95 °C for 3 min, 25 cycles of initial 

denaturation at 95 °C for 30 sec, annealing at 60 °C for 30 sec and extension at 72 °C for 30 

sec, and a final extension of 72 °C for 5 min.  

 

PCR amplicons were cleaned using Agencourt A MPure XP magnetic beads (Beckman Coulter 

Inc, CA, USA). After PCR cleanup, the Illumina indexes and sequence adapters (Illumina Inc., 

CA, USA) were clamped to the amplicon using the Nextera XT Index Kit (Illumina Inc, CA, 

USA). The indexed PCR products were subjected to another clean-up process and afterwards 

quantified using a Qubit fluorometer (Qubit 3.0, Life Technologies, Malaysia). The partial 16S 

rRNA were normalised and denatured in 0.2 N NaOH before loading on the MiSeq V3 reagent 

cartridge (Illumina Inc., CA, USA). De-multiplexing and downstream analyses of the obtained 

sequences were performed using MiSeq reporter software (Illumina Inc., CA, USA) after the 

2× 300 bp paired-end sequencing run had been executed (Mashiane et al., 2017). 

3.2.5.2 NGS processing, operational taxonomic unit assembly and diversity analyses 

The quality of obtained sequence reads was checked with FastQC and AfterQC software 

(version 0.11.5, Babraham Bioinformatics, UK). Following quality check, PANDAseq 

(Masella et al., 2012) was used for assembling the forward and the reverse reads. Thereafter, 

merged reads were clustered into operational taxonomic units (OTUs) using the open-reference 

OUT-picking strategy in QIIME (Caporaso et al., 2010). For the OTU picking, sequences were 

aligned against the SILVA rRNA database using SILVA 123 QIIME release (Quast et al., 2012)  

with usearch61. The PyNast aligner was further used to align sequences for phylogenetic tree-

building alignment (Caporaso et al., 2010). The generated OTUs were subsampled (rarefied) 

and then taxonomically summarised with the computation of the alpha (α) and beta (β) diversity 
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using R software (R Core Team, 2013). Different R packages such as vegan, ape, labdsv, 

heatmap.plus and gplot were employed in the statistical analyses and plot construction.  

3.2.5.3 16S rRNA metagenomics’ prediction of community functional profiles 

Community functional abilities were predicted using the Tax4Fun package in R. The Tax4Fun 

package predicts functional profiles of 16S rRNA gene diversity by transforming the SILVA 

assignment counts to functional profiles in three major steps (Aßhauer et al., 2015). Firstly, the 

16S rRNA profile obtained from the SILVA rRNA database alignment is transformed to a 

taxonomic profile of prokaryotic KEGG organisms, with the aid of a precomputed association 

matrix (Kanehisa et al., 2013). Subsequently, estimated abundance of KEGG organisms was 

normalised by the 16S rRNA copy number obtained from the NCBI genome annotations. The 

prediction of the functional profile of the microbial community was conducted after the 

precomputed functional profiles of the KEGG organisms has been linearly combined using the 

normalised taxonomic abundances. The UProC and PAUDA were used for fast computation of 

microbe-specific and metagenomics functional KEGG Orthology (KO) (Aßhauer et al., 2015).  

3.2.6 Biochemical tests 

3.2.6.1 Carbohydrate utilisation  

The ability of isolates to ferment various carbohydrate sources such as sucrose, glucose and 

lactose was tested using Triple Sugar Iron (TSI) agar. During carbohydrate digestion, gas or 

acid may be produced, which lowers the pH of the medium and causes the indicator (phenol 

red) to change colour to yellow. If the microorganisms do not ferment the sugar, the medium 

remains red. A black precipitate at the butt of the tube indicates the production of hydrogen 

sulphide from ferrous ammonium sulfate (Appendix 18). 

TSI agar (Appendix 4) slant in a 25 ml McCartney bottles was inoculated with the test bacterial 

strain at the bottom by stabbing the butt of the tube and then streaking the strain onto slant’s 

surface. The tubes were incubated at 35 °C ± 2 °C for 18-24 h (Singh et al., 2008). An 

uninoculated TSI agar slant served as a negative control. This is to confirm that the carbohydrate 

was utilised by the tested bacterial isolates. 

3.2.6.2 Citrate utilization test  

A citrate test is used to determine the ability of bacteria to utilise inorganic ammonium 

dihydrogen phosphate and sodium citrate as the sole nitrogen and carbon source, respectively. 
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When the cell absorbs exogenous citrate, it is metabolised to oxaloacetate and acetate by citrate 

lyase in the presence of a permease. The oxaloacetate is further broken down into pyruvate and 

carbon dioxide. This test is commonly used to differentiate the Enterobacteriaceae. 

Aseptically prepared slants of Simmons Citrate agar (Appendix 5) in a test tube were inoculated 

with 18-24 h cultures and incubated at 35 °C. Tubes were monitored for 7 days for slow-

growing microbes. The intense prussian blue colour observed indicated a positive result that 

confirms the production of alkaline carbonates and bicarbonates as by-products of citrate 

metabolism, raising the pH of the medium to above 7.6 (Appendix 18). A negative reaction 

results in the retention of the dark-forest green colour of the medium (Faidy & Ali-Shtayeh, 

2000). 

3.2.6.3 Ammonia production 

The production of ammonia by the tested bacterial isolates was determined using Nessler’s 

reagent (Appendix 6). Bacteria growing in a urea-exposed environment may decompose their 

substrate using urease. The occurrence of this enzyme is confirmed when ammonia is produced 

from the breakdown of urea. Ammonia production by isolates was tested by adding 0.5 ml of 

Nessler’s reagent to a culture broth of isolates grown in 10 ml of peptone water for 48 to 72 h 

at 36 °C. The development of brown to yellow colouration after three to five minutes is positive 

for ammonia production (Appendix 18). Uninoculated peptone water served as the control to 

confirm ammonia production was by the tested isolates 

3.2.6.4 Production of hydrogen cyanide  

Bacterial isolates were screened for hydrogen cyanide (HCN) production using the method of 

Lorck (1948). Some bacteria are able to produce HCN and carbon dioxide from decarboxylation 

of glycine. The enzyme HCN synthase catalyses this oxidation reaction. HCN is toxic to 

organisms; however, HCN-producing microbes have developed mechanisms such as cyanide-

tolerant respiratory systems and cyanide-detoxification mechanisms that protect them from 

HCN toxicity (Knowles, 1976). This is why HCN-producing microbes have found use in 

biocontrol of soil-borne pathogens. 

 

A 0.1 ml bacterial suspension was inoculated on modified nutrient agar (Sigma-Aldrich, India) 

supplemented with 4.4 g of glycine/l. Whatman filter paper no. 1 (Whatman International Ltd., 

Maidstone, England) was saturated with a solution of 2% (w/v) sodium carbonate in 0.5% picric 
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acid solution and placed in the upper lid of the plate. Incubation followed at 30 °C for 4 days 

after sealing the plates with parafilm to prevent volatilisation. Uninoculated plate containing 

nutrient agar supplemented with glycine was used as a control. The development of an orange 

to red colour indicated HCN production.  

3.2.6.5 Oxidase test 

The oxidase test is based on the oxidation of N, N, N, N-tetramethyl-1, 4-phenylenediamine by 

oxidase, to produce the coloured compound, indophenol blue. A number of microorganisms are 

characterised by cytochrome oxidase. The cytochrome oxidase is an iron porphyrin that 

oxidises reduced cytochrome diatomic carbon and reconverts it to an active form by the transfer 

of electrons to molecular oxygen (Steel, 1961). 

Oxidase activity was detected by making a smear of the tested bacterial isolates on filter paper 

already moistened with 1% tetramethyl-p-phenylenediamine dihydrochloride. A change of 

colour to dark purple within 30 sec is positive, while the absence of colour is a negative result. 

3.2.6.6 Lipase production 

Lipolytic organisms have a lipase that catalyses the hydrolysis of lipids. Lipases are a subclass 

of esterases and perform significant roles in the digestion, transport and breakdown of dietary 

lipids in most organisms (Gurung et al., 2013). Lipase production was tested by growing test 

isolates on Tween 20 agar plate (Appendix 7) and incubation was at 30 °C for 48 h (Ghodsalavi 

et al., 2013). Bacterial colonies with depositions around their edges showed lipase activity. The 

ability of bacterial strains to produce lipase was rated -ve = no ability or +ve = ability. 

3.2.6.7 Catalase test 

During the aerobic breakdown of sugars, some bacteria produce oxidative products such as 

hydrogen peroxide, which is highly toxic causing cell death upon accumulation. Microbes, 

which produce catalase, are able to decompose hydrogen peroxide either to nascent oxygen or 

secondary substrates that have no effect on the organisms. Catalase is only present in viable 

cultures; therefore, more than 24-hour-old cultures may give false negative results during 

testing (Hemraj et al., 2013). To test for catalase, a colony of pure bacterial isolate grown on 

nutrient agar overnight was transferred to a sterile microscopic slide and 2-3 drops of 3% (v/v) 

hydrogen peroxide was added. A positive result showed a rapid effervescence of oxygen with 

bubbles while negative results do not evolve bubbles (Appendix 18).  



54 

 

3.2.6.8 Urease test 

Urease is an enzyme that catalyses the breakdown of urea to ammonia by attacking the amide 

link. The ammonia produced increases the pH of the medium. This test is used to distinguish 

members of the genus Proteus from other lactose non-fermenting enteric microbes. Urea agar-

based solution was autoclaved at 121 °C for 15 min and cooled to 50 °C. A 50 ml of 40% urea 

solution, filtered with a 0.45 mm pore-size filter was aseptically added. The urease activity was 

detected by growing the tested bacterial isolates on the urea agar slants (Appendix 8). The 

bright-pink colouration is positive, while otherwise, it is a negative result (Faidy & Ali-Shtayeh, 

2000). 
                                          Urease 
(NH2)2CO(s) + 2H2O(l)                             CO2(g)   + H2O(l) +   2NH3(g)  Boman and Obreza (2002) 

                              

3.2.6.9 Methyl Red and Voges-Proskauer test  

Microorganisms ferment glucose to produce stable acids that lower the pH of growth medium 

and cause the change in colour of indicators. The methyl Red and Voges-Proskauer (MR-VP) 

is used to identify enteric bacteria based on their pathway of glucose metabolism. Pyruvic acid 

is initially produced by glucose metabolism while a mixed-acid pathway is used by enteric 

bacteria to further metabolise pyruvic acid to products such as lactic, formic and acetic acids 

(Goldman & Green, 2015). The tested isolates were incubated in the MR-VP broth (Appendix 

9) for 48 h at 35 °C and 0.2 ml of Methyl Red indicator was added to 5 ml of the broth culture. 

The formation of a red colour is positive while yellow colouration is a negative reaction. For 

VP, 0.6 ml of Barritt’s reagent A and 0.2 ml of Barrit’s reagent B was added (Appendix 10). A 

red colouration observed at the top of the culture is positive, while a yellow colour is negative 

(Mcdevitt, 2009). 

3.2.7 Functional attributes 

3.2.7.1 Indole-3-acetic acid production 

The method of Patten and Glick (2002), using Salkowski’s reagent (1 ml of 0.5 M FeCl3 in 50 

ml 35% (v/v) HClO4 solution) was used for screening isolates for Indole-3-acetic acid (IAA) 

production. Twenty microliters of cultivated culture were transferred into a sterilised bottle 

containing 10 ml of Tryptophan broth (Sigma-Aldrich, Canada) and incubated at 30 °C for 48 

h with shaking (200 rpm). One and a half millilitres of the culture was placed in 2 ml 
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microcentrifuge tube and centrifuged (JP Selecta Centrifuge, Barcelona, Spain) at 10 000 rpm 

for 15 min at 4 °C. One millilitre of the supernatant was placed in a tube containing 2 ml of 

Salkowski’s reagent and was incubated in the dark at room temperature for 25 min. A red to 

pinkish colouration confirms IAA production. The colour intensity from yellow, pink (pale or 

deep) to red (dark to reddish) shows no-IAA, low-IAA and high-IAA production, respectively. 

The absorbance was measured at 540 nm and the concentration was calculated by comparing 

with the plotted standard curve (Appendix 20 & 21). 

3.2.7.2 Phosphate solubilising activities 

Isolates’ ability to solubilise phosphate was investigated by estimating the halo zone formed on 

the phosphate growth medium. The National Botanical Research Institute’s phosphate medium 

(NBRIP) supplemented with 15 g Bacto-agar (Difco Laboratories, Detroit, MI, USA)  

containing insoluble tricalcium phosphate was used as the single phosphorous source 

(Appendix 11). Triplicate wells of known diameter were bored with a sterile glass Pasteur 

pipette on each agar plate. The plates were incubated at 30 °C for 14 days after placing 0.01 ml 

of pure culture in each well. The clear halo zone around the bacteria colonies signifies the ability 

to solubilise phosphate. The inorganic phosphate (Pi) solubilisation index was calculated by the 

formula below (Nautiyal, 1999). 

 

𝑃𝑖 𝑆𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 (𝑃𝑆𝐼) =
𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 ℎ𝑎𝑙𝑜 𝑧𝑜𝑛𝑒 + 𝑤𝑒𝑙𝑙 (𝑚𝑚)

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑤𝑒𝑙𝑙 (𝑚𝑚)
 

3.2.7.3 Acid phosphatase assay  

This method is based on the principle of the quantity of ρ-nitrophenol released when isolates 

are incubated with ρ-nitrophenyl phosphate (ρNPP) (Tabatabai & Bremner, 1969). The reagents 

included modified universal buffer (MUB) stock solution and buffer, ρ-Nitrophenyl phosphate 

solution (ρNPP) (Sigma-Aldrich, India), calcium chloride solution, sodium hydroxide solution 

and ρ-nitrophenol standard solution (Appendix 17).   

 

A 0.5 ml of culture supernatant in NBRIP broth was added to a McCartney bottle containing 4 

ml of MUB working solution and 1 ml of 0.05 M ρ-nitrophenyl phosphate solution. The bottle 

was tightly closed, vortexed to mix and incubated at 37 °C for 1 h. One millilitre of 0.5 M 

calcium chloride and 4 ml of 0.5 M sodium hydroxide was added and mixed thoroughly before 
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filtering through a folded Whatman filter paper no 2v. (Whatman International Ltd., Maidstone, 

England). A control containing culture supernatant was made the same way but the 1 ml ρNPP 

was added after adding calcium chloride and sodium hydroxide. The absorbance of the yellow-

coloured filtrate was measured at 405 nm after calibration (Appendix 22) and the concentration 

was calculated from the standard curve (Appendix 23) (Behera et al., 2017). 

 

3.2.7.4 Nitrogen-fixing potential 

The ability of isolates to fix nitrogen was examined on a nitrogen-free media (Burk’s medium) 

(Appendix 12) and nitrogen-free bromothymol blue medium supplemented with 15 g agar 

(Appendix 13). Pure isolates were streaked on already prepared sterile Burk’s medium and 

incubated at 30 °C for 24 to 48 h. Bacteria that grew in the medium were categorised as positive 

(+) for growth and negative (-) if no growth was observed.  

 

3.2.7.5 Siderophore production 

The method described by Louden et al. (2011), which employs the use of chrome azurol S 

(CAS) blue agar and hexadecyltrimethylammonium bromide (HDTMA) as indicators, was used 

to evaluate siderophore production. A pure isolate was spot inoculated onto the blue agar and 

incubated at 30 °C for 24-72 h. A yellow to orange halo zone around the colonies is a positive 

result for siderophore production. Steps involved in CAS agar preparation are described in 

Appendix 16. 

3.2.8 Statistical analysis 

Descriptive statistics such as frequencies and percentages were generated for the analysis of the 

survey experiment and the results were presented in the form of standard tables. The scores 

were subjected to a one-to-one frequency table and a chi-Square test (²) was performed to test 

for equal proportions. Contingency RxC frequency tables were performed for the association 

between farmers’ characteristics such as gender or age groups and tested parameters such as 

biofertiliser awareness and institutional factors (Snedecor & Cochran, 1967). Chi-Square (2) 

tests were performed for the association. For the laboratory experiments, mean and standard 

deviations were computed for replicate measurements. 
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Chapter Four 

Results 
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4. Results 

The descriptive statistical analyses of the general characteristics of the respondents as well as 

the results of the laboratory experiments are presented in this chapter. The characteristics of 

SHFs such as age, gender, level of education and farming experience as well as types of 

fertilisers applied, probably influencing awareness and adoption of biofertiliser, were presented 

using frequencies and percentages. 

4.1 Characteristics of smallholder farmers 

4.1.1 Gender, age and level of education 

Sixty per cent of the respondents interviewed were females while 40% were males. The 

majority of the respondents, about 69%, were in the age group 50 years and above. 

Approximately 22% of the respondents were between the age range 40-49 years while the 

youthful age groups, 20-29 years and 30-39 years, accounted for the lowest percentages, at 3% 

and 6%, respectively. The mean age of SHFs was found to be 50 years (Table 4.1). The results 

revealed that many of the smallholders are not very literate, with 43% having primary education 

only and 11% having no formal education. However, 15% of the farmers had some tertiary 

education (diploma, degree and above) while 31% had only secondary education. The chi-

square test of independence showed a close proportion of males and females were not aware of 

biofertiliser, with no significant difference in the proportion, χ² (1, N = 67) = 0.0633, p 0.05 = 

0.8013. Similarly, the differences in the proportion of biofertiliser knowledge amongst the 

farmers’ age groups were not significant χ² (4, N = 67) = 4.7827, p 0.05 = 0.3103. 

4.1.2 Farming experience, application and types of fertiliser  

There was a low level of farming experience among the interviewed respondents. Forty-five 

per cent (45%) of the respondents had less than five years of experience while only 17% had 

more than 15 years of cultivation experience. Nineteen per cent of respondents had between 5-

10 years and 10-15 years of experience. The results also revealed that about 84% of the 

respondents applied fertilisers for cultivation while 16% did not use any fertiliser. While 37% 

of the respondents were reported to be using organic fertilisers, 24% were using inorganic 
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fertilisers. Another 24% of the respondents used a combination of organic and inorganic 

fertilisers. However, none of the respondents used biofertiliser.  

Table 4.1: Gender, age, educational level, farming experience and fertiliser application among 

smallholder farmers in Gauteng Province. 

Variable  Frequency Percentage Chi square value  Probability p = 0.05 

Gender     

Male 27 40   

Female 40 60 2.5224 0.1122 

Age group (years)     

20-29 3 3   

30-39 4 6   

40-49 14 22 Mean = 50  

50- above 46 69 100.6866 < 0.0001 

Educational qualification     

No- formal education 7 11   

Primary (Grade 7) education  29 43   

Secondary (Grade 12) education 21 31   

Tertiary education (diploma, 

degree above) 

10 15 18.4328 0.0004 

Farming experience (years)     

Below 5 years 30 45   

5 -10 years 13 19   

10-15 years 13 19 14.1343 0.0027 

15- above years 11 17   

Application of fertilisers     

Yes 56 84   

No 11 16 30.2239 < 0.0001 

Types of fertilisers used     

Inorganic fertiliser 16 24   

Organic fertiliser 25 37   

Combination 16 24   

Biofertiliser 0 0   

None 10 15 6.8507 0.0768 

Source: Field Work, November 2017  
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4.2 Challenges in increasing crop productivity and awareness of biofertiliser 

4.2.1 Reasons for using fertilisers and crop-productivity challenges 

Respondents had put forth many reasons for using fertilisers. Sixty-one per cent (61%) of 

respondents emphasised yield increase as the major reason for using fertilisers, while 31% and 

6% indicated soil-nutrient improvement and crop health respectively as their reasons. About 

2% did not state any reason for using fertilisers. In addition, 43% of respondents reported their 

major challenge in crop production as plant pests and diseases, whereas 30% of the respondents 

indicated crop yield increase and 12% indicated soil nutrient (nitrogen, phosphorous, and 

potassium) deficiency. However, 25% reported all of these challenges as issues affecting their 

productivity while 4.5% reported no challenges (Table 4.2).  

4.2.2 Biofertiliser knowledge and application, and product awareness 

Biofertiliser knowledge was very poor amongst the respondents interviewed, with over 95% 

not having any knowledge of biofertiliser and its application. Only about 5% of the respondents 

claimed to have some knowledge of biofertiliser and its application. In addition, about 97% of 

the respondents did not have any idea on seasonal usage of biofertiliser products (Table 4.2).  

 

Awareness of biofertiliser was further assessed by asking respondents to choose products they 

had come across in the past amongst the listed commercial biofertiliser products in the 

questionnaire (Appendix 1). About 97% of the respondents had not come across any of the 

listed biofertiliser products. However, a respondent stated a brand of biofertiliser, Amgrow, 

when asked to list any other commercial products not listed in Appendix 1.  
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Table 4.2: Reasons for using fertilisers, challenges in farming and, biofertiliser knowledge 

and awareness among smallholder farmers in Gauteng Province. 

Variable Frequency percentage Chi square value Probability p = 0.05 

Reasons for using fertilisers     

Yield increase 41 61   

Soil nutrient improvement 21 31   

Crop health improvement 4 6   

No reason 1 2 60.7015 < 0.0001 

Challenges in farming     

Nitrogen supply 3 4.5   

Phosphorous supply 4 6   

Potassium supply 1 1.5   

Crop yield increase 10 15   

Plant pest and disease incidence 29 43.3   

All of the above 17 25.2   

None 3 4.5 65.1642 < 0.0001 

Biofertiliser knowledge     

Yes 3 4.5   

No 64 95.5 55.5373 < 0.0001 

How often do you use biofertiliser     

Every season -    

Every other season -    

When necessary 2 3   

Not at all 65 97 59.2388 < 0.0001 

Biofertiliser product awareness     

Yes 2 3   

No 65 97 59.2388 < 0.0001 

Source: Field Work, November 2017 
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4.3 Types of crop cultivated 

Major crops cultivated by the respondents included spinach, onion, cabbage, beetroot, tomato, 

maize, pumpkin, beans, potatoes, lettuce and carrot (Table 4.3). 

Table 4.3: Major crops grown by smallholder farmers in selected municipalities in Gauteng 

Province. 

Crops Frequency Percentage (%) 

Spinach 47 70 

Onion 24 36 

Cabbage 23 34 

Beetroot 22 33 

Tomato 21 31 

Vegetable (others) 21 31 

Maize 16 24 

Pumpkin 16 24 

Bean 15 22 

Potato 14 21 

Lettuce 11 16 

Carrot 10 15 

Source: Field Work, November 2017  

4.4 Individual perception and institutional support 

When respondents were asked to rate their knowledge on biofertiliser, about 90% reported their 

knowledge to be poor, 7% said they do not know, while 3% described their knowledge as being 

fair. Similarly, over 95% of the respondents had no perception of the quality of biofertiliser nor 

the performance of biofertiliser with respect to other fertilisers. This was expected as almost all 

the respondents did not know what biofertiliser is (Table 4.4).  

 

Extension services on biofertiliser were reported by 36% of respondents to be poor while 16% 

and 15% agreed that they are good and excellent respectively. Some respondents (18%) agreed 

that extension services are fair while another 15% responded: “don’t know”. About 76% of 

respondents stated that accessibility of biofertiliser is poor while 22% indicated “don’t know”.  
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Furthermore, more than 75% of the respondents interviewed considered the support and policies 

of government on biofertiliser to be poor. However, 4% indicated that the government support 

was fair while 18% indicated they do not know (Table 4.4). 

 

In addition, the majority of respondents suggested training and on-field trials would improve 

their knowledge and, possibly, the adoption of biofertiliser. It was also proposed that product 

samples should be given to farmers for use before they can commit to a purchase. Respondents 

also recommended that extension programmes and financial support be intensified to promote 

awareness and the use of biofertiliser. 
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Table 4.4: Individual perception of and institutional support for biofertiliser application. 

Questions QA QB QC QD QE QF 
Response Frequency Percentage Frequency Percentage Frequency Percentage Frequency Percentage Frequency Percentage Frequency Percentage 

Poor 60 90,0 2 3,0 1 1,5 24 36,0 51 76,0 50 75,0 
Fair 2 3,0 1 1,5 - - 12 18,0 - - 3 4,0 

Average - - - - 1 1,5 - - 1 2,0 - - 
Good - - - - - - 11 16,0 - - 1 1,5 

Excellent - - - - 1 1,5 10 15,0 - - 1 1,5 
Don’t know 5 7,0 64 95,5 64 95,5 10 15,0 15 22,0 12 18,0 

 

Question keys 

QA:  How would you describe your knowledge about biofertiliser? 

QB: Overall, what is your perception of the quality of biofertilisers you know of? 

QC: How would you rate the performance of biofertiliser with respect to other fertilisers? 

QD: How would you rate extension services on biofertilisers?  

QE: Describe the accessibility of commercial biofertiliser products 

QF: Rate the support/policy of the government on biofertilisers 
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4.5 Physicochemical properties of biofertiliser products 

4.5.1 Total carbon and nitrogen 

Total carbon and nitrogen were measured in percentage of the total sample weight. The results 

showed that samples CB5S and CB2S had a high carbon content of 33.6% and 23.9%, 

respectively. Other samples, CB1S, CB10S, CB3S and CB4S, had low carbon content while 

the lowest carbon content, below 1% was found in samples CB13S, CB9L and CB11L. For the 

total nitrogen, samples CB5S (2.13%), CB10L (0.87%) and CB2S (0.64%) had relatively high 

nitrogen content. Other samples with a total nitrogen content below 0.2% were CB9L, CB11L 

and CB13S (Fig. 4.1). 

The ratio of carbon to nitrogen content (C/N) of the products showed that samples CB13S, 

CB2S CB1L and CB5S had high C/N ratio of 42, 37, 25 and 16, respectively. Samples CB3L 

and CB4L had fairly average ratios of approximately 7%. However, other samples had a very 

low C/N ratio below 4. 

 

Figure 4.1: Total carbon and nitrogen in biofertiliser products. 
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4.5.2 Electrical conductivity 

The electrical conductivity (EC) results showed that samples CB10L, CB1L, CB8L and CB5S 

had high EC of 1 234, 1 076, 1 052 and 923 mS/m, respectively. Other samples with relatively 

high EC above 600 mS/m included CB7L, CB9S, CB3S and CB6L. Samples CB13S, CB2S 

and CB12L had the lowest EC below 220 mS/m (Table 4.8).  

4.5.3 Total micronutrients and heavy metals in biofertiliser products 

The results of the analysis of macro and micronutrients showed that the element with the highest 

quantity was potassium with 5 128 mg/kg in product CB1L (Table 4.5). Similarly, at 965.6 and 

849 mg/kg, respectively sulphur and calcium were high in CB3L. Another important element, 

phosphorous was present in relatively high amounts in CB2S, CB5S and CB13S. 

Micronutrients such as copper, manganese, boron and zinc occurred at lower amounts below 

23 mg/kg, except manganese which had 68.4 mg/kg in CB13S and 41.8 mg/kg in CB5S. The 

heavy metals analysed included mercury, arsenic, cadmium, lead and cobalt. The results 

showed that cobalt occurred in high quantities amongst other metals. Product CB13S had 4.26 

mg/kg of cobalt while the maximum amount of arsenic was observed in CB2S and CB5S with 

an amount less than 6 mg/kg. Overall, the quantities of each of the heavy metals were less than 

20 mg/kg in the biofertiliser products. 
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Table 4.5: Metal content of biofertiliser products and the maximum levels of potentially harmful element permitted in fertiliser products  

Metals 
(mg/kg) 

Standard 
(mg/kg) 

CB1L CB2S CB3L CB4L CB5S CB6L CB7L CB8L CB9L CB10L CB11L CB12L CB13S 

Total C% na 3.44 23.9 1.40 1.19 33.6 0.119 0.19 0.63 0.18 2.49 0.16 0.23 0.61 

C/N Ratio na 30.3 37.2 6.7 6.6 15.8 1.4 1.9 3.1 2.3 2.9 2.9 2.2 41.7 

Total N% na 0.11 0.64 0.21 0.18 2.13 0.087 0.10 0.21 0.08 0.87 0.06 0.10 0.02 

P na 37.5 426 206 164 292 17.3 10.3 38.9 13.5 142.2 9.20 27.8 275 

K na 5128 0.71 1272 838 1.22 47.5 38.0 138.7 49.0 447 24.8 76.0 4.98 

Ca na 598 19.3 849 60.38 22.6 3.85 3.04 6.95 4.04 24.30 3.07 4.41 1.98 
Mg na 88.2 5.12 205 31.7 2.4 1.87 0.92 4.69 1.29 14.64 0.799 1.86 0.862 
Na na 34.78 527 435.4 426.4 180 4.79 7.16 4.09 4.21 3.85 5.19 6.56 63 
Fe na 8.92 178 40.71 45.78 3045 13.53 11.38 5.47 5.50 5.43 6.48 11.51 243 
S na 503.9 1.03 965.6 118.3 4.93 20.29 16.43 36.81 17.13 154.85 7.31 14.80 0.530 

Cu 750 0.39 3.84 1.50 0.28 6.5 0.30 0.11 0.15 0.08 21.06 0.093 0.13 7.58 
Mn na 9.69 35.9 3.90 1.14 41.8 0.033 0.038 0.058 0.066 0.176 0.069 0.030 68.4 
Zn 2750 1.03 15.3 2.95 2.93 22.7 0.65 0.39 0.79 0.46 13.46 0.39 0.52 28.8 
B 80 6.32 7.98 2.24 0.39 13.70 0.39 0.54 0.33 0.54 0.57 0.43 0.76 7.99 

Hg 10 <0.4 <7.0 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <7.0 

As  15 <0.4 <6.0 <0.4 <0.4 3.3 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <6.0 

Cd 20 <0.06 <1.0 <0.06 <0.06 0.12 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <1.0 

Pb 400 <1.3 <20 <1.3 <1.3 0.75 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <20 

Co 100 <0.2 <3 <0.2 <0.2 0.90 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 4.26 

 *The permissible standards for the heavy metals in fertilisers was obtained from SAFL (1977), na = not applicable
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4.5.4 pH of biofertiliser products 

A neutral pH is essential for the growth and survival of inoculant; hence, biofertiliser products 

must not be highly acidic or basic. The pH results showed that products CB3L, CB4L and 

CB12L were acidic while product CB9L was basic (Fig. 4.2). However, other biofertiliser 

products fall within the acceptable pH standard of 6.0-7.5.  

 

Figure 4.2: pH readings of biofertiliser products showing error bars representing standard 

deviation (n=3). 

4.5.5 Particle sizes, water holding capacity and moisture content 

The particle sizes, water-holding capacity and moisture content of the carrier-based biofertiliser 

products (CB2S, CB5S and CB13S) were investigated. The results showed that all the particles 

of samples CBS2 and CBS5 passed through a sieve of mesh size 0.15 mm whereas sample 

CB13S had 85% of its particles pass through 0.25 mm mesh size. In addition, the water-holding 

capacity and moisture content were high for products CB2S and CB5S but very low for product 

CB13S (Table 4.6).  
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Table 4.6: Particle sizes, water-holding capacity and moisture content of biofertilisers 

Samples Particle sizes WHC(%) ±SD MC(%) ±SD 

CB2S < 0.150 mm 68 ± 0.5 62 ± 0.5 

CB5S <0.150 mm 54 ± 0.5 48 ±  ̶ 

CB13S 85% passed <0.212 mm 20 ± 0.9 1 ±  ̶ 

4.5.6 Storage temperature 

The results of the microbial count of products after three months of incubation under different 

temperatures showed that microbial densities varied for different temperature conditions (Table 

4.7). In samples CB5S, CB7L, CB8L and CB11L, the higher the storage temperature, the higher 

the microbial population density. At room temperature, the cell counts were lower in samples 

CB1L and CB2S and higher in CB3L, CB4L, CB6L, CB9L, CB10L and CB11L when 

compared to the other storage temperatures. All the products maintained optimum viable cell 

count above 108 CFUg-1. In general, the total viable cell count for the different temperature 

conditions increased after the three months of storage time for all biofertiliser products but was 

more stable for CB5S and CB2S which are carrier-based products.  

Table 4.7: Microbial count at different storage temperatures 

Sample Code @ 4 °C  × 109 ±SD @ 25 °C × 109 ±SD @ 36 °C × 109 ±SD 
CB1L 5.17  ± 8.39 8.23 ± 16.20 7.07 ± 9.02 

CB2S 5.40 ± 4.36 6.93 ± 10.02 5.70 ± 25.24 

CB3L 3.87 ± 3.06 10.10 ± 4.93 7.87 ± 2.52 

CB4L 4.40 ± 4.58 7.00 ± 12.77 4.93 ± 1.53 

CB5S 4.20 ± 3.61 5.37 ± 10.12 5.53 ± 6.11 

CB6L 3.50 ± 2.65 5.47 ± 9.45 5.00 ± 10.0 

CB7L 7.73 ± 5.69 9.57 ± 12.58 9.73 ± 9.45 

CB8L 3.37 ± 5.51 4.83 ± 7.37 5.47 ± 5.86 

CB9L 6.30 ± 4.58 7.97 ± 8.62 5.67 ± 5.86 

CB10L 4.87 ± 5.03 7.70 ± 2.68 5.90 ± 16.70 

CB11L 7.43 ± 6.66 8.53 ± 5.69 10.40 ± 2.52 

CB12L 6.13 ± 2.52 8.87 ± 9.02 6.77 ± 7.09 

CB13L ND ND ND 

*ND - not determined 
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Table 4.8: Characteristic of commercial biofertiliser products. 

Parameters   Unit / Code CB1L CB2S CB3L CB4L CB5S CB6L CB7L CB8L CB9L CB10L CB11L CB12L CB13S 

pH @ 25 °C 
 

7.54 6.92 4.06 4.49 6.49 7.27 7.39 6.70 8.01 7.21 7.20 5.21 6.45 

Product Type Solid/liquid L S L L S L L L L L L L S 

Moisture Content % na 62% na na 48% na na na na na na na 1.0% 

Shelf life months Ns Ns Ns Ns Ns 3 3 3 3 3 3 3 Ns 

Manuf/Expiry date  Ns / Ns St / Ns Ns / Ns Ns / Ns St / St  Ns / Ns  Ns / Ns Ns / Ns Ns / Ns Ns / Ns Ns / Ns Ns / Ns St / Ns  

Physical appearance Colour black black black milky black brown brown brown brown brown brown brown brown 

odour +ve -ve ++ve +ve -ve ++ve ++ve ++ve ++ve ++ve ++ve ++ve -ve 

Composition 
 

Cs SS Cs Cs SS Cs Cs SS Ss Cs Cs SS SS 

Microorganisms  bacteria bacteria bacteria bacteria bacteria bacteria bacteria bacteria bacteria bacteria bacteria bacteria AMF 

Particle size  <220 µm sieve na Passed na na Passed na na na na na na na passed  

EC mS/m 1076 303 736 499 923 655 814 1052 798 1234 319 221 311 

 

L= liquid, S= solid, Ns= not stated, Cs= consortium of strains, Ss= single strain, na= not applicable, -ve= odourless, +ve= odour, ++ve= pungent odour 
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4.6 Biochemical properties and functional attributes of the tested bacterial isolates 

4.6.1 Biochemical properties 

The biochemical test results showed that most of the isolates obtained could utilise various 

carbohydrates (Table 4.9). About 82% of the test isolates were able to ferment glucose and 

69% could ferment both lactose and sucrose whereas only 3% produced hydrogen sulphide 

from the ferrous ammonium sulfate in the medium. In addition, about 44% of the tested isolates 

were positive for citrate utilisation and oxidase test while 80% were positive for ammonia 

production. Hydrogen cyanide and lipase production, as well as methyl Red and Voges-

Proskauer tests, were positive in over 21% of the isolates. Most of the isolates were catalase 

positive while approximately 52% were able to produce urease, an enzyme that catalyses the 

breakdown of urea to ammonia.  
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Table 4.9: Biochemical characterisation of tested presumptive isolates. 

Test NH3  HCN  Oxidase  Lipase Catalase Urease  MR VP H2S Glucose Lactose Sucrose Citrate 
O2 - - - - + - - - - + + + - 
O3 + - - - + + - - - + + + + 
O4 + - + - + + - - - + + + - 
O5 + - + + + - - - - + + + + 
O7 + - + + + + - - - - - - - 
O10 + - + + + + - - - + + + + 
O12 - - + + + + - - - + + + + 
O14 + - - - + - - - - + + + - 
O15 + - + - - - - - + + + + + 
O17 + - - - + + - - - + + + + 
O18 + - + - + + - - - - - - - 
O19 + - - - + - - - - - - - + 
O23 - - + - + - - - - + + + - 
RO3 + - + - + - + + - - - - - 
SO - - + - + - + - - - - - + 
TO + - + - + + - - - - - - - 
TOF - - + - + + - -   - - - - 
NB1 + + + - + - - - - + + + + 
NB2 + - - + + + - + - + + + + 
NB4 + + + - + - - + - + - - - 
RNB1 + - + + + + - - - + + + + 
ANP1 + + + + + - + - - + + + - 
ANP3 + - + + + + - - - + + + + 
AN1 + - - - - + - - - + + + - 
AN2 + + - - + + - - - - - - - 
AA + - + + + + - - - + - - + 
SF2 + - - - - - - - - + + + - 
SF3 + - - - + - + - - + + + - 
NS1 + + + + + - - - - - - - - 
NS3 + + - + - + - - - + + + - 
BN - - +   + - - - - + - - + 
NP1 + - + + + - - - - + + + - 
NP2 + - - - + - - + - + - - + 
NP3 + + - - - + + - - + + + - 
NP4 - + + - + + - - - - - - + 
CP1 + - - - + + + - - + + + + 
CP3 + + - - + + + - - + - - - 
VQ2 - - - - + + - - - + + + - 
VQ3 - + - - - - - + - + + + + 
VQ4 + + - - + - - + - + + + - 
LV + - + + + - - - - + + + - 
SV1 - - + - + + - -   - - - - 
SV2 + - + + + + - - - + + + + 
NT1 + - - - + - - - - + - - - 
NT3 + - - - + + - - - + + + + 
NT4 + - - - + - + + - + + + + 
NT5 + - - - + - - - - + + + - 
NT6 + + - - + + + + - + - - - 
RN1 + - +   + + - + + + + + + 
RN2 + - - + - - + - - + + + - 
LF2 + - + - + + - + - + + + - 
LF4 + + - - + - + + - + + + - 
LF5 + + - - - + - + + + + + + 
BC1 - - - - + - - + - + + + + 
BC3 - - - - + + - - - + + + + 
BC5 + - - - + + - - - + - - + 
BC7 + - - + - - - - - + + + - 
HS2 + - - - + - + - - + + + - 
HS3 + - - - + + - - - + + + + 
HS4 + + - - + - + - - + + + - 
HS5 + - - - + + - - - + + + - 
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4.6.2 Indole-3-acetic acid production 

The results of indole-3-acetic acid (IAA) production amongst isolates showed that 

approximately 87% of the isolates tested positive with isolate BC3 from sample CB13L 

producing the highest amount of IAA, about 115.4 µg/ml while isolate NP2 from sample CB9L 

produced a relatively smaller quantity, approximately 1.1 µg/ml. The average concentration of 

IAA produced in each product is presented in Fig. 4.3. Products CB3L and CB13S had the 

highest concentration of IAA produced and the lowest concentration was produced in CB9. 

 

 

Figure 4.3: Indole acetic acid production in biofertiliser products 

4.6.3 Phosphate solubilising ability 

The inorganic phosphate solubilisation ability depicted by the calculated phosphate 

solubilisation index (PSI) varied among the different isolates (Table 4.10). Of all the isolates 

tested, approximately 60% exhibited phosphate-solubilisation ability as indicated by the halo-

zone formation (Fig. 4.4). The halo zone ranges from an average minimum of 1.5 mm occurring 

in isolate NT5 to a maximum of 18.3 mm in strain NB4. Some of the isolates did not solubilise 

inorganic phosphate and they included O10, O19, LF3, HS6, VQ1, VQ2 and NS2. 
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              Figure 4.4: Phosphates solubilisation on NBRIP agar showing halo zone formation. 
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Table 4.10: Phosphate-solubilisation index (PSI) and siderophore production of isolates. 

Isolate ID PSI ± SD Siderophore (mm) ± SD 
AN1 4,07 ± 0.8 - 
ANP1 3,07 ± 0.1 47,33 ± 6.11 
BC1 - 16,67 ± 1.53 
BC3 1,67 ± 0.3 - 
BC5 1,80 ±  ̶ 15,67 ± 0.58 
BC7 - 16,33 ± 1.53 
BN 1,93 ±  ̶ - 
CP1 4,13 ± 0.3 16,00 ± 2.00 
CP3 3,00 ± 0.1 14,00 ± 1.00 
HS2 1,47 ± 0.1 16,67 ± 3.21 
HS3 - 16,33 ± 1.53 
HS5 - 16,00 ± 2.00 
LF2 1,40 ±  ̶ 27,67 ± 2.52 
LF4 2,00 ± 0.3 - 
LF5 - 24,67 ± 2.52 
LV 1,93 ±  ̶ - 
NB1 3,93 ± 0.1 28,33 ± 2.08 
NB2 4,00 ± 0.3 16,33 ± 2.52 
NB4 4,67 ± 0.8 48,00 ± 2.65 
NP1 - - 
NP2 3,67 ± 0.1 51,67 ± 4.04 
NP3 4,27 ± 0.1 - 
NP4 - - 
NS1 3,60 ± 0.3 56,33 ± 3.79 
NS3 - 30,67 ± 3.06 
NT3 1,47 ±  ̶ - 
NT4 1,33 ± 0.1  - 
NT5 1,20 ± 0.1  - 
NT6 1,67 ± 0.1 - 
O12 2.87 ± 0.1 - 
O15 1,40 ±   ̶ - 
O17 1,33 ± 0.1 - 
O18 1,47 ± 0.1 25,67 ± 2.08 
O2 1,87 ± 0.1 25,00 ± 2.65 
O23 1,47 ± 0.1 - 
O3 1,67 ± 0.3 - 
O5 1,47 ± 0.1 59,33 ± 3.79 
O7 1,67 ± 0.0 50,33 ± 3.51 
RN1 2,40 ± 0.1 - 
RNB1 4,40 ± 0.1 - 
SF2 3,47 ± 0.6 - 
SF3 3,20 ± 0.7 21,67 ± 2.52 
VQ3 1,40 ±  ̶ 57,67 ± 4.04 
VQ4 1,40 ±  ̶ 59,00 ± 2.65 
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4.6.4 Acid phosphatase assay 

Isolates that solubilise phosphate on NBRIP agar medium were further screened for acid-

phosphatase production. Some of the isolates produced acid phosphatase, with the highest 

enzyme production observed in isolates from samples CB11L (36.96 µg/ml), followed by 

CB8L (33.75 µg/ml) and CB6L (31.38 µg/ml), while the least enzyme production was observed 

in isolates from samples CB5L and CB13S with 7.33 and 7.74 µg/ml, respectively (Fig. 4.5). 

Figure 4.5: Acid phosphatase production from the biofertiliser products. 

4.6.5 Nitrogen-fixing potential 

The results of the nitrogen-fixing potential of isolates showed that 41% of bacterial isolates 

grew on Burk’s nitrogen-free medium, while 38% grew on Nfb medium (supplemented with 

15 g agar). The Nfb medium confirmed the nitrogen-fixing ability of isolates by the change in 

colour from green to blue due to ammonia production (Fig. 4.6). Sample CB12L had the highest 

percentage of isolates that can fix nitrogen, while CB1L had the lowest percentage (Fig. 4.7).  
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Figure 4.6: Ammonia production by isolates on nitrogen-free bromothymol blue agar. 
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Figure 4.7: Nitrogen fixation and siderophore production potential in biofertiliser products 

4.6.6 Siderophore production 

Approximately 40% of the tested isolates were able to produce siderophore. Isolates that 

formed yellow to orange halos around the colonies were considered positive for siderophore 

production (Fig. 4.8). All the isolates in sample CB11L had the ability to produce the iron-

chelating agent, siderophore, while only 25% of isolates in samples CB1L and CB9L produced 

siderophore. However, sample CB2S had no siderophore producing isolates (Fig. 4.7).  
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   Figure 4.8: CAS agar plate showing halos zones indicating siderophore production.  

4.7 Culture-dependent microbial identification 

4.7.1 Microbial isolation, and Sanger sequencing of the 16S rRNA gene and ITS regions 

1 and 2.  

A total of 58 bacterial and three fungal isolates were obtained from all the culture media types. 

The partial 16S rRNA gene sequences of bacterial isolates were clustered into 28 OTUs while 

the ITS regions 1 and 2 sequences of fungal isolates were clustered into two OTUs. The 

phylogenetic association of sequences from the isolates with close relatives in the GenBank 

were depicted in the phylogenetic tree (Fig. 4.9). Some of the closest matches in the GenBank 

included Bacillus subtilis, Acinetobacter junii, Pseudomonas japonica, Brevibacillus 

laterosporus, Alcaligenes aquatilis and Enterococcus ratti, while the fungal strains are 

Aspergillus fumigatus and Candida ethanolica (Table 4.12).  

Siderophore activities 



80 

 

 

Figure 4.9: Phylogenetic tree of 16S rRNA gene sequences with their closest relative 

sequences. The maximum likelihood method based on the Tamura 3-parameter model was used 
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to infer the evolutionary history of the sequences. The analysis involved 84 nucleotide and 

evolutionary analyses were conducted in MEGA7. 

4.7.2 Biofertiliser product quality and level of contamination using Sanger sequences 

In this study, isolated strains not reported by the manufacturer but present in the products were 

considered contaminants. The Sanger sequences obtained were used to analyse the microbial 

component of biofertiliser products and the nucleotide sequences showed different target 

bacteria and levels of contamination. On this basis, the products were categorised as high, 

medium, low or of poor quality (Fig. 4.10). 

 

 

Figure 4.10: Biofertiliser quality as determined by microbial strains and level of contamination. 

 
All the biofertiliser products analysed had more strains than claimed by the manufacturers, 

implying high levels of contamination (Table 4.11). Generally, products CB1L, CB2S, CB3L 

and CB13S had higher levels of contaminants when compared to other products. Products 

CB1L and CB3L had 12 and 5 contaminants, respectively. Based on the claimed strains and 

the obtained isolates, none of the products qualifies as high- or medium-quality products. 

However, five of the products were categorised as low-quality products and these included 

25% of rhizobia, 40% of PGPR and the mixed-strains products. Eight products were of poor 

quality. These products included all the free-living nitrogen-fixing products, 75% of rhizobia 

and 60% of PGPR products.  
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Table 4.11: Quality categories of biofertiliser products using Sanger sequences 

Category Rhizobia Free N-fixing PGPR Mixed product* Total  
Frequency (%) Frequency (%) Frequency (%) Frequency (%) Frequency (%) 

High quality product 0 - - - - - - - -  
Medium quality product - - - - - - - - -  
Low-quality product 1 25 - - 2 40 2 100 5 38 
Poor-quality product 3 75 2 100 3 60 - - 8 62 
Total 4 100 2 100 5 100 2 100 13 100 
           
Less than expected strains  - - - - - - - - -  
Same as expected strains - - - - - - - - -  
More than expected strains 4 100 2 100 5 100 2 100 13 100 
Total 4 100 2 100 5 100 2 100 13 100 

 

*Mixed products (PGPRs and either rhizobia or free-living nitrogen-fixing), F- frequency.  
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4.7.2 Total viable count 

The total viable count (TVC) showed that samples CB1L, CB2S, CB3L and CB4L had one or 

more of the claimed microbial strains while other samples had none of the claimed microbial 

strains, therefore had no TVC (Table 4.12). This observation included the result of the MPN 

count, which showed that the products tested had no Azospirillum strains in them contrary to 

the manufacturers’ claim. Sample CB4L had a TVC of 3.6 × 109 CFUg-1. On the other hand, 

samples CB1L, CB2S and CB3L had TVCs of 1.53 × 107 CFUml-1, 5.4 × 107 CFUg-1 and 1.68 

× 108 CFUml-1, respectively. 

 

The results of the spore count for AMF showed that 194 spores were obtained per gram of 

biofertiliser product, while the viability test revealed that 152 spores germinated (developed a 

germ tube). This is within the acceptable standard for AMF viable spore count, which is 

stipulated to be at least 100 viable spores per gram of biofertiliser.  
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Table 4.12: Microbial community of biofertiliser products obtained from Illumina and Sanger sequences 

Sample code Claimed microbial strains No NGS obtained sequences (OTU) No Sanger sequences  No Viable cell  

count 

CB1L 

(Mixed) 

Enterobacter, Stenotromonas, Bacillus, 

Rhizobium, Pseudomonas, Trichoderma,  

30 Pseudomonas*, Devosia, Chryseobacterium, 

Pertimonas, Pigmentiphaga, Proteiniphilum, 

Pusillimonas, Dysgonomonas, Salinihabitans, 

Flavobacterium, Paucimonas Sphigomonas, 

Methylocystis, Thioalkalispira, Parvibaculum, 

Pelagibacterium 

15 Bacillus wiedmannii*, Pseudomonas* xanthomarina, 

P. oleovorans subsp. Lubricantis, P. chengduensis P. 

alcaliphila*, P. seleniipraecipitans, Micrococcus 

yunnanensis, Rahnella aquatilis, Lysinibacillus 

fusiformis, L. mangiferihumi, Micrococcus aloeverae,  

Candidimonas bauzanensis, Achromobacter 

marplatensi, Candida ethanolica 

12 1.53 × 107 

CB2S 

Rhizobia 

Rhizobium tropica 1 Rhizobium*, Cellulosimicrobium, 

Nocardioides, Promicromonospora 

3 Rhizobium tropici*, Bacillus velezensis, Lysinibacillus 

fusiformis, Acinetobacter juni Cellulomonas 

denverensis, C. pakistanensis, ,  

5 5.40 × 107 

CB3L 

(Mixed) 

 Bacillus thuringiensis, B. subtilis   

Lactobacillus sp., Trichoderma 

harzianum, Saccharomyces cerevisiae, 

Pseudomonas florescense, Azotobacter 

chrococcum      

7 Lactobacillus*, Nosocomiicoccus, 

Pediococcus 

2 Bacillus velezensis*, B. siamensis Cupriavidus 

metallidurans, , Bacillus megaterium*, Aspergillus 

fumigatus, Candida ethanolica 

4 1.68 × 108 

CB4L 

(PGPR) 

Bacillus sp. 1 Bacillus*, Brevibacillus, Lactobacillus, 

Stenotromonas 

4 
Acinetobacter junii, Bacillus* paralicheniformis, 

Bacillus velezensis 3 3.69 × 109 
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CB5S 

(Rhizobia) 

Bradyrhizobium japonicum 1 Bradyrhizobium*, Nosocomiicoccus  1 Brevibacillus laterosporus, Arthrobacter oryzae, 

Staphylococcus hominis subsp. novobiosepticus, 

Kocuria palustris 

4 Nil 

CB6S 

(N-free living) 

Azospirillum brasilense, Azospirillum 

lipoferum 

2 Macellibacteroides Alcaligenes, 

Pseudomonas, Hafnia, Clostridium sensu 

stricto 1, 12 & 5, Proteus, Dysgonomonas,  

Microvirgula, Morganella 

11 Enterococcus ratti, Alcaligenes faecalis subsp. 

faecalis, 

2 Nil 

CB7S 

(N-free living) 

Azospirillum brasilense, Azospirillum 

lipoferum, Azotobacter chrococcum 

3 Microvirgula, Clostridium sensu stricto 1, 12, 

2 & 5, Proteus, Dysgonomonas, 

Macellibacteroides, Morganella 

Phascolarctobacterium, Alcaligenes, 

Ruminiclostridium 5,        Pseudomonas, 

13 Enterococcus ratti, Pseudomonas gessardii 2 Nil 

CB8S 

(Rhizobia) 

Bradyrhizobium japonicum 1 Alcaligenes, Pseudomonas, Enterobacter, 

Enterococcus Proteus, Lactobacillus, 

Lactococcus, Microvirgula,  

8 Pseudomonas japonica, Proteus hauser, 

Ochrobactrum pituitosum 

3 Nil 

CB9L 

(PGPR) 

Pseudomonas florescense 1 Alcaligenes, Clostridium sensu stricto 1, 12, 2 

& 5,  Dysgonomonas, Macellibacteroides, 

Microvirgula, Morganella, Enterobacter, 

Ruminiclostridium, Hafnia, Escherichia-

Shigella, Desulfovibrio, Proteus                 

15 Enterococcus ratti, Hafnia paralvei, Alcaligenes 

faecalis subsp. faecalis 

3 Nil 
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CB10L 

(PGPR) 

Brevibacillus laterosporous,  

Paenibacillus chitinolyticus, 

Sporolactobacillus laevolacticus, 

Lysinibacillus sphaericus, 

4 Citrobacter, Clostridium sensu stricto 2 & 5, 

Desulfovibrio, Kluyvera, Dysgonomonas, 

Escherichia-Shigella, Proteus, Enterobacter, 

Macellibacteroides, Morganella, Microvirgula 

Phascolartctobacterium, Ruminiclostridium 

14 Enterococcus rattii, Escherichia coli, 2 Nil 

CBS11 

(PGPR) 

Bacillus sp. 1 Cronobacter , Clostridium sensu stricto 1&5, 

Alcaligenes,  Pantoea, Ruminiclostridium 5, 

Microvirgula, Dysgonomonas, Enterobacter, 

Tyzzerella, Escherichia-Shigella, Citrobacter, 

Morganella, Desulfovibrio, Desulfovibrio 

Proteus, Macellibacteroides  

16 Morganella morganii subsp. sibonii, Citrobacter 

werkmanii 

2 Nil 

CBS12 

(Rhizobia) 

Rhizobium phaseolus 1 Enterobacter, Ewingella, Providencia, 

Morganella,  Proteus, Pseudomonas, Serratia, 

Rahnella, Hafnia, 

9 Pseudomonas japonica, P. veronii, Bacillus tequilensi, 

Alcaligenes faecalis subsp. parafaecalis 

4 Nil 

CBS13 

(PGPB) 

Rhizophagus clarus, Gigaspora gigantea, 

Funneliformis mosseae, Claroideoglomus 

etunicatum,  Paraglomus occulum (AMF) 

5 Amycolatopsis, Arthrobacter, Nocardioides, 

Marininema Pseudonocardia, Atopostipes, 

Fictibacillus, Streptomyces, Nosocomiicoccus, 

Promicromonospora, Micromonospora 

Psychrobacillus, Saccharopolyspora, Bacillus 

14 Aspergillus fumigatus, Candida ethanolica, Bacillus 

subtilis subsp. Subtilis, Arthrobacter oryzae, 

Pseudomonas alcaliphila, , Acinetobacter modestus, 

Enterococcus ratti 

 

7 

 

152 spores/g 

        

*Expected strains observed.    
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4.8 Culture-independent microbial identification 

4.8.1 High throughput sequencing of the 16 rRNA gene nucleotides  

A total of 2 886 464 reads were generated with the highest reads (431 646) and the lowest reads 

(106,807) obtained in samples CB1L and CB4L, respectively (Table 4.13). However, after 

quality trimming 2 186 464 high-quality reads were obtained and subsequently assigned to 

OTUs. In total, 5 791 OTUs were generated after performing read rarefaction at a depth of 

17900 sequences per sample. Among the biofertiliser samples, CB13S had the highest number 

of observed OTUs while CB2S had the least number of OTUs. The OTU richness rarefaction 

curve in each of the biofertiliser samples signified that bacterial communities were sufficiently 

sampled (Fig. 4.12). From the Alpha diversity indices, it was observed that liquid samples had 

higher Simpson and Shannon indices than the solid biofertiliser samples. Similarly, 

OTUs/species evenness and Choa1 values were higher in liquid products compared to the solid 

products, except for product CB13S (Fig. 4.11). In general, the OTU diversity obtained in all 

the biofertiliser samples was a close estimation of the true OTU diversity as indicated by the 

calculated Goods coverage, which was approximately one in all the biofertiliser products. 
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Table 4.13: Illumina generated reads and operational taxonomic unit with diversity indices. 

Diversity indices 
Biofertiliser products 

CB1L CB2S CB3L CB4L CB5S CB6L CB7L CB8L CB9L CB10L CB11L CB12L CB13L 

Observed OTUs 502 154 209 181 265 210 201 234 249 281 313 240 2,049 

Shannon index (H) 5,50 2,43 2,60 2,65 1,40 3,90 4,60 4,07 4,39 4,88 4,80 4,07 7,64 

Simpson index (D) 0,93 0,70 0,68 0,67 0,29 0,88 0,93 0,86 0,90 0,93 0,92 0,88 0,97 

Chao1 847,29 238,29 468,29 363,40 547,39 349,33 319,75 471,39 504,91 411,63 538,78 450,52 3 765,85 

Goods coverage 0,99 1,00 0,99 0,99 0,99 1,00 1,00 0,99 0,99 0,99 0,99 0,99 0,94 

Simpson Reciprocal index  13,34 3,29 3,16 2,99 1,41 8,34 14,59 7,30 10,05 15,38 12,25 8,51 38,61 

Equitability (evenness) 0,61 0,34 0,34 0,35 0,17 0,51 0,60 0,52 0,55 0,66 0,58 0,51 0,69 

Total Reads  431 646 273 544 166 802 106 807 208 900 178 363 169 842 182 082 246 315 386 353 114 853 181 707 239 250 

Quality filtered Reads 280 166 186 906 108 642 70 028 137 940 116 088 112 733 120 507 166 517 251 340 77 446 121 367 162 898 
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Figure 4.11: Box plot showing observed OTUs in liquid and solid products. 

 

The Wilcoxon rank sum test with continuity correction showed that the potential differences were 

significant (W = 27.5, P-value = 0.04196). Alternative hypothesis: true location shift is not equal 

to 0. Therefore, there is an evidence to conclude that there are differences in the richness of the 

biofertiliser product microbiome between the liquid and the carrier-based products. 
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Figure 4.12: Rarefaction curve. 

 

0 5000 10000 15000

0
20

40
60

80
10

0
12

0

Sample Size

S
pe

ci
es

CB13S

CB5SCB2S

CB3L

CB10L

CB12L

CB1L

CB8L

CB4L

CB11L

CB9L

CB6LCB7LLiquid

Solid



91 

 

4.8.2 Operational taxonomic units diversity in biofertiliser products 

The observed bacterial OTU diversity from Illumina sequences were taxonomically spread 

across 35 phyla (Fig. 4.13), 92 classes (Fig. 4.14), 222 orders (Fig. 4.15), 453 families (Fig. 

4.16), and 1030 genera (Fig. 4.17) with classified reads of 100%, 88%, 79%, 69% and 66%, 

respectively. A number of OTUs occurring below 1% at different taxa levels were grouped as 

“others”. From the relative abundance of phyla (Fig. 4.13), Proteobacteria was the major 

phylum, which is dominant in all the products except in 1CB3L and CB4L, where it occurred 

below 3%. Other dominant phyla included Firmicutes, Bacteroides and Actinobacteria. In 

addition, the phyla occurring above 1% but below 10% were Chloroflexi, Planctomycetes, 

Acidobacteria, Cyanobacteria and Verrucomicrobia. Firmicutes was more dominant in the 

liquid than in the carrier-based biofertiliser products while Proteobacteria was predominant in 

the single-strain products except in CB4L. 

 

Figure 4.13: Relative abundance of bacterial OTU phyla taxa in biofertiliser products. 

 

                                                 
1 Sample codes (CB1- CB13) were obtained by a combination of CB -commercial biofertiliser, numeric- for 

sample numbers 1-13 and either S- for solid (carrier-based) or L- for liquid products 
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At the class taxa level, OTUs having above 1% abundance in the biofertiliser products included 

(in order of highest to least abundant) Gammaproteobacteria, Bacilli, Alphaproteobacteria, 

Betaproteobacteria, Clostridia, Bacteroidia, Actinobacteria, JG30-KF-CM66, Negativicutes, 

Deltaproteobacteria, Flavobacteria, Sphingobacteria, Planctomycetacia, Cytophagia, 

Acidobacteria and Cyanobacteria (Fig. 4.14). Gammaproteobacteria, which was the most 

dominant class, occurred in ten of the products but had higher abundance in CB12L and CB8L. 

The class Alphaproteobacteria occurred in only four products (CB5S, CB2S CB1L and CB13S) 

while Bacilli was predominant in products CB3L and CB4L with relative abundance of 97% 

and 98%, respectively. Betaproteobacteria and Bacteroidia were present in eight and six 

biofertiliser products, respectively. The class taxa abundance OTUs are more diverse in the 

liquid biofertiliser products (Fig. 4.11). On the other hand, the carrier-based products had a 

maximum of three major classes, which were Alphaproteobacteria, Bacilli and Actinobacteria. 

The classes Cyanobacteria, Acidobacteria, and Planctomycetacia occurred only in CB13S 

while Cytophagia, Sphingobacteriia, Flavobacteria and JG 30-KF-CM66 occurred only in 

CB1L. The classes occurring only in two products were Actinobacteria (CB2SL and CB13S) 

and Negativicutes (CB7L and CB10L) while Deltaproteobacteria occurred only in three 

products (CB9L, CB10L and CB11L). 
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Figure 4.14: Relative abundance of bacterial OTU class taxa in biofertiliser products. 
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Figure 4.15: Relative abundance of bacterial OTU order taxa in biofertiliser products.  
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Figure 4.16: Relative abundance of bacterial OTU family taxa in biofertiliser products. 

 

The relative abundance at the genus level is significantly diverse across the various biofertiliser 
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Rahnella and Ewingella occurred only in CB12L. Other genera found only in a single product 

included Pediococcus (CB3L), Bradyrhizobium (CB5S), Lactococcus (CB8L), Kluyvera 

(CB10L) and Enterococcus (CB8L). Similarly, Amycolatopsis, Arthrobacter, Fictibacillus, 

Marininema, Micromonospora, Pseudonocardia, Atopostipes and Streptomyces were only 

present in CB13S while Cronobacter, Pontoea and Tyzzerella 3 were observed only in product 

CB11L. Of all the genera, Lactobacillus had the highest abundance occurring in products 

CB3L, CB4L and CB8L with 91%, 73% and 2% abundance respectively, followed by 

Pseudomonas, which was found in five different products with abundance of 1.4% in CB1L, 

21% in CB6L, 8.3% in CB7L, 69% in CB8L and 30% in CB12L. Other genera of high relative 

abundance included Microvirgular, which occurred in samples CB6L to CB11L. With respect 

to the types of the products, OTUs abundance observed at the genus taxa were more in the 

liquid products than in solid products. The liquid products had as high as 16 dominant genera 

in samples CB1L and CB11L and as low as three genera in CB3L. However, apart from CB13S 

with 14 dominant genera, other carrier-based products CB2S and CB5S had four and two 

dominant genera, respectively.  
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Figure 4.17: Relative abundance of bacterial OTU genus taxa in biofertiliser products. 
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4.8.3 Biofertiliser product quality and level of contamination using Illumina sequences  

The Illumina sequences showed that products CB1L and CB3L contained only one of the 

expected microbial strains while samples CB2S, CB4L, CB5S and CB13S contained the 

claimed microbes as stipulated by the manufacturers. However, 54% of the biofertiliser 

products did not have any of the claimed microbes represented by the observed genera at above 

1% OTUs relative abundance. In addition, the observed sequences showed that all the samples 

contained one or more contaminants. Sample CB5S had the claimed microbe, Bradyrhizobium 

at 94% abundance and only one major contaminant, Nosocomiicoccus at 1.2% abundance (Fig. 

4.17). Similarly, CB2S had the expected strain, Rhizobium at approximately 76% abundance 

with contaminants such as Cellulosimicrobium, Nocardioides and Promicromonospora at 

11.4%, 7.2% and 1.0% abundance respectively. Therefore, CB5S and CB2S could be regarded 

as medium quality products because it contained the claimed microbial strain but with other 

microbial strains at a relatively lower abundance (as discussed earlier Fig. 4.10). Furthermore, 

sample CB4L was regarded as a low-quality product because it had the specified microbes, 

Bacillus at a lower abundance (14.7%) than the unclaimed genera, which occurred at a much 

higher abundance: Lactobacillus (73.4%), Brevibacillus (7.8%) and Stenotromonas (2.6%). 

Other samples, CB1L, CB3L and CB13S, were also categorised as low-quality biofertilisers. 

For instance, the beneficial strains in CB1L were stated to be 30, according to the 

manufacturer’s labelling information. Unfortunately, the observed OTUs showed 

Pseudomonas to be the only strain present at 1.4% among the claimed strains while other 

unspecified strains were observed in the sample (Fig. 4.17). Similarly, of the seven specified 

organisms in CB3L, Lactobacillus at 91% abundance was the only observed microbes while 

Nosocomiicoccus (1.7%) and Pediococcus (4.3%) were unspecified strains observed. For 

sample CB13S, 14 bacterial OTU genera not specified by the manufacturer were observed. 

Other products lacking the specified strains but containing other microbes were regarded as 

poor-quality products. None of the products had the specified strains without any contaminant, 

therefore cannot be categorised as high-quality products. 

 

The medium-quality products were mainly the rhizobia products (CB5S and CB2S) while the 

poor-quality products were the free-living nitrogen-fixing bacteria products (CB6L and CB7L). 

Of all the 125 contaminants recorded at ≥ 1% OTU abundance, an average of nine and 11 

occurred in single strain and consortia strains products, respectively. 
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4.8.4 Community functional profiles predictions from metagenomics of 16S rRNA data 

The computation of Taxa4Fun metagenome specific functions for all biofertiliser products was 

based on KEGG Orthology (KO) expressions. A table of specific OTUs benefits to each KEGG 

Orthology description was generated and a total of 6 524 KO terms were obtained from the 

imputed metagenomes of all the biofertiliser products. Various gene relatives of concern were 

examined based on the conditions that they are present and of environmental importance, or 

with the potential for product-quality damage (as contaminants or toxins). The investigated 

genes included genes encoding for nitrogen fixation (K02586, K02588, K02591, and K01426), 

denitrification (K04561, K02305, and K00376), phosphate solubilisation (K01077, K01078, 

K01085), glucose degradation (K01187, K01190, K01179), iron uptake (K07229, K03711), 

sulphur uptake (K01130, K01133) and toxin production (K11006, K11007, K11038, K03558). 

The nitrate reductase (K00370, K00371, K00373, and K00374) and nitrite reductase (K00362, 

K00363, K00366, and K00367) genes were also investigated.  

Generally, the nitrogen-fixing genes; K02586, K02588, K02591 and K00531 were present in 

most of the products but had a high presence in products containing rhizobia except CB12L 

(Fig. 4.18). The microbial community profiling also showed the dominance of alkaline 

phosphatase to be predicted across all the products. In addition, glucose-1-phosphatase 

(K01085) was abundant in products CB12L, CB11L, CB10L CB9L and CB7L while 4-

nitrophenylphosphatase (K01101) was dominant in CB3L, CB13S, CB12L, CB4L and CB2L. 

Of the five sulphur-degrading enzymes assessed, arylsulphatase (K01130) was the most 

prevalent across all the products while other sulphur genes (K01133, K01134, K01135 and 

K01137) occurred in low absolute richness. Other essential genes investigated included the 

iron-uptake and carbohydrate-degrading genes. Ferric uptake regulator (K03711) was 

predicted to be dominant amongst the products, with the highest prediction in CB13S. 

Similarly, ferric-chelate reductase (K07229) was also observed to be dominant in products 

CB10L, CB11L and CB12L but in lesser amounts in CB2S and CB13S. Genes encoding for 

galactosidase (K01190) and glucosidase (K01187) were widely predicted in high abundance 

amongst the products, except in products CB1L and CB5S, where they occurred in low 

abundance. 

 

Toxin genes such as Shiga, leucocidin and haemolysin toxins were also predicted. While the 

leucocidin and haemolysin toxin (K11038) gene had higher prevalence amongst all the 

products, Shiga toxin genes (K11006 and K11007) were only abundant in products CB3L, 
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CB8L, CB11L and CB12L. In addition, genes encoding for denitrification enzymes and 

amidase were also investigated. The nitric oxide reductase subunit B (K04561), nitrous-oxide 

reductase (K00376) and amidase (K01426) had high predicted occurrence amongst the 

products while the nitric oxide subunit C (K02305) had a low predicted prevalence. Other 

important genes predicted in the products included the nitrate and nitrite reductase gene. The 

nitrite genes, nitrite reductase large subunit (K00362) had high prevalence in all the products 

while nitrite reductase small subunit (K00363) and ferredoxin-nitrite reductases (K00366, 

K00367) were relatively predicted in low abundance. Similarly, the nitrate reductases (K00370, 

K00371, K00373, and K00374) were predicted to be abundant in all the products. However, 

nitrate reductase 1, alpha subunit (K00370) and beta subunit (K00371) occurred in higher 

abundance than other nitrate reductase genes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: Heat map showing the metagenomics contributions of some important genes. 
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4.9 Bacterial communities obtained from the Sanger and Illumina MiSeq sequences 

Different types of bacterial communities were reported in the biofertiliser products, with 23 

and 63 bacterial genera obtained from Sanger and Illumina MiSeq sequences, respectively. 

Twelve of the bacterial genera were present for both techniques and these included Acaligenes, 

Arthrobacter, Bacillus, Brevibacillus, Citrobacter, Escherichia, Hafnia, Morganella, Proteus, 

Pseudomonas, Rhanella and Rhizobium (Fig. 4.19). In addition, two major fungi genera, 

Aspergillus and Candida were isolated from the culture-dependent Sanger sequences. 

 

 

Figure 4.19: Overlapping genera between Sanger and Illumina sequences obtained. 
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Chapter Five 

Discussion 
 



103 

 

5. Discussion 

The new age-agriculture is focused on sustainable practices that are aimed at improving crop 

productivity through profitable, energy-conserving and eco-friendly farming practices 

(Lichtfouse et al., 2009). Over a century, microbial products such as biofertiliser have been 

widely used for increasing crop productivity because of the huge benefits in soil nutrient 

management and sustainable agriculture. These benefits have caused tremendous attention in 

the development and application of biofertilisers considering the negative environmental 

impact of the excessive and continuous application of inorganic fertilisers (Parnell et al., 2016). 

In South Africa, a large proportion of marginal land cultivated by SHF is nutrient deficient 

(Goldblatt et al., 2010; Morris et al., 2007). While it is imperative to improve soil nutrient 

content to increase crop yield and alleviate food security challenges (Nwanze, 2011), the 

resource-poor farmers lack financial capability to afford the expensive inorganic fertilisers. 

This has necessitated cheaper and sustainable soil-fertility management such as biofertiliser. 

Consequently, awareness and application of biofertiliser are key to realising the economic 

importance of SHFs in South Africa (Raimi et al., 2017).  

5.1 Awareness and application of biofertilisers 

Awareness and application of biofertiliser could be influenced by farmers’ characteristics such 

as age, gender, level of education and years of farming experience (Doss & Morris, 2000). The 

increasing population of women in smallholder farming, especially in Africa was attested to in 

this study. The present study reported more female than the male SHFs. Nowadays, it is 

essential for women to support the household economy by providing extra food and income for 

the family, especially in the era of South African economic decline. Women in the agricultural 

labour force are over 43% in developing countries and approximately 50% in sub-Saharan 

Africa (Nelson et al., 2012). However, the influence of gender in awareness and application of 

biofertiliser was not significant (p0.05 = 0.80). On the contrary, Doss and Morris (2000), 

concluded in their study that female SHFs are less likely than male counterparts to adopt new 

farming practices. Furthermore, the mean age of 50 years observed amongst SHFs suggests an 

aged group of farmers. Age has been positively correlated with the adoption of improved 

technologies. This may be that the older the farmers get, the more experienced they become in 

their choice of efficient farm practices. On the other hand, younger farmers may be better 

adapted to use new technology than the older risk-averse farmers. In addition, the low level of 
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education amongst SHFs may be a reason for the low adoption of biofertiliser, though 

education was not significant in this study (p0.05 = 0.3). It is agreed that learning new techniques 

and extension programmes involve a rigorous process and a higher level of reasoning. Hence, 

farmers with a higher level of education are always at an advantage. Recent agricultural 

research and practices are privately driven, focusing on knowledge-intensive technology that 

does not consider the economic class of many SHFs (Rapsomanikis, 2014). The observation in 

this study is in agreement with Van Eeden and Korsten (2013), who correlated age and level 

of education to the adoption of technology among smallholders.  

 

Farmers’ experience in basic farm practices, its successes and challenges, is principal in making 

present and future decisions. The majority of the SHFs examined had few years of experience, 

less than five years, and this perhaps may be responsible for the low level of awareness and 

application of biofertiliser. Farmers experience was significant (P0.05 = 0.03) in the present 

study. This observation was corroborated by (Isabirye et al., 2010) who reported that high 

levels of experience caused SHFs to intensify adoption of innovation. In addition, organic and 

inorganic fertilisers were predominantly used amongst SHFs to increase crop productivity 

(Rowell & Hadad, 2004). However, none of the farmers apply biofertiliser, and this may be as 

a result of the low awareness of biofertilisers among African SHFs (Masso et al., 2015; Simiyu 

et al., 2013).  

 

A major reason for applying fertilisers was reported as yield increase, while plant pests and 

diseases were reported as major challenges in increasing crop productivity. The application of 

biofertiliser was not considered an option in addressing these challenges due to the poor 

knowledge of biofertiliser amongst the SHFs (Ochieng, 2015). The majority of SHFs lacked 

understanding of what biofertiliser is. Thus, it is important that farmers gain full knowledge of 

biofertiliser and its benefits for complete uptake (Srinivas & Bhalekar, 2013). The perception 

of the benefits of biofertiliser may influence application among SHFs (Mutuma et al., 2014). 

In sub-Saharan Africa, low demand of Rhizobium inoculum among farmers was attributed to 

lack of awareness and knowledge on the benefits of inoculum (Khonje, 1989). Several 

biofertilisers have been found useful as biocontrol agents. For example, Rhizobium can increase 

plant resistance to herbivore attack (Kawalekar, 2013; Raja, 2013). Corn yield increased when 

biofertiliser caused a reduction in the population of predatory insect (Megali et al., 2015). In 
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addition, bacterial and fungal diseases have also been suppressed by the use of biofertilisers 

such as Pseudomonas, Sinorhizobium and Bacillus (Arora et al., 2008; Guo et al., 2013).  

 

Crops grown by the SHFs interviewed were mostly stable crops. Maize, an important food for 

South African households was commonly cultivated (Kumwenda et al., 1997). Interestingly, 

biofertilisers have been widely used on staple crops for increased yield. Rhizobium trifolii, 

Azospirillum brasilense and Glomus mossea have been used to enhance the productivity of 

many stable crops (Egamberdiyeva, 2007; Riggs et al., 2001). Therefore, if awareness and 

adoption of biofertiliser improve, there is hope for better productivity amongst SHFs. 

Furthermore, growing cash crops may increase farmers’ income, which could possibly increase 

investment capability in new technology such as biofertilisers (Santos Ordóñez, 2011). 

 

Extension management, government policies and financial support, accessibility and 

biofertiliser quality have been reported to affect awareness and application of biofertiliser 

(Santos Ordóñez, 2011). The SHFs interviewed had no perception of biofertiliser quality and 

could not attest to its performance or efficiency with respect to other fertilisers. This is 

expected, considering the poor knowledge and the fact that farmers do not use biofertiliser. The 

challenges of extension services may have also affected the adoption of biofertilisers. This was 

corroborated by Khapayi and Celliers (2016) who reported that low extension activities 

impacted negatively on farmers’ access to biofertiliser knowledge. Effective extension 

management can generate immense awareness through a strategy of on-field trial, training, 

workshops and seminars that expose the farmers to biofertiliser benefits. This will cause a 

transfer of knowledge and agricultural inputs from the source (research centres, manufacturers, 

government institutions) to the farmers (Ochieng, 2015). Farmers contact with biofertiliser 

promoting institutions and group members may also influence the use of biofertilisers (Mutuma 

et al., 2014). 

 

The accessibility of agro-inputs is key to increasing biofertiliser awareness. The SHFs in the 

study area reported poor access to commercial biofertilisers. This may suggest that products 

are not readily available at different agronomic shops. Therefore, an efficient biofertiliser 

distribution system must be in place to improve the accessibility of products (Masso et al., 

2015). The governmental support for biofertiliser technology was also reported poor by the 

SHFs interviewed. Specifically, almost all the farmers reported a lack of financial and policy 
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support from the government as a major constraint. The use of biofertiliser has been constrained 

by lack of policy support in sub-Saharan African countries (Odame, 1997). Therefore, adequate 

regulations with an effective monitoring system and efficient extension management will 

improve awareness and usage of biofertilisers amongst SHFs (Masso et al., 2015). 

5.2 Biofertiliser physicochemical properties 

5.2.1 Total carbon, nitrogen contents and C/N ratio 

The total carbon and nitrogen content of the biofertiliser products analysed were relatively 

lower for liquid products but higher for carrier-based products. The same results were obtained 

for the C/N ratio. It is important that biofertilisers have adequate nutrient contents and C/N 

ratios to support microbial growth and survival during production and storage. Low carbon and 

nitrogen contents adversely affect microbial strain, in the biofertiliser products, thereby 

affecting the efficiency of inoculum when used on the field (Balume et al., 2015). Carriers with 

high organic carbon contents have been suggested for biofertiliser formulation for improved 

efficiency of inoculum (Hung & Sylvia, 1988). However, the nutrient content of biofertilisers 

should not be too high to interfere with the biofertilisation activities of beneficial microbes 

(Vessey, 2003). Different ranges of carbon and nitrogen content have been reported for 

different biofertiliser carriers. Tabassam et al. (2015) reported a range of 0.65-0.89% nitrogen 

in five different carriers while Bocchi and Malgioglio (2010) reported a range of 37-41% 

carbon in Azolla biofertilisers. In addition, peat, which has been widely used as a carrier due to 

its good physicochemical characteristics, has high carbon and nitrogen contents, an average of 

29% and 2%, respectively. This is similar to the observation in this study. The higher C/N ratio 

in some of the products, especially the carrier-based products is an indication that the products 

can support a high density of inoculum. These observations are similar to that of Bocchi and 

Malgioglio (2010), who observed a higher C/N ratio amongst the tested biofertilisers. However, 

other samples with lower C/N ratio may not support optimal growth of inoculum for a long 

period of storage and therefore may not be good-quality products. A similar report of low C/N 

ratio of carrier materials has been made by Deepti and Mishra (2014).  
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5.2.2 Electrical conductivity 

The biofertiliser products assessed had high electrical conductivity (EC) values, signifying high 

amounts of water-soluble nutrients in the products. The amount of available nutrients in the 

products usually impacts microbial activities. At high EC, microbial activities such as growth, 

respiration and organic-matter decomposition are adversely affected due to osmotic stress 

caused by the large concentration of cations (Shah & Shah, 2011). Electrical conductivity 

correlates with properties such as organic matter, cation-exchange capacity as well as salinity 

(Nanda & Abraham, 2011). For instance, most soils with EC1:1 readings less than 100 mS/m 

are considered non-saline and the salinity of this soil may not impact microbial activities. 

However, at EC1:1 readings above 100 mS/m, the soils are considered saline and microbial 

processes are affected (Smith & Doran, 1996). Low EC values in the range 45– 312 mS/m have 

been reported in different biofertiliser products. This is contrary to the results in this study 

where high ECs were observed in the products (Datta et al., 2015; Phiromtan et al., 2013).  

5.2.3 Total micronutrients and heavy metals 

The analysis of micronutrients showed a relatively low level of the elements in the biofertiliser 

products. Micronutrients such as manganese, molybdenum, zinc and copper usually act as co-

factors in enzymatic reactions in microbial cells. The metals are required in small quantities 

and where they occur in high quantities, they become toxic to microbial cells. The level of 

micronutrients observed in the biofertiliser products evaluated is adequate for maintaining the 

microbial quality of the products. The metal ions and elements requirements are unique and 

probably vary amongst different microorganisms (Merchant & Helmann, 2012). High amounts 

of trace elements (Cu > 16 mg/kg, Mn > 127mg/kg, Zn > 42 mg/kg) have been reported in 

different biofertiliser carriers (Tabassam et al., 2015). This is, however, contrary to the obtained 

results in this study. 

Additionally, the heavy-metal content of biofertiliser products analysed was within the 

acceptable standards stated in the South African Fertiliser legislation (SAFL, 1977). It is 

imperative that biofertiliser products contain low levels of heavy metals to protect the microbial 

community from the toxic effects of heavy metals (mercury, arsenic, chromium, lead, cobalt 

and cadmium). This will also reduce heavy metal carcinogenic potential and bioaccumulation 

in the food chain, as well as the pollution of agricultural soils when biofertilisers are used in 

the field (Carvajal-Muñoz & Carmona-Garcia, 2012; Yabe et al., 2010). Similar observations 

of low levels of heavy metal contents in biofertilisers have been reported (Negreanu- Pirjol et 
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al., 2011). According to Arif et al. (2016), heavy metals reduce crop productivity where their 

concentration increases beyond the required threshold in the soil. It is important to control 

heavy-metal pollution to avoid environmental degradation, especially where industrial effluent 

or municipal waste is used as carriers for biofertilisers. Carrier materials must be non-toxic and 

should not have materials that pollute the soil or hinder the growth of crops or beneficial 

rhizosphere microorganisms (El-Fattah et al., 2013; Malusá et al., 2012).  

5.2.4 pH, particle sizes, water-holding capacity and moisture content  

A pH range of 6.0-7.5 has been considered acceptable for quality biofertiliser products (NCOF, 

2011). Approximately 80% of the biofertiliser products investigated had pH within the 

stipulated standards. If pH is too acidic or basic, microbial cell growth and development are 

hindered. Generally, extreme pH affects the structure of microbial molecules (Jordan & Jacobs, 

1948). At high pH, the hydrogen bonds holding DNA molecules collapse, modifying the 

ionisation of the amino-acid functional group, which causes changes in the folding of the 

molecules, promoting denaturation and destroying activities (Sinden, 2012). For instance, pH 

values lower than 6.5 create an unstable growth condition for rhizobia, causing an increase in 

the death rate of the viable cells (Kaljeet et al., 2011). Therefore, poor quality biofertiliser may 

result from inappropriate pH conditions. Biofertiliser carriers must have a good pH buffering 

capacity to maintain a relatively constant pH during production and storage (Malusá et al., 

2012). The observation in this study is similar to that reported by Stella and Sivasakthivelan 

(2009) where the biofertiliser evaluated had a neutral or slightly above-neutral pH.  

 
Further examination of the biofertiliser products revealed that the carrier-based bacterial 

biofertiliser products investigated had particle sizes < 0.150 mm; while the mycorrhizal product 

fell short of the acceptable standard, with less than 90% of the particles < 0.250 mm (Kenya 

standard, 2015; Yadav & Chandra, 2014). Carrier materials with particle sizes within the 

specified standards support the easy application of products. It also prevents lump formation 

in the products during storage (Tabassam et al., 2015). The influence of particle sizes in 

biofertiliser formulation is related to the greater surface area of carriers that are exposed to 

microbial activity when smaller particles are used. In addition, smaller particle sizes create a 

high-adhesive capacity with microporous quality that can offer a near-natural habitat for the 

beneficial microbes and enhance high moisture content as well (Malusà & Ciesielska, 2014).  
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The carrier-based biofertiliser products assessed had the water-holding capacity as well as 

moisture content within the acceptable standards except for one product. The amount of 

moisture a carrier can absorb and hold is a measure of biofertiliser quality. This is because 

moisture affects microbial cell growth and survival, and consequently the shelf life of the 

products (Deaker et al., 2011). The water-holding capacity of a good carrier has been stated to 

be above 50%, while the moisture content should be a minimum of 35-40% (Yadav & Chandra, 

2014). Generally, if water-holding capacity is below 50%, moisture content is reduced and 

organisms may experience lack of moisture, which impacts negatively on biofertiliser quality 

(Griffith & Roughley, 1992). Moreso, the amount of bacterial broth (containing viable cells) 

that can be added to the carrier is also affected. Therefore, it is recommended that 

manufacturers maintain the acceptable standard for particle sizes, water-holding capacity, pH 

and moisture content in order to have a quality product that can perform optimally on the field 

(Feng et al., 2002).   

5.2.5 Identity character and appearance 

Some of the products evaluated had incomplete labelling information and approximately 29% 

of the products had different forms of odours (Table 4.8). Complete labelling information is an 

essential component of biofertiliser quality to guide end users on the correct purchase and 

effective application of the products (Malusá & Vassilev, 2014). Hence, lack thereof suggests 

that the products may not be effective because of the shortcomings of the manufacturers not 

meeting up with the acceptable quality standards or perhaps, the wrong purchase and/or 

misapplication by end users, the smallholders (Bala et al., 2011; Masso et al., 2015). This 

buttresses the fact that stringent regulations on commercial biofertilisers are basic measures 

that will protect farmers from losses associated with low-quality biofertiliser products (Balume, 

2013; Herrmann & Lesueur, 2013; Lupwayi et al., 2000). Similar observations of 

noncompliance on product labelling amongst manufacturers have been reported (Herrmann et 

al., 2010). 

5.2.6 Storage temperature 

The obtained viable cell density after 12 weeks of storage at different temperatures was higher 

at 25 °C compared to 4 °C with an average of 54% variation across the products. In addition, 

products stored at 36 °C had a higher viable density compared to 4 °C but a much lower density 

than at 25 °C, with a few exceptions. Storage temperatures influence the viability and density 

of microbial cells in biofertiliser products. Hence, the overall efficiency and reliability of 
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biofertiliser products to improve crop yield are at risk without proper storage conditions. It is 

essential to emphasise appropriate storage temperatures that will support a longer shelf life of 

biofertiliser products (El-Fattah et al., 2013; Kaljeet et al., 2011; Phiromtan et al., 2013). 

Different studies have reported 28 °C as the optimal storage temperature that supports the 

viability of bacterial cells (El-Fattah et al., 2013; Kaljeet et al., 2011). This is in agreement with 

the observation at 25 °C ± 2 °C in this study. The microbial density over three months of storage 

remained within the acceptable standard for biofertiliser products. However, at lower storage 

temperatures, microbial physiological and metabolic activities are reduced. According to 

Roughley (1968), continuous storage of peat rhizobia at 4 °C caused a restricted multiplication 

with reduced viable cell numbers and maximum microbial density was achieved after 26 weeks 

of storage. It is important to note that the impact of storage temperature on biofertiliser products 

may also depend on culture purity, moisture content and types of microbial strains (Phiromtan 

et al., 2013; Roughley, 1968). 

5.3 Molecular analysis of biofertiliser products 

The Sanger sequencing technique is widely used to analyse microbial components of many 

environmental samples such as food, water and soil. However, the Illumina high-throughput 

sequencing technique, which is more efficient and cost-effective, is now widely used in 

microbial community analysis of environmental samples (Sun et al., 2017; Tyx et al., 2016; 

Zhang et al., 2017). This study is one of the few that have used both techniques to analyse 

microbial communities in biofertiliser products. 

5.3.1 Microbial isolates from biofertiliser products 

The microbial communities observed with Sanger sequences in the biofertiliser products were 

diverse in products CB1L and CB13S, having 11 and eight strains respectively. Similarly, 

Illumina sequences revealed that microbial diversity as measured by the Shannon and Simpson 

Diversity Index was considerably higher in the same biofertiliser products. Product CB1L is 

made of consortia of strains, containing PGPR (such as Bacillus and Pseudomonas) and 

rhizobia (Rhizobium). This observation is in agreement with the work of (Herrmann et al., 

2015) who observed high microbial diversity in biofertiliser products made of consortia of 

strains. However, the authors reported high microbial diversity in the free-living nitrogen-

fixing products, contrary to that obtained in this study. The heterogeneity and competitive 

ability of indigenous strains over biofertiliser strains have caused the need to have consortium 
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inoculant formulation, which has a better competitive advantage to withstand local strains and 

ecological conditions (Faye et al., 2013; Kyei-Boahen et al., 2002). In the present study, 38% 

of products were made of consortia of strains.  

 

The observed NGS sequences in the present study showed rhizobia products were generally of 

better quality with the lowest Shannon and Simpson Diversity Index. These are single strain 

carrier-based products, which suggests that carrier-based products in this study are of good 

quality compared to the liquid products. It may be that the single-strain products are selectively 

formulated, unlike the consortium-strain products that support the growth of various 

biofertiliser strains as well as other undesired microbes that could cause product-quality 

damage. This is in agreement with other studies that correlated the increase in microbial density 

of rhizobia biofertiliser to the carrier material properties, which selectively supported rhizobia 

optimal growth (Balume, 2013; Olsen et al., 1995). In general, the results showed a low level 

of product quality across the range of products analysed with free nitrogen-fixing products 

having the least quality.  

5.3.2 Contamination of biofertiliser products 

The Sanger and Illumina nucleotide sequences revealed that the products had more microbial 

communities than what manufacturers claimed, signifying a high level of microbial 

contamination. Aforementioned observations have been reported in previous studies where 

different levels of contamination and consequential effect on product quality had been reported 

in biofertilisers (Herridge et al., 2002; Herrmann et al., 2015; Lupwayi et al., 2000; Olsen et 

al., 1995). A substantial proportion of biofertiliser products, especially using non-sterile 

carriers, are of questionable quality and rarely support farmers’ productivity due to low strain 

density and/or excessive levels of contamination (Bashan, 1998; Olsen et al., 1995). Ideally, 

carriers should selectively support optimal growth of biofertiliser strains in desired densities 

during production, transportation and storage (Herrmann et al., 2015). However, other non-

biofertilisers strains are also supported, especially when sterilisation was not performed on the 

carrier (Malusá et al., 2012). El Fattah et al. (2013) observed that poor-quality carriers caused 

substantial growth of diverse undesirable microbes in biofertiliser products. All the biofertiliser 

products examined in the present study had different levels of contamination with major ones 

found in CB1L, CB6L, CB7L, CB8L, CB9L, CB10L CB11L, CB12L and CB13S (Table 4.12). 

It is worthwhile to note that these products, except CB1L and CB13S, were produced by the 
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same manufacturer and possibly, with similar materials and production processes, which 

suggests the reason for their analogous level of contaminants. These findings agree with that 

of Herrmann et al. (2015), who found similar levels of contamination in products from the same 

manufacturers.  

 

Many of the contaminants have been reported as opportunistic pathogens, which are potentially 

dangerous to the health of humans, crops and the environment (Olsen et al., 1996). Similarly, 

Herrmann et al. (2015), observed that over 53% of the biofertiliser products tested had these 

harmful microbes. For example, Acinetobacter junii, A. modestus, Arthrobacter oryzae and 

Alcaligenes faecalis subsp. faecalis have been found to cause diseases in human beings and 

animals (Goodfellow et al., 2012; Saffarian et al., 2017; Tille, 2013), while Bacillus 

paralicheniformis and B. siamensis have also been found to be human pathogens (Siribaed, 

1935). Similarly, Brevibacillus laterosprus has been reported as a pathogen of invertebrates 

(Ruiu, 2013). Other human and animal pathogenic strains included Cellulomona denverensis, 

Cupriavidus metallidurans, Escherichia coli, Enterococcus ratti and Staphylococcus hominis 

subsp. novobiosepticus (Brown et al., 2005; Chaves et al., 2005; Langevin et al., 2011; Rivas 

et al., 2015; Teixeira et al., 2001). Some of these pathogenic microbes have been found to 

inhibit the growth of beneficial microbes such as rhizobia in biofertiliser products (Gomez et 

al., 1997). Considering the dangers posed by these microbes, their occurrence in biofertiliser 

products are to be considered more seriously beyond being ordinary contaminants (Catroux et 

al., 2001). 

5.3.3 The quality of imported and locally produced biofertiliser 

The results showed that the majority of the poor-quality products were locally manufactured, 

signifying the need to improve locally manufactured products and quality-control systems. 

However, there is contradictory evidence relating to this in literature. Imported biofertiliser 

products have been reported to be of low quality due to quality challenges arising from 

ecological differences between the manufacturing country and the country where the products 

will be applied (Masso et al., 2015; Simiyu et al., 2013). Additionally, various studies have 

shown that native inoculants are more efficient than exotic commercial species (Kouadio et al., 

2017; Oloke & Odeyemi, 1988). However, the conclusions in this study were based on quality 

parameter evaluation and not on-field experiments. Nevertheless, a poor-quality biofertiliser 

will not be effective when applied in the field (Faye et al., 2013). 
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5.3.4 Predictive metagenomics profiling of 16S rRNA gene nucleotide 

The predictive metagenomics profiling (PMP) results revealed rhizobia, which is one of the 

most important  nitrogen-fixing biofertilisers, to correlate more with nitrogenase genes, thereby 

confirming the long-established potential of the group in fixing nitrogen to usable forms of 

ammonia (NH3), nitrite (NO2
-) and nitrate (NO3

-) using these genes (De Bruijn, 2015; Dighe et 

al., 2010). Similarly, nitrogenase genes were predicted in some PGPR products (CB9L and 

CB10L), though in low abundance, suggesting the presence of microbial communities that can 

possibly participate in BNF. Several studies have reported the nitrogen-fixing ability of 

Pseudomonas, Enterobacter and Citrobacter, which were found in the PGPR products 

(Desnoues et al., 2003; Hatayama et al., 2005; Neilson & Sparell, 1976). Additionally, 

denitrification genes, which convert nitrate, nitrite or ammonia to nitrogen gas were also 

predicted to be present in all the products, but with high prevalence in six products. The 

occurrence of these genes was at a very low level in samples CB10L and CB12L, which were 

PGPR and rhizobia products respectively, suggesting the use of denitrification pathway 

amongst the bacterial communities in these products may not be prominent.  

 

Furthermore, the presence of nitrate reductase genes was predicted in high abundance in the 

products, suggesting the use of nitrate as an alternative to oxygen in order to gain electrons for 

maintaining the proton-motive force in microbial cells (Tyx et al., 2016). In oxygen-deficient 

conditions, such as during product storage, respiratory nitrate reductase is often expressed 

where nitrate is present. However, the build-up of extracellular nitrite during the respiratory 

process is toxic to microbial cells. To overcome this situation, the nitrite-exporting enzymes 

are expressed. The nitrite genes were likewise predicted to be present in some of the bacterial 

communities. Most microorganisms with assimilation and denitrification pathways can further 

use the produced nitrite (Kraft et al., 2014; Lin & Stewart, 1997; Luque-Almagro et al., 2011).  

 

The PMP showed the dominance of alkaline phosphatase, an important enzyme in phosphate 

mineralisation, signifying the ability of the community to mineralise phosphate in alkaline pH 

environments (Behera et al., 2017; Fitriatin et al., 2011). Furthermore, the presence of sulphur-

degrading enzymes, especially arylsulphatase, may indicate the role of biofertiliser 

communities in sulphur cycling and mineralisation in the soil. The ferric-chelate reductase 

involved in plant iron uptake was also predicted and this could improve crop growth and 

development through direct or indirect mechanisms of the microbial community (Sayyed et al., 
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2010). Similarly, genes encoding for galactosidase and glucosidase predicted in high 

abundance across the community suggest the ability of the microbial community to use 

different sources of carbohydrates, such as galactose and glucose. Other important genes 

predicted were the Shiga, leucocidin and haemolysin toxin genes that have great potential in 

causing diseases in human beings. These toxins are frequently cytotoxic, destroying host cells 

by creating unregulated pores in the membranes of the host plants (Gouaux et al., 1997; 

Laohachai et al., 2003). Escherichia-Shigella, a major genus responsible for the production of 

Shiga toxin, was also a factor in some of these products (Laohachai et al., 2003). The microbial 

community producing the toxin genes may suffer from loss of viable beneficial strains due to 

the effect of the toxins, thereby causing poor-quality biofertiliser products (Gomez et al., 1997). 

5.3.5 Microbial viable cell density 

The microbial cell density results showed that most of the products were of low quality. When 

compared with the acceptable standards in India (> 5 × 107 CFU/g, solid and >108 CFU/ml, 

liquid) (Malusá & Vassilev, 2014) and South Africa (legume inoculants standard 5 × 108 

CFU/g) (Strijdom, 1998), only products CB4L and CB3L had acceptable viable cell density. 

This accentuated the need to maintain quality viable cells that are metabolically and 

physiologically competent to unleash the desired benefits of biofertiliser products when used 

on the field (Xavier et al., 2004). Several biofertiliser quality assessments showed that over 

50% of products evaluated had less than the acceptable viable rhizobia per gram of carrier 

(Rodríguez-Navarro et al., 2010; Singleton et al., 1997). In other instances, some biofertiliser 

products sold in developed and developing countries have been reported not to contain any 

rhizobia inoculant (Lupwayi et al., 2000). 

 

Arbuscular Mycorrhizal Fungal biofertiliser quality depends on spore viability, as well as the 

infectivity potential of the spores on host plants (Habte & Osorio, 2001). The results show that 

more than 100 viable spores per gram of the product were obtained. This is in agreement with 

AMF products’ acceptable standard (Yadav & Chandra, 2014). It is essential to maintain a high 

quantity of viable spores in the product to increase the infectivity potential with the host plant. 

Microbial enumeration is a widely recognised practice in biofertiliser quality control (Elhassan 

et al., 2010; Lesueur et al., 2016). This is because the number of viable cells transferred to the 

field is essential in improving the efficiency of the inoculum. Evidence has shown that 

increasing rhizobial cell numbers applied per seed results in increased nodulation and nitrogen-
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fixation (Olsen et al., 1995). According to Hume and Blair (1992), increasing rhizobia 

population from 105 to 106 for seed inoculation improved soybean yield by 24%. In addition, 

increasing the rate of inoculation has been suggested to reduce the dominance of indigenous 

soil microbes. Therefore, it is important that biofertilisers supply the adequate amount of 

inoculum to the field for improved competitive advantage over the indigenous strains as well 

as for inoculum efficiency. Consequently, quality assessment by enumerating the viable 

microbial density is a seamless index of the potential efficiency of inoculant (Lupwayi et al., 

2000). 

5.3.6 Limitations of Sanger and next-generation sequencing technologies 

Advances in NGS technologies have revolutionised biological sciences through the analysis of 

environmental DNA using specific gene markers such as species-specific DNA barcodes. A 

major advantage of NGS is that it bypasses the need for laboratory cultivation and isolation of 

microbial specimens, a major process necessary in conventional Sanger DNA sequencing 

(Shokralla et al., 2012). With the challenges of culturing microbes and considering the fact that 

approximately 99% of all microbes are still unculturable (Vartoukian et al., 2010), Sanger 

sequencing is highly limited and inadequate for analysing and processing complex 

environmental samples, especially for large-scale studies (Christine, 2004; Sanger et al., 1977). 

In addition, most environmental samples contain mixtures of DNA from several hundred or 

thousands of individuals. Although Sanger sequencing has provided the most efficient 

technique for building large DNA-barcode reference libraries, the number of individuals in 

environmental samples is far beyond the scope of its ability (Hajibabaei et al., 2011). However, 

the isolation of DNA sequences from thousands of species in the complex environmental 

samples requires the ability to read DNA from multiple templates simultaneously, a process 

that NGS technologies do effectively and at a lower cost. This was evident in the present study 

where high numbers of microbial isolates were observed with Illumina MiSeq compared to 

Sanger sequences (Shokralla et al., 2012). 

 

Generally, obtained nucleotide sequences are compared to a growing standard reference library 

of known organisms and the correctness of the taxa depends on the completeness of the 

reference library. For example, the Silver 123 QIIME release and NCBI were used in this study 

for Illumina and Sanger sequencing respectively, suggesting the taxa results are as good as the 

database at the time of analysis. Hence, sequences cannot align with recent DNA barcodes not 
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yet updated in these reference libraries (Quast et al., 2012). This is a limitation that impacts on 

sequencing-output taxa accuracy. Furthermore, Sanger sequencing is able to recover up to 1 kb 

of sequence data from a single specimen at a time and with the most advanced version of an 

automated Sanger sequencer, up to 1 kb for 96 individual specimens at a time can be recovered. 

However, NGS technologies can potentially generate several hundred thousand to ten millions 

of sequencing reads in parallel, e.g. from a pool of PCR-amplified molecules (amplicon 

sequencing) (Shokralla et al., 2012). This may infer a better efficiency in taxonomy. Over 2.88 

million reads with 5,791 OTUs were generated in this study. 

 

Despite the huge benefits of NGS technologies, several challenges have been encountered. The 

relatively short-read length of Illumina MiSeq sequencing outputs due to signal decay and 

dephasing is a challenge. This limits the application where no reference sequence is available. 

There is also a high accumulation of error rates with longer sequencing reads (Zhou et al., 

2010). In addition, similar to Sanger sequencing, there are problems relating to amplification 

steps before sequencing. These may include PCR-bias, the formation of chimeric sequences 

and other secondary related strictures (Shendure & Ji, 2008). Summarily, the use of both 

techniques in this study compensates for the limitations of each method and therefore increases 

the robustness of the results, which can give efficient and convincing conclusions.  

5.4 Biochemical characterisation of isolates  

The biochemical test results showed a high number of isolates can ferment various 

carbohydrates such as glucose, lactose and sucrose, with the production of acid as a by-product 

(Park et al., 2005). Hydrogen sulphide is an inorganic acid used by some PGPR in phosphorous 

solubilisation. However, hydrogen sulphide production from sugar fermentation was not 

common amongst the test isolates, implying the use hydrogen sulphide mechanism for 

phosphorous solubilisation was not dominant (Sharma et al., 2013). The majority of the isolates 

that tested positive for citrate metabolism have the ability to use sodium citrates as their sole 

carbon source, producing pyruvic acid and carbon dioxide (Faidy & Ali-Shtayeh, 2000). In 

addition, isolates with ammonia-production abilities have the potential to supply nitrogen in 

deficient soils and to be used as biofertiliser for improving crop productivity. The ability of the 

isolates to produce enzymes such as hydrogen cyanide synthase, cytochrome oxidase, lipase 

and catalase could contribute to the survival of these strains in extreme environments. The 

production of extracellular lipase and hydrogen cyanide contribute immensely to the biocontrol 
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ability of biofertiliser strains in suppressing fungal and bacterial pathogens (Ghodsalavi et al., 

2013; Khan et al., 2012). 

 

The majority of the isolates could decompose hydrogen peroxide using the catalase while the 

hydrolysis of urea to ammonia was by urease production. Isolates producing urease are useful 

in the agricultural soil where urea fertilisers have been applied by increasing the availability of 

ammonia for crop uptake and as well in maintaining soil health through their functions in the 

nitrogen cycle (Das & Varma, 2010). Isolates positive for Methyl red and Voges Proskauer 

were able to metabolise glucose to pyruvic acids or lactic, formic and acetic acids (Goldman 

& Green, 2015). Several studies have reported beneficial rhizobacteria with different 

biochemical characteristics similar to the observations in this study (Ahmad et al., 2008; 

Ghodsalavi et al., 2013; Majeed et al., 2015; Mohan et al., 2008). 

5.5 Functional attributes of isolates 

5.5.1 Nitrogen fixation ability 

In the present study, approximately 40% of the tested isolates could grow on nitrogen-free 

medium, implying that the isolates have the potential to fix nitrogen when used on nitrogen-

deficient soils (Rodrigues et al., 2016). This capability is aided by the nitrogenase gene, which 

is responsible for the reduction of nitrogen to ammonia (De Bruijn, 2015). Different isolates 

such as Bacillus, Alcaligenes and Pseudomonas were found to fix nitrogen with complementary 

ability to solubilise phosphorous and as well synthesise IAA, making them a good PGPR for 

biofertiliser formulation (Beneduzi et al., 2008). The results showed similar observations with 

previous studies. For example, the genera of Alcaligenes (You & Zhou, 1989), Bacillus (Seldin 

& Dubnau, 1985) and Pseudomonas (Hatayama et al., 2005) have been reported to fix nitrogen. 

Nitrogen remains one of the essential macronutrients required by plants for metabolism and 

growth. Despite being in abundance in the atmosphere, it is not accessible by plants, except 

when it is converted to usable forms of ammonia and nitrate (Galloway et al., 2004). Therefore, 

the nitrogen-fixation ability of microorganisms is the most desirable traits in BNF.  
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5.5.2 Phosphate solubilisation ability and acid phosphatase production 

The dominant genera associated with high phosphate solubilisation ability were Pseudomonas, 

Bacillus, Citrobacter, Alcaligenes and Enterococcus. In phosphorous-deficient or immobilised 

soils, phosphate solubilising biofertiliser (PSB) is a good alternative to improve plant 

phosphorous uptake (Jain & Khichi, 2014; Parani & Saha, 2012). The major mechanism of 

inorganic phosphorous solubilisation has always involved the production of low molecular 

weight organic acids such as gluconic, oxalic and citric acids to solubilise phosphorous. This 

ability is ascertained by the halo zone formation on phosphate media (Goldstein & Krishnaraj, 

2007; Richardson & Simpson, 2011). Therefore, the in vitro assessment of phosphorous 

solubilisation as measured by the level of halo zone formed could define the solubilisation 

potential of the isolates and their use as biofertilisers (Sharma et al., 2013). The high phosphate 

solubilisation index (PSI) (> 2) exhibited by some of the isolates suggest they are good PSB 

(Behera et al., 2017; Bello-Akinosho et al., 2016; Majeed et al., 2015). Phosphate solubilisation 

by microbes may be hindered by available soluble phosphorous, toxic metabolites and changes 

in pH of the medium (Yasmin & Bano, 2011). Similar to this, after seven days of incubation, 

the rate of phosphate solubilisation amongst the isolates reduced.  

 

Some of the tested isolates had high acid phosphatase production in the range of 7.33–36.96 

µg/ml, indicating their organic phosphate-mineralisation potential. Rhizosphere bacteria 

produce a range of phosphatases and are able to utilise phosphate from different organic 

sources when cultured in laboratory media. The para-nitrophenyl phosphate used as organic 

phosphate in this study was hydrolysed to inorganic phosphate, a process catalysed by the 

phosphatase (Richardson & Simpson, 2011). Phosphatases are essential enzymes with huge 

potential in increasing sustainability in the rhizosphere and as indicators of soil health. The 

enzyme plays a crucial role in the phosphorus cycle and has been correlated with soil 

phosphorous stress and plant growth (Das & Varma, 2010). Different studies have reported 

similar phosphatase activities in some of the test isolates. For instance, Fitriatin et al. (2011), 

reported a range of 2.0-4.96 µg/ml of phosphatase in Bacillus, Pseudomonas, Micrococcus and 

Flavobacterium, while Behera et al. (2017) reported a maximum enzyme activity of 92.7 U/ml 

in 2.5 mg/ml of substrate concentration in Serratia sp. Most phosphatases found in the soil are 

produced by rhizosphere microorganisms; therefore, the search for microorganisms producing 

the enzymes is imperative for formulating an efficient phosphate biofertiliser products (Ribeiro 

& Cardoso, 2012).  
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5.5.3 Indole acetic acid production 

A varying amount of indole acetic acid (IAA), also known as auxin, was produced by the test 

isolates. Microbial IAA has been established to stimulate in plants long-term responses such 

as cell division and tissue differentiation, as well as short-term responses such as increased cell 

elongation and root architecture (Ji et al., 2014). In addition, IAA influences the activity of 

ACC (1-aminocyclopropane-1-carboxylic acid) deaminase (Khan et al., 2016). Therefore, 

isolates producing IAA have huge potential in biofertiliser technology for increased crop 

growth and development. Several studies have reported varying levels of IAA production in 

different microorganisms. For example, Trichoderma sp. (15.7-39.60 µg/ml) (Dixit et al., 

2015), Pseudomonas sp. (23.4-53.2 µg/ml) (Ahmad et al., 2005) and Bacillus (29.3-51.3 

µg/ml) (Islam et al., 2016) have been reported with varying IAA production under different 

substrate concentrations. The results in this study showed a range of 1.6-115.3 µg/ml amongst 

the test isolates, with Hafnia paralvei producing the lowest concentration at 1.6 µg/ml and 

Bacillus velensis producing the highest concentration at 115.3 µg/ml. Essentially, strains with 

a high level of IAA production such as Pseudomonas, Bacillus and Enterococcus could be 

good biofertiliser with multiple functional abilities; producing growth promoting substances as 

well as making nutrients available to crops. 

5.5.4 Siderophore production 

One-third of the tested isolates predominantly belonging to the Pseudomonas, Alcaligenes, 

Enterococcus and Bacillus genera produced siderophore. Siderophores are low molecular mass 

iron-transport agents, which significantly enhance the uptake of metals such as zinc, iron and 

copper by crops (Beneduzi et al., 2012; Pal & Gokarn, 2010). The highest siderophore 

production was observed in the genus, Pseudomonas, similar to the observation by Ribeiro and 

Cardoso (2012). The microbes producing extracellular siderophore may indirectly inhibit the 

growth of harmful fungi and bacteria when it chelates available iron in the soil, thereby 

depriving native microflora of iron. On the other hand, siderophores may directly suppress the 

growth of pathogenic organisms stimulating the biosynthesis of antimicrobial compounds 

(Mathew et al., 2014; Solanki et al., 2014). Therefore, isolates producing siderophore have 

great potential to confer disease resistance to plants and thus can be used in biocontrol products. 

For example, siderophores produced by Pseudomonas and Bacillus have been reported to 

attack the common fusarium wilt of potato and maize (Beneduzi et al., 2012). However, the 

antagonistic property of siderophore against plant pathogens was not established in this study. 



120 

 

Chapter Six 

Conclusion and Recommendations 
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6. Conclusion and recommendations  

6.1 Conclusion 

The underlying objectives of this study were to understand the level of awareness of 

biofertiliser amongst SHFs and whether good-quality products are available in the South 

African agro-market. Data obtained revealed that biofertiliser awareness amongst SHFs in the 

study area was very low and most of the farmers were not aware of the various commercial 

products available in the agromarket. The low awareness was attributed to inaccessibility of 

the products as well as low farming experience and low level of education amongst SHFs. 

Education is an important factor in the adoption of biofertilisers. Soil nutrient management is 

complex and farmers need some level of knowledge through extension services to comprehend 

this. Invariably, the aforementioned reasons may have contributed to the non-adoption of 

biofertiliser among SHFs. This situation suggests the need for efficient biofertiliser policy and 

promotional strategy that will provide economic incentives and opportunities for improving 

the awareness and application of biofertilisers amongst SHFs. 

 

Furthermore, the laboratory experiments showed that microbial densities of the majority of the 

investigated products were lower than the acceptable quality standards. Similarly, some of the 

products did not contain the claimed microbial strains, implying that the products cannot be 

effective if used on the field. Findings of this study also revealed that the products had different 

levels of contamination, which could be a potential risk to the environment as well as animal 

and human health. Therefore, it is imperative that biofertilisers be made with sterile carriers 

that are free of contaminants and that supports only the biofertiliser strains.  

 

The general ability of the isolated strains in nitrogen-fixation, phosphate-solubilisation, and 

indole-3-acetic acid and siderophore production is an indication that some of the isolates may 

be efficient in biofertiliser production. It is important that strains with dual-functional 

capabilities be employed in the biofertiliser formulation. In this study, most species of 

Pseudomonas and Bacillus could effectively perform at least two of the major functions of 

biofertiliser, viz., nitrogen-fixation, phosphate-solubilisation and IAA production. Therefore, 

consortium products with these species have been suggested in product formulation, for 

improved field efficiency.  
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It is also important to state that the majority of the locally manufactured products investigated 

in this study were of poor quality, emphasising the need to improve national quality-control 

systems in South Africa. Given that the quality assessment undertaken in this study is only 

preliminary, other studies investigating the field efficiency of biofertiliser products, especially 

on various crops and ecological regions are required. These studies will help to demonstrate 

the benefits of biofertiliser in increasing crop productivity and invariably, increasing SHFs 

confidence in biofertiliser products. 

6.2 Recommendations 

Urgent attention should be given to biofertiliser policy and standard formulation in order to 

ensure that official regulations of biofertilisers quality are enforced. This will increase quality-

control awareness on the part of the manufacturer as well as guide biofertiliser manufacturers 

in maintaining acceptable quality parameters in terms of particle sizes, water-holding capacity, 

pH, cell density, and moisture content. Such quality-controlled biofertiliser products can 

enhance optimal crop yield when applied on the field. In addition, government financial support 

in the form of subsidies should be extended to biofertiliser production to promote biofertiliser 

commercialisation and market expansion.  

 

Furthermore, the development of biofertilisers with an increased shelf life at room temperature 

and for durations exceeding 6 months, will help maintain biofertiliser quality between the time 

of production and field application. Similarly, formulation of biofertilisers using consortia of 

strains with multiple functional capabilities as well as the use of sterilised carrier materials are 

essential to maintaining product quality. In addition, the implication of cell-cell communication 

in the microbial community of biofertiliser products should be considered for future studies. 
 

There is a need to increase biofertiliser awareness and knowledge through capacity building, 

creating farmer group and efficient extension services. This will increase easy access to 

training, product samples and information on biofertiliser. Building technical capacity of 

extension service officers and agro-dealers through “train the trainers” learning technique is 

also important. Such an approach will aid the dissemination of information on biofertilisers 

and their applications. These objectives can be achieved through public-private partnership. 

Moreso, regular collaboration between South Africa and developed countries for the exchange 

of new technologies and ideas on biofertiliser development may also be considered. 
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Appendices 

Appendix 1: Questionnaire 

 
Department of Environmental Sciences 

College of Agriculture and Environmental Sciences, 

 University of South Africa                   

My name is Adekunle Raimi, a student in the Department of Environmental Sciences at the University 

of South Africa.  I am currently carrying out a study to assess the awareness and quality of commercial 

biofertilisers used by smallholder farmers in South Africa. I would be grateful if you would complete 

the following questions. This survey is completely anonymous and purely an academic exercise. Any 

information supplied shall be treated with strict confidence.  

Instruction 

Please indicate your answers by ticking or writing in the columns provided as you deem appropriate.  

Section A.                           
1. Age:    (a) 20-29 years [  ] (b) 30-39 years [  ] (c) 40-49years [  ] (d) 50 and above [  ] 

2. Please indicate your educational level:   

(a) diploma Cert./ Degree [ ]                      (c) Grade 7  Certificate [ ] 

(b) Grade 12 Cert.             [ ]                      (d) None                        [ ] 

3. How long have you been a farmer? ……………………………………………. 

What types of crop do you cultivate?  a) ………… b) ………… c)………..... d)…………… 

4. Do you use fertiliser for your crops?                 Yes [ ]        No [ ] 

5. What type do you use?  a) Inorganic fertiliser [ ]         b) Organic fertiliser    [ ]  

                                       C) Biofertiliser         [ ]          d) Others                    [ ] 

6. Do you know how to apply biofertiliser?       Yes [ ]        No [ ] 

7. How often do you use biofertiliser?  

a) Every season    [ ]       b) Every other Seasonal  [ ]         

c) When necessary [ ]        d) Not at all                    [ ] 

8. Please tick the biofertiliser product(s)/ brand you use for your crops? 

Waterbac   Nitrasec  Bio-Potash     Eco-Rhizo  

Prosoil  Bio-zinc  Histick  Mycoroot Super grow  

Bio-Azo  Bio-Azospirillum      Lifeforce       Rhizovital     

Bio-Phosphate  Seedbac  Activate N  Mycoroot Booster  

Biostart  Vital soil QCM 360  Firstbase        Vital soil microbe max  

Landbac  Organo  Rhizo flow  Likuiq Semia  
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9. Please state any other brand not listed above I) ……………     II)…………….   III) ………....... 

10. What is your major reason for using biofertilisers 

a) Increase nitrogen supply b) Increase phosphorous supply   c) Increase potassium supply  

d) Plant growth promoting substances e) Increase crop yield     f) All of the above 

 

Section B. Choose the most appropriate that best answers the question. 
     

S/No         Question Poor Fair Average Good Excellent Don’t know 

1 How would you describe your 
knowledge about biofertilisers? 

 
Poor 

 
Fair 

  
Average 

 
Good 

  
Excellent 

 
Don’t know 

2 Overall, what is your perception 
of the quality of biofertilisers 
you know of? 

 
Poor 

 
Fair 

  
Average 

 
Good 

  
Excellent 

 
Don’t know 

3 How would you rate the 
performance of biofertilisers 
with respect to other fertilisers 

 
Poor 

 

Fair 
  

Average 
 

Good 
  

Excellent 

 
Don’t know 

4 How would you rate extension 
services on biofertilisers 

 
Poor 

 

Fair 
  

Average 
 

Good 
  

Excellent 
 

Don’t know 

5 Describe the accessibility to 
commercial biofertilisers 

 
Poor 

 
Fair 

  
Average 

 
Good 

  
Excellent 

 
Don’t know 

6 How is the support/policy of the 
government on biofertilisers 

 
Poor 

 
Fair 

  
Average 

 
Good 

  
Excellent 

 
Don’t know 

        

 
Kindly use the space below for other comments you would like to make on commercial biofertilisers. 

…………………………………………………………………………………………………………… 
……………………………………………………………………………………………………………      
 

                                             

Signature: …………………………… Date: ……… 
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Appendix 2: Approval to engage smallholder farmers.   
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Appendix 3: UNISA CAES Ethical approval 
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Appendix 4: Triple Sugar Iron agar (TSI) 

 
Reagent  Composition (g/l) 

Yeast Extract 3.0 

Beef Extract 3.0 

Peptone 15.0 

Sodium chloride 5.0 

Sucrose 10.0 

Dextrose 1.0 

Lactose 10.0 

Ferrous sulphate 0.2 

Sodium thiosulfate 0.3 

Phenol red 0.024 

Agar 15 

pH @ 25 °C 7.0 

 

 

Appendix 5: Simmon Citrate Agar          

                                               
Reagent     Composition (g/l) 

Magnesium sulphate 0.2 

Ammonium dihydrogen phosphate 1.0 

Dipotassium phosphate 1.0 

Sodium citrate 2.0 

Sodium chloride 5.0 

Bromothymol blue 0.08 

Agar 15.0 

pH @ 25 °C 6.8 ± 0.2 
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Appendix 6: Ammonia Nessler’s reagent  

 
Reagent     Composition (g/l) 

Mercuric chloride 22.0 

Potassium iodide 50.0 

Sodium hydroxide 200 ml 

pH at 25 °C  13.2 ± 0.05 

 

With continuous stirring, 50 g of potassium iodide is dissolved in 50 ml of cold distilled water. 

A saturated solution of mercury chloride (about 22 g in 350 ml of distilled water) is added until 

precipitates appear indicating excess mercury chloride. Add 200 ml of 5 N of NaOH and 

ammonia free distilled water to a final volume of 1 litre 

 

Appendix 7: Tween 20 agar medium 

 
Reagent Composition (g/l) 

Peptone 10.0 

Calcium chloride 0.1 

Sodium chloride 5.0 

Tween 20 10 ml 

Agar 

pH @ 25 °C 

15.0 

6 ± 0.2 

 

 

Appendix 8: Urea agar base 

 
Reagent     Composition (g/l) 

Peptone 1.0 

Glucose 1.0 

Sodium chloride 5.0 

Dipotassium hydrogen phosphate 5.0 

Urea 20.0 

Phenol Red 0.012 
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Appendix 9: MR-VP Broth  

 

Reagent Composition (g/l) 

Peptone      7.0 

Dextrose      5.0 

Potassium phosphate      5.0 

 

 

Appendix 10: Methyl red indicator and Barritt’s reagent  

 

Methyl Red indicator 

Dissolve 0.1 g of Methyl Red in 300 ml of ethanol (95%). Add 200 ml of deionised water to 

make 500 ml of a 0.05% (w/v) solution in 60% (v/v) ethanol. Store solution at 4ºC. 

 

Voges Proskauer reagent:  

Barritt’s reagent A: 5% (w/v) a-naphthol in absolute ethanol (add 0.6 ml to the test isolates) 

Barritt’s reagent B: 40% (w/v) KOH in deionized water (add 0.2 ml to the test isolates). 

 

 

Appendix 11: National Botanical Research Institute Phosphate medium (NBRIP) 

 
Reagent Composition (g/l) 

Glucose 10.0 

Tricalcium phosphate 5.0 

Agar  15.0 

Magnesium chloride hexahydrate 5.0 

Magnesium sulphate heptahydrate 0.25 

Potassium chloride 0.20 

Diammonium sulphate 0.10 
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Appendix 12: Burk’s media 

 
Reagent Composition (g/l) 

Sucrose 20.0 

Magnesium sulphate 0.20 

Calcium sulphate 0.13 

Dipotassium phosphate 0.80 

Monopotassium phosphate 0.20 

Ferric chloride 0.00145 

Sodium molybdate 0.000253 

 

 

Appendix 13: Nitrogen free bromothymol blue medium 

 
Reagent Composition (g/l) 

DL-Malic acid 5.0  

Dipotassium phosphate 0.4  

Monopotassium phosphate 0.1  

Iron III chloride hexahydrate 0.01  

Magnesium sulphate 0.20  

Sodium chloride 0.10  

Bromothymol blue  0.002  

Sodium molybdate 0.002  

Calcium chloride 0.02  

Agar 1.75  

Biotin 0.001  

Potassium hydroxide 4.50  

pH 7±2 °C 
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Appendix 14: Congo Red Yeast Extract Mannitol Agar medium (CRYEMA) 

 
Reagent Composition (g/l) 

Agar 20.0  

Yeast extract 1.0  

Mannitol 10.0  

Potassium hydrogen phosphate  0.5  

Magnesium sulphate 0.2  

Sodium chloride 0.1  

Congo red 0.025  

pH 6.8±2 °C 

 

 

Appendix 15: Potato Dextrose Rose Bengal Agar 

 

Reagent Composition (g/l) 

Potato infusion 200.0  

Dextrose 20.0  

Rose Bengal 0.008  

Agar  15.0  
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Appendix 16: CAS agar preparation 

Solution A:  

1 Dissolve 0.06 g of Chrome Azurol S in 50 ml of distilled water 

2 Dissolve 0.0027 g of iron (III) chloride hexahydrate in 10 ml of 10 mM HCl 

3 Dissolve 0.073 g of hexadecyltrimethylammonium bromide in 40 ml of distilled water 

4 Add solution (1) with 9 ml of solution (2), then mix with solution (3)  

Note: The resulting solution should be a blue colour. Autoclave and cool to 50 °C.  

Solution B 

a. A minimal media 9 (MM9), salt solution stock was made by dissolving 15 g KH2PO4, 

25 g NaCl and 50 g NH4Cl in 500 ml of distilled water 

b. 20% Glucose stock: dissolve 20 g glucose in 100 ml of distilled water 

c. NaOH stock: dissolve 25 g of NaOH in 150 ml of distilled water, pH ~ 12 

d. Casamino acid solution: dissolve 3 g of casamino acid in 27 ml of distilled water 

CAS agar preparation 

i. Add 100 ml of MM 9 solution to 750 ml of distilled water 

ii. Dissolve 32.24 g piperazine-N, N-bis (2-ethane sulfonic acid) PIPE. 

Note PIPE will not dissolve at pH below 5, bring pH to 6.8 and slowly add PIPE while stirring 

iii. Add 15 g Bacto sugar  

iv. Autoclave and cool to 50 °C 

v. Add 30 ml of sterile casamino acid solution and 10 ml of sterile 20% glucose solution 

vi. Slowly add 100 ml of blue dye solution along the glass wall with enough shaking  
vii. Aseptically pour plates. 
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Appendix 17: Table showing chemical reagents and their preparation for phosphatase assay 

 
SN Reagent stock Preparation 

1 Modified universal buffer 

(MUB) stock 

Dissolve all the reagents in 1 L of deionized water 

*12.1 g of Tris (hydroxymethyl) aminomethane (THAM)  

*11.6 g of maleic acid,  

*14.0 g of citric acid,  

*6.3 g of boric acid  

2 MUB working solution 

pH  6.5 and pH 11.0 

Place 200 ml MUB stock solution in a beaker and titrate 

to pH 6.5 with 0.1 M HCl and while stirring with a 

magnetic stirrer. Adjust the volume to 1 L  

3 ρ-Nitrophenyl phosphate 

solution (PNP) 0.05 M 

dissolve 0.840 g disodium PNP tetrahydrate in 40 ml 

MUB (pH 6.5) and dilute to 50 ml with the same buffer 

4 Calcium Chloride 0.5 M Dissolve 73.5 g of CaCl2. 2H2O in 1 L of deionized water 

5 Sodium hydroxide 0.5 M dissolve 20 g NaOH in 1 L of deionized water 

6 ρ-Nitrophenol (PNP) 

standard solution 

dissolve 1 g of PNP in 1 L of deionized water   
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Appendix 18: (a) Carbohydrate utilization, (b) Citrate utilization, (c) Ammonia production and 

(d) Catalase test 

                     
 

(a) 

 

 

 

 

 

 

(b) 

 
 

 

 

 

 

 

(c) 

 

 

 

 

 

 
 

(d) 

 

 

 

 

 

Negative Positive 

Negative 

Negative 

Negative 
Positive 

Positive 

Positive 
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Appendix 19: Consent form  

 

                                                           CONSENT FORM 

 
TITLE OF RESEARCH PROJECT 

QUALITY ASSESSMENT OF COMMERCIAL BIOFERTILISERS AND THE AWARENESS OF SMALLHOLDER FARMERS 

IN SOUTH AFRICA. 

 
 
Dear Mr/Mrs/Miss/Ms _______________________________ Date.... /...../..... 
 

NATURE AND PURPOSE OF THE STUDY 

Biofertilisers are substances that have been formulated with living beneficial microorganisms which stimulate 

plant growth by increasing the availability of essential nutrients to the crops. They have been found to fix 

nitrogen and solubilise phosphorous and potassium. They are cheap, environmentally friendly and have a lower 

cost of production and application. Hence, the application of biofertiliser can improve the economic value of 

smallholder farmers through increased crop productivity. However, for optimal efficiency and increased 

productivity, the microbial and carrier material composition of biofertiisers must conform to the acceptable 

quality standards. Quality is a factor that can affect the efficiency of biofertilisers. Therefore, the quality of 

biofertiiser products used among smallholder farmers in South Africa needs to be investigated. This is the 

purpose of this study. 

 

RESEARCH PROCESS  

The study requires your participation in the following manner: 

1. 100 voluntary respondents who are smallholders will be required as the targeted research group 

2. Respondents must be the owner or manager of a smallholder farm  

3. Maybe representative of any age (above 18 years), ethnicity, economic class or gender. 

4. Basic demographic information will be required from you such as age and academic qualifications. 

5. The questionnaire is mainly about the information on the awareness and types of biofertiiser products 

used for your crops.  

6. You are not required to prepare anything in advance. 

7. The questionnaires contain few questions that can be completed in less than 20 minutes 

 

CONFIDENTIALITY 

The information given will be treated as strictly confidential and only people working on this study will have 

access to the information. This is why any form of identity will not be made compulsory in completing this 

research instrument. No data published in dissertations and journals will contain any information through which 

you may be identified. Your anonymity is therefore ensured. 
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WITHDRAWAL CLAUSE 

This is a voluntary obligation and you may withdraw from the study at any time without any liability. 

POTENTIAL BENEFITS OF THE STUDY  

The use of biofertiisers has been considered one of the practices that can be adopted by the smallholders not 

only to maintain cost-effective operations and increased productivity but also in maintaining ecological balance. 

Therefore, factors that affect its success such as quality should be researched into in South Africa. At the end of 

this study, it is expected that the various types and quality of biofertiisers currently available to smallholder 

farmers in South Africa would have been ascertained. With this information, It is an opportunity for smallholder 

farmers to know the different types of biofertiisers available in South Africa as well as the quality of biofertiiser 

products that can increase their productivity. In addition, the manufacturer or importer of these products will 

use this information to appraise their quality control performance and make amend where necessary. 

 

INFORMATION 

If there is any inquiry concerning this study, kindly contact Prof Rasheed Adeleke at Agricultural Research 

Council, Institute of Soil, Climate and Water. Telephone number: 0123102519 or 0728843243 

 

CONSENT 

I, the undersigned………………………………………………… (full name) have read the above information relating to the 

project and have also heard the verbal version, and declare that I understand it. I have been afforded the 

opportunity to discuss relevant aspects of the project with the project leader, and hereby declare that I agree 

voluntarily to participate in the project.   

I indemnify the university and any employee or student of the university against any liability that I may incur 

during the course of the project. 

I further undertake to make no claim against the university in respect of damages to my person or reputation 

that may be incurred as a result of the project/trial or through the fault of other participants, unless resulting 

from negligence on the part of the university, its employees or students.  

 

I have received a signed copy of this consent form. 

 

Signature of participant: ........................................................................... 

 

Signed at ………………………………… on ………………………………… 

 

WITNESSES 

1  ................................................................................................................ 

 

2 .................................................................................................................. 
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Appendix 20: Standard curve table for indole-3-acetic acid concentrations at  

                       absorbance 540 nm. 

Tube No. Concentration µg/ml Absorbance (540 nm) 

B = blank 0 0 

1 10 0,129 

2 20 0,314 

3 30 0,461 

4 40 0,617 

5 50 0,744 

6 60 0,915 

 

Appendix 21: Indole-3-acetic acid standard curve using Salkowski reagent. 

 

 

A standard curve was generated from the above table (Appendix 20) and the obtained linear 

equation (𝑦 = 0.0153𝑥 − 0.0041) from the line of best fit was used to calculate the various 

concentrations of IAA, having obtained their respective absorbance values (Appendix 21). 
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Appendix 22: Different concentrations of ρNP and the corresponding absorbance 

Tube No. Stock ρNP (ml) Acid buffer (ml) [ρNP] (µg/ml) Absorbance   (405 nm) 

B = blank 0 5 0 0 

1 1 4 2 0.119 

2 2 3 4 0.268 

3 3 2 6 0.412 

4 4 1 8 0.538 

5 5 0 10 0.661 

 

The concentration of the stock solution was 0.001 g/ml made by adding 1 g ρNP in 1000 ml of 

the buffer. One millilitre of this solution was diluted to 100 ml with distilled water. Aliquots 0, 

1, 2, 3, 4, and 5 ml of this solution (conc. 10 μg/ml) were pipetted into sterile McCartney bottles 

and diluted with distilled water to 5 ml.  

 

Appendix 23: Standard curve of ρ-Nitrophenol concentrations at different optical densities.    

A standard curve was generated from the above table (Appendix 22) and the linear equation 

(𝑦 = 0.0673𝑥 − 0.0048) obtained from the line of best fit was used to calculate the different 

concentrations of ρ nitrophenol, having obtained their absorbance values. 
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