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Abstract— Optimizing  non-orthogonal multiple access
(NOMA) in multi-cell scenarios is much more challenging
than the single-cell case because inter-cell interference must
be considered. Most papers addressing NOMA consider a
single cell. We take a significant step in analyzing NOMA
in multi-cell scenarios. We explore the potential of NOMA
networks in achieving optimal resource utilization with arbitrary
topologies. Towards this goal, we investigate a broad class of
problems consisting of optimizing power allocation and user
pairing for any cost function that is monotonically increasing in
time-frequency resource consumption. We propose an algorithm
that achieves global optimality for this problem class. The basic
idea is to prove that solving the joint optimization problem
of power allocation, user pair selection, and time-frequency
resource allocation amounts to solving a so-called iterated
function without a closed form. We prove that the algorithm
approaches optimality with fast convergence. Numerically,
we evaluate and demonstrate the performance of NOMA for
multi-cell scenarios in terms of resource efficiency and load
balancing.

Index Terms—NOMA, multi-cell, resource allocation.

I. INTRODUCTION

ON-ORTHOGONAL multiple access (NOMA) is con-
Nsidered a promising technique for enhancing resource
efficiency [2]-[13]. In two recent surveys [2], [3], the authors
pointed out that resource allocation in multi-cell NOMA
poses much more research challenges compared to the single-
cell case, because optimizing NOMA with multiple cells
has to model the interplay between successive interference
cancellation (SIC) and inter-cell interference. As one step
forward, the investigations in [2], [3] have addressed two-cell
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scenarios. In [6], the authors proposed two coordinated NOMA
beamforming methods for two-cell scenarios. Reference [8]
uses stochastic geometry to model the inter-cell interference in
NOMA. Hence the results do not apply for analyzing network
with specific given network topology. Reference [9] optimizes
energy efficiency in multi-cell NOMA with downlink power
control. However, the aspect of determining which users share
resource by SIC, i.e., user pairing, is not considered. To the
best of our knowledge, finding optimal power allocation and
user pairing simultaneously for enhancing network resource
efficiency in multi-cell NOMA without restrictions on network
topology has not been addressed yet.

The crucial aspect of multi-cell NOMA consists of cap-
turing the mutual interference among cells; This is a key
consideration in SIC of NOMA. Moreover, the cells are
coupled with each other because of the interference. Therefore,
the cells cannot be optimized independently. For orthogonal
multiple access (OMA) networks, a modeling approach had
been proposed to characterize the inter-cell interference via
capturing the mutual influence among the cells’ resource
allocations [14]-[36]. The model, named load-coupling, refers
to the time-frequency resource consumption in each cell as
the cell load. However, the model does not allow SIC. In
our recent work [1], we addressed resource optimization in
multi-cell NOMA. However, the system model is constrained
by fixed power allocation. How to model joint optimization
of power allocation and user pairing and how to solve the
resulting problems to optimality have remained open so far.

II. MAIN RESULTS

For multi-cell NOMA, stochastic geometry is adopted to
model inter-cell interference [8], which results in difficulties
for analysis upon specific network topologies. In this paper,
we target optimizing multi-cell NOMA network with any
given topology. In the modeling approaches of OMA used
by [14]-[36], instead of making micro-level assumptions on
the behavior of the resource scheduler or slot-by-slot consider-
ation of inter-cell interference per resource block (RB) in each
individual cell, the level of interference generated by a cell
is directly related to the amount of allocated time-frequency
resource in the cell. This is used to model the coupling
relationship of resource allocation among cells, which is
shown to be sufficiently accurate for network-level interference
characterization [24], [32].

We demonstrate how NOMA can be modeled in multi-
cell scenarios by significantly extending the approaches
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in [14]-[36], with joint optimization of power allocation and
user pairing. One fundamental result under such type of
models in OMA is the existence of the equilibrium for resource
allocation. However, this modeling approach in NOMA leads
to non-closed form formulation of cell load coupling, unlike
the case of OMA. The fact poses significant challenges in
analysis and problem solving. As one of our main results,
we prove that such an equilibrium for resource allocation
in NOMA exists as well and propose an efficient algorithm
for obtaining the equilibrium. Furthermore, we prove that the
equilibrium is the global optimum for resource optimization
in multi-cell NOMA and thus a wide class of resource
optimization problems can be optimally solved by our algo-
rithm. Because of our analytical results, previous works about
OMA with load coupling is a special case of ours, namely,
the algorithmic notions and mathematical tools being used in
those works of classic multi-cell power control or OMA load
coupling thus directly apply to the analysis multi-cell NOMA,
suggesting future works on this topic. All our analytical results
are based on the extended model.

To the best of our knowledge, this is the first work inves-
tigating how to optimally utilize power and time-frequency
resources jointly in multi-cell NOMA. As a key strength of
our modeling approach, it enables to formulate and optimize
an entire class of resource optimization problems. Namely,
as long as the cost function is monotonically increasing
in the cells’ time-frequency resource consumption, our pro-
posed framework for multi-cell NOMA applies. Specifically,
for solving this class of problems optimally, we derive a
polynomial-time algorithm S-CELL that gives the optimal
power allocation and user pairing, for any given input of
inter-cell interference. To address the dynamic coupling of
inter-cell interference, we derive a unified algorithmic frame-
work M-CELL that solves the multi-cell resource optimization
problems optimally. The algorithm S-CELL serves as a sub-
routine and is iteratively called by M-CELL. We demonstrate
theoretically the linear convergence of this process.

The fundamental differences between our investigated prob-
lems and single-cell NOMA are summarized as follows. For
multiple cells, the resource allocation in one cell affects the
interference that the cell generates to other cells. The amounts
of required resource to meet the demand for all cells are
coupled together, rather than being independent to each other.
Optimizing resource allocation within one cell leads to a chain
reaction among all other cells. Individual optimization for the
cells results in sub-optimality and very inaccurate performance
analysis. For multi-cell NOMA, not only the time-frequency
resource allocation but also the power split and user pairing in
all cells are coupled together for the same reason. Therefore,
joint optimization in NOMA leads to a rather complex problem
for analysis.

By numerical experiments, optimizing resource utilization
by our algorithm enlightens how much we can gain from
NOMA in terms of resource efficiency and load balancing.

III. CELL LOAD MODELING

Denote by € = {1,2,...,n} and § = {1,2,...,m} the
sets of cells and user equipments (UEs), respectively. Denote
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Fig. 1.  This figure illustrates user pairing and time-frequency resource
sharing. There are 10 UEs in one cell. Eight form four user pairs {1,5},
{2, 7}, {3,6}, {8,9}, and the other two UEs 4 and 10 are unpaired. The
UEs within one pair share the same time-frequency resource as indicated by
the colors.

by J; the set of UEs served by cell i (i € €). When using j
to refer to one UE in J, 7 by default indicates j’s serving cell,
unless stated otherwise. Downlink is considered in our model.

A. Resource Sharing in NOMA

The resource in time-frequency domain is divided into RBs.
In OMA, one RB can be accessed by only one UE. In NOMA,
multiple UEs can be clustered together to access the same
RB by SIC. Increasing the number of UEs in SIC, however,
leads to fast growing decoding complexity [2], [3]. In previous
works, it has been demonstrated that most of the possible
performance improvement by SIC is reached by pairing as few
as two UEs [2]-[7]. Pairing two UEs for resource sharing is
illustrated in Figure 1. UEs within one pair share the same RB
and the RBs allocated to different pairs do not overlap. We use
u as a generic notation for a user pair (referred to as “pair” for
simplicity). For cell ¢ (¢ € C), denote by U; the set of candidate
pairs. Suppose there are in total m; UEs in cell 4. Then |U;| is
up to ("'). Denote by V; (j € J) the set of pairs containing
UE j. Let U = (J;ce Wi (or equivalently U = UjeH V;) be
the set of candidate pairs of all cells. Let s = |U|. If there
is a need to differentiate between pairs, we put indices on u,
ie., W = {um, up, u3,...us}. Finally, in our model, for UEs
we allow for both OMA and NOMA with SIC. For each
UE, which mode is used (or both are used) is determined by
optimization. In the following, we refer to these two modes as
orthogonal RB allocation and non-orthogonal RB allocation,
respectively. In general NOMA, we include both modes.

B. NOMA Downlink

We first consider orthogonal RB allocation in NOMA. Let
p; be the transmission power per RB in cell ¢ ( € €). Denote
by g;; the channel coefficient from cell 7 to UE j. The signal-
to-interference-and-noise ratio (SINR) is:
_ Pigij

Yoreergiy Ik + 07

Vi ey

The term Ij; denotes the inter-cell interference from cell k
to UE j, and is possibly zero. This generic notation is used
for the sake of presentation. Later, we use the load-coupling
model, where the cell load that reflects the usage of RBs
governs the amount of interference. The term o2 is the noise
power.
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We then consider non-orthogonal RB allocation in NOMA.
In [37] (Chapter 6.2.2, pp. 238) it is shown that, with superpo-
sition coding, one UE of pair u (z € U) can decode the other
by SIC. When there is need to consider the decoding order
in u, to be intuitive, we use @ to denote the UE that applies
interference cancellation, followed by decoding its own signal.
And © denotes the UE that only decodes its own signal. Note
that both & and © are generic notations and refer to the two
different users in any pair u (x € U) in consideration. For any
pair u, p; is divided to qg, and qo, (@, + qou = pi), With
qde. and go, being allocated to @ and ©, respectively. (The
generic notation ¢;, (j € u) denotes the power allocated to
UE j.) We remark that @ decodes ©’s signal first and hence
©’s signal does not compose the interference for &. The SINR
of @ is computed by (2).

_ qou9io
> kee\(iy lve + 02

The UE © is subject to intra-cell interference from &, i.e.,

)

You

Gougic+ »_ Ire 02
kee\{i}

Yeu

intra-cell
inter-cell

Denote by q the power allocation of all candidate pairs:

dou dou,
q= .
[(Jeul (Ieuj

Ao,
dou,

We use q, to represent the column of pair » (x € U) in q,
named power split for u. We remark that it is not necessary to
use all the pairs in U for resource sharing. Whether or not a
pair would be put in use and allocated with RBs is determined
by optimization, discussed later in Section III-E. In addition,
we remark that the decoding order is not constrained by the
power split [37], even though by our numerical results, more
power is always allocated to & in optimal solutions. The issue
of the influence of inter-cell interference on the decoding order
is addressed later in Section III-D.

C. Inter-Cell Interference Modeling

The basic idea is to use the cells’ RB consumption levels to
characterize respectively the cell’s likelihood of interfering to
the others. The approach is specified as follows. Denote by py,
the proportion of RBs allocated for serving UEs in cell k. The
intuition behind the model is partially explained by the two
extreme cases pp = 1 and p, = 0. If cell k is fully loaded,
meaning that all RBs are allocated, then p; = 1. In the other
extreme case, cell k is idle and accordingly p, = 0. Consider
any UE j served by cell 7. The interference j receives from
cell kis I; = prgx; or I; = 0 in the two cases, respectively.
In general, pj serves as a scaling parameter for interference,
see (4). By the interference modeling approach, the cell load
directly translates to the scaling effect of interference and
therefore the same notation is used for both.

“)

Intuitively, py reflects the likelihood that a UE outside cell
k receives interference from k. Note that p; in fact is the

Ij = Prgr;pk-
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proportion of time-frequency resource consumption of cell &
and hence is referred to as the load of cell k.

We remark that this type of interference modeling approach
is a suitable approximation for network-level performance
analysis, which enables study of inter-cell interference in
large-scale multi-cell networks without having to model-
ing micro-level interference. Detailed system-level simula-
tions (e.g. [24] and [32]) have shown that this type of modeling
has sufficient accuracy for cell-level interference characteri-
zation. This approach has been widely used and is getting
increasingly popular [14]-[36], which however, to our best
knowledge, is limited to OMA. We provide analytical results
in order to extend the modeling approach to NOMA.

D. Determining Decoding Order

Inter-cell interference affects the decoding order in NOMA,
and thus how to model the load-coupling in NOMA is signifi-
cantly more challenging than OMA. Lemma 1 below resolves
this issue by identifying pairs for which the decoding order
can be determined independently of interference. As another
benefit, it significantly reduces the set of candidate pairs.

Lemma 1: For uw={j,h} (gij > gin) in cell i, if gi;/gin >
9r;/gkn (K € C\{i}), then SIC at j decodes first the signal
for h, followed by decoding its own signal, and, user h does
not apply SIC. That is, the decoding order ® = j and © = h
always hold for the pair independent of interference.

Proof: Denote by <y, and ), respectively in (5) and (6)
the SINRs at users j and h for the downlink signal of A.

qhuij

ingii + Xkeen (i) PRIk PR + 0
qhudin

qjugin + Zke@\{i} Prgrnpr + 02

Vhj = )

Yhh = (6)
With superposition coding, j cancels the interference from h if
j can decode any data that A can decode [37], i.e. Yn; = Vnh,
which reads:

4jugijGih + Gij Z PEGkn Pk + Gijo”
kee\{i}

= QjugijGih + Jin Z DPkGkjPr + Gino>.
keC\{:}
Further, v4; > vpp if and only if:

>

keC\{i}

Recall that g;; > g;1, and therefore the right-hand side of (7)
is non-negative. Because of the condition g;;/gin > gr;/grn
for all k£ € C\{¢} in the statement of the lemma, the left-hand
side is non-positive. Hence Lemma 1. ([

The result of Lemma 1 is coherent with the previous
observations that two UEs with large difference in channel
conditions are preferred to be paired [4], [7]. If g;; > g;n, then
most likely the condition in Lemma 1 holds, as the large scale
path-loss from other cells, tends not to differ as much as from
the serving cell ¢ in this case. Besides, the large scale path-
loss is a practically reasonable factor for ranking the decoding
order [38], [39]. In Section VII, numerical results further show

PkpPE

?(gihgkj — 9ijgkn) < (9ij — in)- @)
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that considering the UE pairs as defined by Lemma 1 virtually
does not lead to any loss of performance. Lemma 1 is used
to filter the candidate pairs set U (i.e. to drop some candidate
pairs from U) so as to reduce computational complexity. From
now on, we let U; be composed of pairs satisfying Lemma 1.

E. RB Allocation
If UE j (j € J) is using orthogonal RB allocation, then the
achievable capacity! of j is (8), with ~; being (1).

cj = log(1+ 7). (®)

For non-orthogonal RB allocation, the achievable capacity
for j and u (j € u) is computed by c¢;, = M Blog (1 + v;,)
with ~y;, being (2) or (3). Therefore,

_Jlog(1+vu) jeu
Cju = { 0 idu )

For UE j (j € J), we use z; to denote the proportion
of RBs with orthogonal RB allocation to j. For any pair u
(x € U), denote by x, the non-orthogonal RB allocation for
the two UEs in pair u. We use the vector x to represent the
RB allocation for all the UEs, i.e.,

X:[ L1, X2y -+5Tm 5 LugyLugy -+ Lug ]

Orthogonal RB allocation Non-orthogonal RB allocation

For any UE j, z; = 0 means that UE j does not use orthogonal
RB allocation. Similarly, for any pair u, x, = 0 means that
pair » is not put in use. For any UE j, if 2, = 0 for all
u € V;, then it means that UE j only uses orthogonal RB
allocation. Resources used by different pairs are orthogonal
such that there is no interference among pairs. Denote by p
the cell load limit. By constraining that the sum of them which
equals to the load of cell ¢ does not exceed p, the amounts
represented by x; (j € J;) and z, (z € U;) do not overlap.
Orthogonal RB allocation is considered among the pairs in
one cell, meaning that the pairs do not have interference with
each other.

pi = E r; + E Tz, < pi. (10)
; T
ceat  J€d e Ioad
load SN—— N—— limit
Orthogonal Non-orthogonal

RB proportion ~ RB proportion

We use p to represent the vector of network load, i.e.,
P =[p1,p2,- - pPnl-

Similarly, we use vector p to denote the load limits of all cells.

The term c;z; computes the bits delivered to UE j with
orthogonal RB allocation, because c; is the achievable capacity
of UE j on all RBs and z; is the proportion of RBs with
orthogonal RB allocation. Similarly, the term cj,x, is the
bits delivered to UE j by non-orthogonal RB allocation for
pair u. Denote by d; the bits demand of UE j. The quality-
of-service (QoS) requirement is:

c;jx;  + chuxu > dj
= ev 1

Bits delivered revi Bits
by orthogonal — demand
RB allocation

(1)

Bits delivered by
non-orthogonal
RB allocation

IFor the sake of presentation, we use the natural logarithm throughout the
paper. We remark that all conclusions hold for the logarithm to base 2.
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We remark that d; is normalized by the RB spectral bandwidth
and the total number of RBs, for the sake of presentation.
Note that a user can use orthogonal RB allocation individu-
ally, or non-orthogonal RB allocation with the other user in
the pair, or both, which is subject to optimization. The amount
of allocated RBs to a user in OMA or a pair adopting NOMA,
is subject to optimization, under the constraint that the overall
allocated resource does not exceed limit.

We remark that there is an implicit pair selection problem
in the above expressions. Note that |U| increases fast with |J|.
It is therefore impractical to simultaneously use all pairs in U.
To deal with this issue, each UE is allowed to use up to one
pair in U for optimization, as formulated later in Section IV,
though our system model is not limited by this. The problem
of pairing and resource allocation is challenging: First, UEs
of the same pair are coupled in resource allocation. Second,
one can observe that increasing x, (or x;) for some pair u
(or some UE 7) may enhance the throughput of the UEs of «
(or UE j). However, since x, (or x;) appears in the inter-cell
interference term (see (4) and (10)), the increase of x, (or
x;) results in less available resources for other UEs and leads
to more interference. The user pairing selection is not given
a priori but is determined by optimization. We remark that
whether or not a UE should be allocated with resources with
OMA or NOMA, or both, is up to optimization. The overall
amount of resource used by NOMA and OMA in the entire
network are part of the optimization output.

FE. Comparison to OMA Modeling

The models proposed for OMA in [14]-[20] are inherently
a special case of our NOMA model. The former is obtained by
setting U = ¢. Then, the terms for non-orthogonal RB alloca-
tion disappear in (10) and (11) and x is therefore eliminated
in (8)—(11). Also, there is no power split in OMA. Hence (8)-
(11) form a non-linear system only in terms of p. This system
falls into the analytical framework of standard interference
function (SIF) [40], which enables the computation of the
optimal network load settings via fixed-point iterations [17].
However, for the general NOMA case, the resource allocation
is not at UE-level. One needs to split a UE’s demand between
orthogonal and non-orthogonal RB allocations, which results
in a new dimension of complexity.

IV. PROBLEM FORMULATION

By successively plugging (1) and (4) into (8), we obtain a
function ¢; in load p, i.e., ¢;(p). Similarly, we obtain ¢;,(q, p)
from (2), (3), (4), and (9). For pair u (x € U), we use a binary
variable y, to indicate whether or not the pair u is selected.
Define y as

y: [yu17yu2)"'7yus]'

We minimize a generic cost function F(p) that is monotoni-
cally (but not necessarily strictly monotonically) increasing in
each element of p. MINF is given below. Constraints (12b)
guarantee that the cell load complies to the load limit p.
Constraints (12c) state the relationship between RB alloca-
tion and cell load. Constraints (12d) and (12e) are for QoS



YOU et al.: RESOURCE OPTIMIZATION WITH LOAD COUPLING IN MULTI-CELL NOMA

and power, respectively. Constraints (12f) guarantee that RB
allocation occurs only for selected pairs. By constraints (12g),
each UE belongs up to one pair such that the selected pairs
are mutually exclusive. The variables are cell load p, power
allocation q, RB allocation x, and pair selection y. The
variable domains are imposed by (12h) and (12i). Throughout
this paper, we use 0 to represent zero vector/matrix. For
simplicity, the dimension(s) of 0 is not explicitly stated.

[MINF] min F(p) (12a)
P, X,y
st.pi<p, i €C (12b)
pi= zi+ Y x, i€C (12¢)
J€EJq ueW;
ci(P)r;+Y . ciula,p)r, >dj, jEJ (12d)
uer
S gu=pi, wel;, ikt (12e)
JjEu
Ty <Yu, wel (12f)
Y y<1, jed (12¢)
ueV;
p,q,x>0 (12h)
v, €{0,1}, uel (12i)

V. OPTIMIZATION WITHIN A CELL

In multi-cell NOMA, due to the interference among cells,
one cell’s pair selection may affect the other cells’ power
splits, and vice versa. Let us consider a simple case in this
section. Suppose we optimize the load of one cell ¢, and the
cell load levels of C\{i} are temporarily fixed. This optimiza-
tion step is a module for solving MINF later in Section VI.
We respectively use q;, X;, y; to denote the corresponding
variable elements for power allocation, RB allocation, and pair
selection. Vector p_; is composed of all elements but p; of p.
We minimize p; under fixed p_;, as formulated below.

min
Pi Qi XiYi

pi s.t. (12¢)—(12i) of cell ¢, with fixed p_;. (13)
Since p_, is fixed, ¢; is a constant and c¢;, is a function in q;
only. Different from previous works [41] and [42], this single-
cell resource optimization problem is subject to user demand
constraints.

The optimization is not straightforward even under fixed
inter-cell interference. The optimal power split for one pair is
up to how much time-frequency resource is allocated to this
pair. In other words, for one pair u, if the amount of RBs
allocated to u changes, the optimal power split for u before
this change loses its optimality. So the power split q and the
resource allocation x are coupled together. In addition, the pair
selection is a combinatorial problem. Therefore, the power
split q, the time-frequency resource allocation x, and the user
pair selection y, must be optimized jointly.

Lemma 2: All constraints of (12d) in (13) hold as equalities
at any optimum.

Proof: Denote the optimal objective value of (13) by p}
and the optimal orthogonal RB allocation of j (j € J;) by x;
Suppose strict inequality holds for some j. If x; > 0, by fixing
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all other variables except for z; in (13), one can verify that
the solution x; — € (e > 0) is still feasible to (13) as long
as € is sufficiently small. In addition, x; — € leads to a lower
objective value p, — ¢, which contradicts our assumption that
p; is the optimal objective value. If 2’ = 0, then j’s demand
has to be satisfied by non-orthogonal RB allocation and the
same argument applies to variable x, (j € u). O

The first analytical result is that, the optimal power split
is independent of pair selection, as formulated in Theorem 1.
Denote by Y, the set of all possible pairing solutions of (13)

that include pair 4, i.e.,

Yo=A{yilya =1, v, <1, j€d}.

ueV;

Definition 1: Given a pair selection y; (y; € Y.), the
optimal power split for pair u (v € U;), denoted by q,, is the
column for pair u in q;, where q; is obtained by optimally
solving (13) for y,.

Theorem 1: Consider u (u € U;). The optimal power split
for any §; (y; € Y.) is also optimal for ¥ (§; € Y.).

Proof: Denote by q, and g/, the optimal power splits
for y; and y/, respectively. Suppose q, is not optimal for y.
There are two possibilities: 1) ¢;.(4.) = ¢ju(d)) (G € w); 2)
¢u(Qu) # ¢ju(d),) for at least one j in u.

For 1), 4, and g/, result in the same z; and z, for
satisfying (12d) and are equally good for (13), which conflicts
our assumption. Thus q, is optimal for ;. We then consider 2)
and assume c¢;,(q.) > ¢;j.(4),). By Lemma 2, ¢/, makes (12d)
become equality under y;. Replacing ¢/, by q, leads to some
slack in (12d) and hence the objective can be improved. This
contradicts that ¢/, is optimal for y}. The same proof applies
to ¢;,(Q.) < ¢j.(d),). Hence the conclusion. O

By Theorem 1, the optimal power split is decoupled from
pair selection. Next we analytically prove how to find the
optimal power split for any pair.

A. Finding Optimal Power Split

Under fixed y; (y; € Y., » € U;), constraints (12g)
are removed. Constraints (12f), and (12i) of (13) for all u
with y, = 0 in y; are removed. Therefore, for each pair
u = {®, ©}, we can formulate a problem in (14). Solving this
problem yields the optimal power split. In (14), zq and zg
are the orthogonal RB allocation for & and ©, respectively.
The variable x, denotes the amount of non-orthogonal RB
allocation for u.

min Tg + 2o + 2, (14a)
Tg,T0,2,20
.20
s.it. ca(p_;)re + cou(du, p_;)r, > dg  (14b)
co(p_i)re + cou(du, p_;)r, > ds  (140)
Qou + qou = Di (14d)

For deriving solution method for (14), define function w; (j =

@ or j =©) of p_; as follows.
> prgripr + 0 / gij.  (15)

keC\{i}

w;i(p_;) =
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For qg,, one can derive from (2) and (9):

Gou = (€7 = Dwg(p_;). (16)

Combining (16) with (14d), gg, and go, can be eliminated,
giving (17) below. Formulation (17) is equivalent to (14).
Given cg, and cg,, the corresponding gg, and go, can be
obtained from cg, and cg, by (14d) and (16).

min _ Zg + T + Tu (17a)
T, T, Ty>
Cou;Cou>0
s.t. ca(p_i)re + cauty > dg (17b)
co(p_j)xe + couz, > dg (17¢)
Cvu(c@ua Cou, P_z) < 0 (17d)

In (17), the function Cv, is defined in (32) in the Appendix.?
One can easily verify that Cv, is convex in cg, and cg, (with
gie > Gio). The difficulty of (17) is on the two bi-linear
constraints (17b) and (17¢). However, they become linear with
fixed z,. To ease the presentation, we define the function
below.

Zu(2up_;) =2, + min s.t. (17b)~(17d).

T, 20
CQu;Cou>0

J)@—FJTG

(18)

Solving (17) (and equivalently (14)) is to find the minimum
of Z,(x,, p_;). The following theorem shows the uniqueness
of the minimum of Z,(z,, p_,).
Theorem 2: Z,(x,, p_;) has unique minimum in x,.

Proof: Since the first term x, in Z,(z,, p_;) is strictly
monotonically increasing, to prove that Z,(z,, p_,) has unique
minimum, we only need to prove that the remaining part
of Z,(x,, p_;) is monotonically (but not necessarily strictly
monotonically) decreasing in x,. For this part, at the opti-
mum (17b) and (17c) hold as equalities because of Lemma 2.
Hence, reformulating the problem by replacing the inequalities
in (17b) and (17c) with equalities does not lose optimality.
With equalities, the variables x4 and zg can be represented
by cg, and cg,:

_ (dg — cpury) _ (ds — coury)

Ty =
co(p_i) ce(p_i)
Therefore zq and zg can be eliminated from the objective
function. The minimization is thus equivalent to maximizing
cou/ca(p_;)+tcau/ca(p_;). We formulate this maximization
problem below.

19)

C@u Ceu

max 4 (20a)
concen20 Ca(p_;)  calp_y)
s.t. ez, < dg (20b)
CouTy < dg (20¢)
Cvu(Cous Cou, p_;) <0 (20d)

Constraints (20b) and (20c) originate from the non-negativity
requirement of x4 and xg. Note that (20) is convex. In addi-
tion, the feasible region shrinks with the increase of x,. Then

2We remark that (17d) holds as equality at optimality.
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Fig. 2. This figure shows the feasible region of (20) of cg, and co.

for different x,. The shadowed area below the curve is (20d). The vertical
and horizontal dashed lines are the hyperplanes defined by (20b) and (20c),
respectively. The hyperplanes are shown by red, blue, and green dashed
lines for Case 1, Case 2, and Case 3, respectively. The point K is optimal
for Case 1. The blue and green circles represent the optimal solutions for
Case 2 and Case 3, respectively. The black dot is the point on the curve
where the two hyperplanes intersect with each other (see footnote 4 for the
existence of this point.).

the optimum of (20) monotonically decreases with z,. Hence
the theorem. U

Because of Theorem 2, bi-section search of x, reaches the
minimum of Z,(z,, p_;). Note that for any z,, computing
Z,(z,, p_;) needs to solve (20). In the following, we prove
how this can be done much more efficiently than employing
standard convex optimization.

We remark that (20) is a two-dimensional optimization
problem with respect to cg, and cg,. Constraints (20b)
and (20c) are defined by two hyperplanes c¢g, = dg/x,
and cg, = dg/z,, respectively. Due to the convexity of the
function Cv, in cg, and cg,, the curve Cv,(cqy, cou, p_;) =0
in (20d) along with cg, = 0 and cg, = 0 forms a convex
set of [cgu, Cou]. The optimum of (20) depends on whether
the two hyperplanes intersect with the curve and how they
intersect. This leads to three possible cases to be considered,
named Case 1, Case 2, and Case 3, respectively. In Case 1,
constraints (20b) and (20c) are redundant, and the optimum is
determined by the coefficients 1/cq(p_;) and 1/co(p_;) in
the objective function and the curve Cv,(cgy, cou, p_;) = 0.
In Case 2, the optimum is defined by one of the hyperplanes
and the curve. In Case 3, constraint (20d) is redundant,
and the optimum is determined by the two hyperplanes.
With z, increasing from 0 to oo, Case 1, Case 2, and
Case 3 happen sequentially, and all happen eventually. The
three cases are illustrated in Figure 2 with colors. Below
we respectively show how to compute the optimum for each
case.

In the following, we first compute the optimum in Case 1,
represented by K = [c&,, ¢ ], which is the intersection of
the vector [1/ce(p_;),1/cs(p_;)] and the curve. The point
also leads to a closed-form solution for the optima of all the
three cases. Mathematically, point K is solved by applying
bi-section search to (21) below.

Cv.(cqu, coup_;) =0 21
couce (P_i) = cauca(p_;)-
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For solving (21), we can first eliminate cg, or co, in the first
equation. This can be done by representing one of cg, and co,
with the other by the second equation. Since there is only one
variable in the first equation, one can use bi-section search to
find its solution.?> Then, we compute the value of z, when at
least one hyperplane goes through K, denoted by zX in (22).

zX = min{dg/ck, . ds/c5,}.

. =

(22)

The three cases 1, 2, and 3, indicated by red, blue, and green
lines respectively in Figure 2, are as follows.

Case 1: (z, < minje,d;/ck): Point K is the opti-
mum of (20), because (20b) and (20c) are redundant. This
happens when z, is sufficiently small (or 0), as shown in
Figure 2.

Case 2: (z, > minjEudj/cﬁ and Cv,(dg/x,, do/x,) >
0): There exists one point on the curve where both two
hyperplanes intersect.* We represent this point by the black dot
on the curve in Figure 2. In Case 2, one hyperplane intersects
with the curve at some point between K and the black dot, and
intersects with the other hyperplane on some point above the
curve, see Figure 2. The intersection point of the curve and the
hyperplane is the optimum of (20). Without loss of generality,
we assume K violates (20c), meaning that the hyperplane
of (20c) goes through the optimum, as shown by Figure 2.
By plugging the equation of the hyperplane into that of the
curve, the optimal cg, is a function of x,. Similarly, if K
violates (20c) instead, then cg, = dg /x, and the optimal cg,,
is a function of z,. To know which hyperplane goes through
the optimum, one only needs to check which of cﬁxﬁ > d;
(j = @ or j = ©) holds. Note that exactly one of the two holds
in Case 2. The optimal cg, and co, are computed respectively
by (33) and (34) defined in the Appendix.

Case 3: (x, > minjEudj/cﬁ and Cv,(dg/z,, do/x,) <
0): Constraint (20d) is redundant, as shown in Figure 2. The
optimum is the intersection point of the two hyperplanes,
computed by ¢j, =d;/z, (j =@ or j = ).

In summary, the optimal solution of (20) is computed
by (23) below (j = @ or j = ©) in closed form, with H},
being (33) or (34) in the Appendix.

ch, Case 1
Cju(xua p—i) = Hju(xua pfi) Case 2 (23)
d;/x, Case 3

The function Z,(z,, p_;) computes the amount of resource
used for both orthogonal and non-orthogonal RB allocations
for the UEs in u. It is optimal to serve the two UEs only
by orthogonal RB allocation, if the minimum of Z,(z,, p_,)
occurs at x, = 0. In all other cases, min,, Z,(x,, p_;) yields
the optimal power split for non-orthogonal RB allocations. The
algorithm optimally solving (14), named SPLIT, is as follows.

3The solution is guaranteed to be unique and hence bi-section search applies.
This is because, by representing one of cg, and cg, by the other by function
Cv,, one variable is monotonically decreasing in the other, resulting in a
unique zero point.

4The existence of this point is guaranteed: With the increase of x,, both
hyperplanes will eventually intersect with the curve with two intersection
points. By increasing x,, the distance between the two intersections keeps
being smaller. The two intersections will eventually overlap.
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SPLIT(u, p_;)
x; = argmin, Z,(x,,p_;) /# Bi-section search
Compute (cf,,, c5,) by (23) # With =, p_,
Compute (%, &) by (19) # With ¢f,, &, p_;
Convert (c&,, c5,) 10 (@, 95,) # By (14d), (16)
return (g}, q5,, ©5, T4, T))

WA W=

B. Optimal Pairing

Denote by Y; the set of all candidate pair selections:
Y = (Uueuiyu) U {0}

By obtaining ming, Z,(z,, p_;) for all « € U; as shown
earlier in Section V-A, enumerating all y; in Y; gives the
optimal solution to (13). This exhaustive search however does
not scale, as |Y;| is exponential in the number of UEs. By the
following derivation, we are able to obtain the optimum of (13)
in polynomial time.

Theorem 3: The optimum of (13) is computed by finding
the maximum weighted matching in an undirected graph.

Proof: To prove the conclusion, an undirected weighted
graph G; is constructed and explained below.

G, — {<3i7ui7w> |di| even

24
(0, U (AL U (. AY) € 8 )w) |3 odd. P

In (24), the graph is represented by a 3-tuple, with the first
element being the vertex set, the second element being the
edge set, and the third element being the weight vector.
Parameter A is an auxiliary vertex for odd |J;|. Without loss
of generality, below we focus on odd |J;|. (All conclusions
naturally hold for |J;| being even.) By the definition in (24),
each UE is corresponding to a vertex. For each pair « in U;,
there is one edge connecting the two UEs in u, associated
with weight w,. We name these as type-I edges. Besides,
for each UE j in §;, there is one extra edge connecting
j and the auxiliary vertex A, associated with weight w;.
We name these as type-2 edges. An illustration is given
in Figure 3.

The weight w is defined as follows, where 7' is a positive
value keeping all weights being positive.

Type-1 edge
Type-2 edge

w, =T —ming, Z,(x,,p_;) (u€WU)
w; =T —dj/c;(p_;) (j € 3i)

First, we remark that any y; is feasible to (13) if and only
if all the pairs » with y, = 1 (u € U;) form a matching (or
an empty edge set) in §;. Otherwise, there exists j such that
> uev, Yu = 2, and (12g) would be violated. Then, by the
definition of weights, minimizing the load p; becomes finding
a maximum weighted matching. g

The algorithm S-CELL solving (13) exactly is as follows.
Lines 1-8 compute the edge weights of the graph to be con-
structed. Then we construct the graph in Line 11 and compute
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0.02

0.06

Fig. 3. The figure shows an example of one cell ¢ with five UEs,
ie, di = {1,2,3,4,5}. Assume the candidate pair set is U; =
{{1,2},{2,4},{4,5},{3,5}}. The blue edges are type-1. The red edges are
type-2. A matching is a set of edges without common vertices (also called
independent edge set) and is a pair selection solution. The maximum matching,
as highlighted in the figure, is {{1, 2}, {3, 5}, {4, A}}. Note that two paired
UEs in the solution of matching does not necessarily imply that the two share
resource via NOMA. For any pair u, if «, happens to be zero in the solution,
then there is no RB allocated in non-orthogonal manner to the pair » and
hence the two UEs in « are allocated with orthogonal resources.

the maximum matching® U in Line 12, which by Theorem 3
is the optimal pair selection in cell ¢. Lines 13-22 assign the
obtained solutions to (q%,, ¢5,, T4, ¥4, ;) for the pairs in
U7. The other pairs are not selected and hence their values in
x;, q;, and y; are zeros.

We remark that in the matching process, if the number
of nodes is odd, for the unpaired UE, it is allocated with
orthogonal RBs. For two UEs that are paired in the solution of
matching, they are not necessarily in non-orthogonal allocation
but is up to optimization.

VI. MULTI-CELL LOAD OPTIMIZATION

This section proposes the algorithmic framework M-
CELL for deriving the optimum of MINF, by analyz-
ing sufficient-and-necessary conditions of optimality and
feasibility.

A. Revisiting Single-Cell Load Minimization

Recall that for single cell optimization, the optimum of (13)
of cell ¢ (¢ € C) is a function of the load of other cells p_,.
By Lemma 3 below, this function is well-defined for any non-
negative p_;.

Lemma 3: The problem in (13) is always feasible.

Proof: We select some y; in Y; and fix it in (13)
(Y; # ¢ by definition). For each pair u, we fix q,
to [pi/2,pi/2]". To prove (13) is feasible, we prove the
remaining problem is always feasible. Note that, with y;
and q, being fixed, (13) becomes a linear programming
(LP) problem, which is stated below (the equalities are by
Lemma 2).

Z Tj+ Z T, Stocim+ Z Cjuty = dj. (25)

JE€Ji ueU; u€V;

min
x>0

3The best known algorithm [43] runs on G; in O((|U;| +|d:|)~/|:]) (odd
|3:]) or O(|U;|v/1d5]) (even [ds)).
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S-CELL(p_),)
1 for u e U;
2 {90u: dou: To, To, Tu) = SPLIT(u, p_;)
3 ’U)u:T—<.’E@ +.’179+$u) / w, >0
4 end for
5 if |3;] is odd
6 for j € J;
7 zy = dj/ci(p_;)
8 w; =T —xz; // wj >0
9 end for
10 end if

11 Construct §; by (24)

12 U = MAXIMUM-WEIGHTED-MATCHING(G;)
13 x; =0,q; =0,y =0

14 for u € U NU;

15 Ty =Ty Yy =1

16 for jcu

17 $Gu = Gjus T} = T5

18 end for

19 end for

20 if |3;] is odd

21 Find the {j, A} in U} and let z} = z;
22 end if

23 Pi = Zjeai I; + Zueui xﬁ
24 return (p;,qf,x;,y;)

By Farkas’ lemma, a group of linear constraints in standard
form, i.e. Ax = b (b > 0), is feasible with x > 0 if and only
if there does not exist v such that v A > 0T and v' b < 0.
Obviously, there is no v with d > 0 satisfying (26).

v; >0 (j€d) and > v;d; <0 (26)

JE€Ji
Hence (25) is feasible, and the conclusion holds. O
Let \; = |Y;|. For each y; in Y;, we use an integer in
[1, ;] to uniquely index y;. We refer to all the pair selection
solutions in Y; as pairing 1, pairing 2, ..., pairing \;. Denote

by fik(p_;) the optimum of (13) under pairing k (1 < k <
)\i), i.e.,

fi(p_;) = p,vrr}li_nx/ pi s.t. (12¢)—(12f) and (12h) of cell 1.
Let fi(p_;) be the optimum® of (13). Then we have:
filp—s) =, _min  fix(p_). 27
Network-wisely, we have:
f(p) = [1(p_1), f2(p—2), - fu(p—p)]- (28)

The following theorem reveals a key property of f(p).
Theorem 4: £(p) is an SIF, i.e. the following properties
hold:
1) (Scalability) of(p) > f(ap), p >0, a > 1.
2) (Monotonicity) £(p) > £(p'), p> p', p,p' > 0.

STherefore, f;(p_;) equals the p; obtained from S-CELL(p_;).
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Proof: We first prove monotonicity and scalability for
fu(p_;) G €C, k=1,2,...,)\). For monotonicity, we prove
that fir(p",) < fir(p_;) for p’, < p_, as follows. Given
any non-negative p_,, we replace p_, with p’ .. Note that
ciu(pl;) > cju(p_;). Thus the replacement makes the solution
space of (12d) larger, and the optimum with p’ ; is no larger
than that with p_;. Therefore fix(p" ;) < fi(p_;). For
scalability, we prove that fi,(ap_,) < afi(p_;) for a > 1
and non-negative p_; as follows. Denote the optimal solution
of fir(p_;) by (p}.ai,x}). We have fi(p_;) = p;. Due to
that 1/c;,(q;, p_;) and 1/c;(p_;) are strictly concave in p_;,
the two inequalities

1 - o 1 - o
cilap_;) ~ ¢i(p_y)” culaiap_y) = cjuldi, p;)
hold for o« > 1. Consider the following minimization prob-
lem 30, with y; being fixed to pairing k.

(29)

min  p; (30a)
pi,qi,X; >0
s.t. (12¢), (12e) and (12f) of cell i (30b)
cj(p_i)xj + Z Cju(q, p—i)xu Z Oédj7
u€V;
j € 31’ (3OC)

/)

Note that (ap!, q7, ax/) is feasible to (30), with the objective
value being af;x(p_,). Hence the optimum of (30) is no more
than afix(p_;). For fir(ap_;), note that the corresponding
optimization problem only differs with (30) in (30c). Instead
of (30c), in fix(ap_;) we have:

cilap_)zj+ Y ciula,ap ;) >d;, j€3; (1)

u€V;

By Lemma 2, (30c) is equality at the optimum. Then by (29),
for any solution of (30), using it for the optimization prob-
lem associated with f;r(ap_;) makes (31) an inequality.
(This is because by (29) we obtain c;(p_;)/a < cj(ap_;)
and ¢j,(q;, p_;)/a < cju(di,ap_;)). Therefore the prob-
lem for f;;(ap_;) has a lower optimum than (30). Further,
the optimum is lower than af;;(p_;). Hence fir(ap_;) <
afir(p_;)-

We then allow & to be variable and consider f;(p_,) (i € C).
For p’ , < p_, we have

filpLy) = min fir(p;) < min fi(p_;) = filp—)
and for o > 1 we have
filap_;) = mkin fir(ap_;) < amkin fie(p_;) = afi(p_;)

Hence the conclusion. (]
Given p, denote by f* (k > 1) the function composition of
f(fk=1(p)) (with f%(p) = p). Lemma 4 holds by [40].
Lemma 4: If limy,_. £%(p) exists, then it exists uniquely
for any p > 0.

B. Optimality and Feasibility

Based on Theorem 4, we derive sufficient-and-necessary
conditions for MINF in terms of its feasibility and optimality.
For any load p, we say that a load p is achievable if and only
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if there exist q, x, and y such that the solution (p, q,x,y) is
feasible to MINF.

Lemma 5: For any p > 0, if there exists © € C such that
pi < fi(p_;), then p is not achievable in MINF.

Proof: Let p, = fi(p_;). By the definition of f;,
p; is the minimum value satisfying (12c¢)—(12i) under p_;.
Therefore any p; with p; < p) is not achievable with
constraints (12¢)—(12i). Hence the conclusion. ]

Theorem 5: In MINF, p (p < p) is achievable if and only
if £(p) is achievable and p > f(p).

Proof: By the inverse proposition of Lemma 5, an achiev-
able p always satisfies p > f(p). The necessity is proved as
follows. Suppose p is achievable for MINF. Consider using
f(p) as another solution (together with the (q, x,y) obtained
when computing f(p)). Then f(p) satisfies (12b). Also, f(p)
together with its (q,x,y) fulfills (12¢)—(12i) by the definition
of f(p). Thus, f(p) is achievable.

For the sufficiency, note that the achievability of f(p)
implies that p along with (g, x,y) obtained by solving f(p)
satisfies (12c¢)—(12i). Combined with the precondition p; < p
(i € C), the load p is feasible to (12b)-(12i) (and thus
achievable in MINF). Hence the conclusion. ]

Theorem 5 provides an effective method for improving any
sub-optimal solution to MINF. For any achievable p, evalu-
ating f(p) always yields a better solution.” This conclusion
is based on Theorem 5: Suppose p (p > 0) is the current
cell load, and let p’ be the function value evaluated at p, i.e.
p' = f(p). By Theorem 5, we always have p’ < p.

Recall that F'(p) is the objective function of the problem
MINF. Theorem 6 below states that, the fixed point of f(p)
(along with (q, x,y) obtained when computing f(p)) is opti-
mal to MINF.

Theorem 6: Load p* is the optimum of MINF if (and only
if when F(p) is strictly monotonic) p* = f(p*) < p.

Proof: (Necessity) If p* is optimal (and thus feasible),
then obviously we have p* < p. By Theorem 5, f(p*) is also
feasible and f(p*) < p*. By successively applying Theorem 5,
f%(p*) for any k > 1 is a feasible solution and f*(p*) <
fE=1(p*). Let p' = limj_ f*(p*). Then p’ < p* holds by
the above derivation. In addition, note that p’ is a feasible
solution as well. By that p* is optimal for MINF, we have
p' = p*, otherwise p’ would lead to a better objective value in
MINF than p*. Hence p* = limy_, f*(p*), i.e. p* = f(p*).

(Sufficiency) By Theorem 5, for any feasible p,
limy o f¥(p) is feasible and limy_ .o, £%(p) < p holds.
By Lemma 4, the limit remains for any p > 0, and thus
limg o £¥(p) = limg o £%(p*). Since p* = f(p*), we have
p* = limg_o f¥(p*). Thus p* < p for any feasible p,
meaning that p* is optimal for MINF.

Hence the conclusion. U

C. The Algorithmic Framework

Starting from any non-negative p®), we compute
limy, o f¥(p) iteratively. During each iteration, n problems

TRigorously, Theorem 5 implies that the new solution is not worse. In fact
it is guaranteed to be strictly better (with strictly monotonic F'(p)) unless the
old one is already optimal. A proof can be easily derived based on Theorem 6.
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TABLE I
SIMULATION PARAMETERS
Parameter Value
Cell radius 500 m
Carrier frequency 2 GHz
Total bandwidth 20 MHz

Cell load limit p 1.0

Path loss model COST-231-HATA
Shadowing (Log-normal) 6 dB standard deviation
Fading Rayleigh flat fading

Noise power spectral density —173 dBm/Hz
RB power p; (i € C) 800 mW
Convergence tolerance (€) 10—

in (13) for ¢ € € are solved. The convergence is guaranteed by
Lemma 4. At the convergence, by Theorem 6, the optimum is
reached. Note that once p(*) is feasible for any k& > 0, then by
Theorem 5, all p*+1) p(k+2) " are feasible as well. One can
terminate prematurely to obtain a sub-optimal solution with
less computation. M-CELL is outlined below.

M-CELL(p(?, ¢)

1 k=0

2 repeat

3 k=k+1

4 for i € C
5 (), a?, %" yM) = s-CeLL(p’ )
6 end for
7 wntil ||p*) — pF=D || < e
8 if p") > p for any i (i € €)
9 MINF is infeasible
10 end if
11 return (p®) q*) x*) y(F)

M-CELL applies fixed point iterations using f(p). The
convergence of fixed point iterations on f(p) is linear [44]. The
feasibility check is done by Lines 8 and 9. The infeasibility
of MINF implies that at least one cell will be overloaded
for meeting user demands. If this happens, we know for sure
that the user demands cannot be satisfied. We remark that all
the conclusions derived in this section are independent of the
implementation of S-CELL in Line 5. As long as the sub-
routine S-CELL yields the optimal solution to (13), M-CELL
achieves the optimum of MINF.? Besides, M-CELL possesses
the optimality for MINF with any objective function that is
monotonically (but not necessarily strictly monotonic) increas-
ing in each element of p. These two properties make M-CELL
an algorithmic framework. To our knowledge, the most effi-
cient S-CELL is what we derived in Section V.

For a cell ¢« (i € C€), given the information of other
cells’ load p_;, solving f;(p) is based on local information,
making M-CELL suitable to run in a distributed manner.
A cell can maintain the information of a subset of cells (e.g.,

8With filtered U, the proposed M-CELL is proved to converge to the global
optimum of MINF. Without filtered U (or for an arbitrarily selected set of
candidate pairs W), M-CELL is still applicable to MINF though there is no
theoretical guarantee of convergence or optimality, as the decoding order for
each pair may change in the iteration process.
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Fig. 4. This figure illustrates the total and maximum load in function of

normalized demand. At d = 1.0, the network reaches its resource limit
such that any larger demand cannot be satisfied by OMA(opr). SPuni)y and
SPerpC) are two sub-optimal NOMA power allocation schemes, for which,
pair selections are optimally computed.

the surrounding cells) having major significance in terms
of interference, and exchange the information with other
cells periodically, which can be implemented via the LTE
X2 interface. The technique called “asynchronous fixed-point
iterations” [40] can be used. The asynchronous fixed-point
iterations converge to the fixed point that is the same as
obtained by its synchronized version. Intuitively, the fixed
point is unique, regardless of how we reach it.

VII. PERFORMANCE EVALUATION

We use a cellular network of 19 cells. To eliminate edge
effects, wrap-around technique [45] is applied. Inside each
cell, 30 UEs are randomly and uniformly distributed. In each
cell, there are in total (‘320) = 435 possible choices for user
pairing in NOMA. User demands are set to be a uniform value
d. In the simulations, d is normalized by M x B in (8) and (9),
and belongs to (0,1]. With OMA, the network reaches the
resource limit at d = 1.0, i.e., any d > 1.0 leads to at least
one cell being overload in OMA. Other parameters are given
in Table I.

We consider two objectives for performance evaluation:
resource efficiency and load balancing. For resource efficiency,
the objective function is F(p) = >, ¢ pi» i.e., to minimize
the total network time-frequency resource consumption (or
cells’ average resource consumption if divided by n). For
load balancing, we adopt min-max fairness and the objec-
tive function is F'(p) = max;ee p;- Section VII-A and
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Fig. 5. This figure illustrates pair selection in a typical cell of 30 UEs. The UEs are represented by the vertices on a circle. The UE marked “Best” at the top
position has the best channel condition. The UEs are arranged clock-wisely in the descending order of channel conditions. The edges are selected pairs. Each
subfigure represents one pairing method. Figure 5(a) and Figure 5(b) show PAg_w) and PAg_sp), respectively. Figure 5(c) shows optimal pairing after filtered
U. Figure 5(d) shows the pairing solution obtained with non-filtered U. Note that in all cases the candidate pairs are not related to inter-cell interference. The

interference affects the subroutine S-CELL in M-CELL.
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Fig. 6. This figure shows the optimized load levels of all 19 cells. The cells are numbered in an ascending order of load. The blue bars show the computed

30

cell load under U composed of all (2

Section VII-B provide results for power allocation and user
pairing, respectively. The optimal OMA, named OMA oy,
is obtained by fixing y to 0 in MINF and solving the remaining
problem to optimality.” The proposed optimal NOMA solution
is named NOMA op) subsequentially.

A. Power Allocation

We use OMAopy) as baseline. As for NOMA, the pairing
candidate set U initially covers all pairs of UEs in each cell.
Then, those pairs not fulfilling Lemma 1 are dropped from
U. We then use M-CELL to compute NOMA o). Besides the
optimal NOMA, we implement two other sub-optimal NOMA
power split schemes for comparison. One is named “SPyni)”,
in which the power p; splits equally between qg, and g, for
any pair u = {®, 6} (u € U). The other is “fractional transmit
power control” (FTPC), named SPrpc), using a parameter
to control the fairness for power split. We set this parameter
to be 0.4 as recommended in [46]. Under both SP,i and
SPErpc), we use the method in Section V-B to compute the
optimal pair selection. Both two power split schemes are easily
accommodated by M-CELL.

Figure 4 shows the total load and the maximum load in
function of normalized demand. As expected, the cell load
levels monotonically increase with user demand. At high user
demand, NOMA p) dramatically improves the load perfor-
mance. For d = 1.0, it achieves 31% better performance

9With y being fixed to O in MINF, the variables q and x disappear. Then
we modify Line 5 of M-CELL to be “pz(.k) = Ejea,» dj/c]-(p(_kifl))” and
Line 11 to be “return p(*)”. The modified M-CELL gives the optimal load
for OMA (see [17] for further details).

) X 19 pairs. The red bars show the minimum cell load with pairs satisfying Lemma 1.

than OMA oy for both total load and maximum load. The
two sub-optimal solutions SPysiy and SPErpcy also result in
load improvement than OMA o). Compared to the two sub-
optimal solutions, the improvement achieved by NOMA opy
over OMA oy is doubled or more. On average, by using the
same amount of time-frequency resource, NOMA oy delivers
33% more bits demand than OMAop. Besides, SPrrpc)
achieves better performance than SPyyi), as the former takes
into account the channel conditions in power split. Generally,
in SPErpcy, UE with worse channel is allocated with more
power.

In summary, power allocation has considerably large influ-
ence on NOMA. Even if the UE pairs are optimally selected,
sub-optimal power allocations in NOMA have significant
deviation from optimal NOMA.

B. User Pairing

We study the influence of user pairing by considering
two sub-optimal ones [4], named “PAg.w)” and “PA;.sp)”,
respectively. Suppose we sort the UEs in descending order
of their channel conditions. In PAg.w), the UE with the
best channel condition is paired with the UE with the worst,
and the UE with the second best is paired with one with
the second worst, and so on. In PA.sp), the UE with the
best channel condition is paired with the one with the second
best, and so on. See Figures 5(a) and 5(b) for an illustration.
In addition, we examine to what extend pair filtering (by
Lemma 1) affects performance. For filtered U, optimal pair
selection is done by Section V-B. For non-filtered U, we apply
M-CELL even though there is no theoretical guarantee on
optimality. Convergence, however, is observed for all the
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instances we considered. Figures 5(c) and 5(d) illustrated the
resulted selection patterns.

In Figure 6, we show the load levels of all 19 cells with
d = 1.0, under both filtered and non-filtered U. In this
specific scenario, [U| is reduced from (%) x 19 = 8265 to
5779 after being filtered by Lemma 1. We choose d = 1.0
because the performance difference among the solutions is
the largest. There is very slight difference in cell load levels
between the two cases. Numerically, the differences between
them are only 0.1% and 0.5% for average and maximum cell
load, respectively. This result is coherent with Figure 5(c) and
Figure 5(d). One can see that the patterns of the two pair
selection solutions are almost identical. Thus, pair filtering by
Lemma 1 is effective in reducing the number of candidate
pairs, with virtually no impact on performance.

In Figure 7 and Figure 8, we respectively evaluate PAg.w)
and PAg.sp), combined with three power split schemes SPuni),
SPErpcy, and SPopy. In SPopy, we use the algorithm SPLIT
to compute the optimal power split for each pair. All of
SPni), SPErPC), and SPopy are put into the framework of
M-CELL but with fixed pair selection PAg.w) or PApg.sp).
In addition, OMA o, and NOMA oy are also included for
comparison as baselines.

One can see that all the NOMA schemes outperform
OMA opy. In Figure 7, with PAg.w), SPErpc) outperforms
SPni). SPopy beats the other two. On one hand, there
is non-negligible gap in load performance between SP(opy
and NOMA oy, even though in SPopy, the power split is
optimal for the PAg.w) pairing. Hence pair selection plays an
important role for NOMA performance. On the other hand,
SPopy yields significantly load improvement compared to
OMA (opy)» and we conclude that PAg.w) is a good sub-optimal
pair selection for NOMA. Indeed, PAg.w) pairs the UEs in
a greedy way, aiming at maximizing the diversity of channel
conditions of paired UEs. As shown in Figure 5(c), the optimal
pair selection has a similar trend. The difference is that optimal
pairing has a more “global view” than PAg.w). In Figure 8,
under PAg_sB), SPuni), SPFrpC), and SPopy) improve the load
very slightly. All of the three are far from the global optimum
and the gap is large under high user demands. We conclude
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M-CELL, under the uniform demands 0.1, 0.4, 0.7, and 1.0, respectively.

that PAs_sp) is not as effective as PAg_w) in terms of network
load optimization.

As the overall conclusion, jointly optimizing power allo-
cation and user pairing is important for the performance of
NOMA.

C. Convergence Analysis

We show the convergence performance of M-CELL in
Figure 9, for demands 0.3, 0.5, 0.7, and 1.0, respectively.
Initially, pgo) =1 (i € €). We observe that M-CELL converges
very fast. With higher demand, the convergence becomes
slightly faster. High accuracy is reached after a very few
iterations. For all the demands consider in the figure, even if
we terminate M-CELL after a very few iterations, the obtained
solution is close to the optimum.

VIII. CONCLUSIONS

This paper has investigated optimal resource management
in multi-cell NOMA, with power allocation and user pairing
being considered simultaneously. Joint optimization of both is
shown to be very important for NOMA performance. The pro-
posed system model admits a mixed use of OMA and NOMA
for the users. Therefore, network architectures that support
various multiple access techniques can be analyzed under this
model. Finally, as for future work, the paper suggests that
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mathematical tools in SIF are useful for analyzing multi-cell
NOMA. In summary, NOMA is a promising technique for
spectrum efficiency enhancement and cell load balancing.

APPENDIX

We remark that the function (32), as shown at the top of
this page, is first referred to in Section V-A and is used in the
formulation (17). The two functions (33) and (34), as shown
at the top of this page, are first referred to in Section V-A and
are used in the algorithm SPLIT.
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