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Abstract
SMAP (Soil Moisture Active and Passive) radiometer observations at ∼40 km resolution are
routinely assimilated into the NASA Catchment Land Surface Model to generate the 9-km
SMAP Level-4 Soil Moisture product. This study demonstrates that adding high-resolution
radar observations from Sentinel-1 to the SMAP assimilation can increase the spatio-temporal
accuracy of soil moisture estimates. Radar observations were assimilated either separately
from or simultaneously with radiometer observations. Assimilation impact was assessed by
comparing 3-hourly, 9-km surface and root-zone soil moisture simulations with in situ mea-
surements from 9-km SMAP core validation sites and sparse networks, from May 2015 to
December 2016. The Sentinel-1 assimilation consistently improved surface soil moisture,
whereas root-zone impacts were mostly neutral. Relatively larger improvements were ob-
tained from SMAP assimilation. The joint assimilation of SMAP and Sentinel-1 observa-
tions performed best, demonstrating the complementary value of radar and radiometer obser-
vations.

1 Introduction

The global water, energy and carbon cycles are linked through the moisture contained
in the soil surface and root-zone. Surface soil moisture controls the partitioning of precipi-
tation into runoff and infiltration, energy is dissipated through the evaporation and transpira-
tion of surface and root-zone moisture, and transpiration is linked to CO2 uptake by plants.
As the crucial link between these cycles, soil moisture is considered an essential climate vari-
able [World Meteorological Organization, 2006].

Past decades have drawn an increasing interest towards constraining soil moisture
simulations from land surface models (LSM) through the assimilation of different kinds of
satellite microwave observations. Radiometer and scatterometer missions provide coarse
(25–40 km) but frequent (∼daily) observations, while synthetic aperture radar (SAR) mis-
sions achieve high resolution (1m to 1 km) but with infrequent revisit times (several days to
weeks).

With the increasing availability of new types of satellite observations emerges the op-
portunity to explore their synergistic use [Su et al., 2014]. This study follows Draper et al.
[2012], who assimilated soil moisture retrievals from active and passive microwave obser-
vations and found that for maximum accuracy and coverage both should be assimilated to-
gether. Here, we investigated the joint assimilation of SMAP (Soil Moisture Active and Pas-
sive, Entekhabi et al. [2010]) and Sentinel-1 [Geudtner, 2012] observations for improving
estimates of soil moisture. The SMAP L-band radiometer provides ∼daily brightness tem-
perature (TB) observations at ∼40-km resolution, which are routinely assimilated into the
GEOS-5 (Goddard Earth Observing System version 5) CLSM (Catchment Land Surface
Model, Koster et al. [2000]) to generate the 9-km SMAP Level-4 Soil Moisture product [Re-
ichle et al., 2017]. Sentinel-1, a constellation of two (A and B) satellites with C-band SAR,
provides backscatter (σ◦) observations at 5 × 20m2 resolution. The integration of Sentinel-
1 σ◦ observations into the assimilation system designed for SMAP is appealing in several
ways:

1. Sentinel-1 is the first SAR constellation with 6-day repeat cycle, offering sufficiently
frequent revisits for data assimilation. Revisit times of previous SAR missions permit
only infrequent assimilation updates that could not be expected to increase the skill of
the model estimates significantly.

2. Sentinel-1 C-band σ◦ and SMAP L-band TB observations are complementary. SMAP
observations show a higher sensitivity to soil moisture, allowing for more accurate es-
timation over large spatial scales, whereas Sentinel-1 observations offer increased
spatial detail which can potentially bridge the scale-gap between radiometer obser-
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vations and LSMs operating at increasingly finer resolutions [Wood et al., 2011; Su
et al., 2014].

3. The joint assimilation offers an alternative to the off-line downscaling of SMAP TB
observations with Sentinel-1 σ◦, and is not restricted to synchronized overpasses, i.e.,
it can be performed if either Sentinel-1 or SMAP observations (or both) are available.

4. The direct assimilation of σ◦ observations, instead of the corresponding soil mois-
ture retrievals, circumvents the need for (operational) soil moisture products. While
such products are in development for Sentinel-1, the σ◦ assimilation can readily be
extended to other SAR missions, such as the RADARSAT constellation, for which soil
moisture products are currently lacking.

Finally, the impact of Sentinel-1 σ◦ assimilation is a useful measure of the mission’s value
for estimating surface and root-zone soil moisture, which are key to a better understanding of
the water cycle.

2 Data and methods

2.1 Remote sensing observations

SMAP Level-1C TB observations [Chan et al., 2016] in vertical (V) and horizontal (H)
polarization on the 36-km EASE-2 (Equal Scalable Earth version 2.0) grid were assimilated
from May 2015 to December 2016. The study domain covers parts of the eastern USA, west-
ern Europe, the Sahel, and southeastern Australia (Figure 1 a–d, respectively). The obser-
vations were masked out over grid cells that included more than 5% open water or glaciated
surfaces (based on the GEOS-5 land mask, Mahanama et al. [2015]), or were contaminated
by radio frequency interference (RFI).

Sentinel-1A (Sentinel-1B) backscatter data were assimilated starting May 2015 (Oc-
tober 2016) until December 2016. The Level-1 observations in VV-polarization were pre-
processed from their native 5 × 20m2 resolution to the 1-km EASE-2 grid. Sentinel-1 data
were excluded for grid cells with more than 1% coverage by open water, urban area, flooded
area, permanent ice or snow, and more than 60% coverage by forests, based on 1-km land
cover data [Tuanmu and Jetz, 2014]. Areas with complex topography were masked out using
a 2.5◦ threshold for surface slope, derived from 90-m Shuttle Radar Topography Mission el-
evation data. The thinned dataset was subsequently aggregated linearly to the 9-km EASE-2
grid, provided that 60% of the 1-km grid cells within a given 9-km grid cell contained valid
data. Finally, observations were normalized to a reference incidence angle. While Sentinel-1
cycles repeatedly in the same orbital plane, targets on Earth are illuminated at only a limited
set of angles, reducing the potential of regression techniques, as applied for normalizing AS-
CAT data [Bartalis et al., 2006]. Therefore, incidence angle normalization was performed
by rescaling the mean σ◦ over successive 0.3◦ angle bins to the mean of the angle bin having
the most observations. An advantage of this method is that it simultaneously corrects az-
imuthal biases [Bartalis et al., 2006]. A limitation is the reduction in accuracy for angle bins
with a low number of observations. Therefore, bins with fewer than 15 observations were
withdrawn; as more observations become available, the errors in the incidence-angle normal-
ization decrease.

In a final quality control step, SMAP and Sentinel-1 observations were masked out
for times and locations where the snow water equivalent (SWE) exceeded 10−4 kg/m2, the
modeled surface temperature (tp1) was less than 273.25K, or the precipitation (Pcp) ex-
ceeded 50mm/d, based on CLSM estimates from the assimilation system. On average, the
time interval between assimilated observations was about 10 times shorter for SMAP than
for Sentinel-1 (Figure 1). For SMAP, the interval was generally around 1 day, except for areas
in Europe that were affected by RFI in SMOS observations needed for bias correction (Sec-
tion 2.4). For Sentinel-1, a 6-day interval was achieved over Europe (based primarily on just
Sentinel-1A). Other continents were less frequently observed (once every 10–20 days). Re-
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Figure 1. Average time interval [days] between assimilated (a–d) SMAP and (e–h) Sentinel-1 observations
over the model domain for May 2015 to December 2016. Symbols show locations of core sites and sparse
network sites with (a–d) surface (sfmc) and (e–h) root-zone (rzmc) soil moisture measurements.

cent modifications to the observing schedule increase the Sentinel-1 data availability over the
(nearly) global land surface to match that over Europe.

2.2 In situ measurements

In situ surface (sfmc) and root-zone (rzmc) soil moisture measurements were assem-
bled over SMAP core validation sites [Colliander et al., 2017] and sparse networks. At core
sites, accurate measurements are available at the 9-km scale of the assimilation estimates for
a limited set of conditions. Sparse networks cover a wider range of conditions, but are point
estimates within a larger model grid cell, and thus subject to scaling errors. The specific vali-
dation sites used here are listed in Table 1, with locations shown in Figure 1.

The sfmc measurements correspond to a depth of 5 cm. For core sites, rzmc mea-
surements were vertically averaged with weights proportional to sensor depths within the
0–100 cm layer [Reichle et al., 2016]. For sparse networks, measurements were extracted
at single depths, i.e., 20 cm for SCAN, USCRN and SMOSMANIA, 25 cm for Oklahoma
Mesonet, and 45 cm for OzNet [De Lannoy and Reichle, 2016a; Reichle et al., 2016].

A strict quality control was performed to remove artifacts, such as spikes, inhomo-
geneities, oscillations, or trends following Liu et al. [2011]; Entekhabi et al. [2014]; De Lan-
noy et al. [2014a]. Similar to the remote sensing observations, in situ measurements were
masked out if CLSM SWE > 10−4 kg/m2, tp1 < 273.25K, or Pcp > 50mm/d. Only sites
with more than 1000 (3-hourly) measurements within the validation period (May 2015 to
December 2016) were included.

2.3 Models

CLSM was run on the 9-km EASE-2 grid using hourly 0.25◦ × 0.3125◦ meteorological
forcings from the GEOS-5 Forward Processing system [Lucchesi, 2013] with precipitation
corrections similar to those of the Level-4 Soil Moisture system [Reichle and Liu, 2014; Re-
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ichle et al., 2017]. The CLSM sfmc (0–5 cm) and rzmc (0–100 cm) were diagnosed from
three model prognostic variables, the catchment deficit (catdef), surface excess (srfexc) and
root-zone excess (rzexc), which represent the equilibrium profile and deviations from equilib-
rium in the surface and root-zone layers, respectively.

TB simulations were obtained using the zero-order τ − ω radiative transfer model
(RTM), with input-use of CLSM sfmc, surface soil temperature, air temperature, and cli-
matological leaf area index (LAI) from the Moderate Resolution Imaging Spectroradiome-
ter (MOD15A2). The RTM was calibrated over each 9-km grid cell to minimize biases in
the mean and variance between TB simulations and observations [De Lannoy et al., 2013,
2014b]. The calibration was performed over a 4-year period from July 2010 to June 2014 us-
ing TB observations from the SMOS (Soil Moisture and Ocean Salinity) mission [Kerr et al.,
2001].

Backscatter was simulated by the Water Cloud Model (WCM, Attema and Ulaby [1978])
as the sum of vegetation σ◦ and attenuated soil σ◦. The vegetation σ◦ and attenuation were
modeled as a function of LAI, and soil σ◦ was a linear function of the CLSM sfmc. Note
that a linear soil model was preferred over physically-based models (e.g., the Integral Equa-
tion Model, Fung [1994]), which often saturate at moist conditions [Wagner et al., 2010] and
cause unrealistically suppressed variability in σ◦, particularly if the LSM is (regionally) ex-
posed to wet biases [Lievens et al., 2016]. Due to the limited availability of Sentinel-1 data,
the WCM was calibrated per 9-km grid cell [Lievens et al., 2016] over the same period as
used for the validation. Future research should address the validation using independent data.

2.4 Data assimilation

The three-dimensional (3D) Ensemble Kalman Filter (EnKF) [De Lannoy and Re-
ichle, 2016b] was used to assimilate multiple SMAP observations located within a circular
(1.25◦ radius) area around a given 9-km model grid cell. The 3D filter takes into account
that SMAP observations have a footprint that is larger than the model resolution. The na-
tive Sentinel-1 observations have a footprint that is much smaller than the model resolution.
Therefore, the aggregated (9-km) Sentinel-1 observations were used to constrain only the
matching 9-km grid cells (1D filter). If both SMAP and Sentinel-1 observations were avail-
able simultaneously, the analysis in the joint assimilation proceeded sequentially: First, a 3D
analysis was conducted using the SMAP observations. Thereafter, Sentinel-1 observations
were used in a 1D analysis to update the estimates from the 3D SMAP analysis.

The model state vector contained srfexc, rzexc and catdef (Section 2.3). The forecast
error variance was calculated from 24 ensemble trajectories, obtained by perturbing forc-
ings (precipitation, shortwave and longwave radiation) and state variables (catdef and srfexc)
[De Lannoy and Reichle, 2016a]. The observation error variance for SMAP TB was set to
42 K2 [Reichle et al., 2017], with an isotropic spatial error correlation length of 0.25◦. The
Sentinel-1 σ◦ observation error variance was set to 0.32 dB2 [Lievens et al., 2016]. Since
Sentinel-1 observations were greatly over-sampled, observation errors were assumed uncor-
related over space. Finally, TB and σ◦ observation errors were assumed uncorrelated.

The model forecasts can be biased against the observations despite the calibration of
the τ − ω model and the WCM. To reduce the impact of biases, the assimilation used ob-
servation anomalies from the seasonal cycle that were added to the forecast seasonal cycle.
The SMAP TB seasonal cycle was calculated from ∼4 years of SMOS data [De Lannoy and
Reichle, 2016a]. This method does not address errors that arise from using climatological
vegetation parameters when the (true) vegetation varies from year to year. Given the short
(∼1.5 years) data record, Sentinel-1 σ◦ anomalies were calculated by subtracting a 6-month
moving average from the times series, which reduced errors from vegetation, but may have
also partly removed soil moisture information. A relatively long (6-month) window was se-
lected to minimize this artifact, and to increase the number of observations for characterizing
the seasonal cycle.
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Figure 2. The (a) sfmc [m3/m3] forecast, and increments [m3/m3] for (b) DAσ◦ , (c) DATB and (d)
DAσ◦,TB over Spain, for May, 1, 2015, 6 am.

2.5 Experiments

The following experiments were performed:

1. OL: Open loop reference, mean of a 24-member, model-only ensemble simulation
without any data assimilation.

2. DAσ◦ : Assimilation of Sentinel-1 σ◦ (1D-EnKF).
3. DATB: Assimilation of SMAP TB (3D-EnKF).
4. DAσ◦,TB: Joint assimilation of Sentinel-1 and SMAP observations in 1D and 3D anal-

ysis configuration, respectively.

The assimilation experiments feature different increment characteristics (Figure 2). Be-
sides the narrower swath, increments of DAσ◦ were spatially more refined than correspond-
ing increments of DATB. This may relate to the finer Sentinel-1 resolution, as well as to the
1D analysis configuration, having the potential advantage of better representing local hydro-
logic conditions, such as convective precipitation events. The 3D approach for SMAP has
the advantage that it provides smoother transitions, and allows for interpolation and extrap-
olation of the increments. The joint assimilation (DAσ◦,TB) involved both a 3D and 1D filter
step, and thus combined the smoothed large scale increments from SMAP with finer-scale
increments from Sentinel-1.

Validation of the experiments was based on the correlation coefficient (R [-]) and the
unbiased Root Mean Square Difference (ubRMSD [m3/m3]), obtained after removing the
static long-term mean bias from the simulations and measurements. Metrics are accompa-
nied by 95% confidence intervals (CI), calculated with the assumption of a χ2 distribution
for the ubRMSD, and an asymptotic normal distribution after Fisher Z transformation for
R [De Lannoy and Reichle, 2016a]. The CIs account for autocorrelation in the time series
by reducing the effective sample size and degrees of freedom [Dawdy and Matalas, 1964;
Draper et al., 2012]. Spatial error correlations between nearby sites were accounted for by
spatially clustering the results as in Reichle et al. [2017], to avoid that metrics and CIs are
dominated by densely sampled areas.
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Table 1. Performance metrics R [-] and ubRMSD [m3/m3] of OL, DAσ◦ , DATB and DAσ◦,TB for surface
(sfmc) and root-zone (rzmc) soil moisture. Average metrics for 9-km core sites and sparse networks are fol-
lowed by the metrics for individual sites/networks. N is the number of grid cells (for core sites) or point mea-
surements (for sparse networks). Nin situ is the number of 3-hourly in situ measurements used for validation.
Nσ◦ and NTB are the numbers of assimilated Sentinel-1 σ◦ and SMAP TB observations, respectively. SCAN
stands for the U.S. Natural Resources Conservation Service Soil Climate Analysis Network, USCRN for the
U.S. Climate Reference Network, and SMOSMANIA for the SMOS-Meteorological Automatic Network Inte-
grated Application.

R [-] ubRMSD [m3/m3]
sfmc (0–5 cm) N Nin situ Nσ◦ NTB OL DAσ◦ DATB DAσ◦,TB CI OL DAσ◦ DATB DAσ◦,TB CI
Core sites 16 2686 75 540 0.58 0.63 0.66 0.70 ±0.04 0.052 0.050 0.048 0.046 ±0.006
REMEDHUS 2 2667 127 545 0.59 0.61 0.53 0.60 ±0.14 0.032 0.034 0.037 0.035 ±0.011
Yanco 2 3913 42 628 0.84 0.86 0.92 0.93 ±0.07 0.079 0.074 0.049 0.049 ±0.030
Twente1 1 2611 148 307 0.66 0.81 0.52 0.62 ±0.17 0.081 0.076 0.083 0.080 ±0.053
Little Washita 1 2646 78 501 0.70 0.73 0.80 0.79 ±0.07 0.041 0.040 0.035 0.035 ±0.010
Fort Cobb 2 4083 78 520 0.64 0.63 0.74 0.74 ±0.08 0.043 0.043 0.038 0.037 ±0.007
South Fork 2 3161 45 486 0.10 0.44 0.62 0.67 ±0.11 0.069 0.060 0.052 0.050 ±0.012
Valencia 1 1754 94 605 0.39 0.42 0.49 0.51 ±0.16 0.026 0.025 0.024 0.024 ±0.006
Niger2 1 1066 42 595 0.28 0.23 0.47 0.54 ±0.17 0.038 0.040 0.049 0.045 ±0.006
Benin2 1 1821 85 607 0.68 0.71 0.74 0.76 ±0.13 0.063 0.062 0.056 0.056 ±0.024
TxSON 2 2177 22 711 0.75 0.77 0.83 0.82 ±0.13 0.045 0.044 0.039 0.039 ±0.014
HOBE3 1 1080 134 248 0.82 0.82 0.73 0.83 ±0.13 0.044 0.046 0.051 0.046 ±0.026

Sparse networks 201 3488 49 580 0.59 0.61 0.66 0.68 ±0.04 0.059 0.057 0.054 0.053 ±0.005
SCAN4 27 3472 33 544 0.57 0.57 0.64 0.64 ±0.04 0.057 0.056 0.056 0.055 ±0.006
USCRN5 25 3288 36 509 0.58 0.60 0.66 0.66 ±0.04 0.058 0.057 0.053 0.053 ±0.005
Oklahoma Mesonet6 93 3825 47 585 0.54 0.56 0.67 0.67 ±0.09 0.064 0.062 0.058 0.057 ±0.013
OzNet7 42 3405 39 655 0.78 0.79 0.84 0.85 ±0.12 0.077 0.073 0.062 0.061 ±0.031
SMOSMANIA8 14 1887 142 512 0.55 0.61 0.62 0.66 ±0.14 0.048 0.045 0.045 0.042 ±0.014

rzmc (0–100 cm)
Core sites 7 2705 52 562 0.53 0.65 0.73 0.75 ±0.18 0.034 0.033 0.027 0.028 ±0.008
Little Washita 1 1999 78 501 0.81 0.87 0.84 0.85 ±0.17 0.032 0.031 0.027 0.027 ±0.012
Fort Cobb 2 3418 78 520 0.68 0.64 0.68 0.70 ±0.26 0.028 0.030 0.031 0.030 ±0.009
South Fork 2 3122 45 486 0.02 0.38 0.57 0.61 ±0.32 0.043 0.038 0.030 0.030 ±0.009
TxSON 2 1927 22 711 0.85 0.84 0.90 0.90 ±0.37 0.032 0.033 0.023 0.024 ±0.023

Sparse networks 161 3534 51 574 0.64 0.62 0.64 0.64 ±0.10 0.046 0.045 0.046 0.046 ±0.015
SCAN 23 3335 35 537 0.65 0.63 0.63 0.62 ±0.11 0.041 0.042 0.043 0.042 ±0.014
USCRN 22 3175 37 518 0.64 0.62 0.64 0.63 ±0.11 0.046 0.046 0.043 0.043 ±0.008
Oklahoma Mesonet 85 3947 47 587 0.62 0.60 0.64 0.64 ±0.36 0.057 0.057 0.056 0.056 ±0.075
OzNet 18 3527 39 667 0.75 0.77 0.81 0.81 ±0.66 0.029 0.031 0.054 0.049 ±0.176
SMOSMANIA 13 1799 145 520 0.50 0.55 0.52 0.57 ±0.47 0.040 0.038 0.039 0.037 ±0.094

1van der Velde et al. [2015], 2Lebel et al. [2009]; Pellarin et al. [2009]; Cappelaere et al. [2009], 3Bircher et al. [2012], 4Schaefer et al. [2007],
5Diamond et al. [2013]; Bell et al. [2013], 6McPherson et al. [2007], 7Smith et al. [2012], 8Albergel et al. [2008]; Dorigo et al. [2011]

3 Results

Simulated sfmc and rzmc time series were compared with in situ measurements at core
validation sites and sparse networks (Table 1 and Figure 3). All time steps were included in
the evaluation, regardless of whether observations were assimilated.

Sfmc simulations improved increasingly for DAσ◦ , DATB and DAσ◦,TB (Figure 3). For
instance, the R for core sites increased from 0.58 (OL) to 0.63, 0.66 and 0.70, whereas the
ubRMSD for core sites decreased from 0.052 (OL) to 0.050, 0.048 and 0.046 m3/m3, respec-
tively (Table 1). Similar results apply for sparse networks. Therefore, this study suggests a
better performance when combining SMAP and Sentinel-1 observations in a data assimila-
tion framework. Relative to the SMAP-only assimilation, the joint assimilation increased the
improvement by ∼30%. However, most improvements were not significant at the 95% level
(as indicated by the overlapping CIs). One reason for the lack of significance is in the rela-
tively short data records, which necessarily results in large CIs. Moreover, the CIs were pos-
sibly overestimated because of the assumed perfectly correlated errors between sites within
the same cluster.
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Figure 3. The performance of OL, DAσ◦ , DATB and DAσ◦,TB for soil moisture simulation: (a,c) R [-] and
(b,d) ubRMSD [m3/m3] for (a,b) sfmc and (c,d) rzmc. Error bars represent the 95% confidence intervals.

The impact of the Sentinel-1 assimilation may be comparatively small because during
most of the experiment period relatively few Sentinel-1 observations were available, partic-
ularly outside Europe. While in general larger improvements were observed for DATB than
DAσ◦ , results deteriorated for DATB (vs. OL) at 3 European sites (REMEDHUS, Twente and
HOBE) but yielded improvents for DAσ◦ (Table 1). As previously shown by Lievens et al.
[2016], the joint assimilation alleviates the negative impacts from TB assimilation over those
sites, while further enhancing positive impacts over sites where assimilation of both σ◦ and
TB is beneficial (e.g., Yanco, South Fork, Valencia, Benin). This illustrates the complemen-
tary nature of σ◦ and TB observations and their relative merits for data assimilation, thereby
corroborating the result of Draper et al. [2012].

For rzmc, considerable improvements were obtained for the core site average for all
assimilation experiments (Figure 3). However, these improvements are mainly attributed to
South Fork, which had a poor performance for OL (Table 1). For other core sites, the impact
of DAσ◦ was neutral, while DATB and particularly DAσ◦,TB produced moderate improve-
ments over OL. Over sparse networks, no clear impact was observed for any of the assimila-
tion experiments. Overall, the impact was less pronounced for rzmc compared to sfmc.

Finally, it was investigated if the assimilation can also improve the spatial patterns in
the estimated sfmc fields for sparse networks in the USA, i.e., SCAN, USCRN and Okla-
homa Mesonet (Figure 4). To this end, the spatial correlation between simulations and in
situ measurements was calculated and averaged over time. Note that combining measure-
ments from different networks may introduce uncertainty in the analysis. Moreover, sparse
networks usually contain only a single site per 9-km grid cell, which may or may not be rep-
resentative of the grid-cell average conditions. Therefore, the results should be interpreted
with care.
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Figure 4. The time-averaged increase in spatial correlation R [-] for the assimilation experiments (relative
to the OL) with respect to in situ sfmc over sparse networks in the USA (SCAN, USCRN and Oklahoma
Mesonet), for all sites and time steps (’All’), and for sites and time steps with Sentinel-1 observations (’Ob-
served’).

In a first assessment, all sites were included for all time steps, regardless of whether
observations were assimilated. In this case, a minor improvement in spatial R (+0.01) over
the OL was observed for DAσ◦ , whereas larger R improvements (+0.04 and +0.05) were
found for DATB and DAσ◦,TB, respectively. However, as only few Sentinel-1 observations
were assimilated over the USA (on average 39 per site over the study period), the impact may
be concealed. Therefore, in a second assessment, spatial correlations were calculated only
for time steps and sites where Sentinel-1 data were assimilated. In this case, improvements
in R became comparable for DAσ◦ (+0.05) and DATB (+0.06), and were largest for DAσ◦,TB
(+0.09). This highlights the potential gain in impact from the assimilation of Sentinel-1 ob-
servations with the recent increase in revisit frequency.

4 Conclusions

Sentinel-1 σ◦ observations were assimilated either separately from or simultaneously
with SMAP TB observations into CLSM, to assess their relative and complementary value
for improving soil moisture estimates. The comparison with in situ measurements from
SMAP core validation sites and sparse networks revealed that assimilation of Sentinel-1 σ◦

produces a moderate improvement in surface soil moisture time series, whereas minor im-
pacts were found for the temporal skill of root-zone soil moisture. Larger improvements were
obtained with the assimilation of SMAP observations, while the joint assimilation of SMAP
and Sentinel-1 observations performed best.

Similar results apply for spatial soil moisture estimation over the USA. The spatial cor-
relation with in situ measurements from sparse networks improved increasingly with the as-
similation of Sentinel-1, SMAP, and joint observations, respectively. The impact of Sentinel-
1 was particularly evidenced when focusing on sites and time steps for which Sentinel-1
observations were assimilated. This result is promising, considering the recent increase in
Sentinel-1 data availability going forward.

An increased number of Sentinel-1 observations is expected to benefit the assimilation,
not only by more frequent updates of model states, but also by the more accurate processing
of observations (e.g., incidence angle normalization and bias correction), and more accurate
constraining of the backscatter model. Future study should assess how the increased avail-
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ability of data will impact hydrologic simulations over the foreseen 12 years of Sentinel-1
operation.
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