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Abstract

Our limited understanding of the climate controls on tropical forest seasonality is one of
the biggest sources of uncertainty in modeling climate change impacts on terrestrial
ecosystems. Combining leaf production, litterfall and climate observations from satellite
and ground data in the Amazon forest, we show that seasonal variation in leaf
production is largely triggered by climate signals, specifically, insolation increase (70.4%
of the total area) and precipitation increase (29.6%). Increase of insolation drives leaf
growth in the absence of water limitation. For these non-water-limited forests, the
simultaneous leaf flush occurs in a sufficient proportion of the trees to be observed from
space. While tropical cycles are generally defined in terms of dry or wet season, we show
that for a large part of Amazonia the increase in insolation triggers the visible progress
of leaf growth, just like during spring in temperate forests. The dependence of leaf
growth initiation on climate seasonality may result in a higher sensitivity of these
ecosystems to changes in climate than previously thought.

Introduction

The Amazonian forests account for 14% of the global net primary production (NPP)
and are a major component (66%) of the inter-annual variation in global NPP [1].
While large seasonal swings in leaf area have been reported at least in parts of the
Amazon basin [2H4], the environmental controls that trigger the synchronous
development of new leaves are not well understood [5H7]. As a result, current earth
system models inadequately represent the dynamics of leaf development, despite its
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major role for photosynthesis of tropical vegetation [§]. In equatorial forests, leaf
flushing correlates with increased light availability and photosynthetically active
radiation during the dry season [4[9], and is theoretically driven by a change in daily
insolation |10]. However, water availability constrains leaf phenology in southern
Amazonia and most of the Congo basin, impeding the maintenance of the evergreen
state during the dry season [11]. The climate thresholds controlling the phenological
responses of vegetation remain unclear [12], as well as the sensitivities of these responses
to future climate changes [13].

The Enhanced Vegetation Index (EVI), from the Moderate Resolution Imaging
Spectroradiometer (MODIS), improves the sensitivity of the vegetation signal in high
biomass regions and it strongly correlates with chlorophyll content and photosynthetic

activity [54/14]. An unexpected result from this index was the Amazon forest ”greening”

in the dry season [5]. The evidence provided by the MODIS sensor raised a debate not
on the fact of the dry-season greening of the forest, but on deciphering if this greening is
more intense during drought years or not [6,/15]. Later, it has been suggested that the
observed greening during the dry season in the Amazon could be attributed to artefact
of sun-sensor geometry [16L[17]. However, a new version of EVI supports the dry season
greening in the Amazon [4}/18]. This EVI is corrected for the sun-sensor artefact from
the multi-angle implementation of atmospheric correction algorithm (MATAC) [19).
Furthermore, a recent analysis of seasonal canopy leaf area index (LAI) changes
estimated from independent lidar-based satellite observations over the Amazon forest
fully supports the existence of the greening [20].

While the biophysical interpretation of EVI increase remains to be fully assessed [21],
recent accumulation of evidences in the Amazon converge to a positive correlation of
EVI increase and leaf flushing. This have been observed with different types of field
data such as percentage of trees with new leaves [18,22}|23], green crown fraction
measured above the canopy with camera [8], indirect estimation of leaf flush with
litterfall [24])25], leaf spectral reflectance measurements |26] and remote-sensed changes
of lidar-derived canopy leaf area index (LAI) [20].

The observations of leaf-flushing during the dry season challenge our vision of
droughts in tropical forests. The droughts may have negative impact on the forest
structure and dynamics [27], such as increase in mortality [28,/29] or reduction of tree
radial growth [25]. Furthermore, tropical trees show at some extent adaptation to
drought with leaf water potential at wilting point ranging from -1.4 to -3.2 MPa [30].
But, in case of water stress, a common behavior of the trees is to shed the leaves, as
observed in dry tropical forest [31]. This indicates that leaf-flushing in the heart of the
dry season necessarily implies a sufficient supply of water. Above ~2000 mm of annual
precipitation, global tropical forests maintain evergreen state and present the increase of
the photosynthetic capacity — the greening — during the driest season [11]. These
forests, whose canopies’ processes are observed using remote sensing, are not limited by
water; they satisfy their water demands during the dry season using the supply of
redistributed subsurface water of the wet season |11]. Despite the leaf phenology of
Amazonian forests appears driven by sun-related variables and shows greening during
dry seasons, an analysis of the potential drivers in a continuous spatial framework is
still missing [4}5920].

To investigate the Amazon seasonality, we model the period of increase in leaf
production, proxied by the main period of increasing remotely sensed Enhanced
Vegetation Index (EVI) [14}[32], with the seasonal increase of the potential climate
drivers, i.e. precipitation and insolation (proxied by maximal temperature, . We
assume that EVI ”greening” relates to seasonal flush of new leaves based on recent
evidences obtained in Amazonia [8}[20L2223[26]. EVT values were computed from the
multi-angle implementation of atmospheric correction algorithm (MATAC) [19]. We
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used EVI normalized to a nadir view angle and 45°sun zenith angle to avoid artifacts
from changing sun-sensor geometry over time.

Materials and Methods

Satellite greenness from MODIS Enhanced Vegetation Index
(MAIAC EVI)

We used enhanced vegetation index (EVI) imagery obtained by the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensor, on board the Terra and Aqua
satellites (EOS AM, NASA) [33]. Data were processed with multiangle implementation
of atmospheric correction algorithm (MAIAC) [19]. Data were obtained for 12 MODIS
tiles (h10v08 to h13v10, spanning 10°N to 20°S in latitude and 80°W to 40°W in
longitude) from NASA’s Level 1 and Atmosphere Archive and Distribution System
(LAADS Web: ftp://ladsweb.nascom.nasa.gov/MATAC). MATAC observations are based
on MODIS Collection 6 Level 1B (calibrated and geometrically corrected) observations,

which removed major sensor calibration degradation effects present in earlier collections.

We used observations from the Terra and Aqua satellites collected between 2000 and
2012 at 1-km spatial resolution. EVI data were corrected for bidirectional reflectance
effects by normalizing all observations to a fixed sun sensor geometry (solar zenith angle
of 45° and nadir view angle) [19]. Advanced cloud detection and aerosol-surface
retrieval in MATAC improves the accuracy of satellite-based surface reflectances over
tropical vegetation 3 to 10 fold compared with the standard MODIS products [34].

Climate measurements

Precipitation measurements were obtained from the Tropical Rainfall Measuring
Mission (TRMM) 3B43V7 product, which provides monthly precipitation estimates at
0.25° spatial resolution, for the tropical and subtropical regions. We analyzed data from
2000 to 2013. Maximal temperature (tmx, °C) was obtained from monthly climate
global dataset (CRU-TS3.21) available at 0.5° spatial resolution, from 1901-2012,
produced by the Climate Research Unit (CRU) at the University of East Anglia |35].
Additionally, we used monthly incoming solar radiation at the surface (rad, W.m~?)
covering the period 20002012 at 0.5° spatial resolution, estimated by the Clouds and
the Earth’s Radiant Energy System (CERES) instruments onboard the NASA Terra
and Aqua satellite [36]. In preliminary analysis, we compared maximal temperature
from CRU and incoming radiation at the surface from CERES data. Maximal
temperature from CRU was highly correlated with incoming radiation at the surface
from CERES (Pearson’s r = 0.76, p-value < 0.0001, Figure . Here, we used
maximal temperature rather than incoming radiation because it has previously been
shown to be a good predictor of EVI seasonality in tropical forests [25].

Vegetation land mask and altitude datasets

EVI pixels covering areas with tree cover below 80% were excluded from the analysis.
Forest masking was done using the Global forest cover loss 2000-2014 data set based on
Landsat data at 30 m spatial resolution [37]. We used the vegetation map for Brazil [38]
to analyze if the seasonal patterns of EVI were related to vegetation type. Additionally,
to test the effect of the altitude on the quality of our EVI model, we used altitude from
the Shuttle Radar Topography Mission (USGS/NASA SRTM data), resampled to 250 m
spatial resolution for the entire globe (CGIAR-CSI, version 4.1) and filled to provide
seamless continuous topography surfaces [39].
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Field measurements of litterfall productivity

Seasonal litterfall productivity measurements from two previously published studies
were used to estimate leaf-fall productivity [25,40] (table [I]). It has been previously
demonstrated that the seasonal pattern of total litterfall (leaves, fruits, flowers and
twigs) in this dataset is not different from seasonal pattern of leaf-fall alone (Pearson
test, t = 42.7597, df = 218, p-value < 0.001) [25]. Furthermore, no relation between
seasonal litterfall and soil types has been observed in this dataset [40]. Here, we used
only data with monthly measurements from old-growth forests, as some sites have plots
of both secondary and old-growth forests and flooded forests were excluded. Only the
sites where the model of EVI increase had a R? above 0.8 were selected. While these
measurements are from the largest litterfall database ever produced for South America,
some of the measurements have been made before the MODIS era.

Data preparation

The spatial resolution of all data sets, including climate variables, tree cover, land mask
and altitude, were resampled to 1 km, to match the resolution of MAIAC EVI.
Inter-annual monthly mean values of EVI were filtered using the Fourier Transform
(FT) to keep only the annual and bis-annual frequencies that compose the EVI signal
. Maximal temperature and precipitation inter-annual monthly mean
values were computed by pixel. For the analysis, we computed normalized EVI MAIAC
(FT filtered), maximal temperature and precipitation by subtracting the mean and
dividing by the standard deviation.

Models
Individual pixel EVI model

For a pixel 4, i = 1,...,n, normalized EVI (EVIn) was modeled using normalized
precipitation (pre) and normalized maximal temperature (tmz) as :

EViIn;, = 046 + o/i X pre;; + aé X tM&; t—lag + €it (1)

where o} >0, ab >0, &, ~N(0,0%/w; ;) and t = 1,...,n is a given month. Here, we
assume that EVI increase is a proxy for the production of new leaves [8,/23./26]. To focus
our evaluation on the effects of leaf flushing rather than leaf aging, we limited the
subsequent analysis to the increasing part of EVI, rather than the decreasing one, which
is generally related to leaf aging (changes in morphological and biochemical leaf traits)
and parasites [26,32]. To account for this, the coefficients of the model o and o were
set to have non-negative values. To give more importance to the fitting of the main
increasing EVI period, we add an arbitrary weight, i.e. w;; = 10 during a month ¢ of
the "main increase” and w; ; = 1 otherwise. The "main increase” was define as the
longer period between a pit and a peak in the EVI time series . Finally,
we minimized the weighted sum of squares of the model. This enables us to use all
months to fit the model, including the EVI decreasing months, which resulted in a
better model fit.

PLOS

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142



PLOS ‘ SUBMISSION

@

900%/5002 L09°0F9T°L ST'9 gz'0 14 SHA G8C 69~ gE€8'CI- eredoquief, nrd —wi [0h%| 814
I861/8L6T 809°0F¥0'Q 09 T 09 SHA €€0°6G- €€e°9 SIH 3uleg op 93sid rueng yousig (05/Kt4
1102/€002 TIE0FLLY 8T Sv'o o SHA 726°CS- 6LT°G nooseredq ruRIng yousig [2vliov) celive
8002/1002 79'0F88'¢ 0T g0 (04 SHA 089°CG- ¥80°% sensSeiInoN rueInd yousig O¥%|IST
9002/%002 T€°0F9 gct g0 acT SHA 00€°04- LTL € noefeoeuwy rvrquoron 0% ST
£00%/000gT €€9°0F¥e'S o€ T oe SHA TL6°7G- L10°€- gguy sofedey, 1zeig [ev| 7R cz
£00%/T002T 9TT ' TFLT'S 0c T 0c SHA gTe aG- CIV'11- dourg [tzeig O%|1ST
$002/€00T VIS IFIC'S 91 T 91 SHA L9L°8G- LIV'0T- rvusTLIN [ o1y [rzerg 0v|isT
1002/8661 91V 0F€s'€ 0g T 0g ON L92°0G- €€8°L- eIeoleIRN [rzerg [evlicrlice
6661/L66T L09'0FVT L g eral] 0T ON L9865~ €e1°¢- sneueN 1tzerg OF%|IST
$002/¥00% 968°0F€9°L 14 eral] 00T SHA 000°2s- 000°T- ered rrer zerg O¥%|IST
LLBT/9L6T LBT'0FL6'E g'c gc’o ot SHA TV6°69- 296°C- 3_ong Tizerg 0% ST
T86T/6L6T ¥95°0+€0'8 gL g0 ST ON LIT09- L9¢°C- SNBURIN 9AI9S9Y selrrdImy [1zerg 0%l ST
9002/5002 8E€L'0FLT'9 gT'9 eralt] jet4 SHA 99¥%° TG~ G8L'T- rvuenIixen [rzexg 0v|isT
€102/2102 61°0F9€°¢ GL°8T gc'o Gl SHA 610°19- 9LV T rereseren [rzerg 17ST
2002/6661 GL9°0F6S°9 8T T 81 ON 000°09- 00G°2- dal19s9Y dAAAdd 1zerg O¥|[ST
uoijeinp HS F ueoN 9Z1s 309 oz1s deaj qu deaijy odAy opnji3uory opnjijer] 29418 A13unoo ERYCRES R

"UOIYRIND oYY pue _Iedd ;e SN ul A31aponpoid

[[ej10991] wreow oy ‘pojduues eore [e107 oy ‘ozis dery oyj ‘sdery jo Tequnu oyj ‘(QN) [[RJION] €10} 10 (SHA) [[e] Jeo[ A[UO ‘SjuoueINseat

Jo ad£y o1y sprodel SUMINM[OD XU ST, "PoIIodal oIe (S99180p [RUIINOP Ul 9PNJIje] PUR SPNIISUO]) S91eUIPIO0D (o1 deI3095 pue oureu 931s [[NJ
‘AIIUN0D ‘SAOIIIR O JO 9OUDIIJOI ‘9)1S [ord IO * wiogj pojdepe‘sjusuaansesatt [[e]1911] I0] so3is Apnjs a3} Jo uorpdiidsa( T d[qelL

2]
O
|
[a



@PLOS | susmission

residuals;y = EVIn;; — E/VTni,t (2)
SSe;, = i(wi’t x residual ) (3)
t1:21 12
SSt; = Y (wiy x (EVIni; — (Y wiy x EVIng/12))%) (4)
t=1 t=1
R? = 1-—(SSe;/SSt;) (5)

For each pixel i, the coefficient of determination R? was computed with the weights
wi=1:12,i, that is, the residual sum of squares (SSe;, eqn [3) and the total sum of squares

(SSt;, eqn [4)) were weighted. EV In is the observed normalized EVI and EVIn its
prediction from the linear model.

The determination of the time lag between the increase of maximal temperature and
EVI increase was made in two steps. First, we estimated the best EVI model for the
whole area with a lag of 0, 1, 2 and 3 months. Second, we estimated the best model of
EVI increase with the increase of maximal temperature at lag 0, 1, 2 and 3 months by
pixels, by using only the pixels where precipitation and maximal temperature are
correlated below 0.2 during the increase of EVI at all the lags. This selection discards
artificial correlations between the climate variables. Then, we compared the results by
pixels of the best model selected at the first step for the whole area (one month) and
the lags obtained at the second step using the Bayesian information criterion [49).
Finally, we kept the best model for each pixel.

Monthly leaf fall estimation (from monthly litterfall productivity measurements)
were normalized and smoothed using a spline with 4 degrees of freedom and compared
to the normalized EVI (EV In).

Finally, the quality of the fit of the EVI model was analyzed by comparing it against
the mean annual precipitation, the mean annual maximal temperature and standard
deviation, the mean percentage of valid observations per month in MATAC data, the
periodicity of the EVI signal, the altitude and the tree cover.

All analyses were performed using R [50]

Results

EVI greening across the Amazon forest can be explained by seasonal increase in
insolation and precipitation (Fig. |l and . Seasonal changes in EVI were mainly
related to insolation (70.4% of the total area) in the north-western, central and eastern
part of Amazonia. EVI greening is associated to precipitation seasonality (29.6% of the
area) in continuous areas above 5°N (North part) and below 5°S (South-West, South
and South East part). 75.0% of the pixels where the greening is associated to insolation
follows the increase in solar radiation with a mean lag of one month . No time

lag was observed in regions where greening is associated to an increase in precipitation.

The modeled EVI with precipitation and maximal temperature is consistent with
MAIAC EVI . Inconsistent regions (R2<0.5, 6.2% of the forested area) have
either uncommon forest structures, such as bamboo dominated forests, or constant
cloud cover inducing high noise in the EVI signal (S3 Appendix} [S10 Fig)

The seasonal association of MATAC EVT and litterfall (measured across 16 sites
within the Amazon basin, table , changes depending on the climate variable
associated with EVI (Fig. . In the sites where EVI is associated to precipitation, EVI
has an negative linear relation with litterfall (site 1-5, Fig. . In these sites, the
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Fig 1. Spatial pattern of climate controls on leaf growing season initiation
in South American tropical forests.
Locations of the sites with monthly litterfall productivity measurements are indicated

by blue numbers.
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browning of the vegetation occurs when leaf shedding is maximum. For most of the sites
where EVI is associated to radiation a singular temporal pattern is observed. The
highest production of litterfall occurs, not when EVI is maximum, but when EVI
increase (site 6-16, Fig. . All these sites present a peak of litterfall even if some of
them produce litterfall in all the months of the year.

Discussion

Despite the high diversity and different species composition of these forests, we show
that EVI greening across the Amazon forest may be explained by climate seasonality
(Fig. . The predicted EVI from precipitation and insolation is highly consistent with
the observed MATAC EVI , supporting the model’s biological assumptions: EVI
increase is likely a proxy of leaf production triggered by climate drivers. Isolated
patches where the results are not consistent (R2<0.5, 6.2% of the forested area)
represent areas highly challenging for remote sensing; that is, uncommon forest
structures, such as bamboo dominated forests, constant cloud cover resulting in high
noise in EVI (S3 Appendix| and [S10 Fig)); and may be micro-climate or local soil water
retention characteristics. Comparing our modeled EVI to MATAC EVI reveals
limitations of the remotely sensed EVI that cannot be discovered with classic remote
sensing analysis (such as classifications) which does not consider the biophysical nature
of the signal. Additionally, it gives a biological interpretation of EVI derived from
optical measurements of reflected electromagnetic radiation.

It was previously shown that the difference of mean wet and dry season EVI
(AEV I(yet—dary)) is associated to water availability for the canopy processes in tropical
forests, globally [11]. The authors found that AEV I(yet—qry) is positive in forests with
precipitation < 2000 mm.yr~!, while negative in region with no water limitations. Our
results agree with this study. In water-limited regions, where precipitation is the main
control of EVI seasonality, the lowest EVI is observed during the driest period.
Additionally, here we show that for forests without water limitations (highest EVI
during the dry periods), seasonal radiation increase is likely the climate control of EVI
greening, as already observed for several sites in tropical forests [4,/5,25,51]. These
results refute the general intuition found in the literature regarding the negative effect
of dry seasons or seasonal droughts on tropical forest dynamics [27]; for example,
seasonal or temporary droughts are known to increase the mortality of trees [28}[29] and
to reduce tree growth [25]. However, we show that the dry season consequences on the
canopy functioning is not always stress. This is confirmed by dry season observations of
leaf flushing [8}[20}22}23[31L[52}[53]; and photosynthesis increase from flux towers [94|54]
and satellite remote sensing [|4}/5,/11,/18L|51]. This indicates that during the dry season,
these forests might not be limited by water . From ours and previous results based on
EVI [11], we further referred to water-limited and light-limited for the forest where EVI
seasonality is associated to water or radiation, respectively.

In light-limited forests, EVI peaked during the period of increasing insolation, likely
as a result of increased new leaf production [3}|5H7]/11,[22,23,/51]. While not all the
species have annual leaves production cycle, field observations of proportion of trees
with news leaves in light-limited forest support this result [8|18}[22]. Here, the greening
follows the increase in solar radiation with a mean time lag of one month (75.0% of the
light limited pixels, ; which is consistent with dry season field and satellites
observations of leaf flushing, which occurred several weeks after increase in insolation in
tropical forests [94123,51.[55/56]. The bud break preceding synchronous greening of
tropical forests are caused by an environmental signal perceived weeks before leaf
emergence and this has been ignored by previous remote sensing studies [10,57]. The
time lag observed here may have three explanations. First, it could be caused by the
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Fig 2. Seasonal leaf production (EVI increase) and associated litterfall
productivity in 16 tropical forest sites.

PLOS



@PLOS | susmission

sensitivity of trees to seasonal changes in climate. A gradual increase in insolation
might be a climate signal more subtle to perceive than the rapid transition from dry to
wet season, and could explain why leaf flush is not synchronized with the increase of
insolation. Second, in the absence of a strong signal during the dry season, the observed
time lag may also be related to the production of bud and subsequent bud break if the
buds have not been produced on the trees during the rainy season and need time to
develop following the increase of insolation. Third, the time lag could reflect
yet-unknown endogenous driver of leaf production. For instance, we know that
individuals of the same species can present differences in the timing of leaf flush [53]
and that leaf renewal and/or net leaf abscission also occur during the entire year
unrelated to climate variations [3,/41[{10425,/51]. The 1km spatial resolution of EVI
MATAC integrates the changes in the canopy of all the trees in this area. While it exists
a variability between species and individuals, remarkably, the change of the canopy
properties visible from space seems to indicate that in light-limited forests an important
proportion of the trees flush their leaves during the dry season. The time lag may thus
be pragmatically viewed as the mean response time between insolation increase and the
flushing of new leaves.

In water-limited regions, greening is associated with an increase in precipitation.
This is consistent with observations in dry tropical forests, where the timing of
synchronous bud break of leafless trees varied from year to year with the first rains of
the wet season, as irrigation caused bud break within a few days [5§]. This also suggests
that the leaf buds are already set up but stay dormant during the dry season. The
relationship between seasonal changes in MAIAC EVI and litterfall (Fig. [2)) confirms
two major assumptions about leaf fall seasonality in tropical forests. First, abscission
due to the seasonal production of new leaves in response to increased light availability
when water is not limited, and second, leaf shedding due to high evaporative demand in
water limited environments [3,8}[25}40,,51L/59}/60].

In water-limited forests where the seasonal leaf fall responds to high evaporative
demand [25], the leaf fall peaks when minimum EVI values are observed. The linear
relation between EVI and leaf fall suggests that the EVI seasonality of these regions is
mainly explained by the net loss or gain of leaves (Fig. . In light-limited forests,
minimum EVI was mostly not synchronized with maximum litterfall (Fig. [2). This
supports previous results showing that EVI browning is more likely related to leaf aging
and parasites in these regions [26}/32,61]. While in light-limited forests, leaf fall
seasonality could be mainly explained by the coordination in time of leaf growth with
senescence [8}20}23], in water-limited forests, leaf fall is not synchronous with leaf
production (Fig. [2). Leaf demography models [8] should account for this difference in
order to be representative of the whole Amazon. More studies of leaf renewal based on
field and remote remote sensing data [8[20,23] are needed to confirm the direct link
between increase EVI and new leaves production.

Conclusion

Subtropical and tropical seasons are generally defined in terms of dry or wet season, but
here we show that this definition is not correct in the Amazonian forest regions without
water constraints. In 70.4% of the Amazon forest, the increase in insolation triggers the
visible progress of leaf growth and this process occurs in a sufficient proportion of the
trees to be observed from satellites, just like during spring in temperate forests [62].
Direct and strong climate environmental signals trigger leaf growing season, which
supports the hypothesis of a leaf production optimized for carbon gain under seasonal
resource availability [56}/58,/60]. In absence of water limitation, the leaf production
follows the solar insolation, while in water-limited regions, trees quickly produce leaves
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with the first rains to benefit from high insolation at the end of the dry season. This
high dependency of seasonal leaf renewal on climate, previously largely
underestimated [63], may indicate a high sensitivity of these ecosystems to climate
change.

Supporting Information

S1 Fig. Correlation between monthly maximal temperature from Climate
Research Unit [35] and monthly incoming solar radiation at the surface
from CERES [36]. The data have been extracted from a grid of 0.5° spatial
resolution over the studied area spanning from 40°W to 80°W in longitude and from
20°S to 10°N in latitude. The two variables have been normalized, using their monthly
mean and standard deviation. The red dashed line is the identity line y = x and the
Pearson’s correlation coefficient is given.

S2 Fig. Seasonality of EVI, precipitation and maximal temperature
described by the number of seasonal cycles during a year (12 indicates one
peak every 12 months and 6 two peaks a year).

S3 Fig. Coefficient of determination of the model of EVI increase, from a
linear model with only precipitation and maximal temperature (with a lag
of 1 month for the whole area). The seasonal pattern of increasing EVI is
predicted with an R? above 0.6 for 85.1 % of the region of interest. Regions shown are
1-Acre, 2-Roraima and 3—Venezuela. Detailed results are given in supplementary text
for these regions.

S4 Fig. Normalized monthly time series of EVI, precipitation, and
maximal temperature for 10000 pixels in the regions Acre (region 1),
Roraima (region 2) and Venezuela (region 3).

S5 Fig. Coefficient of determination (R?) of the model with only
precipitation and maximal temperature (with a lag of 1 month for the
whole area) and distribution of bamboo dominated forests in Acre
extracted from the Brazilian vegetation map of 2005 [38].

S6 Fig. Relation between elevations, MAIAC data characteristics and
model fitting quality in the Roraima region. Elevation map of the Roraima
region (region 2). Mean percentage of valid EVI MATAC observations per months to
estimate EVI and isoclines of altitude (b). Significative lag with maximal temperature
(¢). Quality of the fit (R?) of the model of EVI increase with precipitation and maximal
temperature with a lag of 1 month and isoclines of altitude (d). Quality of the fit (R?)
after accounting for the best time lag with maximal temperature and isoclines of
altitude (e).

S7 Fig. Estimated time lags in months and by pixels between the increase
of EVI and the increase of maximal temperature.

S8 Fig. Quality of fit of the EVI model accounting for the time lags by
pixels between the increase of EVI and the increase of maximal
temperature, from a linear model with only precipitation and maximal
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temperature (time lag between 0 and 3 months). The seasonal pattern of
increasing EVI is predicted with a R? above 0.7 for 84.75 % of the region of interest.

S9 Fig. RMSE of the EVI model accounting for the time lags between the
increase of EVI and the increase of maximal temperature (estimated by
pixels), from a linear model with only precipitation and maximal
temperature (with a time lag between 0 and 3 months).

S10 Fig. Association of annual climate variable statistics with climate
controls. Quantile of mean annual precipitation (a), standard deviation of mean
annual maximal temperature (b) and percentage of mean number of valid 8 day
observations that were used to calculate the mean monthly values (c¢) in the five classes
of climate associations with EVI. Only pre indicates pixels only associated with
precipitation, only tmx indicates pixels only associated with maximal temperature,
pre > tmz indicates that the part of EVI variance explained by precipitation is higher
than the part of EVI variance explained by maximum temperature and pre < tmzx
indicates that the part of EVI variance explained by maximum temperature is higher
than the part of EVI variance explained by precipitation. Noef fect indicates pixels
where EVI had no associations with precipitation and maximal temperature.

S11 Fig. Association of the the model fit (R?) with annual climate
characteristics and number of EVI observations. Associations are presented for
all the 1 km? forested pixels in the studied area spanning from 40°W to 80°W in
longitude and from 20°S to 10°N in latitude with annual precipitation (a), annual
maximal temperature (b), percentage of mean number of valid 8 day observations that
were used to calculate the mean monthly values (c), periods in the EVI signal (d),
Altitude (e) and tree cover (f).

S1 Appendix. Finding the months of the main EVI increase. To filter the
EVI time series and find the main increase, we used a Fourier spectral decomposition.
EVI inter-annual monthly mean values were modelled by a weighted sum of simple sine
waves of period 6 months and 12 months, that is, one or two seasonal increases of EVI
per year, as observed in the EVI time series. We assumed that other periods in the
signal are only constituted by noise. To filter EVI, we fit the following equation to the
EVI time series :

EVI(t) = EV Iy + powg (ps sin(27r6t + ps) + P12 sin(QWEt + p12)) (6)

with pg +pi2=1and fort=1,...,12 x n.

EVT is the filtered time series, EV I is as an estimate of the mean annual EVI, t is
the time in month, pg and p1o are the delay of signal components with periods of 6
months and 12 months respectively. powy is the power of the signal and pg, p12 are the
relative proportion of the periods of 6 months and 12 months respectively. The
parameters EV Iy, powy, pg, P12, p¢ and pi1o were estimated by least square

minimization. To facilitate the optimization, the time series was replicated 3 times
(n=3).

After filtering the EVI signal, pits and peaks were identified in the EVT time series.

A peak or pit is an observation that is preceded and followed by, respectively, lower or
higher observations [64}(65]. The main increase was defined as the months during the
longest period between a pit and peak.

This analysis was also performed on precipitation and temperature time series to
determine the relative proportion of the 6 and 12 months periods in their time series.
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S2 Appendix. Periodicity analysis of monthly EVI MAIAC, precipitation
and maximal temperature. From the analysis of frequency in the time series of EVI
and climate variables, we determined that 93.4% of the forested pixels have only one
seasonal increase in the EVI signal per year (fig. [S2 Figh). Some forested pixels,
however, have two periods in the EVI signal and are spatially coherent. This could
reflect an influence of the vegetation structure on EVI. Some forested pixels have two
periods in the signal and are not clearly spatially aggregated, indicating large shifts in
the signal. This might reflect noise in the data resulting from low availability of good
quality observations for EVI computation. Regions where EVI signal shows more than
one period in a year (6.6% of the forested surface) were localized largely in the
Colombian Amazon, in the Brazilian States of Acre and Roraima, in the North-East
part of Guyana, in the central and Eastern part Venezuela (fig. ) Pixels with
two periods in the EVI signal are not predictable if the number of periods in the climate
variables are not correlated or the same. In the case of both climate variables with two
periods (figs. -c) and EVI with only one period, our model won’t fit the EVI
data as it will predict two periods.

S3 Appendix. EVI MATAC regional pattern analysis. In the following, we
describe the EVI pattern for 3 regions (numbered in Fig. where the model had
problems to reproduce the seasonal pattern of EVI.

Brazilian region of Acre, region 1. In Acre, spatial aggregates of pixels show
weak association to climate variables (R2j0.4, fig. [S3 Figl region 1). The EVI signal in
this region was found to have two distinct patterns (fig. |[S4 Fig|region 1), a peak in
November correlated with maximal temperature and a peak in June-July apparently
dissociated of climate. The pixels with R? above 0.9 have one period per year while the
pixels with R? below 0.1 have two periods per year (fig. region 1). The two
periods are also visible in the analysis of EVI frequencies (fig. [S2 Figh). Bamboo
dominated forests are common in Acre and their occurrence have been mapped [38].

The patches with low R? appear spatially related to the bamboo dominated forests (fig.

IS5 Fig). These Bamboo dominated forests are characterized by a mosaic of forest stands
without bamboo with heterogeneous forest structure, and stands of trees scattered
within a canopy dominated by a single species of native arborescent bamboos (Guadua
spp.) |66]. Our results show that MATAC bidirectional reflectance distribution function
(BRDF) may not describe the BRDF of such complex canopy structure accurately
enough. Interestingly, the changes occurring in October and November indicate a good
sensibility of EVI MAIAC to capture EVI changes during wet months (mean
precipitation of 227.0 and 295.7 mm, respectively).

Brazilian region of Roraima, region 2. In Roraima (fig. [S4 Fig| region 2),
spatially aggregated pixels showed only weak correlation to climate variables. The
coefficient of determination (R?) declined from over to 0.9 to below 0.1, from side to
side of the hills (fig. |[S6 Figh). The areas with low R? values form plumes located on the
West South-West sides of these hills (fig. [S6 Fig{d). The MATAC number of observations
per month shows an increase from the top to the West and South-West side of these
mountains (fig. [S6 Figp) in the direction of the prevailing wind of this region. The
highly significance of EVI increase in the areas with a R? above 0.9 is likely associated
with maximal temperature increase occurring one month before. For the areas with a
R? below 0.9, the general pattern of EVI is similar, however the increase occurs with a
time lag of two or three months after the increase of maximal temperature. For these
latter areas, the EVI increase was not correlated with precipitation, as EVI increase
primarily followed maximal temperature. We estimated the lag of EVI increase with the
increase of maximal temperature at 0, 1, 2 and 3 months. To discard artificial
correlations between the climate variables, the lags were estimated only for the pixels
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where precipitation and maximal temperature are correlated below 0.2 during the
increase of EVI at all the lags. Then, we compared the results of the model at lag 1 and

the other lags using the Bayesian information criterion [49] and kept the best model (fig.

IS7 Fig)). For this region, the time lags of two and three months are located on the West
South-West sides of the mountains (fig. ). The linear model of EVI with
precipitation, maximal temperature and the associated lags allowed us to reproduce the
pattern of EVI increase in Roraima (fig. [S6 Fige). The lags are unlikely due to shade
artifacts or slope effects because a BRDF function corrects for these effects in the
MATAC, and, if these artifacts were the causes, their effects should also occur in other
regions of Amazonia. This region shows an unique climate seasonality in our data set,
precipitation and maximal temperature are the most asynchronous and their peaks are
separated by more than 5 months. In the areas where a time lag of two to three months
was observed with respect to increase in solar radiation, trees may delay leaf flushing.
The number of MATAC observations per month is higher in these areas (fig. [S6 Figb)
meaning that they are less cloudy than the areas with a time lag of one month between
EVI and maximal temperature increase. In the EVI signal, the increase of EVI for these
area is less sharp (fig region 2).

Venezuela, Region 3. In Venezuela (fig. region 3 and fig. region 3),

the observed EVI signal was found to be noisier than in other regions presented in this
work. This region is amongst those with the lowest number of valid observations per
month, a mean and maximum of 34.6 % and 50.7% was observed. Increase in EVI in
associated to maximum temperature increase occurred from February and May and
from July to October. This region has a complex climate with two periods in maximal
temperature and precipitation per year.
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