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Abstract. The cryostratigraphy of permafrost in ultraxerous environments is poorly known. In 15	

this study, icy permafrost cores from University Valley (McMurdo Dry Valleys, Antarctica) 16	

were analyzed for sediment properties, ground-ice content, types and distribution of 17	

cryostructures and presence of unconformities. No active layer exists in the valley, but the ice 18	

table, a sublimation unconformity, ranges from 0 to 60 cm depth. The sediments are 19	

characterized as a medium sand, which classifies them as low to non-frost susceptible. CT scan 20	

images of the icy permafrost cores revealed composite cryostructures that included the 21	

structureless, porous visible, suspended and crustal types. These cryostructures were observed 22	

irrespective of ground-ice origin (vapour deposited and freezing of snow meltwater), suggesting 23	

that the type and distribution of cryostructures could not be used as a proxy to infer the mode of 24	

emplacement of ground ice. Volumetric ice content derived from the CT scan images under-25	

estimated measured volumetric ice content, but approached measured excess ice content. A 26	

paleo-sublimation unconformity could not be detected from a change in cryostructures, but could 27	

be inferred from an increase in ice content at the maximum predicted ice table depth. This study 28	

highlights some of the unique ground ice processes and cryostructures in ultraxerous 29	

environments. Keywords: cryostratigraphy, sublimation unconformity, ground ice, permafrost, 30	

CT scan, McMurdo Dry Valleys of Antarctica 31	
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INTRODUCTION 1	

Cryostratigraphy is an approach that emphasizes the description of cryostructures 2	

(distribution and shape of ground ice in permafrost), the quantification of ground-ice content and 3	

associated cryofacies, and the identification of unconformities in permafrost. Together, the 4	

elements of the cryostratigraphic approach help determine the nature of ground-ice emplacement 5	

and the history of permafrost (e.g. French, 1998; French and Shur, 2010; Gilbert et al., 2016). 6	

Cryostratigraphic studies have focused on Arctic permafrost, where permafrost soils are moist to 7	

water-saturated, the principle moisture source is liquid water, the main mechanism of ground-ice 8	

formation is freezing of water, and unconformities relate to the thaw of near-surface permafrost 9	

during past warmer periods (i.e. thaw unconformities) (Mackay, 1972; Fortier et al., 2008; 10	

French and Shur, 2010; Douglas et al., 2011; Gilbert et al., 2016). Little is known about the 11	

application of cryostratigraphy in permafrost from ultraxerous environments, such as the high-12	

elevation terrain in Antarctica, where the principle moisture source is vapour and the main 13	

mechanism of ground-ice formation is vapour deposition. In these regions, the permafrost table 14	

is at or near the ground surface (Adlam et al., 2010); however, the position of the ice table, 15	

which is the interface between dry and ice-bearing permafrost, reflects the equilibrium depth 16	

between seasonal vapour deposition and sublimation (Fisher et al., 2016). The ice table therefore 17	

represents a sublimation unconformity, in a similar manner as the permafrost table represents a 18	

thaw unconformity. 19	

In University Valley, situated in the upper McMurdo Dry Valleys (MDV) of Antarctica, icy 20	

permafrost was found below a shallow ice table (McKay, 2009; Marinova et al., 2013). Based on 21	

its dD-d18O composition, the ground ice in the sandy sediments was emplaced by three different 22	

mechanisms: vapour deposition, freezing of partially evaporated snow meltwater and burial of 23	

glacier ice (Lacelle et al., 2011, 2013; Pollard et al., 2012; Lapalme et al., 2017). The differing 24	

ground-ice emplacement processes in University Valley allow us to assess the application of 25	

cryostratigraphy in an ultraxerous region and its ability to help infer the origin of ground ice and 26	

the past permafrost conditions (i.e. the presence of a paleo-sublimation unconformity). Using 27	

ice-bearing permafrost cores collected from University Valley, the objectives of this study are to: 28	

(1) describe cryostructures in the permafrost cores, based on computed tomography (CT) scan 29	

images, to determine if differing ground-ice origins generate distinct cryostructures; (2) 30	

determine the potential presence of sublimation unconformities in the icy permafrost; and (3) 31	
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derive volumetric ice contents in permafrost using the CT scan images and compare the results 1	

with measured volumetric and excess ice contents. Overall, this study highlights some of the 2	

unique ground-ice processes in ultraxerous environments, where the availability of moisture is 3	

limited.  4	

 5	

STUDY AREA 6	

University Valley is 1.5 km long and situated in the Quartermain Mountains of the MDV, 7	

Antarctica (77°52’S, 163°45’E), 1600-1800 m above sea level (a.s.l.) (Figure 1). A small glacier 8	

is situated at the head of the valley and permanent snow patches are found in depressions located 9	

in the western portion of the valley floor. Sand-wedge polygons, typical of ultraxerous 10	

environments (Marchant and Head, 2007), occupy the valley floor and some of the talus cones. 11	

Polygon diameters range from ca. 10 m in the upper section of the valley to ca. 20 m in the lower 12	

section (Mellon et al., 2014).  13	

The local bedrock consists of Jurassic age sills of Ferrar Dolerite and Devonian to Triassic 14	

age sandstones and conglomerates of the Beacon Supergroup (Barrett, 1981; Cox et al., 2012). 15	

The surficial sediments comprise alpine drift in the upper and middle regions of the valley, 16	

undifferentiated till in the lower part, and colluvium and talus cones at the base of valley walls 17	

(Cox et al., 2012). Optically-stimulated luminescence ages obtained from permafrost cores from 18	

four polygons in upper and middle University Valley (P1, P2, P8, P12) yielded ages of 17.9 ± 1.6 19	

kyr for sediments at 2-5 cm depths, whereas those at 90-95 cm depths were dated to 170 ± 36 kyr 20	

(Lacelle et al., 2013; Trinh-Le, 2017). These ages fit reasonably well with those derived from Cl 21	

accumulation in the upper 56 cm of sediments (Jackson et al., 2016). The undifferentiated till, 22	

which contains granite erratics, is likely associated with the Taylor 4b Drift (>2.7 Ma) or an 23	

older glaciation (Cox et al., 2012; Dickinson et al., 2017). Given the apparent continuous 24	

sediment accumulation of the alpine drift over the last 200 ka and enduring cold-climate 25	

conditions for the last 12 Ma (Lewis et al., 2007, 2008), the permafrost in the sediments along 26	

the valley floor is likely syngenetic.  27	

University Valley is situated in the stable upland climate zone of the MDV, a region 28	

characterized by summer air temperatures <0°C, relative humidity values near 50% (Doran et al., 29	

2002; Marchant and Head, 2007) and low precipitation (<10 mm snow water equivalent; 30	

Fountain et al., 2009). Three years of climate data (2010-2012) collected from an automated 31	
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weather station in University Valley indicated a mean annual air temperature of –23.4 ± 0.9°C, a 1	

mean annual relative humidity of 45.5 ± 1.8% and maximum hourly air temperatures always 2	

<0°C (Lacelle et al., 2016). Two distinct ground-surface temperature zones have been identified 3	

in the valley (Figure 1e): (1) a perennially cryotic zone (PCZ) in the north-east section of the 4	

valley, characterized by ground-surface temperatures always <0°C; and (2) a seasonally non-5	

cryotic zone (NCZ), characterized by ground-surface temperatures that rise above 0°C for at least 6	

a few hours on clear summer days. The transitional area between the PCZ and NCZ is referred to 7	

as the intermediate mixed zone (IMZ) and may exhibit characteristics of either zone.   8	

The permafrost table along the floor of University Valley is at the ground surface (Lacelle et 9	

al., 2016), whereas the ice table ranges in depth from 0 cm near the glacier to ca. 60 cm at the 10	

mouth of the valley (McKay, 2009; Marinova et al., 2013). Fisher et al. (2016) concluded that 11	

the measured ice-table depths are likely in equilibrium with present-day ground-surface 12	

temperature and humidity conditions. Ground ice is abundant below the ice table, with excess ice 13	

contents, excluding the two buried glacier-ice bodies, reaching 93% (Lapalme et al., 2017). 14	

Based on dD-d18O measurements, ground ice has been attributed to three different origins: (1) 15	

vapour deposition in the sediments from the PCZ; (2) freezing of partially evaporated snow 16	

meltwater in the sediments from the NCZ; and (3) buried glacier ice at two localities (Lacelle et 17	

al., 2011, 2013; Pollard et al., 2012; Lapalme et al., 2017).   18	

 19	

METHODOLOGIES 20	

Field sampling and core selection  21	

Between 2009 and 2013, 18 ice-bearing permafrost cores were collected using an 11.5 cm 22	

diameter SIPRE corer from 12 polygons along the length of the valley (Figure 1). Prior to coring, 23	

the dry sediment layer above the ice-bearing permafrost was removed. Each core was retrieved 24	

in 10 to 50 cm long segments, wrapped in plastic core sleeves and shipped frozen in thermally 25	

insulted boxes to the University of Ottawa (Ottawa, Canada).  26	

All cores were analyzed for ground-ice content and five were imaged using CT scanning 27	

(P1-C1, P6-C5, P7-C1, P8-C3 and P8-C6). These cores were selected because of their location in 28	

the valley with respect to the ground-surface temperature zones and ground-ice origins. P8 and 29	

P6 are situated in the PCZ and the IMZ, respectively, where the ground ice in the cores was 30	
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attributed to vapour deposition, whereas P1 and P7 are situated in the NCZ, where the ground ice 1	

formed by the freezing of partially evaporated snowmelt water (Lapalme et al., 2017).  2	

 3	

CT scanning and image processing   4	

The top section of the permafrost cores were scanned using a Siemens Somaton Volume 5	

Access dual CT scanner (pixel resolution of 0.4 mm for x, y and z axes) at the Institut National 6	

de la Recherche Scientifique (Québec, Canada). The technique produces a series of cross-section 7	

image slices that represent the relative X-ray absorption rate, from which the CT value in 8	

Hounsfield Units (HU) can be calculated (Hounsfield, 1973; Kawamura, 1990). Density was 9	

calculated relative to that of water; thus, water has a value of 0 HU and air has values near –1000 10	

HU (Kawamura, 1990; Delisle et al., 2003). When combined into an image stack, the image 11	

slices create a grey-scale image representing a 3D reconstruction of the density variations of the 12	

materials in the cores. Darker tones indicate lower density materials (i.e. gas and ice), and lighter 13	

tones indicate higher density material (i.e. sediments) (e.g. Hounsfield, 1973; Calmels and 14	

Allard, 2004, 2008; Torrance et al., 2008). Image processing and interpretations of the CT scan 15	

images depend on the threshold values determined for the various components of the core. The 16	

threshold value for identifying ice in the permafrost cores (–320 to 775 HU) was determined 17	

through analyzing the histograms of density measurements in the image stacks (e.g. Dillon et al., 18	

2008; Obbard et al., 2009; Calmels et al., 2012).  19	

 20	

Classification of cryostructures using CT scan images 21	

Cryostructures are defined as the description of the distribution and shape of ground ice in 22	

permafrost (Murton and French, 1994). CT scan images reveal cryostructures in a permafrost 23	

core at the millimeter scale, resulting in a more detailed description than would otherwise be 24	

possible along natural permafrost exposures or upon retrieval of permafrost cores (e.g. Shur et 25	

al., 2004; Kanevskiy et al., 2011, 2013, 2014). The cryostructures visible in the CT scan images 26	

were identified using the Murton and French (1994) classification, which includes lenticular, 27	

suspended, reticulate, layered, structureless and crustal cryostructures, with the addition of 28	

porous visible cryostructure, defined as random inclusions of ice that fill large pores (i.e. 29	

Stephani et al., 2010; Kanevskiy et al., 2011, 2013). Cryostructures were analyzed using the 30	

Orthogonal Views function in Fiji image analysis software. 31	



	 6	

 1	

Ground-ice content derived from analysis of CT scan images  2	

Volumetric ice content was calculated from each slice (0.4 mm resolution) of the CT scan 3	

images (VICCT) using the –320 to 750 HU threshold for ice and the Analyze Particles function in 4	

Fiji image analysis software. Using other thresholds (–200 to 700, –200 to 750, –250 to 700, –5	

250 to 750) had little effect on the calculated VICCT of the cores (Lapalme et al., 2015). The 6	

resulting masks from the function represent the filled outlines of the measured particles that were 7	

used to compute the total area covered by the particles (Ferreira and Rasband, 2012). The slices 8	

in the image stacks corresponding to breaks in the core segments and/or where the core image 9	

was smaller than the region of interest were removed as these slices would misrepresent the ice 10	

content in the core. To assess the accuracy of the volumetric ice content derived from the CT 11	

scan images, the VICCT values were correlated with measured volumetric and excess ice 12	

contents.  13	

 14	

Calculation of ground-ice content and accumulation rates 15	

Following CT scan imaging, the permafrost cores were cut into ca. 2 cm thick slices and 16	

thawed in sealed plastic bags. Once thawed, the cores were transferred into graduated 50 ml 17	

polypropylene tubes, where the sediments settled. The volume of supernatant water (if present) 18	

and sediments were recorded. Excess ice content (EIC), defined as the volume of ice in the 19	

ground exceeding the total pore volume that the ground would have under natural unfrozen 20	

conditions (van Everdingen, 1998), was calculated as: 21	

𝐸𝐼𝐶	 % = '(	×	*.,-*.
('(	×	*.,-*.01()	

	×	100   (1) 22	

where Ws is the volume of supernatant water (cm3), Vs is the volume of sediments (cm3) and the 23	

number 1.0917 is used to convert the measured volume of supernatant water to the equivalent 24	

volume of ice.  25	

 The volumetric ice content (VIC), defined as the volume of ice per unit volume of icy 26	

soils (van Everdingen, 1998), was determined as: 27	

𝑉𝐼𝐶	 % = 67	×	*.,-*.
18	

×	100  (2) 28	
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where Wv is the volume of the water in the sample (cm3), Vt is the total volume of the sample 1	

(cm3) determined from the core sample dimension. Wv is derived from the total mass of water in 2	

the sample (g), assuming a water density of 1.0 g cm3.  3	

Based on the VIC values, cryofacies types were defined as: pure ice (100% VIC), sediment-4	

poor ice (>75% VIC), sediment-rich ice (>50 to ≤75% VIC), ice-rich sediment (>25 to ≤50% 5	

VIC) or ice-poor sediment (≤25% VIC) (Murton and French, 1994). 6	

Apparent rates of ground-ice accumulation in the icy permafrost were calculated by dividing 7	

the cumulative volume of water in the core by the surface area of core barrel and by age of the 8	

soils, estimated from optically-stimulated luminescence ages and Cl concentrations (Lacelle et 9	

al., 2013; Jackson et al., 2016). Since Cl-derived ages were obtained for the top 56 cm of soils, 10	

the cumulative volume of water was calculated to this depth for sites with cores equal or longer 11	

than 56 cm (i.e., three cores discussed in this paper: P8-C3, P6-C5 and P1-C1; and three sites 12	

discussed in Lapalme et al., 2017: P12, P1-C2 and P6-C3). 13	

 14	

Determination of sediment properties 15	

The grain-size distribution of the sediments was determined at ca. 10 cm depth intervals 16	

using the stacked sieve method (2, 1, 0.5, 0.25, 0.125 and 0.0625 mm) and classified into three 17	

dominant particle sizes: gravel (≥2 mm), sand (<2 mm to ≥0.0625 mm), and silt and clay 18	

(<0.0625 mm). Two representative soil samples from P8-C3 and P1-C1 were analyzed by 19	

mercury porosimetry to determine their porosity and pore-size distribution (analysis performed 20	

by Micromeritics Analytical Services, Norcross GA, USA). 21	

	22	

RESULTS  23	

Sediment properties  24	

The sediment in the five cores is a pale brown (10YR 6/3) medium sand (0.25 to 0.5 mm), 25	

with <8% silt and clay (Figure 2). In each core, the grain-size distribution changed little with 26	

depth. In the three permafrost cores from the PCZ and IMZ (P8-C6, P8-C3, P6-C5), sand-sized 27	

particles ranged from 47 to 96%, gravel between 1 and 52%, and silt and clay occupied <5%. In 28	

the two permafrost cores from the NCZ (P7-C1 and P1-C1), the values were 76‒97% sand, 0.3‒29	

21% gravel and <8% silt and clay. According to Andersland and Ladanyi (2004), the sediments 30	

in the icy permafrost cores can be classified as low to non-frost susceptible. 31	
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Given the homogenous grain-size distribution, mercury porosimetry was performed on two 1	

samples. The porosity of P8-C3 and P1-C1 was 28 and 37%, respectively. The pore-space 2	

diameter of both sandy sediment samples ranged from 4 µm to 0.3 mm, with a unimodal 3	

distribution (dominant mode at 0.1 mm; Figure 2c). These porosities and pore-space distributions 4	

are similar to those determined in sandy sediments elsewhere in the upper MDV, such as Beacon 5	

Valley and Linneaus Terrace (Sizemore and Mellon, 2008). 6	

 7	

Cryostructures and discontinuities 8	

The CT scan images revealed multiple types of cryostructures across the same depth 9	

interval, including structureless, porous visible, suspended and crustal (Figure 3). All the 10	

observed cryostructures were composite in nature (Figure 4). The structureless, porous visible 11	

and crustal cryostructures were identified at all depths in the five permafrost cores. The 12	

suspended cryostructure was observed in all cores except P8-C6. The shape and size of the 13	

suspended cryostructure varied between the cores; those in P7-C1 and P1-C1 were 14	

predominantly smaller than those in P6-C5 and P8-C3. No trend in the distribution of the crustal 15	

cryostructures was discernable in the five cores as the ice rims, typically a few mm thick, either: 16	

(1) fully surrounded the sand or gravel particles; (2) covered or partially covered one side of 17	

them; or (3) contained a combination of both scenarios. The crustal cryostructures were more 18	

difficult to distinguish in P1-C1 as the gravel content was low at most of the investigated depths, 19	

resulting in much smaller sediment grains around which the ice rims developed. With the 20	

exception of the P8-C6 core, the relative proportion of individual cryostructures within the 21	

composite cryostructure varied with depth within each core as a reflection of the presence or 22	

absence of the suspended cryostructure. No unconformity in the form of a change in 23	

cryostructures with depth could be detected.  24	

 25	

Ground-ice content and accumulation rates 26	

In the five icy permafrost cores, EIC and VIC ranged from 0 to 66% and 32 to 82%, 27	

respectively, with both measurements being highly correlated (Figure 5). In P8-C3, collected in 28	

the center of a polygon in the PCZ, a shallow ice-rich horizon was observed just below the ice 29	

table. This ice-rich layer was not present in the shoulders of the polygons in the PCZ and IMZ 30	

(P8-C6, P6-C5). In all polygons in the PCZ, ground-ice content increased at ca. 40-50 cm below 31	
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the ground surface, resulting in an ice-rich zone in the uppermost 40-80 cm. In the NCZ, the two 1	

cores did not display the shallow ice-rich layer; however, like those in the PCZ the ground-ice 2	

content increased abruptly at ca. 40-50 cm below the surface. Figure 5 also shows the VICCT in 3	

the five permafrost cores. VICCT values were consistently lower than VIC, although the 4	

distribution of VICCT with depth more closely followed that of EIC. Using a linear regression 5	

analysis (Figure 6), the relation between VICCT values averaged over the same depth intervals as 6	

VIC and EIC (ca. 2 to 3 cm) showed a positive linear relation, but VICCT under-estimated VIC 7	

(VICCT (%) = 0.75 VIC (%) + 36.52; r2 = 0.45; p = <0.05), while VICCT and EIC showed a better 8	

correlation, apporaching the 1:1 line (VICCT (%) = 0.79 EIC (%) + 1.32; r2 = 0.67, p = <0.05).  9	

Based on the ground-ice content and age of the sediments, apparent rates of ice 10	

accumulation were calculated to infer moisture availability and transfer rates between the colder 11	

PCZ and warmer NCZ (Figure 7). Apparent ice accumulation rates in the PCZ ranged from 6.9 x 12	

10-4 mm yr-1 to 1.15 x10-2 mm yr-1. This range is similar to those calculated using the REGO 13	

vapour diffusion and deposition model (Lacelle et al., 2013; Fisher and Lacelle, 2014; Fisher et 14	

al., 2016). Apparent ice accumulation rates for sites in the NCZ yielded values in the same range, 15	

indicating similar moisture transfer rates in the differing thermal regions of the valley.  16	

	17	

DISCUSSION  18	

Previous cryostratigraphic studies of permafrost have focussed on (1) permafrost soils that 19	

were moist to water-saturated; (2) ground ice formed mainly from freezing of liquid water; and 20	

(3) discontinuities in the form of thaw unconformities (e.g. French and Shur, 2010; Gilbert et al., 21	

2016). Here we discuss the cryostratigraphy of permafrost in University Valley where: (1) the 22	

sediments in which syngenetic permafrost aggraded were dry to nearly dry; (2) the principle 23	

moisture sources were vapour and snow meltwater; (3) the main mechanisms of ground-ice 24	

formation were vapour-deposition and freezing; and (4) discontinuities are in the form of 25	

sublimation unconformities.  26	

 27	

Cryostructures in low frost-susceptible sediments of ultraxerous environments  28	

In the low frost-susceptible sediments of University Valley, four types of cryostructures 29	

were observed, including: structureless, porous visible, suspended and crustal, irrespective of 30	

their location in the valley (PCZ, NCZ or IMZ) and the associated origin of ground ice: vapour-31	
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deposited ground ice in the PCZ and freezing of partially evaporated snow meltwater in the NCZ 1	

(Lacelle et al., 2013; Lapalme et al., 2017). Therefore, the type of cryostructure observed in the 2	

cores could not be used to infer the mode of emplacement of ground ice.  3	

The similar cryostructures, ground-ice content and ice accumulation rates in the University 4	

Valley icy permafrost cores, irrespective of ground-ice origin, suggest that the cryostructures 5	

represent a transition from structureless to suspended as ice accumulates in the sediments. This 6	

process would depend on soil texture and the amount of available moisture in the icy cold 7	

permafrost (Figure 8). Optically-stimulated luminescence age from four sites in University 8	

Valley showed that sediments in the uppermost 1 m have been accreting for at least the last 170 9	

ka (Lacelle et al., 2013; Trihn-Lee, 2017). If we begin with dry sandy sediments with a porosity 10	

(n) that is subsequently filled with ice, the maximum content of pore ice would be:  11	

 𝑃𝑜𝑟𝑒	𝑖𝑐𝑒?@A(𝑔	𝑔C*	𝑑𝑟𝑦	𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡𝑠) =
,.-*.J
K

  (3) 12	

where ρ is the dry bulk density of the sediments.  13	

For typical University Valley sediments with ρ = 1.3 g cm-3 and n = 0.33, the maximum 14	

pore-ice content would be 0.23 g g-1 dry sediments. At this stage, the pore-ice conditions in the 15	

sandy sediments would be represented by a structureless cryostructure in smaller pore spaces and 16	

a porous visible cryostructure in larger ones. A crustal cryostructure could also be present at this 17	

stage as ice could grow around gravel clasts and smaller sand particles; albeit, the ice crust may 18	

not fully surround them yet at this stage. In University Valley, modelling estimates have shown 19	

that it would take ca. 225 years to fill the pore space of the sediments with ice by vapour 20	

deposition (Lacelle et al., 2013). Given the similar apparent ice-accumulation rate between the 21	

PCZ and NCZ, we estimate that it would take a comparable time to fill dry sediments with 22	

partially evaporated snow meltwater. But this process that would not necessarily occur each 23	

summer in view of the low snow recurrence interval (McKay, 2009).  24	

The presence of the suspended cryostructure in the icy permafrost of University Valley is 25	

frequently associated with EIC values >10% (Figure 5). The development of the suspended 26	

cryostructure is likely caused by the downward propagation of daily and seasonal temperature 27	

waves, setting up tensile stress in mixtures of pore ice and sediments (Mellon, 1997; Fisher, 28	

2005; Fisher et al., 2016). This in turn generates voids and cracks induced by the difference in 29	

the thermal contraction and expansion coefficients of ice and rock, with that of ice being about 30	

10 times that of most rocks (Fisher, 2005; Fisher et al., 2016). During each temperature cycle, 31	
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voids and cracks of various sizes generated in the icy sediments increase the available pore space 1	

to the depth of zero daily and annual temperature amplitudes, and become partially filled with 2	

new ice (either from vapor deposition or freezing of partially evaporated snowmelt). Because the 3	

cracks do not close to their original configuration after each thermal contraction cycle, this 4	

results in a progressive net increase of ice content above the initial porosity of the sediments, 5	

forming the observed suspended cryostructure, and heaving the overlying sediment. The 6	

progressive accumulation of ground ice, beginning from dry sediments that subsequently fill 7	

with pore ice and eventually reach excess ice contents ca. 80%, would take ca. 10,000 years in 8	

this ultraxerous environment (Lacelle et al., 2013).  9	

Overall, our results indicate that the structureless, porous visible, suspended and crustal 10	

cryostructures can form by both vapour deposition and the freezing of infiltrating snow 11	

meltwater in sandy cryotic sediments. The observation of these cryostructures in low frost-12	

susceptible sediments may therefore not be diagnostic of the moisture source or transfer process 13	

related to their development, particularly in ultraxerous environments. This finding challenges 14	

the current genetic classification of cryogenic structures that attributed the formation of these 15	

cryostructures to the freezing of moisture through cryosuction and other liquid water movement 16	

mechanisms in soils (i.e. Murton and French, 1994; French and Shur, 2010). The discrepancy 17	

between findings likely results from the very low ice-accumulation rate in the low frost-18	

susceptible sediments of University Valley (in the order of 10-4 to 10-2 mm yr-2). This highlights 19	

the importance of availability of moisture and its transfer rate to grow ground ice and the 20	

associated development of cryostructures in ultraxerous environments where the sediments are 21	

deposited dry to nearly dry and permafrost is syngenetic.  22	

 23	

Cryostratigraphy and the sublimation unconformity in ultraxerous environments 24	

The cryostratigraphic approach is commonly used to identify unconformities in permafrost 25	

where these are evidenced by a change in the distribution of cryostructures and ground-ice 26	

content (e.g. French and Shur, 2010; Gilbert et al., 2016). Unconformities in permafrost have 27	

previously been identified as thaw unconformities and attributed to a deeper thaw of permafrost 28	

under past warmer climate conditions and subsequent permafrost re-aggradation (e.g. Burn 1997; 29	

Fortier et al., 2008). In University Valley and other areas in the upper MDV, the permafrost table 30	

is at or near the ground surface; however, the position of the ice table reflects the equilibrium 31	
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depth between seasonal vapour deposition and sublimation (Fisher et al., 2016). 1	

Characteristically comparable to the permafrost table, the ice table is likely temporally dynamic 2	

and its depth will vary following temperature and humidity changes at the ground surface (Figure 3	

9). According to Fisher et al. (2016), the maximum ice-table depth for medium-grained sand, 4	

like that of University Valley, is expected to reach ca. 50 cm when ground-surface relative 5	

humidity ranges from 50 to 60%ice.  6	

In the five icy permafrost cores, no change in the type and distribution of cryostructures was 7	

observed in the uppermost 1 m (Figure 5). However, a paleo-sublimation unconformity could 8	

potentially be inferred from the abrupt increase in ice content at ca. 40-60 cm, which corresponds 9	

to the maximum predicted ice-table depth (Figure 5). The ground ice in the uppermost ca. 50 cm 10	

of the sediment column can accumulate and sublimate following changes in ground surface 11	

temperature and humidity conditions, although sublimation would be at a slower rate due to pore 12	

ice impeding vapour fluxes. However, the ground ice below 50 cm depth would continuously 13	

accumulate ice at a rate of ca. 0.03 kg m-2 yr-1 (Fisher et al., 2016), progressively increasing ice 14	

content over time. Therefore, unlike paleo-thaw unconformities, which can be identified by a 15	

change in the distribution of cryostructures, it does not appear that paleo-sublimation 16	

unconformities can be identified using the same approach. 17	

 18	

Deriving ground ice content from CT scan images  19	

Previous studies inferred that VICCT could be used to estimate the ground-ice content of 20	

permafrost (Delisle et al., 2003; Calmels and Allard, 2004, 2008; Calmels et al., 2008).  The 21	

studies were based on frost-susceptible soils that host thick ice lenses or bodies of massive 22	

ground ice, and VICCT was not correlated with measured ground-ice contents. Here, we assessed 23	

the accuracy of VICCT to predict ground-ice contents in the low frost-susceptible sediments of 24	

University Valley. Linear regression analysis revealed that VICCT under-estimated measured 25	

VIC, but VICCT and measured EIC showed a better correlation, apporaching the 1:1 line (Figure 26	

6). This is attributed to the pixel resolution of the scan images (0.4 mm) and the relation between 27	

porosity and the distribution of pore-space diameter of the sediments, namely the fraction of 28	

pore-space diameter being lower than the pixel resolution. For example, pore ice in the medium-29	

grained sand with an average porosity of 33% and a maximum pore space diameter of 0.3 mm 30	

(Figure 3) is not spatially resolvable in CT scan images with a pixel resolution of 0.4 mm. 31	
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However, EIC in these sediments can be estimated more accurately with VICCT, especially when 1	

the dimension of the ice component exceeds the pixel resolution of the CT scan images.   2	

Overall, VICCT has the potential to estimate the distribution and abundance of ground ice. 3	

However, the accuracy of VICCT would depend on: (1) the relation between porosity and the 4	

distribution of pore-space diameter of the sediments; and (2) the type of instrument used for CT 5	

scanning and its associated pixel resolution. For clay and silt, which tend to have high porosities 6	

(>50%; Head, 1992) and pore-space diameters less than the CT scan image resolution, VICCT 7	

would not be able to detect pore ice, but should be able to detect ice lenses if their dimensions 8	

exceed 0.8 mm (due to mixed pixel effect, the detection of an object being analyzed likely has to 9	

be greater than twice the pixel resolution; Jensen, 2002). For sand, which tends to have porosities 10	

near 30-50% (Head, 1992) and pore-space diameters that approach the resolution of the CT scan 11	

image, VICCT would estimate EIC reasonably but underestimate VIC as some pore ice would not 12	

be spatially resolvable. For coarse sand and gravel, with porosities typically less than 30% 13	

(Head, 1992) and pore-space diameters that exceed the image resolution, VICCT should provide a 14	

reasonable estimate of VIC given that interstitial ice could be spatially resolved. As such, the 15	

relationship between VIC, EIC and VICCT illustrated in Figure 6 should not be applied to all 16	

sediment types; future studies would need to quantify the relation between VIC and VICCT to 17	

correct, if necessary, VICCT for other sediment types. 18	

 19	

CONCLUSIONS 20	

Based on the analyses of sediment properties, ground-ice content and CT scan images of icy 21	

permafrost cores from University Valley, Antarctica, the following conclusions can be made: 22	

1) Sediments in the valley were characterized by a medium sand texture, with low fine-grained 23	

content, which classifies them as low to non-frost susceptible. However, the sediments still 24	

contained abundant ground ice, with excess ice and volumetric ice contents that reached 66% 25	

and 82%, respectively. 26	

2) Volumetric ice content derived from the CT scan images of the permafrost cores under-27	

estimated measured volumetric ice content, but approached the excess ice content due to the 28	

pixel resolution of the CT scan images, and the relation between porosity and the distribution 29	

of pore space diameter of the sediments. 30	
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3) Analysis of CT scan images of the permafrost cores revealed composite cryostructures that 1	

included the structureless, porous visible, suspended and crustal types. These cryostructures 2	

were observed irrespective of ground-ice origin (vapour deposited or freezing of snowmelt). 3	

Hence, the type and distribution of cryostructures may not be a proxy for the mode of 4	

emplacement of ground ice in low frost-susceptible sediments in ultraxerous environments.  5	

4) In the ultraxerous environment of University Valley the permafrost table is at or near the 6	

surface, and thaw unconformities have not been observed. However, the ice table, which can 7	

be represented as a sublimation unconformity, typically appears in the uppermost 60 cm of 8	

permafrost. A paleo-sublimation unconformity could not be detected from a change in 9	

cryostructure, but could be inferred from a conspicuous increase in ice content at ~40-60 cm 10	

depth, which corresponds to the maximum predicted ice table depth in the valley.  11	

 12	
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Figure Captions 1	
Figure 1a. Hillshade image showing the location of University Valley (black rectangle) in the 2	

Quartermain Mountains of the McMurdo Dry Valleys. The inset map shows the location of the 3	

McMurdo Dry Valleys in Antarctica; b. Hillshade image showing the location of core sampling 4	

sites within University Valley; c. Photograph illustrating the location of “University Glacier” and 5	

a down-valley view of University Valley; d. Photograph illustrating snow in the troughs of sand-6	

wedge polygons in University Valley; e. Map showing the ground surface temperature zones in 7	

University Valley and the location of the four polygons analyzed in this study (from Lacelle et 8	

al., 2016). The hillshades were derived from a LiDAR digital elevation model 9	

(http://usarc.usgs.gov/lida_dload.shtml) embedded into a 15 m ASTER digital elevation model 10	

of the upper McMurdo Dry Valleys (http://asterweb.jpl.nasa.gov/data/asp). The contours (white 11	

lines) on a, b and e are at 100 m intervals. 12	

 13	

Figure 2a. Grain-size distribution (%) of cores P8-C6, P8-C3, P1-C1, P7-C1 and P6-C5 with 14	

depth; the location of the permafrost table and the ice table is indicated for each core; b. Ternary 15	

plot showing the particle-size distribution of the five permafrost cores collected in University 16	

Valley. Gravel (≥2 mm), sand (<2 mm to ≥0.0625 mm) and fine (<0.0625 mm) sediments; c. 17	

Pore size diameter (µm) and cumulative distribution (%) in two representative samples of P8-C3 18	

and P1-C1. 19	

 20	

Figure 3. Examples of the a. structureless, b. porous visible, c. crustal and d. suspended 21	

cryostructures observed in the binary images of the five permafrost cores collected in University 22	

Valley. The black tones in the thresholded (-320 to 775 HU) images on the right represent 23	

ground ice and white tones represent all other components; the images on the left represent the 24	

scan image with enhanced brightness and contrast. Images are oriented so that the top of the core 25	

points upward. 26	

 27	

Figure 4. Reconstructions of the CT scan images of vertical sections through cores P8-C3 (42.5 28	

cm long), P8-C6 (40 cm), P7-C1 (27 cm), P6-C5 (71.5 cm) and P1-C1 (70 cm). i. Contrast and 29	

brightness adjusted view of core. ii. Ice threshold (–320 to 775 HU) applied to core. The darker 30	

tones in each image represent ice. The top of each core is at the top of its respective image.  31	
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 1	

Figure 5.  Ice contents and cryostructure distribution of permafrost cores P8-C3 (a), P8-C6 (b), 2	

P6-C5 (c), P1-C1 (d) and P7-C1 (e) from University Valley. i. Amount and distribution of 3	

measured excess ice content (EIC) and volumetric ice content (VIC) compared to volumetric ice 4	

content derived from the stack of -320 to 775 HU thresholded images (VICCT). Cryofacies type 5	

divisions are also indicated; ii. Distribution of suspended, structureless, crustal and porous 6	

visible cryostructures. The designation of a cryofacies type at specific depths within the cores 7	

depended on the method used to derive volumetric ice content (i.e. VIC or VICCT). The black 8	

rectangle in ai. indicates an imaging error in the stack of CT scan images.  9	

 10	

Figure 6a. Relation between measured volumetric ice content (VIC) in the five permafrost cores 11	

and VICCT averaged over the same depth interval; b. Relation between excess ice content (EIC) 12	

measured in the five permafrost cores and VICCT averaged over the same depth interval. 13	

 14	

Figure 7. Apparent ice accumulation rates for three cores discussed in this paper (P8-C3, P6-C5 15	

and P1-C1) and three cores discussed in Lapalme et al. (2017) (P12, P1-C2 and P6-C3) located 16	

in the perennially cryotic zone and seasonally non-cryotic zone. The two cores taken from the 17	

intermediate mixed zone (P6-C3 and P6-C5) are grouped in the perennially cryotic zone as their 18	

ground ice originated from vapour deposition. Accumulation rates from a drained lake basin and 19	

hummocky terrain in northwest Canada (O’Neil and Burn, 2012; and reference therein) have 20	

been added for comparison. 21	

 22	

Figure 8. Schematic diagram illustrating the transition, through time, from dry sediment to icy 23	

permafrost in University Valley. The sketch depicts a dry sand that is subsequently filled with 24	

pore ice and then subjected to thermal and elastic stresses. This results in an increase of the 25	

available pore space, which then becomes partially filled with new ice (either from vapour 26	

deposition or infiltration of partially evaporated snow meltwater).  27	

 28	

Figure 9. Schematic diagram illustrating a permafrost column with a dry soil layer between the 29	

permafrost table and the ice table, typical of soils in the upper McMurdo Dry Valleys of 30	
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Antarctica. The depth at which a paleo-sublimation unconformity may be observed is also 1	

indicated. 2	

 3	

 4	

Table 1. Details of the five ice-bearing permafrost cores collected from University Valley, 5	

McMurdo Dry Valleys of Antarctica. 6	

 7	

Core ID Latitude 
(South) 

Longitude 
(East) 

Ice table 
depth 
(cm) 

Length of core 
collected in 
field (cm) 

Length of core 
analyzed by CT 
scan (cm) 

Ground 
temperature 
zone 

Surficial 
sediments 

13-P8-C3 77.86563 160.72627 2 68 42.5 PCZ Colluvium  
13-P8-C6 77.86563 160.72627 2 40 40 PCZ Colluvium  
13-P7-C1 77.86422 160.72297 22 27 27 NCZ Alpine drift 
13-P6-C5 77.86341 160.72222 20 71.5 71.5 IMZ Alpine drift 
13-P1-C1 77.86508 160.70158 30 107 70 NCZ Alpine drift 
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